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With this work we propose a spatio-temporal model for Gaussian data collected in a
small number of surveys. We assume the spatial correlation structure to be the same in all
surveys. In the application concerning heavy metal concentrations in mosses, the data set is
dense in the spatial dimension but sparse in the temporal one, thus our model-based approach
corresponds to a correlationmodel depending on survey orders. One advantage of this approach
is its computational simplicity. An interpretation for the space-time covariance function,
decomposing the overall variance of the process as the product of the spatial component
variance by the temporal component variance, is introduced. A simulation study, aiming to
validate the model, provided better results in terms of accuracy with the novel covariance
function. Maps of predicted heavy metal concentrations and of interpolation error, for the
most recent survey, are presented.

Data of this kind is recurrent in environmental sciences, which is why we argue that this
will be a practical tool to be used very often.

Key words: Environmental pollution monitoring, Separable covariance structure, Space-time
modelling, Sparse time dimension.

1. Introduction
Nowadays, due to technological developments and worldwide policies, environmental monitoring
networks are providing large amounts of data exhibiting a spatial and a temporal correlated nature and,
as a consequence, a large number of models and techniques to analyze this sort of data has emerged.
Some references on the subject of spatio-temporal modelling include the following: Kyriakidis
and Journel (1999), reviewing stochastic models involving the extension of spatial analysis tools to
include the time dimension; de Cesare, Myers and Posa (2001), with a discussion on some classes
of models and the introduction of the so-called product-sum model; Sahu and Mardia (2005), with
a review on methods for modelling spatio-temporal point referenced data; Sherman (2011), with a
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brief survey of several types of spatio-temporal covariance models; Huang, Martinez, Mateu and
Montes (2007), comparing four spatio-temporal models covering the situations of separability and
non-separability; and Cameletti, Ignaccolo and Bande (2011), with a comparison of six alternative
spatio-temporal models belonging to the class of Bayesian hierarchical models and providing criteria
to choose among them.
In environmental sciences, data are typically collected through monitoring stations. Shaddick

and Wakefield (2002) use daily pollution data collected at eight monitoring sites within London,
measuring the pollutants particulate matter PM10, carbon monoxide, nitrogen oxide and sulphur
dioxide over the period from 1994 to 1997. Fanshawe et al. (2008) models PM4 levels in the
United Kingdom, using data routinely collected from 20 monitoring stations between 1961 and 1992.
Lindstrom et al. (2011) consider data from 20 sites in and around Los Angeles from an Air Quality
System network measuring ambient concentrations of air pollutants collected at a 2-week timescale
from the beginning of 1999 until September 2009. Cameletti et al. (2011) models PM10 concentration
in the Piemonte region, analyzing daily data collected during 182 day from 24 sites.
However, data may also be collected through biomonitoring surveys covering extensive areas.

Some examples of studies involving moss samples as biomonitors of atmospheric heavy metal
deposition are: Aboal, Real, Fernández and Carballeira (2006) and Diggle, Menezes and Su (2010)
with data fromGalicia, northern Spain; Harmens et al. (2010) with data from several countries across
Europe; Steinnes, Berg and Sjobakk (2003) and Steinnes, Berg and Uggerud (2011) with data from
Norway; Zechmeister et al. (2008) with data from Austria.
It is common to have studies involving environmental spatio-temporal data containing a dense

time dimension, but only a sparse spatial one, which is a result of the ease of data gathering enabled
by modern technologies. However, that is not the case of the biomonitoring data being used in this
work, which are related to measurements of heavy metal concentrations made at 146 spatial locations
in only 3 surveys.
Our aim is to propose a spatio-temporal framework which incorporates into the model both time

and space correlations, capable of fitting spatio-temporal data containing a reduced number of time
observations. Due to this particular characteristic of having few temporal records and under the
hypothesis of separability of the correlation structure, it may be the case that one has a small number
of parameters to estimate in the temporal correlation function.
Margalho, Menezes and Sousa (2014), using the same data set, proposed an extension of an

existing spatio-temporal prediction model accommodating the existence of explanatory variables
to the process under observation. This extension aggregates temporal data at each location by
considering the mean value, thus not taking into account the specificity of each particular survey.
Here, inversely, we aim to include the temporal contribution of any particular survey in the spatial
prediction process.
This work is organized as follows. Section 2 contains an exploratory analysis of the data set

motivating this study. Details on the proposed spatio-temporal model are in Section 3. A simulation
study, for model validation purposes, is conducted in Section 4. In Section 5 an application of the
model, with the aim of predicting heavy metal concentration at non-sampled locations over mainland
Portugal, is given, along with a comparison of results obtained by Margalho et al. (2014). Some
conclusions are formulated in Section 6.
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2. Case study: Heavy metal concentration in mosses
Mosses are widely used as biomonitors of atmospheric heavy metal deposition. In Europe they have
been used since 1990 with the aim of mapping spatial and temporal patterns of accumulation in
ecosystems (Holy et al., 2009). Later, the international mapping project Atmospheric Heavy Metal
Deposition in Europe was established, which surveys the atmospheric deposition of heavy metals
using moss species as biomonitors, with the aim of investigating the existence of correlations between
heavy metal concentrations in mosses.
Uyar, Ören, Yildirim and Ince (2007) mention several advantages of using moss samples: the

