ARS MATHEMATICA
CONTEMPORANEA

A note on a conjecture on consistent cycles

Štefko Miklavič *
University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000 Koper, Slovenia

Received 28 December 2011, accepted 9 July 2012, published online 17 April 2013

Abstract

Let Γ denote a finite digraph and let G be a subgroup of its automorphism group. A directed cycle \vec{C} of Γ is called G-consistent whenever there is an element of G whose restriction to \vec{C} is the 1 -step rotation of \vec{C}. In this short note we prove a conjecture on G-consistent directed cycles stated by Steve Wilson.

Keywords: Digraphs, consistent directed cycles.
Math. Subj. Class.: 05C20, 05C38, 05E18

1 Introduction

Let Γ denote a finite digraph (without loops and multiple arcs). By a directed cycle in Γ we mean a cyclically ordered set $\vec{C}=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{r-1}\right\}, r \geq 3$, of pairwise distinct vertices of Γ such that $\left(v_{i}, v_{i+1}\right)$ is an arc of Γ for every $i \in \mathbb{Z}_{r}$ (the addition being mod r). Let G be a subgroup of the automorphism group of Γ. Directed cycle \vec{C} is called G consistent, if there exists $g \in G$ such that $v_{i}^{g}=v_{i+1}$ for each $i \in \mathbb{Z}_{r}$. In this case g is called a shunt for \vec{C}. Clearly, G acts on the set of G-consistent directed cycles: for $h \in G$, $\vec{C}^{h}=\left\{v_{0}^{h}, v_{1}^{h}, v_{2}^{h}, \ldots, v_{r-1}^{h}\right\}$ is G-consistent with a shunt $h^{-1} g h$.

Consistent cycles in finite arc-transitive graphs were introduced by J. H. Conway in one of his public lectures [3]. Since then a number of papers on consistent cycles and their applications appeared, see $[1,2,4,5,6,7,8,9,10,11]$.

Observe that if (u, v) is an arc of Γ and $g \in G$ is such that $u^{g}=v$, then the orbit of u under g induces a G-consistent directed cycle $\left\{u, v=u^{g}, u^{g^{2}}, \ldots\right\}$ (provided that $u^{g^{2}} \neq u$). Steve Wilson [12] stated the following conjecture on consistent cycles.

[^0]Conjecture 1.1. Let Γ denote a finite digraph (without loops and multiple arcs) and let G be an arc-transitive subgroup of its automorphism group. Pick vertices u, v of Γ, such that (u, v) is an arc of Γ. For a G-orbit \mathcal{A} of G-consistent directed cycles, let $B_{\mathcal{A}}$ denote the set of all automorphisms $g \in G$, such that $u^{g}=v$, and the orbit of u under g is in \mathcal{A}. Let $G_{(u, v)}$ denote the G-stabilizer of the arc (u, v). Then the number of elements in $B_{\mathcal{A}}$ is independent of \mathcal{A}, and is equal to the order of $G_{(u, v)}$.

In this short note we prove the above conjecture.

