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ON LOWER BOUNDS FOR s-MULTIPLICITIES

LANCE EDWARD MILLER AND WILLIAM D. TAYLOR

Abstract. A recent continuous family of multiplicity functions on local rings was introduced by Taylor interpolating
between Hilbert-Samuel and Hilbert-Kunz multiplicities. The obvious goal is to use this as a tool for deforming results
from one to the other. The values in this family which do not match these classic variants however are not known yet
to be well-behaved. This article explores lower bounds for these intermediate multiplicities as well as gives evidence
for analogies of the Watanabe-Yoshida minimality conjectures for unmixed singular rings.

1. Introduction

The Hilbert-Kunz multiplicity is among the most useful, subtle, and fascinating invariants of positive equichar-
acterisitc local rings. Since its discovery by Monsky, it has been a focal point of positive characteristic commutative
algebra and algebraic geometry. It is well known to stand in stark contrast to the better behaved Hilbert-Samuel
multiplicity. Recently, Taylor introduced a continuous family of multiplicities es(I, J) for pairs of ideals I and J in
such local rings, primary to the unique maximal ideal of a local ring, where s > 0 is any positive real number. For
large s-values, this multiplicity agrees with the Hilbert-Kunz multiplicity of J and for small s-values it agrees with
the Hilbert-Samuel multiplicity of I. This makes it a tantalizing tool to deform between properties of Hilbert-Samuel
and Hilbert-Kunz multiplicities. However, the values of es(I, J) which lie in between these extremal behaviors are
not at all well understood, even when I = J . For example, it is not even known that es(m,m) is bounded in terms
of the Hilbert-Samuel or Hilbert-Kunz multiplicities of the positive characteristic local ring (R,m, k), or even that
the function s 7→ es(m,m) is decreasing. Thus, expected theorems, such as the regularity criteria of Nagata or
Watanabe-Yoshida are not present for all s-values.

The purpose of this article is to establish bounds for s-multiplicities. We hope that such estimates will provide
essential tools for future work and will at least illuminate the behavior of such multiplicities in the cases where they
do not recover the more familiar Hilbert-Kunz or Hilbert-Samuel cases. We call these multiplicities intermediate.
One might expect for each m-primary ideal I, es(I, I) ∈ [eHK(I), e(I)]. Note, if true, this would prove the regularity
criteria. While we can’t establish these facts, we give validation by showing the following.

Theorem. (Corollary 3.5) For a local domain (R,m, k) with residue field of characteristic p > 0, and I an m-
primary ideal, if e(I) = eHK(I), then es(I) is a constant function in s.

In general, it is not even clear from definitions that es(R) ≥ 1! Despite this, we show a number of useful
estimates which also establish the expected regularity criteria for all s in dimension 2. In search of more good
behavior for intermediate multiplicities, we are inspired by general lower bounds similar to those arising in [WY01],
[WY05]. These papers heavily utilize an effective lower bound for Hilbert-Kunz multiplicity in terms of functions

Hs(d) :=
∑⌊s⌋

i=0
(−1)i

d!

(

d
i

)

(s− i)d. In the Cohen-Macaulay case we give an s-analogue of their lower bound.

Theorem. (Theorem 3.8) Let (R,m) be a d-dimensional Cohen-Macaulay local ring of characteristic p > 0, let
I ⊂ R be an m-primary ideal, and let J be a reduction of I that is a parameter ideal. For any r ≥ µ(I/J∗) and
1 ≤ t ≤ s,

es(I) ≥
(Ht(d)− rHt−1(d)

Hs(d)

)

e(I).

The motivation for Watanabe and Yoshida was to formulate and give evidence of a general conjecture of deep
interest. The Watanabe-Yoshida conjecture predicts that unmixed singular local rings have Hilbert-Kunz multiplic-
ities that are universally bounded below by those of the degree two Fermat hypersurfaces. In particular, working
over a fixed base field k of positive characteristic, set

Rd := k[[x0, . . . , xd]]/(x
2
0 + . . .+ x2

d).

Specifically, the conjecture predicts that any singular unmixed complete local ring R of dimension d ≥ 1 has
eHK(R) ≥ eHK(Rd) and equality forces R to be analytically isomorphic to Rd. This conjecture holds in odd
characteristics for all rings of dimension d ≤ 6, for complete intersections, and for rings of small multiplicity, [ES05],
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2 LANCE EDWARD MILLER AND WILLIAM D. TAYLOR

[AE13]. Clearly the corresponding Hilbert-Samuel statement is true and so one might hope for an s-analogue of
this conjecture.

Question: Is es(R) ≥ es(Rd) for all singular complete unmixed rings of dimension d and all s > 0?

As in the Hilbert-Kunz case, a positive answer to this question gives an immediate target class of rings to study.
Utilizing our general lower bound, we establish that this holds for Cohen-Macaulay local rings of dimension at most
3. The Cohen-Macaulay hypothesis here only manifests through the general lower bound; Theorem 3.8.

Theorem. (Theorem 4.4) Let (R,m) be an unmixed singular Cohen-Macaulay local ring of prime characteristic
p > 0 and dimension d at most 3. For any s > 0, es(R) ≥ es(Rd).

We also note that many results in the literature nearly immediately give more evidence. For example, the
question has a positive answer in the complete intersection case, by a mild extension of lemmas in [ES05], where
the bulk of the heavy lifting there manifests in changes of coordinates and inductions which are independent of the
underlying length calculations and so adds further evidence to a positive answer of the main question.

