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INTERPOLATING BETWEEN HILBERT-SAMUEL AND HILBERT-KUNZ

MULTIPLICITY

WILLIAM D. TAYLOR

Abstract. We define a function, called s-multiplicity, that interpolates between Hilbert-Samuel multiplicity
and Hilbert-Kunz multiplicity by comparing powers of ideals to the Frobenius powers of ideals. The function
is continuous in s, and its value is equal to Hilbert-Samuel multiplicity for small values of s and is equal to
Hilbert-Kunz multiplicity for large values of s. We prove that it has an Associativity Formula generalizing
the Associativity Formulas for Hilbert-Samuel and Hilbert-Kunz multiplicity. We also define a family of
closures such that if two ideals have the same s-closure then they have the same s-multiplicity, and the
converse holds under mild conditions. We describe the s-multiplicity of monomial ideals in toric rings as a
certain volume in real space.

1. Introduction

The purpose of this paper is to investigate a function that interpolates continuously between Hilbert-
Samuel multiplicity and Hilbert-Kunz multiplicity. First we define a limit that behaves like a multiplicity,
then we normalize it to get a proper interpolation between the Hilbert-Samuel and Hilbert-Kunz multiplici-
ties. This interpolating function, which we call s-multiplicity, is a single object which captures the behavior
of both multiplicities as well as a family of multiplicity-like functions between them. Many of the similarities
between the two multiplicities, such as the existence of an Associativity Formula and the connection to a
closure, can be interpreted as special cases of a more general statement about s-multiplicity.

Throughout this paper, all rings will be assumed noetherian. By λR(M) we mean the length of M as an
R-module. When the ring R is understood we may write λ(M) for λR(M).

Definition 1.1. Let (R,m) be a local ring of dimension d, I ⊆ R an m-primary ideal of R, and M a finitely
generated R-module. The Hilbert-Samuel multiplicity of M with respect to I is defined to be

e(I;M) = lim
n→∞

d! · λ(M/InM)

nd
.

We often write e(I) for e(I;R).

Many properties of the Hilbert-Samuel multiplicity are well known. For instance, if I ⊆ J are ideals that
have the same integral closure, then e(I) = e(J), and if R is formally equidimensional, then the converse
holds [Ree61]. The Hilbert-Samuel multiplicity is always a positive integer, e(m) = 1 if (R,m) is regular,
and if R is formally equidimensional the converse holds [Nag62, Theorem 40.6].

When R is of prime characteristic p > 0, the Frobenius map F : R → R taking r 7→ rp is a ring
homomorphism, and so we may treat R as a module over itself via the action r · x = rpx. In this case, we
often denote the module R with this new action by F∗R, and elements of this module by F∗r for r ∈ R.
An R-module homomorphism ϕ : F∗R → R is called a p−1-linear map, and has the property that for any
r, x ∈ R, rϕ(F∗x) = ϕ(F∗(r

px)). If F∗R is finitely generated as an R-module, we say the ring R is F -finite.
For an ideal I ⊆ R and e ∈ N, the eth Frobenius power of I, denoted I [p

e], is the ideal generated by the peth
powers of the elements of I, equivalently by the pe-th powers of a set of generators for I. For any p−1-linear
map ϕ and ideal I ⊆ R, ϕ(F∗(I

[p])) ⊆ I.
When R is a ring of positive characteristic, we can define a limit similar to the Hilbert-Samuel multiplicity

using the Frobenius powers of the ideal instead of the powers.

Definition 1.2. Let (R,m) be a local ring of dimension d, I ⊆ R an m-primary ideal of R, and M a finitely
generated R-module. The Hilbert-Kunz multiplicity of M with respect to I is defined to be

eHK(I;M) = lim
e→∞

λ
(

M/I [p
e]M

)

ped
.
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2 WILLIAM D. TAYLOR

We often write eHK(I) for eHK(I;R).

The Hilbert-Kunz multiplicity has some properties similar to the Hilbert-Samuel multiplicity. In partic-
ular, if I ⊆ J are ideals that have the same tight closure, then eHK(I) = eHK(J), and if R is complete
and equidimensional then the converse holds [HH90, Theorem 8.17]. The Hilbert-Kunz multiplicity is a real
number at least 1, though unlike the Hilbert-Samuel multiplicity it need not be an integer. However, like the
Hilbert-Samuel multiplicity, eHK(m) = 1 if (R,m) is regular, and if R is unmixed then the converse holds
[WY00, Theorem 1.5].

A brief outline of the paper is as follows: In Section 2, we prove the existence of the limit used to define the
s-multiplicity and establish many of its fundamental properties that we will use throughout the paper. Of
particular note are the results that the s-multiplicity is continuous in the parameter s and the Associativity
Formula for s-multiplicity. In Section 3, we examine the relationship between the s-multiplicity and the
Hilbert-Samuel and Hilbert-Kunz multiplicity and compute the limit from Section 2 for regular rings, which
allows us to finish the definition of the s-multiplicity. In Section 4, we define a collection of closures and prove
that they have exactly the same relationship with s-multiplicity as integral closure (resp. tight closure) has
with Hilbert-Samuel (resp. Hilbert-Kunz) multiplicity. In Section 5, we describe a method for computing the
s-multiplicity of pairs of ideals in toric rings and use it to compute the s-multiplicity of the An singularities
and rational normal curves.

Acknowledgments. The author would like to thank his Ph.D. advisor, Mark Johnson, for very many
fruitful discussions and much excellent advice. Additionally the author is indebted to Lance Edward Miller,
Neil Epstein, and Paolo Mantero for profitable discussions.

2. The Multiplicity-Like Function hs(I, J ;M)

We begin by considering a limit which combines aspects of the limits defining the Hilbert-Samuel and
Hilbert-Kunz multiplicities. The idea is to take the colengths of a sum of ideals, one of which corresponds
to the increasing Frobenius powers of an ideal J , and one of which corresponds to a subsequence of the
powers of another ideal I. This subsequence will be determined by a real number s. We require that both of
these ideals be primary to the maximal ideal of the ring they belong to so that at the extreme values of the
parameter s one of the two ideals will dominate the other. This guarantees that in the extremal cases we
will get a limit related to either the Hilbert-Samuel multiplicity of I or the Hilbert-Kunz multiplicity of J .

Theorem 2.1. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be m-primary
ideals of R, let M be a finitely generated R-module, and let s > 0. The limit

lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped

exists.

To prove this we require a few results that will describe the generators of certain modules as k-vector
spaces and establish some combinatorial facts which will allow us to effectively estimate the module lengths
involved in the proof.

Lemma 2.2. Let (R,m, k) be a local ring containing its residue field, and let M be an R-module of finite
length. Let {x1, . . . , xt} be a set of generators for m and {m1, . . . ,mn} a set of generators for M . Then

(i) M is generated as a k-vector space by elements of the form xb11 · · ·xbtt mj, where b1, . . . , bt ∈ N and
1 ≤ j ≤ n; and

(ii) If I = (f1, . . . , fm) is an m-primary ideal of R then M is generated as a k-vector space by elements of
the form fa1

1 · · · fam
m gmj, where a1, . . . , am ∈ N, 1 ≤ j ≤ n, and g is a generator of R/I as a k-vector

space.

Proof. (i) By definition, M is generated as a k-vector space by elements of the form rmj with r ∈ R and

1 ≤ j ≤ n. For each such r, we have that r = v +
∑t

i=1 rixi for some v ∈ k and ri ∈ R, since R = k ⊕m as
a k-vector space. For each i, we may write ri = vi +

∑n
j=1 rijxj with vi ∈ k and rij ∈ R, and so

r = v +

t
∑

i=1

vixi +
∑

1≤i,j≤t

ri,jxixj .
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We may repeat this process until every term either has a coefficient of the xi’s which is an element of k or
has a degree in the xi’s large enough that the term annihilates M and so may be removed.

