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As in the context of introducing the concept of residual entropy in the literature, Qiu
and Jia (2018b) introduced the concept, residual extropy to measure the residual uncertainty
of a random variable. In this work, we propose a nonparametric estimator for the residual
extropy, where the observations under consideration are exhibiting α-mixing (strong mixing)
dependence condition. Asymptotic properties of the estimator is derived under suitable regular
conditions. A Monte Carlo simulation study is carried out to evaluate the performance of the
estimator using the mean squared errors.

Key words: α-mixing, Entropy, Extropy, Kernel estimator, Residual extropy.

1. Introduction
The notion of entropy emerged in conceptually distinct contexts. From a statistical point of view, it
is a measure of uncertainty associated with a random variable (see Shannon, 1948). Let X be a non-
negative random variable possessing an absolutely continuous distribution function F(x) and with
probability density function (pdf) f (x). Then the Shannon’s entropy associated with X is defined as

H(X) = −
∫ ∞

0
f (x) log f (x)dx.

Similar to the notion of entropy, Martinas (1998) introduced the concept of extropy in physics. It
provides a calculable physical measure of the human impact on environment and it formulates the
physical limits of economic growth. Following the work of Martinas (1998), Furuichi and Mitroi
(2012) and Vontobel (2013) discussed the same extropy, and they found applications of extropy in
thermodynamics and astrophysics, etc.
Recently, Lad, Sanfilippo and Agro (2015) defined statistically the term extropy as a potential

measure of uncertainty. Really it is an alternative measure of Shannon’s entropy. For a random
variable X , its extropy is defined as

J(X) = −1
2

∫ ∞

0
f 2(x)dx.
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For statistical applications of extropy, one can refer to Gneiting and Raftery (2007). The extropy of
order statistics and record values are studied by Qiu (2017). Again Qiu and Jia (2018a) provided
some estimators for extropy with applications in testing uniformity.
A serious difficulty involved in the application of Shannon’s entropy is that it is not applicable to

a system which has survived for some units of time. In this situation, Ebrahimi (1996) proposed the
concept of residual entropy. As in the scenario of introducing the concept of residual entropy, Qiu
and Jia (2018b) introduced residual extropy to measure the residual uncertainty of a random variable.
For a random variable X , the residual extropy is defined as (see Qiu and Jia, 2018b)

J( f ; t) = −1
2R2(t)

∫ ∞

t

f 2(x)dx,

where R(t) = 1 − F(t) is the survival function of X . Also in the same paper, the authors elaborately
elucidated its various characterizing properties. Even though the practical utility of the abovemeasure
is considered, there is a necessity to develop some inferential aspects. Hence in this work our prime
objective is to develop nonparametric estimator for the residual extropy function. Here we consider
the observations which are exhibiting some mode of dependence because for practical data it seems
more realistic to drop independence and replace it by somemode of dependence. For the details of the
inference problems, one may refer Masry (1986), Castellana and Leadbetter (1986) and Castellana
(1989). Among several mixing conditions found in the literature, α-mixing (strong mixing) has
various practical applications (see Rosenblatt, 1956).
Let (Ω,F,P) be a probability space and Fk

i be the σ-algebra of events obtained by the random
variables {Xj ; i ≤ j ≤ k}. The stationary process {Xj} is said to satisfy the α-mixing (strong mixing)
condition if

sup
A∈Fk−∞
B∈F∞

i+k

|P(AB) − P(A)P(B)| = α(k) ↓ 0

as k → ∞. In particular, this means that the random variables Xi and Xi+k become asymptotically
independent as k tends to infinity. The coefficient α(k) is referred to as the α-mixing (strong mixing)
coefficient (see Rosenblatt, 1956).
The remaining part of the paper is organized as follows. In Section 2, we propose a nonparametric

estimator for the residual extropy function. Asymptotic properties of the proposed estimator is
elucidated in Section 3. Section 4 is devoted to a simulation study to illustrate the performance of
the proposed estimator.

