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Abstract

A polygon A in a configuration C is called rotary if C admits an automorphism
which acts upon A as a one-step rotation. We study rotary polygons and their
orbits under the group of automorphisms (and antimorphisms) of C. We determine
the number of such orbits for several symmetry types of rotary polygons in the case
when C is flag-transitive. As an example, we provide tables of flag-transitive (v3)
and (v4) configurations of small order containing information on the number and
symmetry types of corresponding rotary polygons.

1 Introduction

Various problems regarding the polygons (or multilaterals) in configurations have been
studied in the past. Even the earliest papers on configurations considered the existence
of Hamiltonian polygons (see for example [11]) and the possibility of the decomposition
of the configuration into polygons (see for example [10]). Another topic which attracted
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Figure 1: Strongly rotary 3-gon of the
Fano plane (shown with thick points and
lines).

Figure 2: Strongly rotary 4-gon of the
Fano plane.

0

Figure 3: Rotary 7-gon of the Fano plane.

a considerable amount of attention is the existence or non-existence of n-gons in configu-
rations; see [2] for more details on the history of this problem.

In this paper we focus on the rotary polygons (a notion that will be formally defined
in Section 2) in flag-transitive combinatorial configurations. Before we start with precise
definitions, let us take a look at the following example.

Consider the three drawings of the Fano plane CF in Figures 1–3, each emphasizing a
particular polygon (denoted by thick lines and points). For each of these polygons there
exists an automorphism of CF which rotates the polygon as follows:

(1 2 4) (3 6 5), (0 5) (1 3 2 6), (0 1 2 3 4 5 6).

We call the polygon exhibiting such a symmetry to be rotary. The first two polygons are
essentially different from the third one: For each of the first two polygons there exists an
antimorphism of CF which acts on the n-gon — if viewed as an ordered sequence of points
and lines — as a “rotation” of order 2n:

(0 124) (1 045 2 013 4 026) (3 346 6 156 5 235),

(0 346 5 124) (1 013 3 235 2 026 6 156) (4 045)

We will call such polygons strongly rotary.
On the other hand, there is no such antimorphism for the polygon in Figure 3, hence

we call it weakly rotary.
Furthermore, the first two polygons admit a reflection in the group of automorphisms

of CF ,
(1 4) (3 5), (0 5) (1 2),
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Figure 4: The flag-transitive (133) configuration, and its chiral strongly rotary polygon
(the triangle depicted by thick lines). Note that the configuration is realized with points
and lines in the projective plane. The arrows indicate that the corresponding points are
at infinity, together with the line through them.

while the third does not. However, there is an antimorphism

(0 013) (1 026) (2 156) (3 045) (4 346) (5 235) (6 124)

of CF which reflects the third polygon (in a sense to be made clear in the next section).
For this reason, all these polygons are called reflexive, the first two genuinely reflexive,
and the third virtually reflexive.

Now consider the triangle in the (133) configuration depicted in Figure 4. It is clearly
rotary, but it admits no reflection (neither an automorphism nor an antimorphism). We
will call such polygons chiral.

In this paper we study rotary polygons and their orbits under the group of automor-
phisms (and antimorphisms) of the configuration. If the configuration is flag-transitive, we
determine the number of such orbits. We conclude the paper with a series of illuminating
examples and tables of flag-transitive (v3) and (v4) configurations of small order.

2 Preliminaries

A (combinatorial) configuration of type (vr, bk) is an ordered triple C = (P ,L,F) of
mutually disjoint sets P , L and F ⊆ {{p, `} : p ∈ P , ` ∈ L} (whose elements are called,
respectively, points, lines and flags) with |P| = v and |L| = b satisfying the following
axioms:

(1) each line is incident with k points;

(2) each point is incident with r lines;

(3) two distinct points are incident with at most one common line;
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where a point p is incident with a line ` if {p, `} ∈ F .
A configuration is connected if for any two points p and q there exists a sequence

(p0, `0, p1, `1, . . . , pn−1, `n−1, pn) of points pi and lines `i such that p0 = p and pn = q and
`i is incident with pi and pi+1 for each 0 ≤ i < n. All configurations considered in this
paper are assumed to be connected.

If C = (P ,L,F) is a configuration of type (vr, bk), then C∗ = (L,P ,F) is a configura-
tion of type (bk, vr), called the dual configuration of C.

An automorphism of a configuration C is an incidence-preserving permutation on the
union P ∪ L which preserves each of the sets P and L. Similarly, an antimorphism of a
configuration C is an incidence-preserving permutation on P ∪ L which interchanges P
and L. The configuration C is said to be self-dual if it admits an antimorphism, that is, if
it is isomorphic to its dual C∗. Note that if C is self-dual, then b = v and k = r. Whenever
the latter happens, we say that C is symmetric of type (vr).

Following [8] we let Aut0(C) denote the group of all automorphisms of C, and we let
Aut(C) denote the group of all automorphisms and antimorphisms of C which happens to
be the full automorphism group of the incidence graph of C (see Section 4 for the definition
of incidence graph). Note that Aut0(C) is a subgroup of Aut(C) of index at most 2.

We say that a configuration C = (P ,L,F) is point-, line-, and flag-transitive if Aut(C)
acts transitively on the sets P , L, F , respectively. Moreover, a flag-transitive configuration
C is strongly flag-transitive if Aut0(C) acts transitively on F , and is weakly flag-transitive
otherwise. Note that a weakly flag-transitive configuration is necessarily self-dual.

