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Introduction
Pharmaceutical excipients play important role in the overall 
kinetics of active pharmaceutical ingredients (APIs) by influ-
encing the activity of hepatic and intestinal metabolic enzymes 
and transporters. The systemic bioavailability of API adminis-
tered through oral route is often decreased by first-pass bio-
transformation through both hepatic and intestinal enzymes1 
and may be increased through formulation with excipients that 
can positively alter the enzymes and transporters responsible 
for first-pass metabolism. The International Pharmaceutical 
Excipients Council (IPEC) defines excipients as substances 
other than the API which have been appropriately evaluated 
for safety and are intentionally included in a drug delivery sys-
tem. Pharmaceutical excipients are materials, excluding the 
API, intentionally included in a drug product to satisfy the cri-
teria for quality by regulatory bodies and safety of patients in 
terms of manufacturability or composition, performance, and 
appearance or specifications.2 According to Moreton,2 phar-
maceutical excipients are a very sundry group of materials 
which may exist in all the states of matter: liquid, gas, and solid 
(as well as semi-solid), they can be of natural or synthetic (as 
well as semi-synthetic) source and of various molecular sizes 
(simple molecules or very complex polymers).

According to Kolter and Guth,3 drug delivery systems often 
require highly functional excipients to achieve the targeted 
product properties. There are 3 types of excipients based on 
development approaches: (a) modified excipients (existing 
physical or purity has been changed)—examples include 
Kollidon VA 64 Fine, Polyplasdone Ultra, and Tween 80 HP; 
(b) coprocessed excipients (excipients are formulated to yield 
new combination)—examples include Aquarius, Ludiflash 
(Mannitol–Polyvinylacetate–Crospovidone), and StarCap 
1500; and (c) novel excipients (chemical entities newly discov-
ered)—examples include Captisol, Kollicoat IR, and Soluplus.

Excipients are used to bring about changes in the pharma-
cological activity of the drug by altering solubility, dissolution, 
permeability, and bioavailability.4 Until recently, excipients 
were believed to be passive with no biological activity of their 
own. Changes in the transporter-mediated absorption of sub-
strates and modulations in cytochrome P450 (CYP) enzymes 
activity have been associated with excipients in several stud-
ies.4-6 Enhancement or inhibition of CYPs activities can 
change drug metabolism profile and result in either increase in 
the bioavailability or decrease in the efficacy of the drug.6 
There are more than 55 human CYP homologues, of which 
90% of therapeutic drugs are metabolized by CYP1A2, 
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CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2D6, and/or 
CYP2E1.7,8 The cytochrome P450 3A (CYP3A) family con-
stitute more than 70% of small intestinal cytochrome P450 and 
has CYP3A4 as the key enzyme.9

Permeability glycoprotein also known as P-glycoprotein 
(P-gp; MDR1; ABCB1) is an efflux transporter which belongs 
to ATP-binding cassette (ABC) superfamily of transporters, 
actively transport a wide range of structurally and mechanisti-
cally diverse endogenous and xenobiotics across the cell mem-
brane at the energy expense of ATP hydrolysis,10 and found in 
blood–brain barrier (BBB), gastrointestinal tract, liver, placenta, 
and kidneys in humans.4 P-gp efflux and CYPs activity can 
profoundly implicate the role of drug pharmacokinetics by 
clinically altering the administered drug efficacy or resulting to 
various adverse side-effects due to drug–drug interactions 
(DDIs), as in the case of multi-administration of drugs and 
herbal formulations.10-13 Although DDIs often lead to nega-
tive impact on therapy, they can also be leveraged in drug regi-
mens to facilitate the absorption of drugs and increase their 
bioavailability.14

