Quasi m-Cayley circulants

Ademir Hujdurović *
University of Primorska, FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
University of Primorska, IAM, Muzejski trg 2, 6000 Koper, Slovenia

Received 30 October 2011, accepted 4 February 2012, published online 15 June 2012

Abstract

A graph Γ is called a quasi m-Cayley graph on a group G if there exists a vertex $\infty \in V(\Gamma)$ and a subgroup G of the vertex stabilizer $\operatorname{Aut}(\Gamma)_{\infty}$ of the vertex ∞ in the full automorphism group $\operatorname{Aut}(\Gamma)$ of Γ, such that G acts semiregularly on $V(\Gamma) \backslash\{\infty\}$ with m orbits. If the vertex ∞ is adjacent to only one orbit of G on $V(\Gamma) \backslash\{\infty\}$, then Γ is called a strongly quasi m-Cayley graph on G. In this paper complete classifications of quasi 2-Cayley, quasi 3-Cayley and strongly quasi 4-Cayley connected circulants are given.

Keywords: Arc-transitive, circulant, quasi m-Cayley graph.
Math. Subj. Class.: 05C15, 05C10

1 Introduction

Throughout this paper graphs are assumed to be finite, simple, connected and undirected, and groups are finite. Given a graph Γ we let $V(\Gamma), E(\Gamma), A(\Gamma)$ and $\operatorname{Aut}(\Gamma)$ be the set of its vertices, edges, arcs and the automorphism group of Γ, respectively. A graph Γ is said to be vertex-transitive, edge-transitive, and arc-transitive if its automorphism group acts transitively on $V(\Gamma), E(\Gamma)$ and $A(\Gamma)$, respectively.

Let G be a finite group with identity element 1 , and let $S \subset G \backslash\{1\}$ be such that $S^{-1}=S$. We define the Cayley graph $\operatorname{Cay}(G, S)$ on the group G with respect to the connection set S to be the graph with vertex set G, in which two vertices $x, y \in G$ are adjacent if and only if $x^{-1} y \in S$. A circulant of order n is a Cayley graph on a cyclic group of order n.

In this paper we consider quasi-semiregular actions on graphs, a natural generalization of semiregular actions on graphs, which have been an active topic of research in the last decades (see, for example, $[1,2,3,4,5,8,9,11]$). Following [7] we say that a group G acts

[^0]quasi-semiregularly on a set X if there exists an element ∞ in X such that G fixes ∞, and the stabilizer G_{x} of any element $x \in X \backslash\{\infty\}$ is trivial. The element ∞ is called the point at infinity. A graph Γ is called quasi m-Cayley on G if the group G acts quasi-semiregularly on $V(\Gamma)$ with m orbits on $V(\Gamma) \backslash\{\infty\}$. If G is cyclic and $m=1$ (respectively, $m=2$, $m=3$ and $m=4$) then Γ is said to be quasi circulant (respectively, quasi bicirculant, quasi tricirculant and quasi tetracirculant). In addition, if the point at infinity ∞ is adjacent with only one orbit of G_{∞} then we say that Γ is a strongly quasi m-Cayley graph on G.

Quasi m-Cayley graphs were first defined in 2011 by Kutnar, Malnič, Martinez and Marušič [7], who showed which strongly quasi m-Cayley graphs are strongly regular graphs.

In this paper, we consider which circulants are also quasi m-Cayley graphs. Our main results are stated in the following three theorems.

Theorem 1.1. Let Γ be a quasi 2-Cayley graph of order n which is also a connected circulant. Then either Γ is isomorphic to the complete graph K_{n}, or $n \equiv 1(\bmod 4)$ is a prime and Γ is isomorphic to the Paley graph $P(n)$. Moreover, Γ is a quasi bicirculant.