A directed polygon (or more precisely, a directed n-gon) in a configuration is a cyclically
ordered set {p0, `0, p1, `1, . . . , `n−2, pn−1, `n−1} of pairwise distinct points pi and pairwise
distinct lines `i such that pi is incident to `i−1 and `i for each i ∈ Zn.

A directed n-gon A = {p0, `0, p1, `1, . . . , `n−2, pn−1, `n−1} in C is said to be rotary if
there exists g ∈ Aut(C) such that pg

i = pi+1 (and thus also `g
i = `i+1) for every i ∈ Zn.

The above element g is then called a shunt for A, and is necessarily an automorphism
of C. Similarly, A is strongly rotary if there exists g ∈ Aut(C) such that pg

i = `i (and
`g
i = pi+1) for every i ∈ Zn. The element g is then called a strong shunt for A, and is

necessarily an antimorphism of C. Directed polygons that are rotary but not strongly
rotary will be called weakly rotary. Of course, strongly rotary polygons only exist in
self-dual configurations.

Let A, As and Aw denote the sets of all rotary, all strongly rotary, and all weakly
rotary directed polygons, respectively. Note that each of the groups Aut(C) and Aut0(C)
acts naturally on the sets A and As. For a group G acting on a set X we shall use the
symbol X/G to denote the set of all orbits of G on X. In particular, the symbols A/G,
As/G and Aw/G will denote the sets of G-orbits of directed rotary, strongly rotary and
weakly rotary polygons, respectively.

3 Auxiliary results

Throughout this section let C be a configuration of type (vr, bk), G = Aut(C) and G0 =
Aut0(C).
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Lemma 3.1. With the notation above, the following hold:

(i) As/G0 = As/G

(ii) If C is self-dual then each G-orbit on Aw splits into two G0-orbits (thus, |Aw/G0| =
2|Aw/G|) and Aw/G0 = Aw/G if C is not self-dual.

Proof. Let A1, A2 ∈ As be in the same G-orbit, that is, A2 = Ah
1 for some h ∈ G, and let

g ∈ G be a strong shunt for A2. Then either h or hg belongs to G0. This shows that A1

and A2 are also in the same G0-orbit, proving (i).
If C is not self-dual, then G = G0 and (ii) clearly holds. Hence we may assume that

the configuration is self-dual, and so G0 is a subgroup of index 2 in G. In this case each G-
orbit splits into at most two G0-orbits, implying that |Aw/G0| ≤ 2|Aw/G|. What remains
to show is that indeed every G-orbit of weakly rotary directed polygons contains two
distinct G0-orbits. Take A ∈ Aw and h ∈ G \G0. If A and Ah are in the same G0 orbit,
then there exists h′ ∈ G0 such that Ah = Ah′ , and so Ah′h−1

= A. By multiplying h′h−1

with an appropriate power gn of a shunt g ∈ G0 of A, we obtain a strong shunt h′h−1gn

of A, contradicting the fact that A is weakly rotary. This implies that each G-orbit on
Aw splits into two G0-orbits.

Corollary 3.2. With the notation above, and assuming that C is self-dual, the following
holds:

|A/G0| = 2|A/G| − |As/G|.

Proof. By Lemma 3.1 we see that

2|A/G| − |As/G| = 2
(
|Aw/G|+ |As/G|

)
− |As/G| =

= 2|Aw/G|+ |As/G| = |Aw/G0|+ |As/G0| = |A/G0|.

4 Enumerating the orbits of rotary directed polygons

Let C = (P ,L,F) be a configuration of type (vr, bk). Then C fully determines its incidence
graph Γ(C) (also called the Levi graph), whose vertex-set is P ∪ L, with p ∈ P adjacent
to ` ∈ L whenever p is incident with `. Note that Γ(C) is a bi-regular bipartite graph of
valence (k, r) and girth at least 6. (A bipartite graph is called bi-regular if the vertices
of the same bipartition set have the same valence.) Conversely, each bi-regular bipartite
graph with girth at least 6 determines a pair of mutually dual configurations, whose
points are vertices in one bipartition set, lines are vertices in the other bipartition set, and
incidence relation is the adjacency relation in Γ. Note that a configuration is connected
if and only if its Levi graph is connected.

Clearly Aut(C) = Aut(Γ(C)), where the subgroup Aut0(C) coincides with the group
Aut0(Γ(C)) preserving each set of the bipartition. The notions of weak and strong flag-
transitivity translate into the language of group actions on graphs as follows. For the
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graph-theoretical notions not defined here, as well as the proof of the theorem below, we
refer the reader to [8].

Proposition 4.1. Let C be a configuration and let Γ be its incidence graph. Let G =
Aut(C) = Aut(Γ), and let G0 = Aut0(C) = Aut0(Γ) be the group of automorphisms of C,
also viewed as the bipartition preserving subgroup of Aut(Γ). Then

(i) C is strongly flag-transitive if and only if G0 acts locally arc-transitively on Γ (that
is, if and only if the stabilizer in G0 of any vertex v of Γ acts transitively on the
neighbourhood of v).

(ii) C is strongly flag-transitive and self-dual if and only if G acts arc-transitively on Γ.

(iii) C is weakly flag-transitive if and only if G acts 1
2
-arc-transitively on Γ.

Note that a directed n-gon A in C can be viewed as a directed cycle CA of length 2n in
Γ(C). If A is strongly rotary, then a strong shunt of A corresponds to an automorphism of
Γ preserving and rotating CA one step forward. Cycles of this type were first studied by
Conway (see [1]), where they were called consistent cycles. Similarly, if A is rotary, then
a shunt of A corresponds to a two-step rotation of CA. To distinguish between these two
types of cycles, the directed cycles admitting a 2-step rotation will be called 1

2
-consistent.

