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Abstract

Novel Modes of Synchronization and Extreme Events in Coupled Chemical Oscillators

David Mersing

We experimentally and computationally investigate dynamical behaviors in coupled chemical
oscillators. These networks of chemical oscillators are created using catalytic Ru(bpy)2+

3 loaded
cation exchange beads submerged in catalyst-free Belousov-Zhabotinsky (BZ) solutions. Various
network structures are created by utilizing the photosensitive nature of the Ru(bpy)2+

3 catalyst.
The response of the oscillators due to light stimuli can be characterized by constructing a phase
response curve (PRC). The PRC quanti�es the excitatory and inhibitory responses of BZ oscil-
lators due to applied light perturbations as a function of the oscillators' phase. Di�erent initial
concentrations of reactants in the BZ reaction solutions can vary the degree in the excitatory
and inhibitory regions of the PRC.

We explore synchronization in star networks in both excitatory and inhibitory systems. We
describe experiments, simulations, and analytical theory that provides a detailed characteri-
zation of novel modes of synchronization in chemical oscillator networks. Synchronization of
peripheral oscillators coupled through a hub oscillator is exhibited at coupling strengths leading
to novel synchronization of the hub with the peripheral oscillators. The heterogenous peripheral
oscillators have di�erent phase velocities that give rise to divergence; however, the perturbation
from the hub acts to realign the phases by delaying the faster oscillators more than the slower
oscillators. A theoretical analysis provides insights into the mechanism of the synchronization.

Computational studies into extreme events are investigated using a modi�ed four-variable
Oregonator model, which describes the BZ system. Extreme events are ubiquitous through-
out biological, natural, social, and �nancial systems. Examples of such events are epileptic
seizures, earthquakes, riots, and stock market crashes. These events are considered rare ex-
cursions from the normal dynamics of a system, which are considered aperiodic in occurrence.
The consequences that these events have on the system makes the development of models and
experimental methods to study these events important. We will describe the appearance of
extreme events in the Oregonator system using instantaneous and time-delayed coupling. We
will also discuss a proposed mechanism for the sudden appearance of extreme events in both
instantaneous and time-delayed coupling.
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Chapter 1

Introduction

1.1 Nonlinear Dynamics

Nonlinear systems are ubiquitous in nature and are of great importance to the understanding

of our world. These systems are so common that Stanislaw Ulam said "Using a term like

nonlinear science is like referring to the bulk of zoology as the study of non-elephant animals

[1]." Unfortunately, nonlinear systems are often di�cult or impossible to solve analytically. To

simplify these systems they are often described and modeled as linear systems. Linearity is

built on the idea that a system with well-de�ned conditions will follow a predictable course,

and any slight change in those conditions will cause minimal change in the dynamics of the

system [2�5]. Linear thinking also allows us to assume that multiple changes to a system

are simply the superposition of all the e�ects taken individually. This assertion of unlimited

predictability and the simpli�cation of complex dynamical systems ultimately makes linear

models highly attractive. While linear models are useful for understanding small changes and

making predictions, they can be incomplete and misleading. The complete nonlinear systems can

show complex and unpredictable behavior, which can be dramatically di�erent from their linear

counterparts. This complexity can be observed in many forms such as an abrupt transition

in behavior due to bifurcations [6�8], multistability [9�11], and pattern formations [12�14].

Some nonlinear systems can also become completely unpredictable, which has become known

as deterministic chaos [6, 15, 16]. The widespread availability of computers to study nonlinear

models allows us to investigate phenomena when linear models break down. While this chapter

1



1.1. NONLINEAR DYNAMICS

is not meant to give an in-depth explanation of nonlinear dynamics, we will discuss a few

important concepts to help in understanding the work presented later in this thesis.

Nonlinear systems can be described as any system that is not linear. Therefore, we will

de�ne what is a linear system and some of the dynamics that are observed. Mathematically, a

linear system can be expressed as f(x) = mx, where f(x), is the output, x is the input, and

m is a scalar or proportionality constant [4, 6, 17]. Any change or addition to the system will

cause a proportional response by the system. This approach is commonly used in analytically

chemistry to determine the concentration of an analyte by using a variety of experimental

methods. Unfortunately, as useful as these techniques are, they only work when there is a linear

response in the system. As an example, the Beer-Lambert law, A = εBC, breaks down at higher

concentrations as the calibration curve loses linearity [18, 19]. Therefore, any technique using

this relationship can only use concentrations that fall in the linear regime of the curve.

