ARS MATHEMATICA CONTEMPORANEA

On vertex-stabilizers of bipartite dual polar graphs

Štefko Miklavič
Faculty of Mathematics, Natural Sciences and Information Technologies University of Primorska, SI-6000 Koper, Slovenia

Received 18 September 2009, accepted 15 December 2009, published online 3 February 2010

Abstract

Let X, Y denote vertices of a bipartite dual polar graph, and let G_{X} and G_{Y} denote the stabilizers of X and Y in the full automorphism group of this graph. In this paper, a description of the orbits of $G_{X} \cap G_{Y}$ in the cases when the distance between X and Y is 1 or 2 , is given.

Keywords: Dual polar graphs, automorphism group, quadratic form, isotropic subspace.
Math. Subj. Class.: 05E18, 05E30

1 Preliminaries and introductory remarks

Let q denote a prime power, let $G F(q)$ denote a finite field with q elements, and let d denote a positive integer. Let $V=G F(q)^{2 d}$ denote the vector space over $G F(q)$ of dimension $2 d$, consisting of column vectors with entries in $G F(q)$. We define a map $Q: V \rightarrow G F(q)$ as follows. For $u=\left(u_{1}, u_{2}, \ldots, u_{2 d}\right)^{t} \in V$ we let

$$
\begin{equation*}
Q(u)=\sum_{i=1}^{d} u_{2 i-1} u_{2 i} . \tag{1.1}
\end{equation*}
$$

The form Q is a quadratic form on V, that is, $Q(\lambda u)=\lambda^{2} Q(u)(\lambda \in G F(q), u \in V)$, and

$$
\begin{equation*}
f(u, v)=Q(u+v)-Q(u)-Q(v) \quad(u, v \in V) \tag{1.2}
\end{equation*}
$$

is a symmetric bilinear form on V. The form Q is usually called hyperbolic quadric. Note that for vectors $u=\left(u_{1}, u_{2}, \ldots, u_{2 d}\right)^{t}$ and $v=\left(v_{1}, v_{2}, \ldots, v_{2 d}\right)^{t}$ of V we have

$$
\begin{equation*}
f(u, v)=\sum_{i=1}^{d}\left(u_{2 i-1} v_{2 i}+u_{2 i} v_{2 i-1}\right) \tag{1.3}
\end{equation*}
$$

E-mail address: stefko.miklavic@upr.si (Štefko Miklavič)

A vector $v \in V$ is called isotropic, if $Q(v)=0$. A subspace U of V is called isotropic, if $Q(u)=0$ for every $u \in U$, and it is called maximal isotropic, if it is maximal (with respect to inclusion) in the set of all isotropic subspaces of V. It turns out that the dimension of every maximal isotropic subspace is d (see, for example, [1, Theorem 3.10] or [10, Lemma 3]). Observe that if $u, v \in V$ belong to the same isotropic subspace of V, than $Q(\lambda u+\mu v)=0$ for every $\lambda, \mu \in G F(q)$. Furthermore,

$$
\begin{equation*}
f(u, v)=Q(u+v)-Q(u)-Q(v)=0 . \tag{1.4}
\end{equation*}
$$

Conversely, if u and v are isotropic with $f(u, v)=0$, then $\langle u, v\rangle$ is an isotropic subspace of V. Indeed, for $\lambda, \mu \in G F(q)$ we have

$$
\begin{equation*}
Q(\lambda u+\mu v)=\lambda^{2} Q(u)+\mu^{2} Q(v)+\lambda \mu f(u, v)=0 \tag{1.5}
\end{equation*}
$$

We now define the dual polar graph $D_{d}(q)$ on V. The vertex-set $V\left(D_{d}(q)\right)$ of $D_{d}(q)$ is the set of all maximal isotropic subspaces of V. Vertices $X, Y \in V\left(D_{d}(q)\right)$ are adjacent in $D_{d}(q)$ if and only if the dimension of $X \cap Y$ is $d-1$. Let ∂ denote the path-length distance function on $D_{d}(q)$. It is easy to see that $\partial(X, Y)=i$ if and only if $\operatorname{dim}(X \cap Y)=d-i$ $\left(X, Y \in V\left(D_{d}(q)\right)\right)$. The following facts about $D_{d}(q)$ can be found, for example, in [2, Section 9.4]. The graph $D_{d}(q)$ is bipartite with diameter d and with $\prod_{i=0}^{d-1}\left(q^{d-i-1}+1\right)$ vertices. For convenience let

$$
\begin{equation*}
b_{i}=q^{i} \frac{q^{d-i}-1}{q-1}, \quad c_{i}=\frac{q^{i}-1}{q-1} \quad \text { and } \quad k_{i}=\frac{b_{0} b_{1} \cdots b_{i-1}}{c_{1} c_{2} \cdots c_{i}} \tag{1.6}
\end{equation*}
$$

for $0 \leq i \leq d$. The graph $D_{d}(q)$ is regular with valency $b_{0}=k_{1}$. For $X \in V\left(D_{d}(q)\right)$ and an integer $0 \leq i \leq d$ we set $S_{i}(X)=\left\{Z \in V\left(D_{d}(q)\right) \mid \partial(X, Z)=i\right\}$.

Let $G L(V)$ denote the general linear group of V. Then $\sigma \in G L(V)$ is called isometry of V, if $Q(\sigma(v))=Q(v)$ for every $v \in V$. It follows from (1.2) that if σ is an isometry of V, then $f(u, v)=f(\sigma(u), \sigma(v))$ for $u, v \in V$. The group of all isometries of V is called the orthogonal group for Q, and is denoted by $O_{2 d}^{+}(q)$. Note that every $\sigma \in O_{2 d}^{+}(q)$ acts on $V\left(D_{d}(q)\right)$ as an automorphism of $D_{d}(q)$. The full automorphism group G of $D_{d}(q)$ acts distance-transitively on $V\left(D_{d}(q)\right)$, that is, for $X, Y, Z, W \in V\left(D_{d}(q)\right)$ with $\partial(X, Y)=$ $\partial(Z, W)$ there exists $\sigma \in G$ such that $\sigma(X)=Z$ and $\sigma(Y)=W$ (see, for example, [2, Table 6.1]). Recall that every distance-transitive graph is also distance-regular in the sense of [2, Section 4.1].