More generally, if Γ is a graph and G ≤ Aut(Γ), then a directed cycle C for which there
exists g ∈ G acting as a k-step rotation on C is called (G, 1

k
)-consistent.

The following result about consistent cycles in edge-transitive graphs was proved in
[9] (parts (i) and (ii) of the theorem below) and [3] (part (iii)).

Theorem 4.2. [3, 9] Let Γ be a bi-regular graph of valence (d, d′) and let G be an edge-
transitive subgroup of Aut(Γ). Then the following hold:

(i) If G acts transitively on the arcs of Γ, then d = d′ and there are precisely (d − 1)

G-orbits of (G, 1)-consistent directed cycles and precisely d(d−1)
2

G-orbits of (G, 1
2
)-

consistent directed cycles in Γ.

(ii) If G acts locally arc-transitively but not arc-transitively on Γ, then there are no
(G, 1)-consistent directed cycles and precisely (d − 1)(d′ − 1) G-orbits of (G, 1

2
)-

consistent directed cycles in Γ.

(iii) If G acts 1
2
-arc-transitively on Γ, then d = d′ and there are precisely d G-orbits of

(G, 1)-consistent directed cycles and precisely d2−d+2
2

G-orbits of (G, 1
2
)-consistent

directed cycles in Γ.

The above theorem yields the following result about orbits of rotary directed polygons
in configurations.

Theorem 4.3. Let C be a configuration of type (vr, bk), let G = Aut(C) and let G0 =
Aut0(C).
If C is strongly flag-transitive and non-self-dual, then
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(i) |A/G| = |A/G0| = (k − 1)(r − 1);

(ii) |As/G| = |As/G0| = 0.

If C is strongly flag-transitive and self-dual, then

(iii) |A/G| = r(r−1)
2

and |A/G0| = (r − 1)2;

(iv) |As/G| = |As/G0| = r − 1.

If C is weakly flag-transitive (and thus self-dual), then

(v) |A/G| = r2−r+2
2

and |A/G0| = r2 − 2r + 2;

(vi) |As/G| = |As/G0| = r.

Remark 4.4. Since A is disjoint union of As and Aw then in both self-dual cases it
follows from the equations that |Aw/G| = (r−1)(r−2)

2
and |Aw/G0| = (r − 1)(r − 2).

Proof. Recall that rotary directed polygons in C correspond to (G, 1
2
)-consistent directed

cycles in the incidence graph Γ = Γ(C) (which are then also (G0,
1
2
)-consistent), while

strongly rotary directed polygons in C correspond to (G, 1)-consistent directed cycles in
Γ. Further, since the type of C is (vr, bk), the graph Γ is bi-regular of valence (d, d′) = (r, k).

Assume first that C is strongly flag-transitive.
If C is non-self-dual, then G = G0 acts locally arc-transitively on Γ, and (i) follows

directly from part (ii) of Theorem 4.2. Part (ii) is obvious, since there are no strongly
rotary polygons in a non-self-dual configuration.

If C is self-dual, then G acts arc-transitively on Γ, while G0 acts locally arc-transitively
but not arc-transitively. The first claim of part (iii) then follows directly from part (i)
of Theorem 4.2. Part (iv) is a consequence of part (i) of Theorem 4.2 and part (i) of
Lemma 3.1. The second claim of part (iii) now follows from Corollary 3.2.

Assume now that C is weakly flag-transitive. Then C is self-dual and G acts 1
2
-arc-

transitively on Γ. The first claim of part (v) follows directly from part (iii) of Theorem 4.2,
while part (vi) follows from part (iii) of Theorem 4.2 and part (i) of Lemma 3.1. Finally,
the second claim of part (v) follows from Corollary 3.2.

5 Reflexive and chiral undirected polygons

Thus far we have only considered directed polygons, where there is a distinction between
a directed polygon A = {p0, `0, . . . , pn−1, `n−1} and its inverse A−1 = {p0, `n−1, . . . , p1, `0}.
The inverse of a directed rotary polygon A in C is clearly also rotary. If A and A−1 belong
to the same orbit under Aut(C), then we say that A is reflexive. There are two essentially
distinct types of reflexive polygons. Namely, it may happen that A can be mapped to
A−1 by an automorphism of C; in this case, we shall say that A is genuinely reflexive. On
the other hand, if every g ∈ Aut(C) which maps A to A−1 is an antimorphism of C, then
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we say that A is virtually reflexive. A directed rotary polygon which is not reflexive is
called chiral.

Note that every reflexive strongly rotary directed polygon is necessarily genuinely
reflexive. Indeed, let τ ∈ Aut(C) be a reflection of a strongly rotary directed polygon A
in a configuration C, and let g be its strong shunt. Then either τ or gτ is a reflection of
A contained in Aut0(C). Hence A is genuinely reflexive.

Furthermore, if A is a reflexive directed polygon in a weakly flag-transitive configu-
ration C, then A is genuinely reflexive and weakly rotary. Indeed, if A is either strongly
rotary or virtually reflexive, then there exists an antimorphism of C which acts as reflec-
tion on A. Combining this antimorphism by an appropriate rotation of A (if necessary),
we obtain an antimorphism of C preserving a flag of C. But this is impossible if C is
weakly flag-transitive.

Let us now turn our attention to (undirected) polygons, which may abstractly be
thought of as pairs of mutually inverse directed polygons. We shall extend all the relevant
notions defined for directed polygons in the natural way to their underlying polygons. For
example, a polygon underlying a directed polygon A is called rotary if A is rotary.

