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In this article, we propose a technique called Energy Mixture
Model (emm) for classification. emm is a type of feed-forward
neural network that can be used to decide the number of nodes
for constructing the hidden layer of neural networks based on
the variable clustering method. Additionally, energy combination
method is used to generate the recognition pattern as the basis
for classification. This approach not only improves the elucidation
capability of the model but also discloses the black box of the hid-
den layer of neural networks. Domain experts can evaluate mod-
els built by variable clusters more easily than those built by neu-
ral networks.
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Introduction

In the field of machine learning, two main challenging tasks are to
identify the underlying governing rules and then utilize them as the
basis for constructing a model, and to increase the explanation and
prediction power of the model. Constructing models of classification
for the computer to search and predict is one of the crucial functions
of machine learning. Different approaches have been proposed to
learn a classifier from pre-classified datasets. Among them are De-
cision Tree (Quinlin 1993), Support Vector Machine (Burges 1998),
Naive Bayesian network classifier (Duda and Hart 1973; Langley, Iba,
and Thompson 1992) and Statistical Neural Networks (Pankaj and
Benjamin 1992).

Recently, Latent Class (lc) or Finite Mixture (fm) models have
been proposed as classification tools in the field of neural network
(Jacobs et al. 1991; Bishop 1995). Models constructed by using lc or
fm are similar to a feed-forward neural network with a single hidden
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layer (cf. Vermunt and Magidson 2003). The main features of these
approaches are to combine variables into groups and to calculate
likelihood estimation values for evaluating how effective the classi-
fication is. The final goal is to find the optimum combination that
has a maximum likelihood estimation value. However, in the process
of building the structure of a neural network, there is a dilemma in
combining variables into groups to construct the hidden layer: if we
prefer a simple structure, the accuracy will be reduced; on the other
hand, if we prefer the complex structure, then the over-fitting prob-
lem (e. g., the classifier learns the training data perfectly while hav-
ing a high error rate in predicting new data) may occur. This is also a
well-recognized problem that exists in the field of neural networks.

How to combine variables into nodes, and how many nodes to be
used as the basis for classification are two key issues for hidden layer
construction of neural network models. In this study, we will propose
the Energy Mixture Model(emm) as a classifier that can be used to
decide the number of nodes for constructing the hidden layer of neu-
ral networks based on the variable clustering method. The suitable
number of nodes for constructing the hidden layer can be obtained
by evaluating the average energy of the ensemble.

For categorical variables, we will show how to cluster the variables
into subsets as a node using mutual information from information
theory, and then convert to its equivalent energy state that can be
used to generate the recognition patterns as criteria for classifica-
tion. In addition, for continuous numeric variables, we follow the
idea similar to the activation function of a neural network, and try to
convert the value of variables into its equivalent energy state, which
then can be used to generate recognition patterns for classification
as well.

Clustering of Categorical Variables

To combine categorical variables into clusters is the first step of emm

(Energy Mixture Model) construction. According to information the-
ory, the mutual information (cross entropy) of two discrete random
variables X and Y is obtained as:

I(X, Y)=H(X)+H(Y)−H(X, Y). (1)

Here, H(X, Y) is the total entropy of random variables (X, Y), H(X)
is the entropy of X, and H(Y) is the entropy of Y. Two random vari-
ables X and Y will be mutually independent if I(X, Y)= 0. Therefore,
by computing the mutual information pairwisely for a set of random
variables, one can obtain a coefficient matrix. Variables with low-
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est coefficient can then be grouped to form a cluster. The purpose
of grouping variables into subsets with lowest association is an at-
tempt to confirm the assumption that if the variables are mutually
independent within a node, the cross effect of variables will be min-
imum, and then we can multiply the percentage of each variable to
gain the joint percentage before converting it to energy.

Next, we will show how to construct the mixture model by com-
bining the variable nodes. The em algorithm (Dempster, Laird, and
Rubin 1977) has been the most popular computational method for
estimating parametric mixture models. The em is an iterative pa-
rameter optimization technique and has been widely applied to la-
tent variable models. However, a number of key issues remain un-
resolved, one of which is the question concerning which local max-
imum should be chosen as the final estimate. In other words, the
choice of local maximum is not obvious, and the final selection re-
quires careful consideration in practice. Another open issue is gener-
alization, this concerns the commonly encountered observation that
estimating mixture models by mle (maximum likelihood estimation)
leads to over-fitting, particularly when training data are limited. As
will be described below, we propose to learn the basic idea behind
the em algorithm first, and then construct the mixture models with
the concept that is implied by em algorithm.

