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A Novel Algorithm for Validating Peptide Identification from a
Shotgun Proteomics Search Engine
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Mu Zheng, Jennifer L. Jennings, Kristen L. Hoek, Tara Allos, Leigh M. Howard.#, Kathryn
M. Edwards#, P. Anthony Weil*, and Andrew J. Link2

1Department of Pathology, Microbiology and Immunology, Vanderbilt University School of
Medicine, Nashville, TN, School of Mathematical Sciences, Dalian University of Technology,
Dalian, China
3Department of Mathematics and Computer Science, Western Kentucky University, Bowling
Green, KY
4Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN
*Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine,
Nashville, TN
#Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN

Abstract
Liquid chromatography coupled with tandem mass spectrometry has revolutionized the
proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem
mass spectra from a LC/MS/MS experiment are assigned to a peptide by a search engine that
compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein
database. The peptide spectra matches are then used to infer a list of identified proteins in the
original sample. However, the search engines often fail to distinguish between correct and
incorrect peptides assignments. In this study, we designed and implemented a novel algorithm
called De-Noise to reduce the number of incorrect peptide matches and maximize the number of
correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the
SEQUEST search engine. The novel algorithm uses a three step process: data cleaning, data
refining through a SVM-based decision function, and a final data refining step based on
proteolytic peptide patterns. Using proteomics data generated on different types of mass
spectrometers, we optimized the De-Noise algorithm based on the resolution and mass accuracy of
the mass spectrometer employed in the LC/MS/MS experiment. Our results demonstrate De-Noise
improves peptide identification compared to other methods used to process the peptide sequence
matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it
can be easily implemented with other search engines.
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Introduction
Liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) offers the
promise to comprehensively identify and quantify the proteome of complexes, cells and
tissues. The large numbers of peptide spectra generated from LC/MS/MS experiments are
routinely searched using a search engine against theoretical fragmentation spectra derived
from target databases containing either protein or translated nucleic acid sequences. It is
typically assumed that a peptide spectrum match (PSM) for each MS/MS spectrum is
contained in the sequence database. In a typical peptide identification procedure, PSMs are
ranked according to either a cross correlation, a statistical score, or a probability that the
match between the experimental and theoretical is correct and unique. Only those PSMs
with the highest scores or most significant probabilities are reported as correct. However,
this approach often falsely identifies the peptides. In reality, more than 50% of PSMs
initially assigned by database search engines, such as SEQUEST, MASCOT, and X!
TANDEM are incorrect 1,2. As a result, the accuracy of database search results is often
evaluated by searching a decoy protein database to identify the false discovery rate
(FDR) 2-8. Decoy databases contain either reversed or randomly shuffled protein sequences
derived from the target protein database. The database search engine assigns an observed
spectrum to either a target or a decoy sequence. The assignment of a peptide from a decoy
database to an experimental spectrum is considered incorrect because it is assumed that there
is no such peptide sequence in reality. The target-decoy database search also indicates the
quality or reliability of the target PSMs. Nonetheless, the target PSMs are not all correct due
to either the poor quality of the experimental MS/MS data, the absence of the sequence in
the database, or unexpected amino acid modifications. As a consequence, a fraction of the
target PSMs from the search engine is false positive. Hence, manual or computational
approaches are essential to validate target PSMs after a search engine-protein database
analysis of LC/MS/MS data.

SEQUEST is one of the most widely used approaches for automatically assigning the
observed spectra generated from a LC/MS/MS experiment to peptide sequences in a
sequence database 9. However, the original SEQUEST algorithm does not include a
statistical method to determine the specificity of peptide-spectrum matching. An early
approach to identify correct target PSMs uses empirical score filters set at defined score
thresholds to validate PSMs from a SEQUEST search 10,11. PSMs above the defined
thresholds are accepted as correct, while those below are assumed to be incorrect. The
empirical score filters are not always easily defined due to the multiple scoring metrics
derived from SEQUEST scores and the variable quality of the mass spectrometry data. Also,
the accuracy of the validated PSMs derived from an empirical scoring filter varies with the
type of mass spectrometer used.

Different approaches have been developed to validate peptide assignments 12. One of the
most commonly used computational tools is PeptideProphet, which uses a Bayesian
statistical algorithm to convert SEQUEST scores into probabilities 13. With PeptideProphet,
conditional probabilities for the PSMs are computed by the expectation maximization (EM)
method, using the assumption that the PSM data are drawn from a mixture in which the
distribution of the correct and incorrect PSMs follows a prescribed Gaussian model. A list of
PSMs above a predefined posterior probability is reported 13. An updated version of
PeptideProphet utilizing a semi-supervised technique was recently developed 14. It
integrates the EM algorithm with a decoy database search strategy to build a classifier based
on a Bayesian probability model.

To provide a more efficient way of evaluating SEQUEST outputs, MacCoss and Noble's
group employed support vector machine (SVM), a powerful classification technique 16,17, to
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classify correct and incorrect PSMs after a database search 15,16,17. SVM-based
classification is a supervised learning approach that uses training data to build a model and
assign a label to each data point. They used this approach to create the algorithm called
Percolator to directly distinguish correct from incorrect PSMs 4. The goal of Percolator is to
increase the number of correct target PSMs reported at a minimal FDR or q-value 18.
Starting with a small set of trusted correct PSMs and a set of incorrect PSMs from searching
a decoy database, Percolator iteratively adjusts the learning model to fit the dataset by
ranking high-confidence PSMs higher than decoy peptide matches. With the given q-value,
this approach iteratively trains the classifier and eventually results in a classifier that has an
improved ability to distinguish correct from incorrect PSMs.