In nonlinear systems changes are no longer proportional, and the equations describing them

may contain terms such as x2 or trignometric functions like sine or cosine as examples [6]. We

can demonstrate di�erences between linear and nonlinear descriptions of a system by using

the motion of a pendulum as an example. Dutch physicist Christian Huygens invented the

pendulum clock in 1657 and published a book in 1673 Oscillatorium on clock designs, which

also contained an in-depth analysis of pendulum motion. Huygens described a simple pendulum

as a point mass, m, hanging from an arm with a negligible mass of length, L, which is �xed at a

point, P , Fig. 1.1. The di�erential equation governing the motion of the pendulum was written

by Huygens as

d2θ

dt2
+
g

L
sinθ = 0, (1.1)

where θ is the angular displacement, g is gravitational force, and L is the length of the arm. This

nonlinear equation can describe the motion of the pendulum at any given value of θ; however,

this equation can become cumbersome to solve analytically. To turn this into a linear system, we

assume a small angular displacement such that the angular displacement is directly proportional

2



1.1. NONLINEAR DYNAMICS

Figure 1.1. A pendulum is described as a small mass, m, attached to an arm of negligible mass
with a length, L, which is �xed to a point P . The restoring force acting on the mass is gravity
g. The angular displacement θ represents how far the mass is from equilibrium, shown by the
dashed line. Figure reproduced from Nonlinear Dynamics and Chaos [6]

.

to its angular acceleration sin(θ) ≈ θ; Eq. (1.1) then simpli�es to

d2θ

dt2
+
g

L
θ = 0. (1.2)

Taking the simple harmonic solution

θ(t) = θ0cos(ωt), (1.3)

where θ0 is the initial displacement and ω =
√
gL, we can now readily solve for the period of a

single oscillation using

T = 2π
√
L/g. (1.4)

While linearization is useful, it may only be valid when making certain assumptions about the

system, as we have demonstrated. We also lose information about our system, as we can not

use Eq. (1.4) when the angular displacement is large. One of the most well-know examples of

3



1.2. STABILITY AND BIFURCATIONS

using a nonlinear treatments over a linear one came in the late 1800s by Henri Poincaré [20, 21].

The three-body problem proposed by Newton was essentially impossible to solve using explicit

methods without placing restrictions on the problem. Poincaré was able to show that there are

an in�nite number of periodic solutions to this problem [20, 21]. This discovery changed how

we view planetary orbits and predicting their paths through space.

1.2 Stability and Bifurcations

Poincaré's work was revolutionary at the time because he was interested in not just how to

calculate where a body may be at a given time, but whether or not the solutions are stable.

However, as we mentioned before, nonlinear equations are often impossible to solve analytically.

Even when it is possible to solve the equation exactly, the solution can be di�cult to interpret.

Poincaré developed a geometric way of analysis to simplify the question of stability using �rst-

order equations [6, 20]. When using �rst-order equations, we can determine stability by looking

at the solutions as a vector �eld along a line. As an example of this is that we can exactly solve

the nonlinear equation

dx

dt
= sin(x). (1.5)

First, we separate our variables such that

dt =
dx

sin(x)
. (1.6)

When we integrate Eq. (1.6), our solution is

t = −ln|csc(x) + cot(x)|+ C. (1.7)

To arrive at an exact solution, we will evaluate the constant C such that x = xo at t = 0, giving

C equal to ln|csc(x) + cot(x)|. Substituting this value into Eq. (1.7) will give the solution

t = ln

∣∣∣∣∣csc(xo) + cot(xo)

csc(x) + cot(x)

∣∣∣∣∣. (1.8)

4



1.2. STABILITY AND BIFURCATIONS

This treatment gave us an exact mathematical solution, and we know that the �xed points are

at nπ, where n is Z ∈ (−∞,∞). However, the dynamics of the system at any given point or

time are not transparent. When we consider the initial condition of xo = π
4 at t = 0, it is not

clear how the system will move as t → ∞. Poincaré's geometric approach in analyzing such

problems provides a clear answer, and it has continued to be used in the modern day �eld of

dynamics. Again, we consider Eq. (1.5) and plot the solution to this equation from -3π to 3π,

Fig. 1.2. Now we can go back and analyze our question of what happens when xo = π
4 at t = 0

