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Examining the Integration of Landsat Operational 
Land Imager with Sentinel-1 and Vegetation 
Indices in Mapping Southern Yellow Pines 

(Loblolly, Shortleaf, and Virginia Pines)
Clement E. Akumu and Eze O. Amadi

Abstract
The mapping of southern yellow pines (loblolly, shortleaf, 
and Virginia pines) is important to supporting forest inven-
tory and the management of forest resources. The overall 
aim of this study was to examine the integration of Landsat 
Operational Land Imager (OLI) optical data with Sentinel-1 
microwave C-band satellite data and vegetation indices in 
mapping the canopy cover of southern yellow pines. Specifi-
cally, this study assessed the overall mapping accuracies 
of the canopy cover classification of southern yellow pines 
derived using four data-integration scenarios: Landsat OLI 
alone; Landsat OLI and Sentinel-1; Landsat OLI with vegetation 
indices derived from satellite data—normalized difference 
vegetation index, soil-adjusted vegetation index, modified 
soil-adjusted vegetation index, transformed soil-adjusted 
vegetation index, and infrared percentage vegetation index; 
and 4) Landsat OLI with Sentinel-1 and vegetation indi-
ces. The results showed that the integration of Landsat OLI 
reflectance bands with Sentinel-1 backscattering coefficients 
and vegetation indices yielded the best overall classifica-
tion accuracy, about 77%, and standalone Landsat OLI the 
weakest accuracy, approximately 67%. The findings in this 
study demonstrate that the addition of backscattering coef-
ficients from Sentinel-1 and vegetation indices positively 
contributed to the mapping of southern yellow pines.

Introduction
Southern yellow pines such as loblolly pine (Pinus taeda), 
Virginia pine (P. virginiana), and shortleaf pine (P. echinata) 
are softwood forest vegetation species commonly found in the 
southeastern United States. These pine species are commer-
cially marketed and provide economic benefits to the country. 
For example, loblolly and shortleaf pines are usually grown 
for pulpwood and sawlogs, whereas Virginia pine is usually 
grown as Christmas-tree species (English et al. 2004; Young et 
al. 2007).

The mapping of softwood forest vegetation species such as 
loblolly, shortleaf, and Virginia pines is important for effec-
tive management of forest resources (Xie et al. 2008; Ke et al. 
2010; Deng et al. 2011; Shang and Chisholm 2014; Roth et al. 
2015). For example, updated digital maps of forest vegetation 
species and canopy cover are continually being sought by 

forest managers and policy makers to support management 
decisions and policies (Skidmore et al. 1997; Rozenstein and 
Karnieli 2011). Furthermore, forest vegetation canopy cover 
maps can help to understand tree-species ecology for commu-
nity dynamics as well as species inputs into the ecosystems 
(van Ewijk et al. 2014). They can also be used as inputs for 
modeling and other forest management and planning activi-
ties such as harvesting, regeneration, and fire management 
(van Aardt and Wynne 2007; Hamilton et al. 2021).

The spectral information of satellite remotely sensed data, 
such as Landsat Operational Land Imager (OLI) optical data 
and Sentinel-1 C-band synthetic-aperture radar (SAR) sensor 
data, make them feasible and cost-effective in mapping forest 
vegetation canopy cover compared to traditional field-survey 
methods over large geographic areas (Xie et al. 2008; Shang 
and Chisholm 2014; Vincent et al. 2019). However, because 
many individually sensed images have either high spatial 
resolution or high spectral resolution, there is a need to 
integrate satellite remotely sensed data to improve image clas-
sification. For example, Jiménez et al. (2017) and Fatoyinbo 
and Armstrong (2010) integrated Landsat Enhanced Thematic 
Mapper Plus with lidar and National Forest Inventory data to 
map aboveground forest cover and biomass, and found a more 
accurate estimation of aboveground forest biomass using this 
data-integration method. Wan et al. (2021) integrated multi-
spectral Sentinel-2 image data with high-spatial-resolution 
aerial images for tree-species classification of forest stands. 
They classified and mapped 11 forest vegetation species 
stands and found an increase in overall mapping accuracy 
after data integration. Furthermore, Biswas et al. (2020) evalu-
ated the contribution of three satellite data sources—Landsat 
OLI, Sentinel-1, and Sentinel-2—in mapping diverse forest 
vegetation types in Myanmar. They found that using a combi-
nation of Sentinel-1 and Sentinel-2 data produced the highest 
accuracy (89.6%), followed by Sentinel-2 alone (87.97%) and 
Landsat OLI (82.68%).

