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ABSTRACT

Processing of raw text is the crucial first step in text classification and sentiment analysis. However,
text processing steps are often performed using off-the-shelf routines and pre-built word dictionaries
without optimizing for domain, application, and context. This paper investigates the effect of seven
text processing scenarios on a particular text domain (Twitter) and application (sentiment classi-
fication). Skip gram-based word embeddings are developed to include Twitter colloquial words,
emojis, and hashtag keywords that are often removed for being unavailable in conventional litera-
ture corpora. Our experiments reveal negative effects on sentiment classification of two common
text processing steps: 1) stop word removal and 2) averaging of word vectors to represent individ-
ual tweets. New effective steps for 1) including non-ASCII emoji characters, 2) measuring word
importance from word embedding, 3) aggregating word vectors into a tweet embedding, and 4)
developing linearly separable feature space have been proposed to optimize the sentiment classifica-
tion pipeline. The best combination of text processing steps yields the highest average area under the
curve (AUC) of 88.4 (±0.4) in classifying 14,640 tweets with three sentiment labels. Word selection
from context-driven word embedding reveals that only the ten most important words in Tweets cu-
mulatively yield over 98% of the maximum accuracy. Results demonstrate a means for data-driven
selection of important words in tweet classification as opposed to using pre-built word dictionaries.
The proposed tweet embedding is robust to and alleviates the need for several text processing steps.

Keywords Sentiment analysis, Twitter, Stop words, Regular expression, Emoji, Skip gram, Word2vec, Word
importance

1 Introduction

The last decade has seen an unprecedented surge in the growth and proliferation of online social media platforms such
as Twitter, Facebook, and Tumblr. For individuals, social media is a uniquely powerful platform for communication,
self-expression, microblogging, social networking, image and video sharing, and opinion sharing through online word-
of-mouth. As of January 2020, the world has more than 3.8 billion active social media users [Kepios Pte. Ltd. et al.,
2020] generating prodigious volumes of public opinion data. For businesses and organizations, social media provides
access to consumer bases for targeted advertising and public opinion mining on products and services to inform
strategic business plans. An important task of public opinion mining is sentiment analysis (SA) to disambiguate
sentiment from data shared on social media platforms. SA performs sentiment classification to stratify social media
posts based upon the polarity (positive, negative, or neutral) of the expressed opinion in the textual data [Kharde and
Sonawane, 2016, Wang et al., 2019].

A mass-producer of textual data is the popular microblogging platform Twitter, which reports 166 million average
daily active users in 2020 Q1 [Twitter, Inc., 2020]. Twitter’s defining characteristic is its character-limited microblog
posts, called ’tweets’. Tweets have been limited to 140 Unicode characters until 2017 when the limit has doubled to
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280 characters [Boot et al., 2019]. Due to the character limitation, Twitter users prioritize efficiency when composing
tweets by employing informal language, abbreviations, unconventional word spellings, symbols and numerals, as well
as omitting parts-of-speech (POS) to convey the desired message [Boot et al., 2019]. Twitter’s condensed format and
associated usage characteristics make it a challenging domain for SA unlike mining standard literature and documents.
This paper investigates the efficacy of common text processing and classification steps on Twitter-specific SA. We
hypothesize that efficient use of word embedding with data-driven optimization can be robust to the selection of
standard text processing routines in Twitter sentiment classification.

1.1 Background review

The two primary approaches to SA are: 1) lexicon-based and 2) machine learning (ML) based methods [MARTÍNEZ-
CÁMARA et al., 2014, Kolchyna et al., 2015]. Lexicon-based methods use a sentiment dictionary (i.e. lexicon)
that contains words labeled with their polarity to determine the overall sentiment of the social media post [Kolchyna
et al., 2015]. Some popular lexicons include WordNet [Princeton University, 2010], SentiWordNet [Esuli, 2013], and
opinion lexicon [Liu, 2017]. Since lexicon-based methods depend on the words used in the social media post being
present in the sentiment dictionary, these methods suffer from low recall [MARTÍNEZ-CÁMARA et al., 2014]. Two
words of different polarity (good and bad) can appear in the same tweet that complicates SA in a particular context.
Furthermore, the noisy nature of tweets and ambiguous usage of words across contexts makes the automatic generation
of lexicons from Twitter data unreliable [Kolchyna et al., 2015]. On the other hand, the ML approach uses supervised
optimization to learn a function that performs the classification task based upon labeled training examples. However,
the primary limitation of ML methods is the availability of labeled social media posts for training SA models.

SA of social media posts, especially from character-limited tweets, remains a nontrivial task. For example, senti-
ment dictionaries used in lexicon-based methods do not fully capture new domain and context specific terminolo-
gies [Kharde and Sonawane, 2016]. Abbreviated expressions such as ’b4’, ’plz’, ’sry’, and ’gr8’ are common in
Tweets. The informal linguistic style and variety of irregular abbreviations prompted by the character-limited Twitter
environment exacerbate the limitations of the lexicon-based approach. ML-based methods offer a favorable alternative
to lexicon-based methods for Twitter SA. However, ML models require all text to be converted to representative nu-
meric data. This text-to-numeric data conversion is not straightforward and requires interdisciplinary efforts involving
linguistics.