(ii) By part (i), M is generated as a k-vector space by terms of the form fa1
1 · · · fam

m xb11 · · ·xbtt mj with
ai, bi ∈ N. Fix a set of k-vector space generators {gi} of R/I. Suppose that we have an element α =

fa1
1 · · · fam

m xb11 · · ·xbtt mj ∈ M with xb11 · · ·xbtt /∈ {gi}. There exists i such that xb11 · · ·xbtt − gi ∈ I, and so

there exist r1, · · · , rm ∈ R such that xb11 · · ·xbtt − gi =
∑m

ℓ=1 rℓfℓ. Therefore,

α = fa1
1 · · · fam

m gimj +

m
∑

ℓ=1

fa1
1 · · · faℓ+1

ℓ · · · fam

m rℓmj .

We know by part (i) that rℓmj is a k-linear combination of terms of the form x
b′1
1 · · ·xb

′
t

t mj′ , and so we

have that α is a k-linear combination of terms of the form fa1
1 · · · fam

m gimj and f
a′
1

1 · · · fa′
m

m x
b′1
1 · · ·xb

′
t

t mj′ with
∑

ℓ a
′
ℓ = 1+

∑

ℓ aℓ. Continuing in this way, we may write α as a k-linear combination of terms either of the

form fa1
1 · · · fam

m gimj for some i or of the form fa1
1 · · · fam

m xb11 · · ·xbtt mj with
∑

i ai arbitrarily large. Since In

annihilates M for some n, we may throw out all the terms of the second kind, which finishes the proof. �

Bounding the lengths of the ideals we are concerned with will involve some combinatorial calculations.
For convenience we introduce some notation. For positive integers d and m and real number r, we set Sm

d (r)
to be the number of monomials in d variables with degree less than r and with degree in each variable less
than m.

Certain properties of the numbers Sm
d (r) are easy to see. First, if r ≥ 0, then Sm

1 (r) = min{m, ⌈r⌉}.
Second, for d > 1, we have that Sm

d (r) =
∑m−1

i=0 Sm
d−1(r − i). Indeed, if we denote one of the variables by x,

then for i = 0, 1, . . . ,m− 1, there are Sm
d−1(r − i) monomials with degree exactly i in x, degree less than r,

and with degree in each variable less than m.
We will occasionally use a combinatorial description of the numbers Sd

m(r), which is established in the
following lemma. This result appeared in a more general form as [RS13, Lemma 2.5], though the method of
proof was different.

Lemma 2.3. For positive integers d and m and real number r,

Sm
d (r) =

d
∑

i=0

(−1)i
(

d
i

)(

⌈r⌉ − im− 1 + d
d

)

.

Proof. The number of monomials in d variables, of degree less than r, where each of a given set of i vari-
ables has degree at least m is the number of monomials in d variables of degree less than r − im, that is,
(

⌈r⌉ − im− 1 + d
d

)

. Thus the total number of monomials in d variables of degree less than r with degree

in each variable less than m is
(

⌈r⌉ − 1 + d
d

)

−
d
∑

i=1

(−1)i−1

(

⌈r⌉ − im− 1− d
d

)

,

by the inclusion-exclusion principle. �

Our next lemma is a technical result on the behavior of the numbers Sm
d (r) as m and r grow.

Lemma 2.4. If f, g : N → R are functions such that f(n)− g(n) ≤ cn+ o(n) for some c ∈ R, f(n) ≥ g(n)
for n≫ 0, and u is a positive integer, then

lim sup
n→∞

Sun
d (f(n))− Sun

d (g(n))

nd
≤ ud−1c.

Proof. We proceed by induction on d. Suppose d = 1, and let n ∈ N large enough that f(n) ≥ g(n). If
un ≤ g(n) we have that

Sun
1 (f(n))− Sun

1 (g(n)) = 0

and if un > g(n) then

Sun
1 (f(n))− Sun

1 (g(n)) ≤ ⌈f(n)⌉ − ⌈g(n)⌉ ≤ f(n)− g(n) + 1.
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Therefore

lim sup
n→∞

Sun
1 (f(n))− Sun

1 (g(n))

n
≤ lim sup

n→∞

f(n)− g(n) + 1

n
≤ c.

Now suppose that d > 1. Then

Sun
d (f(n))− Sun

d (g(n)) =

un−1
∑

i=0

(

Sun
d−1(f(n)− i)− Sun

d−1(g(n)− i)
)

≤ un
(

Sun
d−1(f(n)− in)− Sun

d−1(g(n)− in)
)

where in is the value of i with 1 ≤ i ≤ un− 1 that maximizes the expression Sun
d−1(f(n)− i)−Sun

d−1(g(n)− i).
By induction,

lim sup
n→∞

Sun
d (f(n))− Sun

d (g(n))

nd
≤ lim sup

n→∞

un
(

Sun
d−1(f(n)− in)− Sun

d−1(g(n)− in)
)

nd

=u · lim sup
n→∞

Sun
d−1(f(n)− in)− Sun

d−1(g(n)− in)

nd−1

≤u · ud−2c = ud−1c. �

Proof of Theorem 2.1. If d = 0, then for large enough e, I⌈sp
e⌉ + J [pe] = 0 and so the limit is simply λ(R).

Suppose that d ≥ 1. If k is not infinite, we may replace R by S = R[X ]mR[X]. For any R-module N , we
have λR(N) = λS(N ⊗R S), and so we may assume without loss of generality that the ring R has infinite
residue field. Let K be a reduction of I generated by d elements f1, . . . , fd ∈ R, and let w be the reduction
number of I with respect to K. Let x1, . . . , xt ∈ R be a set of generators for the maximal ideal m. Let
m1, . . . ,mn ∈M be a set of generators of M . Let v ∈ N such that Kv ⊆ J . Let q, q′ be varying powers of p.

If q′ > w+d
s , then for sufficiently large q we have that

(

K⌈sq′⌉ + J [q′]
)[q]

⊆
(

I⌈sq
′⌉ + J [q′]

)[q]

⊆ I⌈sq
′q⌉ + J [q′q] ⊆ K⌈sq′q⌉−w + J [q′q] ⊆

(

K⌈sq′⌉−d−1 + J [q′]
)[q]

.

Therefore,

λ

(

M
(

K⌈sq′⌉−d−1 + J [q′]
)[q]

M

)

≤ λ

(

M
(

I⌈sq′q⌉ + J [q′q]
)

M

)

≤ λ

(

M
(

K⌈sq′⌉ + J [q′]
)[q]

M

)

.

If we divide the first and last terms of this inequality by qd, then the limit as q → ∞ exists by [Mon83,
Theorem 1.8]. Hence

lim sup
q→∞

1

qd
λ

(

M
(

I⌈sq′q⌉ + J [q′q]
)

M

)

− lim inf
q→∞

1

qd
λ

(

M
(

I⌈sq′q⌉ + J [q′q]
)

M

)

≤ lim
q→∞

1

qd

(

λ

(

M
(

K⌈sq′⌉ + J [q′]
)[q]

M

)

− λ

(

M
(

K⌈sq′⌉−d−1 + J [q′]
)[q]

M

))

= lim
q→∞

1

qd
λ







(

K⌈sq′⌉−d−1 + J [q′]
)[q]

M

(

K⌈sq′⌉ + J [q′]
)[q]

M






.

Let

Q =

(

K⌈sq′⌉−d−1 + J [q′]
)[q]

M

(

K⌈sq′⌉ + J [q′]
)[q]

M

∼=
(

K [q]
)⌈sq′⌉−d−1

M
(

(

K [q]
)⌈sq′⌉

+ J [q′q]
)

M ∩
(

K [q]
)⌈sq′⌉−d−1

M
.

As an R-module, Q is generated by elements of the form fy1q
1 · · · fydq

d mα, where
∑

i yi = ⌈sq′⌉ − d − 1 and
1 ≤ α ≤ n. Therefore, by Lemma 2.2, Q can be generated as a k-vector space by elements of the form
fy1q+z1
1 · · · fydq+zd

d gmα where bi, yi, zi ∈ N,
∑

i yi = ⌈sq′⌉ − d − 1, and g is a k-vector space generator of
R/K. Letting ci = yi + ⌊zi/q⌋ and ai = zi − q⌊zi/q⌋, we have that ciq + ai = yiq + zi and ai < q, and so

Q can be generated as a k-vector space by elements of the form f c1q+a1

1 · · · f cdq+ad

d gmα where ai, bi, ci ∈ N,
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ai < q,
∑

i ci ≥ ⌈sq′⌉−d−1, g is a k-vector space generator of R/K, and 1 ≤ α ≤ n. However, if
∑

i ci ≥ sq′

or ci ≥ vq′ for some i, then the product above vanishes in Q. Therefore

λ(Q) ≤ qd ·
(

Svq′

d (sq′)− Svq′

d (sq′ − d− 1)
)

· λ(R/K) · n.