Theorem 1.2. Let Γ be a connected circulant. Then Γ is also a quasi 3-Cayley graph if and only if either $\Gamma=K_{n}$, or replacing Γ with its complement if necessary, $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, where S is the set of all non-zero cubes in \mathbb{Z}_{n}, and n is a prime such that $n \equiv 1(\bmod 3)$. Moreover, Γ is a quasi tricirculant.

Theorem 1.3. Let Γ be a connected circulant. Then Γ is a strongly quasi 4-Cayley graph on a group G if and only if $\Gamma \cong C_{9}$ or $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, where S is the set of all fourth powers in $\mathbb{Z}_{n} \backslash\{0\}$, and n is a prime such that $n \equiv 1(\bmod 4)$. Moreover, Γ is a quasi tetracirculant.

The paper is organized as follows. In Section 2 we recall the classification of connected arc-transitive circulants. In Section 3 we prove Theorem 1.1 and in Section 4 we prove Theorems 1.2 and 1.3.

2 Arc-transitive circulants

We begin this section with the following lemma:
Lemma 2.1. Let Γ be a connected vertex-transitive strongly quasi m-Cayley graph. Then Γ is arc-transitive.

Proof. Since Γ is vertex transitive, it is sufficient to prove that there exists a vertex v such that the stabilizer $\operatorname{Aut}(\Gamma)_{v}$ acts transitively on the neighborhood of v. It is obvious that if we choose the point at infinity for v, this condition is satisfied.

The previous lemma implies that we can somehow restrict our study to the connected arc-transitive circulants, therefore it is important to understand the structure of such graphs.

To state the classification of connected arc-transitive circulants, which has been obtained independently by Kovács [6] and Li [10], we need to recall certain graph products and the concept of normal Cayley graphs.

The wreath (lexicographic) product $\Sigma[\Gamma]$ of a graph Γ by a graph Σ is the graph with vertex set $V(\Sigma) \times V(\Gamma)$ such that $\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\}$ is an edge if and only if either $\left\{u_{1}, v_{1}\right\} \in E(\Sigma)$, or $u_{1}=v_{1}$ and $\left\{u_{2}, v_{2}\right\} \in E(\Gamma)$. For a positive integer b and a graph
Σ, denote by $b \Sigma$ the graph consisting of b vertex-disjoint copies of the graph Σ. The graph $\Sigma\left[\overline{K_{b}}\right]-b \Sigma$ is called the deleted wreath (deleted lexicographic) product of Σ and $\overline{K_{b}}$, where $\overline{K_{b}}=b K_{1}$.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G. Denote by $\operatorname{Aut}(G, S)$ the set of all automorphisms of G which fix S setwise, that is,

$$
\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}
$$

It is easy to check that $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(\Gamma)$ and that it is contained in the stabilizer of the identity element $1 \in G$. It follows from the definition of Cayley graph that the left regular representation G_{L} of G induces a regular subgroup of $\operatorname{Aut}(\Gamma)$. Following Xu [12], $\Gamma=\operatorname{Cay}(G, S)$ is called a normal Cayley graph if G_{L} is normal in $\operatorname{Aut}(\Gamma)$, that is, if $\operatorname{Aut}(G, S)$ coincides with the vertex stabilizer $1 \in G$. Moreover, if Γ is a normal Cayley graph, then $\operatorname{Aut}(\Gamma)=G_{L} \rtimes \operatorname{Aut}(G, S)$.

Proposition 2.1. [6, 10] Let Γ be a connected arc-transitive circulant of order n. Then one of the following holds:
(i) $\Gamma \cong K_{n}$;
(ii) $\Gamma=\Sigma\left[\bar{K}_{d}\right]$, where $n=m d, m, d>1$ and Σ is a connected arc-transitive circulant of order m;
(iii) $\Gamma=\Sigma\left[\bar{K}_{d}\right]-d \Sigma$, where $n=m d, d>3, \operatorname{gcd}(d, m)=1$ and Σ is a connected arc-transitive circulant of order m;
(iv) Γ is a normal circulant.

