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Many scientific and industrial processes produce data that is best analysed as vectors of
relative values, often called compositions or proportions. The Dirichlet distribution is a natural
distribution to use for composition or proportion data. It has the advantage of a low number of
parameters, making it the parsimonious choice in many cases. This paper considers the case
where the outcome of a process is Dirichlet, dependent on one or more explanatory variables
in a regression setting. The paper explores some existing approaches to this problem, and then
introduces a new simulation approach to fitting suchmodels, based on the Bayesian framework.
The paper illustrates the advantages of the new approach through simulated examples and an
application in sport science. These advantages include: increased accuracy of fit, increased
power for inference, and the ability to introduce random effects without additional complexity
in the analysis.
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1. Introduction
When vectors are measured in whole numbers, say based on a classification process, analysis is often
based on the multinomial distribution, with the total count being seen as a nuisance parameter. In
cases where the total count is not relevant it seems more natural to work directly with the observed
proportions. Sometimes the proportions themselves are observed directly, rather than counts and
totals. Any situation where the quantity surveyed or analysed does not affect the expected vector (but
may affect the precision) falls in this class of problem.
The Dirichlet distribution has been widely accepted in literature for modelling composition data,

subject to the constraint that all the correlations between variables are negative (Maier, 2014). A
wider class of distributions which allows for positive correlations defined on the same sample space
is the logistic-normal (LN) (Aitchison and Shen, 1980). However, the LN distribution has many
parameters to estimate due to the unknown covariance parameter matrix. In contrast, the Dirichlet
distribution has only P unknown parameters to estimate for P composition components. Further,
when themodel is expanded to the regression framework then the requirement of negative correlations
no longer applies (Maier, 2014).
The only remaining restriction of relevance is that observed values should be strictly positive. The

occasional zero will not affect results, but the method cannot handle binary data in the dependent
variable vectors. No restrictions apply to the explanatory variables — they may have any structure.
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As examples of applications, consider the work of Boukal, Ditrich, Kutcherov, Sroka, Dudová and
Papáček (2015), who look at the development of insects, or the work of Espin-Garcia, Shen, Qiu,
Brhane, Liu and Xu (2014), who look at genetic analysis problems, or the work of Smithson and
Verkuilen (2006), who discuss applications in psychology. For an industrial application see de Waal,
Coetzer and van der Merwe (2016) where the composition of coal is analysed. Another area in which
Dirichlet regression may be useful is in politics, where only the proportion of voters supporting a set
of candidates is of interest, possibly dependent on district or demographics. In ecology, preferences
of animals for specific types of prey are of interest. To generalise, any situation where people choose
between a set of options, and the researcher is interested in the choice and not the number of people
making a choice, then the Dirichlet regression model may be of use.
The paper is outlined as follows: In Section 2, a brief introduction on applicable Dirichlet

properties is given. After that Section 3 considers existing approaches to the problem of regression
with dependent variables that follow the Dirichlet distribution (conditional on explanatory data).
The new methodology is then introduced in Section 4, and its usefulness is illustrated via simulated
examples in Section 5. As an example based on observed data, movement data arising from a school
netball tournament is analysed (Section 6). Conclusions and future work are discussed in Section 7.

2. The Dirichlet distribution
If Y is distributed Dirichlet(α1, . . . , αP), denoted by D(α), then the joint density is given by

f (y) =
∏P

i=1 Γ(αi)
Γ(α0)

{
P∏
i=1

yαi−1
i

}
, 0 < yi < 1,

P∑
i=1

yi = 1, α0 =

P∑
i=1

αi .

Aitchison (1986) calls this distribution the compositional Dirichlet defined on the specified simplex.
Wilks (1962) and de Groot (1970) provide detailed discussions on many of the properties of the

Dirichlet distribution. Some relevant properties follow.