Note that there is a one-to-one correspondence between the Aut(C)-orbits of reflexive
directed polygons and the Aut(C)-orbits of reflexive undirected polygons, and that each
Aut(C)-orbit of chiral undirected polygons corresponds to two Aut(C)-orbits of chiral
directed polygons (one containing the inverses of the other). Similarly, there is a one-to-
one correspondence between the Aut0(C)-orbits of genuinely reflexive directed polygons
and the Aut0(C)-orbits of genuinely reflexive undirected polygons. Also, each Aut0(C)-
orbit of virtually reflexive or chiral polygons corresponds to two Aut0(C)-orbits of virtually
reflexive or chiral directed polygons.

Let s+, s− and c denote the number of Aut(C)-orbits of genuinely reflexive, virtually
reflexive, and chiral undirected polygons, respectively, and let s+

0 , s−0 and c0 denote the
number of Aut0(C)-orbits of genuinely reflexive, virtually reflexive, and chiral undirected
polygons, respectively. The following corollary now follows directly from the above com-
ments and Theorem 4.3.

Corollary 5.1. Let C be a configuration of type (vr, bk), and let s+, s−, c, s+
0 , s−0 , c0 be

as above.

(i) If C is strongly flag-transitive and non-self-dual, then s− = s−0 = 0, s+ = s+
0 , c = c0,

and s+ + 2c = (k − 1)(r − 1).

(ii) If C is strongly flag-transitive and self-dual, then s+ + s− + 2c = r(r−1)
2

and s+
0 +

2s−0 + 2c0 = (r − 1)2.

(iii) If C is weakly flag-transitive (and thus self-dual), then s− = s−0 = 0, s++2c = r2−r+2
2

and s+
0 + 2c0 = r2 − 2r + 2.

Finally, let us comment on the relationship between the orbits of directed and undi-
rected polygons under the groups Aut(C) and Aut0(C).

Let A be a weakly rotary directed polygon.
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If A is chiral, then its inverse A−1 is in a different orbit, both under Aut(C) as well
as under Aut0(C). Moreover, by Lemma 3.1, the Aut(C)-orbit of A splits into two chiral
Aut0(C)-orbits (let us denote the two representatives by A1 and A2). Hence there are four
distinct Aut0(C)-orbits associated with A, the representatives of which are A1, A−1

1 , A2

and A−1
2 . These four orbits thus give rise to two Aut0(C)-orbits (as well as Aut(C)-orbits)

of undirected polygons.
If A is virtually reflexive, then the Aut(C)-orbit of A splits into two Aut0(C)-orbits,

one containing A and the other containing A−1. Hence there is a unique Aut0(C)-orbit of
undirected polygons associated with A.

Finally, if A is genuinely reflexive, then the Aut(C)-orbit of A splits into two Aut0(C)-
orbits, each of which is closed under taking inverses of the polygons. This implies that
there exist two Aut0(C)-orbits of undirected polygons associated with A which merge into
a single orbit under Aut(C).

6 Examples

In this section, we present several examples demonstrating the theory developed in the
previous sections. In particular, we concentrate on the flag-transitive (v3) and (v4) con-
figurations. Note that each of these configurations belongs to exactly one of the following
classes:

• self-dual strongly flag-transitive (v3) configurations;

• non-self-dual strongly flag-transitive (v3) and (v4) configurations;

• self-dual strongly flag-transitive (v4) configurations;

• weakly flag-transitive (and thus self-dual) (v4) configurations.

For each of these classes we provide a list of its members of small orders. These lists
were extracted from the following sources:

• the census of cubic arc-transitive graphs [4] for self-dual strongly flag-transitive (v3)
configurations;

• the census of cubic semisymmetric graphs [6] for non-self-dual strongly flag-transitive
(v3) configurations;

• the database of tetravalent edge-transitive graphs [12] for the three types of flag-
transitive (v4) configurations.

Note that the tables of (v3) configurations are complete up to the order of the largest
member in the list, however, the completeness of lists of (v4) configurations can not be
guaranteed.

The lists are organized in tables, collected in Section 7 at the end of the paper, where
each line corresponds to one configuration. The first column in each line contains the
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information on the order of the configuration, and the other columns contain the infor-
mation on the length of polygons and the symmetry type of the Aut(C)-orbits of the
directed rotary polygons. Each Aut(C)-orbit is represented by a symbol of the form nX,
where n denotes the length of the polygon in the orbit and X ∈ {S+, S−, C} denotes
the symmetry type of the polygon (where S+, S−, and C stand for genuinely reflexive,
virtually reflexive, and chiral, respectively).

6.1 Self-dual strongly flag-transitive (v3) configurations

Plugging r = 3 into Theorem 4.3 (iii) and (iv), a self-dual strongly flag-transitive (v3)
configuration C has precisely three Aut(C)-orbits of directed rotary polygons. Precisely
one of these orbits consists of weakly rotary polygons. Note that since chiral orbits come
in pairs this orbit of weakly rotary polygons must be reflexive (genuinely or virtually).
The other two orbits consist of strongly rotary polygons, which may therefore all be
either genuinely reflexive or chiral. We may encode the above possibilities by the symbols
(S+S+ | S+), (S+S+ | S−), (CC | S+) and (CC | S−), respectively. For example, the
symbol (S+S+ | S−) corresponds to the situation where the two strongly rotary orbits are
genuinely reflexive and the weakly rotary orbit is virtually reflexive. All four possibilities
indeed occur. The smallest configurations of given types are: the Fano plane on 7 points
for type (S+S+ | S−), the Pappus configuration on 9 points for type (S+S+ | S+),
the (133) configuration for type (CC | S−) (its incidence graph is the unique connected
arc-transitive cubic graph on 26 points and can be found in the Foster census under
name F26A), and the (2243) configuration for type (CC | S+). It is worth noting that
the incidence graph of the latter is the smallest cubic arc-transitive graph of girth 14,
implying in particular that the configuration itself contains no k-gons for k ≤ 6.