Acknowledgments: We gratefully thank P. Mantero, M. Johnson, and J. McCullough for helpful discussions
and Florian Enescu for reading a preliminary draft of the article.

2. A brief review of s-multiplicity

We begin by recalling the s-multiplicity introduced in [Tay]. Throughout s denotes a positive real number and
p denotes a positive prime integer. Fix a local ring (R,m) of characteristic p and two m-primary ideals I and
J . The limit of colengths hs(I, J) := lime→∞ λ(R/I⌈sp

e⌉ + J [pe])/ped exists [Tay, Thm. 2.1]. It is related to
both the Hilbert-Samuel and Hilbert-Kunz multiplicities of I and J respectively. In particular, for s larger than
the F -threshold cJ(I), hs(I, J) = eHK(J) and for values of s smaller than a threshold of similar construction,

hs(I, J) =
sd

d! e(I) [Tay, Lem. 3.2]. When R is regular of dimension d, Hs(d) := hs(m,m) =
∑⌊s⌋

i=0
(−1)i

d!

(

d
i

)

(s − i)d

offers a normalizing factor and one defines the s-multiplicity as follows.

Definition 2.1. For a d-dimensional local ring (R,m) of characteristic p > 0, the s-multiplicity of m-primary
ideals I and J is es(I, J) := hs(I, J)/Hs(d).

The s-multiplicity can be defined more generally for modules in the expected way and enjoys many of the usually
expected properties. In the toric case, it has an interpretation as a Euclidean volume [Tay, Lem. 5.3] which will be
exploited in Example 4.2. We follow the usual conventions by writing es(I) := es(I, I) and es(R) := es(m).

It is unclear how the function s 7→ es(I, J) for fixed I and J behaves in general. It is always Lipschitz continuous
[Tay, Cor. 3.8(i)] and takes the value e(I) for small values of s and eHK(J) for large values of s. However, it is not
known that this function is decreasing or even just bounded. While it is known that when R is regular, es(R) = 1
for all s [Tay, Cor. 3.7], there is not yet a complete s-version of the Nagata-Watanabe-Yoshida regularity criteria
for unmixed rings.

3. Estimations of s-multiplicity

We start by calculating the s-multiplicity of a power of a maximal ideal in a regular local ring.

Lemma 3.1. Suppose (B, n) is regular local with maximal ideal n. We have

es(n
n) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
.

Proof. We may complete and hence assume that B = k[[x1, . . . , xd]] and n = (x1, . . . , xd). As B is toric, [Tay, Thm
5.4] gives es(n

n) = vol(U)/Hs(d), where

U =

{

(u1, . . . , ud) ∈ Rd
≥0 |

n
∑

i=1

ui < sn,

n
∑

i=1

⌊ui⌋ < n

}

By direct computation

vol(U) =
∑

x∈Z
d
≥0

vol(U ∩ (x+ [0, 1)d)) =

n−1
∑

a=0

∑

x∈Zd
≥0

,

‖x‖1=a

vol
({

y ∈ [0, 1)d | ‖y‖1 < sn− a
})

=

n−1
∑

a=0

(

a+ d− 1

d− 1

)

Hsn−a(d).

�
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Theorem 3.2. Suppose (B, n) is regular local with maximal ideal n. For s > 1,

lim
n→∞

es(n
n)

nd
=

1

d!Hs(d)
.

Proof. If n ≥ d−1
s−1 , then for any a ≤ n− 1 we have that sn− a ≥ sn− n+ 1 ≥ d, and so Hsn−a(d) = 1. Therefore,

by Lemma 3.1,

lim
n→∞

es(n
n)

nd
= lim

n→∞

∑n−1
a=0

(

a+d−1
d−1

)

ndHs(d)
= lim

n→∞

(

n+d−1
d

)

ndHs(d)
=

1

d!Hs(d)
. �

From this we show that es(I) always has expected upper and lower bounds available for Hilbert-Kunz multiplicity
and can establish the regularity criteria in dimension 2.

Lemma 3.3. Let (R,m, k) be a local ring of characteristic p and I an m-primary ideal

(1) es(I) ≥ e(I)
d! ,

(2) If 1 < s < d, then es(I) >
e(I)
d! ,

(3) When R is singular, unmixed, and of dimension 2, then es(R) > 1.

Proof. The first two claims follow as the containment I⌈sp
e⌉ + I [p

e] ⊂ Ip
e

holds for s > 1 and this forces

es(I) ≥ lim
e→∞

λ(R/(I⌈sp
e⌉ + I [p

e]))

Hs(d)ped
≥ lim

e→∞
λ(R/Ip

e

)

Hs(d)ped
=

e(I)

Hs(d)d!
.

Using this, the first claim holds as Hs(d) ≤ 1 for all s and the second claim holds as Hs(d) < 1 for s < d. The third
claim follows from the first two using Nagata’s theorem [Nag62, Thm. 40.6] for s ≤ 1, claim (2) for 1 < s < d, and
Watanabe and Yoshida’s theorem [WY00, Thm. 1.5] for s ≥ d. �

We next generalize a result of Watanabe and Yoshida. Notably, this holds without an numixed hypothesis.

Theorem 3.4. ( c.f., [WY01, Lem. 1.3]) Fix (R,m) a local d-dimensional ring that is either a domain or Cohen-
Macaulay. For J a parameter ideal and n ∈ N,

es(J
n) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
e(J).

If R/m is infinite and I is an m-primary ideal, then for any s > 0 and n ∈ N, we have

(1)
e(In)

d!
≤ es(I

n) ≤
∑n−1

a=0

(

a+d−1
d−1

)

Hsn−a(d)

ndHs(d)
e(In).

