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Abstract
The prevalence of anemia in patients admitted to the intensive care unit (ICU) reaches 66%. Moreover, numerous pa-
tients develop anemia during ICU hospitalization. In fact, anemia is the most common hematologic disease in the ICU.
The majority of patients hospitalized in the ICU present with acute systemic inflammation, so called systemic inflam-
matory response syndrome (SIRS). These patients may develop anemia of inflammation (AI). In crtitically ill patients AI 
may present acutely (acute systemic inflammation) or chronically (comorbidities associated with prolonged systemic 
inflammation), here we describe both presentations of AI as ‘anemia of critical illness’ (ACI). The second most frequent 
type of anemia in critically ill patients is iron-deficiency anemia (IDA). A mixed type of anemia (ACI + IDA) may also be 
present in these patients.
The three major pathophysiological mechanisms leading to ACI are: iron restriction, decreased erythropoiesis, and 
decreased erythrocyte lifespan. Cytokines synthesized during SIRS induce the production of hepcidin that inhibits the 
only transmembrane iron exporter (ferroportin) present in the duodenum and macrophages.
Etiological classification of anemia in critically ill patients poses a significant challenge to clinicians, as there is a mul-
titude of tests available, and there are various reference ranges for these tests reported in the literature in the patient 
population in question. Pure ACI or mixed ACI + IDA can be diagnosed using a single laboratory test — complete blood 
count with analysis of reticulocytes — which provides Hb concentration in erythrocyte and reticulocyte.
The management of ACI incorporates discontinuation with erythropoiesis-stimulating agent causing anemia, reduc-
tion of iatrogenic blood loss, parenteral iron, and combined therapy of parenteral iron with erythropoiesis-stimulating 
agents in approved indications.
Key words: anemia of inflammation, anemia of critical illness, critically ill patients, hepcidin, iron-deficiency anemia, 
intensive care unit, reticulocyte hemoglobin equivalent
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Introduction

The prevalence of anemia in patients admitted to the in-
tensive care unit (ICU) reaches 60–66% [1, 2]. Moreover, 
numerous patients develop anemia during ICU hospitaliza-
tion, which is caused by disease processes, but may also 
be iatrogenic (e.g. phlebotomy, extracorporeal treatment 
procedures). By day 3 of ICU hospitalization, up to 90% of 

patients are anemic [3]. Lower hemoglobin (Hb) concentra-
tions are associated with higher mortality rates and longer 
stays in the ICU, and in hospital in general [4].

The majority of patients hospitalized in the ICU present 
with acute systemic inflammation (SI), so called systemic in-
flammatory response syndrome (SIRS). These patients may 
develop anemia of inflammation (AI). AI, previously known as 
anemia of chronic disease (ACD), is also the most common 
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type of anemia in hospitalized chronically ill patients [5] and 
may be present in the following conditions: infection, au-
toimmune disease [6], cancer [7], chronic kidney disease 
(CKD), congestive heart failure, chronic obstructive pulmo-
nary disease, pulmonary arterial hypertension, chronic liv-
er disease, obesity, advanced atherosclerosis, and old age 
[8]. The prevalence of AI in different chronic conditions is 
presented in Table I [7, 9–14]. Patients with the aforemen-
tioned diseases are frequently hospitalized in the ICU. These 
factors make AI the most common type of anemia in criti-
cally ill patients [15]. In critically ill patients AI can present 
acutely (acute systemic inflammation) or chronically (comor-
bidities associated with prolonged systemic inflammation), 
so we decided to call both presentations of AI in critically ill 
patients ‘anemia of critical illness’ (ACI). The second most 
frequent type of anemia in critically ill patients is iron-de-
ficiency anemia (IDA). A mixed type of anemia (ACI + IDA) 
may also be present in these patients.

Moreover, deficiency of vitamin B12, folic acid, and vi-
tamin D, may also be present in critically ill patients.

The aim of this work was to summarize the current know-
ledge on the pathophysiology, diagnosis, and management of 
ACI, and to present our perspectives on this important topic.

Pathophysiology

There are three major pathophysiological mechanisms 
leading to ACI: iron restriction, decreased erythropoiesis, 
and decreased erythrocyte lifespan.

