Ajda Fošner

A NOTE ON GENERALIZED (m, n)-JORDAN CENTRALIZERS

Abstract

The aim of this paper is to define generalized (m, n)-Jordan centralizers and to prove that on a prime ring with nonzero center and $\operatorname{char}(R) \neq 6 m n(m+n)(m+2 n)$ every generalized (m, n)-Jordan centralizer is a two-sided centralizer.

Throughout, R will represent an associative ring with a center $Z(R)$. Let $n \geq 2$ be an integer. A ring R is said to be n-torsion free if for $x \in R$, $n x=0$ implies $x=0$. Recall that R is prime if $a R b=\{0\}$ implies $a=0$ or $b=0$. A ring R is called semiprime if $a R a=\{0\}$ implies $a=0$. An additive mapping $D: R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y)$ holds for all $x, y \in R$ and is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ is fulfilled for all $x \in R$. One can easily prove that every derivation is a Jordan derivation, but converse is in general not true. A classical result due to Herstein [5, Theorem 3.3] asserts that a Jordan derivation on a prime ring of characteristic different from two is a derivation. A brief proof of Herstein's result can be found in [3]. This result was extended to 2-torsion free semiprime rings by Cusack [4] (see [2] for an alternative proof).

An additive mapping $T: R \rightarrow R$ is called a left (right) centralizer if $T(x y)=T(x) y(T(x y)=x T(y))$ holds for all pairs $x, y \in R$. If R has the identity element, then $T: R \rightarrow R$ is a left centralizer if and only if T is of the form $T(x)=a x$ for all $x \in R$, where $a \in R$ is a fixed element. For a semiprime ring R, left centralizers are of the form $T(x)=q x$ for all $x \in R$, where q is a fixed element of a Martindale right ring of quotients Q_{r} (see, for example, Chapter 2 in [1]). An additive mapping $T: R \rightarrow R$ is called a left (right) Jordan centralizer if $T\left(x^{2}\right)=T(x) x\left(T\left(x^{2}\right)=x T(x)\right)$ holds for all $x \in R$. We call an additive mapping $T: R \rightarrow R$ a two-sided centralizer

[^0](a two-sided Jordan centralizer) if T is both a left and a right centralizer (a left and a right Jordan centralizer). If R is a semiprime ring with an extended centroid C and $T: R \rightarrow R$ is a two-sided centralizer, then there exists an element $\lambda \in C$ such that $T(x)=\lambda x$ for all $x \in R$ (see Theorem 2.3.2 in [1]). In [9], Zalar has proved that any left (right) Jordan centralizer on a 2 -torsion free semiprime ring is a left (right) centralizer.

In [8], Vukman defined (m, n)-Jordan centralizers in the following way.
DEFINITION 1. Let $m \geq 0, n \geq 0$ with $m+n \neq 0$ be some fixed integers and R an arbitrary ring. An additive mapping $T: R \rightarrow R$ is called a (m, n)-Jordan centralizer if

$$
\begin{equation*}
(m+n) T\left(x^{2}\right)=m T(x) x+n x T(x) \tag{1}
\end{equation*}
$$

holds for all $x \in R$.
Obviously, a $(1,0)$-Jordan centralizer is a left Jordan centralizer. Similarly, a $(0,1)$-Jordan centralizer is a right Jordan centralizer. In the case when $m=n=1$ we have the relation

$$
2 T\left(x^{2}\right)=T(x) x+x T(x), \quad x \in R
$$

Vukman [6] has proved that every additive mapping $T: R \rightarrow R$, where R is a 2-torsion free semiprime ring, satisfying the relation above, is a two-sided centralizer.

Motivated by these results, we introduce the following definition.
DEFINITION 2. Let $m \geq 0, n \geq 0$ with $m+n \neq 0$ be some fixed integers and R an arbitrary ring. An additive mapping $T: R \rightarrow R$ is called a generalized (m, n)-Jordan centralizer if there exists an (m, n)-Jordan centralizer $T_{0}: R \rightarrow R$ such that

$$
\begin{equation*}
(m+n) T\left(x^{2}\right)=m T(x) x+n x T_{0}(x) \tag{2}
\end{equation*}
$$

holds for all $x \in R$.
Similar as above, a generalized (1,0)-Jordan centralizer is a left Jordan centralizer.