2. Estimation
In this section, we propose a nonparametric estimator for the residual extropy function.
Suppose {Xi; 1 ≤ i ≤ n} is a sequence of identically distributed random variables representing the

lifetimes for n components. Note that the X i need not be mutually independent, that is, the lifetimes
are assumed to be α-mixing (strong mixing).
A simple nonparametric estimator of J( f ; t) is written as

J∗n( f ; t) = −1
2

{
n−1 ∑n

i=1 fn(Xi)I(Xi ≥t)
R2
n(t)

}
,
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where

fn(Xi) = 1
n − 1

n∑
j=1
j,i

1
bj

K
(

Xi − Xj

bj

)

is the kernel estimator obtained from the sample without Xi (see Hall and Morton, 1993) and

Rn(t) = 1
n

n∑
i=1

I(Xi ≥t), (1)

where

I(Xi ≥t) =

{
1 if Xi ≥ t,

0 otherwise

is the empirical survival function under dependence condition (see Roussas, 1990).
A kernel estimator for J( f ; t) is defined as

Jn( f ; t) = −1
2

{∫ ∞
t

f 2
n,τ(x)dx

R2
n(t)

}
, (2)

where fn,τ(x) is a nonparametric estimator of density function and Rn(t) is defined in (1).
Ruiz and Guillamon (1996) proposed the following estimator for the density function:

fn,τ(x) = 1∑n
j=1 bτj

n∑
i=1

bτi K
(

x − Xi

bτi

)
, (3)

where K(x) is a kernel of order s satisfying the following conditions: K(x) is bounded, non-negative,
symmetric, Ki(x) = b−1

i K(x/bi),
∫

K(x) dx = 1,
∫

xK(x) dx = 0, τ is a positive real number, and
{bi} is a sequence of real numbers satisfying the requirements limn→∞ bn = 0, limn→∞ nbn = ∞,
and limn→∞ n−1 ∑n

i=1(bi/bn)j = βj < ∞, j = 1,2, ..., s + 1.
It is a recursive density estimator and it can be calculated recursively by

fn,τ(x) = Sn−1
Sn

fn−1,τ(x) +
bτn
Sn

K
(

x − Xn

bτn

)
,

where Sn =
∑n

j=1 bτj . This property is particularly useful for large sample sizes.
Under α-mixing dependence condition, the expression for the bias and variance of fn,τ(x) is (see

Ruiz and Guillamon, 1996)

Bias ( fn,τ(x)) w
bsn
s!
βτ+s
βτ

cs f (s)(x) (4)

and

Var ( fn,τ(x)) w 1
nbn

β2τ−1

β2
τ

CK f (x), (5)

where cs =
∫ ∞
−∞ usK(u) du and CK =

∫ ∞
−∞ K2(u) du. Under the α-mixing dependence condition, the

expression for the bias and variance of Rn(t) is (see Roussas, 1990)
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Bias (Rn(t)) = 0 (6)

and

Var (Rn(t)) w 1
n

{
R(t)(1 − R(t)) + Dn

}
, (7)

where Dn is a remainder term due to the dependence involved.

3. Recursive property and asymptotic results
In this section, we establish a recursive property and some asymptotic results of Jn( f ; t).

Theorem 3.1. Let Jn( f ; t) be a nonparametric estimator of J( f ; t) as defined in (2), where fn,τ(x)
and Rn(t) are given in (3) and (1) respectively. Then Jn( f ; t) satisfies the recursive property,

Jn( f ; t) = 1
R2
n(t)S2

n

{
S2
n−1R2

n−1(t)Jn−1( f ; t)

− bτn

{ ∫ ∞

t

K
(

x − Xn

bτn

) (
Sn−1 fn−1,τ(x) +

bτn
2

K
(

x − Xn

bτn

) )
dx

}}
. (8)

Proof. We have,

Jn( f ; t) = −1
2R2

n(t)

∫ ∞

t

f 2
n,τ(x)dx

and

Jn−1( f ; t) = −1
2R2

n−1(t)

∫ ∞

t

f 2
n−1,τ(x)dx.

Now

− 2R2
n(t)Jn( f ; t) = S2

n−1

S2
n

(
−2R2

n−1(t)Jn−1( f ; t)
)

+
bτn
S2
n

∫ ∞

t

K
(

x − Xn

bτn

) (
2Sn−1 fn−1,τ(x) + bτnK

(
x − Xn

bτn

) )
dx. (9)

Simplifying (9), we get (8). �

Theorem 3.2. Suppose Jn( f ; t) is a nonparametric estimator of J( f ; t) as defined in (2), where
fn,τ(x) and Rn(t) are given in (3) and (1) respectively. Then the estimator Jn( f ; t) is a consistent
estimator of the residual extropy function J( f ; t). That is, as n→∞,

Jn( f ; t) = −1
2

{∫ ∞
t

f 2
n,τ(x)dx

R2
n(t)

}
p→ −1

2

{∫ ∞
t

f 2(x)dx

R2(t)

}
= J( f ; t).
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Proof. By using Taylor’s series expansion, we get∫ ∞

t

f 2
n,τ(x)dx w

∫ ∞

t

f 2(x)dx + 2
∫ ∞

t

(
fn,τ(x) − f (x)

)
f (x)dx. (10)

Using (4), (5) and (10), the expression for the bias and the variance of
∫ ∞
t

f 2
n,τ(x)dx is given by

Bias
(∫ ∞

t

f 2
n,τ(x)dx

)
w

2bsn
s!

