
DEMONSTRATIO MATHEMATICA
Vol. XLVI No 2 2013

Ajda Fošner

A NOTE ON GENERALIZED (m,n)-JORDAN
CENTRALIZERS

Abstract. The aim of this paper is to define generalized (m,n)-Jordan centralizers
and to prove that on a prime ring with nonzero center and char(R) 6= 6mn(m+n)(m+2n)
every generalized (m,n)-Jordan centralizer is a two-sided centralizer.

Throughout, R will represent an associative ring with a center Z(R).
Let n ≥ 2 be an integer. A ring R is said to be n-torsion free if for x ∈ R,
nx = 0 implies x = 0. Recall that R is prime if aRb = {0} implies a = 0 or
b = 0. A ring R is called semiprime if aRa = {0} implies a = 0. An additive
mapping D : R→ R is called a derivation if D(xy) = D(x)y + xD(y) holds
for all x, y ∈ R and is called a Jordan derivation if D(x2) = D(x)x+ xD(x)
is fulfilled for all x ∈ R. One can easily prove that every derivation is a
Jordan derivation, but converse is in general not true. A classical result due
to Herstein [5, Theorem 3.3] asserts that a Jordan derivation on a prime
ring of characteristic different from two is a derivation. A brief proof of
Herstein’s result can be found in [3]. This result was extended to 2-torsion
free semiprime rings by Cusack [4] (see [2] for an alternative proof).

An additive mapping T : R → R is called a left (right) centralizer if
T (xy) = T (x)y (T (xy) = xT (y)) holds for all pairs x, y ∈ R. If R has the
identity element, then T : R → R is a left centralizer if and only if T is of
the form T (x) = ax for all x ∈ R, where a ∈ R is a fixed element. For a
semiprime ring R, left centralizers are of the form T (x) = qx for all x ∈ R,
where q is a fixed element of a Martindale right ring of quotients Qr (see,
for example, Chapter 2 in [1]). An additive mapping T : R → R is called a
left (right) Jordan centralizer if T (x2) = T (x)x (T (x2) = xT (x)) holds for
all x ∈ R. We call an additive mapping T : R → R a two-sided centralizer
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(a two-sided Jordan centralizer) if T is both a left and a right centralizer
(a left and a right Jordan centralizer). If R is a semiprime ring with an
extended centroid C and T : R → R is a two-sided centralizer, then there
exists an element λ ∈ C such that T (x) = λx for all x ∈ R (see Theorem
2.3.2 in [1]). In [9], Zalar has proved that any left (right) Jordan centralizer
on a 2-torsion free semiprime ring is a left (right) centralizer.

In [8], Vukman defined (m,n)-Jordan centralizers in the following way.

Definition 1. Let m ≥ 0, n ≥ 0 with m + n 6= 0 be some fixed integers
and R an arbitrary ring. An additive mapping T : R → R is called a
(m,n)-Jordan centralizer if

(m+ n)T (x2) = mT (x)x+ nxT (x)(1)

holds for all x ∈ R.
Obviously, a (1, 0)-Jordan centralizer is a left Jordan centralizer. Sim-

ilarly, a (0, 1)-Jordan centralizer is a right Jordan centralizer. In the case
when m = n = 1 we have the relation

2T (x2) = T (x)x+ xT (x), x ∈ R.
Vukman [6] has proved that every additive mapping T : R→ R, where R is
a 2-torsion free semiprime ring, satisfying the relation above, is a two-sided
centralizer.

Motivated by these results, we introduce the following definition.