Satellite-derived vegetation indices are useful indicators 
of forest biophysical condition and can be integrated with 
satellite remotely sensed data to further improve the discrimi-
nation of forest vegetation and canopy cover. This is because 
spectral vegetation indices measure the photosynthetic size 
of plant canopies. Furthermore, they are used as indicators 
to monitor variations in temporal and spatial characteris-
tics of vegetation structure and density (Xue and Su 2017; 
Akumu et al. 2021). For example, Prabhakara et al. (2015) Clement E. Akumu and Eze O. Amadi are with the 
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used vegetation indices to ascertain the correlation between 
vegetation biomass, ground cover, and derived indices in 
Maryland (USA). They found a strong correlation between 
the normalized difference vegetation index (NDVI) and per-
cent vegetation cover. Furthermore, they found the triangu-
lar vegetation index most accurate in estimating vegetation 
biomass. Bera et al. (2020) used vegetation indices such as the 
NDVI, advanced vegetation index, shadow index, and bareness 
index to detect and monitor forest vegetation canopy cover 
and health. They found a reduction in forest canopy cover and 
density between 1998 and 2009 in the Silabati River Basin 
(India). Furthermore, Reid et al. (2016) generated the NDVI 
from Landsat Thematic Mapper data as an indicator of forest 
productivity to examine forest cover and health trends at Fort 
Benning, Georgia. They found that most plots had declining 
greenness through time, consistent with the overall NDVI trend.

Other recent studies have integrated vegetation indices de-
rived from satellite data with remotely sensed satellite data to 
map forest canopy cover and habitats (Martinuzzi et al. 2008; 
Sinha et al. 2015; Abdollahnejad et al. 2019; Ganz et al. 2020). 
For example, Sinha et al. (2015) integrated the thermal inte-
grated vegetation index and advanced thermal integrated veg-
etation index with Landsat Enhanced Thematic Mapper Plus 
satellite data to map land cover including forest canopy cover 
in a semi-arid deciduous forest landscape. They found that the 
classification accuracy of land cover improved with integration 
of the thermal vegetation indices from the Landsat Enhanced 
Thematic Mapper Plus thermal band with spectral informa-
tion. Rhyma et al. (2020) integrated Satellite pour l’observation 
de la Terre (SPOT-6 and SPOT-7) satellite data with the NDVI 
and soil-adjusted vegetation index (SAVI) to discriminate forest 
canopy cover. They found satellite data-derived vegetation 
indices useful in improving the accuracy of classification in a 
mangrove forest ecosystem. Although satellite-derived vegeta-
tion indices and satellite data have been integrated in forest 
canopy cover classification, there is no known knowledge 
of the integration of Landsat OLI optical data with Sentinel-1 
C-band SAR sensor data and derived vegetation indices for 
mapping forest canopy cover of southern yellow pines. The 
integration of Landsat OLI optical data with Sentinel-1 mi-
crowave satellite data and derived vegetation indices could 
improve the overall detection, mapping, and classification 
accuracy of the canopy cover of southern yellow pines.

The overall aim of this study is to examine the integration 
of Landsat OLI optical data with Sentinel-1 C-band SAR sensor 
satellite data and derived vegetation indices in mapping the 
canopy cover of southern yellow pines (loblolly, shortleaf, and 
Virginia pines). Specifically, this study assesses the overall 
mapping accuracies of the canopy cover classification of 
southern yellow pines derived using four data-integration sce-
narios: Landsat OLI alone; Landsat OLI and Sentinel-1; Landsat 
OLI with satellite data-derived vegetation indices—NDVI, SAVI, 
modified soil-adjusted vegetation index (MSAVI), transformed 
soil-adjusted vegetation index (TSAVI), infrared percentage 
vegetation index (IPVI); and Landsat OLI with Sentinel-1 and 
satellite data-derived vegetation indices. To the best of our 
knowledge, this is the first study to examine the integration of 
satellite data-derived vegetation indices with Landsat OLI opti-
cal and Sentinel-1 C-band SAR sensor data in the classification 
and mapping of the canopy cover of southern yellow pines.

Materials and Methods
Study Area
Marion County, Tennessee, was selected as a case study area 
in this study (Figure 1). It is located between latitude 35.319 
492 34°N and 34.984 474 18°N, and between longitude 85.361 
694 34°W and 85.872 871 40°W. The county is in the southern 

region of Tennessee and occupies approximately 516 mi2 
of surface area. This study area was selected because of the 
availability of cloud-free Landsat OLI satellite data and several 
field data sets of southern yellow pines.

Figure 1. Study area: Marion County, Tennessee, United 
States of America.

Vegetation
A significant part of the study area is covered by forest vegeta-
tion, especially softwood forest vegetation such as southern 
yellow pines. Southern yellow pines commonly found in 
the region included loblolly pine (P. taeda), Virginia pine 
(P. virginiana), and shortleaf pine (P. echinata). In addition 
to softwood forest vegetation, there is also hardwood forest 
vegetation in the area, with common species including locust 
(Gleditsia spp.), poplar (Populus spp.), maple (Acer spp.), oak 
(Quercus spp.), elm (Ulmus spp.), hickory (Carya spp.), and 
sycamore (Platanus spp.; Akumu et al. 2018).