Pick $X, Y \in V\left(D_{d}(q)\right)$ and let G_{X} and G_{Y} denote the stabilizers of X and Y in G, respectively. Since G acts distance-transitively on $V\left(D_{d}(q)\right)$, the orbits of G_{X} are precisely the sets $S_{i}(X)(0 \leq i \leq d)$. In this paper we examine the orbits of $G_{X} \cap G_{Y}$. These orbits play an important role in the theory of Terwilliger algebras of $D_{d}(q)$. This role is especially important in the case when $\partial(X, Y) \in\{1,2\}$, see [6]. For the definition and more background on Terwilliger algebras of distance-regular graphs see [3, 4, 7, 8, 9].

In this paper we give a description of the orbits of $G_{X} \cap G_{Y}$ when $\partial(X, Y) \in\{1,2\}$. To do this, we consider the following situation for the rest of this paper.

Notation 1.1. Let q denote a prime power, let $G F(q)$ denote a finite field with q elements, and let d denote a positive integer. Let $V=G F(q)^{2 d}$ denote the vector space over $G F(q)$ of dimension $2 d$, consisting of column vectors with entries in $G F(q)$. Let Q and f be as defined in (1.1) and (1.2). Let $D_{d}(q)$ denotes the bipartite dual polar graph over V,
and let b_{i}, c_{i} and k_{i} be as in (1.6). Fix $X, Y \in V\left(D_{d}(q)\right)$. For $0 \leq i, j \leq d$ let $D_{j}^{i}=$ $D_{j}^{i}(X, Y)=S_{i}(X) \cap S_{j}(Y)$. Let G_{X} and G_{Y} denote the stabilizers of X and Y in the full automorphism group G of $D_{d}(q)$.

Our paper is organised as follows. In Section 2 we state some results about maximal isotropic subspaces that we need later. In Section 3 (Section 4, respectively) we describe the orbits of $G_{X} \cap G_{Y}$ in the case when $\partial(X, Y)=1(\partial(X, Y)=2$, respectively). In what follows we use the same symbols (capital letters) for the vertices of $D_{d}(q)$ and for the maximal isotropic subspaces of V; this should cause no confusion.

2 Maximal isotropic subspaces

In this section we state some results about maximal isotropic subspaces of V that we need later. The first one is known as Witt's lemma (see, for example, [1, Theorem 3.9]).

Lemma 2.1. With reference to Notation 1.1, let U and W be subspaces of V, and let $\sigma_{U}: U \rightarrow W$ be a bijective linear map satisfying $Q\left(\sigma_{U}(u)\right)=Q(u)$ for every $u \in U$. Then there is an isometry of V which extends σ_{U}.

Lemma 2.2. With reference to Notation 1.1, let U and W be maximal isotropic subspaces of V with $\operatorname{dim}(U \cap W)=d-i$ for some $1 \leq i \leq d$. Pick linearly independent vectors $u_{1}, \ldots, u_{i} \in U \backslash W$ and linearly independent vectors $w_{1}, \ldots, w_{i} \in W \backslash U$. Let F be the $i \times i$ matrix with (j, ℓ)-entry equal to $f\left(u_{j}, w_{\ell}\right)$. Then the determinant of F is nonzero.

Proof. First note that F is a nonzero matrix. Namely, if $f\left(u_{j}, w_{\ell}\right)=0$ for every $1 \leq$ $j, \ell \leq i$, then a subspace generated by U and W is isotropic subspace of dimension $d+i$, a contradiction. Suppose now that $\operatorname{det}(F)=0$. Then the columns of F are linearly dependent vectors of $G F(q)^{i}$, that is, there exist scalars $\lambda_{j}(1 \leq j \leq i)$ which are not all equal to zero, such that for each $1 \leq \ell \leq i$ we have
$0=\lambda_{1} f\left(u_{\ell}, w_{1}\right)+\lambda_{2} f\left(u_{\ell}, w_{2}\right)+\cdots+\lambda_{i} f\left(u_{\ell}, w_{i}\right)=f\left(u_{\ell}, \lambda_{1} w_{1}+\lambda_{2} w_{2}+\cdots+\lambda_{i} w_{i}\right)$.
Note that $w=\lambda_{1} w_{1}+\lambda_{2} w_{2}+\cdots+\lambda_{i} w_{i}$ is nonzero, since $w_{1}, w_{2}, \ldots, w_{i}$ are linearly independent. Multiplying the above equation with an arbitrary scalar μ_{ℓ} gives us $\mu_{\ell} f\left(u_{\ell}, w\right)=0$. Adding the obtained equations we get

$$
\sum_{\ell=1}^{i} \mu_{\ell} f\left(u_{\ell}, w\right)=f\left(\mu_{1} u_{1}+\mu_{2} u_{2}+\cdots+\mu_{i} u_{i}, w\right)=0
$$

This implies that $f(u, w)=0$ for every $u \in U$. By (1.5), the subspace generated by U and w is isotropic with dimension $d+1$, a contradiction. Therefore, $\operatorname{det}(F) \neq 0$.