From this we have that

lim sup
q→∞

1

qd
λ

(

M
(

I⌈sq⌉ + J [q]
)

M

)

− lim inf
q→∞

1

qd
λ

(

M
(

I⌈sq⌉ + J [q]
)

M

)

= lim sup
q→∞

1

(q′q)d
λ

(

M
(

I⌈sq′q⌉ + J [q′q]
)

M

)

− lim inf
q→∞

1

(q′q)d
λ

(

M
(

I⌈sq′q⌉ + J [q′q]
)

M

)

≤ lim
q→∞

qd ·
(

Svq′

d (sq′)− Svq′

d (sq′ − d− 1)
)

· λ(R/K) · n
(q′q)d

=

(

Svq′

d (sq′)− Svq′

d (sq′ − d− 1)
)

· λ(R/K) · n
(q′)d

.

Since this holds for all q′ ≫ 0, and by Lemma 2.4,

lim sup
q→∞

1

qd
λ

(

M
(

I⌈sq⌉ + J [q]
)

M

)

− lim inf
q→∞

1

qd
λ

(

M
(

I⌈sq⌉ + J [q]
)

M

)

≤ lim sup
q′→∞

(

Svq′

d (sq′)− Svq′

d (sq′ − d− 1)
)

· λ(R/K) · n
(q′)d

≤ 0.

Thus the limit exists and the theorem is proved. �

Definition 2.5. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be m-primary
ideals of R, and let M be a finitely generated R-module. For s > 0, we set

hs(I, J ;M) = lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped
.

We will often write hs(I, J) for hs(I, J ;R), hs(I;M) for hs(I, I;M), hs(I) for hs(I;R), and hs(M) for
hs(m;M). If we wish to emphasize the ring R, we will write hRs (I, J ;M) or a similarly decorated variant.

We next establish some properties of hs(I, J ;M). We will use the next result repeatedly throughout the
paper, often without explicit reference.

Proposition 2.6. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be
m-primary ideals of R, and let M be a finitely generated R-module. The following statements hold:

(i) hs(I, J ;M) ≤ min{ sd

d! e(I;M), eHK(J ;M)}.
(ii) If dimM < d then hs(I, J ;M) = 0.
(iii) If s′ ≥ s then hs′(I, J ;M) ≥ hs(I, J ;M).
(iv) If I ′ and J ′ are ideals of R such that I ⊆ I ′ and J ⊆ J ′, then hs(I

′, J ′;M) ≤ hs(I, J ;M).
(v) If I ′ is an ideal of R with the same integral closure as I, then hs(I

′, J ;M) = hs(I, J ;M).
(vi) If J ′ is an ideal of R with the same tight closure as J , then hs(I, J

′;M) = hs(I, J ;M).

Proof. (i) For all e ∈ N we have that I⌈sp
e⌉ + J [pe] ⊇ I⌈sp

e⌉, hence

lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped
≤ lim

e→∞

λ
(

M/I⌈sp
e⌉M

)

⌈spe⌉d · ⌈sp
e⌉d

ped
=
sd

d!
e(I;M).

Furthermore, for all e ∈ N we have that I⌈sp
e⌉ + J [pe] ⊇ J [pe], hence

lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped
≤ lim

e→∞

λ
(

M/J [pe]M
)

ped
= eHK(J ;M).

(ii) By [Mon83, Lemma 1.2], eHK(J ;M) = 0 for any M with dimM < d, and so part (i) gives us the
result.
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(iii) For all e ∈ N we have that I⌈sp
e⌉ + J [pe] ⊇ I⌈s

′pe⌉ + J [pe], hence

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

≤ λ
(

M/(I⌈s
′pe⌉ + J [pe])M

)

.

(iv) For all e ∈ N we have that I ′
⌈spe⌉

+ J ′[p
e] ⊇ I⌈sp

e⌉ + J [pe], hence

λ
(

M/(I ′
⌈spe⌉

+ J ′[p
e]
)M
)

≤ λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

.

(v) It suffices to prove the case where I ′ = I, the integral closure of I. If s > 0, then we have that, by
part (iv) and [HS06, Proposition 11.2.1],

0 ≤ hs(I, J ;M)− hs
(

I, J ;M
)

= lim
e→∞

1

ped
λ

(

I
⌈spe⌉

+ J [pe]

I⌈spe⌉ + J [pe]

)

≤ lim
e→∞

1

ped
λ

(

(I)⌈sp
e⌉

I⌈spe⌉

)

=
sd

d!

(

e(I)− e(I)
)

= 0.

(vi) It suffices to prove the case where J = J∗, the tight closure of J . We have that, by part (iv) and
[HH90, Theorem 8.17],

0 ≤ hs(I, J ;M)− hs(I, J
∗;M)

= lim
e→∞

1

ped
λ

(

I⌈sp
e⌉ + (J∗)

[pe]

I⌈spe⌉ + J [pe]

)

≤ lim
e→∞

1

ped
λ

(

(J∗)[p
e]

J [pe]

)

= eHK(J)− eHK(J∗) = 0. �

Theorem 2.7. Let (R,m) be a local ring of characteristic p > 0, let I and J be m-primary ideals of R, and
let M be a finitely generated R-module. The function hs(I, J ;M) is Lipschitz continuous.

Proof. Let δ > 0. The function hs(I, J ;M) is increasing by Proposition 2.6(iii), so we need only bound
hs+δ(I, J ;M)− hs(I, J ;M) above in terms of δ.

Let d = dimR. If d = 0 then hs+δ(I, J ;M) = hs(I, J ;M) = λ(M), so 0 is a Lipschitz constant for
hs(I, J ;M). Suppose d ≥ 1. We may assume that R/m is infinite, and so we may assume that I is generated
by d elements by replacing it with a minimal reduction by Proposition 2.6(v). Let I = (f1, . . . , fd), let
m = (x1, . . . , xt), let v ∈ N such that Iv ⊆ J , and let m1, . . . ,mn be a set of generators for M . Then

hs+δ(I, J ;M)− hs(I, J ;M) = lim
e→∞

1

ped

(

λ
(

M/(I⌈(s+δ)pe⌉ + J [pe])M
)

− λ
(

M/(I⌈sp
e⌉ + J [pe])M

))

= lim
e→∞

1

ped
λ

(

(I⌈sp
e⌉ + J [pe])M

(I⌈(s+δ)pe⌉ + J [pe])M

)

= lim
e→∞

1

ped
λ

(

I⌈sp
e⌉M

(I⌈(s+δ)pe⌉ + J [pe])M ∩ I⌈spe⌉M

)

.

The quotient module in the last line is generated as a k-vector space by elements of the form fa1
1 · · · fad

d gmα,
where

∑

i ai ≥ spe, g is a k-vector space generator of R/I, and 1 ≤ α ≤ n. However, if
∑

i ai ≥ (s+ δ)pe or
ai ≥ vpe for some i, then the corresponding product vanishes. Therefore,

λ

(

I⌈sp
e⌉M

(I⌈(s+δ)pe⌉ + J [pe])M ∩ I⌈spe⌉M

)

≤
(

Svpe

d ((s+ δ)pe)− Svpe

d (spe)
)

· λ(R/I) · n,

and so, by Lemma 2.4,

hs+δ(I, J ;M)− hs(I, J ;M) ≤ lim sup
e→∞

(Svpe

d ((s+ δ)pe)− Svpe

d (spe)) · λ(R/I) · n
ped

≤ δ · vd−1 · λ(R/I) · n.

Hence vd−1 · λ(R/I) · n is a Lipschitz constant for hs(I, J ;M). �

Our most important application of Theorem 2.7 is the next result, which proves that hs(I, J ;M) is additive
on short exact sequences. A direct consequence of this will be the Associativity Formula for s-multiplicity.