Climate
The climate of the region is characterized by hot summers and 
moderately cold winters with some erratic cold spells and 
snowfall (Akumu et al. 2018; Hodges et al. 2018). The sea-
sonal average temperatures are 41°F in the winter, 60°F in the 
spring, 78°F in the summer, and 60°F in the fall (Hinkle 1989). 
The mean annual temperature of Marion County is about 78°F. 
Average precipitation in the region is about 51 in. (1300 mm), 
evenly distributed over the seasons (Hodges et al. 2018).

Geology
Marion County is on the Cumberland Plateau and contains a 
good portion of Sequatchie Valley and part of the Tennessee 
River. The plateau is formed by level rocks. The tableland 
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of the Cumberland Plateau, Walden Ridge, and the Raccoon 
Mountain crest are capped by sandstones, shales, conglomer-
ates, and coal seams (Hodges et al. 2018). The Tennessee and 
Sequatchie River floors are made of limestones of Ordovician 
and Mississippian origin which contain alkaline soils (Akumu 
et al. 2018). The most noticeable landform in the county is 
Sequatchie Valley, which runs northeast to southwest through 
the center of the county. The valley is linear and covers about 
25% of the total area of the county (Starnes 1986).

Methodology
The methodology for this study involved six data-processing: 
acquisition of Landsat OLI optical data and Sentinel-1 micro-
wave satellite data; preprocessing of satellite data; generation 
of satellite-data vegetation indices; data integration; classifica-
tion of the canopy cover of southern yellow pines; and valida-
tion/accuracy assessment (Figure 2).

The Landsat OLI satellite data, with an acquisition date of 
28 February 2016, were downloaded from the United States 
Geological Survey website (http://earthexplorer.usgs.gov) as 
a Level-1 cloud-free scene. Landsat OLI satellite data have 11 
spectral bands, with a spatial resolution of 30 m for bands 1–7 
and 9 (Table 1). Bands 1–7 were used in the classification and 
mapping of the canopy cover of southern yellow pines.

This study selected a Landsat OLI satellite data set with a 
winter acquisition date because southern yellow pines are 
conifers that are easily detected in the winter season, when 
deciduous trees shed their leaves. The Landsat OLI scene with 
30-m spatial resolution was subsetted for the study area and 
geometric correction was performed. The geometric cor-
rection was carried out using more than 50 ground control 
points with a root-mean-square (RMS) error < 1 pixel. The RMS 
error is the distance between the input (source) location of 

a ground control point and the transformed location of the 
same ground control point (Tawfeik et al. 2016). Using more 
than 50 ground control points is acceptable if the RMS error 
is < 1 pixel, but unacceptable if it is > 1 pixel (Nguyen 2015; 
Pehani et al. 2016; Tawfeik et al. 2016). This is because an 
RMS error < 1 pixel provides a high-quality georeferenced 
image compared to an RMS error > 1 pixel (Baboo et al. 2011; 
Tawfeik et al. 2016).

Radiometric correction was performed on the Landsat OLI 
satellite data by converting digital numbers to at-surface re-
flectance. It entails correcting image pixel values for variation 
in the sun elevation angle and calibrating images to account 
for degradation of the sensor over time. Changes in sensor 
calibration factors will obscure real changes on the ground 

Figure 2. A schematic representation of the methodology used to classify southern yellow pines using four data-integration methods.

Table 1. Landsat Operational Land Imager spectral bands and 
characteristics.

Band Wavelength (µm) Resolution (m)

1: Ultra Blue (coastal/aerosol) 0.43–0.45 30

2: Blue 0.45–0.51 30

3: Green 0.53–0.59 30

4: Red 0.64–0.67 30

5: Near-infrared 0.85–0.88 30

6: Shortwave infrared 1 1.57–1.65 30

7: Shortwave infrared 2 2.11–2.29 30

8: Panchromatic 0.50–0.68 15

9: Cirrus 1.36–1.38 30

10: Thermal infrared 1 10.60–11.19 100 × 30

11: Thermal infrared 2 11.50–12.51 100 × 30
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(Mather and Koch 2011). The Landsat OLI scene was con-
verted from digital numbers to at-surface reflectance by using 
reflectance rescaling coefficients derived by the United States 
Geological Survey (2019):

 ρλ′= MpQcal + Ap (1)

where ρλ′ = top-of-atmosphere (TOA) planetary reflectance 
without correction for solar angle, Mp = band-specific multi-
plicative rescaling factor (Reflectance_Mult_Band_x, where 
x is the band number), Ap = band-specific additive rescaling 
factor (Reflectance_Add_Band_x), and Qcal = digital numbers. 
The factors Reflectance_Mult_Band_x and Reflectance_Add_
Band_x were obtained from the header file of the imagery.

Furthermore, the correction of TOA planetary reflectance 
for sun angle was performed using the equation (United States 
Geological Survey 2019)

 ρλ = ρλ′/sin(θSE) (2)

where ρλ =TOA planetary reflectance corrected for sun angle, 
ρλ′ = TOA planetary reflectance without correction for solar 
angle, and θSE = local sun elevation angle (in degrees), pro-
vided in the metadata (Sun_Elevation).