vast geographical distribution and the abundant growth in various natural habitats; the non-existence
of epidermis or cuticle enabling their cell walls to be easily penetrable for metal ions; the fact that
mosses obtain minerals mainly from air and precipitation as they have no root systems; the effect and
contamination of soil by heavy metals is negligible for most mosses, so they show the concentrations
of the most metals correlated to the amount of atmospheric deposition. The simple procedure of
sampling and of cheap chemical analysis also makes mosses especially suitable organisms for the
purpose of monitoring.
Some examples of studies related to the use of moss samples are in Diggle et al. (2010), where

moss data obtained from Galicia, northern Spain, were used in the context of analyzing the effect
of preferential sampling on prediction, but not taking into account the temporal representativeness
of data; Harmens et al. (2010) who considered data from several countries across Europe; Steinnes
et al. (2003) and Steinnes et al. (2011) with data from Norway; Zechmeister et al. (2008) with data
from Austria.
Portugal was one of the participating countries in the Atmospheric Heavy Metal Deposition in

Europe project, performing surveys every 5 years since its beginning in 1990. Moss samples of the
speciesHypnum cupressiforme and Scleropodium tourettiwere collected in three nationwide surveys
across mainland Portugal, referred to as the 1992, 1996 and 2002 surveys.
Although the number of sampling locations was not the same throughout the surveys, 146 of those

were common to the three surveys. Sampling locations were selected in order to be representative
of background areas, collected in a 30 × 30 km2 grid, although near large urban or industrial areas
the sampling design was intensified, where the grid was adjusted to 10 × 10 km2. Chemical analysis
yielded concentration measurements of cadmium, chromium, copper, iron, manganese, nickel, lead
and zinc. Further details on the sampling and analysis procedure can be found in Figueira, Sérgio
and Sousa (2002) or Martins, Figueira, Sousa and Sérgio (2012).
As stated before, the sampling design was not uniform throughout the whole region under study, in

contrast to the examples presented in Boquete, Fernández, Aboal and Carballeira (2011) and Steinnes
et al. (2011). There are cases where sampling is intensified in subregions where a large gradient of
the measured variable is expected (Diggle et al., 2010). In fact, one possible aim of an air monitoring
network might be to identify larger values of pollution, so sampling locations could be selected based
on high values rather than randomly (Guttorp and Loperfido, 2008).
Specifically, in the Portuguese case, sampling locations were in a larger number at regions with

high industrial or urban density. This motivates the use of a function of the spatial sampling intensity
as an explanatory variable when modelling air pollution data from Portugal.
The issue of using covariates in spatio-temporal models and testing for its significance is addressed

in Díaz-Avalos, Juan and Mateu (2014) in the context of point processes. Particularly in the
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applications that follow, the inclusion of sampling intensity as an explanatory variable will be
obtained by a spatial kernel smoothing of the sampling locations density. As should be expected, the
larger values of this smooth function, ranging from 3.14 to 27.48 and with mean value equal to 11.62,
occur in regions with higher sampling intensity where the industrial or urban areas are located.

2.1 Exploratory data analysis
Among the various heavy metals found in nature, manganese (Mn) is one of the most abundant and
widely distributed, being found in water, rocks and soil (Pinsino, Roccheri and Matranga, 2012). The
presence of this metal has not only a natural cause as a result of mineral weathering and atmospheric
deposition, but can also have anthropogenic origins, such as municipal wastewater discharges,
mining and mineral processing, combustion of fossil fuels or emissions from the combustion of
fuel additives (Howe, Malcolm and Dobson, 2004). Although essential for humans, at higher levels
of contamination manganese can become toxic. Several studies relate chronic manganese excess with
disturbances in the central nervous system, with symptoms resembling those of Parkinson’s disease
(Perl and Olanow, 2007; Rocks and Levy, 2008).
Table 1 summarizes a descriptive analysis of Mn concentration data for the three considered

surveys. Values are expressed in units of mg(metal)/kg(moss). Mn concentrations in the original
scale ranged from a minimum of 4.0 mg/kg, recorded in the second survey, and a maximum value of
970.0 mg/kg, which occurred in the first survey. One can observe that the mean value has increased
from around 160 mg/kg in the first survey to almost 180 mg/kg in the second survey, and decreased
to less than 150 mg/kg in the third survey. A similar behavior occurred with the median, and one can
also observe that the variability of Mn concentration values was always decreasing. The maximum
recorded value for each survey should be noted, particularly in the first one when the maximum was
about six times the mean value. This difference between the mean and the maximum value was not
so marked in the second and third surveys, although it was also pronounced. All surveys show the
presence of outlier values, with the first survey being the one with the strongest right asymmetric
distribution, where over time the asymmetry becomes not so marked. A Box-Cox transformation
of data was carried out in order to reduce the effect that these values could cause in the estimation
process. The particular value of the Box-Cox transformation parameter was 0.15. After performing
the transformation of data, the asymmetry fades away and the resulting distribution behaves like a
Gaussian one (p-values in a Shapiro-Wilk test for normality of 0.435, 0.199 and 0.0798 for the first,
second and third surveys, respectively).