1. The means and covariances are

E[Yi] = µi = αi
α0
, i = 1, . . . , P,

σi j =




−αiαj

α2
0(1 + α0)

if i , j,

αi(α0 − αi)
α2

0(1 + α0)
if i = j,

(1)

where µ = (µ1, . . . , µP) denotes the mean of the distribution and Σ = (σi j), i, j = 1, . . . , P, the
covariance matrix.

2. The marginal distribution of any subset W of Y is again Dirichlet(αW, α0 −
∑

i∈W αi). See
Aitchison (1986).

3. In (1), ifα is a multiple of β for two Dirichlet distributions D(α) and D(β), the means are the
same, but the covariance matrices differ.
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4. Fitting the Dirichlet distribution to a sample of reasonable size can be done by following the
method of moments or method of maximum likelihood (ML) as described in Minka (2012),
or by using the Bayesian approach (Van der Merwe and de Waal, 2013). Note that the ML
approach is iterative, while the Bayesian approach uses simulation. Both methods are fast in
most cases due to the neat convex nature of the likelihood.

3. Dirichlet regression
In Carmargo, Stern and Lauretto (2012) the problem is defined as follows:
Let Y = (y1·; y2·; . . . ; yn ·) be a sample of vector observations. They use the i· notation to

indicate that the vectors are arranged in rows of the matrix Y , for practical convenience. Let
X = (x1·; x2·; . . . ; xn ·) be Q explanatory variables arranged the same way (each column of X is a
component and each row of X corresponding with the same row ofY ). Recall that

∑P
j=1 yi j = 1, yi j >

0; while the values of X could be any real numbers. Their notation is used going forward.
Based on the work of Campbell and Mosimann (1987), Hijazi and Jernigan (2009) and Carmargo

et al. (2012) each parameter is modelled as a function of the explanatory variables. In terms of a
single observation yi · = (yi1, . . . , yiP) ∼ D(αi1, . . . , αiP),

αi j = xi1β1j + · · · + xiQβQj = xi ·β· j .

Thus, the parameters to be estimated are all the βk j, k = 1, . . . ,Q, j = 1, . . . , P, subject to the
constraint αi j > 0 ∀ i = 1 . . . n, j = 1, . . . , P. They describe a custom optimisation procedure
to estimate these parameters under these constraints. Finally, Carmargo et al. (2012) explain an
approach to testing βk j = 0, which is useful in many problems.
Gueorguieva, Rosenheck and Zelterman (2008) propose using a log-link in each dimension, thus

eliminating constraints in the optimisation procedure.
However, each βk j does not have a clean interpretation in the above models as E[Yi j] is a function

of all βk j . The difficulty of interpretation is seen as a major drawback by many researchers, and led
to the investigation of alternatives.
Maier (2014) applies a multivariate transformation to the parameters of the Dirichlet distribution,

arriving at an alternative formulation that has the advantage of modelling the expected value of an
observation separately from its precision. He begins by defining a parameter φ = α0 to denote the
precision of an observation. Looking at (1) it can be seen that φ is not exactly the precision but
acts like the precision in the sense that, for large values, if the value of φ doubles while the mean
vector is unchanged then the variance halves. Note the relationship α = µφ. Maier (2014) applies
a log-link function to model φ, i.e. ln φi = wi ·β·φ , where W is a matrix of explanatory variables for
the precision.
For the purpose of modelling the mean, Maier (2014) uses a multivariate logit link. This involves

choosing a base category and setting all coefficients to zero for this category, then using a log-link
to model the other categories and rescaling the results so that the means sum to one. In the notation
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defined previously, and using dimension 1 as the base, for every observation i = 1, . . . , n,

µi j =
exp(xi ·β· j)∑P
k=1 exp(xi ·β·k)

, j = 2 . . . P,

µi1 =
exp xi ·0∑P

k=1 exp xi ·β·k
=

1
1 +

∑P
k=2 exp xi ·β·k

.

Maier (2014) explains that using the transformation above results in coefficients that are interpretable
as odds ratios if exponentiated.
However, each µi j is still a function of all βk j , and there are no coefficients for the base dimen-

sion. These limitations inhibit interpretation. The next section introduces a new methodology that
incorporates the best aspects of the approaches described above.