Theorem 2.8. Let (R,m) be a local ring of characteristic p > 0 and let I and J be m-primary ideals of R.
If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of finitely generated R-modules, then hs(I, J ;M) =
hs(I, J ;M

′) + hs(I, J ;M
′′).
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Proof. Let d = dimR, let m be the minimal number of generators of I, and fix e ∈ N. For any e′ ∈ N, we
have that

I⌈(s+m/pe)pe+e′⌉ + J [pe+e′ ] ⊆
(

I⌈sp
e⌉ + J [pe]

)[pe′ ]

⊆ I⌈sp
e+e′⌉ + J [pe+e′ ].

By [Mon83, Theorem 1.6], we have that

λ

(

M ′

(I⌈spe+e′ ⌉ + J [pe+e′ ])M ′

)

+ λ

(

M ′′

(I⌈spe+e′ ⌉ + J [pe+e′ ])M ′′

)

≤ λ





M ′

(

I⌈spe⌉ + J [pe]
)[pe′ ]

M ′



+ λ





M ′′

(

I⌈spe⌉ + J [pe]
)[pe′ ]

M ′′





= λ





M
(

I⌈spe⌉ + J [pe]
)[pe′ ]

M



+O(pe
′(d−1))

≤ λ

(

M

(I⌈(s+m/pe)pe+e′⌉ + J [pe+e′ ])M

)

+O(pe
′(d−1)).

Dividing by p(e+e′)d and taking the limit as e′ → ∞, we obtain that

hs(I, J ;M
′) + hs(I, J ;M

′′) ≤ hs+m/pe(I, J ;M) .

This holds for all e, and so hs(I, J ;M
′) + hs(I, J ;M

′′) ≤ hs(I, J ;M) since by Theorem 2.7, hs(I, J ;M) is
continuous in s.

For the other inequality, note that for any e ∈ N, the sequence

M ′

(I⌈spe⌉ + J [pe])M ′
→ M

(I⌈spe⌉ + J [pe])M
→ M ′′

(I⌈spe⌉ + J [pe])M ′′
→ 0

is exact, whence

λ

(

M ′

(I⌈spe⌉ + J [pe])M ′

)

+ λ

(

M ′′

(I⌈spe⌉ + J [pe])M ′′

)

≥ λ

(

M

(I⌈spe⌉ + J [pe])M

)

.

Therefore hs(I, J ;M
′) + hs(I, J ;M

′′) ≥ hs(I, J ;M). �

The additivity of hs(I, J ;M) on short exact sequences is exactly what we need to prove the Associativity
Formula for s-multiplicity. This proof follows the proof in [Nag62, Theorem 23.5] for the Associativity
Formula for Hilbert-Samuel multiplicity.

Theorem 2.9 (The Associativity Formula). Let (R,m) be a local ring of characteristic p > 0, let I and J
be m-primary ideals of R, and let M be a finitely generated R-module. We have that

hRs (I, J ;M) =
∑

p∈AsshR

hR/p
s (I(R/p), J(R/p))λRp

(Mp)

where AsshR = {p ∈ SpecR | dimR/p = dimR}.

Proof. We proceed by induction on σ(M) =
∑

p∈AsshR λRp
(Mp). If σ(M) = 0, then dimM < dimR and so

hRs (I, J ;M) = 0.
Now suppose that σ(M) ≥ 1 and fix q ∈ AsshR such that λRq

(Mq) ≥ 1. Then q = (0 :R x) for some
x ∈M and so we have an exact sequence

0 → R/q →M →M/Rx→ 0.

We have that σ(M/Rx) = σ(M)− 1 and so by induction,

hRs (I, J ;M/Rx) =
∑

p∈AsshR

hR/p
s (I(R/p), J(R/p))λRp

((M/Rx)p)

=
∑

p∈AsshR

hR/p
s (I(R/p), J(R/p))λRp

(Mp)− hR/q
s (I(R/q), J(R/q)) .
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Therefore, it suffices to show that hRs (I, J ;R/q) = h
R/q
s (I(R/q), J(R/q)) since then by Theorem 2.8 we will

have the desired formula. This, however, is an easy computation:

hRs (I, J ;R/q) = lim
e→∞

1

ped
λR

(

R/q

(I⌈spe⌉ + J [pe])R/q

)

= lim
e→∞

1

ped
λR/q

(

R/q

(I(R/q))
⌈spe⌉

+ (J(R/q))
[pe]

)

= hR/q
s (I(R/q), J(R/q)) . �

3. s-Multiplicity

The behavior of hs(I, J ;M) is related to two thresholds concerning the interactions between powers and
Frobenius powers of ideals.

Definition 3.1. ([MTW05], [DNBP16]) Let R be a ring of characteristic p > 0, and let I, J be ideals of R.
For e ∈ N, let

νIJ(p
e) = sup

{

n ∈ N | In 6⊆ J [pe]
}

and µI
J(p

e) = inf
{

n ∈ N | J [pe] 6⊆ In
}

.

The F -threshold of I with respect to J is cJ (I) = lim
e→∞

νIJ(e)

pe
. Similarly, we set bJ (I) = lim

e→∞

µI
J(e)

pe
.

Lemma 3.2. Let R be a ring of characteristic p > 0, and let I, J be ideals of R. The limits defining cJ (I)

and bJ (I) are defined. Furthermore, if I 6⊆
√
J then cJ (I) = ∞, if J = R then cJ (I) = −∞, and if

I ⊆
√
J 6= R then 0 ≤ cJ (I) < ∞. Similarly, if J 6⊆

√
I, then bJ (I) = 0, if I = R then bJ (I) = ∞, and if

J ⊆
√
I 6= R then bJ (I) > 0. If I 6⊆

√
0, I ⊆

√
J , J ⊆

√
I, and I is contained in the Jacobson radical of R,

then bJ (I) ≤ cJ (I).

Proof. If I 6⊆
√
J , then νIJ (p

e) = ∞ for all e and so cJ (I) = ∞. If J = R then νIJ(p
e) = −∞ for all e and

so cJ (I) = −∞. Suppose 1 ⊆
√
J 6= R, so that for all e, 0 ≤ νIJ(p

e) and so cJ (I) ≥ 0. That cJ (I) exists in

the case I ⊆
√
J is [DNBP16, Theorem 3.4], the proof of which also shows that cJ (I) <∞ in this case.

If J 6⊆
√
I, then µI

J (p
e) = 1 for all e and so bJ (I) = 0. If I = R, then µI

J(p
e) = ∞ for all e, and so

bJ (I) = ∞. Suppose that J ⊆
√
I 6= R. The proof of the existence of bJ (I) in this case is nearly identical

to that of the existence of cJ (I). Let e, e′ ∈ N. We have that J [pe+e′ ] =
(

J [pe′ ]
)[pe]

⊆
(

Iµ
I
J (p

e′ )−1
)[pe]

⊆

Ip
eµI

J (p
e′ )−pe

, and so µI
J (p

e+e′ ) > peµI
J(p

e′)− pe. Therefore,

lim inf
e→∞

µI
J(p

e)

pe
= lim inf

e→∞

µI
J(p

e+e′ )

pe+e′
≥ lim

e→∞

µI
J (p

e′)− 1

pe′
=
µI
J(p

e′)− 1

pe′

Hence lim inf
e→∞

µI
J(p

e)

pe
≥ lim sup

e′→∞

µI
J(p

e′ )− 1

pe′
= lim sup

e′→∞

µI
J(p

e′)

pe′
and so the limit defining bJ (I) exists. Since

J ⊆
√
I, there exists e ∈ N such that J [pe] ⊆ I, and so µI

J (p
e) ≥ 2. Hence, bJ (I) ≥ µI

J (p
e)−1

pe > 0.

For the last statement, suppose I 6⊆
√
0, I ⊆

√
J , J ⊆

√
I, and I is in the Jacobson radical of R. For e ∈ N

, we have that Iν
I
J (p

e)+1 ⊆ J [pe] ⊆ Iµ
I
J (p

e)−1. By Nakayama’s Lemma, we have that νIJ(p
e) + 1 ≥ µI

J(p
e)− 1.