The Sentinel-1 C-band SAR sensor satellite data, with an 
acquisition date of 24 January 2018, were downloaded from 
the European Space Agency Data Hub (https://scihub.coper-
nicus.eu/dhus/#/home) as a Sentinel-1A scene. Sentinel-1 
has a C-band with four acquisition modes: Stripmap, 
Interferometric Wide swath, Extra Wide swath, and Wave 
(Table 2). The Interferometric Wide swath mode vertical-ver-
tical, vertical-horizontal, horizontal-vertical, and horizontal-
horizontal polarizations was used in the classification and 
mapping of the canopy cover of southern yellow pines.

Table 2. Mode, spectral resolution, swath, and polarization of 
Sentinel-1 C-band SAR sensor.

Mode
Incidence 
Angle (°)

Resolution 
(m)

Swath 
Width 
(km) Polarization

Stripmap 20–45 5×5 80 HH+HV, VH+VV, 
HH, VV

Interferometric 
Wide swath

29–46 5×20 250 HH+HV, VH+VV, 
HH, VV

Extra Wide 
swath

19–47 20×40 400 HH+HV, VH+VV, 
HH, VV

Wave 22–35 5×5 20×20 HH, VV
35–38

H = horizontal; V = vertical.

The Sentinel-1 microwave scene with a spatial resolution 
of 5×20 m was subsetted to the study area and noise removal 
(speckle filtering) was performed. The noise removal was 
carried out using spatial averaging in a 60×60-m window. 
Geometric correction was performed on the scene using the 
Shuttle Radar Topography Mission global digital elevation 
map for the study area. The digital elevation map was used 
to provide terrain correction, and the Sentinel-1 data were 
reprojected to the WGS84 - UTM Zone 16 map projection. 
Radiometric correction was performed on the imagery by 
converting the digital numbers to backscattering coefficients 
(σo; Twele et al. 2016):

 
σ θo

K
=

DN2 sin

 
(3)

where θ = incidence angle, K = calibration constant, and DN = 
digital numbers.

The backscattering coefficients were then expressed in 
decibels (Twele et al. 2016):

 σo
dB = 10log10(σo) (4)

The scene was later resampled to the same spatial resolu-
tion as the Landsat OLI satellite data—30-m cell size.

The TOA reflectance image of the Landsat OLI satellite 
data was used to generate the NDVI, SAVI, MSAVI, TSAVI, and 
IPVI. These indices were selected because they are indicators 
of plant greenness and are considered to take into account 
the effect of soil background. For example, these indices 
have a spectral red band that is strongly absorbed by plant 
chlorophyll and is an indicator of vegetation greenness. 
Furthermore, they also have an infrared band that is strongly 
absorbed when plants become stressed by factors such as 
dehydration, lack of nutrients, diseases, and leaf-structure 
deterioration (Qi et al. 1994; Lichtenthaler et al. 1996). In 
addition, the TSAVI has an adjustment factor to minimize the 
effect of soil background (Baret et al. 1989). The vegetation 
indices were also selected because they can be easily gener-
ated from the Landsat OLI spectral bands and could contribute 
to the discrimination of southern yellow pines. Other indices, 
such as the normalized difference water index and modi-
fied normalized difference water index, were not considered 
because they have shortwave infrared bands and are good 
indicators of vegetation wetness rather than greenness (Gao 
1996; Xu 2006).

The normalized difference vegetation index was generated 
as (Lichtenthaler et al. 1996)

 
NDVI

Near-infrared Red
Near-infrared Red

=
+
–

 
(5)

The soil-adjusted vegetation index was generated using 
(Huete 1988)

 
SAVI

Near-infrared Red
Near-infrared Red

=
+

+ +
( )( )

( )
– 1 L

L  
(6)

where L is the soil brightness conversion factor of 0.5.
The modified soil-adjusted vegetation index was generated 

using (Qi et al. 1994)

 
MSAVI

Near-infrared Red
Near-infrared Red

=
+

+ +
( )( )– 1 L

L  
(7)

where L is calculated by

L
s s

= ( ) ( )
1

2
–

* * – * – *Near-infrared Red Near-infrared Red
Near-infraared Red+( )  

(8)

in which s is the slope of the soil line from a plot of bright-
ness values of red versus near-infrared.

The transformed soil-adjusted vegetation index was gener-
ated using (Baret et al. 1989)

 

TSAVI
NIR Red

Red NIR
=

+ + +
( )
( ) ( ) 

a a b

a b a

– * –

– .0 08 1 2

 

(9)

where a and b are the slope and intercept of the soil line, 
respectively; 0.08 is the adjusted coefficient value; and NIR is 
the near-infrared value.