Lemma 2.3. With reference to Notation 1.1, let U, U_{1}, W and W_{1} be maximal isotropic subspaces of V with $\operatorname{dim}(U \cap W)=\operatorname{dim}\left(U_{1} \cap W_{1}\right)=d-i$ for some $1 \leq i \leq d$. Let $u_{1}, u_{2}, \ldots, u_{d}$ be a basis of U such that u_{i+1}, \ldots, u_{d} is a basis of $U \cap W$. Let $w_{1}, \ldots, w_{i} \in$ W be such that $w_{1}, \ldots, w_{i}, u_{i+1}, \ldots, u_{d}$ is a basis of W. Let $v_{1}, v_{2}, \ldots, v_{d}$ be a basis of U_{1} such that v_{i+1}, \ldots, v_{d} is a basis of $U_{1} \cap W_{1}$. Let $z_{1}, \ldots, z_{i} \in W_{1}$ be such that $z_{1}, \ldots, z_{i}, v_{i+1}, \ldots, v_{d}$ is a basis of W_{1}. Then there exists an isometry σ of V, such that $\sigma\left(u_{j}\right)=v_{j}(1 \leq j \leq d)$ and $\sigma\left(w_{j}\right) \in\left\langle z_{1}, \ldots, z_{i}\right\rangle(1 \leq j \leq i)$.

Proof. We first define a bijective linear map $\bar{\sigma}$ from a subspace generated by U and W to a subspace generated by U_{1} and W_{1}, such that $\bar{\sigma}\left(u_{j}\right)=v_{j}(1 \leq j \leq d)$ and $\bar{\sigma}\left(w_{j}\right) \in$ $\left\langle z_{1}, \ldots, z_{i}\right\rangle(1 \leq j \leq i)$. We will then show that $\bar{\sigma}$ extends to an isometry of V. We now define $\bar{\sigma}\left(w_{j}\right)(1 \leq j \leq i)$. Let F denote an $i \times i$ matrix with (j, ℓ)-entry equal to $f\left(v_{j}, z_{\ell}\right)$. For $1 \leq \ell \leq i$ consider the following system of linear equations in variables $\alpha_{1}^{\ell}, \alpha_{2}^{\ell}, \ldots, \alpha_{i}^{\ell}$:

$$
\begin{equation*}
F\left(\alpha_{1}^{\ell}, \alpha_{2}^{\ell}, \ldots, \alpha_{i}^{\ell}\right)^{t}=\left(f\left(u_{1}, w_{\ell}\right), f\left(u_{2}, w_{\ell}\right), \ldots, f\left(u_{i}, w_{\ell}\right)\right)^{t} \tag{2.1}
\end{equation*}
$$

Note that this system has a unique solution since F is nonsingular by Lemma 2.2. For convenience, we denote the solutions of this system also by $\alpha_{1}^{\ell}, \alpha_{2}^{\ell}, \ldots, \alpha_{i}^{\ell}$. For $1 \leq \ell \leq i$ we let

$$
\begin{equation*}
\bar{\sigma}\left(w_{\ell}\right)=\alpha_{1}^{\ell} z_{1}+\alpha_{2}^{\ell} z_{2}+\cdots+\alpha_{i}^{\ell} z_{i} . \tag{2.2}
\end{equation*}
$$

We extend $\bar{\sigma}$ to a linear map from $\langle U, W\rangle$ to $\left\langle U_{1}, W_{1}\right\rangle$ in a natural way:

$$
\begin{aligned}
& \bar{\sigma}\left(\lambda_{1} u_{1}+\cdots+\lambda_{d} u_{d}+\mu_{1} w_{1}+\cdots+\mu_{i} w_{i}\right)= \\
& \quad \lambda_{1} \bar{\sigma}\left(u_{1}\right)+\cdots+\lambda_{d} \bar{\sigma}\left(u_{d}\right)+\mu_{1} \bar{\sigma}\left(w_{1}\right)+\cdots+\mu_{i} \bar{\sigma}\left(w_{i}\right)
\end{aligned}
$$

for $\lambda_{1}, \ldots, \lambda_{d}, \mu_{1}, \ldots, \mu_{i} \in G F(q)$.
We now show that $\bar{\sigma}$ is a bijection. To do this, it is enough to show that $\bar{\sigma}\left(w_{\ell}\right)(1 \leq \ell \leq$ i) are linearly independent. Let A be an $i \times i$ matrix with (j, ℓ)-entry equal to α_{j}^{ℓ}. Observe that $\bar{\sigma}\left(w_{\ell}\right)(1 \leq \ell \leq i)$ are linearly independent if and only if A is nonsingular. Let F_{1} denote an $i \times i$ matrix with (j, ℓ)-entry equal to $f\left(u_{j}, w_{\ell}\right)$. The matrix F_{1} is nonsingular by Lemma 2.2. Furthermore, it follows from (2.1) that $F \cdot A=F_{1}$, implying that A is nonsingular.

We now show that $\bar{\sigma}$ preserves Q. Pick arbitrary $v \in\langle U, W\rangle$:

$$
v=\sum_{j=1}^{d} \alpha_{j} u_{j}+\sum_{j=1}^{i} \beta_{j} w_{j} .
$$

By (1.2) and (1.4),

$$
Q(v)=\sum_{r=1}^{i} \sum_{s=1}^{i} \alpha_{r} \beta_{s} f\left(u_{r}, w_{s}\right)
$$

Let us now compute $Q(\bar{\sigma}(v))$. By (1.2) and (1.4) we first get

$$
Q(\bar{\sigma}(v))=\sum_{r=1}^{i} \sum_{s=1}^{i} \alpha_{r} \beta_{s} f\left(\bar{\sigma}\left(u_{r}\right), \bar{\sigma}\left(w_{s}\right)\right)
$$

By (2.2) and since $\sigma\left(u_{r}\right)=v_{r}$ we further find

$$
f\left(\bar{\sigma}\left(u_{r}\right), \bar{\sigma}\left(w_{s}\right)\right)=f\left(v_{r}, \alpha_{1}^{s} z_{1}+\cdots+\alpha_{i}^{s} z_{i}\right)=\alpha_{1}^{s} f\left(v_{r}, z_{1}\right)+\cdots+\alpha_{i}^{s} f\left(v_{r}, z_{i}\right)
$$

Finally, by (2.1), the above expression is equal to $f\left(u_{r}, w_{s}\right)$. Therefore, $Q(v)=Q(\bar{\sigma}(v))$. By Lemma 2.1 there exists an isometry σ of V which extends $\bar{\sigma}$. This completes the proof.