In particular, e(I)
d! ≤ es(I) ≤ e(I) for all s.

Proof. Note that [WY05, Lem. 2.3], in our notation states for a parameter ideal J , es(J) = e(J). Let a1, . . . , ad be
a system of parameters generating J , and let S = k[[a1, . . . , ad]] ⊆ R. If R is Cohen-Macaulay, then by [Tay, Prop
3.12] and the calculation in the proof of Lemma 3.1,

eRs (J
n) = eSs ((a1, . . . , ad)

n)λ(R/J) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
e(J).

If R is a domain then we can use [Tay, Prop 3.11] and [HS06, Theorem 11.2.7] to conclude that

eRs (J
n) = eSs ((a1, . . . , ad)

n)rankS(R) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
e(J).

Equation (1) follows from Lemma 3.3 and the first claim. In particular, taking J ⊂ I a minimal reduction,

es(I
n) ≤ es(J

n) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
e(J) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

Hs(d)
e(I) =

∑n−1
a=0

(

a+d−1
d−1

)

Hsn−a(d)

ndHs(d)
e(In).

�

Immediately, we obtain the first main result of the paper.

Corollary 3.5. ( c.f., [WY01, Thm. 1.8]) Suppose (R,m) is a complete local domain of dimension at least 2. If I
is an m-primary ideal, then es(I) is constant if and only if eHK(I) = e(I).
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Proof. The following proof is inspired by [WY01, Thm 1.8 (3)]. Assuming eHK(I) = e(I), we have a parameter
ideal J such that J ⊂ I ⊂ J∗, and therefore es(J) ≥ es(I) ≥ es(J

∗) = es(J) and we have equality throughout.
Therefore, by Theorem 3.4, es(I) = es(J) = e(J) = e(I) for all s. The converse direction is obvious as e(I) = e1(I)
and eHK(I) = ed(I). �

The following lemma is an s-analogue of a heavily utilized result for Hilbert-Kunz multiplicity, see [HY02, Cor.
2.2(2)], [WY00, Lem. 4.2], and [BE04, Lem. 2.2 (2)].

Lemma 3.6. If (R,m) is a local ring of prime characteristic p > 0 and dimension d and I and J are m-primary
ideals of R such that I ⊆ J ⊆ I, then es(I) ≤ es(J) + λ(J/I)es(I,m).

Proof. We proceed by induction on λ(J/I). Suppose that λ(J/I) = 1, and let x ∈ R generate J/I. For any q = pe,
we have that

hs(I)− hs(J) = hs(I)− hs(I, J) = lim
q→∞

1

qd

(

λ
(

R/I⌈sq⌉ + I [q]
)

− λ
(

R/I⌈sq⌉ + J [q]
))

= lim
q→∞

1

qd
λ

(

I⌈sq⌉ + J [q]

I⌈sq⌉ + I [q]

)

= lim
q→∞

1

qd
λ

(

I⌈sq⌉ + I [q] + (xq)

I⌈sq⌉ + I [q]

)

.

Since λ(J/I) = 1, mx ⊆ I, and som[q]xq ⊆ I [q]. Therefore I⌈sq⌉+m
[q] annihilates the principal module I⌈sq⌉+I[q]+(xq)

I⌈sq⌉+I[q] ,

and hence λ
(

I⌈sq⌉+I[q]+(xq)
I⌈sq⌉+I[q]

)

≤ λ(R/I⌈sq⌉ +m
[q]). Therefore,

hs(I)− hs(J) = lim
q→∞

1

qd
λ

(

I⌈sq⌉ + I [q] + (xq)

I⌈sq⌉ + I [q]

)

≤ lim
q→∞

1

qd
λ(R/I⌈sq⌉ +m

[q]) = hs(I,m).

Now suppose that λ(J/I) ≥ 2. Let K be an ideal of R such that I ( K ( J . By induction, we have

es(I) ≤ es(K) + λ(K/I)es(I,m) ≤ es(J) + λ(J/K)es(K,m) + λ(K/I)es(I,m) = es(J) + λ(J/I)es(I,m). �

Corollary 3.7. If (R,m) is a Cohen-Macaulay local ring of prime characteristic p > 0, then es(R) ≥ 1.

Proof. We may assume that R/m is infinite. Let I be a minimal reduction of m. We have, by Lemma 3.6,
that es(I) ≤ es(m) + λ(m/I)es(I,m) = es(m)λ(R/I) where the last equalty holds by [Tay, Prop. 2.6(v)] and
additivity of length on short exact sequences. Since I is a parameter ideal and R is Cohen-Macaulay, we have
es(I) = e(I) = λ(R/I), which finishes the proof. �

3.1. General Lower Bounds. We conclude this section with an important lower bound for es(I) for general s
and m-primary I in Cohen-Macaulay rings which matches in spirit the lower bounds explored by [WY05, Thm.
2.2]. In some ways, working with s-multiplicity simplifies their arguments, which were suggestive all along of this
type of multiplicity.

Theorem 3.8. Let (R,m) be a d-dimensional Cohen-Macaulay local ring of characteristic p > 0, let I ⊂ R be an
m-primary ideal, and let J be a reduction of I that is a parameter ideal. For any r ≥ µ(I/J∗) and 1 ≤ t ≤ s,

es(I) ≥
(Ht(d)− rHt−1(d)

Hs(d)

)

e(I).