Iron-restricted erythropoiesis
The activation of immune cells leads to synthesis of cyto-
kines. The most important here are interleukin (IL) 6 and 1β 
as they induce the production of hepcidin in the liver, which 
is the master regulator of the iron metabolism [16]. Hepcidin 
is a 25-amino acid protein that exerts its effects by inhibiting 
the only transmembrane iron exporter — ferroportin, either 
through internalization [17] or direct occlusion [18]. These 
ILs also decrease production of the only iron-transporting 
protein — transferrin. Bacterial lipopolysaccharide (LPS) 
and interferon gamma (IFN-γ) also block the transcription 

of ferroportin [19]. Ferroportin is present in the duodenum 
where dietary iron is absorbed, and in macrophages from 
where over 90% of daily iron comes from. All these mech-
anisms lead to iron-restricted erythropoiesis (IRE) and its 
typical laboratory profile: low iron, low transferrin, and high 
ferritin.

Decreased erythropoiesis 
This effect is mainly caused by decreased erythropoietin 
(EPO) production. EPO is produced by fibroblasts in the 
renal cortex. Decreased EPO is caused by the negative 
effect of IL-1 and tumor necrosis factor alpha (TNF-α) on 
EPO expression [20], and decreased erythropoietin biologi-
cal activity caused by IL-1 and IL-6 [21]. Erythropoietin is 
responsible for proliferation and differentiation of erythrone 
and induces erythroferrone that inhibits hepcidin synthesis. 
Numerous cytokines (mainly IFN-γ) induce apoptosis of 
erythroid progenitor cells in the stem.

Decreased erythrocyte lifespan 
This effect is caused by: enhanced phagocytosis by hepatic 
and splenic macrophages caused by deposition of antibody 
and complement on erythrocytes, activation of macro-
phages, and mechanical damage from fibrin deposits in 
microvasculature [22]. An overview of the pathophysiology 
of AI is presented in Figure 1 [23]. The organs involved are 
the bone marrow, liver, duodenum and kidneys, the most 
important regulator being hepcidin.

There can be other causes of anemia in critically ill pa-
tients, including mineral (iron) and vitamin (vitamin B12, 
folic acid, vitamin D) deficiency. Iron deficiency (ID) leads 
to impaired erythropoiesis, vitamin B12 and folic acid de-
ficiency (megaloblastic anemia) leads to impaired erythro-
poiesis and hemolysis, and vitamin D increases hepcidin 
concentration leading to even greater IRE.

Etiological classification of anemia

The World Health Organization defines anemia as a con-
dition in which the number of erythrocytes, or their oxy-
gen-carrying capacity, is insufficient to meet the body’s 

Table I. Prevalence of anemia of inflammation in chronic conditions

Study Year Patient population Anemia [%]

Birgegård et al. [9] 2006 Cancer (lymphoma + multiple myeloma) 72.9

Macciò et al. [7] 2015 Cancer (solid tumors) 63

Ambrosy et al. [10] 2019 Heart failure 57.1

Coiffier et al. [11] 2001 Cancer (chemotherapy) 54.1

Gaskell et al. [12] 2008 Older people (>65 years) 17-47

St Peter et al. [13] 2018 Chronic kidney disease (dialysis) 6.7–22.2

Boutou et al. [14] 2013 Chronic obstructive pulmonary disease 15.6
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physiological needs [24]. The diagnostic criterion for ane-
mia is a Hb concentration <12 g/dL for women and <13 g/ 
/dL for men. In clinical scenarios with potential blood loss 
(e.g. the perioperative period), there is a consensus to use 
a Hb cut-off value of <13 g/dL for both sexes, as women have 
lower blood volumes, yet bleed as much as men [25, 26].

Exclusion of nutrient deficiencies 
ACI is a diagnosis of exclusion, so as a first step other caus-
ative/contributory factors of anemia ought to be excluded. 
These include at least mineral (iron) and vitamin (vitamin 
B12, folic acid, vitamin D) deficiencies, as these can be 
easily remedied.

The order of laboratory tests in diagnosis of ACI is pre-
sented below.

