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Introduction

Despite expansion of stereotactic radiotherapy 
(SRT), i.e., hypo-fractionated treatments with high 
doses per fraction, the radiobiological mechanisms 
underlying their effects have not yet been fully elu-
cidated. Some authors postulated that radiobiology 
principles, as applied to conventional fractionations 
(5R: reoxygenation, repair, repopulation, redistribu-
tion and radioresistence), are enough to account for 
their excellent clinical results [1]; others argued that 
in the ablative hypofractionated setting, the role of 
the 5R was limited [2–7]. Recent preclinical data 
showed that hypofractionated ablative treatments al-
tered the microenvironment, thus determining cell 
death either directly or indirectly [2–5]. Further-
more, dead tumor cells released quantities of anti-

gens, which stimulated antitumor immunity, thus 
reducing the risk of relapse and metastasis [6, 7].

Better understanding of the radiobiological 
mechanisms underlying response to high-dose 
radiation treatment is essential for predicting its 
short- and long-term effects on the tumor and sur-
rounding healthy tissues and, consequently, for im-
proving its related therapeutic index. Beside the 
present article, this topic was recently explored in 
depth in excellent review articles which we refer the 
reader to [8–11]. 

The “5Rs” of radiobiology 

The “5Rs” of radiobiology play a controversial 
role in hypofractionated schemes, especially with 
high doses per fraction [1, 4, 5].
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Re-oxygenation is believed to play little or no 
role in tumor response after single-fraction ablative 
treatments which are associated with widespread 
vascular destruction of tumors. Conversely, mas-
sive cell death with its drop in oxygen consumption, 
could favor re-oxygenation of surviving hypoxic 
cells [12]. Furthermore, vascular damage may be 
irrelevant after hypofractionation with doses of 3-8 
Gy per fraction, which might thus lead to some 
reoxygenation [13, 14].

The hypofractionated schedules require pro-
longed delivery times, which were associated with 
around 10% loss of biological efficacy, particularly 
when they lasted over 30 minutes [15, 16]. They 
may interfere with sublethal damage repair, over-
whelming repair mechanisms due to enzymatic 
pool depletion [17]. 

High single-dose fractionation blocks the cell in 
the cycle phase, thus interfering with redistribution. 
However, some cells may slowly progress to G2 and 
then die [2, 18, 19]. 

SRT hypofractionated schedules do not provide 
enough time for repopulation. In fact, the prolifera-
tion of surviving cells generally occurs 3–4 weeks 
after the start of radiation treatment [18]. Cell de-
pletion could, however, determine some degree of 
repopulation which occurs 3–4 weeks afterwards, 
i.e., earlier than with conventional treatments [18].

The linear quadratic model

Mathematical formulas [biologically effective 
dose (BED), equivalent dose in 2 Gy fractions 
(EQ2)] based on the linear quadrant (LQ) model 
calculate the iso-effective doses for unconventional 
single fractions. As the LQ model derives mainly 
from in vitro studies, it does not perfectly reflect in 
vivo observations [20]. Although valid for fractions 
ranging from 1 to 5 Gy, its validity is doubtful when 
higher doses are used per fraction [20]. In vitro ob-
servations suggested the LQ model overestimated 
cell killing because it predicted a survival curve that 
continuously bent downward at high single doses 
whereas experimental data showed a constant slope 
[20]. In fact, lethal damage (linear component) pre-
dominated at large doses per fraction.

The LQ model does not take into account in vivo 
vascular damage after a single fraction high dose [20] 
or tumor stem cells which maintain the tumor pool 
and were associated with radioresistence [21]. Despite 

these data, experimental models and some clinical 
trials reported that the LQ model adapted adequately 
to SRT treatment response and was reliable for single 
fractions up to 10 Gy, becoming progressively less ac-
curate as doses rose [1, 17]. As cell death is mediated 
directly and indirectly [18], the LQ formula, may not 
overestimate its rate but may well approximate the 
total SRT-induced cell death. Although the LQ model 
is still the most common, other models, such as the 
Universal Survival Curve (USC), were developed to 
compare conventional and high dose hypofraction-
ated schemes [22, 23], and to provide empirical and 
clinical rationales for SRT [23].

Are tumor or endothelial cells  
the main radiobiological target  

of high‑dose radiotherapy?

The radiobiological target of high-dose radiation 
treatments is highly debated. Even though Leith et 
al. calculated [24] at least 80–90 Gy in a single frac-
tion were needed to control a 3 cm diameter brain 
tumor, many clinical studies showed that 18–25 Gy 
in a single fraction effectively controlled primary and 
metastatic central nervous system neoplasms [2–7, 
15, 24–27]. Furthermore, when 5–7 cm liver tumors 
were treated with 54 Gy in 3 fractions, local control 
was over 90% at 2 years [28]. To justify these sur-
prisingly better results [24], different radiobiological 
mechanisms were proposed. The main control point 
for irradiation-induced immune responses may be 
the vascular endothelium, which acted as a barrier 
regulating immune cell rolling on the vascular surface 
[29]. Several pieces of experimental evidence sup-
ported the hypothesis of endothelial cell damage [5, 
30–32], with consequent tumor microenvironment 
deterioration and indirect hypoxia-related cell death 
[33]. Tumor endothelial cells were more radiosensi-
tive than normal endothelial cells because of varying 
intrinsic radiosensitivity and structural differences 
[34, 35]. Doses over 10 Gy in a single fraction caused 
vascular damage like occlusion, vasodilation, vaso-
constriction, and rupture [4, 5, 36–41] which reduced 
endotheliocytes in number and, consequently, per-
fusion [38, 42, 43]. Irradiation-induced endothelial 
cell death released anti-tumor signals, such as the 
TNF cytokine, which activated macrophages; the C-
X-C motif chemokine ligand 6 (CXCL6) chemokine, 
which recruited immune cells and activated Toll-like 
receptors on dendritic cells [44]. The efficacy of SRT 
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when administered in hypoxic conditions was evalu-
ated in pre-clinical and clinical studies. Compared 
with conventional fractionation, SRT reduced the cell 
killing of hypoxic cellular lines [45]. Furthermore, 
in an animal model, tumor control probability was 
lower when SRT was delivered to tumors irradiated 
at low partial pressure of oxygen (pO2) [46]. In the 
clinical setting, some studies confirmed that hypoxia, 
assessed by imaging, decreased the efficacy of SRT 
[47, 48]. Interestingly, in patients who had received 
SRT for the treatment of meningiomas, the expres-
sion of the endogenous marker of hypoxia hypox-
ia-inducible factor 1α (HIF-1α) negatively impacted 
on local control [49].