Early ML approaches to Twitter SA rely on raw word representations called n-grams as the primary input fea-
tures [MARTÍNEZ-CÁMARA et al., 2014]. An n-gram is a sequence of n consecutive words such that single words
and pairs of words are referred to as unigrams and bigrams, respectively. A tweet is represented in a feature vector
of length equal to the number of n-grams such that each n-gram has its unique position in the vector. The vector
positions contain frequency of corresponding n-grams or simply hold ’1’ or ’0’ depending on the presence or absence
of the n-gram in the tweet, respectively. This construction is heavily reliant on substantial text processing and careful
feature selection steps to optimize the classifier model performance. For example, Jianqiang et al. have extensively
studied the effect of six well known text processing steps on Twitter sentiment classification using n-gram representa-
tions [Jianqiang and Xiaolin, 2017] as summarized in Table 1. The reported effects are mixed across n-gram models,
classification types (binary versus three-way) and classification algorithms. Many studies routinely employ standard
text processing steps, including stemming [Singh and Gupta, 2016], lemmatization [Dereza, 2018], removal of stop
words [Ahamed and Samad, 2020] and non-ASCII characters [Jianqiang et al., 2018] assuming that these steps are
essential for all text analysis applications. In contrast, both Bao et al. [Bao et al., 2014] and Kolchyna et al. [Kolchyna
et al., 2015] report that stemming and lemmatization reduce Twitter sentiment classification accuracy. Zhao et al.
report no effect of removing numbers, URL, and stop words on sentiment classification [Jianqiang, 2015].

Recently, ML-derived contextual vector representations of text (text embedding) have created a new paradigm for ML-
based SA research [Tang et al., 2016]. Several highly efficient text-to-numeric word embedding algorithms have been
developed by field experts and industrial giants, including skip gram [Balikas and Amini, 2016a], GloVe [Pennington
et al., 2014a], and fastText of facebook [Balikas and Amini, 2016b]. For example, the popular word2vec routine,
developed by Mikolov et al. [Mikolov et al., 2013, CHURCH, 2017], is a highly optimized Python package that
implements the skip gram model for obtaining a contextually meaningful word embedding that enables subsequent
text analysis. In contrast to word embeddings trained for a particular application, there are publicly-available word
embeddings pre-trained from large corpora, such as the GloVe database [Pennington et al., 2014b]. However, such
pre-trained word embeddings may not optimally capture the underlying context (sentiment towards a subject matter)
and the domain (tweets) [Yu et al., 2017, Liu et al., 2015]. While training word embeddings directly from the domain
text is important, it requires careful selection of text processing steps.

To the best of our knowledge, the effects of different text processing steps have not been well studied in word
embedding-based models for Twitter SA. We hypothesize that the importance of these text processing steps depends on
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Table 1: Effects of text processing steps on sentiment classification performance reported in [Jianqiang and Xiaolin,
2017] using Bag-of-Words (BoW) n-gram features.

Text processing Effects on sentiment classification
steps classification performance

Removing URL Barely affects the performance

Removing stop words

Useful in general. No effects on 3-way
classification using n-gram features.
positive effect on binary
classification with random forest.

Removing random words Severely affects the performance

Removing numbers Useful with mixed findings

Reverting repetition letter
Useful except in binary classification
using Support vector machine.
No effects on 3-way classification.

Expanding acronym Positive effects in general

the text domain (Tweets) and the contextual (sentiment analysis) representation of words in the feature vector obtained
via word embedding. A robust word embedding is expected to be less sensitive to the selection of text processing steps
and classifier models.

A common text processing step is stop word removal using off-the-shelf stop word dictionaries. For example, the sev-
eral decades old Van stop list [van, 1979] is used in recent Twitter SA literature [Jianqiang et al., 2018]. In contrast, a
pre-compiled list of stop words has shown negative effect on Twitter sentiment classification [Saif et al., 2014]. We hy-
pothesize that the selection of stop words can be domain-specific to avoid discarding potentially informative keywords.
Random removal of words has been reported to significantly deteriorate text classification performance [Jianqiang and
Xiaolin, 2017]. We propose that, prior to removing words, the importance of individual words can be learned from
context-derived word embeddings. Thus, word selection or removal can be optimally made based on such data-driven
decision instead of using a default dictionary of stop words.

Furthermore, there are many non-dictionary words, symbols, and short and colloquial language expressions on so-
cial media that can complicate SA, and hence, are typically discarded from analysis. For example, ’wow’, ’lol’,
’omg’, emoticons, and many other non-dictionary expressions frequently appear in tweets. The treatment of these
non-dictionary but potentially informative words requires special attention. Previous studies have used emoticon dic-
tionary [DCN] to replace emoticons (composed of ASCII characters, such as :-) represents a happy expression) with
their textual names (happy). Kolchyna et al. manually construct a lexicon of emoticons and social media abbreviations
with associated polarities [Kolchyna et al., 2015].