Erythrocyte parameters
Complete blood count (CBC) is the first line test to diagnose 
anemia. It is the only test that should be used to precisely 
determine Hb concentration. Assessment of Hb concentra-
tion, both in capillary blood [27, 28] and non-invasively [28], 
is not accurate and should be avoided. Anemia of critical 
illness typically presents as normocytic and normochromic 
anemia, IDA as microcytic and hypochromic anemia, and 
megaloblastic as macrocytic and normochromic anemia, 
however analysis of erythrocyte indices is not conclusive. 

Low mean cell volume (MCV), mean cell hemoglobin (MCH), 
and mean cell hemoglobin concentration (MCHC) can be 
seen in thalassemias, however these conditions are quite 
rare and their prevalence varies by geographical region. 
MCV has been found to be within a reference range in up 
to 40% of patients with ID or mixed hematinic deficiency 
[29]. MCV is affected by pre-analytical factors such as 
sample temperature or storage time [30]. To conclude, 
in the absence of thalassemia, low MCV, MCH or MCHC 
suggest ID, whereas their normal values do not exclude ID. 
CBC should be the first test for screening and preliminary 
classification of anemia [26].

Reticulocytes
A decreased number of reticulocytes is present in ACI, IDA, 
megaloblastic anemia, and bone marrow aplasia/hypopla-
sia. An increased number is present in hemolysis, polycythe-
mia, hemorrhage, and when hematopoietic agents are used.

Reticulocyte Hb content
The name of the test varies with the analyzer: reticulocyte 
Hb equivalent — Ret-He (Sysmex XE/XN), mean reticulocyte 
Hb content — MCHr (Abbott Sapphire), reticulocyte Hb equiv-
alent — RHE (Mindray BC6800), and reticulocyte Hb content 
calculated — RHCc (ABX-Horiba Petra) [31]. Reticulocytes 
circulate in the peripheral blood for 1–2 days and then they 

Figure 1. Pathophysiology of anemia of inflammation [‘Pathophysiology of anemia of inflammation (created with Biorender)’ by Lanser et al. 
(no modification), available at: https://doi.org/10.3390/nu13113732, under licence CC BY 4.0]
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mature into erythrocytes. Determination of reticulocyte Hb 
shows if there is enough iron available for erythropoiesis at 
the time. Due to the short lifespan of reticulocytes, these 
parameters change within a few days and can be used to 
monitor iron availability and treatment progress. In patients 
with CKD, CHr can predict response to iron even when 
ferritin is increased as high as 800 µg/L [32]. Patients 
with sepsis or septic shock with serum ferritin even above 
800 µg/L with low Ret-He, can positively respond to par-
enteral iron (unpublished data, clinicaltrials.gov identifier: 
NCT05217836). The Ret-He test was introduced in 2005. 
This test generally is rapid, convenient and cost-effective. 
It has been used to identify IDA in inflammatory conditions: 
rheumatoid arthritis [33], cancer [34], chronic disease [35], 
and gastroenterological disease [36]. CHr cannot distin-
guish IDA from thalassemia; however, in populations with 
a low prevalence of thalassemia, the Mentzer index may 
be used to identify thalassemia [37]. The Mentzer index is 
calculated by dividing MCV by RBC, with a value <13 sug-
gesting thalassemia with a sensitivity of 98% [38]. Different 
cut-off values of reticulocyte Hb have been proposed for 
diagosis of IDA: 25 pg [39], 28 pg [40], 29 pg [32], and  
30 pg [41, 36]. The current guidelines recommend a cut- 
-off value of 29 pg in adults (excluding pregnancy) and 
children, until further data is available [42].