In Section 3 and 4 two lemmas (that show that arc-transitive circulants described in Proposition 2.1(ii) and (iii) are not strongly quasi k-Cayley graphs) will be needed.

Lemma 2.2. Let Γ be an arc-transitive circulant, described in Proposition 2.1(ii). Then Γ is not a strongly quasi k-Cayley graph for any $k \in \mathbb{N}$.

Proof. We have $\Gamma=\Sigma\left[\bar{K}_{d}\right]$, where $n=m d, m, d>1$ and Σ is a connected arc-transitive circulant of order m. Suppose that Γ is a strongly quasi k-Cayley graph on a group G. Then $\operatorname{val}(\Gamma)=(n-1) / k=(m d-1) / k$. On the other hand, since $\Gamma=\Sigma\left[\bar{K}_{d}\right]$, we have $\operatorname{val}(\Gamma)=\operatorname{val}(\Sigma) \cdot d$. These two facts combined together imply that $d(m-k \cdot \operatorname{val}(\Sigma))=1$, and so $d=1$, a contradiction.

Lemma 2.3. Let Γ be an arc-transitive circulant, described in Proposition 2.1(iii). Then Γ is not a strongly quasi k-Cayley graph for any $k \in \mathbb{N}$.

Proof. We have $\Gamma=\Sigma\left[\bar{K}_{d}\right]-d \Sigma$, where $n=m d, d>3, \operatorname{gcd}(d, m)=1$, and Σ is an arc-transitive circulant of order m. Suppose that Γ is also a strongly quasi k-Cayley graph on a group G. By [10, Theorem 1.1] the m copies of the graph $\overline{K_{d}}$ form an imprimitivity block system \mathcal{B} for $\operatorname{Aut}(\Gamma)$. Clearly the block $B \in \mathcal{B}$ containing the point at infinity, that is, the trivial orbit of G, is fixed by G. This implies that $|G|$ divides $d-1$. On the other hand, since the valency of Γ is $|G|$, we have $|G| \geq d-1$. Combining these results we obtain $|G|=d-1$. Thus, connectedness of Γ implies that $m=2$. However, then there are $2 d-1$ vertices in Γ different from the point at infinity, and they cannot be divided into k orbits of size $d-1$ for any natural number k. Therefore, there are no strongly quasi k-Cayley graphs amongst the graphs from Proposition 2.1(iii) for any natural number $k \geq 1$.

Lemma 2.4. Let Γ be an arc-transitive circulant, described in Proposition 2.1(iv). If Γ is also a strongly quasi m-Cayley graph on a group G, then the order of Γ has at most $m+1$ divisors.

Proof. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ be a normal circulant. Let $A=\operatorname{Aut}(\Gamma)$. Since Γ is a normal Cayley graph, $A \cong \mathbb{Z}_{n} \rtimes \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right)$. We may, without loss of generality, assume that the point at infinity corresponds to the vertex $0 \in \mathbb{Z}_{n}$, and so $G \leq \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right) \leq \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong$ \mathbb{Z}_{n}^{*}. Therefore, $G \lesssim \mathbb{Z}_{n}^{*}$. Since G has m orbits on $\mathbb{Z}_{n} \backslash\{0\}$, then $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ has at most m orbits on $\mathbb{Z}_{n} \backslash\{0\}$, and at most $m+1$ orbits on \mathbb{Z}_{n}. Elements in the same orbit of $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ are clearly of the same order in \mathbb{Z}_{n}. There exist an element in \mathbb{Z}_{n} of order d, if and only if d divides n. Therefore the number of divisors of n, denoted by $\tau(n)$, is not greater than $m+1$, i.e. $\tau(n) \leq m+1$.