Lemma 2.4. With reference to Notation 1.1, let U be a $(d-1)$-dimensional isotropic subspace of V. Then U is contained in exactly two maximal isotropic subspaces of V.

Proof. By [2, p. 274], the number of isotropic k-dimensional subspaces of V containing a given isotropic $(k-1)$-dimensional subspace of V is $\left(q^{d-k+1}-1\right)\left(q^{d-k}+1\right) /(q-1)$. The result follows.

3 The case $\partial(X, Y)=1$

With reference to Notation 1.1, in this section we describe the orbits of $G_{X} \cap G_{Y}$ when $\partial(X, Y)=1$. We first determine the size of the $D_{j}^{i}(0 \leq i, j \leq d)$.

Lemma 3.1. With reference to Notation 1.1 assume that $\partial(X, Y)=1$. Then the following (i), (ii) hold.
(i) $\left|D_{i-1}^{i}\right|=\left|D_{i}^{i-1}\right|=c_{i} k_{i} / b_{0}(1 \leq i \leq d)$.
(ii) $D_{j}^{i}=\emptyset$ if $|i-j| \neq 1(0 \leq i, j \leq d)$.

Proof. (i) This follows from [5, Lemma 4.1(i)].
(ii) By the triangle inequality we find $D_{j}^{i}=\emptyset$ if $|i-j| \geq 2$. Since $D_{d}(q)$ is bipartite, we also have $D_{i}^{i}=\emptyset$.

Lemma 3.2. With reference to Notation 1.1 assume that $\partial(X, Y)=1$. Pick $u \in X \backslash Y$ and $v \in Y \backslash X$. Then $f(u, v) \neq 0$. In particular, u and v are not contained in a common isotropic subspace.

Proof. Suppose on the contrary that $f(u, v)=0$. Pick $\lambda, \mu \in G F(q)$ and $w \in X \cap Y$. Consider $\lambda u+w+\mu v \in\langle X, Y\rangle$. By (1.2) and (1.4) we have

$$
Q(\lambda u+w+\mu v)=Q(\lambda u+w)+Q(\mu v)+f(\lambda u+w, \mu v)=\lambda \mu f(u, v)+\mu f(w, v)=0
$$

This shows that $\langle X, Y\rangle$ is an isotropic subspace of dimension $d+1$, a contradiction.
Theorem 3.3. With reference to Notation 1.1 assume that $\partial(X, Y)=1$. Then the following (i), (ii) hold for $1 \leq i \leq d$.
(i) For every $Z, Z^{\prime} \in D_{i}^{i-1}$ there exists $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.
(ii) For every $Z, Z^{\prime} \in D_{i-1}^{i}$ there exists $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.

Proof. (i) If $i=1$ then the result is clear. Assume now that $i \geq 2$. Since $\operatorname{dim}(X \cap Z)=$ $d-i+1$ and $\operatorname{dim}(Y \cap Z)=d-i$, it follows from Lemma 3.2 that $X \cap Y \cap Z=Y \cap Z$ with $\operatorname{dim}(X \cap Y \cap Z)=d-i$, and $X \cap Z=\langle X \cap Y \cap Z, u\rangle$ for some $u \in X \backslash Y$. Pick $w \in Y \backslash X$. Let v_{1}, \ldots, v_{d-1} be a basis of $X \cap Y$, such that v_{i}, \ldots, v_{d-1} is a basis of $X \cap Y \cap Z$. Let $z_{1}, \ldots, z_{i-1} \in Z$ be such that $u, v_{i}, \ldots, v_{d-1}, z_{1}, \ldots, z_{i-1}$ is a basis of Z. Note that $u, v_{1}, \ldots, v_{d-1}$ is a basis of X and that $w, v_{1}, \ldots, v_{d-1}$ is a basis of Y.

Similarly as above, let $u^{\prime} \in X \backslash Y$ be such that $X \cap Z^{\prime}=\left\langle X \cap Y \cap Z^{\prime}, u^{\prime}\right\rangle$. Let $v_{1}^{\prime}, \ldots, v_{d-1}^{\prime}$ be a basis of $X \cap Y$, such that $v_{i}^{\prime}, \ldots, v_{d-1}^{\prime}$ is a basis for $X \cap Y \cap Z^{\prime}$. Let $z_{1}^{\prime}, \ldots, z_{i-1}^{\prime} \in Z^{\prime}$ be such that $u^{\prime}, v_{i}^{\prime}, \ldots, v_{d-1}^{\prime}, z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}$ is a basis for Z^{\prime}. Observe that $u^{\prime}, v_{1}^{\prime}, \ldots, v_{d-1}^{\prime}$ is a basis for X and that $w, v_{1}^{\prime}, \ldots, v_{d-1}^{\prime}$ is a basis for Y.