Iron studies (iron, transferrin,  
transferrin saturation, ferritin)
Serum iron determination is required for the calculation of 
transferrin saturation (TSAT) and, due to high diurnal vari-
ability, should not be measured in isolation. Transferrin con-
centration variability is lower than for iron. Nevertheless, 
transferrin synthesis is impaired in malnutrition and chronic 
disease, therefore specificity of transferrin in diagnosis of 
ID remains inadequate. TSAT is the ratio of serum iron to 
transferrin. ACI presents as low iron, transferrin and vari-
able TSAT. IDA presents as low iron, increased transferrin, 
and low TSAT. The most useful differentiating parameter 
here is serum ferritin. Whereas a ferritin level <30 µg/L 
signifies typical IDA, ferritin 30–100 µg/L and TSAT <20% 
may suggest ID. Patients with ACI may present with normal 
or increased ferritin levels (>100 µg/L); the degree of el-
evation depends on the underlying condition. With ferritin  
>100 µg/L and TSAT >20%, we still cannot be sure if there is 
ID accompanying ACI [43]. Ferritin and transferrin are acute 
response proteins, and therefore they lose their diagnostic 
utility in the critically ill. Ferritin and transferrin saturation 
cannot be used for a precise diagnosis of absolute (ACI 
+ IDA) or functional (ACI) ID in critically ill patients [44]. 
A wide range (20–85%) of patients with AI have absolute 
ID (AI + IDA) which may be caused by bleeding episodes 
related/unrelated to primary diagnosis and/or iatrogenic 
blood loss, mainly associated with laboratory sampling or 
extracorporeal procedures [45].

Hepcidin
As hepcidin is the master regulator of iron metabolism, its 
concentration may be useful to discriminate between IDA 
and AI. In AI, there is increased concentration of hepcidin, 
whereas in IDA its concentration is low. There is variation in 
hepcidin concentration depending on fasting status, circa-
dian rhythm, and the time of the day [46]. Moreover, renal 
function influences hepcidin concentration, as hepcidin is 
also produced by the kidneys and clearance of hepcidin is 
through the kidneys [47]. There are different hepcidin assays 
available. Mass-spectrometry and radioimmunoassays are 
specific, but lack adequate sensitivity [48]. Enzyme-linked 
immunosorbent assays (ELISA) seem to overcome these 
problems and are more widely available. Although serum 
hepcidin may help differentiate AI from AI + IDA, for a precise 
diagnosis it should be combined with biochemical markers 
(ferritin) [49] or hematological indices (CHr) [33]. Hepcidin 
and Ret-He are used in a two-step diagnostic pathway in 
gastroenterology in- and outpatients. Based on hepcidin con-
centration, anemia has been classified as IDA (low hepcidin 
<6 ng/mL), IDA and/or AI (normal hepcidin 6–46 ng/mL), 
or AI (high hepcidin >46 ng/mL). Then, in the second mixed 
group, Ret-He was determined and further differentiation into 
IDA (Ret-He <30 pg) or AI (Ret-He >30 pg) was possible [36]. 
Hepcidin cannot be used for a preliminary differentiation 
between AI and AI + IDA in dialysis patients because its level 
is increased due to impaired renal excretion [50]. Moreover, 
hepcidin can be used to predict response to oral iron in pa-
tients with IDA [51, 52]. There have been no studies using 
hepcidin to identify ID in critically ill patients. This interesting 
topic deserves further investigation in a prospective clinical 
manner (clinicaltrials.gov identifier: NCT05217836).

Other tests used in anemia diagnostics are present-
ed in Table II.

Management of anemia of critical illness

The best treatment for ACI would be resolution of the primary 
condition that led to ACI. Disease-specific treatments can 
correct anemia in certain conditions, e.g. anti-TNF agents in 
inflammatory bowel disease [54] or rheumatoid arthritis [55].

Parenteral iron 
It is imperative to identify patients who are iron-deficient 
because these patients would benefit from iron supplemen-
tation. Indiscriminate use of iron supplementation should 
not be used because mild anemia and ID may be beneficial 
in patients with infectious diseases [56]. The contraindica-
tions for parenteral iron, according to the manufacturers, 
include: hypersensitivity, decompensated cirrhosis and/or 
hepatitis, and acute or chronic infection. This latter contra-
indication is questionable, as causative anemia treatment 
is recommended by numerous organizations (e.g. British 
Society of Gastroenterology, American Gastroenterological 
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Association, National Blood Authority Australia), and 
transfusion of allogeneic erythrocytes leads to increased 
morbidity and mortality, including sepsis and infection 
[57, 58]. Increased risk of infection with parenteral iron 
remains a theoretical threat unsupported by studies [59]. 
Parenteral iron has been shown to successfully correct ID 
in different populations of AI patients [60]. There have been 
calls to revise approval for parenteral iron and widen its 
indications [61]. The parenteral iron formulations available 
in Poland are set out in Table III. Different doses of these 
formulations have been used in critically ill patients: iron 
sucrose 100 mg three times per week [62], iron sucrose 
1,000 mg (single dose) [63], ferric carboxymaltose 500 mg  
once every five days [64], and ferric carboxymaltose  
1,500 mg (single dose) [63]. In the setting of infection, 
divided doses (e.g. 200 mg) as opposed to single total 
doses of intravenous iron, should be preferred.