Proof. Throughout q denotes a power of p and references to limits with q → ∞ assume q moves through prime
powers. For any fixed q, we have that

λ

(

I⌈sq⌉ + I [q]

J⌈sq⌉ + J [q]

)

≤ λ

(

I⌈tq⌉ + I [q]

J⌈sq⌉ + J [q]

)

= λ

(

I⌈tq⌉ + I [q]

I⌈tq⌉ + (J∗)[q]

)

+ λ

(

I⌈tq⌉ + (J∗)[q]

J⌈tq⌉ + (J∗)[q]

)

+ λ

(

J⌈tq⌉ + (J∗)[q]

J⌈tq⌉ + J [q]

)

+ λ

(

J⌈tq⌉ + J [q]

J⌈sq⌉ + J [q]

)

.

If x is a generator of I/J∗, then I⌈tq⌉+(J∗)[q]+(xq)
I⌈tq⌉+(J∗)[q]

is annihilated by I⌈(t−1)q⌉ + (J∗)[q], and so,

lim
q→∞

1

qd
λ

(

I⌈tq⌉ + I [q]

I⌈tq⌉ + (J∗)[q]

)

≤ lim
q→∞

1

qd
r · λ

(

R/(I⌈(t−1)q⌉ + (J∗)[q])
)

= r · ht−1(I, J
∗) = rht−1(J) = rHt−1(d)λ(R/J) = rHt−1(d)e(I).
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Since J is a minimal reduction of I, λ
(

I⌈tq⌉+(J∗)[q]

J⌈tq⌉+(J∗)[q]

)

= o(qd). Furthermore, we have that λ
(

J⌈tq⌉+(J∗)[q]

J⌈tq⌉+J [q]

)

= o(qd).

Finally, since J is a parameter ideal and R is Cohen-Macaulay,

lim
q→∞

1

qd
λ

(

J⌈tq⌉ + J [q]

J⌈sq⌉ + J [q]

)

= hs(J)− ht(J) = (Hs(d)−Ht(d))λ(R/J) = (Hs(d)−Ht(d))e(I).

All the above together implies

hs(J)− hs(I) = lim
q→∞

1

qd
λ

(

I⌈sq⌉ + I [q]

J⌈sq⌉ + J [q]

)

≤ rHt−1(d)e(I) + (Hs(d)−Ht(d))e(I).

Since es(J) = λ(R/J) = e(I),

es(I) =
hs(I)

Hs(d)
≥ 1

Hs(d)
(hs(J)− (rHt−1(d) +Hs(d)−Ht(d)) e(I))

= es(J)−
(

r
Ht−1(d)

Hs(d)
+ 1− Ht(d)

Hs(d)

)

e(I) =

(Ht(d)− rHt−1(d)

Hs(d)

)

e(I). �

Remark 3.9. The following observation is a key part of the arguments in [WY05]. If R is Cohen-Macaulay and J
is a reduction of I that is a parameter ideal, then µ(I/J∗) ≤ e(I)− 1, which can be easily seen:

µ(I/J∗) ≤ λ(I/J∗) = λ(R/J∗)− λ(R/I) ≤ λ(R/J)− 1 = e(J)− 1 = e(I)− 1.

If R is not F -rational, then we can do even better:

µ(I/J∗) ≤ λ(I/J∗) = λ(R/J)− λ(J∗/J)− λ(R/I) ≤ λ(R/J)− 2 = e(J)− 2 = e(I)− 2.

This means one maximizes the lower bound in the case with r = e(I)− 1 in the F -rational case and r = e(I)− 2 in
the non-F -rational case. In the next section, we apply this with I = m. Note in particular, this result gives most
information for rings of multiplicity e ≥ 2 as when e = 1 we recover only a lower bound of 1.

4. An s-analogue of a conjecture by Watanabe and Yoshida

Our primary application of the results of the last section, in particular Theorem 3.8, is towards minimal values
for singular rings. Throughout this section, for k a field, set Rd = k[[x0, . . . , xd]]/

∑

x2
i for d ≥ 1. The Watanabe-

Yoshida conjecture predicts that these rings enjoy the absolute minimal Hilbert-Kunz multiplicity among unmixed
singular rings of that fixed dimension. This is known for all rings of dimension at most 4 and for p > 2 for rings
of dimension at most 6 by [WY05, AE13], for complete intersections by [ES05], and for rings in any dimension of
multiplicity 5 by [AE13]. Moreover, rings achieving the minimal value are conjectured to be analytically isomorphic
to Rd. Inspired, we ask the following question.

Question 4.1. Fix R an unmixed local ring of dimension d ≥ 1.

(1) Is es(R) ≥ es(Rd) for all s?
(2) Does equality for any fixed s force R to be analytically isomorphic to Rd?

We exploit the lower bound in Theorem 3.8, analogous to the work of Watanabe-Yoshida and Aberbach-Enescu,
to give evidence of a positive answer to this question in the Cohen-Macaulay setting and dimension at most 3 as
well as complete intersections in all dimensions. Before doing so, we recall by [Tay, Example 5.6] the s-multiplicity
of the n-th Veronese of k[[x, y]]. For n = 2 we have

es(R2) =

{

2− 2Hs−1(2)
Hs(2)

if s ≤ 3
2

3
2Hs(2)

if s ≥ 3
2 .

This follows from a direct volume computation. Likewise, we have need an explicit computation of es(R3). To
streamline the exposition, we have included a more detailed version of this computation in the Appendix.

Example 4.2. The s-multiplicity of R3 is given by

es(R3) =

{

2− 2Hs−1(3)
Hs(3)

if s ≤ 2
4

3Hs(3)
if s ≥ 2.