Applying Lemma 2.3 (with $U=X=\left\langle u, v_{1}, \ldots, v_{d-1}\right\rangle, W=Z=\left\langle u, v_{i}, \ldots\right.$, $\left.v_{d-1}, z_{1}, \ldots, z_{i-1}\right\rangle, U_{1}=X=\left\langle u^{\prime}, v_{1}^{\prime}, \ldots, v_{d-1}^{\prime}\right\rangle$ and $W_{1}=Z^{\prime}=\left\langle u^{\prime}, v_{i}^{\prime}, \ldots, v_{d-1}^{\prime}\right.$,
$\left.\left.z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}\right\rangle\right)$ we find that there exists an isometry σ such that $\sigma(u)=u^{\prime}, \sigma\left(v_{j}\right)=v_{j}^{\prime}(1 \leq$ $j \leq d-1)$, and $\sigma\left(z_{j}\right) \in\left\langle z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}\right\rangle(1 \leq j \leq i-1)$. Clearly, σ preserves X (and thus also $X \cap Y$), and maps Z to Z^{\prime}. To finish the proof we have to show that σ preserves Y. Observe that $X \cap Y$ is a $(d-1)$-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing $X \cap Y$ are X and Y. Since X and $X \cap Y$ are both preserved by σ, also Y is preserved by σ.
(ii) Similar as (i) above.

Proposition 3.4. With reference to Notation 1.1 assume that $\partial(X, Y)=1$. Then the following (i), (ii) hold.
(i) The set $D_{i}^{i-1}(1 \leq i \leq d)$ is an orbit of $G_{X} \cap G_{Y}$.
(ii) The set $D_{i-1}^{i}(1 \leq i \leq d)$ is an orbit of $G_{X} \cap G_{Y}$.

Proof. It is clear that two vertices from different sets from (i) and (ii) above could not be in the same orbit of $G_{X} \cap G_{Y}$. The result now follows from Theorem 3.3.

4 The case $\partial(X, Y)=2$

With reference to Notation 1.1, in this section we describe the orbits of $G_{X} \cap G_{Y}$ when $\partial(X, Y)=2$. We first determine the size of the sets $D_{j}^{i}(0 \leq i, j \leq d)$. The proposition below follows from [5, Lemma 4.1(ii)-(iv)].

Proposition 4.1. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Then the following (i)-(iv) hold.
(i) $\left|D_{i-2}^{i}\right|=\left|D_{i}^{i-2}\right|=k_{i} c_{i-1} c_{i} /\left(b_{0} b_{1}\right) \quad(2 \leq i \leq d)$;
(ii) $\left|D_{0}^{0}\right|=0$ and $\left|D_{i}^{i}\right|=k_{i}\left(c_{i}\left(b_{i-1}-1\right)+b_{i}\left(c_{i+1}-1\right)\right) /\left(b_{0} b_{1}\right) \quad(1 \leq i \leq d-1)$;
(iii) $\left|D_{d}^{d}\right|=k_{d}\left(b_{d-1}-1\right) / b_{1}$;
(iv) $\left|D_{j}^{i}\right|=0$ if $|i-j| \notin\{0,2\} \quad(0 \leq i, j \leq d)$.

Lemma 4.2. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Then the following (i), (ii) hold.
(i) Let $u_{1}, u_{2} \in X \backslash Y$ be linearly independent, and let $w \in Y \backslash X$. Then u_{1}, u_{2} and w are not contained in a common isotropic subspace of V.
(ii) Let $w_{1}, w_{2} \in Y \backslash X$ be linearly independent, and let $u \in X \backslash Y$. Then w_{1}, w_{2} and u are not contained in a common isotropic subspace of V.

Proof. (i) Suppose on contrary that u_{1}, u_{2} and w are contained in a common isotropic subspace. Pick $\lambda_{1}, \lambda_{2}, \mu \in G F(q)$ and $v \in X \cap Y$. Consider $\lambda_{1} u_{1}+\lambda_{2} u_{2}+v+\mu w \in$ $\langle X, w\rangle$. By (1.2) and (1.4) we have

$$
\begin{gathered}
Q\left(\lambda_{1} u_{1}+\lambda_{2} v_{2}+v+\mu w\right)=Q\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}+v\right)+Q(\mu w)+f\left(\lambda_{1} u_{1}+\lambda_{2} u_{2}+v, \mu w\right)= \\
\lambda_{1} \mu f\left(u_{1}, w\right)+\lambda_{2} \mu f\left(u_{2}, w\right)+\mu f(v, w)=0 .
\end{gathered}
$$

Therefore, $\langle X, w\rangle$ is an isotropic subspace of dimension $d+1$, a contradiction.
(ii) Similar as (i) above.

Theorem 4.3. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Then the following (i), (ii) hold for $2 \leq i \leq d$.
(i) For every $Z, Z^{\prime} \in D_{i}^{i-2}$ there exists $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.
(ii) For every $Z, Z^{\prime} \in D_{i-2}^{i}$ there exists $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.

Proof. (i) Note that the result is clear if $i=2$. Namely, for $i=2$ we have $Z=Z^{\prime}=X$. Assume now $i \geq 3$. By Lemma 4.2, there exists a basis $v_{1}, \ldots v_{d-2}$ of $X \cap Y$, vectors $u_{1}, u_{2} \in X$, vectors $w_{1}, w_{2} \in Y$, and vectors $z_{1}, \ldots z_{i-2} \in Z$, such that v_{i-1}, \ldots, v_{d-2} is a basis of $X \cap Y \cap Z, u_{1}, u_{2}, v_{1}, \ldots v_{d-2}$ is a basis of $X, w_{1}, w_{2}, v_{1}, \ldots v_{d-2}$ is a basis of Y, and $u_{1}, u_{2}, v_{i-1}, \ldots v_{d-2}, z_{1}, \ldots, z_{i-2}$ is a basis of Z. Without loss of generality we can assume that $f\left(u_{1}, w_{1}\right)=0$ (otherwise we replace w_{1} by $w_{1}+\lambda w_{2}$ for an appropriate $\lambda \in G F(q)$). This implies that $\left\langle X \cap Y, u_{1}, w_{1}\right\rangle$ is maximal isotropic subspace.