The successors to emoticons, Unicode ideograms called emoji, such as , are used by Twitter users as multimodal
markers to convey affect, gestures, or repetition, and/or to function semantically in a sentence by replacing parts of
speech [Na’aman et al., 2017, Bai et al., 2019]. However, since text analysis is commonly performed only on ASCII
characters, Unicode emojis are often filtered out. In Redmond et al., emojis have been shown to outperform emoticons
in sentiment classification [Redmond et al., 2017]. Manual [Kralj Novak et al., 2015] and automatic [Kimura and
Katsurai, 2017] methods have been proposed to build emoji lexicons by labeling emojis with their corresponding
sentiment. However, emoji lexicons are limited by the corpora without learning their contextual representations in
word embeddings. We postulate that emojis may be directly represented using their individual UTF-8 encodings for
learning the word embedding. In general, the use of off-the-shelf dictionaries or lexicons, including those used for
stop word removal, emoji mapping, and obtaining pre-trained word embeddings may not provide flexibility for custom
learning and domain-specific SA optimization.

Last but not least, the strategy for aggregating multiple word vectors from word embeddings into a constant length
tweet vector is an open research problem. In machine learning, the ordering of constituent words in the tweet vector
is important and informative. A simple concatenation of word vectors with zero padding [Jianqiang et al., 2018]
or averaging of word vectors [Sarkar, 2016] is used in practice without identifying the best strategy. The effect of
different word vector aggregation strategies needs to be evaluated on Twitter SA.

3
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1.2 Contributions

Given the limitations in the current literature, this paper aims to investigate the effects of text processing and classifi-
cation steps on Twitter SA. The contributions of this paper are as follows.

• Stop words and other non-ASCII or Unicode characters (Table 2) are routinely removed from corpora to emphasize
more informative words. This exclusion may inadvertently leave out elements that can be informative for SA. More
importantly, aggressive removal of words and characters can substantially reduce a character-limited tweet to only
several or even no words. This substantial loss of data can adversely affect the performance of machine learning
models. We hypothesize that retaining and properly encoding conventionally overlooked words and non-ASCII
emojis can improve sentiment classification performance.

• Documents are often converted to feature vectors using an off-the-shelf word-embedding dictionary. These word-
embeddings are developed using large corpora that may not capture atypical and domain-specific expressions of
social media. Instead of using a global word-embedding dictionary, we propose to develop and analyze the word-
embedding directly from the tweet data set to capture domain-specific contexts and trending keywords.

• For tweet classification purposes, machine learning models require all tweets to be represented in equal length
vectors. However, each tweet constitutes varying numbers of words. Therefore, the challenge is to represent all
tweets in an equal length feature vector by optimally aggregating the constituent word vectors. We compare several
alternative methods of aggregating word vectors into a constant length tweet vector to identify the best strategy.

• We investigate if word embeddings can provide information about the word importance without the supervision
of classification labels. We propose a data-driven method for estimating word importance to aid context informed
selection or removal of words in Twitter SA.

The remainder of this paper is organized as follows. Section II describes the methodology towards our investigative
study of text processing and classification steps in Twitter SA. Section 3 reports our results on the effect of several
combinations of text processing steps, the dimensionality of the word vectors and word importance, and different
tweet embedding methods. Section IV discusses the key findings and limitations of this paper. Section V provides
concluding remarks.

2 Methods

Our proposed models are evaluated using a public data set of tweets on customer experience with several U.S. air-
lines [kag]. The data set is comprised of tweets from February 2015 when tweets are restricted to challenging 140-
character limit. Each tweet is labeled by one of three sentiments: 1) positive, 2) negative, and 3) neutral for three-class
classification of customer sentiments. The proposed processing and classification steps of tweets are discussed below.

2.1 Text processing

The text processing and cleaning steps are often arbitrarily chosen in the literature without systematic investigation of
their effects on model performance. We study the effect of seven combinations of four text processing steps (Table 1)
prior to obtaining the word embedding. First, regular expressions are used to remove undesired characters and words
from tweets. Examples include hyperlinks, webpages, words starting with ’@’ and ’&’, numeric values, and special
characters. Second, we create a list of stop words including auxiliary verbs, prepositions, and pronouns that are
known to bear little or no semantic information. Note that this is an experimental list to study the effect of excluding
stop words on tweet classification. Third, we exclude single characters from tweets. Fourth, we use the Unicode
transformation format (UTF) of individual emojis in place of the Unicode character.

2.2 Word embedding

The first step of text classification is to encode semantic and contextual properties each word into a numeric vector.
We use the skip gram model, developed within the highly optimized word2vec package, to produce Twitter context-
specific word embeddings. The word-embedding is a dictionary of numeric vectors for individual words in the corpus.
The skip gram model is a neural network with a single hidden layer that uses a word vector in the input layer to predict
a set of neighboring words in the output layer. This prediction learns the vector representation of the entire corpus
vocabulary in the hidden layer as the word embedding. Given a vocabulary of N unique words in a Twitter corpus, each
word can be represented in a N-dimensional one-hot encoded vector. The one-hot encoded vector has a designated
position for each word that contains ’1’ to represent the presence of the word and ’0’ otherwise. An autoencoder maps
each N-dimensional input vector X ∈ <N (representing a single word) to a lower K-dimensional encoded space that

4



A PREPRINT - JULY 28, 2020

Table 2: Four processing steps for text analysis: 1) removing undesired portions of text by matching regular expression
patterns, 2) stop words, 3) removing single or isolated characters using regular expression matching, 4) representing
each emojis by its Unicode transformation format (UTF-8)

Step Pattern Description

1 ”htt\S+\ w*”, Sub-string starting with (htt, ww)
”ww\ S+\w*” followed by other characters.