Recall that by Lemma 3.1 the two strongly rotary Aut(C)-orbits coincide with the
two strongly rotary Aut0(C)-orbits, while the weakly rotary Aut(C)-orbit splits into two
Aut0(C)-orbits, giving four Aut0(C)-orbits of directed rotary polygons in total.

Finally, it follows from the above comments that there are either two or three Aut(C)-
orbits of undirected rotary polygons, two if C is of type (CC | S+) or (CC | S−) and three
if C is of type (S+S+ | S+) or (S+S+ | S−). Similarly, there are two, three or four orbits
of undirected rotary polygons under the group Aut0(C); two if C is of type (CC | S−),
three if C is of type (CC | S+) or (S+S+ | S−), and four if C is of type (S+S+ | S+).

The list of all self-dual strongly flag-transitive (v3) configurations on up to 63 points
is given in Table 1.

Several well-known configurations can be found in Table 1. Let us have a closer look
at some of them.

In the introduction we have already considered the Fano plane (Figures 1, 2, 3) of type
(S+S+ | S−); that is, with two Aut(C)-orbits of genuinely reflexive strongly rotary directed
polygons and one Aut(C)-orbit of virtually reflexive weakly rotary directed polygons.

Another well-known strongly flag-transitive configuration is the Pappus (93) config-
uration, shown in Figure 5, illustrating the Pappus theorem. Its symmetry type is
(S+S+ | S+), giving rise to three orbits of undirected rotary polygons under the group
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(a) (b)

(c) (d)

Figure 5: Rotary polygons in the Pappus configuration shown with thick points and lines.
Polygons (a) and (b) are strongly rotary while (c) and (d) are weakly rotary.

Aut(C). The representatives of the two orbits of strongly rotary polygons are shown in
figures (a) and (b), while figures (c) and (d) show two weakly rotary polygons, which
belong to the same Aut(C)-orbit but to distinct Aut0(C)-orbits. Note that in (b) we are
able to realize the configuration with points and lines in the projective plane (arrows
indicate that the corresponding points are at infinity) and simultaneously showing the
rotary polygon as a regular hexagon.

The Desargues (103) configuration, associated with the well-known Desargues theorem,
is also strongly flag-transitive. Thus the number of rotary polygons can be determined
from Theorem 4.3. We show them in Figure 6. Here again we can realize the configuration
with points and lines in the (projective) plane and showing the rotary polygons as regular
polygons where possible. Here, also, all rotary polygons are genuinely reflexive, thus
giving rise to four Aut0(C)-orbits of undirected rotary polygons. The two Aut0(C)-orbits
of weakly rotary polygons are shown as (c) and (d).

Among other flag-transitive (v3) configurations listed in Table 1, let us mention the
Cremona-Richmond (153) configuration which is the smallest triangle-free (v3) configura-
tion, see [2].
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(a) (b)

(c) (d)

Figure 6: Rotary polygons in the Desargues configuration shown with thick points and
lines. Polygons (a) and (b) are strongly rotary while (c) and (d) are weakly rotary.

6.2 Non-self-dual strongly flag-transitive (vr) configurations

Since a non-self-dual flag-transitive configuration permits no antimorphisms, every rotary
polygon is necessarily weakly-rotary, and every reflexive rotary polygon in necessarily
genuinely reflexive. Moreover, every such configuration is in fact strongly flag-transitive.

By Theorem 4.3 (i), a non-self-dual strongly flag-transitive (vr) configuration C has
precisely (r − 1)2 orbits of directed rotary polygons under the group Aut0(C) = Aut(C).
Since orbits of chiral directed polygons come in pairs, there exists at least one genuinely
reflexive orbit whenever r is even. Note that when r = 3, exactly three possible com-
binations for the symmetry types of rotary polygons exist: all four orbits are genuinely
reflexive, type (S+S+S+S+), all four orbits are chiral, type (CCCC), or two orbits are
genuinely reflexive and two are chiral, type (CCS+S+). The data in Table 2 shows that
all three possibilities in fact occur. Similarly, when r = 4, there are five possible com-
binations for the symmetry types with one, three, five, seven or nine genuinely reflexive
orbits, respectively. As one may deduce from Table 3, all these types occur.

The smallest configuration in Table 2 on 27 points arises from the well-known Gray
graph. A drawing of the third smallest strongly flag-transitive non-self-dual (v3) configu-
ration can be found in [5].

6.3 Self-dual strongly flag-transitive (v4) configurations

By Theorem 4.3 (iii) and (iv), a self-dual strongly flag-transitive (v4) configuration C
has precisely six Aut(C)-orbits of directed rotary polygons, out of which precisely three
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(a) (b)

Figure 7: Klein (214) configuration with indicated strongly rotary genuinely reflexive
polygon of length 7 (a), and the smallest known weakly flag-transitive configuration (b).

consist of strongly rotary polygons. This implies that there exists at least one genuinely
reflexive orbit of strongly rotary polygons and at least one reflexive (genuinely or virtually)
of weakly rotary polygons. Hence there are two possible symmetry types for the three
Aut(C)-orbits of strongly rotary polygons: (S+S+S+) and (CCS+). Similarly, there are
six possibilities for the symmetry types of the weakly rotary polygons: four types with all
three orbits reflexive (each either genuinely or virtually), and two types with two chiral
orbits and one reflexive (again either genuinely or virtually). This amounts to 12 possible
symmetry types for the six Aut(C)-orbits of directed rotary polygons.