2 Proof of the conjecture

In this section we prove Conjecture 1.1. We prove Conjecture 1.1 in two steps. In Proposition 2.1 we prove that $\left|G_{(u, v)}\right| \leq\left|B_{\mathcal{A}}\right|$, and in Proposition 2.2 we prove that $\left|B_{\mathcal{A}}\right| \leq$ $\left|G_{(u, v)}\right|$.
Proposition 2.1. With the notation of Conjecture 1.1, we have $\left|G_{(u, v)}\right| \leq\left|B_{\mathcal{A}}\right|$.
Proof. Since G is arc-transitive, there exists a G-consistent directed cycle \vec{C} in \mathcal{A}, which contains the $\operatorname{arc}(u, v)$. Let g denote a shunt for \vec{C}. Let $G_{\vec{C}}$ denote the pointwise stabiliser of \vec{C} and let k be the index of $G_{\vec{C}}$ in $G_{(u, v)}$. Let g_{1}, \ldots, g_{k} be representatives of cosets of $G_{\vec{C}}$ in $G_{(u, v)}$.
Observe that for each $1 \leq i \leq k$ and each $h \in G_{\vec{C}}$, the automorphism $g_{i}^{-1} g h g_{i}$ sends u to v. Furthermore, the orbit of u under $g_{i}^{-1} g h g_{i}$ is the directed cycle $\vec{C}^{g_{i}}$. Namely, since g is a shunt for \vec{C} and $h \in G_{\vec{C}}$, the image of $v^{g^{j} g_{i}}$ under $g_{i}^{-1} g h g_{i}$ is $v^{g^{j+1} g_{i}}$. Moreover, $\vec{C}^{g_{i}}$ is clearly in \mathcal{A}. Therefore, $g_{i}^{-1} g h g_{i} \in B_{\mathcal{A}}$.
We claim that if either $i \neq j$ or $h_{1} \neq h_{2}\left(h_{1}, h_{2} \in G_{\vec{C}}\right)$, then $\alpha=g_{i}^{-1} g h_{1} g_{i}$ and $\beta=g_{j}^{-1} g h_{2} g_{j}$ are distinct. Indeed, assume first that $i \neq j$. Note that $\vec{C}^{g_{i}} \neq \vec{C}^{g_{j}}$ since g_{i} and g_{j} are from different cosets of $G_{\vec{C}}$ in $G_{(u, v)}$. Moreover, α is a shunt for $\vec{C}^{g_{i}}$ and β is a shunt for $\vec{C}^{g_{j}}$. Since $\vec{C}^{g_{i}} \neq \vec{C}^{g_{j}}$ (and since $\vec{C}^{g_{i}}$ and $\vec{C}^{g_{j}}$ have at least the arc (u, v) in common), it follows that also $\alpha \neq \beta$. On the other hand, if $i=j$ and $\alpha=\beta$, then $h_{1}=h_{2}$. Therefore, if $h_{1} \neq h_{2}$ and $i=j$, then $\alpha \neq \beta$. This proves the claim.
It follows that $\left|B_{\mathcal{A}}\right| \geq k\left|G_{\vec{C}}\right|=\left|G_{(u, v)}\right|$.
Proposition 2.2. With the notation of Conjecture 1.1, we have $\left|B_{\mathcal{A}}\right| \leq\left|G_{(u, v)}\right|$.
Proof. Let X denote the set of all G-consistent directed cycles in \mathcal{A}, containing the arc (u, v). Clearly, $B_{\mathcal{A}}$ is exactly the set of all shunts of directed cycles from X. Since all directed cycles from X have the $\operatorname{arc}(u, v)$ in common, every element of $B_{\mathcal{A}}$ is a shunt for exactly one directed cycle from X. Note also that X is nonempty as G is arc-transitive. We now define a mapping Ψ from $B_{\mathcal{A}}$ to $G_{(u, v)}$ as follows.
Fix $\vec{C} \in X$ and a shunt $g_{\vec{C}}$ of \vec{C}. For each $\vec{D} \in X$ there exists an element of G which sends \vec{D} to \vec{C}. Pick such an element and denote it by $h(\vec{D})$. Composing $h(\vec{D})$ with an appropriate power of $g_{\vec{C}}$, we could assume that $h(\vec{D}) \in G_{(u, v)}$. For each $g \in B_{\mathcal{A}}$, let $\vec{D}(g)$ denote the unique directed cycle in X, for which g is a shunt (see Figure 1). For $g \in B_{\mathcal{A}}$ define $\Psi(g)=g h(\vec{D}(g)) g_{\vec{C}}^{-1}$ and note that $\Psi(g) \in G_{(u, v)}$.
We now show that Ψ is an injection. Pick $g_{1}, g_{2} \in B_{\mathcal{A}}$ and assume that $\Psi\left(g_{1}\right)=\Psi\left(g_{2}\right)$. Let $\vec{D}\left(g_{1}\right)=\left\{u, v, v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $\vec{D}\left(g_{2}\right)=\left\{u, v, w_{1}, w_{2}, \ldots, w_{n-1}\right\}$. We first