3 Quasi 2-Cayley graphs

In this section the connected circulants are considered. In particular, connected circulants that are also quasi 2-Cayley graphs are classified (see Theorem 1.1). If a graph Γ of order n is a quasi 2-Cayley graph on a group G, which is not a strongly quasi 2-Cayley graph, then it is isomorphic to the complete graph K_{n}. Namely, in such a graph, the point at infinity ∞ is adjacent to both nontrivial orbits of G, and thus it is adjacent to all the vertices different from ∞. Consequently, we can conclude that Γ has valency $|V(\Gamma)|-1$, and so Γ is a complete graph. In order to classify all connected circulants that are also quasi 2-Cayley graphs it therefore suffices to characterize strongly quasi 2-Cayley graphs that are also connected circulants, we do this in Theorem 3.1.

Theorem 3.1. Let Γ be a connected circulant. Then Γ is also a strongly quasi 2-Cayley graph if and only if Γ is isomorphic to the Paley graph $P(p)$, where p is a prime such that $p \equiv 1(\bmod 4)$. Moreover, Γ is a quasi bicirculant.

Proof. Let Γ be the Paley graph $P(p)$, where p is a prime, such that $p \equiv 1(\bmod 4)$. It is well known that the Paley graphs are connected arc-transitive circulants, and, as was observed in [7], they are also strongly quasi 2-Cayley graphs.

Conversely, let Γ be a connected circulant $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ of order n not isomorphic to the complete graph K_{n}, which is also a strongly quasi 2-Cayley graph on a group G. Then $|G|=(n-1) / 2$ and Γ is of valency $(n-1) / 2$. Lemma 2.1 tells us that Γ is an arc-transitive graph, and moreover Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together imply that Γ is a normal circulant. The theorem now follows from the three claims below.

Claim 1: n is an odd prime.
It is obvious that n must be odd, since 2 divides $n-1$. By Lemma 2.4 we have that $\tau(n) \leq 3$. Thus we have the following two possibilities for n :

- $n=p$, where p is a prime;
- $n=p^{2}$, where p is a prime.

Suppose that the latter case hold. Let $A=\operatorname{Aut}(\Gamma)$. Since Γ is a normal Cayley graph, we have $A \cong \mathbb{Z}_{n} \rtimes \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right)$. We may, without loss of generality, assume that the point at infinity corresponds to the vertex $0 \in \mathbb{Z}_{n}$, and so $G \leq \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right) \leq \operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong \mathbb{Z}_{n}^{*}$. Therefore, \mathbb{Z}_{n}^{*} contains a subgroup G of order $(n-1) / 2$. Since $\left|\mathbb{Z}_{n}^{*}\right| \leq n-1$ and $|G|$
divides $\left|\mathbb{Z}_{n}^{*}\right|$ we obtain that $\left|\mathbb{Z}_{n}^{*}\right|=n-1$ or $(n-1) / 2$. Since, by assumption, n is not a prime, we have $\left|\mathbb{Z}_{n}^{*}\right|=(n-1) / 2$. This gives in the following equation

$$
\frac{p^{2}-1}{2}=p(p-1)
$$

which has the unique solution $p=1$, a contradiction.
Claim 2: $n \equiv 1(\bmod 4)$.
Since $S=-S$, and no element in \mathbb{Z}_{n} can be its own inverse, we have that the number of elements in S is even, and since $|S|=\frac{n-1}{2}$, we have $n \equiv 1(\bmod 4)$.