This computation lies in recognizing R3
∼= k[[x, y, z, w]]/(xy − zw). This allows one to express R3 as an affine

semigroup ring, defined by a cone σ. The resulting length computation then follows by computing the volume of
the set

U = {v ∈ σ∨ | v /∈ s · Hullm ∪ (Expm+ σ∨)}
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where we recall that Expm is the set of semigroup elements arising in m and Hullm is the convex hull of Expm.
Routine toric computations, explained in the appendix, expresses this volume for s ≤ 2 as an integral

hs(R3) = vol(U) = 2

∫ 1

0

Hs−z(2)− z2H1−(2−s)/z(2)dz = 2Hs(3)− 2

∫ 1

2−s

1

2
z2
(

1− 2− s

z

)2

dz

= 2Hs(3)−
∫ 1

2−s

(z − (2− s))2dz = 2Hs(3)−
(s− 1)3

3
= 2Hs(3)− 2Hs−1(3).

Furthermore, the F -threshold of m with respect to m is at most 2. Hence, by [Tay, Lem. 3.2], hs(R3) = eHK(R3)
in that range.

Armed with these computations, we provide our main supporting evidence towards Question 4.1 (1).

Lemma 4.3. If R is a singular Cohen-Macaulay ring of dimension d and multiplicity e and s ≤ min
{

2,
d√d+e+1

d
√
d+e+1−1

}

,

then

es(R) ≥ 2− 2Hs−1(d)

Hs(d)
.

Proof. In this case, we have that 0 ≤ sd

d! −
(d+e+1)(s−1)d

d! = Hs(d)− (e+1)Hs−1(d), and consequently it is straight-
forward to check

es(R) ≥ (Hs(d)− (e− 1)Hs−1(d)) e

Hs(d)
≥ 2Hs(d)− 2Hs−1(d)

Hs(d)
= 2− 2Hs−1(d)

Hs(d)
. �

Theorem 4.4. Let (R,m) be an unmixed singular Cohen-Macaulay local ring of prime characteristic p > 0 and
dimension d at most 3. For any s > 0, es(R) ≥ es(Rd).

Proof. The case where d = 1 follows as es(R) = e(R) ≥ 2 = e(Rd) = es(Rd) by Lemma 3.3. Suppose d = 2 and
recall

es(R2) =

{

2− 2Hs−1(2)
Hs(2)

if s ≤ 3
2

3
2Hs(2)

if s ≥ 3
2 .

Set e = e(R). If e ≥ 4, then es(R) ≥ e
2 ≥ 2 = e(Rd) ≥ es(Rd) by Lemma 3.3 and Theorem 3.4. If e = 2 or

e = 3, then
√
e+3√

e+3−1
≥ 3

2 , and so if s ≤ 3
2 then es(R) ≥ 2 − 2Hs−1(2)

Hs(2)
= es(R2) by Lemma 4.3. If e = 2 and s ≥ 3

2 ,

then es(R) ≥
(

H 3
2
(2)−H 1

2
(2)

Hs(2)

)

2 = 3
2Hs(2)

, and if e = 3 and s ≥ 3
2 , then es(R) ≥

(

H1(2)−2H0(2)
Hs(2)

)

3 = 3
2Hs(2)

by

Theorem 3.8. This finishes the case d = 2.
Now suppose that d = 3. Recall by Example 4.2, we have

es(R3) =

{

2− 2Hs−1(3)
Hs(3)

if s ≤ 2
4

3Hs(2)
if s ≥ 2.

We first handle cases of large multiplicity. If e ≥ 12, then es(R) ≥ e
3! ≥ 2 = e(Rd) ≥ es(Rd) by Lemma 3.3 and

Theorem 3.4 so it suffices to assume e < 12. Again applying Theorem 3.8 we have for all s,

es(R) ≥
(Hs(3)− (e− 1)Hs−1(3)

Hs(3)

)

e.

For all e ≥ 2, if s ≤
√
e+2√

e+2−1
, then s ≤ 3

√
e+4

3
√
e+4−1

, and so es(R) ≥ es(Rd) by Lemma 4.3. Suppose now that
√
e+2√

e+2−1
< s. We again apply Theorem 3.4 and analyize the lower bound. For t ≤ s we have

(Ht(3)− (e− 1)Ht−1(3)) e =

(

t3

6
− 1

2
(t− 1)2 − e − 1

6
(t− 1)3

)

e =
e

6

(

t3 − (e + 2)(t− 1)3
)

and so applying this with t =
√
e+2√

e+2−1
we have

(Ht(3)− (e− 1)Ht−1(3)) e =
e

6

(

(
√
e+ 2√

e+ 2− 1

)3

− (e + 2)

(

1√
e+ 2− 1

)3
)

=
e(e+ 2)

6(
√
e+ 2− 1)3

(√
e+ 2− 1

)

=
e(e+ 2)

6(
√
e+ 2− 1)2

.
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As t =
√
e+2√

e+2−1
≤ 2 to show es(R) ≥ es(R3) for all t < s we must address cases comparing s versus 2. However, it

is straightforward to check that
(Ht(3)− (e− 1)Ht−1(3)

Hs(3)

)

e ≥ 2− 2Hs−1(3)

Hs(3)
if and only if

e(e+ 2)

6(
√
e+ 2− 1)2

≥ 2Hs(3)− 2Hs−1(3) and

(Ht(3)− (e− 1)Ht−1(3)

Hs(3)

)

e ≥ 4

3Hs(3)
if and only if

e(e+ 2)

6(
√
e+ 2− 1)2

≥ 4

3
.