The ‘Simulated Annealing Network’ adopts the concept of statisti-
cal mechanics, which states that, if Pr is the probability for a system
with energy Er, then the average energy of the ensemble of such
system is given by:

E=∑
r

PrEr. (2)

And in an equilibrium system, the material follows the canonical
probability distribution which is given by:

Pr(Er)∝ e
−Er
kBT . (3)

Here e−Er/kBT is the Boltzmann factor, kB is the Boltzmann con-
stant, T is Kevin temperature, and Er is the energy of the microstate r
of the system. From equation (3), taking the negative log, we can con-
vert the probability to its equivalent energy state accordingly. The em

algorithm for mixture distribution has a particular form (cf. Sahani
1999). The log-likelihood function for the parameters is given by:

lx(θ)=∑
i

log
M∑

m=1
πmPθm(x1), πm =p(θ = θm), (4)
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which has the log-of-sum structure common to latent variable mod-
els. The joint log-likelihood for the data is then given by:

lx, y(θ)=
∑
i

logπyiPθy1
(x1), πyi =p(θ−θyi ). (5)

Equation (5) comprises three parts. The first part (Pθy1
(x1)) de-

notes the joint probability of each latent class (yi), here variables in
latent class (yi) are assumed to be mutually independent; the sec-
ond part (πyi) denotes taking the average probability, and the third
part is to take the logarithm of a probability, which denotes transfer-
ring to the equivalent energy state as we learned from the concept of
canonical probability distribution. Therefore, the labeled objective
of the em algorithm is likely to search the minimum energy state,
which is compatible to the idea of the simulated annealing network
technique.

The mechanism for deterministically annealing the optimization is
such that it converges to a more global maximum, and it can also be
applied to the em algorithm (cf. Lavielle and Moulines 1997; Jebara
1999).

The primary concept of the em algorithm is to search for the local
minimum energy state as described above. One can adopt the same
idea as the basis for mixture model constructing. Under the situation
of equilibrium, the average energy, which is derived from the mix-
ture model, should be a minimum energy state. In other words, the
mixture model with minimum average energy is the optimum model
of the ensemble in equilibrium.

Energy Mixture Model Exposition

In this study, we will adopt the energy concept and propose the En-
ergy Mixture Model (hereinafter referred as emm) as a classifier.
emm deems the node in hidden layer of neural network to be a clus-
ter of variables. Each cluster will have its own energy state, and the
mixture model will be represented by the recognition pattern of the
labeled classes. The structure and construction of emm will be de-
scribed as follows.

emm is one kind of feed-forward neural network. It has many per-
ceptron structures as shown in figure 1. The input layer of manifest
variables links to a cluster of the hidden layer 1; but the structure
here is different from that in a Multi Layer Perceptron (mlp). In mlp,
every input variable is linked to all the nodes of hidden layer. Each
cluster of the hidden layer 1 is a combination of some manifest vari-
ables, and variables are near mutually independent within the same

206 management · volume 2



Learning Mixture Models for Classification with Energy Combination

Input layer

Hidden layer 1

Hidden layer 2

Output layer

X: Manifest variables

C: Cluster of variables

P: Recognition pattern
E: Energy combination

Y: Output classes

figure 1 emm structure

cluster because the cross effect of variables will be the minimum
theoretically.

emm for categorical variables

According to the energy concept of statistic mechanics, we can cal-
culate the percentage of manifest variables, compute the geometric
average, and then convert to its corresponding energy state by taking
the negative logarithm of the geometric average percentage value.
The average energy of a cluster can be obtained by dividing the en-
ergy lump sum of the instances within the cluster to the total number
of instances. In other words, if we assume n is the sample size, k is
the number of clusters, each cluster contains mj manifest variables,
and pijl is the percentage for each level l of the manifest variable for
instance i in cluster j, then the energy Eij of instance i in cluster j can
be expressed as equation :

Eij =−log

(mj∏
jl

pijl

) 1
mj

, (6)

the average energy of cluster j is then given by equation:

Ej =
1
n

n∑
i=1

Eij, (7)

the total energy of instance i is shown in equation:

Ei =
k∑

j=1
Eij, (8)

and the total average energy of the ensemble is shown in equation:

Ea = 1
k

n∑
i=1

Ei. (9)

number 3 · fall 2007 207



Chi-Ming Tsou, Chuan Chen, and Deng-Yuan Huang

Generate
manifest
variable
clusters

Calculate
energy
of each

instance

Generate
energy

threshold
value

Generate
recogni-

tion
pattern

Classifi-
cation

figure 2 Procedure of emm construction and classification

Next, taking the average energy(Ej) of each cluster as a thresh-
old value, one can compare the energy of an instance in the cluster
with this threshold value, and denote the result by 1 if the value is
above the threshold value, otherwise denote it by 0. After that, one
can obtain a recognition pattern that comprises 0 or 1. (the length of
pattern will be k if the number of nodes is k). Meanwhile, taking the
total energy of the instance and the recognition pattern described
above, one can proceed with the classification with these two criteria.
In the following, we will show how to construct emm for categorical
and continuous variables.

There are 5 steps for categorical variable emm construction and
classification as shown in figure 2. Rules for emm construction and
classification are:

1. By the use of equation (1) to calculate mutual information of two
manifest variables, and take this value as the basis for construct-
ing variable clusters.

2. For each instance, calculate the percentage of manifest variables
to get energy in each cluster by equation (6).

3. Calculate the average energy of each cluster by equation (7),
and calculate the total energy of each instance by equation (8),
and then calculate the average energy and standard deviation
for each labeled class from all the instances of the same class.

4. Take the average energy of each cluster as a threshold value, and
compare the energy of each instance in each cluster against the
threshold value to obtain the recognition pattern (a string of 0
and 1) for each instance.

5. Use the recognition pattern and the total energy of each instance
as two criteria for classification. If there is more than one class
for a specific pattern, then choose the class with total average
energy plus or minus n standard deviation (n can be adjusted
for optimization) that is close to the total energy of the instance
as the candidate. We can also do a fuzzy classification by the use
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of the class’s average energy and standard deviation, or adjust
the threshold value of average energy and standard deviation
for optimization.

emm for continuous variables

The underlying concept of converting a continuous random variable
value to its equivalent energy state is to mimic the idea of the acti-
vation function in the neural network. In other words, selection of
energy conversion function for the continuous variable in the emm

model is similar to the selection of an activation function in the neu-
ral network. The purpose of converting a random continuous value
to a binary state, with ‘0’ denoting low energy state and ‘1’ denoting
high energy state, is to get a recognition pattern.

Moreover, a good way to convert a continuous numeric random
variable to its equivalent energy without introducing scaling prob-
lem is to define X/μ as the energy conversion function, here μ is the
mean of each random variable; if the mean value of the random vari-
able is unknown, then one can take the sample mean X instead. If we
find the result is poor, then one can try another type of conversion
function to improve accuracy rate. Obviously, this kind of approach is
very similar to that for a neural network. After converting the contin-
uous variable to its corresponding energy value, then we can follow
all the steps described above for emm construction and classification.

Examples of emm

In the following, we will use Soybean as a sample dataset to show
how to make classification by the use of emm. There are 376 in-
stances in Soybean datasets, with 35 manifest variables, all are cat-
egorical variables, and 19 groups as the labeled classes (cf. http://
www.ics.uci.edu/~mlearn/mlsummary.html). Since there are many
missing values in the dataset, in order to simplify the procedure
of data analysis we first convert the datasets into binary format by
grouping the level of each manifest variable with minimum entropy.

variables cluster and emm recognition pattern

First, use equation (1) I(X, Y)=H(X)+H(Y)−H(X, Y) to compute the
mutual information of two manifest variables and work out a co-
efficient matrix. Combine the two variables with the lowest value
in the coefficient matrix into a cluster, and adjust the value of the
‘reduced’ coefficient matrix accordingly based on the highest value
rule. Repeat this step to obtain the variables clusters. In this case, we
combine the two variables with the highest degree of independence.
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table 1 Results of cluster average energy of Soybean sample

(1) 1 2 3 4 5 6 7 8 9 10 11

(2) 0.6046 0.6229 0.4305 0.6429 0.5134 0.7176 0.5634 0.6313 0.6413 0.6341 0.5371

notes (1) cluster; (2) average energy.