In this study, we have developed a novel algorithm called De-Noise for statistical validation
of correct target PSMs identified by SEQUEST. De-Noise uses a SEQUEST search of a
concatenated database containing both target and decoy proteins. It uses the decoy PSMs as
incorrect references for measuring the reliability of the correct target PSMs. The De-Noise
algorithm is a continuous refining process by which the incorrect target PSMs or noisy
PSMs are sequentially eliminated. First, it computes the distance of every target PSM to the
centroid of the decoy PSMs. With the assumption that the target PSMs close to the centroid
of the decoy PSMs are incorrect or noise, they are eliminated based on a defined ratio. The
remaining dataset provides a set of PSMs with improved quality for building an SVM-based
decision function to refine the target and decoy PSM. Using a given false positive rate
(FPR), De-Noise distinguishes the correct from incorrect target PSMs using two rounds of
SVM-based decision functions and refinement. Specifically, the lowest scoring target PSMs
are discarded from the dataset based on the scores derived from SVM-based decision
functions until the FPR is reached. Next, the algorithm sorts the remaining PSMs based on
the expected protease digestion patterns into three categories: canonical, half-canonical, and
non-canonical. It assigns the protease digestion categories an expectation factor based upon
the expected distribution of the three categories. With the expectation factor and a score
(PSMevaluator) derived from normalized SEQUEST's Xcorr and DeltaCn scores, De-Noise
further refines the PSMs to eliminate the incorrect target PSMs.

Our results demonstrate De-Noise has increased sensitivity and specificity for validating
PSMs after a SEQUEST search compared to both PeptideProphet and Percolator. To
evaluate the performance of De-Noise, we used LC/MS/MS datasets generated from various
control and biological samples run on different mass spectrometers. The mass spectrometers
had a wide range of mass accuracies, resolutions, and user-defined capabilities for selecting
the precursor ions to fragment. The low and high data quality datasets were used to develop
and evaluate our De-Noise algorithm. Our results demonstrate that De-Noise validates more
correct target PSMs under a series of fixed FDRs compared to PeptideProphet and
Percolator. The target PSMs validated by these two algorithms extensively overlaps De-
Noise's validated PSMs. These results demonstrate De-Noise can increase the number of
validated target PSMs.

Materials and Methods
Reagents

Universal Proteomics Standard Set (UPS1) was purchased from Sigma (St. Louis, MO).
Partisphere strong cation exchange (SCX) material was purchased from Whatman
International Ltd. Jupiter 3μ C18 300A, reverse phase (RP) material was purchased from
Phenomenex (Torrance, CA). Formic acid and HPLC-grade acetonitrile were obtained from
Fisher Scientific (Pittsburgh, PA). Trypsin was purchased from Promega (Madison, WI,).
PEEK tubing, sleeves, microtee and microcross were obtained from Upchurch Scientific
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(Oak Harbor, WA). Fusedsilica capillaries were purchased from Polymicro Technologies
(Phoenix, AZ).

Sample Preparation and LC/MS/MS Analysis
UPS1—UPS1 was solubilized in water, reduced with dithiothreitol (DTT), alkylated with
iodoacetamide (IAA), and trypsin digested as previously described 19. The tryptic peptides
were analyzed with RP microcapillary LC/nanoESI/MS/MS. Briefly, a fritless,
microcapillary 100-μm-inner diameter column was packed with 9 cm of Jupiter C18 RP
material. A 0.5 pmol aliquot of the trypsin-digested UPS1 was loaded onto the RP column
equilibrated in buffer A (0.1% formic acid, 5% acetonitrile). The column was placed in line
with an LTQ linear ion trap mass spectrometer (ThermoFisher). The sample was eluted
using a 60-min linear gradient from 0 to 60% buffer B (0.1% formic acid, 80% acetonitrile)
at a flow rate of 0.3 μl/min. During the gradient, the eluted ions were analyzed by one full
precursor MS scan (400–2000 m/z) followed by MS/MS scans on the five most intense
precursor ions detected in the precursor MS scan while operating under dynamic exclusion.

Gcn4—Affinity preparation of the S. cerevisiae Gcn4 complex and its MudPIT analysis
using an LCQ quadrupole ion trap mass spectrometer (Thermofisher) have been previously
described 19.

Tal08—S. cerevisiae transcription complexes were prepared from yeast YTT3675 cells
using the Tal08 minichromosome 20 and Dynal beads (Invitrogen) cross-linked to anti-Flag
M2 antibody (Sumanasekera et al. manuscript in preparation). For Tal08 complexes, 20 ng
of BSA was added to the Tal08 sample as an internal standard. The Tal08 sample was
reduced with DTT, alkylated with IAA, and trypsin digested as previously described 19. The
desalted tryptic peptides were analyzed using a 11-step MudPIT experiment on a LTQ-
Orbitrap XL (ThermoFisher). A 100 μM ID fused silica microcapillary packed with 3 cm of
PartiSphere SCXmaterial was coupled to a 12 cm long pulled fused silica capillary column
packed with Jupiter C18 RP material. For the Mudpit run, the salt steps were 25 mM, 50
mM, 75mM, 100 mM, 150mM, 200 mM, 250 mM, 300 mM, 500 mM, 750 mM and 1M
ammonium acetate. A 100 min linear RP gradient from 5% to 45% Buffer B was used for
each salt step. Buffer A was 0.1% formic acid in HPLC-grade water and Buffer B was 0.1%
formic acid in acetonitrile. A precursor ion scan was performed in the Orbitrap with preview
mode and monoiosotopic precursor selection (MiPS) enabled. The top 10 precursors ions
based on intensity were fragmented in the ion trap using 35% normalized collision energy.
Dynamic exclusion was enabled for 180 s with a repeat count of 1 for a 30s duration, a list
size of 500, and an exclusion mass tolerance of 10 ppm.