When s ≤ 2, 2Hs(3) − 2Hs−1(3) =
s3

3 − 4
3 (s − 1)3 ≤ 4

3 . Thus to show that es(R) ≥ es(R3) for t < s it suffices to

show for all e ≥ 2 that e(e+2)

6(
√
e+2−1)2

≥ 4
3 . However, this is a simple computation:

e(e+ 2)

(
√
e+ 2− 1)2

=
(e + 1)2 − 1

(
√
e+ 2− 1)2

= (
√
e+ 2 + 1)2 − 1

(
√
e+ 2− 1)2

≥ (
√
e+ 2 + 1)2 − 1 ≥ (

√
4 + 1)2 − 1 = 8.

Therefore, e(e+2)

6(
√
e+2−1)2

≥ 4
3 as desired. �

We can say even more in the dimension 2 case.

Theorem 4.5. Let R be a 2-dimensional unmixed Cohen-Macaulay local ring of prime characteristic that is not
F -rational. If s > 1, then es(R) > es(Ve), where e = e(R) and Ve is the e-th Veronese of k[[x, y]].

Proof. We have, by [Tay, Ex. 5.6], that

es(Ve) =

{

eHs(2)−(e2−e)Hs−1(2)
Hs(2)

0 < s ≤ e+1
e

e+1
2Hs(2)

s ≥ e+1
e .

Suppose 1 < s ≤ e+1
e . Applying Theorem 3.8 with r = e− 2 and t = s we have that

es(R) ≥
(Hs(2)− (e − 2)Hs−1(2)

Hs(2)

)

e >

(Hs(2)− (e− 1)Hs−1(2)

Hs(2)

)

e = es(Ve).

Now suppose that s > e+1
e . We have that

H(e+1)/e(2)− (e − 2)H1/e(2) =
(e+ 1)2

2e2
− 1

e2
− e− 2

2e2
=

(e + 1)2 − e

2e2
=

e2 + e+ 1

2e2
,

and therefore

es(R) ≥
(H(e+1)/e(2)− (e− 2)H1/e(2)

Hs(2)

)

e =
e2 + e+ 1

2eHs(2)
>

e+ 1

2Hs(2)
. �

4.1. Complete intersections. Much of the work of [AE13] towards the Watanabe-Yoshida conjecture is based on
computations first done in [ES05] on complete intersections. Much of the work there carries over to the intermediate
s-multiplicities nearly verbatim. The key point is to use various complicated changes of variables to directly prove
the Watanabe-Yoshida conjecture. For example, when R = S/f is a hypersurface where S = k[[x0, . . . , xd]], [ES05,
Thm. 3.2] shows when p > 2 one has eHK(R) ≥ eHK(Rd) which follows by repeated application of changes of
variables, hence the restriction on characteristic, to transform the defining hypersurface into a sum of squares. At
each stage, a careful choice of regular element g is made, along with a general field element α ∈ k, and the inequality
follows by [ES05, Thm. 2.6] which guarantees eHK(S/(f + αg)) ≤ eHK(R). We show next that the proof of [ES05,
Thm. 2.6] goes through for s-multiplicity and consequently the s-version of [ES05, Thm. 3.2] immediately follows.

Theorem 4.6. Suppose k is algebraically closed of characteristic p > 2. Set S = k[[x0, . . . , xn]]. Fix f, g ∈
(x0, . . . , xn) so that g /∈ (f). There is a dense set Λ ⊂ k, in its finite complement topology, such that

es(S/(f + αg)) ≤ es(S/f)

for all α ∈ Λ and all s.

Proof. This is an obvious translation of the proof of [ES05, Thm. 3.2], but we give the details. Set R = S[t]/(f+tg),
m = (x0, . . . , xn). For α ∈ k, set mα = (x0, . . . , xn, t − α), so m0 = m. For each fixed q, A = R/(m⌈sq⌉ + m

[q]).

For α ∈ k, A/(t − α) ∼= R/(m
⌈sq⌉
α + m

[q]
α + (t − α)) is Artinian and Nakayama’s lemma gives its k-dimension is

the minimal number of generators of A localized away from the prime ideal (t − α), i.e., A(t−α). Starting with a

minimal set of generators A(t), i.e., for which α = 0, we may find an open set Λq in A1
k over which these generators

also generate A(t−α), possibly non-minimally, for all (t− α) ∈ Λq. We may freely identify A1
k with k by identifying
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(t−α) and α, for which the Zariski topology on A1
k is the finite complement topology on k. Now setting Λ =

⋂

Λq,
one has for all α ∈ Λ and all q,

λ(R/(m⌈sq⌉
α +m

[q]
α + (t− α))) ≤ λ(R/(m⌈sq⌉ +m

[q] + (t))).

Taking limits as q goes to infinity and normalizing give the result. �

Corollary 4.7. For any d-dimensional singular hypersurface R ∼= k[[x0, . . . , xn]]/f over an uncountable alge-
braically closed field k of characteristic p > 2, es(R) ≥ es(Rd) for all s > 0.

Proof. This just follows the proof [ES05, Thm. 3.2] using the same changes of variables and replacing [ES05, Thm.
2.6] by Theorem 4.6. �

Corollary 4.8. Fix d ≥ 2 and k a field k of characteristic p > 2. For R a singular complete intersection of
dimension d, es(R) ≥ es(Rd) for all s > 0.