In [8], Vukman proved that on a prime ring with a nonzero center $Z(R)$ and $\operatorname{char}(R) \neq 6 m n(m+n)$ every (m, n)-Jordan centralizer is a two-sided centralizer. The natural question here is whether an analogue holds true for generalized (m, n)-Jordan centralizers. Theorem 1 answers this question in the affirmative.

Theorem 1. Let $m \geq 1, n \geq 1$ be some fixed integers, let R be a prime ring with $\operatorname{char}(R) \neq 6 m n(m+n)(m+2 n)$, and let $T: R \rightarrow R$ be a generalized (m, n)-Jordan centralizer. If $Z(R)$ is nonzero, then T is a two-sided centralizer.

In the proof of Theorem 1 we will need the next lemma.
LEMMA 1. Let $m \geq 0, n \geq 0$ with $m+n \neq 0$ be some fixed integers, let R be a ring, and let $T: R \rightarrow R$ be a generalized (m, n)-Jordan centralizer. Then

$$
\begin{align*}
2(m & +n)^{2} T(x y x)=m n T(x) x y+m(2 m+n) T(x) y x-m n T(y) x^{2} \tag{3}\\
& +2 m n x T_{0}(y) x-m n x^{2} T_{0}(y)+n(m+2 n) x y T_{0}(x)+m n y x T_{0}(x)
\end{align*}
$$

for all $x, y \in R$.
Proof. If we linearize the relation (2), we get

$$
\begin{equation*}
(m+n) T(x y+y x)=m T(x) y+m T(y) x+n x T_{0}(y)+n y T_{0}(x) \tag{4}
\end{equation*}
$$

for all $x, y \in R$. Similarly, if we linearize the relation (1), we get
(5) $(m+n) T_{0}(x y+y x)=m T_{0}(x) y+m T_{0}(y) x+n x T_{0}(y)+n y T_{0}(x)$
for all $x, y \in R$.
Now, if we put $(m+n)(x y+y x)$ instead of y in the relation (4), we get

$$
\begin{array}{r}
(m+n)^{2} T\left(x^{2} y+y x^{2}+2 x y x\right)=m(m+n) T(x)(x y+y x)+m(m+n) T(x y+y x) x \\
+n(m+n) x T_{0}(x y+y x)+n(m+n)(x y+y x) T_{0}(x)
\end{array}
$$

for all $x, y \in R$. Applying the relation (4) and the relation (5) we obtain

$$
\begin{aligned}
2(m+n)^{2} T(x y x)+m(m+n) T\left(x^{2}\right) y & +m(m+n) T(y) x^{2} \\
& +n(m+n) x^{2} T_{0}(y)+n(m+n) y T_{0}\left(x^{2}\right) \\
= & m(m+n) T(x)(x y+y x) \\
& +m\left(m T(x) y+m T(y) x+n x T_{0}(y)+n y T_{0}(x)\right) x \\
& +n x\left(m T_{0}(x) y+m T_{0}(y) x+n x T_{0}(y)+n y T_{0}(x)\right) \\
& +n(m+n)(x y+y x) T_{0}(x)
\end{aligned}
$$

for all $x, y \in R$. Using the relations (2) and (1) we get

$$
\begin{aligned}
& 2(m+n)^{2} T(x y x)+m\left(m T(x) x+n x T_{0}(x)\right) y+m(m+n) T(y) x^{2} \\
& \quad+n(m+n) x^{2} T_{0}(y)+n y\left(m T_{0}(x) x+n x T_{0}(x)\right) \\
& =m(m+n) T(x)(x y+y x)+m\left(m T(x) y+m T(y) x+n x T_{0}(y)+n y T_{0}(x)\right) x \\
& +n x\left(m T_{0}(x) y+m T_{0}(y) x+n x T_{0}(y)+n y T_{0}(x)\right)+n(m+n)(x y+y x) T_{0}(x)
\end{aligned}
$$