Examples: http, https, www, www.
”[’ .]” Remove ’apostrophe’, ’period’
[”?”, !] Isolate ’?’ and ’!’ using a space

in between the word and character.
”&\w+”, ”@\w+” Remove entire words starting

with ’&’ and ’@’.
”[0-9]\w+”, ”[0-9]+” Remove numeric strings

”\w[0-9]+”, starting with a number or a letter
examples: ’8Goal’, ’Go8al’, ’4567’.

, /, =, ,̂ }, :, {, ‖ List of non-alphabetic characters
+, ∗, ” , ∼, ], [, â, ê, ã to be removed using regular

-, #, , , ; , á, é, ,, expressions.

2 Sample stop words to [’it’, ’its’, ’this’, ’that’,
be removed ’are’, ’was’, ’were’,
from corpus ’for’, ’by’, ’so’, ’on’, ’have’, ’has’,

’had’, ’an’, ’out’, ’with’, ’as’, ’in’
’be’, ’been’, ’to’, ’the’, ’and’, ’of’,
’am’, ’is’, ’at’, ’by’, ’into’]

3 tk = Remove single characters
[x for x in tk if len(x)> 1] from tokenized list of words (tk)

4 Emojis UTF-8 encoding of Emoji
is encoded and replaced by

(b’\xf0\x9f\x98\x8a’)

can be used to reproduce the N-dimensional target output vector Y ∈ <N (representing one-hot encoded presence of
multiple neighboring words in tweet). The encoding in the hidden layer, Z ∈ <K , can be obtained by learning the
word embedding matrix W ∈ <KXN as below,

Z = WX +Q1, (1)

such that Z can be mapped back to the known target Y vector as below.

Y = WTZ +Q2,

Y = WT (WX +Q1) +Q2 (2)

Here, Q1 and Q2 are bias vectors of K and N dimensions, respectively. Thus, the word embedding matrix WT has a
K-dimensional vector representation for each of N words corresponding to N rows.

We do not use an off-the-shelf pre-trained word-embedding or a global corpus to obtain the word embedding. Instead,
the proposed Twitter data set is used to create the word-embedding at each training cycle to capture the classification
relevant context (airline sentiment) in tweets. This approach is also useful for text domains that may not have large
training corpus or pre-built dictionary. For instance, predicting patient condition from physicians generated text reports
deals with many rare and domain-specific clinical terminologies. To strictly separate the training and test data, only
the training data set (90%) is used to yield the word embedding from the skip gram model. This word-embedding is
used to extract feature vectors for both training (90%) and test (10%) data such that the skip gram model never sees the
test data fold. We further investigate the effect of skip gram window size and word vector dimensionality on sentiment
classification accuracy.

5
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Twitter 
data set

Text preprocessing
(Table 1)

Fold 1 Fold 2 Fold 3 Fold 10

Train Skip 
Gram model

SMOTE
algorithm

Inner 2-fold validation for 
model selection

(Word Embedding)

Trained classifier model

Use 9-fold data and best model 
to train the classifier

Test Fold 1: Area under the ROC curves, add results to confusion matrix

Figure 1: Classifier model training, validation, and testing steps for one of the ten folds in 10×2 nested cross-
validation.

Algorithm 1 Measuring word importance for word selection

Input: Word matrix, W = [x]mx1, x ∈ <D: a word vector
Output:

• Set of m L2-norms, SL2 = {a}mi=1
• Set of m variances, Svar = {b}mi=1
• Sorted SL2 and Svar in descending order as Ssort
• Select top k word in matrix, Wk = [x]kx1, (k≤m).

m← length (W)
for t =1→ m do

x = W[t] and then a = xxT

b = variance (x)
SL2 [t] = a and then Svar [t] = b

end for
Repeat below separately for
Svar and SL2 in place of S
for r = 1→ m do

index [r] = argmax (S)
maxValue = S [argmax (S)]
S← remove maxValue from S

end for
Wk←W [index [1:k]]

2.3 Tweet-embedding and word importance

Each tweet of variable word-length is required to be represented in a Tweet vector of constant length. The baseline
approach is to average (Eq. 4) across n-dimensional m word vectors to yield an n-dimensional tweet vector. We
compare the performance of this baseline approach with three other methods of aggregation: 1) sum of vectors (Eq.
3), 2) weighted average of vectors (Eq. 5), and 3) selecting and adding the k most important word vectors based on
word importance. Let m number of words in a tweet form a tweet matrix [wij ] ∈ <m×D where each row is a word

6



A PREPRINT - JULY 28, 2020

1 11 21 31 41 51 61
Dimension of word vector

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

%
 A

re
a 

un
de

r t
he

 R
OC

 c
ur

ve

1 2 3 4 5 6 7 8 9 10 11 12
Skip gram window size

10200

10300

10400

10500

10600

10700

10800

Nu
m

be
r o

f c
or

re
ct

ly
 c

la
ss

ifi
ed

 tw
ee

ts

Figure 2: Effect of Skip gram parameters: (a) word vector dimensionality and (b) n-gram window size on Twitter
sentiment classification performance.

vector. We can obtain the tweet vector as below.