PBMC—Human peripheral blood mononuclear cells (PBMC) were obtained from fresh
venous blood using a Ficoll gradient protocol (Hoek et al., manuscript in preparation).
PBMCs were lysed in 50% trifluoroethanol (TFE) in 50 mM triethylammonium bicarbonate
(TEAB) essentially as described 21. The total protein content was quantified using a
Bradford assay. The PBMCs lysate was reduced with DTT and alkylated with IAA. The
sample was diluted 1:5 with 50mM TEAB to make the final concentration of TFE <10% and
digested with trypsin as previously described 19. The desalted sample was analyzed using a
LTQ-Orbitrap XL and a LTQ-Orbitrap Velos (Thermofisher). In the LTQ-Orbitrap XL
analysis, 6-step MuDPIT experiments were performed using either MiPS or MiPS-off. A
100 μM ID fused silica microcapillary packed with 3 cm of Partisphere SCX material was
coupled to a 12 cm long 100 μm ID fritless pulled fused silica microcapillary capillary
column packed with Jupiter C18 RP material. For both the MiPS and MiPS-off experiments,
the MudPIT salt steps were 50 mM, 100 mM, 200 mM, 300 mM, 500 mM and 1M
ammonium acetate. A 100 min RP linear gradient from 5% to 45% Buffer B was used for
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each step. Buffer A was 0.1% formic acid in HPLC-grade water and Buffer B was 0.1%
formic acid in acetonitrile. A precursor ion scan was performed in the Orbitrap with preview
mode enabled. The top 10 precursors ions based on intensity were fragmented in the ion trap
using 35% normalized collision energy. Dynamic exclusion was enabled for 180 s with a
repeat count of 1 for a 30 s duration and a list size of 500. The exclusion mass tolerance was
set to 10 ppm for MiPS. For MiPS-off, the exclusion mass width was set between 1.5 and
2.5. For the LTQ-Orbitrap Velos analysis, 11-Step MuDPIT experiments were performed
with either MiPS or MiPS-off, similar to Orbitrap XL experiments. The MudPIT salt pulses
used were 25 mM, 50 mM, 75mM, 100 mM, 150mM, 200 mM, 250 mM, 300 mM, 500
mM, 750 mM and 1M ammonium acetate. A 100 μM ID fused silica microcapillary packed
with 3 cm of PartiSphere SCX material was coupled with a fritless, microcapillary 100-μm-
inner diameter column packed with 20 cm of Jupiter C18 RP material. A 90 min linear
gradient from 2% to 40% Buffer B was used for each salt step. Buffer A was 0.1% formic
acid in HPLC-grade water and Buffer B was 0.1% formic acid in acetonitrile. A precursor
ion scan was performed in the Orbitrap with preview mode enabled. The top 16 precursor
ions based on intensity were fragmented in the dual pressure ion trap with 35% normalized
collision energy. For both MiPS and MiPS-off, dynamic exclusion was enabled for 15 s with
a repeat count of 1 set for a 10 s duration, a list size of 500, and an exclusion mass width set
between 0.5 and 0.5.

PMN: Polymorphonuclear cells—(PMN) were obtained from fresh venous human
blood using a Ficoll gradient protocol (Hoek et al., manuscript in preparation). PMNs were
lysed in 50% TFE in 50 mM HEPES buffer as essentially described 21. The total protein
content was quantified using a BCA assay. The PMN lysate was reduced with DTT and
alkylated with IAA. The sample was diluted 1:5 with 50 mM HEPES to make the final
concentration of TFE <10% and digested with trypsin as previously described 19. A 6-step
MuDPIT experiments was performed on a LTQ mass spectrometer (ThermoFisher) as
previously described 19.

Tandem MS Data analysis with SEQUEST
The RAW files generated from the LCQ, LTQ and Orbitrap LC/MS/MS experiments were
converted to dat or mzXML formats with the program ReadW. The MS/MS spectra were
extracted from the mzXML file using the program MzXML2Search and the data were
analyzed using the SEQUEST algorithm to search either a Sigma48, S. cerevisiae
(SGD_2010) or human Uniprot (uni280910) target and decoy concatenated protein
database 22,23. All decoy databases were created by reversing the sequences in the target
databases. For Percolator, separate target and decoy searches were performed. For all data
processing, a static modification of 57.021464 for cysteine was used. All SEQUEST
searches were performed with no enzyme specificity.