Figure 1.2. Visualization of the equation sin(x) from -3π to 3π. The solid black dots represent
the stable �xed points of the system and the white circles represent unstable �xed points in the
system. Black arrows show the �ow of the system from unstable points to stable points.

as t→∞. Here, x represents the position in the trajectory of a vector �eld moving along a real

line, and t is equal to time. Then dx
dt is the velocity of the particle as it moves along the line. It

is easy to see that at π
4 the velocity of the particle is increasing as it approaches its maximum

at π
2 . Then the velocity of the particle begins to decrease as it approaches a �xed point at π

until it reaches zero at the �xed point. When the velocity of the particle is zero, there is no �ow

in the system and the particle is stationary. This observation leads us to the conclusion that as

t → ∞ when dx
dt > 0 then the �ow is to the right. When dx

dt < 0 the �ow is to the left. When

we place arrows pointing to the direction of the �ow, as in Fig. 1.2, we can see that the solid

black dots represent stable �xed points, while the white dots are unstable points. The idea of

using a �rst order approximation is an important tool when doing stability analysis on complex

5



1.2. STABILITY AND BIFURCATIONS

systems or systems with higher dimensionality.

In his �rst paper in mathematics, Henri Poincaré coined the term bifurcation [20]. A bifur-

cation occurs when a small change in a single parameter value causes a sudden change in the

observed behavior. A classic example is a saddle-node bifurcation where two �xed points move

toward one another until they merge and then disappear [6]. This behavior can be demonstrated

using the equation

dx

dt
= b+ x2, (1.9)

where b is the bifurcation parameter. It is trivial to �nd the �xed points for any value of b ≤ 0,

and we can use the geometric approach to determine their stability. By varying the parameter

b, we can observe the �xed points moving closer to each other until they merge and annihilate.

When we let b = -5, we �nd two �xed points exist, one stable and the other unstable, Fig.

1.3(a). When we increase the value such that b = -2, we can see that the �xed points moved

closer to each other but the stability of the �xed points did not change, Fig. 1.3(b). However,

when we let b = 0, a change in the number of �xed points occurs, which is the bifurcation point.

There is now only one �xed point, which has the property of being stable in one direction and

unstable in the other direction, Fig. 1.3(c). Finally, when we set b to any value greater than

zero, such as b = 2, there are no �xed points in the system, Fig. 1.3(d).

The ideas illustrated by Eqs. (1.5) and (1.9) are still used today but are not a complete

explanation of Poincaré's work. Dynamical systems described by a single �rst-order equation

are dominated by �xed points [6, 20, 21]. Any initial condition will lead to the trajectory

remaining constant, converging monotonically to a stable �xed point, or diverging to ±∞. This

observation leads us to conclude that oscillations cannot occur in �rst-order systems, since

trajectories will monotonically approach zero at the �xed point. This idea may seem counter

intuitive, as oscillatory behavior is very common in nonlinear dynamics. We know our pendulum

example from earlier oscillates about an axis and seems to contradict the previous statement.

However, the motion of the pendulum can not be described by only its position. To uniquely

describe the state of the pendulum at a given time, we need the position and the velocity. More

speci�cally, the sign of the velocity is needed to indicate the direction in which the pendulum

6



1.3. OSCILLATORY BEHAVIOR

is moving. Removing the nonlinear aspects of Eq. (1.1) allowed us to calculate the period of

an oscillation by removing the nonlinear aspects. However, simple harmonic motion is a two

dimensional system, position and velocity, and it is not constrained by our earlier statement

and it can produce oscillations.

(a) parameter b = -5 (b) parameter b = -2

(c) parameter b = 0 (d) parameter b = 2

Figure 1.3. Graphical representation of the equation dx
dt = b+ x2 for four di�erent values of the

parameter b. (a) Parameter b = -5 showing two �xed points of di�erent stability. (b) Parameter
b = -2 showing two �xed points that have shifted closer while maintaining the same stability.
(c) A change in the system when b = 0, where the �xed points have merged into a single point
with the property of being both stable and unstable. (d) When b > 0, all �xed points disappear
from the system.