4. New methodology
The first change is the use of a univariate logit transformation for each mean parameter individually,
thus allowing all βk j coefficients to be unrestricted real numbers. The second change that ties in with
the first is that this new methodology abandons the idea of a reference category or dimension.
In theory, one dimension is redundant since it is a linear combination of the others, but in practice

it is of interest to know the relationship between the explanatory variables and the outcomes in all
dimensions. Often the dimensions are equal in the view of the researcher and it is not sensible to
relegate one to reference status. It is for this reason that researchers such as Chen and Li (2016)
resort to modelling each dimension individually as beta distributed random variables, but that in turn
ignores the multivariate nature of the data.
It is desirable to have each βk j relate directly to a single dimension in a way that can be directly

interpreted. By modelling all dimensions the researcher moves closer to this ideal.
The third change is a move to the Bayesian framework. This involves introducing vague normal

priors on all β parameters. All other parameters are defined in terms of these, so no further priors
are necessary at this stage.
Specifically, this method uses the Bayesian simulation framework, which holds many advantages.

It allows us to directly quantify uncertainty in both the coefficients and the means. Also, when
moving to a predictive framework, construction of predictive densities is relatively straightforward.
The method is still bound by the conditions

P∑
j=1

µi j = 1, ∀ i = 1, . . . , n, (2)

which impede the standard simulation approach greatly. In order to have the simulation process
run smoothly, the researcher must introduce a source of flexibility into the model. This paper adds
flexibility by replacing the restriction (2) by a penalty on the likelihood:

L∗ ∝ L × exp


−1
ξ

n∑
i=1


©«

P∑
j=1

µi j
ª®¬
− 1


2

.

The hyperparameter ξ must be chosen large enough to allow the simulation procedure to run smoothly,
but small enough to have minimal impact on the simulation results. Here, minimal impact implies
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mean deviations that can easily be corrected. The valid region for ξ to meet these criteria seems
surprisingly large. One may consider ξ as a hyperparameter and choose its value manually, or, more
conveniently, apply a prior distribution to ξ and have the value vary as part of the simulation process.
Then, for further simulation flexibility a second penalty parameter (ξ∗) is introduced in the

relationship betweenα, µ and φ. For both penalty parameters a simple exponential prior works well
in all scenarios tested.
Assuming explanatory data captured in matrices X and W (which may overlap), the model is

defined in a hierarchical fashion:

yi · |xi ·,wi · ∼ D(αi ·),
lnαi j ∼ N

(
ln µi j + ln φi , 1/ξ∗) ,

ln φi = wi ·β·φ,

logit(µi j) = xi ·β· j,
P∑
j=1

µi j ∼ N
(
1,

1
ξ

)
,

βi j , βiφ ∼ N(0, 10000),
ξ∗ ∼ E xp(µ = 100/P),
ξ ∼ E xp(µ = 1000/P).

Note that in the expressions above, the models for the mean (logit(µi j) = xi ·β· j) and precision
(ln φi = wi ·β·φ) are in linear form for ease of understanding only — these models can be extended
as needed by the researcher.
Looking only at the likelihood it might be said that the model is over-parameterised or lacking

identifiability; however, the model is identifiable in the Bayesian sense (Rannala, 2002). All pa-
rameters are given proper priors, ensuring a proper posterior, and use of informative priors on the
penalty parameters ensures that the posterior distributions of the parameters of interest reflect the
information in the data. In a practical sense the identifiability of the model is improved over previous
models as there is now exactly one coefficient joining each component of the explanatory data to
each component of the observation vectors.
This paper implements the model using Gibbs sampling (Gelfand and Smith, 1990) via the

OpenBUGS program (http://www.openbugs.net/). Implementation is done indirectly through the
R2OpenBUGS package (Sturtz, Ligges and Gelman, 2005) for R (R Core Team, 2018). All pre- and
post-calculations are done in R. The MASS and parallel packages supplied with R were also used to
facilitate calculations.
Post-simulation, the following corrections are applied to each simulated parameter set k individu-

ally to ensure that fitted expected values sum to one for each observation:

µ
adj
i jk
=

µsim
ijk∑P

j=1 µ
sim
ijk

,

α
adj
i jk
= µ

adj
i jk

φsimik .
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Table 1. Fit statistics for Scenario A.