The manufacturing process of many excipients might con-
tain levels of reactive impurities (such as reducing sugar, alde-
hydes, peroxides, nitrites, organic acids, and metals), which 
might lead to incompatibilities with APIs in the formulations.15 
Pharmacokinetics/toxicokinetics of excipients is the study of 
absorption, distribution, metabolism, and excretion (ADME) of 
excipients in relation to their pharmacological/toxic effects. The 
chemical structure and chemical and physical properties of the 
excipients are to be examined first in hazard identification, as 
these may show possible toxicological issue.16 In pharmacologi-
cal study, substrate are compounds actively transported and 
metabolized by enzymes; inhibitors are compounds that prevent 
transport or enzymatic activity and increase the level of sub-
strates, whereas modulators or inducers are compounds that 
interact with another binding site different from where the sub-
strate binds on transporter or enzyme and decrease the level of 
substrates (increase the bioavailability). Studies have classified 
different drug compounds interaction with numbers of 
cytochrome P450 (CYP) isoforms which include imipramine 
(for 1A2, 2D6, 3A4), omeprazole (for 2C19, 3A), losartan (for 
2C9, 3A4), and digoxin (for P-gp).1,4,17 The need to study the 
potential pharmacological benefits and toxicological liabilities 
of commonly used small molecule excipients is therefore becom-
ing increasingly apparent. In this study, the pharmacokinetics 
and molecular binding of 11 selected common small molecule 
excipients used in drug formulation were computationally 
investigated for their effect on the function of P-gp and activity 
of selected cytochrome P450 isoforms.

Materials and Methods
In silico preparation of ligands

Eleven small molecule excipients were adapted from available 
published literatures.4,18,19 Available structure of each of the 

compounds (ligands) was obtained from the PubChem 
Compound Database in structure data file (sdf ) and canonical 
SMILES (Simplified Molecular Input Line Entry 
Specification) format. The ligand structures generated were 
subjected to 3-dimensional optimizations using ChemSketch 
and saved as mol2 format. All file conversion to protein data 
bank (pdb) format were performed using PyMol v2.0.7.

In silico preparation of f irst-pass targets

Six cytochrome P450 enzymes (CYP1A2, CYP3A4, CYP2C9, 
CYP2C19, CYP2D6, and CYP2E1) and P-gp, which are key 
targets involved in first-pass effect of drug metabolism, were 
selected based on the information available in published litera-
ture.1,4,6,17 The 3-dimensional (3D) structure of each of the 
cytochrome p450 was obtained from RCSB Protein Data 
Bank (PDB) database.

Molecular docking studies

The molecular docking studies were performed according to 
the method of Fatoki et al.20 Briefly, all water molecules, hetero 
atoms, and multichain were removed from the crystal structure 
of the prepared targets using PyMol v2.0.7. The Gasteiger par-
tial charges were added to the ligand atoms prior to docking. 
The docking parameter of each prepared ligand and each pre-
pared target was setup using AutoDock Tools (ADT) v1.5.6,21 
and molecular docking program AutoDock Vina v1.1.222 was 
employed to perform the docking experiment.

In silico pharmacokinetics and target prediction

The ligands were then subjected to in silico ADME 
(Absorption, Distribution, Metabolism, and Excretion) screen-
ing on SwissADME server.23 ADME screening was performed 
at default parameters. In silico prediction of target for the 
excipients was done using SwissTargetPrediction server where 
Homo sapiens was selected as target organism.24 The informa-
tion about medications that contain each of the selected excipi-
ents used in this work was obtained from www.drugs.com.

Molecular dynamics simulation

The dynamics of P-gp structure (PDB: 6C0V, chain A) was 
investigated according to the method of Ugboko et al25 at pH 
7.5. Briefly, from the crystal structure (X-ray structure), 
PDBFixer implemented in OpenMM v7.326 on CPU platform 
was used to fix the protein. The OpenMM ForceField was 
instantiated using amber14/protein.ff14SB and amber14/tip3p 
water model with constraints on the lengths of all bonds 
involving a hydrogen atom and TIP3P waters were added to a 
cubic box extending 10 Å beyond the outermost protein atoms 
with 200 mM NaCl. The energy minimization was conducted 
until a tolerance of 25 kJ/mol using a Langevin integrator27 

www.drugs.com
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with a time step of 2.0 fs, temperature of 300.0 K, and collision 
rate of 5.0 p/s using single precision. Non-bonded forces were 
modeled using the particle-mesh Ewald (PME) method28 with 
a cutoff distance of 10 Å and a Monte Carlo Barostat with 
pressure of 1 atm with update at interval of 50 steps. The mini-
mized protein was then subjected to fast simulation of struc-
tural flexibility using CAB-flex 2.0 server29 with random 
number generation seed of 4685 while other parameters were 
at default settings. The contact map and root-mean square 
fluctuations (RMSF) of amino acid residues in the server-ana-
lyzed protein were obtained.