Analysis of SEQUEST Database Search Result Using PeptideProphet
To validate the PSMs identified by SEQUEST, the SEQUEST outputs from the LC/MS/MS
experiments were loaded into the Trans Proteomic Pipeline V.4.0.2 (TPP). The search
outputs were converted to pep.XML format files and analyzed by the TPP program
PeptideProphet 24. Validation of the PSMs was performed by testing a range of probability
filters until the desired FDR was reached. The pep.XML output file from PeptideProphet
was converted to a CSV format. The CSV file was parsed with the in-house Perl script
digest4peptide.pl, to sort the validated PSMs into lists of full-, half-, or non-canonical tryptic
peptide consensus sequences.
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Analysis of SEQUEST Database Search Using ATP
The SEQUEST *.out files were concatenated by an in-house Perl script
grab_files_threaded.pl to generate a merged *.outs file. The concatenated *.outs file was
parsed and loaded into an Oracle relational database using the in-house Perl script
concurrent_loading.pl and processed and analyzed using BIGCAT/ATP 25,26. Two
previously described filters, with low and high thresholds, were used to validate PSMs 10,27.
The low-threshold filter for PSMs was set with cutoff values of Xcorr ≥ 1.5 for +1 charge
state spectra, Xcorr ≥ 2 for +2 spectra, and Xcorr ≥ 2 for +3 spectra. Only fully-canonical
PSMs were accepted 10. For a high-threshold filter 27, PSMs with a +1 charge state were
valid if they were fully-canonical and had an Xcorr > 1.9. PSMs with a +2 charge state were
valid if they were fully-caonical or half-canonical and had Xcorr ranges between 2.2 and
3.0. PSMs with a +2 charge state and an Xcorr >3.0 were valid regardless of the PSM's
protease consensus pattern. Finally, +3 peptides were valid if they were fully- or half-
canonical and had an Xcorr >3.75. The filtered outputs from both filters were stored in CSV-
formatted files and analyzed using Microsoft Excel.

Analysis of SEQUEST Database Search Using Percolator
The target and decoy SEQUEST outputs from the LC/MS/MS experiments were converted
to a merged file in SQT format 28 using an in-house modified version of the program
Unitemare.pl (http://fields.scripps.edu/downloads.php). The UNIX sed utility was used to
remove the header information of the converted SQT files. Two entries, H SQT Generator
SEQUEST and H SQTGeneratorVersion2.7, were added as headers to the SQT files so that
they can be analyzed by Percolator. The SEQUEST target and decoy search results in SQT
format were loaded into Percolator. A range of q-values were tested until the desired FDR
was reached. The outputs were stored in tab delimited format. The outputs were parsed by
the in-house Perl script get_digest4percolator.pl to sort the validated PSMs based into list of
full-, half-, or non-canonical tryptic peptide consensus sequences.

Analysis of SEQUEST Database Search using the De-Noise Algorithm
The SEQUEST result in *.out format were converted to Microsoft Excel format and
processed by the De-Noise algorithm implemented with Matlab version 7.8.0.347 running
on a Dell T410 with the Windows Server 2008R2 Standard operating system, 32 GB of
RAM, and an Intel® Xeon® CPU at 2.27GHz. Two support libraries and packages LibSVM
library 29 and SKMsmo 30 needed for De-Noise decision function calculation were installed
on the Dell T410 30. The Matlab functions tic and toc were used to measure the De-Noise
execution time running on the T410 machine. The validated peptides generated by the De-
Noise algorithm were exported in Microsoft Excel format.

Results and discussion
Generation of Test Datasets

One goal in developing the De-Noise algorithm was to create a PSM validation tool
unbiased in terms of sample, type of mass spectrometer, or mass spectrometry method.
Therefore we used seven LC/MS/MS datasets generated from a variety of control and
experimental protein samples analyzed on different mass spectrometers. First, we used a
prepared mixture of 48 known human proteins (UPS1), which allowed us to unambiguously
identify incorrect and correct PSMs. Second, we used affinity purified yeast Gcn4 and Tal08
minichromosome complexes and Ficoll-purified human PBMCs, which were authentic
biological samples and contained both expected and unexpected proteins. The Tal08 sample
contained bovine serum album as an internal standard. All samples were trypsin-digested
prior to LC/MS/MS analysis.
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The Gcn4 and UPS1 samples were analyzed on LCQ and LTQ mass spectrometers,
respectively. To maximize the number of precursor ions fragmented, these ion trap datasets
measured the precursor ion masses at low resolution and mass accuracy 31. The Tal08 and
PBMC samples were analyzed on LTQ-Orbitrap instruments. The Orbitrap's high resolution
and mass accuracy measurement of the precursor ions' m/z ratios allowed us to use
monoisotopic precursor selection (MiPS) to select only peptide-like precursors for
fragmentation 3432,33. For the seven experiments, we searched the LC/MS/MS data against
concatenated target and decoy databases using the SEQUEST algorithm with no protease
enzyme specificity 9. The top scoring SEQUEST PSM for each MS/MS spectrum was used
for all downstream data validation. For spectra matched to peptide sequences in the target
database, we assumed they were true hits and treated them as correct PSMs. Spectra
matched to peptide sequences in the decoy database were considered false hits and were
treated as incorrect PSMs. Based on this assumption, the FDR was computed using the
equation below 35,36

where Dn is the number of the spectra matched to decoy peptide sequences and Tn is the
total number of the PSMs matched to target peptide sequence. Table 1 summarizes the
different samples, types of mass spectrometers, precursor ion selection methods, the number
of MS/MS spectra collected, and the unfiltered SEQUEST search results using concatenated
target and decoy protein databases. These datasets and PSMs were used for the design and
evaluation of the De-Noise algorithm.