Similarly, there exists a basis $v_{1}^{\prime}, \ldots v_{d-2}^{\prime}$ of $X \cap Y$, vectors $u_{1}^{\prime}, u_{2}^{\prime} \in X$ and vectors $z_{1}^{\prime}, \ldots z_{i-2}^{\prime} \in Z^{\prime}$, such that $v_{i-1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of $X \cap Y \cap Z^{\prime}, u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, \ldots v_{d-2}^{\prime}$ is a basis of $X, w_{1}, w_{2}, v_{1}^{\prime}, \ldots v_{d-2}^{\prime}$ is a basis of Y, and $u_{1}^{\prime}, u_{2}^{\prime}, v_{i-1}^{\prime}, \ldots v_{d-2}^{\prime}, z_{1}^{\prime}, \ldots, z_{i-2}^{\prime}$ is a basis of Z^{\prime}. Without loss of generality we can assume that $f\left(u_{1}^{\prime}, w_{1}\right)=0$ (otherwise we replace u_{1}^{\prime} by $u_{1}^{\prime}+\lambda u_{2}^{\prime}$ for an appropriate $\lambda \in G F(q)$). This implies that $\left\langle X \cap Y, u_{1}^{\prime}, w_{1}\right\rangle$ is maximal isotropic subspace.

Applying Lemma 2.3 (with $U=\left\langle u_{1}, w_{1}, v_{1}, \ldots, v_{d-2}\right\rangle, U_{1}=\left\langle u_{1}^{\prime}, w_{1}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}\right\rangle$, $W=Z$ and $W_{1}=Z^{\prime}$) we find that there exists an isometry σ of V, such that $\sigma\left(u_{1}\right)=u_{1}^{\prime}$, $\sigma\left(w_{1}\right)=w_{1}, \sigma\left(v_{j}\right)=v_{j}^{\prime}$ for $1 \leq j \leq d-2$, and $\sigma\left(u_{2}\right), \sigma\left(z_{j}\right) \in\left\langle u_{2}^{\prime}, z_{1}^{\prime}, \ldots, z_{i-2}^{\prime}\right\rangle(1 \leq$ $j \leq i-2)$. Clearly, σ maps Z to Z^{\prime}. It remains to show that σ preserves X and Y. Consider the subspace $W=\left\langle X \cap Y, u_{1}\right\rangle$. Note that W is a $(d-1)$-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and $\left\langle W, w_{1}\right\rangle$. Isometry σ maps W to $W^{\prime}=\left\langle X \cap Y, u_{1}^{\prime}\right\rangle$. By Lemma 2.4, the only two maximal isotropic subspaces containing W^{\prime} are X and $\left\langle W^{\prime}, w_{1}\right\rangle$. Since σ maps $\left\langle W, w_{1}\right\rangle$ to $\left\langle W^{\prime}, w_{1}\right\rangle$, it must map X to X. Similarly we show that σ maps Y to Y. It follows that $\sigma \in G_{X} \cap G_{Y}$, completing the proof of (i).
(ii) Similarly as (i) above.

Let us now consider the sets $D_{i}^{i}(1 \leq i \leq d)$. Pick $Z \in D_{i}^{i}$. By Lemma 4.2, two essentially different situations can occur: either $\operatorname{dim}(X \cap Y \cap Z)=d-i$ (and therefore $X \cap Z=Y \cap Z=X \cap Y \cap Z$), or $\operatorname{dim}(X \cap Y \cap Z)=d-i-1$ (and therefore $X \cap Z \neq Y \cap Z)$.

Definition 4.4. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Let $Z \in D_{i}^{i}(1 \leq$ $i \leq d)$. We say Z is of positive (negative, respectively) type, whenever $\operatorname{dim}(X \cap Y \cap Z)=$ $d-i(\operatorname{dim}(X \cap Y \cap Z)=d-i-1$, respectively $)$.

Observe that all vertices of D_{1}^{1} are of negative type, and that all vertices of D_{d}^{d} are of positive type. Moreover, every $D_{i}^{i}(2 \leq i \leq d-1)$ is a disjoint union of the set of vertices of D_{i}^{i} of positive type, and the set of vertices of D_{i}^{i} of negative type.

Remark 4.5. In [6], the definition of the vertices of positive (negative, respectively) type is different from Definition 4.4 above. Namely, $Z \in D_{i}^{i}$ is defined to be of positive type, whenever all vertices in D_{1}^{1} are at distance $i-1$ from Z. On the other hand, Z is defined to be of negative type, if there exists a vertex in D_{1}^{1} which is at distance $i-1$ from Z, and all other vertices in D_{1}^{1} are at distance $i+1$ from Z. However, these definitions are equivalent.

If $\operatorname{dim}(X \cap Y \cap Z)=d-i$, then Z is at distance at most i from every vertex in D_{1}^{1}. By the triangle inequality and since $D_{d}(q)$ is bipartite, Z is at distance $i-1$ from every vertex of D_{1}^{1}. On the other hand, if $\operatorname{dim}(X \cap Y \cap Z)=d-i-1$, then pick $u \in(X \cap Z) \backslash Y$ and $v \in(Y \cap Z) \backslash X$. Then $W=\langle X \cap Y, u, v\rangle$ is a vertex of $D_{d}(q)$, which belongs to D_{1}^{1} and is at distance $i-1$ from Z. Furthermore, all other vertices in D_{1}^{1} are at distance $i+1$ from Z.

Lemma 4.6. ([6, Theorem 5.3(iv),(v) and Proposition 6.3]) With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Then the following (i), (ii) hold for $2 \leq i \leq d-1$.
(i) $\mid\left\{z \in D_{i}^{i} \mid z\right.$ is of positive type $\} \mid=k_{i}(q-1) c_{i} c_{i-1} /\left(b_{0} b_{1}\right)$;
(ii) $\mid\left\{z \in D_{i}^{i} \mid z\right.$ is of negative type $\} \mid=k_{i} b_{i} c_{i} c_{2} /\left(b_{0} b_{1}\right)$.