Therefore,

cJ (I) = lim
e→∞

νIJ(p
e)

pe
≥ lim

e→∞

µI
J(p

e)− 2

pe
= bJ (I) . �

Lemma 3.3. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be m-primary
ideals of R, and let M be a finitely generated R-module.

(1) If s ≤ bJ (I) then hs(I, J ;M) = sd

d! e(I;M).
(2) If s ≥ cJ (I) then hs(I, J ;M) = eHK(J ;M).
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Proof. If s < bJ (I), then for infinitely many e ∈ N, µI
J (p

e) > ⌈spe⌉, and so J [pe] ⊆ I⌈sp
e⌉. Therefore

hs(I, J ;M) = lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped

= lim
e→∞

λ
(

M/I⌈sp
e⌉M

)

ped
= lim

e→∞

λ
(

M/I⌈sp
e⌉M

)

(⌈spe⌉)d · (⌈sp
e⌉)d

ped
=
e(I;M)sd

d!
.

If s > cJ (I), then for infinitely many e ∈ N, νIJ (p
e) < ⌈spe⌉, and so I⌈sp

e⌉ ⊆ J [pe]. Therefore

hs(I, J ;M) = lim
e→∞

λ
(

M/(I⌈sp
e⌉ + J [pe])M

)

ped
= lim

e→∞

λ
(

M/J [pe]M
)

ped
= eHK(J ;M).

The continuity of hs(I, J ;M) gives the cases s = bJ (I) and s = cJ (I). �

When s is large, then hs(I, J ;M) precisely equals eHK(J), while when s is small it equals a well-understood
multiple of e(I) depending only on s and the dimension of the ring. Hence, in order to properly interpolate
between the two functions we need a normalizing factor that will take this difference in behavior into account.
To determine a good candidate for this factor, we look at one of the most notable properties of e(−) and
eHK(−), namely, if (R,m) is a regular local ring of positive characteristic, then e(m) = eHK(m) = 1. To
that end, we calculate hs(R) for power series rings over a field.

Proposition 3.4. If k is a field of characteristic p > 0 and R = k[[x1, . . . , xd]], then

hs(R) =

⌊s⌋
∑

i=0

(−1)i

d!

(

d
i

)

(s− i)d.

Proof. Let m = (x1, . . . , xd). If d = 0, then m = 0, and so hs(R) = 1 =
∑⌊s⌋

i=0(−1)i
(

0
i

)

(s − i)0. If d ≥ 1,

then by Lemma 2.3 we have that

hs(R) = lim
e→∞

Sm
d (spe)

ped
=

d
∑

i=0

(−1)i
(

d
i

)

lim
e→∞

1

ped

(

⌈spe⌉ − ipe − 1 + d
d

)

=

⌊s⌋
∑

i=0

(−1)i

d!

(

d
i

)

(s− i)d. �

Proposition 3.4 gives us our normalizing factor, and so we are ready to define the s-multiplicity.

Definition 3.5. Let (R,m) be a local ring of characteristic p > 0, let I and J be m-primary ideals of R, let
M be a finitely generated R-module, and let s > 0. Then the s-multiplicity of M with respect to the pair
(I, J) is defined to be

es(I, J ;M) =
hs(I, J ;M)

Hs(d)
,

where hs(R) =

⌊s⌋
∑

i=0

(−1)i

d!

(

d
i

)

(s− i)d. We may write es(I, J) for es(I, J ;R), es(I;M) for es(I, I;M), es(I)

for es(I;R), and es(M) for es(m;M). If we wish to emphasize the ring R, we will write eRs (I, J ;M) or a
similarly decorated variant.

In order to describe the interpolating properties of the s-multiplicity, we need some additional facts about
the functions Hs(d). First we describe the functions explicitly for d up to 3:

Example 3.6.

Hs(0) = 1

Hs(1) =

{

s if 0 < s < 1

1 if s ≥ 1
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Hs(2) =











1
2s

2 if 0 < s < 1
1
2s

2 − (s− 1)2 if 1 ≤ s < 2

1 if s ≥ 2

Hs(3) =



















1
6s

3 if 0 < s < 1
1
6s

3 − 1
2 (s− 1)3 if 1 ≤ s < 2

1
6s

3 − 1
2 (s− 1)3 + 1

2 (s− 2)3 if 2 ≤ s < 3

1 if s ≥ 3

Certain properties of Hs(d) are suggested by the above examples, and are confirmed in the next lemma.

Lemma 3.7. The functions Hs(d) have the following properties.

(i) If d ≥ 1, then Hs(d) =
∫ s

s−1 Ht(d− 1) dt.

(ii) Hs(d) is nondecreasing.
(iii) Hs(d) is a Lipschitz continuous function of s.
(iv) If s ≥ d, then Hs(d) = 1.
(v) If 0 < s ≤ 1, then Hs(d) = sd/d!.

Proof. (i) This is clear for d = 1, so suppose that d ≥ 2. Let q and q′ be varying powers of p. We have that

Hs(d) = lim
q→∞

Sqq′

d (sqq′)

(qq′)d
= lim

q→∞

∑qq′−1
i=0 Sqq′

d−1(sqq
′ − i)

(qq′)d

≤ lim
q→∞

q
∑q′−1

i=0 Sqq′

d−1(sqq
′ − qi)

(qq′)d

=
1

q′

q′−1
∑

i=0

lim
q→∞

Sqq′

d−1 ((s− i/q′)qq′)

(qq′)d−1
=

1

q′

q′−1
∑

i=0

Hs−i/q′ (d− 1)

Since the above holds for all q′, we have that

Hs(d) ≤ lim
q′→∞

1

q′

q′−1
∑

i=0

Hs−i/q′ (d− 1) =

∫ s

s−1

Ht(d) dt.

A similar argument, only using the inequality

qq′−1
∑

i=0

Sqq′

d−1(sqq
′ − i) ≥ q

q′
∑

i=1

Sqq′

d−1(sqq
′ − qi)

in the second line, shows that Hs(d) ≥
∫ s

s−1 Ht(d) dt.

(ii) This is by inspection for d = 0. For d ≥ 1, let δ > 0, so by induction

Hs+δ(d)−Hs(d) =

∫ s

s−1

Ht+δ(d− 1)−Ht(d− 1) dt ≥ 0.

(iii) We claim that the functions Hs(d) have Lipshitz constants at most 1. This is trivial for d = 0, so
suppose d ≥ 1 and let 0 < δ < 1. By induction,

Hs+δ(d)−Hs(d) =

∫ s

s−1

Ht+δ(d− 1)−Ht(d− 1) dt ≤
∫ s

s−1

δ dt = δ.

(iv) This statement is true for d = 0 by inspection. Assume that d ≥ 1 and Hs(d− 1) = 1 for s ≥ d− 1.
Then for s ≥ d, we have that

Hs(d) =

∫ s

s−1

Ht(d− 1) dt =

∫ s

s−1

1 dt = 1

and the result follows by induction.
(v) This is clear from the definition. �
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Many properties of the hs(I, J ;M) immediately imply similar properties for the s-multiplicity. Some of
these properties are listed in the next three corollaries. The first corollary makes explicit the interpolating
properties of the s-multiplicity, while the second contains some auxiliary results listed for completeness. The
third is the Associativity Formula for s-multiplicity.

Corollary 3.8. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be m-primary
ideals of R, and let M be a finitely generated R-module.

(i) If 0 < s < min{1, bJ (I)}, then es(I, J ;M) = e(I;M).
(ii) If s > max{d, cJ (I)}, then es(I, J ;M) = eHK(J ;M).
(iii) If R is a regular ring, then es(R) = 1.

Proof. Statements (i) and (ii) simply combine Lemma 3.3 and Lemma 3.7. For statement (iii), we may
assume without loss of generality that R is complete with residue field k, in which case R ∼= k[[x1, . . . , xd]].
The result then follows from Definition 3.5 and Proposition 3.4. �

Corollary 3.9. Let (R,m) be a local ring of dimension d and characteristic p > 0, let I and J be m-primary
ideals of R, and let M be a finitely generated R-module. The following statements hold.