Variation in the Datasets
We observed several effects of the type of MS/MS analysis on the datasets. First, we
compared the datasets obtained from the LCQ and LTQ to those obtained from the LTQ-
Orbitrap XL and LTQ-Orbitrap Velos. There were distinct differences in the FDRs and
decoy PSMs/total PSMs ratios when we compared the UPS1 and Gcn4 results to the Tal08
and PBMC results (Table 1). The LCQ and LTQ data had higher calculated FDRs and decoy
PSM/total PSMs ratios compared the Orbitrap data. Compared to the LCQ and LTQ
instruments, the Orbitrap mass spectrometers have higher mass accuracy and resolution and
different precursor methods for selecting and analyzing precursor ions. Second, we found
that the precursor selection feature (MiPS) of the Orbitrap instruments influenced the results.
With MiPS, there were significantly fewer PSMs, target PSMs, and decoy PSMs compared
to with MiPS–off (Table 1). Although the precursor selection method significantly
influenced the total number of PSMs, there was little variation in the decoy PSMs/total
PSMs ratios and the calculated FDRs if MiPS or MiPS-off was used. We postulated that
these variations in the quality of the acquired mass spectrometry data needed to be taken into
consideration in the design of the De-Noise algorithm.

Creating an Improved Dataset for the Decision Function
In a typical binary classification of correct and incorrect PSMs, the target PSMs are labeled
as correct or +1, and decoy PSMs are labeled as incorrect or -1. The classifier learns from
the training dataset to assign either +1 or -1 class labels to PSMs. However, a large number
of PSMs assigned as target PSMs by SEQUEST are actually incorrect 2. These mislabeled
target PSMs should be assigned to the incorrect class. If the mislabeled target PSMs were
discarded from the PSMs dataset, we would create a better target PSM dataset to generate an
improved decision function. A challenge was how to eliminate the incorrect target PSMs
from the correct target PSMs.
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The initial step in De-Noise is to cleanse the dataset of incorrect or noisy target PSMs. The
PSM data were represented as vectors based on the attributes from five SEQUEST scores:
Xcorr, DeltaCn, SPrank, Ions, and Calc-neutral-pep-mass. To avoid attributes with larger
values dominating ones with smaller values, we normalized each of the original SEQUEST
scores by using the following equation

where x_nor is the normalized SEQUEST score, x_raw is the original SEQUEST score, std
x_raw is the standard deviation of the original SEQUEST score. Next, each target PSMs is
classified as incorrect or correct by computing its distance to the centroid of the decoy PSMs
which belongs to the -1 class. Specifically, given a set S with m PSMs, S consisted of m+ +1
and m− -1 PSMs. Let S+ = [x+

1, x+
2,…, x+

m+] be the set of +1 PSMs and S− = [x−
1, x−

2,…,
x−

m−] be the set of -1 PSMs. We first apply multiple kernel methods to map the PSM data
points using the function φ into feature space where the target and decoy can be separated
more easily 37. The centroid of the -1 PSMs in the feature space denoted by x−

C is computed
using the equation below

where φ is the mapping function mapping PSM data points to feature space in which the
inner product <φ (x), φ(y)> can be computed through the kernel function 37. Next, we
computed the distance between each target PSM data point xi and x-

C in the feature space as
follows

where k(xi,xj) is the kernel function.

All +1 target PSMs with distances to the centroid of the -1 decoy PSMs less than a specific
threshold are assumed to be incorrect and are discarded from the target PSM dataset. Let
d(x+i, x−

C) be the distance from x+
i to x−

C in the feature space. For a threshold d0, x+
i were

selected as incorrect and should be removed if d(x+
i, x−

C)≤d0. In practice, it was a challenge
to choose the optimal threshold d0 because correct target PSMs could be discarded if d0 is
set too stringently. If it is too permissive, a large number of incorrect PSMs would remain in
the dataset.
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Instead of using a distance threshold, we set the number of discarded incorrect target PSMs
by applying the ratio θ using the equation below.

Previous studies have shown 10-50% of target PSMs identified by a database search engine
are correct 2. The dilemma was how to determine θ to generate a target PSMs dataset
cleansed of incorrect PSMs without throwing out correct target PSMs.

To guide our determination of θ, we took advantage of the distinct differences in the decoy
PSMs/total PSMs ratio between the unfiltered LCQ and LTQ datasets and those derived
from the Orbitrap datasets (Table 1). We assumed that the precursor ion spectra collected
using the Orbitrap are of higher quality compared to the datasets obtained using LCQ and
LTQ ion traps. A majority of MS/MS spectra (>60%) collected from the Orbitrap
instruments were assigned to target PSMs, whereas only ∼50% of the spectra collected from
the LCQ and LTQ were assigned to target PSMs. We therefore inferred that if the decoy
PSMs/total PSMs ratio is ≥40%, θ needs to be set to a larger value to cleanse more incorrect
target PSMs. However, if the decoy PSMs/total PSMs ratio was <40%, we needed to set θ at
a smaller value. Based on previous studies, θ was set at 0.1 for the UPS1 and Gcn4
datasets 2. This resulted in the elimination of additional incorrect target PSMs. For the Tal08
and PBMC datasets, we empirically optimized the values for θ by testing a θ range of 0.01
to 0.1. We found a θ of 0.03 resulted in the optimal number of incorrect target PSMs being
cleansed from the target PSMs while keeping the distribution of fully-, half, and non-
canonical PSMs consistent with the expected ratios (Fig S1 ).