The infrared percentage vegetation index was generated 
using (Crippen 1990):
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IPVI

Near-infrared
Near-infrared Red

=
+  (10)

First, the  stand-alone Landsat OLI reflectance scene was 
used to classify and map the canopy cover of southern yellow 
pines, as scenario 1. The Landsat OLI visible and infrared 
spectral bands were used in classifying the canopy cover of 
southern yellow pines. Second, the Landsat OLI reflectance 
scene was integrated with Sentinel-1 backscattering coeffi-
cients to classify and map southern yellow pines, as scenario 
2. Third, the Landsat OLI reflectance scene was integrated with 
the derived vegetation indices NDVI, SAVI, MSAVI, TSAVI, and 
IPVI to classify and map southern yellow pines, as scenario 3. 
Fourth, the Landsat OLI reflectance scene was integrated with 
Sentinel-1 backscattering coefficients and derived vegetation 
indices to classify and map southern yellow pines, as scenario 
4. The spectral bands of the Landsat OLI reflectance scene 
were integrated directly as separate bands with Sentinel-1 
backscattering coefficients and derived vegetation indices.

Supervised classification was performed to classify and 
map the canopy cover of southern yellow pines in all four 
data-integration scenarios. The canopy cover of loblolly, 
shortleaf, and Virginia pines was classified and mapped using 
training data from 22 field sites. The southern yellow pines 
on each field site covered a large geographic area of >200,000 
m2. The sites represented homogenous stands of loblolly, 
shortleaf, and Virginia pines. Most of the southern yellow 
pines at the field sites were at least 6 m tall. There were seven 
sites of loblolly pine, 12 of shortleaf, and three 3 of Virginia 
pine. The site-location data were obtained from area foresters 
at the Tennessee Department of Agriculture. Sixty polygons 
(20 loblolly, 20 shortleaf, and 20 Virginia pine) were digitized 
from the 22 field sites to serve as training data in the super-
vised classification process.

The supervised classification was performed using a 
machine-learning random-forest classification algorithm, with 
the 60 digitized polygons of southern yellow pines serving 
as training data. The random-forest classification model was 
controlled for overfitting by five-fold cross-validation re-
peated twice on the training data. During the cross-validation 
process, about 25% of the training data were kept aside as 
test data set. The remaining 75%—the training data set—was 
divided into five equal sets and used in the five-fold cross-
validation. The first set was kept as the holdout (testing) set 
and the remaining sets were used to train the random-forest 
classification prediction model of southern yellow pines. The 
five-fold cross-validation was performed with a changing 
holdout (testing) set. The mean accuracy of the canopy cover 
classification of southern yellow pines generated from the 
five-fold cross-validation process was estimated. The training 
data were then used in the random-forest classification of the 
canopy cover of southern yellow pines, and the kept-aside 
25% test data set was used to validate the classification. The 
accuracy with the test and training data sets was then evalu-
ated (Sharma et al. 2017; Costa et al. 2018; Elmaz et al. 2020).

Furthermore, the numbers of trees and training samples 
in the random-forest classification prediction model were se-
lected through a resampling-based procedure 
to search for optimal tuning parameters. The 
optimal settings were selected based on the 
mean overall accuracy across the five-fold 
cross-validation, repeated twice (Sharma 
et al. 2017; Costa et al. 2018). The default 
number of training samples was selected and 
set at 5000, and the number of random-forest 
trees was set at 10. The random-forest clas-
sification algorithm was selected because it 

has been found to outperform other machine-learning classifi-
cation algorithms such as support vector machines in mapping 
forest canopy cover and species (Shang and Chisholm 2014; 
Sharma et al. 2017; Elmahdy et al. 2020; Sjöqvist et al. 2020).

The canopy cover maps of southern yellow pines generat-
ed using the four data-integration classification methods were 
validated to examine how well they represented southern yel-
low pines on the ground. The validation effort was performed 
by randomly selecting 100 polygons from each classified 
canopy cover map. The validation data (100 polygons) were 
distinct from the training data (60 polygons) used in the 
random-forest classification of the canopy cover of southern 
yellow pines.

Determination of ground truth by field-plot visits and use 
of Google Earth Pro information was used to validate the 
classified canopy cover maps derived from the four data-
integration scenarios. The overall accuracy was computed 
for each classified map by dividing the total correct (the sum 
of the major diagonal in the error matrix table) by the total 
number of pixels in the error matrix table (Mather and Koch 
2011). The κ coefficient was also measured as described by 
Mather and Koch (2011). The classified canopy cover maps 
were later exported into Geographic Information System for 
extent analyses.