Claim 3: Γ is isomorphic to the Paley graph $P(n)$.
By Claim 1, n is a prime. Therefore the group \mathbb{Z}_{n}^{*} is cyclic, and thus since G is a subgroup of \mathbb{Z}_{n}^{*}, G is cyclic as well. By [6, Remark 2], we have $\operatorname{Aut}(\Gamma)=\left\{g \mapsto g^{\sigma}+h \mid \sigma \in\right.$ $\left.K, h \in \mathbb{Z}_{n}\right\}$, for a suitable group $K<\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$, and S is the orbit under K of a generating element of \mathbb{Z}_{n}, that is, $S=\operatorname{Orb}_{K}(g)$ for some generating element g of \mathbb{Z}_{n}. Now we have that $\operatorname{Aut}(\Gamma)_{0}=\left\{g \mapsto g^{\sigma}+h \mid \sigma \in K, h \in \mathbb{Z}_{n}: 0^{\sigma}+h=0\right\}=\left\{g \mapsto g^{\sigma} \mid \sigma \in K\right\} \cong K$. So we see that $G \lesssim K$. Since $S=\operatorname{Orb}_{K}(g) \lesssim \operatorname{Orb}_{G}(g)$, and $|S|=\left|\operatorname{Orb}_{G}(g)\right|$ we have that $S \cong \operatorname{Orb}_{G}(g)$, which gives us that $S \cong G$ (taking $g=1$). Now, since G is the index 2 subgroup of the cyclic group \mathbb{Z}_{n}^{*}, G is of the form $G=\left\langle x^{2}\right\rangle$ where x generates \mathbb{Z}_{n}^{*}. Therefore G consists of all squares in \mathbb{Z}_{n}^{*} and $S \cong G$, implying that Γ is isomorphic to the Paley graph $P(n)$ as claimed.

It is obvious that G must be cyclic, so the graph Γ is in fact a quasi bicirculant.

Proof of Theorem 1.1: It follows from Theorem 3.1 and the paragraph preceding it.

In general, if Γ is a vertex transitive quasi 2-Cayley graph on a group G, not isomorphic to the complete graph, then it is a strongly regular graph of a rank 3 group. Namely, the orbits of G are contained in the orbits of the stabilizer of the $\operatorname{Aut}(\Gamma)_{\infty}$ and since there are just two nontrivial orbits of G, then there are exactly two nontrivial orbits of the $\operatorname{Aut}(\Gamma)_{\infty}$ which in fact must coincide with the orbits of G. Therefore $\operatorname{Aut}(\Gamma)$ must be a rank 3-group, and the graphs of the rank 3 groups are strongly regular graphs.

4 Quasi 3-Cayley and 4-Cayley graphs

In this section we will deal with the question which connected circulants are also quasi 3-Cayley graph or strongly quasi 4-Cayley graphs. We first consider the case of strongly quasi 3-Cayley graphs.

Theorem 4.1. Let Γ be a connected circulant. Then Γ is also a strongly quasi 3-Cayley if and only if $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$ where S is the set of all non-zero cubes in \mathbb{Z}_{n}, and n is a prime such that $n \equiv 1(\bmod 3)$. Moreover, Γ is a quasi tricirculant.

Proof. Let $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)$ where $p \equiv 1(\bmod 3)$ is a prime and S is the set of all nonzero cubes in \mathbb{Z}_{p}. Since p is a prime, it is well known that $\operatorname{Aut}\left(\mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}^{*}$ is a cyclic group of order $p-1$. Let $G=\left\langle a^{3}\right\rangle$, where a is a generating element of \mathbb{Z}_{p}^{*}. Then G consists of all non-zero cubes in \mathbb{Z}_{p}, and $|G|=\frac{p-1}{3}$. The action of G on \mathbb{Z}_{p} defined by $x^{g}=g \cdot x$ gives G as the subgroup of $\operatorname{Aut}(\Gamma)$. The group G acts quasi-semiregularly on \mathbb{Z}_{p} with $0 \in \mathbb{Z}_{p}$
as the point at infinity. Namely, it is easy to check that $G_{0}=G$, and that the stabilizer of any element $x \in \mathbb{Z}_{p} \backslash\{0\}$ is trivial. Since $|G|=\frac{p-1}{3}$, it follows that G has 3 orbits on $\mathbb{Z}_{p} \backslash\{0\}$, and therefore Γ is a quasi 3-Cayley graph. Since one of the orbits of G is the set S, the point at infinity is adjacent to only one orbit of G, so Γ is in fact a strongly quasi 3-Cayley graph. By the construction Γ is an arc-transitive circulant since $G \leq \operatorname{Aut}(\Gamma)_{0}$ acts transitively on the set of vertices adjacent to the vertex 0 .