Definition 2. Let m ≥ 0, n ≥ 0 with m + n 6= 0 be some fixed integers
and R an arbitrary ring. An additive mapping T : R→ R is called a gener-
alized (m,n)-Jordan centralizer if there exists an (m,n)-Jordan centralizer
T0 : R→ R such that

(2) (m+ n)T (x2) = mT (x)x+ nxT0(x)

holds for all x ∈ R.
Similar as above, a generalized (1, 0)-Jordan centralizer is a left Jordan

centralizer.
In [8], Vukman proved that on a prime ring with a nonzero center Z(R)

and char(R) 6= 6mn(m + n) every (m,n)-Jordan centralizer is a two-sided
centralizer. The natural question here is whether an analogue holds true for
generalized (m,n)-Jordan centralizers. Theorem 1 answers this question in
the affirmative.

Theorem 1. Let m ≥ 1, n ≥ 1 be some fixed integers, let R be a prime
ring with char(R) 6= 6mn(m + n)(m + 2n), and let T : R → R be a gener-
alized (m,n)-Jordan centralizer. If Z(R) is nonzero, then T is a two-sided
centralizer.
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In the proof of Theorem 1 we will need the next lemma.

Lemma 1. Let m ≥ 0, n ≥ 0 with m + n 6= 0 be some fixed integers, let
R be a ring, and let T : R → R be a generalized (m,n)-Jordan centralizer.
Then

(3) 2(m+ n)2T (xyx) = mnT (x)xy +m(2m+ n)T (x)yx−mnT (y)x2

+ 2mnxT0(y)x−mnx2T0(y) + n(m+ 2n)xyT0(x) +mnyxT0(x)

for all x, y ∈ R.

Proof. If we linearize the relation (2), we get

(m+ n)T (xy + yx) = mT (x)y +mT (y)x+ nxT0(y) + nyT0(x)(4)

for all x, y ∈ R. Similarly, if we linearize the relation (1), we get

(m+ n)T0(xy + yx) = mT0(x)y +mT0(y)x+ nxT0(y) + nyT0(x)(5)

for all x, y ∈ R.
Now, if we put (m+ n)(xy + yx) instead of y in the relation (4), we get

(m+n)2T (x2y+yx2+2xyx) = m(m+n)T (x)(xy+yx)+m(m+n)T (xy+yx)x

+ n(m+ n)xT0(xy + yx) + n(m+ n)(xy + yx)T0(x)

for all x, y ∈ R. Applying the relation (4) and the relation (5) we obtain

2(m+ n)2T (xyx) +m(m+ n)T (x2)y +m(m+ n)T (y)x2

+ n(m+ n)x2T0(y) + n(m+ n)yT0(x
2)

= m(m+ n)T (x)(xy + yx)

+m(mT (x)y +mT (y)x+ nxT0(y) + nyT0(x))x

+ nx(mT0(x)y +mT0(y)x+ nxT0(y) + nyT0(x))

+ n(m+ n)(xy + yx)T0(x)

for all x, y ∈ R. Using the relations (2) and (1) we get

2(m+ n)2T (xyx) +m(mT (x)x+ nxT0(x))y +m(m+ n)T (y)x2

+ n(m+ n)x2T0(y) + ny(mT0(x)x+ nxT0(x))

= m(m+n)T (x)(xy+yx)+m(mT (x)y+mT (y)x+nxT0(y)+nyT0(x))x

+nx(mT0(x)y+mT0(y)x+nxT0(y)+nyT0(x))+n(m+n)(xy+yx)T0(x)

for all x, y ∈ R. Collecting the terms we arrive at

2(m+ n)2T (xyx) = mnT (x)xy +m(2m+ n)T (x)yx−mnT (y)x2

+ 2mnxT0(y)x−mnx2T0(y) + n(m+ 2n)xyT0(x) +mnyxT0(x)

for all x, y ∈ R. This completes the proof.
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Proof of Theorem 1. If we put (m+ n)2x2 for x in (2), we get

(m+ n)3T (x4) = m(m+ n)2T (x2)x2 + n(m+ n)2x2T0(x
2)

= m(m+ n)(mT (x)x+ nxT0(x))x
2 + n(m+ n)x2(mT0(x)x+ nxT0(x))

= m2(m+ n)T (x)x3 +mn(m+ n)xT0(x)x
2 +mn(m+ n)x2T0(x)x

+ n2(m+ n)x3T0(x).