Results and Discussion
The canopy cover of southern yellow pines representing 
loblolly, shortleaf, and Virginia pines (Figures 3–6) was 
successfully classified and mapped using the four data-inte-
gration classification methods. The distribution of loblolly, 
shortleaf, and Virginia pines was similar in all four scenarios. 
The canopy cover of shortleaf pine was more intense in the 
northern parts of the study area than the southern parts. 
Similarly, the canopy cover of loblolly and Virginia pines was 
more abundant in the northern parts of the study area than 
the southern portions. The lesser canopy cover of southern 
yellow pines in the southern parts of the study area is likely 
because of intense harvesting. Southern yellow pines are con-
tinually harvested as pulpwood and saw timber products in 
the region (Clabo and Clatterbuck 2005; Hansen et al. 2014). 
Furthermore, on average, shortleaf pine had the most canopy 
cover with all four data-integration classification methods, 
and Virginia pine had the least canopy cover (Table 3). The 
dry, better-drained ridgetops associated with the Cumberland 
Plateau, which are commonly found in the region, possibly 
provided suitable conditions for growing shortleaf pines 
(Hodges et al. 2018).

The overall, user, and producer accuracies varied in all 
data-integration scenarios. The overall accuracy is the average 
of the individual class accuracies expressed as a percentage 
(Mather and Koch 2011). The user accuracy is a measure of 
how well the classified canopy cover of loblolly, shortleaf, 
and Virginia pines on the map represented southern yellow 
pines on the ground. The producer accuracy is the ability of 
the random-forest classification algorithm to detect southern 
yellow pines.

Table 3. Percentage canopy cover of loblolly, shortleaf, and Virginia pines 
derived with the four data-integration classification methods.

Southern 
Yellow 

Pine

Scenario 1: 
Landsat  

OLI Alone

Scenario 2: 
Landsat OLI and 
Sentinel-1 Data

Scenario 3: 
Landsat OLI and 

Vegetation Indices

Scenario 4: Landsat OLI 
with Sentinel-1 Data 

and Vegetation Indices

Loblolly 14 17 23 14

Shortleaf 71 73 62 73

Virginia 15 10 15 13
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Figure 3. Classification map of southern yellow pines 
(loblolly, shortleaf, and Virginia pines) derived from stand-
alone Landsat OLI satellite data (scenario 1).

Figure 4. Classification map of southern yellow pines 
(loblolly, shortleaf, and Virginia pines) derived from the 
integration of Landsat OLI optical and Sentinel-1 microwave 
satellite data (scenario 2).

Figure 5. Classification map of southern yellow pines 
(loblolly, shortleaf, and Virginia pines) derived from the 
integration of Landsat OLI data and derived vegetation 
indices (scenario 3).

Figure 6. Classification map of southern yellow pines 
(loblolly, shortleaf, and Virginia pines) derived from the 
integration of Landsat OLI and Sentinel-1 data with derived 
vegetation indices (scenario 4).
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The overall classification accuracy of the canopy cover of 
southern yellow pines was about 67% when the stand-alone 
Landsat OLI satellite data set was used (scenario 1; Tables 4 
and 5). In this classification method, the user accuracy was 
highest (70%) for shortleaf pine and lowest (63%) for Virginia 
pine. In contrast, the producer accuracy was highest (79%) for 
Virginia pine and lowest (62%) for shortleaf pine (Table 4).

In the classification method in which the Landsat OLI 
reflectance scene was integrated with Sentinel-1 backscatter-
ing coefficients (scenario 2), the overall accuracy was about 
70% compared to reference data (Tables 4 and 6). The overall 
accuracy increased by about 5% relative to the stand-alone 
Landsat OLI satellite data. Similarly, other studies have found 
weaker performance using stand-alone Landsat OLI data in 
forest canopy cover prediction and mapping compared to 
integrating Landsat OLI data with Sentinel-1 microwave data 
(Poortinga et al. 2019; Biswas et al. 2020; Li et al. 2020). In 
scenario 2, the user accuracy was highest (73%) for shortleaf 
and lowest (67%) for Virginia pine. Both loblolly and short-
leaf pines had similar producer accuracies, of about 66%, 
whereas Virginia pine had a producer accuracy of approxi-
mately 83% (Table 4). Furthermore, when Sentinel-1 back-
scattering coefficients were integrated with Landsat OLI reflec-
tance bands, Virginia pine had a 4% gain in user accuracy, 
and shortleaf and loblolly pines had a 3% gain. The similar 
gains in user accuracy imply that the addition of Sentinel-1 
backscattering coefficients is useful for better characterizing 
loblolly, shortleaf, and Virginia pines. In contrast, short-
leaf and Virginia pines had a 4% gain in producer accuracy 
when Sentinel-1 backscattering coefficients were integrated, 
whereas loblolly pine had a 1% gain.

In the classification method in which the Landsat OLI 
reflectance scene was integrated with satellite-derived vegeta-
tion indices (scenario 3), the overall classification accuracy 
was around 75% compared to reference data (Tables 4 and 
7). The overall mapping accuracy of the canopy cover of 
southern yellow pines increased by about 12% relative to 
stand-alone Landsat OLI satellite data. Similarly, the results of 
Matongera et al. (2017) also showed that integrating Landsat 
OLI data with vegetation indices yielded better overall clas-
sification accuracy than stand-alone Landsat OLI satellite data. 
In scenario 3, the user accuracy was highest (87%) for loblolly 

Table 4. Classification accuracies of the canopy cover of southern yellow pines derived using four data-integration classification 
methods.