Tw =

i=m∑
i=1

[wij], (3)

Twavg =
Tw

m
, (4)

Twweighted =

∑i=m
i=1

1
1+σ2

j
[wij]∑

1
σ2
j

(5)

where, Tw ∈ <D is a D-dimensional tweet vector and σ2
j represents the column variance of the [wij ] word matrix.

Next, we sort the words in descending order of importance to subsequently select the k most important words. The
cumulative contribution of the top k most important words is investigated in a sentiment classification task. The word
importance is measured using two metrics in an unsupervised way, i.e., being unaware of the relationship between
the tweet and its sentiment class. The two metrics, the variance and L2 norm of individual word vector, are used to
determine the relative importance of individual words. Algorithm 1 shows the computational steps for selecting k
most important words.

2.4 Model training and validation

We use a 10×2 fold nested cross-validation scheme [Varma and Simon, 2006] where the data samples are split 90%-
10% (training-testing) in the 10-fold outer cross-validation as shown in Figure 1. The inner 2-fold cross-validation
takes the 90% data (outer nine folds) and splits it 50%-50% for model training and validation, respectively. The inner
cross-validation yields the best hyperparameter values for the classifier model. Using the best hyperparameter values
and the 90% data, we train the model and then test on the left-out test data fold (10%) in the outer cross-validation. This
train-validate-test process is repeated for all ten data folds to obtain ten area under the receiver operating characteristic
curve (AUC) values for classification. We use three one-versus-all classification models to perform the proposed three-
class sentiment classification. For each sentiment class, the resultant AUC is obtained by averaging across ten AUC
values corresponding to ten test data folds.

3 Results

The Airline Sentiment Twitter data set includes 3,099, 2,363, and 9,178 tweets labeled as neutral, positive, and negative
tweets, respectively. The label imbalance in the data set can bias the 3-way classification performance due to the
higher proportion of tweets with negative sentiment. With an imbalanced data set, the accuracy metric appears inflated
and misleading as the classifier can identify most neutral tweets with negative sentiment. Both our study and [Jeni
et al., 2013] suggest similar observation on F1-score and the receiver operating characteristic curve (ROC) as follows.
F1-score and its constituent precision-recall values are significantly affected by data imbalance. The ROC includes

7
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Figure 3: Effect of selecting N most important words on sentiment analysis. Cumulative contribution of top N words
selected from descending or ascending rank order of variance and L2-norm of word vectors. Superior performance of
descending order suggests higher variance and dot products infer more informative words.

sensitivity and specificity values for varying thresholds on classification scores and is not affected by data imbalance.
An F1-score or a confusion matrix can be obtained for each point on the ROC. Thus, the ROC captures the trade-
off between sensitivity and specificity in area under the curve (AUC) scores. Hence, we use AUC scores to report
and compare the classification performances. To train an unbiased classifier model, the training data set (90%) is
adjusted for imbalance using the SMOTE algorithm [Chawla et al., 2002], which is equivalent to setting class weight
= ’balanced’ in scikit learn classifier modules. However, the left-out test data fold (10%) is unadjusted for imbalance.
Adjusting test samples for imbalance will inflate the test accuracy due to the presence of additional representative
class samples from oversampling. For all classification tasks, we have used the logistic regression classifier model
with hyperparameters : the c value (inverse of regularization weight) and regularization type (L1 and L2 norms). Note
that more sophisticated nonlinear classifier models, such as random forest or gradient boosting trees, do not improve
the performance over the linear classifier model at the cost of higher computational steps as discussed later. We discuss
our findings in the following sections.

3.1 Effect of text processing steps

We identify eight text processing cases (Table 3) using four text processing steps that are shown in Table 2.

Case 0 generates the word-embedding and performs the classification without involving any text processing, which
equivalent to simple tokenization of the raw tweet. Case 1 cleans raw tweets using regular expression (regEx) based
matching patterns as shown in Table 1. This RegEx-based cleaning isolates punctuation and punctuation-spliced
words such as ’broken.i’ while retaining hashtag words and single characters including the Unicode emoji character
showing a happy face. Case 2 additionally removes stop words like on, out, and the. Case 3 builds on Case 2 by
additionally removing single characters such as ’a’, ’i’, ’w’, ’s’ including Unicode characters and emojis. Case 4
includes the stop words (excluded in Case 3) and additionally encodes the Unicode emoji character into its UTF-8
format (”b’\\xf0\\x9f\\x98\\x8a’”). Case 5 combines the Case 4 processing steps with stop word removal. Case
6 pairs the procedure from Case 1 with emoji encoding. Case 7 follows the procedure of Case 2 and additionally
encodes the emoji character.

3.2 Word importance and effect of word embedding

The general intuition is that increasing data dimensionality deteriorates classifier performance due to the ’curse-of-
dimensionality’ effect. We study the effect of word vector dimensionality on classification accuracy. Figure 2(a)
shows that higher word vector dimensionality gradually adds more predictive information until it reaches a plateau.
There appears to be no significant improvement following the word vector dimensionality of 40. Hence, we report
our subsequent analysis results using 40-dimensional word vector. In skip gram model, the number of neighboring
words to be predicted from the input word (discussed with Eq. 2) also affects the performance of word embedding.
Figure 2(b) shows the effect of increasing the window size of neighboring words on Twitter sentiment classification

8
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Table 3: Example results of eight Tweet processing cases. Stop word and Signal char denote stop word and single
character removal, respectively. The ’#’ character is removed keeping the keyword to retain the context of hashtag.
Case 3 appears to be the cleanest with most informative tokens.