A single dose of 8–16 Gy increased acid sphin-
gomyelinase (ASMase) expression, which contrib-
uted to post-irradiation inflammation and fibrosis. 
Within blood vessels, irradiation generated a pro-
thrombotic state with platelet aggregation, micro-
thrombosis and increased inflammatory-endothe-
lial cell adhesion, with subsequent diapedesis to the 
perivascular space [50]. Endothelial cell exposure 
to radiation doses of > 0.5 Gy or < 10 Gy primarily 
caused their senescence [51].

In vivo studies supported the hypothesis that 
irradiation played an indirect role in vascular dam-
age. Clonogenic survival was lower in tumor-bear-
ing mice that were irradiated with single dose 10 Gy 
than in in vitro tumor samples [5, 33]. 

The dose for indirect death varied with factors, 
such as tumor type [4, 33] and vessel diameter, 
as small vessels seemed more vulnerable to radia-
tion damage than large [52]. Despite these data, 
consensus is not unanimous on the main target in 
high dose hypofractionated treatments. In a recent 
murine model study, Moding et al. [53] argued it 
was the tumor rather than the endothelial cell, pro-
viding evidence that radioinduced tumor death did 
not change when endothelial cells were genetically 
engineered by deleting the Bax pro-apoptotic gene 
or the DNA damage response gene. While not ex-
cluding that other stromal cells may play a role in 
tumor eradication after SRT, the vascular damage 
contribution was reduced [53].

Antigen-induced damage  
and immune response 

Other biological mechanisms are involved in the 
efficacy of high-dose ablative treatments. High dose 

hypofractionated irradiation was reported to pro-
mote antitumor immunity [6, 7], while low dose 
fractionated treatments suppressed host immuno-
competence. Extensive cell death during hypofrac-
tionated irradiation increased expression of immu-
nomodulatory molecules like the histocompatibility 
complex, adhesion molecules, heat shock proteins, 
inflammatory mediators, immunomodulatory cyto-
kines and tumor cell surface death receptors [7, 54]. 
The massive release of tumor antigens and cytokines 
enhanced the innate antitumor response. In a mouse 
model, with an induced B16 melanoma, single dose 
15 Gy increased the number of antitumor immune 
cells, facilitating antigen presentation, T lymphocyte 
priming in lymph nodes and effector T lymphocyte 
trafficking in tumors [55]. When the 15 Gy dose 
was fractionated in the same murine model, the 
immune response was weaker. Increasing the single 
dose up to 20 Gy augmented the immune response 
towards the primary tumor [55, 56]. Hypofraction-
ated radiation therapy significantly inhibited tumor 
growth in immunocompetent, but not immuno-
compromised, mice [57]. Compared with conven-
tional fractionation, hypofractionation reduced 
tumor recruitment of myeloid-derived suppressor 
cells and decreased their expression of programmed 
death-ligand 1 (PD-L1) [57]. Antitumor immunity 
was observed in clinical trials. A recent phase 1 
study showed that the combination of interleukin 
2 (IL-2) and SRT enhanced the immune response 
more than radiation therapy alone [58]. Ipilimum-
ab, a CTL-associated antigen 4 (CTLA-4) ligand, 
associated with SRT (9.5 Gy in 3 fractions) was 
linked to an abscopal effect in metastatic melanoma 
[59]. The time-frames are worth noting. Generally 
speaking, tumor-specific radio-induced immunity 
cannot underlie the secondary death of tumor cells 
2–3 days after radiation treatment as it completely 
developed within in 1–2 weeks. On the other hand, 
tumor-specific radio-induced immunity seemed to 
inhibit proliferation of surviving tumor cells, thus 
suppressing recurrences and metastases. As pre-
clinical and clinical evidence continues to mount, 
immune-mediated tumor “rejection” is increasingly 
appreciated as the sixth “R” of radiobiology [60] and 
several clinical trials were initiated combining SRT 
with immunotherapy [61, 62]. 

The radiobiological immunologically effective 
dose (IED) model was recently developed for im-
muno-radiotherapy. Since the dose per fraction, 
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the time interval between fractions and the tumour 
radio sensitivity may all impact on the tumour an-
tigen expression, the IED model was designed to 
predict the anti-tumour immune response after ex-
posure to different RT schedules. Once this model 
is validated it may be used to select the most im-
munogenic RT schedules [63].
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