1.3 Oscillatory Behavior

Oscillatory behavior can be observed in many areas of study: certain chemical reactions [22�

24], the beating of the heart [25�27], the �ring of neurons in the brain [28�30], populations of

animals [31�33], the eruption of geysers [34�36], and the orbit of the planets [6, 20, 21] are just

7



1.3. OSCILLATORY BEHAVIOR

a few examples. There are several types of oscillatory behavior, such as damped, undamped,

and driven oscillations. We will focus on a special type of oscillations known as limit cycle

oscillations. Limit cycle oscillations model systems that possess self-sustained oscillations in

the absence of periodic forcing [6]. This type of oscillation is found in the human heart [25�

27], pacemaker neuronal �ring, chemical oscillators [22�24], electrical circuits [37], self-excited

vibrations on airplane wings [38], and the Sel'kov model of glycolysis [39]. This type of oscillation

produces an isolated closed orbit that acts as an attractor in the system. Any neighboring

trajectories in the vicinity of the limit cycle are either attracted to or repelled from the limit

cycle [6]. In contrast, damped, undamped, and driven oscillations have closed trajectories but

are not isolated. By slightly perturbing or changing a parameter of the system, a non-limit cycle

oscillation will move along the new orbit and not return to the previous orbit. As an example, in

a system de�ned as
−→
F = k−→x that produces closed orbits, any change to the system in the form

of increasing or decreasing the parameter, k, we see the oscillator move to the newly created

closed trajectory, Fig. 1.4. Limit cycle oscillations are strictly a nonlinear behavior and are not

Figure 1.4. Closed orbits of a linear system, which produces oscillations. As the parameter, k,
changes, the oscillator will move to the new trajectory without returning to the previous one.

observed in linear systems. This makes it necessary to solve the nonlinear equations to model

these scienti�cally important behaviors.

To determine the stability of the limit cycle, we examine how an initial trajectory proceeds

in the vicinity of the limit cycle or the response to a small perturbation of a trajectory on the

limit cycle, Fig. 1.4. For a stable limit cycle, as time → ∞, any trajectory in the vicinity

of the limit cycle will be attracted to it. For a trajectory on the limit cycle receiving a small

8



1.4. SUBCRITICAL HOPF BIFURCATION

(a) Stable Limit Cycle (b) Unstable Limit Cycle (c) Semi-Stable Limit Cycle

Figure 1.5. A hypothetical limit cycle demonstrating the di�erent types of stability. The limit
cycle is an isolated closed orbit that can either attract or repel nearby trajectories. (a) A stable
limit cycle will attract all nearby trajectories it the limit. A trajectory perturbed from the
limit cycle will return to the limit without forcing. (b) An unstable limit cycle will repel all
nearby trajectories from the limit cycle. A trajectory perturbed from the unstable limit cycle
will not return to the limit cycle. (c) In a half-stable limit cycle, the limit cycle will attract in
one direction and repel in the other direction. Perturbations to trajectories pushing it in the
stable direction will cause the trajectory to return to the limit cycle. If the perturbation is in
the unstable direction, the trajectory will not return to the limit cycle. The stable and unstable
direction depends on the system.

perturbation in any direction away from the limit cycle, the trajectory will return to the limit

cycle, Fig. 1.4(a). These stable limit cycles are observed in models of the Belousov-Zhabotinsky

[40] reaction as well as the FitzHugh-Nagumo neuronal model [41]. In the case of the unstable

limit cycle, as time → ∞, trajectories outside the limit cycle will be repelled away to in�nity.

The trajectories inside the limit cycle will be converge to a �xed point inside the limit cycle, Fig

1.4(b). A small perturbation on a trajectory exactly on the limit cycle will cause the trajectory

to move either in the direction of in�nity or converge to the �xed point. Half-stable limit cycles

are a combination of the former two behaviors. On one side of the limit cycle trajectories will

converge to the limit cycle, while the other side will repel them, Fig. 1.4(c). In our example,

trajectories outside the limit will converge to it and trajectories inside will converge to the �xed

point. The directions of the stable and unstable behaviors will depend on the system.

1.4 Subcritical Hopf Bifurcation

There are many types of bifurcations that describe the behavior of nonlinear oscillatory models.

Since the bulk of this work focuses on behaviors using models of the Belousov-Zhabotinsky

reaction, we will focus only on describing the subcritical Hopf bifurcation [40, 42�44]. To do
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1.4. SUBCRITICAL HOPF BIFURCATION

this, let us consider the following two-dimensional system

dr

dt
= µr + r3 − r5, (1.10)

θ

dt
= ω + br2, (1.11)

where µ represents the stability of the �xed point, ω is the frequency of small oscillations, and

b determines the frequency dependence of larger amplitude oscillations. Upon examining Eq.