The De-Noise algorithm was designed to automatically determine the value of θ based on
the decoy PSMs/total PSMs ratio from the unfiltered SEQUEST results. With the selected θ,
the incorrect target PSMs were iteratively eliminated based on the distance of the target
PSMs to the centroid of decoy PSMs. Target PSMs with the shortest distance to the centroid
of the decoy PSMs are discarded first. This elimination of target PSMs considered noisy
continued until the eliminated PSMs/total PSMs ratio satisfied θ.

Refining the PSM Datasets Using SVM-based Decision Functions
Finding an efficient decision function to calculate the decision score for each PSM was a
critical step in the De-Noise algorithm. A kernel-based method provides a powerful learning
tool for datasets with nonlinear structures and is adaptable to a variety of data types. The
kernel method works by mapping data points within the vector space into a feature space
where they can be easily separated. With the kernel method, we could combine different
mappings by the sum of corresponding kernel matrices to provide complementary views of
the data. In order to precisely characterize the relationships of each pair of PSMs, we tested
the Polynomial, Gaussian, and Laplace kernel functions. Because it gave the greatest
separation between target and decoy PSMs (Fig. S2), we selected Gaussian kernels
computed with different weights using the equation

where K is the combination of individual Gaussian kernels, Ki, i=1,…,m, , and μi are the
corresponding weights. In our experimental studies, the kernel width of the individual
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Gaussian kernel was chosen as 1, 0.5, and 0.2 respectively, and the weights μi were learned
by using the SKMsmo software package30.

After the noisy target PSMs are discarded from the original target PSMs dataset based on θ,
two rounds of data refining with SVM-based decision functions are performed to separate
the correct from the incorrect PSMs. In the first round, the updated target PSMs dataset S+

and the decoy PSMs dataset S- are combined into set S0 to build the first SVM decision
function. The target PSMs x+

i ∈ S+ are treated as incorrect PSMs if their decision function
f(x+i) ≤ 0 where f(x+

i) was determined by the SVM learning model. These incorrect target
PSMs are discarded from S0 to generate S1 containing the remaining PSMs.

We observed that a subset of S1's target PSMs had f(xZ+
i) scores < decoy PSMs f(x-

i) scores.
We assumed some of these PSMs to be incorrect and targeted them in a second SVM
decision function and refinement. The refined target PSM dataset S1 is used to build a
second decision function. To remove the incorrect target PSMs, we applied a new parameter
γ using the equation below.

In this second round, f(xγ-) is the score of the lowest scoring decoy PSM that was retained.
By comparing f(x+

i) to f(xγ-), the target PSM x+
i is discarded if f(x+

i) ≤ f(xγ-). De-noise
iteratively tests a range of γ until the desired FDR is reached. As a result, a second set of
incorrect target PSMs are cleansed to generate S2. In the refining processes, a default slack
penalty parameter of 1 is used.

Refining Target PSMs using Proteolytic Peptide Patterns
After the refining steps, De-Noise used proteolytic patterns to validate the PSMs from S2.
We catagorized PSMs in the seven datasets into three groups based on their protease
digestion patterns; fully-canonical, half-canonical, and non-canonical. Table 2 shows the
majority of the PSMs representing fully-canonical peptides were assigned to target peptides.
Only a very small number of fully-canonical PSMs were assigned to decoy peptides. These
results indicated that the fully-canonical target PSMs are more likely to be correct matches
and should be retained. However, the decoy/target ratio showed the number of half- and
non-canonical target and decoy PSMs assigned to the LCQ and LTQ datasets were almost
equal (Table 2). This strongly implied that a higher percentage of false positives were
present in half- and non-canonical target PSMs compared to the fully-canonical PSMs. From
this observation, we reasoned that a higher proportion of incorrect target PSMs from these
two categories needed to be ultimately eliminated. We observed the Orbitrap datasets had
similar decoy/target ratios for fully-canonical and non-canonical PSMs. However, the
Orbitrap datasets had a lower decoy/target ratio for the half-canonical target PSMs
compared to the half-canonical decoy PSMs from the LCQ and LTQ datasets. We reasoned
that a higher percentage of the half-canonical target PSMs from the Orbitrap datasets should
be retained compared to data from the LCQ and LTQ.

In a proteolytic digest using a site-specific protease, a majority of peptides are canonical
followed by half canonical and non-canonical peptides. Therefore, a greater weight is
applied to canonical peptides compared to half-canonical and non-canonical peptides. Using
De-Noise, all fully-canonical peptides generated after the second refining were retained in
the LCQ, LTQ and Orbitrap datasets. However, the distribution of half- and non-canonical
PSMs coming from De-Noise were significantly different compared to the distributions
generated by PeptideProphet and Percolator. To correct for this result, the half- and non-
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canonical PSMs from the 2nd round of SVM-based refining were filtered depending on the
type of mass spectrometer used. We developed an approach that aims to remove half- and
non-canonical PSMs after the 2nd refining while optimizing both the number of validated
PSMs and the distribution of half- and non-canonical PSMs. First, for the PSMs in dataset
S2,, we calculated a PSMevaluator value using the equation

where XcorrNor is the normalized Xcorr and DeltaCnNor is the normalized DeltaCn
described earlier. We used these two attributes because they have been previously shown to
contribute the most towards measuring the accuracy and uniqueness of a PSM,
respectively 9,11,15. Next we