Scenario A Target Maier approach New approach

Error 0.00 19.59 18.38
Coverage 0.95 0.87 0.94
Std. Width 0.00 0.70 0.75

5. Simulation study
Since the different methods discussed in the previous sections use different transformations (identity,
log, multivariate logit, and univariate logit), the methods are compared on a single scale. In general
the researcher fitting Dirichlet regression models is interested in three things: the significance of the
coefficients, the direction of any significant relationships, and the accuracy of the model fit on the
observed data. The first point of focus is model accuracy.
As a measurement of error, consider the average sum of composition errors (SCE), explained

by Hijazi and Jernigan (2009). It is the sum of the Aitchison distances (Aitchison, 1986) between
estimated compositions and the target values.
Further, it is sensible to calculate the intervals for each expected value individually and then report

the average coverage, along with the average width (standardised by dividing by the expected values).
Datasets are constructed from a model exactly in line with the ‘alternative’ specification of Maier

(2014). Models are then fitted using his DirichletReg package, as well as the new methodology.
Models are correctly specified in all cases — model misspecification is beyond the scope of this
work.

5.1 Simulation Scenario A
Scenario A is a simple analogy to the MANOVA problem. Consider a single explanatory variable
that is a factor with three levels. A researcher might be interested in whether the mean vectors differ
between the three groups created by the factor levels, under the assumption of constant variance.
Let the observed vectors have three dimensions. Set the coefficients for the first dimension to zero,

and then use coefficients of (−0.9, 0.6, 1.2) for the second dimension and (0.8,−1, 0.5) for the third.
The inverse multivariate logit transformation is then applied to obtain the ‘true’ expected values
for every observation, and expanded to 20 observations per factor level (n = 60 in total). The first
step is creating a matrix of binary variables (X) from an expansion of the explanatory factor. The
transformation (explained in detail in Maier, 2014) involves multiplying X by each set of coefficients,
and then exponentiating to obtain raw expected values, which are then standardised to sum to one for
each observation.
The next step is to multiply by a chosen value for φ. This paper uses φ = 1 for illustration. The

effect of changing this value will be discussed after the results. Multiplying the expected values by φ
yields a matrix of αi j values, which is used to simulate hundreds of Dirichlet samples in the standard
way.
After every sample is modelled and the results summarised, various statistics are produced. See

Table 1 for the most important values. It is clear that the new methodology a produces better fit.
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Table 2. Fit statistics for Scenario B.

Scenario B Target Maier approach New approach

Error 0.00 19.19 18.81
Coverage 0.95 0.85 0.86
Std. Width 0.00 0.52 0.54

The next question of interest would be the effect of varying the chosen parameter values. It appears
that the important parameter is the underlying precision, which is closely related to the φ parameter.
When the data are measured with high precision (say φ ≥ 5) then there is little difference between
the fits obtained by the two methods (both methods fit very well). As the precision drops and the
underlying relationships become more obfuscated then the accuracy of the previous methodology
falls away rapidly, while the new methodology loses accuracy slowly, resulting in the difference
observed in Table 1.
Another question of interest would be the effect of increasing the dimensionality of the problem.

If the dimension is increased to 8 and the coefficients are chosen as random U(−1.5, 1.5) values, then
the relative differences between the methods become even more exaggerated. The new methodology
adapts easily to having many categories in the dependent variable.