Theorem 4.7. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Let $Z, Z^{\prime} \in$ $D_{i}^{i}(1 \leq i \leq d-1)$ and assume Z, Z^{\prime} are of negative type. Then there exists $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.

Proof. Let v_{1}, \ldots, v_{d-2} be a basis of $X \cap Y$ such that v_{i}, \ldots, v_{d-2} is a basis of $X \cap$ $Y \cap Z$. Let $u_{1} \in X$ and $w_{1} \in Y$ be such that $u_{1}, v_{i}, \ldots, v_{d-2}$ is a basis of $X \cap Z$ and such that $w_{1}, v_{i}, \ldots, v_{d-2}$ is a basis of $Y \cap Z$. Let $u_{2} \in X$ and $w_{2} \in Y$ be such that $u_{1}, u_{2}, v_{1}, \ldots, v_{d-2}$ is a basis of X and such that $w_{1}, w_{2}, v_{1}, \ldots, v_{d-2}$ is a basis of Y. Finally, let $z_{1}, \ldots, z_{i-1} \in Z$ be such that $u_{1}, w_{1}, z_{1}, \ldots, z_{i-1}, v_{i}, \ldots, v_{d-2}$ is a basis of Z.

Similarly, let $v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ be a basis of $X \cap Y$ such that $v_{i}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of $X \cap Y \cap Z^{\prime}$. Let $u_{1}^{\prime} \in X$ and $w_{1}^{\prime} \in Y$ be such that $u_{1}^{\prime}, v_{i}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of $X \cap Z^{\prime}$ and such that $w_{1}^{\prime}, v_{i}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of $Y \cap Z^{\prime}$. Let $u_{2}^{\prime} \in X$ and $w_{2}^{\prime} \in Y$ be such that $u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of X and such that $w_{1}^{\prime}, w_{2}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of Y. Finally, let $z_{1}^{\prime}, \ldots, z_{i-1}^{\prime} \in Z^{\prime}$ be such that $u_{1}^{\prime}, w_{1}^{\prime}, z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}, v_{i}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of Z^{\prime}.

Applying Lemma 2.3 (with $U=\left\langle u_{1}, w_{1}, v_{1}, \ldots, v_{d-2}\right\rangle, U_{1}=\left\langle u_{1}^{\prime}, w_{1}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}\right\rangle$, $W=Z$ and $W_{1}=Z^{\prime}$) we find that there exists an isometry σ such that $\sigma\left(u_{1}\right)=u_{1}^{\prime}$, $\sigma\left(w_{1}\right)=w_{1}^{\prime}, \sigma\left(v_{j}\right)=v_{j}^{\prime}(1 \leq j \leq d-2)$, and $\sigma\left(z_{j}\right) \in\left\langle z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}\right\rangle$ for $1 \leq j \leq i-1$. Clearly, σ maps Z to Z^{\prime}. It remains to show that σ preserves X and Y. Note that $W=$ $\left\langle X \cap Y, u_{1}\right\rangle$ is a $(d-1)$-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and $\left\langle W, w_{1}\right\rangle$. Note that σ maps W to $W^{\prime}=\left\langle X \cap Y, u_{1}^{\prime}\right\rangle$, which is a $(d-1)$-dimensional isotropic subspace of V. The only two maximal isotropic subspaces containing W^{\prime} are X and $\left\langle W^{\prime}, w_{1}^{\prime}\right\rangle$. Since σ maps $\left\langle W, w_{1}\right\rangle$ to $\left\langle W^{\prime}, w_{1}^{\prime}\right\rangle$, it must map X to X. Similarly we show that σ maps Y to Y. Therefore $\sigma \in G_{X} \cap G_{Y}$ and the proof is completed.

Theorem 4.8. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Let $Z, Z^{\prime} \in$ $D_{i}^{i}(2 \leq i \leq d)$ and assume Z, Z^{\prime} are of positive type. Then there exist $\sigma \in G_{X} \cap G_{Y}$ which maps Z to Z^{\prime}.

Proof. Let v_{1}, \ldots, v_{d-2} be a basis of $X \cap Y$ such that v_{i-1}, \ldots, v_{d-2} is a basis of $X \cap$ $Y \cap Z$. Let $u_{1}, u_{2} \in X$ and $w_{1}, w_{2} \in Y$ be such that $u_{1}, u_{2}, v_{1}, \ldots, v_{d-2}$ is a basis of X and $w_{1}, w_{2}, v_{1}, \ldots, v_{d-2}$ is a basis of Y. Without loss of generality we can assume that $f\left(u_{1}, w_{1}\right)=0$ (otherwise we replace w_{1} by $w_{1}+\lambda w_{2}$ for an appropriate $\lambda \in G F(q)$). Note that $\left\langle X \cap Y, u_{1}, w_{1}\right\rangle \in D_{1}^{1}$. Since Z is of positive type we have $\operatorname{dim}\left(\left\langle X \cap Y, u_{1}, w_{1}\right\rangle \cap Z\right)=$ $d-i+1$. Therefore, there exist $\alpha, \beta \in G F(q)$ and $v \in X \cap Y$ such that $\left\langle X \cap Y, u_{1}, w_{1}\right\rangle \cap$
$Z=\left\langle\alpha u_{1}+\beta w_{1}+v, v_{i-1}, \ldots, v_{d-2}\right\rangle$. Since $\operatorname{dim}(X \cap Z)=\operatorname{dim}(Y \cap Z)=d-i$, we have $\alpha \neq 0$ and $\beta \neq 0$. Without loss of generality we can therefore assume that $\langle X \cap$ $\left.Y, u_{1}, w_{1}\right\rangle \cap Z=\left\langle u_{1}+w_{1}, v_{i-1}, \ldots, v_{d-2}\right\rangle$ (otherwise we replace u_{1} by $\alpha u_{1}+v$ and w_{1} by βw_{1}). Finally, let $z_{1}, \ldots, z_{i-1} \in Z$ be such that $z_{1}, \ldots, z_{i-1}, u_{1}+w_{1}, v_{i-1}, \ldots, v_{d-2}$ is a basis of Z.