2.2 Spatial analysis restricted to 2002
To better understand the spatial behaviour of data, transformed concentration values were predicted
by means of Ordinary Kriging over a fine 300×100 grid covering mainland Portugal, allowing grid
points at a distance of around 2 km from each other. Interpolation errors, defined as the squared root
of the interpolation variance, were computed. The two leftmost columns in Table 2 show a summary
of the predicted Mn transformed concentrations for the 2002 survey and the associated interpolation
errors.
A spatial analysis was also performed by considering the sampling location intensity as an

explanatory variable. Here, the expected value of the process under observation is a function of
the observed location. This way, the interpolation procedure corresponds, according to Cressie
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Table 1. Data Summary of Mn concentration (observed and Box-Cox transformed
values).

Survey
1992 1996 2002

Concentration Observ. Transf. Observ. Transf. Observ. Transf.
Min 16.00 3.39 4.03 1.54 23.14 3.96
Median 123.50 6.90 149.18 7.28 123.20 6.89
Max 970.00 11.63 685.55 10.73 503.11 9.97
Mean 161.62 6.88 178.62 7.13 147.12 6.85
St. dev. 147.97 1.69 136.01 1.65 99.28 1.41

Table 2. PredictedMn transformed concentration for the
2002 survey and associated interpolation error, obtained
byOrdinary Kriging (left) and Universal Kriging (right).

OK UK
Predicted Error Predicted Error

Min 4.88 1.04 4.39 1.03
Median 6.99 1.26 7.57 1.25
Max 8.59 1.47 8.58 1.37
Mean 6.97 1.26 7.40 1.24
St. dev. 0.63 0.12 0.63 0.09

(1993), to the Universal Kriging.
Predicted transformed concentration at unobserved locations, placed over the same grid as in the

previous application, and the associated interpolation error are summarized in the two rightmost
columns of Table 2. It is worthwhile noticing that the inclusion of the mentioned covariate in the
interpolation procedure has the effect of reducing the amount of interpolation error.
Maps of predicted values and of the associated interpolation error were created, although not

presented here for space reasons. It is known that contamination by Mn is mainly associated with
the soil typology (Figueira et al., 2002). In accordance with this, higher predicted values were found
in eastern and south-western Portugal, i.e. regions with less forestry and hence more soil erosion.

Comparison of spatial prediction results
By comparing the prediction results presented in Table 2 for the most recent survey, one can register
that the predictedMn values are of larger magnitude when considering the covariate. This means that
by incorporating this information in the prediction spatial model, the effect of ignoring a sampling
design not evenly representative of the area under observationwasmitigated. In the case of Portuguese
moss data, where areas with more sampled locations correspond to lower values of Mn, this approach
allows one to solve the issue of underestimating Mn concentrations.
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3. The model
Aiming to consider data available from different surveys, we propose a spatio-temporal model for
Gaussian data collected at location s ∈ IR2 and time t ∈ IN, defined as

Y (s, t) = µ(s, t) + Z(s, t) + ε(s, t). (1)

Considering N locations observed at T surveys, the mean component µ(s, t), depending on possibly
observed covariates f (s, t), indexed in space or in time, will be defined as

µ(si, tk) =
p∑
j=1

βj fj(si, tk), i = 1, . . . ,N, k = 1, . . . ,T . (2)

Under matrix notation, one has
Y = µ +Z + ε,

with
µ = M · β,

the product of the (NT) × (p + 1) design matrix M (where p is the number of considered covariates)
and β, the vector of regression coefficients in the mean component of (2). The columns of M , with
exception of the first, represent each covariate fj(s, t) in (2).
The unobserved spatio-temporal process Z(s, t) is such that

Z ∼ MV N
(
0,Σ

)
(3)

and ε(s, t) represents Gaussian space-time measurements errors,

ε ∼ MV N
(
0, τ2INT

)
, (4)

with INT the identity matrix of order NT .
In the spatio-temporal process (3), Σ is a (NT) × (NT) symmetric matrix, which can be interpreted

as a T × T block matrix such that, for k, l = 1, . . . ,T, the element on line i and column j is

Σi, j ,k ,l = CovST
[
Z(si, tk), Z(sj, tl)

]
, i, j = 1, . . . ,N . (5)

Furthermore, the proposed model assumes second order stationarity and an isotropic and separable
covariance structure, so we define purely spatial and purely temporal covariance functions CovS and
CovT (Sherman, 2011) resulting in

Σi, j ,k ,l = CovS
(‖si − sj ‖

) × CovT (|tk − tl |)
= CovS (hS) × CovT (hT ) .

The reason to propose this decomposition of the covariance structure is that one could consider,
for each sampling location, an autoregressive process (along time) and find, simultaneously, spatial
correlation among locations. In case the real data set considered here had more time observations,
this would be expected to happen.
In spite of the difficulty of identifiability that this decomposition brings, it seems an interesting

point of comparison in terms of accuracy of prediction.
The notion of separability, according to Bruno, Guttorp, Sampson and Cocchi (2003), satisfies the

two following statements:
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(i) the spatial covariance function is constant in time, so that

Cov
[
Z(si, tk), Z(sj, tk)

]
= Cov

[
Z(si, tl), Z(sj, tl)

]
,

for all (tk, tl), si , sj ∈ IR2, and

(ii) the temporal covariance function is the same at all monitoring locations, regardless of the
displacement between locations,

Cov
[
Z(si, tk), Z(si, tl)

]
= Cov

[
Z(sj, tk), Z(sj, tl)

]
,

for all (si , sj), tk, tl = 1, . . . ,T .