(i) es(I, J ;M) is a Lipschitz continuous function of s.
(ii) es(I, J ;M) ≤ eHK(J ;M)/Hs(d).
(iii) If dimM < d then es(I, J ;M) = 0.
(iv) If I ′ and J ′ are m-primary ideals of R such that I ⊆ I ′ and J ⊆ J ′, then es(I

′, J ′;M) ≤ es(I, J ;M).
(v) If I ′ is an m-primary ideal of R with the same integral closure as I, then es(I

′, J ;M) = es(I, J ;M).
(vi) If J ′ is an m-primary ideal of R with the same tight closure as J , then es(I, J

′;M) = es(I, J ;M).
(vii) If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of finitely generated R-modules, then

es(I, J ;M) = es(I, J ;M
′) + es(I, J ;M

′′).

Proof. (i) We have that es(I, J ;M) is constant, hence Lipschitz continuous, on (0,min{1, bJ (I)}]. By Lemma
3.7, Hs(d) is Lipschitz continuous and nonzero on [min{1, bJ (I)},∞) and by Theorem 2.7, hs(I, J ;M) is
Lipschitz continuous, and so es(I, J ;M) is Lipschitz continuous on [min{1, bJ (I)},∞). Thus es(I, J ;M) is
Lipschitz continuous.

Parts (ii)-(vi) follow from Proposition 2.6. Part (vii) follows from Theorem 2.8. �

Corollary 3.10 (Associativity Formula for s-Multiplicity). Let (R,m) be a local ring of characteristic p > 0,
let I and J be m-primary ideals of R, and let M be a finitely generated R-module. We have that

eRs (I, J ;M) =
∑

p∈AsshR

eR/p
s (I(R/p), J(R/p))λRp

(Mp)

where AsshR = {p ∈ SpecR | dimR/p = dimR}.

Proof. For any p ∈ AsshR, dimR/p = d, and so

eR/p
s (I(R/p), J(R/p)) =

h
R/p
s (I(R/p), J(R/p))

Hs(d)
.

By Theorem 2.9, we have that

hRs (I, J ;M) =
∑

p∈AsshR

hR/p
s (I(R/p), J(R/p))λRp

(Mp) .

Therefore, dividing each term of this equation by Hs(d) proves the result. �

An immediate application of Corollary 3.10 is the following result, which shows that the s-multiplicity of
a module is in many cases determined by the s-multiplicity of the ring itself.

Proposition 3.11. Let (R,m) be a local domain of characteristic p > 0 and let I and J be m-primary ideals
of R. If M is a finitely generated R-module, then es(I, J ;M) = es(I, J) · rankM .

Proof. By the Associativity Formula, we have that

eRs (I, J ;M) = eRs (I, J)λR(0)

(

M(0)

)

= eRs (I, J) · rankM. �
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The problem of finding general bounds for the value of the s-multiplicity seems to be difficult, but we
have a few results along those lines.

Proposition 3.12. Let ϕ : (R,m) → (S, n) be a local homomorphism of local rings of dimension d and
characteristic p > 0 such that mS is n-primary, let I and J be m-primary ideals of R, and let M be a finitely
generated R-module. Then

eSs (IS, JS;M ⊗R S) ≤ eRs (I, J ;M) · λS(S/mS)
and we have equality if ϕ is a flat ring homomorphism.

Proof. For any R-module N of finite length, we have that

λS(N ⊗R S) ≤ λR(N) · λS(S/mS) .
Thus, for any s > 0 and e ∈ N we have that

λS

(

M ⊗R S

((IS)
⌈spe⌉

+ (JS)
[pe]

)(M ⊗R S)

)

= λS

(

M

(I⌈spe⌉ + J [pe])M
⊗R S

)

≤ λR

(

M

(I⌈spe⌉ + J [pe])M

)

· λS(S/mS) .

Dividing both sides by ped and taking the limit as e goes to infinity gives us that

hSs (IS, JS;M ⊗R S) ≤ hRs (I, J ;M) · λS(S/mS) ,
and dividing both sides by Hs(d) gives us the result for s-multiplicity.

If ϕ is a flat ring homomorphism, then for any R-module N we have that λS(N ⊗R S) = λR(N)·λS(S/mS)
and so we have equality everywhere. �

Corollary 3.13. If (R,m, k) be a local ring of characteristic p > 0 and I is an ideal generated by a system
of parameters in R, then es(I) ≤ λ(R/I). Furthermore, equality holds if R is Cohen-Macaulay.

Proof. We may assume that R is complete. Let d = dimR, let x1, . . . , xd be a system of parameters
generating I, and let S = k[[x1, . . . , xd]] ⊆ R. Now by Proposition 3.12 and Corollary 3.8(iii),

eRs (I) ≤ eSs ((x1, . . . , xd))λR(R/I) = λR(R/I) .

Furthermore, if R is Cohen-Macaulay, then R is a free S-module, hence is flat over S, so equality holds. �

4. s-Closure

The s-multiplicity is related to closures, just as the Hilbert-Samuel and Hilbert-Kunz multiplicities are.
We see this already in the guise of Proposition 2.6 and Corollary 3.9 with respect to integral and tight
closure. The natural question to ask at this point is whether there are closures that are similarly related to
the various s-multiplicities. In this section we define these closures and show that in sufficiently nice rings,
we get a strong connection between the closure operators and the s-multiplicity. We use the notation R◦ to
stand for the complement of the union of the minimal primes of R.

Definition 4.1. Let R be a ring of characteristic p > 0, let I be an ideal of R, and let s ≥ 1 be a real
number. An element x ∈ R is said to be in the weak s-closure of I if there exists c ∈ R◦ such that for all
e≫ 0, cxp

e ∈ I⌈sp
e⌉ + I [p

e]. We denote the set of all x in the weak s-closure of I by Iw.cls .

Remark 4.2. If I is of positive height, then x ∈ Iw.cls if and only if there exists c ∈ R◦ such that
cxp

e ∈ I⌈sp
e⌉ + I [p

e] for all e ∈ N. To see this, suppose that there exists c′ ∈ R◦ and e′ ∈ N such that

c′xp
e ∈ I⌈sp

e⌉ + I [p
e] for e > e′. Since I is of positive height, there exists c′′ ∈ (I⌈sp

e′ ⌉ + I [p
e′ ]) ∩R◦. Setting

c = c′c′′, we have that c ∈ R◦ and cxp
e ∈ I⌈sp

e⌉ + I [p
e] for all e ∈ N.

For a given ideal I, Iw.cls is clearly an ideal containing I. However, it is not clear that the weak s-closure

is idempotent; that is, it is not clear that (Iw.cls)
w.cls = Iw.cls . If the ring is noetherian, we can construct an

idempotent operation out of the weak s-closure by iterating the operation until the chain of ideals stabilizes.
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Definition 4.3. Let R be a ring of characteristic p > 0, let I be an ideal of R, and let s ≥ 1 be a real
number. The s-closure of I is defined to be the union of the following chain of ideals:

I ⊆ Iw.cls ⊆ (Iw.cls)
w.cls ⊆

(

(Iw.cls)
w.cls

)w.cls
⊆ · · · .

We denote this ideal by Icls .

Notice that, for s = 1, the s-closure is integral closure, and for s > cI (I), the s-closure is tight closure.
Furthermore, if s ≤ s′, then Icls ⊇ Icls′ for all ideals I. Thus the s-closure interpolates monotonically
between integral closure and tight closure as s increases. One should note that new closures do in fact arise:

Example 4.4. Let R = k[[x, y]], where k is a field of characteristic p > 0. Let I = (x3, y3). Then

Icls =











(x, y)3 if s = 1

(x3, x2y2, y3) if 1 < s ≤ 4
3

(x3, y3) if s > 4
3 .

In particular, if 1 < s ≤ 4
3 , then I = I∗ ( Icls ( I = (x, y)3.

Example 4.4 demonstrates that in some cases, an ideal I will only have finitely many distinct s-closures
for various values of s; in fact, this will occur whenever R is local and I is primary to the maximal ideal.
However, even in regular rings there can be infinitely many distinct s-closures.