Agents affecting erythropoietin  
and proinflammatory cytokines 
Higher mortality with erythropoiesis-stimulating agents 
(ESA) has been reported in cancer patients [65], in dialysis 
patients not responding to ESA [66], and in pre-dialysis 
patients [67]. The official approval for ESA in the Europe-
an Union market is for preoperative autologous donation, 
pre-dialysis/dialysis end stage CKD, and chemothera-
py-induced anemia. There are calls to revise the approval 

for ESA and widen its indications, as commonly reported 
complications may in fact be attributable to other factors 
[68]. Hypoxia-inducible factors stabilizers (prolyl hydrox-
ylase inhibitors) (clinical trials) act through endogenous 
erythropoietin formation and iron delivery from enterocytes 
and macrophages, and may be a viable therapeutic option 
in AI [69].

Table II. Other laboratory tests in anemia diagnostics

Laboratory test Definition Usefulness Limitations

Percentage of hypochromic 
erythrocytes (%HypoHe)

Percentage of erythrocytes 
with Hb content ≤17 pg 
(subpopulation of mature 
erythrocytes with insufficient 
iron content)

Used to identify absolute ID in 
patients with AI (AI + IDA) with 
a cut-off value of 1.8% [35]

Relates to iron status in last 
three months, does not reflect 
acute changes in iron availa-
bility

Percentage of microcytic eryth-
rocytes (% MicroR)

Percentage of erythrocytes 
with MCV <60 fL (subpopu-
lation of mature erythrocytes 
with insufficient iron content)

Can be used to identify IDA in 
patients with AI with a cut-off 
value of <25.0% [35]

This parameter does not 
reflect acute changes in iron 
availability

Zinc protoporphyrin (ZPP) Lack of iron leads to incorpo-
ration of zinc into porphyrin 
during hemosynthesis

Not recommended for diagno-
sis of ID (IIB) [42]

Limitations due to measure-
ment technique (hyperbiliru-
binemia; CKD); false increase 
with Hb <100 g/L

Soluble transferrin receptor 
(sTfR)

Elevated concentration in 
majority of IDA and AI + IDA, 
within reference range in pure 
AI, decreased sTfR provides 
reliable diagnosis of IDA

Not recommended to identify 
ID [42]

Increased concentration may 
be associated with hemolytic 
anemia, deficiency of vitamin 
B12 or folic acid, hematologi-
cal malignancies; confounded 
by inflammation — several 
cytokines affect sTfR levels 
independently of iron status

Ferritin index Calculated as sTfR/log ferritin Some discrimination between 
AI (<1) and AI + IDA (>2) [53]

Overlap between values

Hb — hemoglobin; ID — iron deficiency; AI — anemia of inflammation; IDA — iron-deficiency anemia; MCV — mean cell volume; CKD — chronic kidney disease

Table III. Parenteral iron formulations available in Poland

Iron formu-
lation

Pharmacological 
agent

Brand name (manufac-
turer)

Iron-carbo-
hydrate

Ferric gluconate No i.v. agent available

Iron(III)-hydroxide su-
crose complex

Venofer® (Vifor)

Iron(III)-hydroxide 
dextran complex

CosmoFer® (Pharma-
cosmos)

Ferrum Lek® (Sandoz)

Glycan- 
-coated

Iron(III)-hydroxide car-
boxymaltose complex

Ferinject® (Vifor)

Iron(III)-derisomaltose Diafer® (Pharmacos-
mos)

Monover® (Pharma-
cosmos)