(1.10), we can see that it contains a destabilizing cubic term r3, which drives trajectories away

from the origin. When µ < 0, there are two stable attractors in the system. The �rst one is

a stable �xed point at the origin and a stable limit cycle, and between them is an unstable

limit cycle, Fig. 1.6(a). As µ approaches zero, the unstable limit cycle shrinks and moves closer

to the stable �xed point at the origin. The subcritical Hopf bifurcation occurs when µ = 0

and the amplitude of the unstable limit cycle becomes zero. This changes the stability of the

�xed point, making it unstable, Fig. 1.6(b). Now any trajectories inside the limit cycle will be

attracted to the limit cycle, becoming large amplitude oscillations. This type of bifurcation is

signi�cant as it allows for the existence of mixed-mode oscillations, producing both small and

large amplitude oscillations. Mixed-mode oscillations have been reported in numerous systems

including the Oregonator [44�48] and FitzHugh-Nagumo models [49�51].

(a) µ < 0
(b) µ > 0

Figure 1.6. A representation of a subcritical Hopf bifurcation. (a) When µ is < 0, the system
contains a stable �xed point and limit cycle with an unstable limit cycle between them. (b) As
µ approaches zero, the unstable limit cycle approaches the stable �xed point. At µ = 0, the
unstable limit cycle merges with the �xed point making it unstable.
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1.5 Lorenz Equations

With computers becoming more widely available in the late 1950's it became possible to study

more complex nonlinear systems. In 1963 Ed Lorenz was interested in the prediction of weather

patterns, which was notoriously di�cult to do [52]. He derived a simpli�ed 3-variable model for

describing convection rolls in the atmosphere, Eqs. (1.12)-(1.14).

dx

dt
= σ(y − x) (1.12)

dy

dt
= rx− y − xz (1.13)

dz

dt
= xy − bz (1.14)

Here, σ, r, b are positive parameters. Lorenz observed that over a wide range of parameters

the dynamics of the system would not settle to a limit cycle or a �xed point. The solutions

to the equations would oscillate, but never repeat the exact same trajectory, yet seemed to

be bounded to a de�ned region. When Lornez would plot the trajectories in 3 dimensions, he

observed that the trajectories would settle into a complex set, which would become known as a

strange attractor. Two examples of this strange attractor in the Lorenz system are shown in Fig.

1.7. We can see that a slight change in the initial conditions of the system produces completely

(a) σ = 1.00 r = 1.00 b = 1.05 (b) σ = 1.05 r = 1.05 b = 1.00

Figure 1.7. Strange attractor �rst reported by Lornez in his 3 variable model of convection
rolls. A trajectory on this attractor will not repeat a periodic orbit but is con�ned to the set
that makes up the attractor. Small changes in the initial conditions will send trajectories on
di�erent unpredictable paths. Slight changes to the initial conditions sends trajectory (b) in to
a completely di�erent orbit.
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di�erent trajectories. Fig. 1.7(a) and Fig. 1.7(b) show behavior that is the hallmark of what

has become known as deterministic chaos [6, 15, 53]. This sensitivity to initial conditions and

slight perturbations means there are an in�nite number of trajectories that can be produced.

While predicting exact outcomes in chaotic systems may be impossible, it can provide a useful

understanding of how the dynamics of a system evolve. There are many notable examples of

chaotic systems, such as turbulent �uid �ow [54], irregular heartbeats [55], population dynamics

[56, 57], and chemical reactions [15, 53]. The Belousov-Zhabotinsky is one such chemical reaction

were chaos has been observed [15, 53], which will be discussed in Chapter 4.

1.6 Synchronization

Up to this point, we have only discussed behaviors and properties of single oscillators. Many

natural systems consist of networks of oscillators that interact with one another [58�63]. When

oscillators are coupled to create a network, even more complex and interesting dynamics can

emerge. Dutch physicist Christian Huygens, inventor of the pendulum clock, is also credited for

�rst reporting on synchronization in 1665 [64]. He observed that the pendulums of two individual

clocks resting on the same support would synchronize, swinging in opposite directions. He could

then disturb the motion of one of the pendulums and observe as it would eventually synchronize

with the other pendulum. The observation that he reported is now known as entrainment or

coupling. The phenomenon is explained by the motion of the pendulum creating a force as it

swings, which is passed through the common rest. The motion of the second pendulum is e�ected

by this force and slightly changes its trajectory. Likewise the second pendulum exerts a force

on the support that is felt by the �rst pendulum. This signaling causes changes in the motions

of both pendulums and eventually leads to their synchronization. To de�ne this phenomenon

of synchronization, we can describe it as an adjustment towards a common behavior between

coupled discrete dynamical systems [65]. Synchronization has become an important area of

research, as it is ubiquitous in natural systems, including heart cells [66], neuronal networks

[65, 67, 68], insects such as �re�ies and crickets [58, 59, 69], pancreatic cells [70], and hormone

release [71].