Using a range of τhalf and τnon, we developed an iterative approach to select the τ values
that optimized the balance between the total number of validated PSMs and the distribution
of half-and non-canonical PSMs. We tested a range of τhalf and τnon to achieve an
equivalent distribution of half- and non-canonical validated PSMs as reported by
PeptideProphet and Percolator (Table S1 and S2). The values for τhalf and τnon for the LCQ/
LTQ datasets were determined to be 0.12 and 0.005, respectively (Table S1). For Orbitrap
datasets, τhalf and τnon were determined to be 0.5 and 0.005 (Table S2), respectively. With
the τhalf and τnon values, the half and non-canonical PSMs were discarded from the 2nd

round of refining based on the PSMevaluator score. Finally, the pseudocode for the entire De-
noise algorithm is summarized in Fig. 1.

Evaluating De-Noise's Performance
To evaluate the performance of De-Noise, we compared its performance against the
PeptideProphet and Percolator algorithms for validating SEQUEST target PSMs 10,11. First,
we measured De-Noise's runtime using the UPS1 and PBMC Oritrap Velos MiPS-off
datasets. It took ∼43 s for De-Noise to process the UPS1 data, which was the smallest
dataset and ∼4082 s to validate the PBMC Oribitrap Velos MiPS-off data which was the
largest. We found the runtimes were very similar to comparable approaches 13-15. Second,
we compared the number of PSMs identified by three algorithms. Table 3 shows De-Noise
validated more PSMs than the semi-supervised PeptideProphet and Percolator learning
approaches and two Xcorr filtering approaches (Low- & High- Stringency). Since the
approaches using learning algorithms to validate PSMs from SEQUEST had the highest
performance (Table 3), we focused our evaluation of De-Noise compared to PeptideProphet
and Percolator.

To compare the validated PSMs from the De-Noise, PeptideProphet, and Percolator, we
looked at the overlapping PSMs. Fig. 2 and S3 shows that the majority of De-Noise
validated PSMs were also validated by PeptideProphet and Percolator. Table 4 shows a
numerical summary of the overlapping validated PSMs from the three approaches. For
example, for UPS1 dataset, 94% of the PSMs validated by PeptideProphet overlapped with
De-Noise while 90% of the PSMs validated by Percolator were validated by De-Noise.
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Similar patterns were seen in the other datasets in which De-Noise shared more validated
PSMs with PeptideProphet than with the Percolator (Table 4, Fig. 2, and Fig. S3).

To show that our approach to remove half- and non-canonical target PSMs after the refining
generated a similar distribution compared to PeptideProphet and Percolator, we compared
the categorized overlapping outputs from the three approaches for the UPS1, Gcn4, and
Tal08 datasets (Table 5 and 6). The validated PSMs and the overlapped PSMs from all three
approaches for UPS1 and Gcn4 showed a similar distribution pattern. The number of
validated fully-canonical PSMs was the largest class followed by the half-canonical and
non-canonical PSMs, respectively (Table 5 and 6). The considerable overlap of validated
PSMs from De-Noise, PeptideProphet, and Percolator (Table 5) and the similar distributions
of PSMs (Table 6) showed De-Noise's approach to retain the most significant half- and non-
canonical PSMs was valid.

We compared De-Noise, PeptideProphet, and Percolator using different FDR values. Fig. 3
shows the number of validated PSMs from the seven datasets using a series of FDRs. The
performance of a validation approach is better if it validates more target PSMs compared to
another approach with the same FDR. The plots in Fig. 3A and 3B demonstrated the De-
Noise validated more target PSMs compared to PeptideProphet and Percolator. From the
Gcn4 dataset, De-Noise validated approximately 2.8% and 13.2 % more PSMs than
PeptideProphet and Percolator, respectively. Likewise, from the UPS1 dataset, De-Noise
identified about 31% and 73% more PSMs than PeptideProphet and Percolator, respectively.
For the Tal08 dataset, the validated PSMs increased 30% and 29% using De-Noise
compared to PeptideProphet and Percolator, respectively. A similar pattern is seen in PBMC
datasets (Fig. 3D-G). We observed that De-Noise consistently outperforms Peptide Prophet
and Percolator in terms of the number of target PSMs validated at a given FDR.

Evaluating De-Noise for Sensitivity and Specificity
From an applied mathematics point of view, distinguishing correct from incorrect PSMs can
be treated as a two-class classification problem, in which a classifier labels the PSMs as
either true or false 4,38. There are four possible outcomes from a binary classifier. If the
classifier validates a PSM as true and the spectrum is also matched to a target peptide
sequence, then it is called a true positive (TP). However, if the classifier validates a PSM as
true but the spectrum was matched to a decoy peptide sequence, then it is said to be a false
positive (FP). Conversely, if the classifier assigns a PSM as false and the spectrum was
matched to a decoy peptide sequence, then a true negative (TN) has occurred. Finally, if the
classifier assigns a PSM as false and the spectrum was matched to a target sequence, a false
negative (FN) has occurred. The true positive rate (TPR) is defined as the ratio of the target
PSMs validated by a classifier to the total number of target PSMs.

The false positive rate (FPR) is the ratio of the number of decoy PSMs falsely identified as a
target PSMs to the total number of decoy PSMs.