3.1 Inference on model parameters
Under the assumption of second order stationarity, we allow two different interpretations for the
covariance function. The most common one (e.g. Rodriguez-Iturbe and Mejia, 1974; Sherman,
2011) considers a scale parameter σ2

total
representing the overall variance, being the covariance

matrix given by
Σ = σ2

total RS ⊗ RT , (6)

where ⊗ is the Kronecker product of matrices, and RS and RT are, respectively, the N × N spatial
correlation matrix and the T × T temporal correlation matrix. As an alternative we propose to take
into account different scale parameters for the spatial and the temporal components,

Σ = σ2
SRS ⊗ σ2

T RT , (7)

where σ2
S is the spatial variance and σ2

T is the temporal variance. Basically, this corresponds to
performing a reparametrization of the overall variance and then decomposing it into the product of
a spatial variance and a temporal one. To the best of our knowledge, such a decomposition of the
overall variance has not yet been proposed.
If only a reduced number of time observations are available, RT is a T ×T matrix whose elements,

denoted by ρT (|tk − tl |), k, l = 1, . . . ,T,measure the association between observations at time tk and
tl .

Denoting by CY the covariance matrix of Y (s, t), which depends on the parameters τ2 and θ =
(σ2

total
, φS, ρT (|tk − tl |)) or θ = (σ2

S, σ
2
T , φS, ρT (|tk − tl |)),we have

CY (τ2,θ) = Σ(θ) + τ2INT .

Following standard results from Gaussian distribution theory, the log-likelihood function is

log L(τ2,θ) = −NT
2

log(2π) − 1
2

log
(
det

(
CY (τ2,θ)) ) − 1

2

(
Y −M β

) t
C−1
Y (τ2,θ)

(
Y −M β

)
, (8)

where the profile Likelihood Estimator for β is given by

β̂ =
(
M tC−1

Y (τ2,θ)M
)−1

M tC−1
Y (τ2,θ)Y . (9)

The log-likelihood function (8) depends on 3+ (T(T − 1)/2−1)+ (p+1) parameters, if one considers
(6), or 4 + (T(T − 1)/2 − 1) + (p + 1) in the case of (7). The advantage resulting from the knowledge
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of an analytic estimator for the parameter vector β is a reduction on the computational effort required
for the parameter estimation.
The difference in the number of parameters in the log-likelihood function results from the

reparametrization of the overall variance σ2
total

in (6) by (σS · σT )2. Hence, one should expect
to find an estimate σ̂2

total
close to the product σ̂2

S · σ̂2
T .

3.2 The theoretical semi-variogram
The space-time semi-variogram γ(hS, hT ) of the unobserved spatio-temporal process Z(s, t), where
hS = ‖si − sj ‖ and hT = |tk − tl | are the spatial distances between locations and temporal distances
between surveys orders, respectively, is

γ(hS, hT ) = 1
2
Var

[
Z(s, t) − Z(s + hS, t + hT )

]
.

The relationship between γ(hS, hT ) and the space-time covariance function

γ(hS, hT ) = CovST (0,0) − CovST (hS, hT )

under second order stationarity conditions iswell known (see, e.g., Cressie andWikle, 2011; Sherman,
2011).
If the covariance structure in (6) is considered, then CovST (0,0) = σ2

total
and CovST (hS, ht ) =

σ2
total

· ρS(hS) · ρT (hT ), where ρS(hS) and ρT (hT ) represent the respective elements of the spatial
and temporal correlation matrices.
Equivalently, if (7) is assumed, one has CovST (0,0) = σ2

Sσ
2
T and CovST (hS, ht ) = σ2

Sσ
2
T · ρS(hS) ·

ρT (hT ). These two versions of the semi-variogram are analogous, only differing in the reparametri-
zation of the variance. The resulting advantage of considering this decomposition comes from the
capacity to assign different magnitudes to the spatial and the temporal variability.

3.3 Prediction at unsampled locations
The model described in (1) assumes that the hidden process Z(s, t) and the measurement error ε(s, t)
areGaussian ((3) and (4)). It is well known (see, e.g., Cressie andWikle, 2011), that for an unobserved
location s0 and a time t0, the joint distribution of Y (s0, t0) and Y is

[
Y (s0, t0)
Y

]
∼ MVN

( [
µ(s0, t0)
µ

]
,

[
C0,0 cT0
c0 CY (τ2,θ)

] )
, (10)

where µ(s0, t0) =
∑p

i=1 β̂i fi(s0, t0), µ is defined by (2), C0,0 = Var [Y (s0, t0)] , c0 = Cov [Y (s0, t0),Y ] ,
and CY (τ2,θ) = Σ(θ) + τ2INT with Σ(θ) as in (5).
The predicted value Ŷ (s0, t0) at an unsampled location can be obtained from (10), and is given by