Art Winfree developed a model of weakly coupled limit cycle oscillators that helped explain
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synchronization by using the phase of the oscillators [72]. In this work, he showed that in weakly

coupled systems variations of amplitude are negligible because changes to a trajectory due to

small perturbations will converge quickly back to the limit cycle. With a negligible change in

amplitude, the time evolution of the oscillators can be described by their phase. In Winfree's

model, he demonstrated that a population of homogeneous oscillators with a distribution of

phases or heterogeneous oscillators with a small distribution of periods would synchronize above

a critical coupling strength. Later studies on the synchronization of heterogeneous populations

of oscillators would show that as the natural period distribution increases, the larger the coupling

strength would be to cause full synchronization or phase locking. If the period distribution was

too large, oscillators at the extreme tails of the distribution may not synchronize with the mean

group. Increasing the coupling strength to much to try and entrain these outliers may lead to

the system becoming non-oscillatory or oscillator death.

1.7 Overview

The experimental and theoretical studies described in this work will utilize weakly coupled

networks of chemical oscillators and in the computational models that describe them. In Chapter

2, we will discuss in detail the chemistry of the Belousov-Zhabotinsky (BZ) reaction. As well as

the photochemistry observed in the ruthenium-catalyzed BZ reaction. Two di�erent models that

describe this reaction will be discussed. The �rst model is the modi�ed 4-variable Oregonator,

which accounts for both the photosensitive nature of the ruthenium catalyst and the subcritical

Hopf bifurcation near the reduced catalyst side. The second model is the modi�ed 3-variable

ZBKE model that describes in more detail the chemistry of the resetting mechanism and can

also describe the photosensitivity of the ruthenium catalyst. Novel modes of synchronization

are the subject of Chapter 3 using BZ chemical oscillators and the ZBKE model. Here, we will

discuss the chemistry and theoretical modeling of the formation of phase clusters in unconnected

nodes of a heterogeneous star system. Finally, in Chapter 4 we will show computational results

using two homogeneous coupled oscillators demonstrating extreme events. The mixed mode

behavior in this system is credited to the subcritical Hopf bifurcation, which is observed in the

modi�ed 4-variable Oregonator.
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Chapter 2

The Belousov-Zhabotinsky Reaction

2.1 Introduction

The investigations carried out in this work are based on the chemistry of the Belousov-Zhabotinsky

(BZ) reaction. The BZ reaction is described as the metal-catalyzed bromination and oxidation

of an organic substrate in an acidic bromate solution and is a classic example of a nonlinear

chemical oscillator [1�3]. The overall BZ reaction is described by Eq. (2.1).

3BrO−3 + 5CH2(COOH)2 + 3H+→ 3BrCH(COOH)2 + 4CO2 + 2HCOOH + 5H2O (2.1)

This reaction proceeds far from equilibrium and is capable of producing relaxation-type oscil-

lations [1�5], spatiotemporal patterns [6�8], and chaos [4, 9�12]. Experimentally, networks of

discrete photosensitive BZ oscillators are created using real-time or time-delayed light based

feedback [13�16]. In this chapter, we discuss the history and mechanism of the BZ reaction as

well as the photosensitivity of a commonly used metal catalyst, tris(bipyridine)ruthenium(II)

chloride. We will also discuss two of the computational models used to describe the BZ reaction,

and their modi�cation to account for the photosensitivity of the system when using a ruthe-

nium catalyst. Finally, we will examine how to measure the response of an oscillator due to a

perturbation from the light-based feedback by use of a phase response curve, PRC.
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2.2 History of the Belousov-Zhabotinsky Reaction

The BZ reaction is one of the most well-known examples of a chemical oscillator. The reaction

produces signi�cant oscillations in the concentrations of bromide ions, bromous acid, and the

oxidation state of the metal catalyst [1�3]. The reaction was discovered by Boris Belousov in