Proof. This follows the same proof as [ES05, Thm. 4.6]. Its standard to assume k is uncountable and algebraically
closed by base change. One simply replaces [ES05, Thm. 3.2] with Theorem 4.6 noting that up to very delicate
changes of variables and Weierstrass preparation arguments, none of which depends on the lengths calculating the
Hilbert-Kunz multiplicity, one reduces to giving an s-analogue of [ES05, Prop. 4.2]. However, each step there again
holds replacing again the proof of [ES05, Thm. 2.6] by the proof of Theorem 4.6. �

4.2. An alternate lower bound in dimension 4: The main obstruction to pushing these results farther is that
when d ≥ 4, Rd is no longer a toric ring, and hence it is not clear how to compute es(Rd) for such d. Nonetheless,
the computations for es(Rd) for d ≤ 3 suggest a general form for the function s 7→ es(Rd). In particular, consider
the function

φ(s, d) :=

{

2− 2Hs−1(d)
Hs(d)

if s ≤ d+1
2

2H(d+1)/2(d)−2H(d−1)/2(d)

Hs(d)
if s ≥ d+1

2 .

We note in particular that es(R4) 6= φ(s, 4) as the former depends on the characteristic. However, we also have
no direct comparison between these two functions. Either way, one can ask if es(R) ≥ φ(s, d) for unmixed local
rings of dimension d. We can establish that this holds for d = 4.

Lemma 4.9. Let d, r ∈ N≥1, and let fd,r : R>0 → R be given by fd,r(s) = Hs(d) − rHs−1(d). There exists t with

1 ≤ t ≤ d+1
2 such that fd,r is strictly increasing on the interval (0, t) and strictly decreasing on the interval (t, d+1).

Proof. We proceed by induction on d. If d = 1, then

fd,r(s) =











s if s ≤ 1

1− r(s− 1) if 1 ≤ s ≤ 2

1− r if s ≥ 2

so the statement is proved by taking t = 1. Let d ≥ 2 and suppose we know that there exists 0 < u ≤ d
2 such that

fd−1,r(s) is strictly increasing on (0, u) and strictly decreasing on (u, d). Let t ∈ (0, d+ 1) be a local extremum of
fd,r, which immediately implies that t ≥ 1 since fd,r(s) is strictly increasing for 0 < s < 1. The function fd,r is
differentiable with continuous derivative, and so 0 = f ′

d,r(t) = fd−1,r(t) − fd−1,r(t − 1). Since fd−1,r(s) is strictly

increasing on (0, u), strictly decreasing on (u, d), and constant on (d,∞), there is a unique t such that 1 ≤ t ≤ d+1
and fd−1,r(t) = fd−1,r(t− 1). Therefore t is the unique extremum of fd,r on (0, d+ 1), and it must be a maximum
since fd,r(s) is increasing for s < 1.

To prove that t must be no more than d+1
2 , we proceed by induction on r. If r = 1 and t is the local maximum

for fd,r, then

fd,1(t) = Ht(d)−Ht−1(d) = 1−Hd−t(d)− (1−Hd−t+1(d)) = Hd−t+1(d)−Hd−t(d) = fd,1(d− t+ 1).

Since fd,1 has only one local maximum, t must equal d − t + 1, and so t = d+1
2 . Now suppose that the maximum

value for fd,r−1 occurs at a point t ≤ d+1
2 for some r ≥ 2. Let s, s′ ∈ (0, d+ 1) such that t < s < s′. In this case,

fd,r(s
′)− fd,r(s) = fd,r−1(s

′)− fd,r−1(s)−Hs′(d) +Hs(d) < 0.

Therefore fd,r is decreasing on the interval (t, d+ 1), and so its maximum must occur at a point less than or equal
to t, which finishes the induction. �

Theorem 4.10. For singular Cohen-Macaulay unmxied local rings R of dimension 4, es(R) ≥ φ(s, 4).
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Proof. The previous theorem proved the statement for rings of dimension up to 3, so let R be a singular ring of
dimension 4. By Lemma 4.9, 2Hs(4)− 2Hs(4) ≤ 2H5/2(4)− 2H3/2(4) =

115
96 for all s > 0.

If e = 2, then taking t = min{s, d+1
2 } in Theorem 3.8 gives us the statement we desire. If 3 ≤ e ≤ 10, then

4
√
5+e

8
√
5+e−1

≥ 2, and so es(R) ≥ 2− 2Hs−1(4)
Hs(4)

for s ≤ 2 by Lemma 4.3. On the other hand, if s ≥ 2, then

es(R) ≥ eH2(4)− e(e− 1)H1(4)

Hs(4)
=

13
24e− 1

24e
2

Hs(4)
≥ 115

96Hs(4)
≥ 2− 2Hs−1(4)

Hs(4)
.

If 11 ≤ e ≤ 28, then
4
√
5+e

8
√
5+e−1

≥ 3
2 , and so es(R) ≥ 2− 2Hs−1(4)

Hs(4)
for s ≤ 3

2 by Lemma 4.3. If s ≥ 3
2 , then

es(R) ≥ eH3/2(4)− e(e− 1)H1/2(4)

Hs(4)
=

78
384e− 1

384e
2

Hs(4)
≥ 115

96Hs(4)
≥ 2− 2Hs−1(4)

Hs(4)
.

If e ≥ 29, then

es(R) ≥ eH1(4)− e(e− 1)H0(4)

Hs(4)
=

1
24e

Hs(4)
≥ 115

96Hs(4)
≥ 2− 2Hs−1(4)

Hs(4)
. �

Appendix

Here we flesh out the computation of Example 4.2. In particular for R3 = k[[X,Y, Z,W ]]/(XY −ZW ), we need
to calculate es(R3). For s ≤ 1, we have by [Tay, Cor. 3.7(i)], that es(R3) = e(R3) = 2.