Ŷ (s0, t0) = E
[
Y (s0, t0)|Y

]
= µ(s0, t0) + cT0 C−1

Y (τ2,θ) (Y − µ)
. (11)

The variance of the prediction, also resulting from (10), is

σ2(s0, t0) = E
[
Y (s0, t0) − Ŷ (s0, t0)

]2
= C0,0 − cT0 C−1

Y (τ2,θ) c0. (12)
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In particular, if an exponential spatial model is assumed, c0 is the concatenation of T vectors
c1, c2, . . . , cT , each with dimension N × 1,where

ci = σ̂2
total

(
exp

( − φ̂−1
S ‖s0 − s1‖

)
ρ̂T (|ti − t0 |), . . . ,exp

( − φ̂−1
S ‖s0 − sN ‖

)
ρ̂T (|ti − t0 |)

) t
or

ci = σ̂2
S σ̂

2
T

(
exp

( − φ̂−1
S ‖s0 − s1‖

)
ρ̂T (|ti − t0 |), · · · ,exp

( − φ̂−1
S ‖s0 − sN ‖

)
ρ̂T (|ti − t0 |)

) t
,

with i = 1,2, . . . ,T, depending on whether one assumes the covariance structure in (6) or in (7).

4. Simulation study
For model validation purposes a simulation study was conducted. Gaussian data spatially correlated
with zero mean was generated on a set of N = 50 randomly chosen locations in the square [0,10]2 at
time points T = 3, T = 4 and T = 6 according to AR(2), AR(3) and AR(5) models, respectively, in
order to be representative of a strong temporal correlation among the time points. We should note
that each time point represents a specific survey, assuming that they occur approximately regularly
over time. To replicate the behaviour of the real data set to be introduced in Section 5, which exhibits
a region with more intensified sampling density, 15 of those locations belong to the square [4.5,5.5]2.
The mean component in (2) includes the covariates intensity of sampling locations, int(s), and a

specific contribution for survey i = 2, . . . ,T, assuming survey 1 as the reference. For example, under
the simulation study with T = 3, this results in

µ(s, t) = β0 + β1int(s) + β2v2(t) + β3v3(t), (13)

where, for i = 2,3,

vi(t) =
{

1 if t = i,

0 otherwise.

The reason to consider the covariate sampling intensity is that, as stated before, the data set to be
used later in the application of model (1) shows that the sampling design is not uniform throughout
the whole region. The covariates v1 and v2 are intended to accommodate situations in which, for
instance, a change in policies is expected to modify some outcome. Margalho et al. (2014), who also
consider data of heavy metal concentration in mosses as in the present work, identified a reduction
on the scale of Pb measurements at the 2002 survey, which could probably be attributed to new
Portuguese legislation forcing the use of unleaded fuel.
The two different space-time covariance functions described in (6) and (7) were compared. The

particular choice of the parameter values for the mean component (13) were as follows: β0 = 0,
which indicates that the expected value for the first survey is zero; β1 = 1, once the inclusion of the
covariate sampling intensity in the design matrix M in (2) was made by subtracting the mean intensity
of all locations to the intensity of each location, thus an unitary coefficient turns the contribution of
the covariate to the mean dependent on the sign of that difference; β2 = · · · = βT = 0, which means
that the difference between the expected values of, respectively, the second and the first survey and
each new survey, is zero.
The variance parameters were σ2

S = 5, representing the mean of spatial variances along time, and
σ2
T = 0.8, representing the mean of temporal variances at each sample location; σ2 = 4, representing
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Table 3. Estimates for the model parameters when considering the space-time covariance
function in (6).

AR(2) AR(3) AR(5)

True Parameter Mean Std. Error Mean Std. Error Mean Std. Error

β0 = 0 −0.0341 0.0566 −0.1016 0.0534 −0.0844 0.0583
β1 = 1 1.0496 0.1591 1.0340 0.1329 0.9454 0.1162
β2 = 0 −0.0007 0.0239 0.0303 0.0237 0.0291 0.0252
β3 = 0 −0.0177 0.0339 0.0336 0.0265 −0.0017 0.0278
β4 = 0 - - 0.0408 0.0304 0.0112 0.0271
β5 = 0 - - - - 0.0036 0.0331
β6 = 0 - - - - 0.0159 0.0341
ρT (|t1 − t2 |) = 0.850 0.8349 0.0029 0.8311 0.0029 0.8329 0.0018
ρT (|t1 − t3 |) = 0.810 0.8007 0.0034 0.8032 0.0032 0.8054 0.0019
ρT (|t1 − t4 |) = 0.750 - - 0.7519 0.0036 0.7490 0.0021
ρT (|t1 − t5 |) = 0.725 - - - - 0.7356 0.0025
ρT (|t1 − t6 |) = 0.700 - - - - 0.7063 0.0027
σ2 = 4 3.5666 0.0841 3.7167 0.0552 3.7647 0.0382
τ2 = 0.25 0.2409 0.0043 0.2437 0.0035 0.2494 0.0024
φ = 3 2.8459 0.0816 3.0456 0.0533 3.0366 0.0308

the variance of all observations along time and space (and also satisfying σ2 = σ2
S · σ2

T ); τ
2 = 0.25;