Results and Discussion
Several studies have been done to determine how to overcome 
first-pass metabolism of drug by understanding the nature of 
the substrates, inhibitors, and inducers of these enzymes and 
transporters as well as the influence of excipients in DDI 
favorable to bioavailability of API.4,30 Eleven small molecule 
excipients used in this study (and their PubChem identifica-
tion number) were acetyltributyl citrate (6505), ascorbyl palmi-
tate (54680660), aspartame (134601), cetyl alcohol (2682), 
cetyltrimethyl-ammonium bromide (CTAB; 5974), dibutyl 
sebacate (7986), docusate sodium (23673837), lactose mono-
hydrate (104938), sodium caprylate (23664772), sucrose stea-
rate (9898327), and tricaprylin (10850). The effect of selected 
poly-molecule pharmaceutical excipients on cytochrome P450 
(CYP) and P-gp has been studied experimentally, of which 
results showed that most excipients were capable of inhibiting 
and increasing activity of several different CYP isoforms as 
well as inhibit P-gp transport function at therapeutic concen-
tration.4,6 Also, pharmaceutical excipients that are surfactants 
such as SLS, RH40, Tween 20, and EL35 have been found to 
attenuate 2 major forms of human carboxylesterase (CES1A 
and CES2) activities.31

The docking parameters and predicted active site amino 
acid residues are shown in Table 1. Interaction of P-gp with 
many structurally diverse compounds indicates the presence of 
multiple binding sites. Two different ligand binding sites were 
predicted for P-gp in this study, which are possibly for ATP 
binding (nucleotide-binding domain) and xenobiotic binding 
(transmembrane domain). The binding free energy between 
the excipients and selected first-pass metabolic proteins is 
shown in Table 2. The lesser the binding energy, the more the 
possibility that the excipient will undergo first-pass effect by 
the appropriate CYPs and P-gp. At binding free energy cut-off 
value of −5.0 kcal/mol, the result showed possible modulatory 
or inhibitory effect by cetyl alcohol on CPY3A4 and P-gp; 
CTAB on CYP1A2 and P-gp; dibutyl sebacate on CYP2C9, 
CYP2E1, and P-gp; sodium caprylate on CYP1A2 and 
CYP3A4; while other excipients in this study have good inter-
action with the cytochromes and P-gp at value below −5.0 kcal/
mol, except interaction of docusate sodium with CYP2C9 and 
CYP2E1 as well as ascorbyl palmitate with CYP3A4.

Despite efforts on the prediction of P-gp inhibitors or sub-
strates, the accuracy of the prediction models is still a serious 
challenge.32 However, the molecular docking results could not 
differentiate between the excipients that are substrates, inhibi-
tors, or modulators; hence, these compounds are classified as 
substrates, inhibitors, and modulators in this study. Thus, the 
results of predicted pharmacokinetics (ADME) as shown in 
Table 3 provided possible inhibitors of the CYPs and P-gp. 
Excipients E, G, and H were not substrates for P-gp, whereas 
others may be inhibitors or modulators of P-gp. Also, excipi-
ents C, E, G to J may probably be substrates for CYPs because 
they were not found as inhibitors for any of cytochrome P450 
curated in the SwissADME database.

Hypothetically, small molecule excipient with cumulative 
binding energy (CBE) which is below –42.5 kcal/mol (such as 
excipient H) is likely to have high rate of first-pass metabolism 
and it is termed as CBE-A excipient, whereas small molecule 
excipient with CBE which is above –42.5 kcal/mol is likely to 
enter systemic circulation to exert certain level of biological 
effects, and it is termed as CBE-B excipient (Table 2). Thus, 
medication that contains 3 or more of CBE-B excipients 
should be reformulated to yield acceptable bioequivalence such 
as tramadol hydrochloride and omeprazole (Table 4). Moreover, 
different brands of medications usually have different excipi-
ents composition in their formulation but achieved the same 
bioequivalence. The incompatibility or interaction of excipients 
with certain APIs has been reviewed by Bharate et al.33

In silico target prediction showed that 3 of the excipients 
have potential target; CTAB showed 100% and 35% probabil-
ity of target to Dynamin-1 (UniProt ID: Q05193) and 
Histamine H3 receptor (UniProt ID: Q9Y5N1), respectively; 
ascorbyl palmitate showed 65% probability of target to glyco-
gen synthase kinase-3 beta (UniProt ID: P49841), whereas tri-
caprylin showed 40% probability of target to 5 Protein kinase 
C (UniProt IDs: P17252, Q02156, Q04759, P24723, and 
P05129).