1951, while serving as the head of a laboratory of biophysics for the USSR Ministry of Health[3,

17�19]. Belousov was working on creating an experimental model for the Krebs cycle [18],

the oxidation of acetyl-Co A into carbon dioxide and chemical energy in the form of adenosine

triphosphate [20]. Belousov was experimenting with an acidic bromate solution containing citric

acid and a cerium metal ion that began producing carbon dioxide bubbles. He observed that the

solution underwent a periodic change between a colorless solution and a faint yellow color for

well over an hour [3, 18]. However, when Belousov attempted to publish his discovery, the papers

were rejected each time [3, 18, 19]. At this time, it was believed that chemical oscillations such as

those described by Belousov were impossible, since the reaction would need to oscillate about the

chemical equilibrium point, which would violate the second law of thermodynamics. Belousov

was �nally able to get an abbreviated abstract of his discovery published in a small booklet

entitled A Collection of Short Papers on Radiation Medicine by his own institute [3, 17, 18].

The discovery would remain unknown for a decade, until it was assigned to a graduate student,

Anatol M. Zhabotinsky, at Moscow State University in 1961. Zhabotinsky was able to reproduce

Belousov's results and began to conduct new experiments with the system. Zhabotinsky made

improvements to the recipe by replacing the citric acid with malonic acid and the cerium ion

with ferrion [3]. Both of these changes improved the optical clarity of the oscillations. He

was also able to show that the oscillations in the color were due to the oxidation/reduction of

the metal catalyst and not the free bromine ion concentration that Belousov had hypothesized

[3]. Zhabotinsky's most sigi�cant contribution may have been his ability to get the reaction

published and out to the scienti�c community, although it would still be almost another decade

before the �rst papers in English were published in 1967 [18].
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2.3 Belousov-Zhabotinsky Reaction Mechanism

Given any closed homogeneous system at a constant temperature and pressure, a spontaneous

chemical change must be accompanied by a decrease in the Gibbs free energy of the system.

However, this condition does not prevent oscillations in chemical concentrations as long as the

system does not pass through the chemical equilibrium. In 1972, Field, Körös, and Noyes

proposed a mechanism that could explain the oscillations observed in the BZ reaction using a

single autocatalytic step [1]. Field et al. used several experimental techniques, such as ion-

selective electrodes and paper chromatography, to track the concentrations of reactants and

to determine the kinetics of the elementary steps [1]. This would become known as the FKN

mechanism and consists of ten elementary reactions, Eqs. (2.2)-(2.11) [1].

BrO−3 +Br− + 2H+→ HBrO2 +HOBr (2.2)

HBrO2 +Br− +H+→ 2HOBr (2.3)

HOBr +Br− +H+
 Br2 +H2O (2.4)

BrO−3 +HBrO2 +H+
 2BrO•2 +H2O (2.5)

BrO•2 + Ce3+ +H+
 HBrO2 + Ce4+ (2.6)

2HBrO2→ BrO−3 +HOBr +H+ (2.7)

BrO•2 + Ce4+ +H2O→ BrO−3 + Ce3+ + 2H+ (2.8)

Br2 + CH2(COOH)2→ BrCH(COOH)2 +Br− +H+ (2.9)

6Ce4+ + CH2(COOH)2 +H2O→ 6Ce3+ +HCOOH + 2CO2 + 6H+ (2.10)

4Ce4+ +BrCH(COOH)2 + 2H2O→ Br− + 4Ce3+ +HCOOH + 2CO2 + 5H+ (2.11)

This detailed mechanism can be summarized by grouping the essential equations and placing

them into three processes, which we will call "Processes A, B, and C." It should be noted that

all of these reactions are happening concurrently. However, as this oscillatory reaction proceeds

one of the processes will dominate over the others as the concentrations of the primary reactants

change in time. At the beginning of the reaction, when the concentration of the bromide ions

are at, or near, their maximum, Process A is dominant. Process A can be described as the

removal of bromide ions by bromate, hypobromous acid and bromous acid.
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Process A (removal of bromide ions):

BrO−3 +Br− + 2H+→ HBrO2 +HOBr (2.2)

HBrO2 +Br− +H+→ 2HOBr (2.3)

HOBr +Br− +H+
 Br2 +H2O (2.4)