Example 4.5. Let R = k[[x, y]], where k is a field of characteristic p > 0. Let 1 ≤ s < s′ ≤ 2. Choose
n ∈ N such that n > 2/(s′ − s), and let I = (x2n, y2n). Then x⌈sn⌉y⌈sn⌉ ∈ Iw.cls , since for any e ∈ N,

2

⌊

2n+ ⌈sn⌉pe
2n

⌋

≥ 2
⌊

1 +
s

2
pe
⌋

≥ spe,

and so x2ny2n(x⌈sn⌉y⌈sn⌉)p
e ∈ (x2n, y2n)⌈sp

e⌉. However, x⌈sn⌉y⌈sn⌉ /∈ Iw.cls′ , since for any a ∈ N, letting
e ∈ N such that pe ≥ a, we have that

2

⌊

a+ ⌈sn⌉pe
2n

⌋

≤ a+ (sn+ 1)pe

n
≤ (sn+ 2)pe

n
= spe +

2pe

n
< spe + (s′ − s)pe = s′pe

and so xaya(x⌈sn⌉y⌈sn⌉)p
e

/∈ (x2n, y2n)⌈s
′pe⌉. Thus Iw.cls 6= Iw.cls′ , and hence Icls 6= Icls′ by Theorem 4.6.

Thus we find that there are infinitely many distinct s-closures on R, one for every real number in the interval
[1, 2].

If I and I ′ have the same integral closure, then e(I) = e(I ′), while if I and I ′ have the same tight closure,
then eHK(I) = eHK(I ′). Our main theorem in this section is a similar result for s-multiplicity and s-closure.

Theorem 4.6. Let (R,m) be a local ring of characteristic p > 0 and let I and J be m-primary ideals of R
with I ⊆ J . If J ⊆ Icls , then es(J) = es(I). If R is an F -finite complete domain, then the converse holds
and Icls = Iw.cls .

Proof. Let d = dimR. Suppose that x ∈ Iw.cls , so that there exists c ∈ R◦ such that for all e ≫ 0, we have
that cxp

e ∈ I⌈sp
e⌉ + I [p

e] ⊆ Ip
e

. Hence x is in the integral closure of I and so hs((I, x), (I, x)) = hs(I, (I, x))

by Proposition 2.6(v). Now for large e ∈ N, c annihilates I⌈spe⌉+(I,x)[p
e]

I⌈spe⌉+I[pe] . Let S = R/cR, so that for e≫ 0,

λR

(

I⌈sp
e⌉ + (I, x)[p

e]

I⌈spe⌉ + I [pe]

)

= λS

(

I⌈sp
e⌉ + (I, x)[p

e]

I⌈spe⌉ + I [pe]
⊗ S

)

= λS

(

(IS)⌈sp
e⌉ + ((I, x)S)[p

e]

(IS)⌈spe⌉ + (IS)[pe]

)

And so, since dimS ≤ d− 1,

hs(I, I)− hs(I, (I, x)) = lim
e→∞

1

ped
λR

(

I⌈sp
e⌉ + (I, x)[p

e]

I⌈spe⌉ + I [pe]

)

= lim
e→∞

1

ped
λS

(

(IS)⌈sp
e⌉ + ((I, x)S)

[pe]

(IS)⌈spe⌉ + (IS)[pe]

)

=

(

lim
e→∞

1

pe(d−dimS)

)

(hSs (IS, IS)− hSs (IS, (I, x)S)) = 0.
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Therefore hs((I, x)) = hs(I) for any x ∈ Iw.cls , hence hs
(

Iw.cls
)

= hs(I). By induction, hs
(

Icls
)

= hs(I),
hence hs(J) = hs(I) and so es(J) = es(I).

Now suppose that R is an F -finite complete domain and x ∈ R such that es((I, x)) = es(I). In this case
hs((I, x)) = hs(I), and so hs(I, (I, x)) = hs(I, I), and therefore

0 = lim
e→∞

1

ped
λ

(

I⌈sp
e⌉ + (I, x)[p

e ]

I⌈spe⌉ + I [pe]

)

= lim
e→∞

1

ped
λ
(

R/
(

I⌈sp
e⌉ + I [p

e] :R xp
e
))

.

Let ψ : F∗R → R be a nonzero p−1-linear map and let ϕ(−) = ψ
(

F∗(f
p−1
1 · · · fp−1

n ) · −
)

, where f1, . . . , fn

is a generating set for I. Then

ϕ
(

F∗

(

I⌈sp
e+1⌉ + I [p

e+1] :R xp
e+1
))

· xpe ⊆ ϕ
(

F∗

(

I⌈sp
e+1⌉ + I [p

e+1]
))

⊆ ψ
(

F∗

(

fp−1
1 · · · fp−1

n I⌈sp
e+1⌉

))

+ I [p
e]

Let a1, · · · , an ∈ N with a1 + · · ·+ an ≥ spe+1. Then
n
∑

i=1

⌊

ai + p− 1

p

⌋

≥
n
∑

i=1

ai
p

≥ spe

and so fp−1
1 · · · fp−1

n I⌈sp
e+1⌉ ⊆

(

I⌈sp
e⌉
)[p]

. Therefore ψ
(

F∗

(

fp−1
1 · · · fp−1

n I⌈sp
e+1⌉

))

⊆ I⌈sp
e⌉ and so

ϕ
(

F∗

(

I⌈sp
e+1⌉ + I [p

e+1] :R xp
e+1
))

· xpe ⊆ I⌈sp
e⌉ + I [p

e],

that is,

ϕ
(

F∗

(

I⌈sp
e+1⌉ + I [p

e+1] :R xp
e+1
))

⊆
(

I⌈sp
e⌉ + I [p

e] :R xp
e
)

.

Since this holds for all e ∈ N, by [PT16, Theorem 5.5], we must have that
⋂

e≥0

(

I⌈sp
e⌉ + I [p

e] :R xp
e) 6= 0,

that is, there is some 0 6= c ∈ R such that for all e ∈ N, cxp
e ⊆ I⌈sp

e⌉ + I [p
e]. Therefore x ∈ Iw.cls .

Thus we have that if R is an F -finite complete domain and hs((I, x)) = hs(I), then x ∈ Iw.cls . Therefore
if hs(J) = hs(I) then J ⊆ Iw.cls ⊆ Icls . Furthermore, in this case, if x ∈ Icls , then hs((I, x)) = hs(I) and
hence x ∈ Iw.cls . Therefore Icls = Iw.cls . �

5. s-Multiplicity of Toric Rings

In this section we construct an equivalence between s-multiplicity for toric rings and certain volumes
in Euclidean space. We will then use that equivalence to compute the s-multiplicity for a few toric rings.
See [HJ17] for a more general treatment of the correspondence between limits in positive characteristic and
volumes in real space.

Definition 5.1. Let k be a field. By a normal toric ring of dimension d over k, or simply toric ring, we will
mean the ring k[[S]], where S = σ∨ ∩ Zd, σ∨ is a cone in Rd not containing any line through the origin, and
S inherits the semigroup structure of Zd. Furthermore, we will require that the cone σ∨ be rational, that is,
σ∨ = cone(v1, . . . , vn) for some v1, . . . , vn ∈ Zd, and of full dimension, that is, the R-span of σ∨ is all of Rd.
We will denote the monomial elements of k[[S]] by xv for v ∈ S, and if σ∨ = cone(v1, . . . , vn), we may write
k[[xv1 , . . . , xvn ]] for k[[S]].

Definition 5.2. For a monomial ideal I ⊆ k[[S]], where k[[S]] is a toric ring, we denote by Exp I the set
{v ∈ S | xv ∈ I} and by Hull I the convex hull of Exp I in Rd.

Lemma 5.3. Let (R,m) = (k[[S]], (S)) be a normal toric ring of dimension d over a field k of characteristic
p > 0, where S = σ∨ ∩ Zd, let I = (xu1 , . . . , xun) be a monomial ideal of R. For any m, e ∈ N with m ≥ 1,

(m+ n)Hull I ∩ Zd ⊆ Exp Im ⊆ mHull I ∩ Zd and Exp I [p
e] = (pe Exp I + σ∨) ∩ Zd

Proof. Let v ∈ (m + n)Hull I ∩ Zd. Then there exist a1, . . . , an ∈ R≥0 such that a1 + · · · + an = 1 and
v ∈ (m+ n)(a1u1 + · · ·+ anun + σ∨) ∩ Zd. For each 1 ≤ i ≤ n, let bi = ⌊(m+ n)ai⌋. Since each ui ∈ σ∨, we
have that

v ∈ (m+ n)(a1u1 + · · ·+ anun + σ∨) ∩ Zd ⊆ (b1u1 + · · ·+ bnun + σ∨) ∩ Zd.
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Since b1+ · · ·+ bn ≥ (m+n)(a1+ · · ·+an)−n = m, we have that v ∈ Exp Im. This shows the first inclusion
in the first statement.