User Accuracy (%)

Southern Yellow 
Pine Class

Landsat OLI Alone 
(Scenario 1) 

Landsat OLI with 
Sentinel-1 Data (Scenario 2)

Landsat OLI with Derived 
Vegetation Indices (Scenario 3)

Landsat OLI with Sentinel-1 Data and 
Derived Vegetation Indices (Scenario 4) 

Loblolly 67 70 87 83

Shortleaf 70 73 75 80

Virginia 63 67 63 67

Producer Accuracy (%)

Southern Yellow 
Pine Class

Landsat OLI Alone 
(Scenario 1)

Landsat OLI with 
Sentinel-1 Data (Scenario 2)

Landsat OLI with Derived 
Vegetation Indices (Scenario 3)

Landsat OLI with Sentinel-1 Data and 
Derived Vegetation Indices (Scenario 4)

Loblolly 65 66 72 76

Shortleaf 62 66 71 73

Virginia 79 83 86 87

Overall Accuracy (%)

Landsat OLI Alone 
(Scenario 1)

Landsat OLI with 
Sentinel-1 Data (Scenario 2)

Landsat OLI with Derived 
Vegetation Indices (Scenario 3)

Landsat OLI with Sentinel-1 Data and 
Derived Vegetation Indices (Scenario 4)

67 70 75 77

κ Statistics

Landsat OLI Alone 
(Scenario 1)

Landsat OLI with 
Sentinel-1 Data (Scenario 2)

Landsat OLI with Derived 
Vegetation Indices (Scenario 3)

Landsat OLI with Sentinel-1 Data and 
Derived Vegetation Indices (Scenario 4)

0.5 0.54 0.62 0.65

Table 5. Error matrix table for the classification of southern 
yellow pines using stand-alone Landsat OLI satellite data 
(scenario 1).

Class Loblolly Shortleaf Virginia Total

Reference

Loblolly 20 8 2 30

Shortleaf 9 28 3 40

Virginia 2 9 19 30

Total 31 45 24 100

Table 6. Error matrix table for the classification of southern 
yellow pines using integrated Landsat OLI and Sentinel-1 
satellite data (scenario 2).

Class Loblolly Shortleaf Virginia Total

Reference

Loblolly 21 7 2 30

Shortleaf 9 29 2 40

Virginia 2 8 20 30

Total 32 44 24 100

Table 7. Error matrix table for the classification of southern 
yellow pines using integrated Landsat OLI data and satellite-
derived vegetation indices (scenario 3).

Class Loblolly Shortleaf Virginia Total

Reference

Loblolly 26 3 1 30

Shortleaf 8 30 2 40

Virginia 2 9 19 30

Total 36 42 22 100

Table 8. Error matrix table for the classification of southern 
yellow pines using integrated Landsat OLI and Sentinel-1 
satellite data and derived vegetation indices (scenario 4).

Class Loblolly Shortleaf Virginia Total

Reference

Loblolly 25 4 1 30

Shortleaf 6 32 2 40

Virginia 2 8 20 30

Total 33 44 23 100
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and lowest (63%) for Virginia pine. The producer accuracy 
was highest (86%) for Virginia pine and lowest (71%) for 
shortleaf pine (Table 4). Furthermore, loblolly pine had the 
greatest gain in user accuracy (20%), and Virginia pine the 
least (0%). This implies that the addition of vegetation indi-
ces is useful for better characterizing loblolly pine relative to 
shortleaf and Virginia pines. In contrast, shortleaf pine had 
the greatest gain in producer accuracy (9%), and loblolly and 
Virginia pines the least (7%).

In the classification method in which the Landsat OLI 
reflectance scene was integrated with Sentinel-1 backscatter-
ing coefficients and derived vegetation indices (scenario 4), 
the overall classification accuracy of southern yellow pines 
was approximately 77% compared to reference data (Tables 4 
and 8). The overall mapping accuracy of the canopy cover of 
southern yellow pines increased by about 15% compared to 
stand-alone Landsat OLI satellite data. In scenario 4, the user 
accuracy was highest (83%) for loblolly and lowest (67%) 
for Virginia pine. The producer accuracy was highest (87%) 
for Virginia pine and lowest (73%) for shortleaf pine (Table 
4). Furthermore, loblolly pine had the highest gain in user 
accuracy (16%) in scenario 4 compared to scenario 1, whereas 
Virginia pine had the lowest (4%). Likewise, both shortleaf 
and loblolly pines had the highest gain in producer accuracy 
(11%), and Virginia pine the lowest (8%).

