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A NOTE ON GENERALIZED (m,n)-JORDAN
CENTRALIZERS

Abstract. The aim of this paper is to define generalized (m,n)-Jordan centralizers
and to prove that on a prime ring with nonzero center and char(R) # 6mn(m+n)(m+2n)
every generalized (m,n)-Jordan centralizer is a two-sided centralizer.

Throughout, R will represent an associative ring with a center Z(R).
Let n > 2 be an integer. A ring R is said to be n-torsion free if for x € R,
nx = 0 implies x = 0. Recall that R is prime if aRb = {0} implies a = 0 or
b= 0. A ring R is called semiprime if aRa = {0} implies a = 0. An additive
mapping D : R — R is called a derivation if D(xy) = D(x)y + xD(y) holds
for all z,y € R and is called a Jordan derivation if D(x?) = D(z)z + zD(z)
is fulfilled for all x € R. One can easily prove that every derivation is a
Jordan derivation, but converse is in general not true. A classical result due
to Herstein [5, Theorem 3.3| asserts that a Jordan derivation on a prime
ring of characteristic different from two is a derivation. A brief proof of
Herstein’s result can be found in [3]. This result was extended to 2-torsion
free semiprime rings by Cusack [4] (see [2] for an alternative proof).

An additive mapping 7' : R — R is called a left (right) centralizer if
T(zy) = T(x)y (T(xy) = 2T (y)) holds for all pairs z,y € R. If R has the
identity element, then T': R — R is a left centralizer if and only if T" is of
the form T'(z) = ax for all x € R, where a € R is a fixed element. For a
semiprime ring R, left centralizers are of the form T'(z) = gz for all x € R,
where ¢ is a fixed element of a Martindale right ring of quotients @, (see,
for example, Chapter 2 in [1]). An additive mapping 7" : R — R is called a
left (right) Jordan centralizer if T'(z%) = T(z)x (T(x?) = 2T(x)) holds for
all x € R. We call an additive mapping T : R — R a two-sided centralizer
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(a two-sided Jordan centralizer) if T is both a left and a right centralizer
(a left and a right Jordan centralizer). If R is a semiprime ring with an
extended centroid C' and T : R — R is a two-sided centralizer, then there
exists an element A\ € C such that T'(x) = Az for all x € R (see Theorem
2.3.2in [1]). In [9], Zalar has proved that any left (right) Jordan centralizer
on a 2-torsion free semiprime ring is a left (right) centralizer.

In [8], Vukman defined (m,n)-Jordan centralizers in the following way.

DEFINITION 1. Let m > 0, n > 0 with m 4+ n # 0 be some fixed integers
and R an arbitrary ring. An additive mapping T : R — R is called a
(m,n)-Jordan centralizer if

(1) (m + n)T(x?) = mT(z)z + nzT(z)
holds for all z € R.

Obviously, a (1,0)-Jordan centralizer is a left Jordan centralizer. Sim-
ilarly, a (0,1)-Jordan centralizer is a right Jordan centralizer. In the case
when m = n = 1 we have the relation

2T (2°) = T'(x)x + 2T (z), x € R.

Vukman [6] has proved that every additive mapping T': R — R, where R is
a 2-torsion free semiprime ring, satisfying the relation above, is a two-sided
centralizer.

Motivated by these results, we introduce the following definition.

DEFINITION 2. Let m > 0, n > 0 with m 4+ n # 0 be some fixed integers
and R an arbitrary ring. An additive mapping T : R — R is called a gener-
alized (m,n)-Jordan centralizer if there exists an (m,n)-Jordan centralizer
To : R — R such that

(2) (m 4+ n)T(x?) = mT(z)z + nzTy(x)
holds for all x € R.

Similar as above, a generalized (1,0)-Jordan centralizer is a left Jordan
centralizer.

In [8], Vukman proved that on a prime ring with a nonzero center Z(R)
and char(R) # 6mn(m + n) every (m,n)-Jordan centralizer is a two-sided
centralizer. The natural question here is whether an analogue holds true for
generalized (m,n)-Jordan centralizers. Theorem 1 answers this question in
the affirmative.

THEOREM 1. Let m > 1, n > 1 be some fized integers, let R be a prime
ring with char(R) # 6mn(m + n)(m + 2n), and let T : R — R be a gener-
alized (m,n)-Jordan centralizer. If Z(R) is nonzero, then T is a two-sided
centralizer.
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In the proof of Theorem 1 we will need the next lemma.

LEMMA 1. Let m > 0, n > 0 with m +n # 0 be some fized integers, let
R be a ring, and let T : R — R be a generalized (m,n)-Jordan centralizer.