for all $x, y \in R$. Collecting the terms we arrive at

$$
\begin{aligned}
& 2(m+n)^{2} T(x y x)=m n T(x) x y+m(2 m+n) T(x) y x-m n T(y) x^{2} \\
& \quad+2 m n x T_{0}(y) x-m n x^{2} T_{0}(y)+n(m+2 n) x y T_{0}(x)+m n y x T_{0}(x)
\end{aligned}
$$

for all $x, y \in R$. This completes the proof.

Proof of Theorem 1. If we put $(m+n)^{2} x^{2}$ for x in (2), we get

$$
\begin{aligned}
(m+ & n)^{3} T\left(x^{4}\right)=m(m+n)^{2} T\left(x^{2}\right) x^{2}+n(m+n)^{2} x^{2} T_{0}\left(x^{2}\right) \\
= & m(m+n)\left(m T(x) x+n x T_{0}(x)\right) x^{2}+n(m+n) x^{2}\left(m T_{0}(x) x+n x T_{0}(x)\right) \\
= & m^{2}(m+n) T(x) x^{3}+m n(m+n) x T_{0}(x) x^{2}+m n(m+n) x^{2} T_{0}(x) x \\
& +n^{2}(m+n) x^{3} T_{0}(x)
\end{aligned}
$$

We have therefore

$$
\begin{align*}
(m+n)^{3} T\left(x^{4}\right)= & m^{2}(m+n) T(x) x^{3}+m n(m+n) x T_{0}(x) x^{2} \tag{6}\\
& +m n(m+n) x^{2} T_{0}(x) x+n^{2}(m+n) x^{3} T_{0}(x)
\end{align*}
$$

for every $x \in R$. On the other hand, if we put $y=(m+n) x^{2}$ in the relation (3), we get

$$
\begin{aligned}
2(m+ & n)^{3} T\left(x^{4}\right)=m n(m+n) T(x) x^{3}+m(2 m+n)(m+n) T(x) x^{3} \\
& -m n(m+n) T\left(x^{2}\right) x^{2}+2 m n(m+n) x T_{0}\left(x^{2}\right) x-m n(m+n) x^{2} T_{0}\left(x^{2}\right) \\
& +n(m+2 n)(m+n) x^{3} T_{0}(x)+m n(m+n) x^{3} T_{0}(x) \\
= & 2 m(m+n)^{2} T(x) x^{3}-m n\left(m T(x) x+n x T_{0}(x)\right) x^{2} \\
& +2 m n x\left(m T_{0}(x) x+n x T_{0}(x)\right) x-m n x^{2}\left(m T_{0}(x) x+n x T_{0}(x)\right) \\
& +2 n(m+n)^{2} x^{3} T_{0}(x) \\
= & \left(2 m(m+n)^{2}-m^{2} n\right) T(x) x^{3}+m n(2 m-n) x T_{0}(x) x^{2} \\
& +m n(2 n-m) x^{2} T_{0}(x) x+\left(2 n(m+n)^{2}-m n^{2}\right) x^{3} T_{0}(x) .
\end{aligned}
$$

We have therefore

$$
\begin{align*}
& \text { (7) } \quad 2(m+n)^{3} T\left(x^{4}\right)=\left(2 m(m+n)^{2}-m^{2} n\right) T(x) x^{3} \tag{7}\\
& +m n(2 m-n) x T_{0}(x) x^{2}+m n(2 n-m) x^{2} T_{0}(x) x+\left(2 n(m+n)^{2}-m n^{2}\right) x^{3} T_{0}(x)
\end{align*}
$$

for every $x \in R$. By comparing (6) and (7) we get

$$
\begin{aligned}
m n(m+2 n) T(x) x^{3}-3 m n^{2} x T_{0}(x) x^{2}-3 & m^{2} n x^{2} T_{0}(x) x \\
& +m n(2 m+n) x^{3} T_{0}(x)
\end{aligned}=0
$$

for every $x \in R$. The above equality reduces according to the requirements of the theorem to

$$
(m+2 n) T(x) x^{3}-3 n x T_{0}(x) x^{2}-3 m x^{2} T_{0}(x) x+(2 m+n) x^{3} T_{0}(x)=0 .
$$