5.2 Simulation Scenario B
Scenario B is a more complex scenario where a linear term is introduced in every mean vector as well
as the precision model, in addition to the factor explained in Section 5.1. The goal is to determine
whether the model can identify both relationships simultaneously in all categories.
The explanatory factor (X1) is given two levels with coefficients (0, 0), (−0.9, 0.6), (1.8,−1) in

three dimensions respectively. The explanatory variable with a linear relationship (X2) is given real
values between 4.5 and 7.5 with 40 values per level of the explanatory factor. The linear relationship
is created by adding 0.75X2 to the third dimension and then correcting the means to add to one, thus
creating a positive relationship in the third dimension and implicitly creating negative relationships
in the first two dimensions. As X2 increases, y1 and y2 will tend to decrease, while y3 will tend to
increase. The expression for log φ used to generate the data is −1 + 0.5X2.
The results are averaged from hundreds of samples and summarised. As indicated in Table 2, the

results from the methods are similar, but the new methodology is more accurate.
Concerning inference, the new method shows a major improvement over the existing method. In

the precision model the median p-value over simulated samples for the existing method is 0.1%,
while for the new method it is approximately 0%. In the second and third dimensions the median
p-values for the existing method are 50% and 24%, while the new method yields 1% and 0.1%. The
new method also reports a p-value for the first dimension (median 0.4%), while the existing method
does not. Thus, for almost all simulations done, the new method correctly identifies the direction of
the linear relationships and marks all of them as significant. The existing method only identifies the
linear relationship in the precision model.
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6. Observed data example from sport science
During a school netball tournament, scholars were tracked accurately as they move across the field.
One of the resulting measurements was the proportion of time spent standing/walking/running during
the course of a match. The goal is to investigate the relationship between these measurements and
the playing position.
A major complicating factor is the fitness and behaviour variation between players. Some players

were observed for only one match, while others were observed for up to nine matches. This suggests
an unbalanced mixed effects model, with position as fixed effect and player as random effect.
The model is defined explicitly as follows:

yi · |xi,wi ∼ D(αi1, αi2, αi3),
xi = position for observation i,

wi = player for observation i,

lnαi j ∼ N
(
ln µi j + ln φxi , 1/ξ∗

)
,

logit(µi j) = βxi j + βwi j,

3∑
j=1

µi j ∼ N (1, 1/ξ) ,

with priors

ln φxi ∼ N(0, 10000),
βxi j ∼ N(0, 10000),
βwi j ∼ N(0, τ−1

j ),
τj ∼ Gamma(0.001, 0.001),
ξ∗ ∼ E xp(µ = 100/3),
ξ ∼ E xp(µ = 1000/3).

For additional clarity, where there is a second subscript or the letter j, these refer to the category:
standing=1, walking=2, running=3. The model as implemented has exactly one precision parameter
for each playing position, but three intercepts for each playing position corresponding to the three
categories. The model has three random effects for each player, corresponding to the three categories.
These random effects have a single common variance within each category (three in total).
The results are summarised in terms of posterior means and 95% credibility intervals for each

position, by category. Figure 1 shows this result with the positions sorted from highest to lowest
expected running proportion. This sorting makes it easier to identify differences between positions.
The information in this figure may be of use to netball coaches going forward.
Code with detailed comments for this example is available at

http://seanvdm.co.za/files/ProportionsExample20180704.pdf, along with its accompanying dataset
(anonymised): http://seanvdm.co.za/files/NetballData.csv.
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Figure 1. Differences in movement between playing positions in a netball tournament as suggested
by Bayesian unbalanced mixed effects model.

7. Conclusions
In this paper the goalwas a generic solution to the problemwhere the outcome of a process isDirichlet,
dependent on one or more explanatory variables in a regression setting. Existing approaches were
discussed and a new methodology introduced. The new methodology was directly compared to the
latest of the existing approaches and found to perform well. At worst the performance is in line with
existing tools, but in many cases the improvement is remarkable, especially when the data has high
variance. Advantages of the new methodology were discussed, including ease of interpretation and
prediction, with accurate intervals, as well as the ability to introduce random effects.
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