φ = 3, being less than 25% of the maximum possible distance between two sampled locations.
The correlation parameters in the time dimension were chosen taking into account non-null

correlations of a AR(2), AR(3), or AR(5) process, depending on whether the number of surveys
T is 3, 4 or 6, respectively. In particular, under the simulation study with T = 3, ρT (|t1 − t2 |) =
ρT (|t2 − t3 |) = 0.85 and ρT (|t1 − t3 |) = 0.81.
For each scenario 250 replicates were computed. For each replicate, the β coefficients were

estimated according to (9) and the optimization method L-BFGS-B of the function optim in R was
used to obtain estimates for the other parameters. This method is a bound constrained variant of the
BFGS algorithm which in turn approximates the Newton method for solving nonlinear optimization
problems. The L-BFGS-B algorithm is an iterative algorithm that minimizes the objective function
subject to some boundary constraints (Keskar and Waechter, 2016).
To assess the predictive performance of each scenario, the mean and the standard error of the

estimates were computed. Results on the estimation of the model parameters may be found in Tables
3 and 4. As ρT (|t1 − t2 |) = ρT (|t2 − t3 |) = ρT (|t3 − t4 |) = ρT (|t4 − t5 |) = ρT (|t5 − t6 |), for the sake of
simplicity these tables only display the value for ρT (|t1 − t2 |). The same display applies for lags of
2, 3, 4 or 5 temporal units.
Although there are no major differences, these estimates show lower values of standard errors for

the majority of the parameters if one considers the spatial and the temporal variance contribution
separately. These simulation results also highlight the fact that the proposed model produces better
estimates as the number of time observations increases.
In this simulation study an iterative process to find parameter estimates could also be considered
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Table 4. Estimates for the model parameters when considering the space-time covariance
function in (7).

AR(2) AR(3) AR(5)

True Parameter Mean Std. Error Mean Std. Error Mean Std. Error

β0 = 0 −0.0954 0.0541 −0.0710 0.0544 −0.0046 0.0536
β1 = 1 1.0615 0.1469 1.0109 0.1478 0.9807 0.1153
β2 = 0 0.0184 0.0215 0.0012 0.0222 −0.0036 0.0249
β3 = 0 0.0465 0.0304 0.0339 0.0247 −0.0114 0.0268
β4 = 0 - - 0.0408 0.0178 −0.0075 0.0256
β5 = 0 - - - - −0.0266 0.0321
β6 = 0 - - - - −0.0311 0.0346
ρT (|t1 − t2 |) = 0.850 0.8379 0.0031 0.8305 0.0029 0.8344 0.0018
ρT (|t1 − t3 |) = 0.810 0.8097 0.0034 0.8066 0.0028 0.8030 0.0018
ρT (|t1 − t4 |) = 0.750 - - 0.7502 0.0029 0.7501 0.0021
ρT (|t1 − t5 |) = 0.725 - - - - 0.7242 0.0023
ρT (|t1 − t6 |) = 0.700 - - - - 0.7017 0.0021
σ2
S
= 5 4.7047 0.0419 4.7299 0.0317 4.5086 0.0258

σ2
T = 0.8 0.7528 0.0067 0.7568 0.0051 0.7688 0.0041
τ2 = 0.25 0.2438 0.0037 0.2506 0.0032 0.2454 0.0021
φ = 3 2.7996 0.0563 2.9487 0.0407 3.0664 0.0333

by following an algorithm where (i) an initial estimate β̂(0) for β is proposed, (ii) estimates τ2
(0) and

of θ(0) are derived from (8) using the estimate β̂(0), (iii) the estimate β̂(1) is found by updating β̂(0)
from the estimates τ2

(0) and θ(0), (iv) steps (ii) and (iii) are repeated until a given error tolerance is
reached.

5. Application to environmental data
The model previously described in Section 3 will now be used to obtain predicted values of heavy
metal concentration at each point of a fine 300× 100 grid covering mainland Portugal, allowing grid
points at a distance of around 2 km from each other.

5.1 Assessing the separability assumption
An important assumption in the definition of model (1) is the separability of the covariance structure.
This is a simplifying assumption frequently taken into account in environmental modelling, as
substantial computational benefits arise from this property. For the application under consideration
and due to the reduced number of time observations, it is not possible to perform a formal test to
ascertain the separability of the covariance structure.
Alternatively, we use the aid of the empirical spatio-temporal semivariogram to adjust a spatio-

temporal separable model (Rodriguez-Iturbe and Mejia, 1974; de Cesare et al., 2001),

CST (hS, hT ) = CS(hS) · CT (ht ),

MODELLING ENVIRONMENTAL MONITORING DATA 45



Table 5. Parameter estimates for the adjusted variograms
in Figure 1 (φ̂S in meters and φ̂T in years).

Model Component τ̂2 σ̂2 φ̂

Separable Spatial 0.41 0.59 53 108.81
Temporal 0.24 0.76 2.69
Joint — 2.45 —

Metric Joint 1.13 0.91 —

ProductSum Spatial — 1.58 69 065.92
Temporal — 1.94 2.04
Joint 0.99 3.49 —

a metric model (Dimitrakopoulos and Luo, 1994),

CST (hS, hT ) = C
(
a1‖hS ‖2 + a2 |ht |2

)
,

and a product-sum model (de Cesare et al., 2001),

CST (hS, hT ) = k1 · CS(hS) · CT (ht ) + k2 · CS(hS) + k3 · CT (ht ).