βτ+s
βτ

cs

∫ ∞

t

f (s)(x) f (x) dx

and
Var

(∫ ∞

t

f 2
n,τ(x)dx

)
w

4
nbn

β2τ−1

β2
τ

Ck

∫ ∞

t

f 3(x)dx.

The corresponding MSE is obtained by

MSE
(∫ ∞

t

f 2
n,τ(x)dx

)
w

(
2bsn
s!

βτ+s
βτ

cs

∫ ∞

t

f (s)(x) f (x) dx
)2
+

4
nbn

β2τ−1

β2
τ

Ck

∫ ∞

t

f 3(x)dx. (11)

From (11), as n→∞
MSE

(∫ ∞

t

f 2
n,τ(x)dx

)
→ 0.

Therefore, the estimator
∫ ∞
t

f 2
n,τ(x)dx is consistent (in the probability sense). That is,

∫ ∞

t

f 2
n,τ(x)dx

p→
∫ ∞

t

f 2(x)dx.

By using Taylor’s series expansion, we get

R2
n(t) w R2(t) + 2

(
Rn(t) − R(t)

)
R(t). (12)

Using (6), (7) and (12), the expression for the bias and the variance of R2
n(t) is given by

Bias
(
R2
n(t)

)
w 0

and
Var

(
R2
n(t)

)
w

4R2(t)
n

{
R(t))(1 − R(t) + Dn

}
.

The corresponding MSE is obtained by

MSE
(
R2
n(t)

)
w

4R2(t)
n

{
R(t)(1 − R(t)) + Dn

}
. (13)

From (13), as n→∞
MSE

(
R2
n(t)

)
→ 0.

Therefore, the estimator R2
n(t) is consistent (in the probability sense). That is,

R2
n(t)

p→ R2(t).
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Then by Slutsky’s theorem, we have as n→∞ that

Jn( f ; t) = −1
2

{∫ ∞
t

f 2
n,τ(x)dx

R2
n(t)

}
p→ −1

2

{∫ ∞
t

f 2(x)dx

R2(t)

}
= J( f ; t).

That is, Jn( f ; t) is a consistent estimator of J( f ; t). �

Theorem 3.3. Suppose Jn( f ; t) is a nonparametric estimator of J( f ; t) as defined in (2), where
fn,τ(x) and Rn(t) are given in (3) and (1) respectively. Then

(nbn)
1
2

{
Jn( f ; t) − J( f ; t)

σJt

}

has a standard normal distribution as n→∞, with

σ2
Jt
w

1
R2(t)

β2τ−1

β2
τ

CK

∫ ∞

t

f 3(x)dx.

Proof. Observe that

(nbn)
1
2 (Jn( f ; t) − J( f ; t))

= (nbn)
1
2

{∫ ∞
t

f 2
n,τ(x)dx

−2R2
n(t)

−
∫ ∞
t

f 2(x)dx

−2R2(t)

}

=
−(nbn) 1

2

2R2
n(t)

{∫ ∞

t

f 2
n,τ(x)dx − R2

n(t)
R2(t)

∫ ∞

t

f 2(x)dx
}

=
−(nbn) 1

2

2R2
n(t)

{∫ ∞

t

(
f 2
n,τ(x) − f 2(x)

)
dx

}
− (nbn) 1

2

2R2
n(t)

∫ ∞
t

f 2(x)dx

R2(t)
(
R2(t) − R2

n(t)
)

w
−(nbn) 1

2

R2
n(t)

{∫ ∞

t

(
fn,τ(x) − f (x)) f (x)dx

}
− 2(nbn) 1

2

R2
n(t)

J( f ; t)R(t) (Rn(t) − R(t)) .

By using the asymptotic normality of fn,τ(x) established by Ruiz and Guillamon (1996), the
asymptotic normality of Rn(t) established by Roussas (1990), and by using Slutsky’s theorem,
the proof is immediate. �

4. Simulation study
AMonte Carlo simulation study is carried out to compare the kernel estimators Jn( f ; t) and J∗n( f ; t)
in terms of the mean squared error. For that we considered the normal distribution with parameters
µ = 5 and σ = 3 and generated {Xi} from an AR(1) process with correlation coefficient ρ = 0.3.
The Gaussian kernel is used as the kernel function for the estimation. The biases and mean squared
errors of Jn( f ; t) and J∗n( f ; t) are computed for various values of t ∈ (0.1,1.5), τ = 0.01, and sample
sizes 100 and 300. The results are given in Table 1. From the table we can say that the mean squared
error of Jn( f ; t) is small compared to the mean squared error of J∗n( f ; t).