table 2 Part of results of emm recognition pattern of Soybean sample

No. Pattern Labelled class

1 01000000000 Alternarialeaf-spot, brown-spot, frog-eye-leaf-spot

2 01000000100 Bacterial-blight, brown-spot, frog-eye-leaf-spot,
phyllosticta-leaf-spot

3 01000000110 Bacterial-pustule

4 01000001100 Powdery-mildew

59 11111111111 2-4-d-injury, cyst-nematode, herbicide-injury

There are still many options for setting the rules. One can get vari-
ous cluster results according to the rules one sets. This is similar to
the work of feature selection with neural networks.

Having obtained the clusters of variables, one can proceed with
computing the energy of each instance in each cluster, follow the
procedures narrated in figure 2 and calculate the total average en-
ergy for the ensemble with equation (10):

−1
k

n∑
i=1

k∑
j=1

log

(mj∏
jl

pijl

) 1
mj

, (10)

here n is the number of instances, k is the number of clusters, and
mj is the number of manifest variables in each cluster. The objective
of emm is to find out a combination of clusters that can generate the
lowest total average energy.

In this case, we try several clustering options, and one of the clus-
ter average energy results with 11 clusters is shown in table 1. Part
of the recognition pattern(s) generated for each labeled class (each
digit in the pattern corresponds to the energy comparison result
against the threshold value of the cluster, 0 denotes lower/equal and
1 denotes higher) is shown in table 2. The average energy and the
standard deviation for 19 labeled classes are shown in table 3.

In table 4, we list some emm classification results. The column ‘be-
fore adjustment’ means use the calculated threshold value, and col-
umn ‘after adjustment’ means fine tune the threshold value of each
cluster. Case 3 has the lowest total average energy 222.1. Case 2 has
the highest accuracy rate before and after adjustment, and Case 1 is
the case that has the lowest total average energy before Case 2. Case
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table 3 Results of emm average energy and standard deviation of labelled classes

Class Name Average energy Standard deviation

1 2-4-d-injury 11.95 0.0059

2 Alternarialeaf-spot 5.23 0.3212

3 Anthracnose 6.57 0.5444

4 Bacterial-blight 5.60 0.1148

5 Bacterial-pustule 6.34 0.5862

6 Brown-spot 5.39 0.1796

7 Brown-stem-rot 6.54 0.4630

8 Charcoal-rot 7.23 0.1081

9 Cyst-nematode 11.42 0.0131

10 Diaporthe-pod-&-stem-blight 8.91 0.0396

11 Diaporthe-stem-cancer 5.86 0.0575

12 Downy-mildew 6.51 0.1743

13 Frog-eye-leaf-spot 5.46 0.1928

14 Herbicide-injury 11.61 0.0067

15 Phyllosticta-leaf-spot 5.86 0.2454

16 Phytophthora-rot 8.43 0.8507

17 Powdery-mildew 6.03 0.1095

18 Purple-seed-stain 6.05 0.2682

19 Rhizoctonia-root-rot 6.83 0.5405

table 4 Part of the results of classification for Soybean sample

Case Number
of clusters

Total average
energy

Accuracy rate
before adjustment

Accuracy rate after
adjustment

1 9 225.7 82.7 86.7

2 11 227.8 89.3 92.5

3 10 222.1 58.2 78.9

2 has the highest after adjustment accuracy rate 92.5%, the error rate
is 7.5%, which implies that the manifest variables are not completely
independent . emm is a model with the property of probability, hence
the result will be determined by the instance data with the character
of probability, and the problem of over-fitting should be avoided.

Next, we take iris dataset (cf. http://www.ics.uci.edu/~mlearn/
mlsummary.html) as a sample for studying emm of continuous vari-
ables. iris contains three labeled classes of 50 instances each, where
each class refers a type of iris plant. There are four continuous nu-
meric variables, sepal length, sepal width, petal length, and petal
width, all in centimeter units (cm).

We proceed with 3 cases:

number 3 · fall 2007 211



Chi-Ming Tsou, Chuan Chen, and Deng-Yuan Huang

1. Convert the numeric variables into binary format base on the
sample mean for each variable.

2. Make a discretization for the variables by splitting the variable
into 6 partitions with sample mean and standard deviation as
quantiles.