Conversely, let Γ be a connected circulant of order n, which is also a strongly quasi 3-Cayley graph on a group G. Then $|G|=\frac{n-1}{3}$. From Lemma 2.1 we have that Γ is arctransitive, and therefore Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together imply that Γ is a normal circulant. Therefore, we can assume that $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, and that $G \leq \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right) \leq \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$, implying that $\left.\frac{n-1}{3} \right\rvert\, \varphi(n)$, where $\varphi(n)$ is the Euler totient function.
Claim 1: n is a prime number.
Let

$$
n=p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}
$$

be a canonic factorization of a positive integer n. From Lemma 2.4, we have $\tau(n) \leq 4$. Now we can calculate

$$
\tau(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \cdots\left(k_{t}+1\right) .
$$

We have the following possibilities for n :

- $n=p$,
- $n=p^{2}$;
- $n=p^{3}$;
- $n=p q$,
where p and q are different primes.
If $n=p^{2}$, then the only solution of $\left.\frac{n-1}{3} \right\rvert\, \varphi(n)$ is $p=2$ and $n=4$. However, if $n=4$, the graph Γ is of valency 1 , so it is not a connected graph.

If $n=p^{3}$, then there is no solution of the above equation.
If n is a product of two different primes, then we have $\left|\mathbb{Z}_{n}^{*}\right|=(n-1) / 3$ or $2(n-1) / 3$. In the first case $\mathbb{Z}_{n}^{*} \cong G$, so \mathbb{Z}_{n}^{*} acts semiregularly on $\mathbb{Z}_{n} \backslash\{0\}$, and it is not difficult to see that this is not the case for $n=p q$. If $\left|\mathbb{Z}_{n}^{*}\right|=2(n-1) / 3$, then we obtain the following equation

$$
(p-1)(q-1)=\frac{2(p q-1)}{3}
$$

The only solutions in natural numbers of the above equation are $(p, q) \in\{(4,7),(5,5)$, $(7,4)\}$, so there are no two different primes p, q satisfying the given equation.

Having in mind all the written above, we conclude that n is a prime.
Claim 2: Γ is isomorphic to the Cayley Graph $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, where S is set of all non zero cubes in \mathbb{Z}_{n}, and n is a prime such that $n \equiv 1(\bmod 3)$.
Similarly as in the previous section, it can be shown that $G \cong S$. Since G is an index 3 subgroup of \mathbb{Z}_{n}^{*}, we have $G=\left\langle x^{3}\right\rangle$, where x is a generating element of \mathbb{Z}_{n}^{*}. It follows that G consists of all cubes in \mathbb{Z}_{n}^{*}, so Γ is isomorphic to $\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, where S is the set of all non zero cubes in \mathbb{Z}_{n} and $n \equiv 1(\bmod 3)$ is a prime. It is obvious from the mentioned above, that the group G must be cyclic, therefore, Γ is in fact a quasi tricirculant.

