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Introduction

Solid tumors frequently spread to bones, most 
often the spine. About 60–90% of cancer patients 
are estimated to develop bone metastases [1, 2] 
which are associated with increased risk of com-
plications such as pain, fractures and hypercal-
cemia. At the metastatic site, bone remodeling 

due to increased osteoblast and osteoclast activity 
seems to alter the microenvironment, promoting 
tumor growth and bone destruction. From the 
diagnostic point of view, this tissue remodeling is 
characterized by lytic and thickened areas within 
the bone [3].

In terms of survival, there is a huge heterogeneity 
between different histotypes with diverse molecu-
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lar phenotypes. For instance, prognosis is better in 
breast cancer patients with only bone involvement 
than in those with visceral metastases [4]. More-
over, patients with oligometastatic bone disease and 
few secondary localizations might be candidates for 
curative therapy [5, 6].

This overview provides a critical appraisal of the 
current evidence and future perspectives of bone 
oligometastatic disease.

Sources of information 

By February 2021, Pubmed and the Cochrane 
library were searched for relevant literature. 

Diagnostic imaging and target 
volume definition

Bone scintigraphy, computed tomography (CT) 
and magnetic resonance imaging (MRI) are cur-
rently used to assess metastatic bone disease [7–9]. 
Bone scintigraphy has the advantage of detecting 
lesions with a low bone-matrix turnover, although 
false negatives may occur in lytic lesions without 
tissue remodeling [10, 11]. Over the past few years, 
the use of the positron emission tomography/com-
puted tomography (PET/CT) has become more 
widespread in clinical practice because of its high 
sensitivity and specificity in detecting bone me-
tastasis, even lytic lesions, and its diagnostic accu-
racy of about 95% [12–15]. The most common and 
well-studied radiotracer is 18F-fluorodeoxyglucose 
(18FDG). With it, the PET/CT achieves the same 
sensitivity as, and greater specificity than, bone 
scintigraphy (96% vs. 66%) [14, 15]. Several other 
PET-radiotracers are currently under investiga-
tion for different solid tumors. For instance, 11C 
or 18FDG-choline and prostate specific membrane 
antigen (PSMA)-PET/CT are used for staging re-
current prostate cancer which might benefit from 
metastasis-directed therapy when an oligometa-
static state is detected [16–18]. 

In radiation oncology, standard and investigation-
al imaging modalities should be registered with the 
planning CT in order to define the bone target vol-
ume better. More specifically, MRI is the most sensi-
tive in defining bone lesions and critical structures, 
such as the spinal cord, that need to be spared from 
irradiation. The International Spine Radiosurgery 
Consortium (ISRC) of North American experts in 

radiosurgery provided consensus guidelines for tar-
get volume delineation in spine SRT [19]. The gross 
tumour volume (GTV) has to be fully contoured 
whereas the clinical target volume (CTV) is defined 
according to the involved vertebral region: the verte-
bral body, pedicle, transverse process, lamina or spi-
nous process. For example, when the lesion involves 
the spinous process the CTV encompasses the entire 
spinous process and bilateral laminae. When it is 
detected in any part of the vertebral body, the entire 
vertebral body must be included in the CTV. For ex-
tended metastases involving the vertebral body and 
bilateral pedicles, the CTV should encompass the 
entire vertebral body, bilateral pedicles, transverse 
processes and bilateral laminae. A circumferential 
CTV around the cord is not recommended when 
lesions involve the entire vertebral body, bilateral 
pedicles and spinous process as it should be used 
only in rare cases of massive vertebral involvement 
[19]. In spine stereotactic radiotherapy (SRT) the 
planning target volume (PTV) and planning organ 
at risk volume (PRV) margins should be determined 
on an institution-to-institution basis because these 
geometrical expansions depend on the immobili-
zation system, treatment planning, image-guided 
technique and fractionation scheme.

Fractionation schedules and dose 
constraints to the organs at risk 

(OARs)

Although the safety and efficacy of spine SRT were 
reported in many retrospective series, consensus is 
still lacking on the optimal dose fractionation. Most 
treatments were delivered as single fractions, with 
doses ranging from 12 to 24 Gy [20, 21], or frac-
tionated schedules with total doses of 21–27 Gy be-
ing administered in 3 fractions or 20–35 Gy in 5 
fractions [22–24]. In a retrospective series of spinal 
metastases from different solid tumors, Heron et al. 
reported that no differences emerged in long-term 
pain control and toxicity after a 16.3 Gy spinal single 
dose or hypofractionated schedules (20–24 Gy in 
3–5 fractions). SRT in single dose had a worse rate 
of 2-year local control (70% vs. 96%) and was associ-
ated with a higher re-treatment rate [25]. In patients 
with 1–3 spine metastases the phase II/III RTOG 
0631 trial [26] demonstrated the safety of a single 
16 Gy dose. In patients with spine metastases Wang 
et al. [23] prospectively analyzed outcomes after hy-
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pofractionated schemes (27–30 Gy in 3 fractions). 
No G4 toxicity was reported and local control, as as-
sessed by MRI, was achieved in 72% of cases. Ahmed 
et al. [27], administered a total median dose of 24 Gy 
(range, 10–40 Gy) in 3 fractions (range, 1–5), achiev-
ing a 1-year local control of 91.2%. In oligometastatic 
patients, a phase III prospective randomized trial 
evidenced that a single high-dose of 24 Gy compared 
with hypofractionated SRT (3 × 9 Gy) was more ef-
fective in ablating bone metastases and led to a better 
time to distant metastatic progression [28]. Several 
studies showed that the primary tumor histology 
might influence the efficacy of ablative radiotherapy, 
as SRT seemed more effective in breast metastases 
than in melanoma or renal cell carcinoma metas-
tases (100% vs. 75%) [29]. For instance, in a recent 
retrospective analysis of 605 patients treated with 
hypofractionated SRT (total dose 20–28 Gy in two 
daily fractions) for 1,406 spine metastases multivari-
ate analysis showed that less radiosensitive histolo-
gies were associated with a worse outcome [29]. In 
radioresistant tumors, a single dose > 20 Gy might 
be considered to achieve high local control rates 
(95–100%) [28, 30–33].