Studies on antimalarial activity of CTAB have shown that it 
interferes with Plasmodium falciparum phospholipid metabo-
lism34,35 and choline kinase36 as well acts as inhibitor of cyclo-
propane mycolic acid synthase 1 (Uniprot ID: P9WPB7) in 
Mycobacterium tuberculosis.37 Also, CTAB is one of the trace 
components of Aflunov and Foclivia, which are vaccines for 
influenza virus (Table 4).

This study therefore revealed the effects of first-pass meta-
bolic CYPs and P-gp on the inertness of excipients of pharma-
ceutical, topical and food applications. Study has also shown 
that nanoparticles of CTAB increase the intracellular concen-
trations of P-gp substrates.38 Previous in vivo study has indi-
cated that ascorbyl palmitate did not inhibit CYP3A4 activity 
though it was found to be a moderately potent reversible inhib-
itor of in vitro tested CYP3A4 activity.39 Thus, the level of 
inhibition of CYP450 by ascorbyl palmitate as predicted in this 
study (Table 3) may not indicate significant impact in an in 
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vivo pharmacological evaluation. From results of this in silico 
study which showed that ATBC may not permeate BBB and 
not act as P-gp substrate, it can be theorized that ATBC may 
possibly act as inhibitor of P-gp and CYP2C19 in the intesti-
nal cell, with no further systemic distribution to the liver and 
brain. Investigation of acetyl tributyl citrate (ATBC) in both in 
vitro and in vivo has shown increase in the CYP3A4 messenger 
ribonucleic acid (mRNA) level and enzyme activity, both in the 
human intestinal cells but not in liver cells.40 The P-gp medi-
ates decrease in the availability of substrates for CYP thereby 
affecting the apparent metabolic activity.17 The pharmacoki-
netics of a drug may be altered when formulated with excipi-
ents which inhibit or induce P-gp. The inhibition and induction 
of P-gp often result in increase and decrease in bioavailability, 
respectively. The high binding energy of lactose monohydrate 
implicated it as good substrate for both CYPs and P-gp, thus 
resulting in lower gastrointestinal absorption and lower bioa-
vailability; this showed that the affinity of ligand to protein 
target does not often connote inhibitory mode of action.

Tricaprylin is the triester of caprylic acid with glycerin and 
has applications as food additive, cosmetics agent, and pharma-
ceutical excipient. Study has shown extensive damage of tumor 
cells (lymphoma implants in the liver) in rats after oral dosing 
with tricaprylin.41 Increase in the level of 7 cytochrome P450 
which includes CYP2E1 and CYP1A2 in cerebrum and cere-
bellum microsomal fractions of rat brain has been found to be 
associated with excessive amount of aspartame, whereas hepatic 
microsomal fractions showed no differences in CYPs concen-
tration and activity,42 but CYP3A2 activity was induced in the 
brain and liver.43 This corroborates the result of this study 
which predicted that aspartame has no inhibitory effect on the 
hepatic and intestinal CYPs and P-gp, and its inability to cross 
BBB suggests no induction effect on the brain CYPs and P-gp.

The expression P-gp at endothelial capillaries of the brain 
aids BBB against xenobiotic access to the central nervous system. 

As shown in Table 3, it could be deduced and hypothesized that 
(a) for any small molecule that is BBB permeant and P-gp sub-
strate simultaneously cannot be an inhibitor of CYPs, (b) for any 
small molecule that is not BBB permeant and P-gp substrate 
simultaneously or independently will be an inhibitor of 1 or 
more CYPs. Simultaneous inhibition of the cytochrome or ABC 
transporter in the mammal host and the target organism has 
been found to enhance pharmacokinetics and pharmacodynam-
ics of the drug “Ivermectin.”44 Theoretically, the synergistic 
effect of this simultaneous inhibition of CYP and P-gp has been 
proposed to increase penetration of the drug into the central 
nervous system and facilitate interaction with the GABA 
receptors.44