In Table 4 we provide a list of self-dual strongly flag-transitive (v4) configurations. The
list is based on the census of tetravalent edge-transitive graphs available in [12]. Since
this census may not be complete, Table 4 may be missing some configurations even in the
range up to 48 points.

The computational data in Table 4 show that 5 of the possible 12 symmetry types
indeed occur. It remains an open question whether there exists a self-dual strongly flag-
transitive (v4) configurations of any the following 7 types: (S+S+S+ | CCS+), (S+S+S+ |
CCS−), (CCS+ | S+S+S+), (CCS+ | S−S+S+), (CCS+ | S−S−S+), (CCS+ | CCS+),
(CCS+ | S−S−S−).

We mention that the smallest configuration in Table 4 on 13 points arises from the
projective plane of order 3. Among other strongly flag-transitive (v4) configurations,
let us mention the Klein (214) configuration studied by Grünbaum and Rigby [7], see
Figure 7 (a).

6.4 Weakly flag-transitive (v4) configurations

In general, for weakly-flag transitive (v4) configurations, Theorem 4.3 (vi) says that there
are four orbits of strongly rotary polygons and three orbits of weakly rotary polygons
under Aut(C). Since Aut(C) acts 1

2
-arc-transitively on the Levi graph Γ, none of the

orbits of strongly rotary polygons is reflexive, while one of the three orbits of weakly rotary
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polygons is genuinely reflexive and the other two are chiral, see [3, Section 6.1]. Hence all
weakly flag-transitive (v4) configurations are of symmetry type (CCCC | CCS+).

This implies that there are precisely four Aut(C)-orbits of undirected rotary polygons,
two of them being strongly rotary and two weakly rotary. Moreover, in view of discussion
beneath Corollary 5.1 it follows that each of the Aut(C)-orbits of weakly rotary undirected
polygons splits into two Aut0(C)-orbits, while each of the strongly rotary Aut(C)-orbits is
also an orbit under Aut0(C). This gives us two Aut0(C)-orbits of strongly rotary undirected
polygons (both being chiral) and four Aut0(C)-orbits of weakly rotary undirected polygons
(two of them being genuinely reflexive and two chiral).

A (not necessarily complete) list of weakly flag-transitive (v4) configurations on up to
63 points can be found in Table 5.

An example of a weakly-flag transitive (v4) configuration from [8], the smallest known
such configuration, is shown in Figure 7 (b). The indicated 9-gon is genuinely reflexive
and therefore weakly rotary.
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7 Tables

v Strongly rotary Weakly rotary v Strongly rotary Weakly rotary
7 3 S+ 4 S+ 7 S− 39 3 C 3 C 39 S−

8 4 S+ 6 S+ 8 S− 40 10 S+ 12 S+ 8 S+

9 3 S+ 6 S+ 6 S+ 43 3 C 3 C 43 S−

10 3 S+ 5 S+ 4 S+ 45 5 S+ 12 S+ 6 S+

12 3 S+ 6 S+ 4 S− 48 3 S+ 12 S+ 8 S−

13 3 C 3 C 13 S− 48 4 S+ 6 S+ 6 S+

15 4 S+ 5 S+ 6 S+ 49 3 C 3 C 49 S−

16 3 S+ 4 S+ 8 S− 49 3 S+ 7 S+ 14 S−

19 3 C 3 C 19 S− 52 3 C 3 C 26 S−

20 5 S+ 6 S+ 4 S+ 55 5 S+ 6 S+ 5 S+

21 3 C 3 C 21 S− 56 6 C 6 C 28 S−

24 6 S+ 12 S+ 8 S− 56 4 S+ 7 S+ 6 S−

25 3 S+ 5 S+ 10 S− 56 4 S+ 14 S+ 8 S+

27 3 S+ 9 S+ 6 S− 57 3 C 3 C 57 S−

28 3 C 3 C 14 S− 60 4 S+ 5 S+ 5 S−

28 4 S+ 7 S+ 8 S+ 60 5 S+ 15 S+ 6 S−

31 3 C 3 C 31 S− 61 3 C 3 C 61 S−

32 4 S+ 6 S+ 8 S− 63 3 C 3 C 21 S−

36 3 S+ 6 S+ 12 S− · · · · · · · · · · · ·
37 3 C 3 C 37 S− 224 7 C 7 C 8 S+

Table 1: Self-dual strongly flag-transitive (v3) configurations, v ≤ 63, together with the
smallest example of type (CC | S+) with v = 224.

v Weakly rotary orbits
27 4 S+ 6 S+ 6 S+ 9 S+

55 5 S+ 10 S+ 11 S+ 12 S+

56 6 C 6 C 7 C 7 C
60 4 S+ 6 S+ 12 S+ 15 S+

63 6 S+ 7 S+ 8 S+ 12 S+

72 4 S+ 6 S+ 8 C 8 C

Table 2: Non-self-dual strongly flag-transitive (v3) configurations, v ≤ 72.
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v Weakly rotary orbits
30 8 C 8 C 6 S+ 10 S+ 12 S+ 12 S+ 12 S+ 20 S+ 20 S+