A monomial xv is in Im if and only if v ∈ (a1u1 + · · · + anun + σ∨) ∩ Zd for some a1, . . . , an ∈ N with
a1 + · · ·+ an = m. If this is the case then

v ∈
(

m
(a1
m
u1 + · · ·+ an

m
un

)

+ σ∨
)

∩ Zd ⊆ mHull I ∩ Zd.

This shows the second inclusion in the first statement.
A monomial xv is in I [p

e] if and only if v ∈ peu+ σ∨ for some u ∈ Exp I. That is, xv ∈ I [p
e] if and only if

v ∈
⋃

u∈Exp I

(peu+ σ∨) ∩ Zd =



pe
⋃

u∈Exp I

(u + σ∨)



 ∩ Zd = (pe Exp I + σ∨) ∩ Zd,

which proves the second statement. �

Theorem 5.4. Let (R,m) = (k[[S]], (S)) be a normal toric ring of dimension d over a field k of characteristic
p > 0, where S = σ∨ ∩ Zd, and let I and J be m-primary monomial ideals of R. Then

hs(I, J) = vol (σ∨ \ (sHull I ∪ (ExpJ + σ∨))

where vol(−) is the standard Euclidean volume in Rd.

Proof. Let e ∈ N. The length of R/(I⌈sp
e⌉ + J [pe]) is precisely the size of the set

Ve =
{

v ∈ S | xv /∈ I⌈sp
e⌉ + J [pe]

}

=
{

v ∈ S | v /∈ Exp I⌈sp
e⌉ ∪ Exp J [pe]

}

.

From Lemma 5.3, we have that

(σ∨ \ (speHull I ∪ pe ExpJ + σ∨)) ∩ Zd ⊆ Ve ⊆ (σ∨ \ ((spe + n)Hull I ∪ pe ExpJ + σ∨)) ∩ Zd.

Scaling every set by 1
pe in each dimension, we get that

(σ∨ \ (sHull I ∪ ExpJ + σ∨)) ∩
(

1

pe
Z

)d

⊆ 1

pe
Ve ⊆ (σ∨ \ ((s+ n/pe)Hull I ∪ ExpJ + σ∨)) ∩

(

1

pe
Z

)d

.

Since the volume of σ∨ \ (sHull I ∪ Exp J + σ∨) is equal to the volume of its interior, we obtain that

vol (σ∨ \ (sHull I ∪ ExpJ + σ∨))

= lim
e→∞

1

ped

∣

∣

∣

∣

∣

(σ∨ \ (sHull I ∪ ExpJ + σ∨)) ∩
(

1

pe
Z

)d
∣

∣

∣

∣

∣

≤ lim
e→∞

1

ped
|Ve|

≤ lim
e→∞

1

ped

∣

∣

∣

∣

∣

(σ∨ \ ((s+ n/pe)Hull I ∪ ExpJ + σ∨)) ∩
(

1

pe
Z

)d
∣

∣

∣

∣

∣

=vol (σ∨ \ (sHull I ∪ ExpJ + σ∨))

And so we have equality throughout. Since hs(I, J) = lim
e→∞

1

ped
|Ve|, the theorem is proved. �

Theorem 5.4 allows us to calculate the s-multiplicity of toric rings. We compute two examples.

Example 5.5 (An Singularities). Let n ∈ N, n ≥ 1, and take

An = k[[x1, x2, x3]]/(x1x2 − xn+1
3 ) ∼= k[[x, y, x−1yn+1]].

The geometry of this toric ring is illustrated below. The shaded region corresponds to the cone σ∨, and the
lattice points (1, 0), (0, 1), and (−1, n+ 1) correspond to x, y, and x−1yn+1, respectively.
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(1, 0)

(0, 1)

(−1, n+ 1)

We wish to calculate es(An), so we need to calculate Hullm and Expm + σ∨ where m = (x, y, x−1yn+1).
These are illustrated below.

(1, 0)

(0, 1)

(−1, n+ 1)

Hullm

(1, 0)

(0, 1)

(−1, n+ 1)

(

n
n+1 , 1

)

(

− n
n+1 , n+ 1

)

Expm+ σ∨

There are three situations to consider: s ≤ 1, 1 ≤ s ≤ 2 − 1
n+1 , and s ≥ 2 − 1

n+1 . When s ≤ 1,

sHullm ∪ Expm+ σ∨ is illustrated below:

(1, 0)

(0, 1)

(−1, n+ 1)

(s, 0)

(0, s)

(−s, (n+ 1)s)

From this we can compute hs(An) = s2 for s ≤ 1.
Now suppose that 1 ≤ s ≤ 2− 1

n+1 . The picture now becomes

(1, 0)

(0, 1)

(−1, n+ 1)

(

n−s+1
n , (s−1)(n+1)

n

)

(s− 1, 1)

(1− s, s(n+ 1)− n)

(

s−n−1
n , n+ 1

)
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Calculating the area of the unshaded region in σ∨ gives

hs(An) = −n+ 1

n
(s− 1)2 + 2(s− 1) + 1

when 1 ≤ s ≤ 2− 1
n+1 .

Now consider the case when s ≥ 2− 1
n+1 . In this case the picture becomes

(1, 0)

(0, 1)

(−1, n+ 1)

(

n
n+1 , 1

)

(

− n
n+1 , n+ 1

)

And so we compute hs(An) = 2− 1
n+1 when s ≥ 2− 1

n+1 .
With this, we can write down the s-multiplicity for the An singularities:

es(An) =



























2 if 0 < s < 1
−n+1

n
(s−1)2+2(s−1)+1
1
2 s

2−(s−1)2
if 1 ≤ s < 2− 1

n+1

2− 1
n+1

1
2 s

2−(s−1)2
if 2− 1

n+1 ≤ s < 2

2− 1
n+1 if s ≥ 2.

Example 5.6. Let k be a field, and consider the nth 2-dimensional Veronese subring Vn = k[[x, xy, . . . , xyn]].
The geometry of this ring is illustrated below; the shaded region corresponds to σ∨ and for 0 ≤ a ≤ n, the
lattice points (1, a) corresponds to the monomial xya.

(1, 0)

(1, n)

Letting m = (x, xy, . . . , xyn) we have the following pictures for Hullm and Expm+ σ∨.

Hullm Expm+ σ∨
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Thus we have the following pictures for various values of s:

(s, 0)

(s, ns)

0 ≤ s ≤ 1

(s, n(s− 1))

(s, 1)

1 ≤ s ≤ 1 + 1/n

(1 + 1/n, 1)

s ≥ 1 + 1/n

With these figures we can caluclate hs(Vn) and es(Vn):

hs(Vn) =











ns2

2 if 0 < s ≤ 1

−n2

2 (s− 1)2 + n(s− 1) + n
2 if 1 ≤ s ≤ 1 + 1/n

n+1
2 if s ≥ 1 + 1/n

es(Vn) =



























n if 0 < s < 1
−n2

2 (s−1)2+n(s−1)+n
2

1
2 s

2−(s−1)2
if 1 ≤ s < 1 + 1/n

n+1
1
2 s

2−(s−1)2
if 1 + 1/n ≤ s < 2

n+1
2 if s ≥ 2.

Example 5.7. The normalizing factors Hs(d) can be easily visualized as areas in space in the same
manner. Indeed, since k[[x1, . . . , xd]] is a toric ring, we simply apply the construction above to calculate
hs((x1, . . . , xd)). For instance, when d = 2, we have the following picture:

(0, s)

(s, 0)

0 < s ≤ 1

Hs(2) =
1
2s

2

(s− 1, 1)

(1, s− 1)

1 ≤ s ≤ 2

Hs(2) =
1
2s

2 − (s− 1)2
s ≥ 2

Hs(2) = 1
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