The superimposition of the structure and contact map of 10 
models of flexibility simulation of human P-gp is shown in 
Figures 1 and 2, respectively. Biochemical evidence seems to 
favor the idea that the 2 nucleotide-binding domains (NBDs) 
are likely in a “constant contact” mode.45,46 Eight major regions 
which have been identified on the human P-gp are 1 to 51 
(region 1), 73 to 119 (region 2), 141 to 188 (region 3), 237 to 
296 (region 4), 347 to 710 (region 5) containing the NBD1, 
778 to 832 (region 6), 885 to 936 (region 7), and 995 to 1280 
(region 8) containing the NBD2, and others are non-mem-
brane regions, 210 to 215, 318 to 325, 732 to 756, and 958 to 
973.47 The RMSF in Armstrong (Å) amino acid residues of 
human P-gp shown in Figure 3 shows that regions 1, 2, 3, and 
6 are relatively stable within the range of 0 to 1.0 Å, whereas 
the fluctuations observed in regions 4, 5, 7, 8, and other non-
membrane regions could account for conformational changes 
which facilitate the open and close motions in transport func-
tion of P-gp. Esser et al48 have found that the open-and-close 
motion of P-gp is structurally linked to conformational changes 
of each individual helix of P-gp, and it allows P-gp to change 
its surface topology within the drug binding pocket. Previous 
molecular dynamics simulation study of human P-gp has 

Table 2.  Docking score for the binding free energy between the first-pass metabolic proteins and selected excipients.

First-pass targets Binding energy (kcal/mol) of the selected excipients

A B C D E F G H I J K

Cytochrome P450 1A2 (PDB: 2HI4) –5.0 –5.7 –5.5 –4.5 –7.1 –4.0 –5.1 –6.8 –6.1 –6.0 –4.9

Cytochrome P450 3A4 (PDB: 1TQN) –5.1 –4.9 –6.6 –5.8 –3.8 –4.5 –7.0 –7.4 –5.1 –6.1 –5.7

Cytochrome P450 2C9 (PDB: 5A5J) –5.0 –6.6 –5.3 –4.2 –4.4 –5.4 –4.9 –7.3 –4.3 –5.1 –5.5

Cytochrome P450 2C19 (PDB: 4GQS) –5.0 –5.8 –6.1 –3.9 –4.2 –4.4 –5.8 –7.7 –4.9 –6.3 –5.8

Cytochrome P450 2D6 (PDB: 4WNW) –5.5 –5.4 –6.5 –4.0 –4.4 –4.8 –5.7 –7.0 –4.3 –5.4 –5.5

Cytochrome P450 2E1 (PDB: 3LC4) –5.3 –5.8 –6.2 –4.7 –4.5 –6.9 –4.9 –7.8 –4.5 –5.8 –5.3

P-glycoprotein (PDB:6C0V) –5.1 –6.9 –6.3 –5.3 –5.7 –5.1 –6.7 –8.5 –4.8 –6.7 –5.1

Cumulative binding energy –36.0 –41.1 –42.5 –32.4 –34.1 –35.1 –40.1 –52.5 –34.0 –41.4 –37.8

Selected excipients: (A) acetyltributyl citrate, (B) ascorbyl palmitate, (C) aspartame, (D) cetyl alcohol, (E) cetyltrimethyl-ammonium bromide (CTAB), (F) dibutyl sebacate, 
(G) docusate sodium, (H) lactose monohydrate, (I) sodium caprylate, (J) sucrose stearate, and (K) tricaprylin (caprylic acid triglyceride). The bold values show the lowest 
and highest binding energy for the targets (across the row).
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Table 4.  Top medications that contain each of the selected excipients used in this study.

Excipients Examples of medications

Acetyltributyl citrate Budesonide (Enteric Coated), Cardizem CD, Dexmethylphenidate Hydrochloride Extended-Release, 
Diltiazem Hydrochloride Extended-Release, Glipizide Extended Release, Mesalamine Delayed-
Release, Metoprolol Succinate Extended-Release, Potassium Chloride Extended-Release, etc.

Ascorbyl palmitate Animi-3 with Vitamin D, Enjuvia synthetic B, Integra Vitamin B Complex with C and Iron, Prenatal Plus 
Prenatal Vitamin with Iron Fumarate, Tretinoin, Tylenol Regular Strength, Udamin SP dietary 
supplement, etc.