Similarly, Let $v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ be a basis of $X \cap Y$ such that $v_{i-1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of $X \cap Y \cap Z^{\prime}$. Let $u_{1}^{\prime}, u_{2}^{\prime} \in X$ and $w_{1}^{\prime}, w_{2}^{\prime} \in Y$ be such that $u_{1}^{\prime}, u_{2}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of X and $w_{1}^{\prime}, w_{2}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of Y. Without loss of generality we can assume that $f\left(u_{1}^{\prime}, w_{1}^{\prime}\right)=0$ and that $\left\langle X \cap Y, u_{1}^{\prime}, w_{1}^{\prime}\right\rangle \cap Z^{\prime}=\left\langle u_{1}^{\prime}+w_{1}^{\prime}, v_{i-1}^{\prime}, \ldots, v_{d-2}^{\prime}\right\rangle$. Let $z_{1}^{\prime}, \ldots, z_{i-1}^{\prime} \in Z^{\prime}$ be such that $z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}, u_{1}^{\prime}+w_{1}^{\prime}, v_{i-1}^{\prime}, \ldots, v_{d-2}^{\prime}$ is a basis of Z^{\prime}.

Applying Lemma 2.3 (with $U=\left\langle u_{1}, u_{1}+w_{1}, v_{1}, \ldots, v_{d-2}\right\rangle, W=Z, U_{1}=\left\langle u_{1}^{\prime}, u_{1}^{\prime}+\right.$ $\left.w_{1}^{\prime}, v_{1}^{\prime}, \ldots, v_{d-2}^{\prime}\right\rangle$ and $W_{1}=Z^{\prime}$) we find that there exists an isometry σ of V such that $\sigma\left(u_{1}\right)=u_{1}^{\prime}, \sigma\left(u_{1}+w_{1}\right)=u_{1}^{\prime}+w_{1}^{\prime}$ (and therefore also $\left.\sigma\left(w_{1}\right)=w_{1}^{\prime}\right), \sigma\left(v_{j}\right)=v_{j}^{\prime}(1 \leq$ $j \leq d-2$), and $\sigma\left(z_{j}\right) \in\left\langle z_{1}^{\prime}, \ldots, z_{i-1}^{\prime}\right\rangle$ for $1 \leq j \leq i-1$. Clearly, σ maps Z to Z^{\prime}. It remains to show σ preserves X and Y.

Note that $W=\left\langle X \cap Y, u_{1}\right\rangle$ is a $(d-1)$-dimensional isotropic subspace of V. By Lemma 2.4, the only two maximal isotropic subspaces containing W are X and $\left\langle W, w_{1}\right\rangle$. Note that σ maps W to $W^{\prime}=\left\langle X \cap Y, u_{1}^{\prime}\right\rangle$, which is a $(d-1)$-dimensional isotropic subspace of V. The only two maximal isotropic subspaces containing W^{\prime} are X and $\left\langle W^{\prime}, w_{1}^{\prime}\right\rangle$. Since σ maps $\left\langle W, w_{1}\right\rangle$ to $\left\langle W^{\prime}, w_{1}^{\prime}\right\rangle$, it must map X to X. Similarly we show that σ maps Y to Y. Therefore $\sigma \in G_{X} \cap G_{Y}$ and the proof is complete.

Proposition 4.9. With reference to Notation 1.1 assume that $\partial(X, Y)=2$. Then the following (i)-(iii) hold.
(i) Each of D_{1}^{1}, D_{d}^{d} is an orbit of $G_{X} \cap G_{Y}$.
(ii) For $2 \leq i \leq d$ the sets D_{i-2}^{i} and D_{i}^{i-2} are orbits of $G_{X} \cap G_{Y}$.
(iii) For $2 \leq i \leq d-1$ the set of vertices in D_{i}^{i} that are of positive type (resp. negative type) is an orbit of $G_{X} \cap G_{Y}$.

Proof. Observe that two vertices of $D_{d}(q)$, which are contained in distinct sets listed in (i), (ii) and (iii) above, cannot belong to the same orbit of $G_{X} \cap G_{Y}$. The result now follows from Theorems 4.3, 4.7 and 4.8.

5 Acknowledgement

The author would like to thank to Klavdija Kutnar and Pablo Spiga for many valuable suggestions.

References

[1] E. Artin, Geometric Algebra, Interscience, New York, 1957.
[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
[3] B. Curtin, Bipartite distance-regular graphs I, Graphs Combin. 15 (1999), 143-157.
[4] B. Curtin, Bipartite distance-regular graphs II, Graphs Combin. 15 (1999), 377-391.
[5] Š. Miklavič, On bipartite Q-polynomial distance-regular graphs, European J. Combin. 28 (2007), 94-110.
[6] Š. Miklavič, On bipartite distance-regular graphs with intersection numbers $c_{i}=\left(q^{i}-1\right) /(q-$ 1), submitted to Graphs Combin.
[7] P. Terwilliger, The subconstituent algebra of an association scheme I, J. Algebraic Combin. 1 (1992), 363-388.
[8] P. Terwilliger, The subconstituent algebra of an association scheme II, J. Algebraic Combin. 2 (1993), 73-103.
[9] P. Terwilliger, The subconstituent algebra of an association scheme III, J. Algebraic Combin. 2 (1993), 177-210.
[10] V. A. Vasilev and V. D. Mazurov, Minimal permutation representations of finite simple orthogonal groups, Algebra Logic 33 (1994), 337-350.