Since T_{0} is commuting on R (see the proof of Theorem 2 in [8]), i.e.,

$$
\left[T_{0}(x), x\right]=T_{0}(x) x-x T_{0}(x)=0
$$

for all $x \in R$, we have

$$
(m+2 n) T(x) x^{3}-(m+2 n) T_{0}(x) x^{3}=0 .
$$

This yields that

$$
\begin{equation*}
\left(T(x)-T_{0}(x)\right) x^{3}=0 \tag{8}
\end{equation*}
$$

for all $x \in R$.
Let $F: R \rightarrow R$ be an additive mapping defined by $F(x)=T(x)-T_{0}(x)$, $x \in R$. We would like to show that $F(x)=0$ for all $x \in R$. Namely, if $F(x)=T(x)-T_{0}(x)=0$, then $T(x)=T_{0}(x)$ for all $x \in R$, which yields that T is a two-sided centralizer, since T_{0} is a two-sided centralizer by [8, Theorem 2].

We already know that $F(x) x^{3}=0$ for all $x \in R$. Using full linearization of this relation one obtains

$$
\begin{equation*}
\sum_{\pi \in S_{4}} F\left(x_{\pi(1)}\right) x_{\pi(2)} x_{\pi(3)} x_{\pi(4)}=0 \tag{9}
\end{equation*}
$$

for all $x_{1}, x_{2}, x_{3}, x_{4} \in R$. Let c be a nonzero central element. Pick any $x \in R$ and set $x_{1}=x_{2}=x_{3}=c$ and $x_{4}=x$ in (9). We arrive at

$$
\begin{equation*}
(\alpha F(c) x+\beta F(x) c) c^{2}=0 \tag{10}
\end{equation*}
$$

where $\alpha=18$ and $\beta=6$. Since R is prime, it follows that $\alpha F(c) x+\beta F(x) c=$ 0 for all $x \in R$. In particular, $\alpha F(c) c+\beta F(c) c=0$, which yields that $F(c)=0$. Therefore from (10), we get $F(x)=0$ for all $x \in R$.

The above observations lead to the following conjecture.
Conjecture 1. Let $m \geq 1, n \geq 1$ be some fixed integers, let R be a semiprime ring with suitable torsion restrictions, and let $T: R \rightarrow R$ be a generalized (m, n)-Jordan centralizer. Then T is a two-sided centralizer.

At the end, let us also point out, that we do not know yet whether this conjecture is true even for (m, n)-Jordan centralizers.

References

[1] K. I. Beidar, W. S. Martindale III, A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. New York (1996).
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1998), 1003-1006.
[3] M. Brešar, J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37 (1988), 321-322.
[4] J. Cusack, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.
[5] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[6] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (1999), 447-456.
[7] J. Vukman, On (m, n)-Jordan derivations and commutativity of prime rings, Demonstratio Math. 41 (2008), 773-778.
[8] J. Vukman, On (m, n)-Jordan centralizers in rings and algebras, Glas. Mat. 45(1) (2010), 43-53.
[9] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), 609-614.

FACULTY OF MANAGEMENT
UNIVERSITY OF PRIMORSKA
Cankarjeva 5
SI-6104 KOPER, SLOVENIA
E-mail: ajda.fosner@fm-kp.si

Received March 3, 2011.

[^0]: 2010 Mathematics Subject Classification: 16N60, 39B05.
 Key words and phrases: prime ring, semiprime ring, left (right) centralizer, left (right) Jordan centralizer, (m, n)-Jordan centralizer, generalized (m, n)-Jordan centralizer.