Proof of the Theorem 1.2: Let Γ be a connected circulant of order n, which is also a quasi 3-Cayley on a group G. The point at infinity is adjacent to all three nontrivial orbits of G, if and only if Γ is isomorphic to K_{n}. If the point at infinity is adjacent to just one nontrivial orbit of G, then Γ is a strongly quasi 3-Cayley graph, therefore, Theorem 4.1 gives us the desired result. If the point at infinity is adjacent to two nontrivial orbits of G, then we consider the complement $\Sigma=\bar{\Gamma}$ of the graph Γ. The graph Σ is a quasi 3-Cayley graph on G, and actually it is a strongly quasi 3-Cayley graph on G. Since Σ is the complement of a circulant it is also a circulant. Suppose that Σ is not connected. Then, since it is vertex-transitive, it is the disjoint union of some isomorphic graphs. The point at infinity is adjacent to one orbit of G, so the connected components of Σ must have at least $1+\frac{n-1}{3}$ points. Therefore $n=k \cdot n_{1}$, where k is the number of connected components, and n_{1} is the number of points in each of the components. We have noticed that $n_{1} \geq 1+\frac{n-1}{3}$, thus $k \leq 2$. If $k=1$ then Σ is connected. Suppose that $k=2$. Then there are two connected components of Γ, say Γ_{1} and Γ_{2}, each containing $n / 2$ points. Suppose that $\infty \in \Gamma_{1}$. Let Δ_{1}, Δ_{2} and Δ_{3} be a nontrivial orbits of G, and let the point at infinity be adjacent to Δ_{1}. Then $\Delta_{1} \subset \Gamma_{1}$. Since Γ_{1} and Γ_{2} have the same size, it means that at least one of Δ_{2} and Δ_{3} have points both in Γ_{1} and Γ_{2}. Suppose that $u, v \in \Delta_{2}$, such that $u \in \Gamma_{1}$ and $v \in \Gamma_{2}$. Since u and v are in the same orbit of G then there exist $g \in G$ which maps u to v. However, g fixes ∞, and consequently g fixes Γ_{1}, a contradiction.

Having in mind all the written above, we see that Σ is a connected circulant, which is also a strongly quasi 3-Cayley graph. Therefore we have the desired result.

We will continue this section with the proof of Theorem 1.3.
Proof of Theorem 1.3: Let $\Gamma=C_{9}$. Then $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{9},\{ \pm 1\}\right)$. Then the group $G=$ $\{1,-1\} \subset \mathbb{Z}_{9}^{*}$ acts quasi semiregularly on \mathbb{Z}_{9} with 0 as the point at infinity.

Let $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{p}, S\right)$, where S is the set of all fourth powers in $\mathbb{Z}_{p} \backslash\{0\}$, and p is a prime such that $p \equiv 1(\bmod 4)$. Define $G=\left\langle a^{4}\right\rangle$, where a is some generating element of \mathbb{Z}_{p}^{*}, which is cyclic in this case. We have that G acts quasi-semiregularly on \mathbb{Z}_{p}^{*} with 0 as the point at infinity. Since $|G|=\frac{p-1}{4}$, it follows that G has 4 orbits on $\mathbb{Z}_{p} \backslash\{0\}$, and therefore Γ is a quasi 4-Cayley graph. It is also easy to see that 0 is adjacent to only one orbit of G on $\mathbb{Z}_{p} \backslash\{0\}$, therefore Γ is a strongly quasi 4-Cayley graph. By the construction, Γ is a connected arc-transitive circulant.

Conversely, let Γ be a connected circulant of order n which is also a strongly quasi 4-Cayley graph on a group G. Then $|G|=(n-1) / 4$. Using Lemma 2.1 we have that Γ is arc-transitive, and so Proposition 2.1, Lemma 2.2 and Lemma 2.3 combined together imply that Γ is a normal circulant. Therefore, we can assume that $\Gamma=\operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, and that $G \leq \operatorname{Aut}\left(\mathbb{Z}_{n}, S\right) \leq \operatorname{Aut}\left(\mathbb{Z}_{n}\right)$, implying that

$$
\begin{equation*}
\left.\frac{n-1}{4} \right\rvert\, \varphi(n) . \tag{4.1}
\end{equation*}
$$

Using Lemma 2.4 we obtain $\tau(n) \leq 5$. So we have the following possibilities:

- $n=p$,
- $n=p^{2}$,
- $n=p^{3}$,
- $n=p^{4}$,
- $n=p q$,
where p and q are different primes.
If $n=p^{2}$, then the only solution of (4.1) is $n=9$. In this case, the valency of Γ is $(9-1) / 4=2$, so $\Gamma \cong C_{9}$.