The performance of a binary classification method is measured using two statistical
parameters: sensitivity and specificity. Sensitivity is equal to the TPR and reflects the
classifier's capability to correctly validate target PSMs from a pool of target PSMs.
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Specificity is equal to 1- FPR and measures the frequency at which the classifier correctly
validates decoy PSMs from the total pool of decoy PSMs. The overall performance of the
classifier can be represented with a receiver operating characteristic (ROC) curve 39, which
plots the true positive rate (sensitivity) versus the false positive rate (1-specificity). Each
point on the ROC curve represents sensitivity/specificity. When two classifiers are
compared, the classifier with the higher sensitivity at a given specificity is considered the
better classifier.

The performance of the De-Noise, PeptideProphet, and Percolator approaches was evaluated
by using ROC plots 39 (Fig. 4). In general, the classifier with ROC plot closest to the left-
hand border is considered the most robust. The robustness of a classifier declines as its curve
gets closer to the 45 degree diagonal of the ROC space. Another index to assess the
robustness of a classifier from a ROC plot is the area under the curve (AUC). The larger the
area covered, the more robust is the classifier. For example, we calculated the AUC for the
UPS1 dataset using the trapezoid rule for an FPR range from 0.0008 to 0.0074 40. For this
FPR range, the AUC calculated for the three approaches shows De-Noise is the more robust
approach (De-Noise (0.0006), PeptideProphet (0.00038), and Percolator (0.00025 (Fig. 4B).
For the other six datasets, the AUC for De-Noise was consistently larger compared to
PeptideProphet and Percolator showing that De-Noise was more robust (Fig. 4A-G). Using
the ROC curves, we compared the sensitivity for the three approaches. For the seven
datasets, De-Noise consistently had the higher TPR compared to PeptideProphet and
Percolator in the FPR range 0.01 to 0.05 (Fig 4A-G).

Evaluating De-Noise's Performance using an Independent Dataset
Finally, to test De-Noise's performance in validating PSMs on a dataset not used in its
optimization, the De-Noise algorithm was applied to a human PMNs extract run on a LTQ
ion trap mass spectrometer. The results from the SEQUEST search for the PMN LTQ data
set are shown in Tables 1 and 2. Table 3 shows De-Noise validated more target PSMs
compared to other validation approaches.

In summary, we have developed a highly sensitive and specific algorithm to validate PSMs
from the SEQUEST search engine. The novel De-Noise algorithm first uses a data cleaning
step based on the distance of the target PSMs to the centroid of the decoy PSMs to remove
noisy, incorrect PSMs from the target PSMs. Second, De-Noise performs two rounds of data
refining using SVM-based decision functions to validate correct target PSMs. Finally, the
algorithm uses proteolytic information and the quality of the mass spectrometry data to
perform a final validation. Using a variety of datasets based on different samples, mass
spectrometers, and popular validation approaches, we show the De-Noise algorithm has
improved sensitivity and specificity in the 1-5% FDR range that is commonly used to report
the accepted peptide sequences from tandem mass spectrometry search engines.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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PSM peptide spectra match

FDR false discovery rate

TPR true positive rate

FPR false positive rate

ROC Receiver Operating Characteristic Curve

TP true positive

TN true negative

FP false positive

FN false negative

SVM support vector machine

UPS1 Universal Proteomics Standard Set

DTT dithiothreitol

IAA iodoacetamide

RP reverse-phase

nanoESI nano-electrospray ionization

MS mass spectrometry

MS/MS tandem mass spectrometry

PBMC peripheral blood mononuclear cells

PMN polymorphonuclear cells

TEAB triethylammonium bicarbonate

TFE trifluoroethanol

MiPS monoisotopic precursor selection

LC liquid chromatography

SCX strong cation exchange

TPP Trans Proteomic Pipeline

MudPIT multidimensional protein identification technology

Dn total number of spectra matched to decoy peptide sequences

Tn total number of the PSMs matched to target peptide sequence

AUC Area Under the Curve

m+ number of target PSMs

m™ number of decoy PSMs

S+ the set of target PSMs

S− the set of decoy PSMs
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Figure 1.
Pseudocode for the De-Noise algorithm.
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Figure 2.
Venn diagrams for the seven datasets showing the number of overlapping validated PSMs
from De-Noise, PeptidePropheet, and Percolator. An FDR of 0.05 was used for all three
approaches.
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Figure 3.
Plots of target PSM hits for the seven datasets validated under a series of FDRs for De-
Noise, PeptideProphet, and Percolator. The number of target peptide hits is plotted for a
FDR range from 0.01 to 0.1. (A) Gcn4 LCQ (B) UPS1 LTQ (C) Tal08 LTQ-Orbitrap XL
MiPS (D) PBMC LTQ-Orbitrap XL MiPS (E) PBMC LTQ-Orbitrap XL MiPS-off (F)
PBMC LTQ-Orbitrap Velos MiPS (G) PBMC LTQ-Orbitrap Velos MiPS-off.
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Figure 4.
ROC curves for the seven datasets showing the validation performance of De-Noise,
PeptideProphet, and Percolator. (A) Gcn4 LCQ (B) UPS1 LTQ (C) Tal08 LTQ-Orbitrap XL
MiPS-off (D) PBMC LTQ Orbitrap XL MiPS (E) PBMC LTQ-Orbitrap XL MiPS-off (F)
PBMC LTQ-Orbitrap Velos MiPS (G) PBMC LTQ-Orbitrap Velos MiPS-off.
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