Figure 1: Directed consistent cycles \vec{C} and \vec{D}.
show that $\vec{D}\left(g_{1}\right)=\vec{D}\left(g_{2}\right)$. Since $\Psi\left(g_{1}\right)=g_{1} h\left(\vec{D}\left(g_{1}\right)\right) g_{\vec{C}}^{-1}=g_{2} h\left(\vec{D}\left(g_{2}\right)\right) g_{\vec{C}}^{-1}=\Psi\left(g_{2}\right)$, we have $g_{2}^{-1} g_{1}=h\left(\vec{D}\left(g_{2}\right)\right) h\left(\vec{D}\left(g_{1}\right)\right)^{-1}$. This implies that $g_{2}^{-1} g_{1}$ is in $G_{(u, v)}$. We claim that $v_{n-i}=w_{n-i}$ for $i=0,1, \ldots n-1$, where $v_{n}=w_{n}=u$. We prove our claim using induction on i. Note that our claim is true for $i=0$. Assume that our claim is true for $i=0,1, \ldots, t$, where $0 \leq t \leq n-2$. Note that $h\left(\vec{D}\left(g_{2}\right)\right) h\left(\vec{D}\left(g_{1}\right)\right)^{-1}$ fixes the arc $\left(v_{n-t}, v_{n-t+1}, \ldots v_{n-1}, u, v\right)$, and therefore also $g_{2}^{-1} g_{1}$ fixes this arc. But since

$$
v_{n-t-1}^{g_{1}}=v_{n-t}=v_{n-t}^{g_{2}^{-1} g_{1}}=w_{n-t-1}^{g_{1}}
$$

we have $v_{n-t-1}=w_{n-t-1}$, verifying the claim. It follows that $\vec{D}\left(g_{1}\right)=\vec{D}\left(g_{2}\right)$. But since $\vec{D}\left(g_{1}\right)=\vec{D}\left(g_{2}\right)$, also $h\left(\vec{D}\left(g_{1}\right)\right)=h\left(\vec{D}\left(g_{2}\right)\right)$. As $g_{1} h\left(\vec{D}\left(g_{1}\right)\right) g_{\vec{C}}^{-1}=g_{2} h\left(\vec{D}\left(g_{2}\right)\right) g_{\vec{C}}^{-1}$, it follows that $g_{1}=g_{2}$. Therefore Ψ is an injection and so $\left|B_{\mathcal{A}}\right| \leq\left|G_{(u, v)}\right|$.
Corollary 2.3. With the notation of Conjecture 1.1, we have $\left|B_{\mathcal{A}}\right|=\left|G_{(u, v)}\right|$.
Proof. Immediately from Propositions 2.1 and 2.2.

References

[1] M. Boben, Š. Miklavič and P. Potočnik, Consistent cycles in half-arc-transitive graphs, Electron. J. Combin. 16 (2009), R5.
[2] M. Boben, Š. Miklavič and P. Potočnik, Rotary polygons in configurations, Electron. J. Combin. 18 (2011), P119.
[3] J. H. Conway, Talk given at the Second British Combinatorial Conference at Royal Holloway College, Egham, 1971.
[4] H. H. Glover, K. Kutnar, A. Malnič and D. Marušič, Hamilton cycles in (2,odd,3)-Cayley graphs, J. London Math. Soc. 104 (2012), 1171-1197.
[5] H. H. Glover, K. Kutnar and D. Marušič, Hamiltonian cycles in cubic Cayley graphs: the $\langle 2,4 k, 3\rangle$ case, J. Algebraic Combin. 30 (2009), 447-475.
[6] W. M. Kantor, Cycles in graphs and groups, Amer. Math. Monthly 115 (2008), 559-562.
[7] I. Kovács, K. Kutnar and J. Ruff, Rose window graphs underlying rotary maps, Discrete Math. 310 (2010), 1802-1811.
[8] I. Kovács, K. Kutnar and D. Marušič, Classification of edge-transitive rose window graphs, J. Graph Theory 65 (2010), 216-231.
[9] K. Kutnar and D. Marušič, A complete clasification of cubic symmetric graphs of girth 6, J. Combin. Theory Ser. B 99 (2009), 162-184.
[10] Š. Miklavič, P. Potočnik and S. Wilson, Consistent cycles in graphs and digraphs, Graphs Combin. 23 (2007), 205-216.
[11] Š. Miklavič, P. Potočnik and S. Wilson, Overlap in consistent cycles, J. Graph Theory 55 (2007), 55-71.
[12] S. Wilson, Personal communication (2009).

[^0]: *This work is supported in part by "Agencija za raziskovalno dejavnost Republike Slovenije", research program P1-0285 and research project J1-4010.

 E-mail address: stefko.miklavic@upr.si (Štefko Miklavič)