Number Definition Tokenized list of strings

Case 0
No processing [’&amp’, ’#gofundme’, ’@united’, ’the’, ’refund’, ’request?’,
(raw tweet) ”functionality’s”, ’w’, ’on’, ’http://t.co/5IMDckODfx’, ’is’,

’broken.i’, ’get’, ’a’, ’time’, ’out’, ’error.’, ]

Case 1 RegEx [’gofundme’, ’the’, ’refund’, ’request’, ’?’, ’functionality’, ’s’, ’w’, ’on’,
’is’, ’broken’, ’i’, ’get’, ’a’, ’time’, ’out’, ’error’, ]

Case 2 RegEx + Stop word [’gofundme’, ’refund’, ’request’, ’?’, ’functionality’,’s’, ’w’, ’broken’,
’i’, ’get’, ’a’, ’time’, ’error’, ’ ’]

Case 3 RegEx + Stop word [’gofundme’, ’refund’, ’request’, ’functionality’, ’broken’, ’get’,
+ Single Char ’time’, ’error’]

Case 4 RegEx+Single Char [’gofundme’, ’the’, ’refund’, ’request’, ’functionality’, ’on’, ’is’,
+ Encode Emoji ’broken’, ’get’, ’time’,’out’, ’error’, b’ \\xf0\\x9f\\x98\\x8a’ ]

Case 5 RegEx + Stop word + Single [’gofundme’, ’refund’, ’request’, ’functionality’, ’broken’,’get’, ’
Char + Encode Emoji time’, ’error’, b’\\xf0\\x9f\\x98\\x8a’]

Case 6 RegEx + Encode Emoji [’gofundme’, ’the’, ’refund’, ’request’, ’?’, ’functionality’, ’s’, ’w’, ’on’, ’is’,
’broken’, ’i’, ’get’, ’a’, time’, ’out’, ’error’, ”b’\\xf0\\x9f\\x98\\x8a’”]

Case 7 RegEx + Stop word [’gofundme’, ’refund’, ’request’, ’?’, ’functionality’, ’s’, ’w’, ’broken’,
+ Encode Emoji ’i’, ’get’, ’a’, ’time’, ’error’, ”b’\\xf0\\x9f\\x98\\x8a’”]

performance. A window size of seven appears to be the best choice for our particular Twitter classification task. The
importance of individual words is calculated from the variance and L2 norm of the word vectors. The words with the
highest and lowest variance of word vectors yield mean AUCs of 70 and 60, respectively. This suggests that word
vectors with higher variance are more informative than those with low variance. The cumulative performance gains
after including the top N most important words and the N least important words are shown in Figure 3. The top 10
most important words in a tweet yield 98.33% of the maximum sentiment classification accuracy that is obtained using
all available words. The L2 norm and variance of word vectors result in similar accuracy trends as shown in Figure 3.

3.3 Effect of tweet embedding

We compare the performance of three proposed tweet embeddings with that of the baseline vector averaging method
in Twitter sentiment classification. Table 4 shows 10×2 nested cross-validation AUC-ROC for four tweet embeddings
and eight tweet processing cases. The baseline averaging of word vectors performs the worst among all tweet embed-
dings. Case 0, without any text processing, yields low accuracy with the highest standard deviation. The sum of the
word vectors yields the most accurate classification of sentiment. However, weighted average slightly outperforms the
summation method in several cases and is a superior choice over baseline averaging. The best classification perfor-
mance is obtained using text processing Case 6, which is regular expression-based processing followed by encoding
of emojis. This suggests the value of encoding and incorporating emojis in Twitter SA. The worst classification per-
formance is obtained using averaging of word vectors in Case 3. Case 3 excludes all the stop words, single characters,
and emojis to yield cleanest tokens in Table 3. Case 3 text processing scheme invariably yields the worst performance
for all types of tweet embedding. This observation suggests that aggressive removal of stop words and characters has
negative effects on word embedding, classifier model training and performance. Using the 10 most important words
(based on word vector variance) and summation of these word vectors, the classification performance is comparable
to other tweet embedding methods. We further compare classification performance for individual sentiment classes.
For the best (sum + case 5) and worst (average + case 3) scenarios, we show their corresponding confusion matrices
in Table 5. The average accuracies of the best and worst scenarios are 73.33% and 69%, respectively. The confusion
matrices show that negative tweets are confused as positive tweets much less than the positive tweets are confused as
negatives. The worst model heavily confuses neutral tweets as negative tweets. Classifying neutral tweets is the most
difficult task as it is a gray zone between positive and negative sentiment classes. Hence, the accuracy of neutral tweet
classification accounts for most deviations between the best scenario (71%) and the worst scenario (60%).
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Table 4: Effects of eight text processing cases and four tweet embeddings on sentiment classification performance.
Values represent average area under the receiver operating characteristic curve (AUC) across 10 cross-validation folds
with standard deviation in the parenthesis. AVG = average, WAVG = weighted average, VECSEL = selecting top
10 words from the descending order of word vector variance. The best and worst AUC scores are highlighted for
comparison.