For each model, the resulting parameter estimates are in Table 5. We consider exponential models in
the covariance functions to obtain these estimates.
There are some graphical differences between these several adjusted theoretical models, as

represented in Figure 1. The separable model captures more precisely the behavior shown by
the empirical semivariogram, detecting an increase of variances from the first to the second survey,
and a decrease for the third. Cressie and Huang (1999) state that separable models are often chosen
for convenience rather than for their ability to fit the data well, so the assumption of separability will
be assumed for the Mn data.
As stated before, the definition of separability satisfies the statements (i) and (ii) on page 41. In our

application case, (i)means that the spatial structure is the same for all surveys. The left side of Figure 2
shows the empirical semivariograms related with each survey and, on the right, cross semivariograms
for time lags of 0, 1 and 2 surveys. The structure revealed by the cross semivariograms is similar
independently of the lag being considered, which corroboraties the assumption of equality of spatial
structure for the performed surveys.

5.2 Maximum likelihood estimates of the parameters
The parameter estimates of model (1), considering the covariance functions defined by (6) and by
(7), and derived according to (8) and (9), are given in Table 6. In particular, one can observe that,
in either case, the baseline effect estimate β0 is above seven units, being of similar magnitude to
the mean of the transformed Mn concentration. The inclusion of the covariate sampling intensity,
as detailed in the simulation study, was done considering the difference between the intensity of
each location and the mean of the intensity for all locations. This way, the estimate of β1 resulting
from (7) reflects more precisely the fact that larger values of Mn concentration occur in regions with
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Figure 1. Empirical (top left), Separable (top right), Metric (bottom left) and ProductSum (bottom
right) spatio-temporal semivariograms for Mn transformed data.

low urban or industrial density, which corresponds also to regions with lower sampling locations
intensity. We note that these less industrialized areas are the ones where soil typology favours high
Mn concentration values. The contribution of the second and of the third surveys are estimated to
be of different signs, namely the second survey with a positive contribution and the third with a
negative one. However, the estimate of β3 for the covariance function described in (7) reinforces the
contribution of the third survey to the decrease of predicted concentrations.
As was to be expected, the parameters related to the temporal correlation are equal in either

approach, indicating data that strongly time correlated. Similarly, the nugget effect is estimated
equally by either approach. The covariance function given by (7) assumes different spatial and
temporal variances, contributing as a product to the covariance of the process. It is worthwhile to
note that the product of the estimates of these parameters equals the overall variance estimate for
(6). The estimates for the radius of influence φ are also of similar magnitude for either approach,
being approximately 58.5 km. The computation of the standard errors was done via Monte-Carlo
simulation.
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Figure 2. Empirical semivariograms (left) and cross semivariograms for lags 0, 1 and 2 (right) for
Mn transformed data.

5.3 Prediction of Mn concentration for the most recent survey
These parameter estimates, together with (11) and (12) (setting t0 equal to 2002 in these equations),
allows one to predict, for the most recent survey, the Box-Cox transformed Mn concentration values
and the associated interpolation errors. This corresponds to adopting plug-in estimates of the
parameters that define the mean and the covariance structure of the Mn variable to proceed with
prediction. A brief summary of those predicted values is in Table 7. One can observe that the
range of predicted values, in either situation, is similar, although with larger predicted values when
considering spatial and temporal scale parameters. In fact, all the measures of the predicted values
according to (7), with exception of the standard deviation, are larger than the ones obtained considering
(6). This might be explained by taking into account that, according to Table 6, when applying the
adjustment of sampling design, the expected value for Mn under (7) becomes larger than the one
under (6).
The left panel of Figure 3 represents the Mn predicted concentration map, while the associated

prediction error is in the right panel. As was to be expected, once contamination by Mn is more
associated to parameters describing soil typology and sampling site conditions, and less related to
anthropogenic contamination sources, higher predicted contamination values occur in the eastern
part of mainland Portugal. This spatial structure is captured by either approach for the covariance
function.

5.4 Cross validation study
Cross-validation of results was developed to assess the accuracy of the predicted concentrations
obtained considering the two approaches for the covariance structure in (6) and in (7). The technique
in use for this cross-validation study corresponds to leave out at each time one sampled location and
interpolate the value at that location as a function of all other locations.
The absolute prediction error (APE) was considered to measure the discrepancy between the

observed and the interpolated value at each location. Results revealed the value 1.02 for the mean
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Table 6. Model (1) parameter estimates with standard errors.

Covariance function in (6) Covariance function in (7)

Parameter Estimate St. Error Estimate St. Error
β0 7.39 0.04 7.45 0.04
β1 −0.01 <0.01 0.01 <0.01
β2 0.21 0.01 0.15 0.01
β3 −0.14 0.02 −0.24 0.02
ρT (|t1 − t2 |) 0.97 0.01 0.97 0.01
ρT (|t1 − t3 |) 0.91 0.01 0.91 0.01
ρT (|t2 − t3 |) 0.96 0.01 0.96 0.01
σ2
total

1.45 0.03 — —
σ2
S — — 0.98 0.01

σ2
T — — 1.48 0.02
τ2 1.02 0.01 1.02 0.01
φ (m) 58 596.89 1421.10 58 624.08 1470.20

Table 7. Predicted transformed Mn concentration for the 2002 survey
and interpolation error values, obtained from the spatio-temporal model
in (1).