Then
(3)  2(m +n)*T(vyz) = mnT(z)xy +m(2m + n)T(x)yx — mnT (y)z*
+ 2mnaTo(y)x — mnz*To(y) + n(m + 2n)zyTo(z) + mnyxTy(z)
for all x,y € R.
Proof. If we linearize the relation (2), we get
(4)  (m+n)T(zy +yx) = mT(x)y + mT(y)x + nzTo(y) + nyTo(z)
for all z,y € R. Similarly, if we linearize the relation (1), we get
(5) (m+n)To(zxy + yx) = mTo(x)y + mTo(y)z + naxlo(y) + nyTo(x)
for all z,y € R.
Now, if we put (m + n)(zy + yz) instead of y in the relation (4), we get
(mA4n)*T(2*y+yx® +2xyz) = m(m+n)T () (zy+yz)+m(m+n)T(zy+yz)z
+ n(m + n)zTy(xy + yx) + n(m + n)(zy + yz)To(z)
for all z,y € R. Applying the relation (4) and the relation (5) we obtain
2(m + n)*T(zyz) + m(m + n)T(z?)y + m(m + n)T(y)z>
+ n(m+n)a*To(y) + n(m + n)yTo(z?)
=m(m+n)T(z)(zy + yx)
+m(mT(x)y + mT (y)z + nxTo(y) + nyTo(x))z
+ nz(mTo(x)y + mTo(y)z + nalo(y) + nyTo(z))
+n(m +n)(zy + yz)To(x)
for all z,y € R. Using the relations (2) and (1) we get
2(m + n)?T(zyz) + m(mT(z)x + nxTy(z))y + m(m + n)T(y)z
+ n(m +n)x*Ty(y) + ny(mTy(z)z + naTy(z))
=m(m+n)T(z)(zy+yz)+m(mT (z)y+mT (y)x+nzTy(y) +nylo(x))x
+nx(mTy(z)y+mTy(y)x+nalo(y) +nyTo(x)) +n(m+n)(zy+yx)To(x)
for all z,y € R. Collecting the terms we arrive at
2(m + n)*T(zyz) = mnT (x)zy + m(2m + n)T(z)yz — mnT(y)z>
+ 2mnaTy(y)x — mnaz’To(y) + nlm + 2n)zyTo(z) + mnyzTy(z)
for all z,y € R. This completes the proof. =
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Proof of Theorem 1. If we put (m + n)%z? for z in (2), we get
(m 4 n)3T () = m(m + n)?T(2?)z* + n(m + n)22x*Ty (z?)

= m(m + n)(mT (z)z + nzTy(x))x? + n(m + n)2z*(mTy(z)z + naTy(x))

= m2(m + n)T(z)z® + mn(m + n)zTy(z)z* + mn(m + n)z*Ty(z)z

+ n%(m + n)x3Ty(x).
We have therefore
6)  (m+n)3T(z*) = m?(m+n)T(x)z> + mn(m + n)xTy(x)z>
+ mn(m + n)z*Ty(z)x + n?(m + n)z3Ty ()

for every z € R. On the other hand, if we put y = (m + n)z? in the relation
(3), we get

2(m + n)>T(z) = mn(m 4+ n)T(z)z® + m(2m + n)(m + n)T(z)2>
— mn(m + n)T(z*)z? + 2mn(m + n)zTy(xz?)z — mn(m + n)z*Ty(z?)
+n(m + 2n)(m + n)x3Ty(x) + mn(m + n)z3Ty(z)
= 2m(m + n)?T(z)x> — mn(mT(z)x + naTy(x))z?
+ 2mna(mTy(z)x + naTy(x))x — mna? (mTy(x)z + naTy(x))
+ 2n(m + n)?23Ty(z)
= (2m(m +n)? — m*n)T(x)z> + mn(2m — n)zTy(z)z>
+mn(2n — m)z?To(x)z 4+ (2n(m + n)? — mn?) 23Ty (z).
We have therefore
(1) 2(m+n)*T(z?) = 2m(m +n)? — m?n)T(x)z®
+mn(2m—n)zTy(z)z? +mn(2n—m)z*Ty(x)z+ (2n(m-+n)? —mn?) 2Ty (z)
for every z € R. By comparing (6) and (7) we get
mn(m + 2n)T(z)z® — 3mn’aTy(z)x? — 3mna’Ty(x)z
+mn(2m +n)z*Ty(z) =0

for every x € R. The above equality reduces according to the requirements
of the theorem to

(m + 2n)T(z)z® — 3naTy(z)z? — 3maTy(x)z + (2m + n)x3Ty(x) = 0.
Since Ty is commuting on R (see the proof of Theorem 2 in [8]), i.e.,
[To(z),z] = To(x)x — xTp(z) =0
for all z € R, we have

(m + 2n)T(z)2> — (m + 2n)Tp(z)z> = 0.
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This yields that
(8) (T(x) = To(x))a* = 0

for all x € R.

Let F: R — R be an additive mapping defined by F(z) = T'(x) — Ty (z),
x € R. We would like to show that F(z) = 0 for all x € R. Namely, if
F(z) = T(x) — To(x) = 0, then T'(z) = Tp(x) for all z € R, which yields
that T is a two-sided centralizer, since Tj is a two-sided centralizer by [8,
Theorem 2.

We already know that F(x)z3 = 0 for all € R. Using full linearization
of this relation one obtains

9) > F(2r(1))Ta@)Tr(3) Tn(a) = 0

TESY
for all 1, z9,x3,x4 € R. Let ¢ be a nonzero central element. Pick any x € R
and set 1 = x9 = x3 = ¢ and x4 = x in (9). We arrive at

(10) (aF(c)x + BF(z)c)c* = 0,

where o = 18 and 8 = 6. Since R is prime, it follows that aF'(c)z+0F (x)c =
0 for all z € R. In particular, aF(c)c + BF(c)c = 0, which yields that
F(c) = 0. Therefore from (10), we get F((x) =0 for all z € R. =

The above observations lead to the following conjecture.

CONJECTURE 1. Let m > 1, n > 1 be some fixed integers, let R be a
semiprime ring with suitable torsion restrictions, and let 7' : R — R be a
generalized (m,n)-Jordan centralizer. Then T is a two-sided centralizer.

At the end, let us also point out, that we do not know yet whether this
conjecture is true even for (m,n)-Jordan centralizers.
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