In the cases when $n=p^{3}$, and $n=p^{4}$ there is no prime satisfying (4.1).
When $n=p q$, we have that $(p-1)(q-1)=\alpha \cdot(p q-1) / 4$, where $\alpha \in\{1,2,3\}$. If $\alpha=1$, then we have $\mathbb{Z}_{n}^{*}=G$, so \mathbb{Z}_{n}^{*} must act semiregularly on $\mathbb{Z}_{n} \backslash\{0\}$, which is not the case. If $\alpha=2$, then there are no two different primes satisfying $(p-1)(q-1)=$ $(p q-1) / 2$, and finally, when $\alpha=3$, we have that $n=5 \cdot 13$ is the only possibility. In this case, Γ is a connected arc-transitive circulant on 65 vertices, which has valency 16. Since G is an index 3 subgroup of $\mathbb{Z}_{65}^{*} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{12}$, then we can calculate $G \cong\{ \pm 1, \pm 8, \pm 12, \pm 14, \pm 18, \pm 21, \pm 27, \pm 31\}$, and we can see that G does not act semiregularly on $\mathbb{Z}_{65} \backslash\{0\}$. Namely, the non identity element $21 \in G$ fixes the point $13 \in \mathbb{Z}_{65} \backslash\{0\}$.

Assume now that n is a prime. Similarly as in the proof of Theorem 3.1, we obtain $G \cong S$, and therefore, since G is an index 4 subgroup of \mathbb{Z}_{n}^{*}, we have $G=\left\langle x^{4}\right\rangle$, where x is some generating element of \mathbb{Z}_{n}^{*}. Therefore, $\Gamma \cong \operatorname{Cay}\left(\mathbb{Z}_{n}, S\right)$, where S is the set of all fourth powers in $\mathbb{Z}_{n} \backslash\{0\}$.

From the mentioned above, it is clear that G is a cyclic group, so Γ is in fact a quasi tetracirculant.

References

[1] E. Dobson, A. Malnič, D. Marušič and L. A. Nowitz, Minimal normal subgroups of transitive permutation groups of square-free degree, Discrete Math. 307 (2007), 373-385.
[2] E. Dobson, A. Malnič, D. Marušič and L. A. Nowitz, Semiregular automorphisms of vertextransitive graphs of certain valencies. J. Combin. Theory Ser. B 97 (2007), 371-380.
[3] M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, J. London Math. Soc. 67 (2003), 73-84.
[4] M. Giudici, New constructions of groups without semiregular subgroups, Comm. Algebra 35 (2007), 2719-2730.
[5] M. Giudici and J. Xu, All vertex-transitive locally-quasiprimitive graphs have a semiregular automorphism, J. Algebr. Combin. 25 (2007), 217-232.
[6] I. Kovács, Classifying arc-transitive circulants, J. Algebr. Combin. 20 (2004), 353-358.
[7] K. Kutnar, A. Malnič, L. Martinez and D. Marušič, Quasi m-Cayley strongly regular graphs, manuscript.
[8] K. Kutnar and D. Marušič, Recent trends and future directions in vertex-transitive graphs, Ars Math Contemp. 1 (2008), 112-125.
[9] K. Kutnar and P. Šparl, Distance-transitive graphs admit semiregular automorphisms, European J. Combin. 31 (2010), 25-28.
[10] C. H. Li, Permutation groups with a cyclic regular subgroup and arc-transitive circulants, J. Algebr. Combin. 21 (2005), 131-136.
[11] D. Marušič, On vertex symmetric digraphs, Discrete Math. 36 (1981), 69-81.
[12] M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998), 309-320.

[^0]: *Supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", research program P1-0285 and "Mladi raziskovalec" research program.

 E-mail address: ademir.hujdurovic@upr.si (Ademir Hujdurović)