We have therefore

(m+ n)3T (x4) = m2(m+ n)T (x)x3 +mn(m+ n)xT0(x)x
2(6)

+mn(m+ n)x2T0(x)x+ n2(m+ n)x3T0(x)

for every x ∈ R. On the other hand, if we put y = (m+n)x2 in the relation
(3), we get

2(m+ n)3T (x4) = mn(m+ n)T (x)x3 +m(2m+ n)(m+ n)T (x)x3

−mn(m+ n)T (x2)x2 + 2mn(m+ n)xT0(x
2)x−mn(m+ n)x2T0(x

2)

+ n(m+ 2n)(m+ n)x3T0(x) +mn(m+ n)x3T0(x)

= 2m(m+ n)2T (x)x3 −mn(mT (x)x+ nxT0(x))x
2

+ 2mnx(mT0(x)x+ nxT0(x))x−mnx2(mT0(x)x+ nxT0(x))

+ 2n(m+ n)2x3T0(x)

= (2m(m+ n)2 −m2n)T (x)x3 +mn(2m− n)xT0(x)x2

+mn(2n−m)x2T0(x)x+ (2n(m+ n)2 −mn2)x3T0(x).
We have therefore

(7) 2(m+ n)3T (x4) = (2m(m+ n)2 −m2n)T (x)x3

+mn(2m−n)xT0(x)x2+mn(2n−m)x2T0(x)x+(2n(m+n)2−mn2)x3T0(x)
for every x ∈ R. By comparing (6) and (7) we get

mn(m+ 2n)T (x)x3 − 3mn2xT0(x)x
2 − 3m2nx2T0(x)x

+mn(2m+ n)x3T0(x) = 0

for every x ∈ R. The above equality reduces according to the requirements
of the theorem to

(m+ 2n)T (x)x3 − 3nxT0(x)x
2 − 3mx2T0(x)x+ (2m+ n)x3T0(x) = 0.

Since T0 is commuting on R (see the proof of Theorem 2 in [8]), i.e.,

[T0(x), x] = T0(x)x− xT0(x) = 0

for all x ∈ R, we have

(m+ 2n)T (x)x3 − (m+ 2n)T0(x)x
3 = 0.
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This yields that

(T (x)− T0(x))x3 = 0(8)

for all x ∈ R.
Let F : R→ R be an additive mapping defined by F (x) = T (x)−T0(x),

x ∈ R. We would like to show that F (x) = 0 for all x ∈ R. Namely, if
F (x) = T (x) − T0(x) = 0, then T (x) = T0(x) for all x ∈ R, which yields
that T is a two-sided centralizer, since T0 is a two-sided centralizer by [8,
Theorem 2].

We already know that F (x)x3 = 0 for all x ∈ R. Using full linearization
of this relation one obtains∑

π∈S4

F (xπ(1))xπ(2)xπ(3)xπ(4) = 0(9)

for all x1, x2, x3, x4 ∈ R. Let c be a nonzero central element. Pick any x ∈ R
and set x1 = x2 = x3 = c and x4 = x in (9). We arrive at

(αF (c)x+ βF (x)c)c2 = 0,(10)

where α = 18 and β = 6. Since R is prime, it follows that αF (c)x+βF (x)c =
0 for all x ∈ R. In particular, αF (c)c + βF (c)c = 0, which yields that
F (c) = 0. Therefore from (10), we get F (x) = 0 for all x ∈ R.

The above observations lead to the following conjecture.

Conjecture 1. Let m ≥ 1, n ≥ 1 be some fixed integers, let R be a
semiprime ring with suitable torsion restrictions, and let T : R → R be a
generalized (m,n)-Jordan centralizer. Then T is a two-sided centralizer.

At the end, let us also point out, that we do not know yet whether this
conjecture is true even for (m,n)-Jordan centralizers.
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