30 6 C 6 C 8 C 8 C 10 C 10 C 8 S+ 10 S+ 12 S+

36 8 C 8 C 8 C 8 C 8 C 8 C 8 C 8 C 12 S+

36 8 C 8 C 16 C 16 C 16 C 16 C 6 S+ 12 S+ 12 S+

40 6 S+ 8 S+ 8 S+ 8 S+ 10 S+ 10 S+ 12 S+ 12 S+ 16 S+

42 14 C 14 C 6 S+ 6 S+ 8 S+ 8 S+ 12 S+ 12 S+ 12 S+

43 8 S+ 10 S+ 12 S+ 12 S+ 16 S+ 18 S+ 20 S+ 24 S+ 24 S+

48 6 C 6 C 8 C 8 C 12 C 12 C 8 S+ 8 S+ 8 S+

48 6 S+ 8 S+ 8 S+ 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 12 S+

48 6 C 6 C 8 C 8 C 8 C 8 C 12 C 12 C 8 S+

48 12 C 12 C 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 16 S+ 16 S+

48 24 C 24 C 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 24 S+ 24 S+

50 8 C 8 C 8 C 8 C 20 C 20 C 8 S+ 10 S+ 20 S+

55 6 S+ 10 S+ 10 S+ 10 S+ 20 S+ 20 S+ 22 S+ 24 S+ 24 S+

60 6 S+ 10 S+ 12 S+ 12 S+ 20 S+ 20 S+ 20 S+ 20 S+ 20 S+

60 8 C 8 C 30 C 30 C 12 S+ 12 S+ 12 S+ 20 S+ 24 S+

60 8 C 8 C 10 S+ 12 S+ 12 S+ 12 S+ 20 S+ 20 S+ 24 S+

60 8 C 8 C 10 C 10 C 12 C 12 C 8 S+ 12 S+ 20 S+

60 8 C 8 C 12 C 12 C 20 C 20 C 8 S+ 10 S+ 12 S+

60 6 C 6 C 8 C 8 C 20 C 20 C 8 S+ 12 S+ 20 S+

60 8 C 8 C 8 C 8 C 12 C 12 C 10 S+ 12 S+ 20 S+

60 8 C 8 C 8 C 8 C 24 C 24 C 6 S+ 10 S+ 20 S+

64 32 C 32 C 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 16 S+ 16 S+

64 8 S+ 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 16 S+ 16 S+ 16 S+

64 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 16 S+ 16 S+ 16 S+ 24 S+

64 32 C 32 C 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 32 S+ 32 S+

64 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 32 S+ 32 S+ 32 S+ 32 S+

64 8 S+ 8 S+ 8 S+ 8 S+ 8 S+ 16 S+ 16 S+ 16 S+ 16 S+

64 12 C 12 C 12 C 12 C 24 C 24 C 8 S+ 16 S+ 16 S+

64 8 S+ 8 S+ 16 S+ 16 S+ 16 S+ 16 S+ 16 S+ 16 S+ 16 S+

72 8 C 8 C 16 C 16 C 16 C 16 C 12 S+ 12 S+ 12 S+

72 8 C 8 C 8 C 8 C 24 C 24 C 8 S+ 12 S+ 24 S+

72 8 S+ 8 S+ 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 12 S+ 24 S+

72 8 C 8 C 16 C 16 C 16 C 16 C 12 S+ 12 S+ 12 S+

72 8 C 8 C 16 C 16 C 16 C 16 C 6 S+ 12 S+ 12 S+

72 8 C 8 C 12 C 12 C 24 C 24 C 12 S+ 12 S+ 12 S+

72 6 S+ 8 S+ 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 12 S+ 16 S+

72 8 S+ 8 S+ 8 S+ 8 S+ 12 S+ 12 S+ 12 S+ 16 S+ 24 S+

75 6 C 6 C 8 C 8 C 8 C 8 C 12 C 12 C 10 S+

Table 3: Non-self-dual strongly flag-transitive (v4) configurations, v ≤ 75.
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v S. rotary W. rotary v S. rotary W. rotary
13 3 S+ 4 S+ 6 S+ 8 S− 13 S− 13 S− 39 6 C 6 C 13 S+ 4 C 4 C 39 S−