The lower gain in user accuracy for Virginia pine relative 
to shortleaf and loblolly pines with the addition of Sentinel-1 
backscattering coefficients and derived vegetation indices 
is possibly due to the morphology of Virginia pine. It has a 
similar bark color to shortleaf pine—a mix of reddish brown 
(United States Department of Agriculture 2021)—which possi-
bly increased confusion between Virginia and shortleaf pines 
in the classification. Consequently, about 27% of Virginia 
pine was incorrectly classified on the map in scenario 4. 
Nonetheless, scenario 4 yielded the best overall classifica-
tion accuracy of the canopy cover of southern yellow pines, 
whereas the use of stand-alone Landsat OLI data (scenario 1) 
produced the weakest overall accuracy results in the classifi-
cation and mapping of the canopy cover of southern yellow 
pines. Scenario 4 achieved the best overall accuracy because 
the addition of Sentinel-1 backscattering coefficients and 
vegetation indices to Landsat OLI reflectance data improved 
the spectral resolution and variability of the input variables in 
the classification. This likely improved the predictive capabil-
ity of the random-forest classification algorithm. Hence, the 
addition of backscattering coefficients from Sentinel-1 and 
satellite-derived vegetation indices positively contributed to 
the classification and mapping of the canopy cover of loblolly, 
shortleaf, and Virginia pines.

Based on the feature-importance score—which estimates 
which variables were important in the classification pro-
cess—Landsat OLI spectral band 6 and MSAVI had the high-
est scores, ranked first and second, respectively. In contrast, 
IPVI and TSAVI had the lowest scores, ranked fifteenth and 
sixteenth, respectively. This means that Landsat OLI spectral 
band 6 and MSAVI were the most important input variables 
and had high contributions to the classification, whereas IPVI 
and TSAVI were the least relevant input variables and had low 
contributions. Therefore, not all the satellite data-derived 
vegetation indices are necessary in classifying and mapping 
southern yellow pines using the random-forest classification 
algorithm. Using just three of the vegetation indices—MSAVI, 
NDVI, and SAVI—will be enough to improve the classification 
and mapping of the canopy cover of southern yellow pines. 
Landsat OLI spectral bands 1 through 5 and 7, the Sentinel-1 
microwave C-band VV, VH, HV, and HH polarizations, NDVI, 
and SAVI had medium relevance and contributions to the 
classification, ranked between second and fifteenth based on 

their feature-importance scores. Therefore, out of the 16 input 
variables used in the classification process, 14 were relevant 
and necessary to improve the classification and mapping of 
southern pines. The use of the random-forest algorithm was 
better in the data-integration classification methods than the 
use of other machine-learning algorithms, such as support 
vector machine, because it provided estimates of the impor-
tance of each input variable in the classification process and 
could be used as a feature-selection tool.

In this study, the 7% decrease in overall classification 
accuracy of southern yellow pines produced by integrating 
Landsat OLI data with Sentinel-1 backscattering coefficients 
compared to using vegetation indices was not expected. This 
implies that vegetation indices could contribute more to the 
classification and mapping of the canopy cover of southern 
yellow pines than Sentinel-1 backscattering coefficients. 
However, to attain the best prediction and mapping of the 
canopy cover of loblolly, shortleaf, and Virginia pines, the in-
tegration of the Landsat OLI reflectance scene with Sentinel-1 
backscattering coefficients and derived vegetation indices is 
relevant.

Future research will examine how other machine-learning 
classification algorithms, such as gradient-boosted tree, ex-
treme gradient boosting, and multi-layer perceptron, perform 
against the random-forest classifier in mapping southern 
yellow pines using the Landsat OLI reflectance scene with 
Sentinel-1 backscattering coefficients and derived vegetation 
indices. Furthermore, exploring the integration of Landsat OLI 
optical data with Sentinel-1 C-band SAR sensor and lidar data 
in other natural-resources applications, such as wetlands and 
agriculture, is an area of further research.

Conclusion
This study successfully examined the integration of Landsat 
OLI optical data with Sentinel-1 microwave satellite data and 
derived vegetation indices in mapping the canopy cover of 
loblolly, shortleaf, and Virginia pines. We found that when 
Landsat OLI data was integrated with Sentinel-1 backscattering 
coefficients, the classification of the canopy cover of south-
ern yellow pines increased by about 5% compared to stand-
alone Landsat OLI satellite data. Similarly, the integration 
of Landsat OLI reflectance bands with satellite data-derived 
vegetation indices increased the overall mapping accuracy by 
about 12% compared to stand-alone Landsat OLI satellite data. 
Furthermore, the best overall classification accuracy (77%) 
of the canopy cover of southern yellow pines was produced 
when the Landsat OLI reflectance scene was integrated with 
Sentinel-1 backscattering coefficients and derived vegetation 
indices. Landsat OLI spectral band 6 and MSAVI were the most 
important input variables in the classification of the canopy 
cover, and IPVI and TSAVI were the least important variables. 
The classification method that integrated Landsat OLI optical 
data with Sentinel-1 microwave satellite data and derived 
vegetation indices can be easily developed to successfully 
map the canopy cover of southern yellow pines.
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