Aspartame Aripiprazole (Orally Disintegrating), Cetirizine Hydrochloride (Chewable), Clonazepam, Lamotrigine 
(Orally Disintegrating), Methylphenidate Hydrochloride (Chewable), Mirtazapine (Orally Disintegrating), 
Olanzapine (Orally Disintegrating), Ondansetron Hydrochloride (Orally Disintegrating), Risperidone 
(Orally Disintegrating), Rizatriptan Benzoate (Orally Disintegrating), Zolmitriptan (Orally Disintegrating)

Cetyl alcohol Amoxicillin and Clavulanate Potassium, Budesonide, Dextroamphetamine Sulfate Extended Release, 
Lansoprazole Delayed Release (Orally Disintegrating), Methylphenidate Hydrochloride Extended-
Release, Omeprazole Delayed Release, Ursodiol, etc.

Dibutyl sebacate Bupropion Hydrochloride Extended-Release (XL), Methylphenidate Hydrochloride Extended-
Release, Omeprazole Delayed Release, Potassium Chloride Extended-Release, Propranolol 
Hydrochloride Extended-Release, Tramadol Hydrochloride Extended Release, Venlafaxine 
Hydrochloride Extended Release, Verapamil Hydrochloride Extended-Release, etc.

Docusate sodium Euro-Docusate, Docusate-Humanity, Otitex, Glyoktyl, Vencoll, Humectol-D, etc.

Lactose monohydrate Acetaminophen and Oxycodone Hydrochloride, Alprazolam, Cetirizine Hydrochloride, Clonazepam, 
Cyclobenzaprine Hydrochloride, Oxycodone Hydrochloride, Tramadol Hydrochloride, etc.

Sucrose stearate ConZip, Diltiazem Hydrochloride Extended-Release, Esomeprazole Magnesium Delayed-Release, 
Prasugrel Hydrochloride, Tiazac, Tramadol Hydrochloride Extended Release, etc.

Cetyltrimethyl-ammonium 
bromide (CTAB)

Aflunov, Foclivia, Xylonor, Savlodil, and other topical antiseptic cetrimide, shampoos, and cosmetics 
(ref. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:3567)

Tricaprylin and sodium 
caprylate

There is no validated scientific data to support the use of caprylic acid and its derivatives as sole 
medicine for any health problem (ref. https://www.drugs.com/npc/caprylic-acid.html).

Bolded medications contained more than one of the excipients investigated in this study.

Figure 1.  Superimposition of top 10 simulated structures of human P-glycoprotein obtained from CAB-flex 2.0 server.

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:3567
www.drugs.com
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shown that residues D177 and N820 interact with tariquidar 
when the NBDs were in the closed positions in these simula-
tions, and that this interaction may be essential in its mecha-
nism of inhibition.49 There is strong evidence that tariquidar 
has a much higher affinity to P-gp and slower off-rate from 
P-gp than vinblastine, a good transport substrate.50 A study has 
shown small RMSD changes of 1 to 2.5 Å for a series of P-gp 
transport substrates.51

The therapeutic efficacy of API must be balanced by the 
functionality of the excipients to assure the quality and safety 
of the drug.52 The safety-toxicity assessments are classically 
based on the appearance of gross morphological changes rather 
than the effects on a cellular level, whereas the ability of excipi-
ents in modifying the pharmacological activity by modulating 
transporters of an active drug which could lead to toxicity 
should be rational approach of assessment.53 In Australia, 

consultation has been made to increase access to ingredient 
information online to assure therapeutic goods administration 
to the consumers.54 Many potential drugs might have been dis-
carded as a result of limited efficacy due to unsuitable excipi-
ents. Specific cases of variation in 2 excipients (mannitol or 
trehalose, and metoprolol or sorbitol), leading to counteraction 
of the activity of the active agent have been reported.55,56 
Comprehensive review on the potential for excipients to alter 
the individual response to or tolerance of a medication brand 
has been published recently by Page and Etherton-Beer,57 
which could affect pediatric and adult populations with differ-
ent toxicological outcomes.58,59 Thus, excipients bioavailability, 
API-excipient, and excipient–excipient interactions should be 
investigated during drug formulation, as this could be the basis 
of specific side effects.

Conclusions
This study showed that some excipients can change drug 
metabolism through the effects on cytochrome P450 activity 
and P-gp function. The presence of some excipients in drug 
formulation for oral administration in single or multiple 
drugs prescription in the presence or absence of gastrointesti-
nal food contents may lead to pharmacokinetic interactions 
and possibly reduce efficacy on the pathogen or host organ-
ism molecular targets, which are relevant to microbial drug 
resistance and toxicity in pediatric and adult populations. 
Hence, the clinical significance of findings from this in silico 
work should be taken into consideration during drug formu-
lation and administration.
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