Case SUM AVG WAVG VECSEL Best

0 87.71(1.0) 86.21(1.2) 87.47(1.1) 86.80(1.3) SUM
1 88.21(0.5) 86.48(0.4) 88.13(0.4) 86.35(0.6) SUM
2 88.15(0.4) 86.39(0.4) 88.18(0.3) 86.81(0.6) WAVG
3 87.31(0.4) 85.32(0.4) 87.32(0.4) 86.32(0.6) WAVG
4 87.44(0.5) 85.54(0.6) 87.40(0.6) 86.46(0.8) SUM
5 87.52(0.4) 85.51(0.5) 87.37(0.4) 86.49(0.7) SUM
6 88.37(0.4) 86.66(0.4) 88.33(0.4) 86.88(0.5) SUM
7 88.21(0.5) 86.65(0.5) 88.28(0.4) 86.98(0.5) WAVG

Best Case 6 Case 6 Case 6 Case 7

.
Table 5: Confusion matrices and F1-scores for three sentiment classification. The best (sum + case 6) and worst (avg
+ case 3) models (Table 3) are used as examples.

Best

Actual Predicted As F1-score

Negative Neutral Positive
Negative 76% 17% 7% 0.82

Model Neutral 17% 71% 12% 0.60
Positive 11% 16% 73% 0.67

Worst

Actual Predicted As F1-score

Negative Neutral Positive
Negative 78% 16% 6% 0.83

Model Neutral 26% 60% 14% 0.56
Positive 14% 17% 69% 0.66

4 Discussion

This paper compares the performance of different text processing strategies to investigate an optimal pipeline for
Twitter sentiment classification. The key findings of this paper are: 1) Reg-Ex based text cleaning is sufficient since
removal of stop words and characters negatively affects model training and classification performance, 2) retaining
and encoding non-ASCII emoji and previously overlooked characters are important to improve Twitter sentiment
classification, 3) sum of word vectors is preferred over averaging to yield tweet vectors for classification, 4) the
skip gram model-derived word embedding provides with the information about word importance for data-driven and
domain-specific selection of words. In the following subsections, we provide further discussion of our observed results.

Off-the-shelf text cleaning routines affect sentiment classification performance:

Our results show that skip gram model-derived word embeddings are rich in predictive information and robust to
noise in several ways. Even the stop words that are routinely removed in text analysis show low but useful additive
predictive information. This is evident in the performance of text processing Case 3. In Table 2, Case 3 removes
all stop words and single characters to reduce the original tokenized list of 18 tokens (Case 0) to presumably 8 most
informative tokens. In fact, Case 3 with the least number of tokens performs the worst among all the cases. Therefore,
a basic regular expression-based text cleaning is sufficient (Case 1) without targeting stop words and special characters
in character-limited tweet classification. Leveraging special characters like emoji is the key to improving the Twitter
sentiment classification performance. This explains why Case 6 (Case 1 plus emoji encoding) appears as the best
performing case. On the other hand, averaging the word vectors lowers the variance in the resultant tweet vector. The
reduction in data variance may negatively affect sentiment classification performance. This effect is improved by using
the weighted average of word vectors where the variance estimate is considered in the average calculation. Overall,
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Table 6: Comparison of classifier model performances in Twitter sentiment classification. Time is in minutes required
for the nested cross-validation that includes generation of the word embedding at each fold iteration. SVM-RBF stands
for support vector machine with radial basis function kernel.

SVM-Linear Logistic SVM-RBF Random Gradient Boosting Trees
Regression Forest

Hyper C = [0.01, 0.5, [’L1’, ’L2’] C = [0.01, 0.5, 0.05, Num. of trees Num. of trees=[50, 80, 110]
para- 0.05, 0.8, 1, 5] C = [0.01, 0.5, 0.8, 1, 5], γ = [0.1, 0.3, =[10, 30, 50, learning rate = [0.1, 0.5],
meter 0.05, 0.8, 1, 5] 0.5, 0.01, 0.02, 0.05] 70, 90, 110] max depth = [2, 5, 10]

Time 70 minutes 6 minutes 756 minutes 13 minutes 312 minutes

88.4 (0.8) 88.4 (0.4) 88.6 (0.6) 87.7 (0.5) 87.7 (0.6)AUC

.

Table 7: An example of tokenized tweet and ordered list of words based on importance score derived from word-
embedding. The trivial words appear with low importance scores.

Tokenized Tweet [’i’, ’am’, ’appalled’, ’at’, ’your’, ’lack’, ’of’, ’communication’, ’during’, ’our’, ’awful’,
’journey’, ’on’, ’ewr’, ’to’, ’bos’, ’hr’, ’delays’, ’need’, ’to’, ’be’, ’explained’, ’better’]

Ordered list of words [journey (0.49), appalled (0.46), explained (0.42), communication (0.31), lack (0.31),
with importance scores BOS (0.24), awful (0.24), hr (0.24), EWR (0.21),during (0.20),

delays (0.18), better (0.16), our (0.16), need (0.13),am (0.13), be (0.09), at (0.09),
of (0.08), your (0.07), I (0.07), on (0.05), to (0.05)]

the sum of word vectors retains the most predictive information within a tweet vector. This is particularly useful when
no vector is available in the word embedding for a test keyword.