Covariance function in (6) Covariance function in (7)

Predicted Error Predicted Error
Min 4.05 0.23 4.53 0.41
Median 7.10 0.72 7.21 0.79
Max 9.05 1.19 9.16 1.19
Mean 6.92 0.78 7.09 0.85
St. dev. 0.92 0.23 0.74 0.19

APE, with a standard deviation of 0.81, no matter which approach for the covariance function is
considered.
This is not a surprising result as the two sets of predicted values were obtained from the same

model, with the only difference being the parametrization of the separable spatio-temporal covariance
structure. In fact, this finding reinforces the advantage of being able to identify two distinct parameters
for variability, one for the spatial dimension and the other for the temporal dimension, without
compromising the accuracy of predicted values.

5.5 Comparison with other models
Margalho et al. (2014), with the same data set, proposed an extension of an existing spatio-temporal
model introduced in Høst, Omre and Switzer (1995), allowing for considering explanatory covariates
relevant to the process under observation. As in the present work, the separability of the spatial and
the temporal contribution was taken into account.
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Figure 3. Prediction map for the 2002 survey (left) and the associated interpolation error map (right)
for Mn transformed data, considering the covariance function given in (6) (top row) or (7) (bottom
row).

The response variable value Y (s, t) at location s and time t was written as

Y (s, t) = µ(s, t) + ω(s, t)ε(s, t),

where µ(s, t), ω(s, t) and ε(s, t) stand for space-time mutually independent random fields representing
mean, scale and residuals.
The mean and the scale components were decomposed between spatial and temporal effects.

Specifically, the mean component was decomposed as

µ(s, t) = M1(s) + m2(t),

that is, the sum of a purely spatial component M1(s),modelling the spatial mean variation, and m2(t),
a temporal modulation at discrete times, which corresponds to consider an additive separability in
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Table 8. Comparison of predicted Box-Cox transformed Mn concentration
for the 2002 survey and interpolation error values under two different spatio-
temporal models.

Model (1) Model in Margalho et al. (2014)
Concentration Error Concentration Error

Min 4.53 0.41 4.30 0.80
Median 7.21 0.79 7.53 1.07
Max 9.16 1.19 8.93 1.18
Mean 7.09 0.85 7.37 1.06
St. dev. 0.74 0.19 0.66 0.12

the mean field µ(s, t). Regarding the scale field, a multiplicative separability was considered,

ω(s, t) = S1(s)s2(t),
that is, the product of a purely spatial component, S1(s), and a purely temporal component, s2(t).
M1(s) represents a mean random effect in space and m2(t) the associated time correction, being
approximately equal to zero. In a similar way S1(s) represents a scale random effect in space and
s2(t) the associated time correction being approximately one. The remaining space-time interactions
not captured by the foregoing components were identified by the random component ε(s, t).
The model aimed to be simple and, mainly, to cover a wide range of practical situations, where

space and time separability is reasonable to be assumed.
Although both the prediction and the interpolation error maps obtained by each methodology are

similar, the interpolation error values are of smaller magnitude with the new model proposal (1).
This statement can be confirmed from Table 8, which summarizes a comparison of the predicted
values and the interpolation errors obtained when applying model (1) or the model in Margalho
et al. (2014). Moreover, the comparison of predictions accuracy, presented in Table 2 and Table 8,
highlights the importance of including in the prediction procedure not only explanatory covariates
for the process under observation, but also the information from the past surveys. One can register
for spatio-temporal prediction models lower values of interpolation error.

6. Conclusions
We propose a spatio-temporal model-based approach to accommodate the possible existence of
explanatory covariates to the process under observation and, under the assumption of the separability
of the Gaussian process under observation, construct the model in a way that the reduced number
of time observations lead to a temporal correlation model with a small number of parameters. The
proposed model was derived in order to accommodate not exclusively geo-referenced covariates,
but also covariates associated with the temporal behavior of the process. Complementing the most
common interpretation of the covariance structure, different spatial and temporal sources of variability
were allowed.
The model validation was performed via a simulation study where better results in terms of

precision were achieved when assuming different spatial and temporal variances, in contrast to an
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approach an overall variance.
We have shown how to use this model via an application to a real data set, predicting heavy

metal concentrations, namely Mn concentration, along with the associated uncertainty maps. The
separability of the covariance structure in the spatio-temporal context was not possible to test, due
to the reduced number of temporal observations. Instead, we have used the aid of a graphical
comparison of the empirical spatio-temporal semivariogram with the ones produced by different
models to observe that the separable model fitted the data better. The model’s good performance
in predicting concentration values of contaminant was compared with results obtained by using a
different spatio-temporal model which also assumes spatial and temporal separability and enables
the use of covariates. In terms of interpolation error, values of lower magnitude were found with this
new proposal.
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