Set m = (X,Y, Z,W ). We start by bounding the F -threshold of m with respect to itself. It suffices to show for
e ∈ N, m2pe ⊂ m

[pe]. Let XaY bZcW d ∈ m
2pe

. Without loss of generality, we may assume that a ≤ b and c ≤ d.
Since a+ b+ c+ d ≥ 2pe, either a+ d ≥ pe or b+ c ≥ pe. In the first case, XaY bZcW d = Y b−aZa+cW a+d ∈ m

[pe],
and the other case is similar. Therefore the F -threshold of m with respect to m is at most 2, and hence, by [Tay,

Cor. 3.7(ii)], if s ≥ 2 then es(R3) =
eHK(R3)
Hs(R3)

= 4
3Hs(3)

.

Now assume 1 ≤ s ≤ 2. Using [Tay, Thm. 5.4], we may calculate es(R3) as a volume in R3. In particular,
let e1, e2, e3 be the standard basis vectors for R3. The ring R3 is the affine semigroup ring of the cone σ∨ ⊆ R3

generated by {e1, e2, e3, e1 + e2 − e3}. Thus, the colength hs(R3) = λ(R3/m
⌈sq⌉ +m

[q]) is the volume of the set

U = {v ∈ σ∨ | v /∈ s ·Hullm ∪ (Expm+ σ∨)} .
To justify the example, it suffices to express this volume as an integral.

Theorem 4.11. We have

vol(U) = 2

∫ 1

0

Hs−z(2)− z2H1−(2−s)/z(2)dz.

Proof. To show this, we determine a collection of inequalities on the coordinates which identify v = (x, y, z) ∈ σ∨.
In particular, we claim that (x, y, z) ∈ σ∨ if and only if x, y, x+ z, y + z ≥ 0

To see this, note for any v = (x, y, z) ∈ σ∨ there exist ai ∈ R≥0 such that v = a1e1+a2e2+a3e3+a4(e1+e2−e3),
and so x = a1 + a4, y = a2 + a4, and z = a3 − a4. This implies that x, y, x + z, y + z ≥ 0, and further that
x + y + z = a1 + a2 + a3 + a4. On the other hand, suppose x, y, x + z, y + z ≥ 0. If z ≥ 0, then we may
take a1 = x, a2 = y, a3 = z, and a4 = 0 to see that (x, y, z) ∈ σ∨. If z < 0, then we may take a1 = x + z,
a2 = y + z, a3 = 0, and a4 = −z to realize the same. Note this also gives a condition for membership in
s ·Hullm = {a1e1 + a2e2 + a3e3 + a4(e1 + e2 − e3) | ai ∈ R≥0,

∑

ai ≥ s}, in particular,

v = (x, y, z) ∈ s ·Hullm ⇔ x+ y + z = a1 + a2 + a3 + a4 ≥ s.

It suffices now to analyze Expm+σ∨. To this end, we claim v = (x, y, z) ∈ e1+σ∨ if and only if (x−1, y, z) ∈ σ∨,
and so this occurs precisely when x − 1, y, x + z − 1, y + z ≥ 0. Similar arguments hold for e2 + σ∨ and e3 + σ∨.
For v ∈ (e1 + e2 − e3) + σ∨, we wish to know when v − (e1 + e2 − e3) = (x − 1, y − 1, z + 1) ∈ σ∨, which occurs
precisely when x− 1, y − 1, x+ z, y + z ≥ 0. Thus we have that

v = (x, y, z) ∈ Expm+ σ∨ ⇔















x− 1, y, x+ z − 1, y + z ≥ 0, or
x, y − 1, x+ z, y + z − 1 ≥ 0, or
x, y, x+ z − 1, y + z − 1 ≥ 0, or
x− 1, y − 1, x+ z, y + z ≥ 0















It is now routine to establish that U consists of the set of points v = (x, y, z) such that

(1) x, y, x+ z, y + z ≥ 0, and
(2) x+ y + z ≤ s, and
(3) either x < 1 and y + z < 1, or y < 1 and x+ z < 1.
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To calculate the volume of U , we integrate over the one of the coordinates. For a fixed nonnegative value of z,
the points (x, y) such that (x, y, z) ∈ U are the points such that

(1) 0 ≤ x, y ≤ 1, and
(2) x+ y ≤ s− z, and
(3) it is not the case that both x ≥ 1− z and y ≥ 1− z.

From condition (3) we see that we may assume that z ≤ 1, and we do so. The volume of points satisfying the first
two conditions is exactly Hs−z(2). The points that satisfy the first two conditions but fail the second can be written
in the form (1 − z + α, 1 − z + β), where 0 ≤ α, β ≤ z and α+ β ≤ s− z − (2 − 2z) = z − (2 − s). The volume of
these points is z2H1−(2−s)/z(2). Now fixing a negative value of z, the points (x, y) such that (x, y, z) ∈ U are the
points such that

(1) −z ≤ x, y ≤ 1− z, and
(2) x+ y ≤ s− z, and
(3) it is not the case that both x ≥ 1 and y ≥ 1.

Setting x′ = x+ z and y′ = y+ z, the volume of the points (x, y) satisfying the above conditions is the same as the
volume of the points (x′, y′) satisfying

(1) 0 ≤ x, y ≤ 1, and
(2) x+ y ≤ s+ z, and
(3) it is not the case that both x′ ≥ 1 + z and y′ ≥ 1 + z.

Thus these points have exactly the same volume as those in the case where z is nonnegative.
�
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