The dimensionality of word vectors is often set default as large as 200 [Jianqiang and Xiaolin, 2017] without validating
if such large vector dimensionality is the optimal choice. We show that higher vector dimensionality gradually adds
more predictive information up to 40 dimensions beyond which computational cost is increased with no added value
to the model performance (Figure 2(a)). Note that the performance difference in Table 4 between the cases may appear
low in terms of percentage. This is true for the VECSEL and average (avg) based tweet embedding. However, for
sum and weighted average (wavg) based tweet vector representations, the standard deviation appears low (0.4%) with
difference in AUC between 1% and 3%. This suggests a significant improvement in classification performance across
the text processing cases (Case 0 to Case 7). For example, the accuracy difference between the best and worst models
(Table 5) is 4.33%. This implies that the best model is able to correctly classify 4.33% of total 14,640 tweets or 634
tweets more than those of the worst model. This improvement is substantial in terms of sample size and important for
real-world application.

Linear classifier models are preferable:

The skip gram model obtains quite informative word embedding that efficiently captures domain contexts. The aggre-
gation (sum or averaging) of these word vectors results in tweet embeddings that yield linearly separable sentiment
classes for which a linear classifier model is sufficient. Unlike linear models, nonlinear classifier models are not only
demanding in time and computational resources but also prone to overfitting for this particular application. This is
evident in the comparative results obtained using several well known classifier models in Table 6. Both linear models
(SVM-Linear and Logistic Regression) yield the same accuracy and slightly outperform the random forest and gradi-
ent boosting tree models. The nonlinear SVM-RBF yields slight improvement at the cost of very high computational
time.

Word-embedding for word selection:

The skip gram model derived word vectors (word embedding) contain useful information that can be leveraged to
measure individual word importance in a tweet. Since the word embedding is obtained using domain-specific text
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instead of a global corpus, the word vectors are expected to learn the domain contexts and importance. Individual
words in tweets cumulatively add predictive information to the sentiment classification performance as observed in
Figure 3. Figure 3 suggests that every word bears a contribution (that may be more or less informative) to the overall
classification performance. Therefore, using a default dictionary of stop words for all applications, without recognizing
contextual importance of individual words, can limit the overall sentiment classification performance. Instead, we
recommend the learning of domain (Twitter) and application (sentiment classification) specific stop words from word
embeddings. Table 7 shows the ordering of all words in a tweet example based on proposed importance scores from
word embedding. Intuitively, it shows that conventional stop words (am, be, at, I, your, on, to) are bearing low
importance scores based on their word embedding. Thus, a data-driven approach for stop word selection may better
guide for context-specific text classification. Even in the case when some test words are unavailable in the trained
word embedding dictionary, existing test words can still cumulatively contribute to the final tweet classification.

4.1 Limitations

The Skip gram model, implemented under the word2vec package, is a powerful model for learning the word embedding
that ultimately sets the upper limit on accuracy of our Twitter sentiment classification. The goal of this paper is not to
propose a new word embedding algorithm or to compare several word embedding algorithms but rather to study the
effect and contributions of different text processing schemes when using an efficient word embedding. Indeed, there
are more recent word embeddings that may outperform the skip gram model at the cost of higher computational needs.
However, the effects of text processing steps are likely to impact all other word embedding models in more or less a
similar fashion that we do not investigate in this paper. The paper compares simple statistics (sum, average, weighted
average) to aggregate word vectors into a tweet vector. While this simple strategy works, there are more sophisticated
ways to aggregate word vectors into a sentence or tweet vector that are not commonly used in the literature and
practice.

Our results cannot be fairly compared with those reported using the same data set for sentiment analysis. A single
80-20 split of samples may yield biased accuracy if the 20% data include easy-to-classify samples. A mere 10-fold
cross validation may not yield separate train-validate-test phases for unbiased model selection and accuracy reporting.
Hence, we have proposed 10x2 nested cross-validation to yield an unbiased estimate of classification performance.
The overall F1-score, across all three classes, is heavily affected by data imbalance. The existing literature does not
report how the imbalance is adjusted or if the training or entire data set is subjected to imbalance adjustment. The AUC
of ROC is unaffected by data imbalance and provides flexibility to choose an appropriate classifier model considering
sensitivity and specificity trade-offs as required for a particular application.

5 Conclusions

In this paper, we conduct an investigative study of text processing and classification steps to identify optimal strategies
for Twitter SA. We conclude that the most aggressive text cleaning routine that removes tokens through stop word
and single character removal yields the worst performance. This observation is supported by the finding that all word
embedding vectors, including those of stop words, contain additive predictive information. We also find that the in-
clusion of emoji improves sentiment classification performance. Further analysis finds an optimal dimensionality of
word vectors and identifies that the sum of word vectors is superior to averaging for tweet vector formation. These ob-
servations recommend a data-driven approach to text processing and word selection as opposed to using off-the-shelf
routines and dictionary-based mapping. The skip gram-based word embeddings not only learn domain-specific con-
texts but also facilitate data-driven informed decision making and alleviate the need for many standard text processing
steps. The robustness of skip gram word embedding is evident even in cases when certain words are not in the training
corpus. The word embedding also yields a linearly separable feature space that is more suitable for developing fast
and generalizable sentiment classifier models.
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