Spine SRT was investigated in selected cases of 
cord compression [34, 35]. More specifically, total 
doses of 14–27 Gy in 1–3 fractions were delivered to 
the target volume encompassing the epidural mass 
and the vertebral body that was involved. A local 
control rate of 80% was reported [34, 35]. After 
surgical decompression, spine SRT might increase 
the local control rate. To date, few retrospective 
analyses and some phase I/II studies have reported 

local control rates ranging from 70% to 100% after 
single doses of 14–24 Gy or fractionated doses of 
27–30 Gy in 3–5 fractions [36–40].

When treating spine metastases, sparing the spi-
nal cord from high doses is crucial. The American 
Association of Physicists in Medicine (AAPM) Task 
Group 101 provided information about dose con-
straints to the OARs for SRT. If single fraction SRT 
is delivered < 1 cm3 of cord tissue should receive < 7 
Gy. Otherwise, the total dose to 1 cm3 of cord tis-
sue must be < 12.3 Gy and < 14.5 Gy when SRT is 
administered in 3 or 5 fractions, respectively. The 
maximum dose to the cord must be < 10 Gy for 
a single fraction, < 18 Gy for 3 fractions, and < 23 
Gy for 5 fractions. In the RTOG 0631 trial, no more 
than 10% of spinal cord (defined as the cord cor-
responding to the metastatic vertebra plus 5 mm 
above and below the PTV) had to receive a total 
dose > 10 Gy [26]. The UK consensus on OAR dose 
constraints for SRT suggests a total maximum dose 
to the cord of 10 Gy, 18 Gy, 23 Gy and 25 Gy in 1, 3, 
5 and 8 fractions, respectively [41].

Toxicity

Spine SRT was most commonly associated with 
the following acute toxicity: grade 1 or 2 fatigue 
and skin erythema. In 23–68% of patient transient 
pain flare occurred [42, 43], the incidence of which 
was significantly reduced by dexamethasone dur-
ing SRT [44]. Acute gastro-intestinal symptoms, 
due to mucositis, were linked to the irradiation site 
(i.e., cervical, thoracic or lumbar spine). Under 5% 

Table 1. Spine stereotactic radiotherapy (SRT) schedules and local control

Author (year) No. of pts Median total dose (range)/
Median no. of fractions (range)

Median follow–up [months] 
(range)

Local control 
(%)

Anand et al.

(2015) [35] 
52 24 Gy (24–27 Gy)/3 (1–3) 8.5 (3–40) 82.6

Guckenberger et al.

(2014) [22]
301 24 Gy (10–60 Gy)/3 (1–20) 11.8 (0–105) 83.9

Ahmed et al.

(2012) [27] 
46 24 Gy (10–40 Gy)/3 (1–5) Mean 8.2 91.2

Wang et al.

(2012) [23] 
149 27–30 Gy/3 15.9 (1–91.6) 72.4

Yamada et al.

(2008) [32] 
93 24 Gy (18–24 Gy)/1 15 (2–45) 90

Gerszten et al.

(2007) [20] 
156 (no. of 

lesions) 20 Gy (12.5–25 Gy)/1 21 (3–53) 90
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of patients experienced grade ≥ 3 acute toxicity 
[22, 23, 27, 38, 40]. 

Late toxicity included the extremely rare radia-
tion-induced myelopathy and a 14% risk of de novo 
vertebral compression fractures (VCF) [45]. These 
severe complications can occur from 6 months to 
3 years after radiotherapy. Spinal instability is as-
sessed by the Spinal Instability Neoplastic Score 
(SINS) [46, 47] with scores ≥ 7 predicting increased 
risk of VCF after spine SRT [48].

Conclusions

A few data from the literature reported signif-
icant differences in the doses and fractionations 
used for SRT in bone oligometastatic disease, which 
were generally chosen on the basis of primary tu-
mour histology and bio-pathological characteriza-
tion, target volume size, location and its relation-
ship with OARs. In most studies SRT was delivered 
to spinal bone metastases and only a few studies 
included other sites of disease. Furthermore, het-
erogeneity in study populations was observed. Al-
though better results were achieved in oligometas-
tases from radiosensitive than radioresistant prima-
ry disease, no firm indications emerged on patient 
selection [49, 50]. At present, the only limitation 
in delivering SRT is treatment safety, which can 
vary case-by-case. All these uncertainties suggest 
the need for clinical trials and consensus guidelines. 
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