3. Make a conversion to its corresponding energy state by the for-
mula X/μ. The results are shown in table 5.

The accuracy rate for the binary case is 64%, and it is 76% for the
discretization case. However, for the energy case, the accuracy rate
before adjustment will increase to 94.6% and after adjustment will
be 98.7% (only 2 instances are misclassified).

performance comparison of emm

In order to examine the effectiveness of emm, the experimental pro-
cedure utilized by Kohavi(1995) is adopted here, which can serve as
a cross validation for emm.

We choose Soybean-large and Vehicle as two datasets for experi-
ment, and compare the results provided by Kohavi. Meanwhile, we
also choose mlp neural network models from Neural Connection
version 2.0 which is developed by spss to get some results for com-
parison. Soybean-large and Vehicle are two real-world large-scale
datasets, Soybean large has 35 attributes which are all categorical
variables, Vehicle has 18 attributes which are all continuous vari-
ables.

The procedure is initiated by taking 100 random samples from
each dataset, followed by constructing emm by the rest of instances,
and finally completed by validating the testing samples to get the
accuracy rate of the model. The experiment is repeated 50 times,
the average accuracy rate and standard deviation are calculated af-
ter finishing the experiment. The results are shown in table 6.

Three calculation results that are based on emm methodology, but
with different extents (levels) of adjustments, are used in the cross
validation. The first one is before adjustment, which means mak-
ing the validation before adjusting the threshold value of each vari-
ables cluster or random variable, this shows the original accuracy
rate of emm; the second one is adjustment without resisting over-
fitting, which means adjusting the threshold value of each variables
cluster or random variable but ignoring the over-fitting problem; and
the third one is adjustment with resisting over-fitting, which means
adjusting the threshold value of each variables cluster or random
variable, with a constraint that the adjustment will be accepted only
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table 5 Results of iris emm fitness

emm model Before adjustment After adjustment

Binary 64.0 64.0

Discretization 76.0 78.6

Continuous numeric 94.6 98.7

table 6 Performance comparison results of emm Datasets

Datasets Soybean-large Vehicle

Attribute Categorical Continuous

Number of attributes 35 18

Number of categories 19 4

Total size 683 846

Sample size 100 100

c4.5 0.705±0.0022* 0.601±0.0016*

Naïve Bayesian 0.798±0.0014* 0.468±0.0016*

mlp neural network 0.662±0.08 0.505±0.06

emm before adjustment 0.704±0.06 0.495±0.05

emm adjustment without resisting over-fitting 0.769±0.06 0.545±0.05

emm adjustment with resisting over-fitting 0.801±0.06 0.631±0.05

note *Cf. Kohavi 1995.

for both model and prediction accuracy rate improvement to avoid
the over-fitting problem.

From the results in table 6, the before-adjustment accuracy rate
of emm for categorical attribute dataset Soybean-large is slightly
higher than mlp Neural Network, is nearly the same as c4.5, but is
slightly lower than Naïve Bayesian. For the case of adjustment with-
out resisting over-fitting, the accuracy rate of emm is slightly higher
than c4.5 but still lower than Naïve Bayesian. Rather, for the case
of adjustment with resisting over-fitting, the accuracy rate of emm is
slightly higher than Naïve Bayesian. On the other hand, the cases for
the continuous attributes dataset Vehicle exhibit a different trend.
The accuracy rate of emm for the case of before adjustment is slightly
higher than Naïve Bayesian, but lower than mlp Neural Network,
and c4.5 for the case of adjustment without resisting over-fitting is
slightly higher than Naïve Bayesian and mlp Neural Network, but
lower than c4.5. Rather, for the case of adjustment with resisting
over-fitting, the accuracy rate for emm is slightly higher than c4.5,
Naïve Bayesian and mlp Neural Network. These results indicate that
the performance of emm can be improved by avoiding the over-fitting
problem while adjusting the threshold value for the model.
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Conclusions

emm is a type of feed-forward neural network. Clusters in this model
are similar to the hidden layers in a neural network. The emm ap-
proach can be used to decide the number of nodes for constructing
the hidden layers of neural network which are based on the variable
clustering method. Hence, emm not only improves the elucidation
capability of the model but also discloses the black box of the hidden
layers of neural network. Domain experts can evaluate emm models
more easily than other means and this is the major contribution of
emm to knowledge discovery.
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