Acknowledgements. The authors express their gratefulness for the constructive criticism of the
learned referees which helped to improve considerably the revised version of the paper.
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Table 1. Bias and mean squared error (in brackets) of
Jn( f ; t) and J∗n( f ; t) for τ = 0.01.

Bias and MSE of Jn( f ; t) Bias and MSE of J∗n( f ; t)
t n = 100 n = 300 n = 100 n = 300

0.1 0.00230 0.00368 -0.01055 -0.00570
(0.000014) (0.000015) (0.000133) (0.000037)

0.2 0.00210 0.00369 -0.01072 -0.00572
(0.000012) (0.000016) (0.000136) (0.000037)

0.3 0.00213 0.00371 -0.01073 -0.00575
(0.000012) (0.000016) (0.000133) (0.000037)

0.4 0.00161 0.00394 -0.01111 -0.00560
(0.000011) (0.000018) (0.000143) (0.000036)

0.5 0.00123 0.00399 -0.01146 -0.00562
(0.000012) (0.000019) (0.000155) (0.000036)

0.6 0.00097 0.00415 -0.01175 -0.00556
(0.000011) (0.000020) (0.000163) (0.000036)

0.7 0.00110 0.00426 -0.01168 -0.00551
(0.000009) (0.000021) (0.000160) (0.000034)

0.8 0.00086 0.00421 -0.01198 -0.00560
(0.000012) (0.000019) (0.000172) (0.000035)

0.9 0.001142 0.00423 -0.011879 -0.00564
(0.000012) (0.000020) (0.000169) (0.000035)

1.0 0.00119 0.00427 -0.012005 -0.00570
(0.000015) (0.000020) (0.000177) (0.000036)

1.1 0.00101 0.00425 -0.012246 -0.00581
(0.000015) (0.000021) (0.000183) (0.000038)

1.2 0.00111 0.00450 -0.01223 -0.00566
(0.000015) (0.00002) (0.000182) (0.000036)

1.3 0.00097 0.00448 -0.01240 -0.00574
(0.000015) (0.000023) (0.000185) (0.000037)

1.4 0.00137 0.00473 -0.01220 -0.00566
(0.000019) (0.000025) (0.000183) (0.000036)

1.5 0.00142 0.00478 -0.01229 -0.00570
(0.000018) (0.000026) (0.000183) (0.000036)
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The Indian Journal of Statistics, Series A, 58, 48–56.

Furuichi, S. and Mitroi, F.-C. (2012). Mathematical inequalities for some divergences. Physica A:
Statistical Mechanics and its Applications, 391, 388–400.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102, 359–378.

Hall, P. and Morton, S. C. (1993). On the estimation of entropy. Annals of the Institute of Statistical
Mathematics, 45, 69–88.

Lad, F., Sanfilippo, G., and Agro, G. (2015). Extropy: complementary dual of entropy. Statistical
Science, 30, 40–58.

Martinas, K. (1998). Thermodynamics and sustainability a new approach by extropy. Periodica
Polytechnica Chemical Engineering, 42, 69–83.

Masry, E. (1983). Probability density estimation from sampled data. IEEE Transactions on
Information Theory, 29, 696–709.

Qiu, G. (2017). The extropy of order statistics and record values. Statistics & Probability Letters,
120, 52–60.

Qiu, G. and Jia, K. (2018a). Extropy estimators with applications in testing uniformity. Journal of
Nonparametric Statistics, 30, 182–196.

Qiu, G. and Jia, K. (2018b). The residual extropy of order statistics. Statistics & Probability Letters,
133, 15–22.

Rosenblatt, M. (1956). A central limit theorem and a strong mixing condition. Proceedings of the
National Academy of Sciences of the United States of America, 42, 43–47.

Roussas, G. G. (1989). Some asymptotic properties of an estimate of the survival function under
dependence conditions. Statistics & Probability Letters, 8, 235–243.

Ruiz, J. and Guillamón, A. (1996). Nonparametric recursive estimator for mean residual life
and vitality function under dependence conditions. Communications in Statistics – Theory and
Methods, 25, 1997–2011.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal,
27, 379–423.

Vontobel, P. O. (2012). The Bethe permanent of a nonnegative matrix. IEEE Transactions on
Information Theory, 59, 1866–1901.

Manuscript received 2018-08-04, revised 2018-12-17, accepted 2019-02-05.

72 MAYA & IRSHAD