Ferumoxytol No i.v. agent available
i.v. — intravenous
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Allogeneic red blood cell transfusion 
Red blood cell (RBC) transfusion is an allogeneic tissue 
transplantation and should be viewed as a treatment of 
last resort in anemic critically ill patients. It is associated 
with multiple complications: sepsis, infection, multi-organ 
dysfunction, thromboembolic events, cardiac events, 
respiratory failure, acute kidney injury, and prolonged 
hospitalization [58]. RBC transfusion at a restrictive 
Hb threshold is safe and potentially reduces in-hospital 
mortality in critically ill adults compared to a liberal 
strategy (transfusion at Hb <7 g/dL vs. <9 g/dL) [70]. 
As transfusion of RBC at restrictive triggers still may not 
improve oxygen delivery in some patients, and may in fact 
be deleterious, so called ‘physiological transfusion trig-
gers’ have started to be used in RBC transfusion decision 
making [71]. Even elderly patients may tolerate very low 
Hb concentrations [72].

Direct hepcidin inhibitors  
and agents preventing binding  
of hepcidin to ferroportin (clinical trials)  
These agents may act through different mechanisms: 
inhibition of hepcidin production, neutralization of circu-
lating hepcidin, protection of ferroportin from hepcidin 
inhibition, and inhibition of hepcidin-inducing signals 
(e.g. IL-6) [73].

Potential role of erythroferrone  
(pre-clinical investigation) 
Erythroferrone (ERFE) inhibits liver hepcidin synthesis 
during stress erythropoiesis, ensuring sufficient iron supply 
for bone marrow erythroblasts, and therefore ERFE has 
been suggested to protect against AI [74]. Some experi-
mental research has confirmed the inhibitory effect of ERFE 
on hepcidin [75], however the inhibitory effect of ERFE on 
hepcidin was not evident in a population of rheumatoid 
arthritis patients [76].

Contributory factors 
It is wise to correct modifiable patient factors contributing 
to anemia. Vitamin deficiencies should be replenished: 
vitamin B12, folic acid, and vitamin D. However, we must 
remember that vitamin deficiencies are rare in patients 
hospitalized in the ICU: in one study only 2% of patients 
had a vitamin B12 deficiency and another 2% had a folic 
acid deficiency [77], while in another study 2.4% of surgi-
cal patients had a vitamin B12/folic acid deficiency [26]. 
If possible, pharmacological agents leading to anemia 
should be discontinued: nonsteroidal anti-inflammatory 
drugs, antiplatelet agents, heparins, angiotensin-convert-
ing enzyme inhibitors, proton pump inhibitors, neurolep-
tics, penicillin derivatives (e.g. piperacillin), cephalosporins 
(e.g. ceftriaxone), and trimethoprim-sulphametoxazole 
[78, 79].

Iatrogenic blood loss (e.g. phlebotomy, stress-related 
gastrointestinal bleeding) is an important factor in the ICU 
and should be minimized. Phlebotomy blood loss can be 
reduced by ordering fewer laboratory tests (only tests that 
potentially could change the clinical management of pa-
tients) [80], by using low-volume sampling tubes [81], by 
drawing the minimum amount of blood for a particular test, 
by applying in-line blood conservation devices allowing re-
infusion of blood that would otherwise be wasted [82], by 
the more common use of point-of-care micro-analytic tests, 
and by non-invasive monitoring [83].

Conclusions

The high prevalence of anemia in critically ill patients 
should encourage clinicians to implement proactive mea-
sures to prevent, detect, diagnose and treat anemia. In 
fact, anemia is the most common hematologic disease in 
the ICU. Taking into account the availability of tests, their 
limitations, uncertainty, cost, and iatrogenic blood loss, 
a diagnosis of pure ACI or mixed ACI + IDA can be estab-
lished using solely complete blood count with analysis 
of reticulocytes (a standard 2 mL EDTA test tube) which 
provides Hb concentration in erythrocyte and reticulocyte. 
Before reticulocyte Hb content can be used as an indicator 
of ID, thalassemia should be excluded either by checking 
the patient’s history or by calculating the Mentzer index 
(MCV/RBC). The management of ACI should incorporate 
discontinuation of pharmacological agents causing ane-
mia, reduction of iatrogenic blood loss, dividing doses of 
parenteral iron when reticulocyte Hb content is below the 
reference range, and combined therapy of divided doses 
of parenteral iron with ESA in approved indications. Retic-
ulocyte Hb content, determined twice a week, is useful for 
monitoring treatment. Transfusion of RBC should remain 
a treatment of last resort. 
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