14 3 S+ 4 S+ 4 S+ 7 S− 14 S− 6 S+ 40 8 C 8 C 5 S+ 4 C 4 C 40 S−

15 3 S+ 5 S+ 6 S+ 4 S− 15 S− 6 S+ 40 4 C 4 C 10 S+ 4 C 4 C 20 S−

16 3 S+ 4 S+ 6 S+ 8 S− 4 S+ 6 S+ 40 8 C 8 C 10 S+ 4 C 4 C 40 S−

18 4 C 4 C 3 S+ 4 C 4 C 4 S− 40 4 C 4 C 10 S+ 4 C 4 C 10 S−

20 4 C 4 C 10 S+ 4 C 4 C 20 S− 42 3 S+ 4 S+ 6 S+ 6 S+ 8 S+ 14 S+

20 4 C 4 C 5 S+ 4 C 4 C 20 S− 42 3 S+ 4 S+ 7 S+ 8 S− 8 S+ 7 S+

21 3 S+ 3 S+ 4 S+ 6 S+ 7 S+ 8 S+ 42 3 S+ 4 S+ 12 S+ 14 S− 21 S− 6 S+

24 4 S+ 6 S+ 12 S+ 12 S− 8 S+ 8 S+ 42 3 S+ 4 S+ 4 S+ 14 S− 3 S+ 6 S+

24 3 S+ 4 S+ 12 S+ 12 S− 8 S+ 8 S+ 45 18 C 18 C 5 S+ 4 C 4 C 45 S−

24 3 S+ 4 S+ 6 S+ 8 S+ 8 S+ 12 S+ 45 3 S+ 10 S+ 15 S+ 30 S− 4 S+ 6 S+

25 10 C 10 C 5 S+ 4 C 4 C 5 S− 45 3 S+ 4 S+ 5 S+ 6 S− 8 S+ 10 S+

27 3 S+ 3 S+ 6 S+ 6 S− 6 S+ 12 S+ 48 6 S+ 8 S+ 24 S+ 4 S+ 8 S+ 12 S+

27 3 S+ 3 S+ 6 S+ 6 S− 9 S− 4 S+ 48 8 S+ 12 S+ 24 S+ 4 S+ 6 S+ 8 S+

30 6 C 6 C 5 S+ 4 C 4 C 30 S− 48 4 S+ 24 S+ 24 S+ 8 S+ 8 S+ 24 S+

30 3 S+ 3 S+ 5 S+ 4 S− 6 S+ 10 S+ 48 4 S+ 6 S+ 12 S+ 24 S− 4 S+ 4 S+

30 3 S+ 5 S+ 5 S+ 5 S+ 6 S+ 10 S+ 48 4 S+ 12 S+ 12 S+ 24 S− 4 S+ 4 S+

32 4 S+ 8 S+ 8 S+ 4 S+ 4 S+ 8 S+ 48 3 S+ 4 S+ 6 S+ 8 S+ 8 S+ 12 S+

32 4 S+ 4 S+ 8 S+ 8 S− 4 S+ 8 S+ 48 3 S+ 3 S+ 4 S+ 8 S+ 8 S+ 6 S+

32 8 C 8 C 4 S+ 4 C 4 C 4 S− 48 4 S+ 6 S+ 12 S+ 4 S+ 4 S+ 12 S+

32 3 S+ 4 S+ 4 S+ 6 S− 8 S− 4 S+ 48 4 S+ 6 S+ 6 S+ 8 S+ 8 S+ 12 S+

32 4 S+ 8 S+ 8 S+ 4 S− 4 S+ 4 S+ 48 4 S+ 6 S+ 12 S+ 12 S− 8 S+ 8 S+

35 14 C 14 C 5 S+ 4 C 4 C 35 S− 48 4 S+ 6 S+ 12 S+ 6 S− 8 S+ 8 S+

35 3 S+ 5 S+ 7 S+ 4 S+ 5 S+ 6 S+ 48 4 S+ 6 S+ 12 S+ 4 S+ 4 S+ 6 S+

36 4 S+ 6 S+ 12 S+ 6 S− 4 S+ 6 S+ 48 3 S+ 4 S+ 12 S+ 4 S+ 4 S+ 6 S+

36 3 S+ 4 S+ 12 S+ 12 S− 4 S+ 6 S+ 48 3 S+ 4 S+ 6 S+ 12 S− 4 S+ 4 S+

36 3 S+ 3 S+ 6 S+ 4 S+ 6 S+ 12 S+ 48 3 C 3 C 4 S+ 4 C 4 C 6 S−

36 4 C 4 C 3 S+ 4 C 4 C 4 S−

Table 4: Self-dual strongly flag-transitive (v4) configurations, v ≤ 48.
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v Strongly rotary Weakly rotary v Strongly rotary Weakly rotary
27 6 C 6 C 18 C 18 C 12 C 12 C 18 S+ 57 6 C 6 C 6 C 6 C 12 C 12 C 38 S+

34 8 C 8 C 8 C 8 C 8 C 8 C 34 S+ 60 8 C 8 C 24 C 24 C 40 C 40 C 30 S+

39 12 C 12 C 12 C 12 C 6 C 6 C 26 S+ 60 8 C 8 C 24 C 24 C 40 C 40 C 60 S+

39 6 C 6 C 6 C 6 C 12 C 12 C 26 S+ 63 18 C 18 C 18 C 18 C 36 C 36 C 14 S+

42 12 C 12 C 12 C 12 C 12 C 12 C 14 S+ 63 6 C 6 C 6 C 6 C 12 C 12 C 42 S+

42 6 C 6 C 12 C 12 C 12 C 12 C 28 S+ 64 16 C 16 C 32 C 32 C 8 C 8 C 32 S+

54 12 C 12 C 36 C 36 C 12 C 12 C 18 S+ 64 8 C 8 C 32 C 32 C 16 C 16 C 32 S+

54 6 C 6 C 36 C 36 C 12 C 12 C 36 S+ 68 8 C 8 C 8 C 8 C 8 C 8 C 34 S+

54 12 C 12 C 18 C 18 C 12 C 12 C 36 S+ 68 16 C 16 C 16 C 16 C 16 C 16 C 34 S+

55 10 C 10 C 10 C 10 C 20 C 20 C 22 S+ 68 16 C 16 C 16 C 16 C 16 C 16 C 34 S+

55 10 C 10 C 10 C 10 C 20 C 20 C 22 S+

Table 5: Self-dual weakly flag-transitive (v4) configurations, v ≤ 68.
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metric graphs on up to 768 vertices, J. Alg. Combin. 23 (2006), 255–294.
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[9] Š. Miklavič, P. Potočnik, S. Wilson, Overlap in consistent cycles, J. Graph Theory
55 (2007), 55–71.

[10] A. Schönflies, Über die regelmässigen Configurationen n3, Math. Ann. 31 (1888),
43–69.
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