As the bromide ion concentration falls, it reaches a critical concentration and Process B begins

to dominate the reaction. At this point, the bromous acid can outcompete the bromide ions

and begins reacting with bromate, initiating the autocatalytic production of bromous acid and

the oxidation of the metal catalyst cerium. In Eq. (2.5), the product of the reaction between

bromous acid and bromate yields two radical species. Each of these radicals can oxidize the

metal catalyst and produce bromous acid. It can be clearly seen from Eqs. (2.5) and (2.6) that

for each bromous acid consumed, two bromous acids are formed. The concentration of bromous

acid rapidly increases due to its autocatalytic production. The reaction between bromous acid

and bromide ions, shown in Eq. (2.3), continues to proceed and the concentration of bromide

ions is quickly reduced.

Process B (autocatalytic production of bromous acid):

BrO−3 +HBrO2 +H+
 2BrO•2 +H2O (2.5)

BrO•2 + Ce3+ +H+
 HBrO2 + Ce4+ (2.6)

2HBrO2→ BrO−3 +HOBr +H+ (2.7)

With the sudden increase in the oxidized form of the metal catalyst, Process C becomes domi-

nant. This process acts as the resetting mechanism, as the metal catalyst is reduced and bromide

ions are liberated from the organic substrate.

Process C (reduction of metal catalyst and liberation of bromide ions):

6Ce4+ + CH2(COOH)2 +H2O→ 6Ce3+ +HCOOH + 2CO2 + 6H+ (2.10)

4Ce4+ +BrCH(COOH)2 + 2H2O→ Br− + 4Ce3+ +HCOOH + 2CO2 + 5H+ (2.11)
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As the concentration of bromide ions rises above the critical concentration, once again Process

A becomes dominant and the cycle repeats. The critical concentration of bromide ions can be

estimated by setting the rate equations of Eq. (2.3) and Eq. (2.5) equal to one another and

rearranging to solve for [Br-], yielding Eq. (2.12) [1].

[Br−]crit =
k2.5

k2.3
[BrO−3 ] (2.12)

For the cerium system, the ratio of the rate constants k2.5/k2.3 is equal to 5× 10−6. Observations

by Field et al. showed semiquantitative agreement with this equation [1]. As the other reactant

concentrations are varied, bromate was held constant at 0.063 M. Through these experiments,

the critical concentration of bromide ions was between 8.0× 10−7 M and 1.0× 10−6 M.

2.4 Photosensitive BZ Reaction

There have been other metal catalysts used in the BZ reaction since Belousov �rst used cerium

[17] in his original work, such as ferrion [3, 6] and manganese [21, 22]. The main requirements

needed of the metal catalyst are that it is capable of a one electron transfer, and the reduc-

tion/oxidation is reversible [23]. A formal reduction potential range is derived using the formal

reduction potenials of cerium and ferrion, ∼1.1 V and ∼ 1.44 V, respectively [24]. Therefore, a

potential catalyst candidate should have a reduction potential within this range. One such cata-

lyst is tris(2-2'-bipyridine)ruthenium(II) chloride, Ru(bpy)2+
3 , which has become widely used due

to the photosensitivity of the complex. In 1973, Demas and Diemente reported that Ru(bpy)2+
3

is highly luminescent in aqueous solutions, emitting a bright orange glow when excited by UV

light [23]. Additionally, work with the catalyst by Gáspár et al. demonstrated Ru(bpy)2+
3 is

excitable using blue light [25]. Additional studies reported that ruthenium catalyzed BZ solu-

tions, exposed to 450 nm light pulses, experienced both photoinhibtion and photoinduction of

oscillations [16, 25�27]. This result suggests that there are two channels for the photochemistry,

one which is excitatory [28] and the other inhibitory [26]. The �rst step in the mechanisms of

both channels involves the excitation of the ruthenium catalyst by a photon:

Ru(II) + hv→ Ru(II)∗. (2.13)
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In the excitatory channel, the excited catalyst then reacts with bromate producing the radical

BrO•2. This radical quickly reacts with the catalyst that is still in the ground state to produce

the autocatalytic species HBrO2, Eqs. (2.14) and (2.15) [26, 27, 29�32].

Ru(II)∗ +BrO−3 + 2H+→ BrO•2 +Ru(III) +H2O (2.14)

BrO•2 +Ru(II) +H+→ Ru(III) +HBrO2 (2.15)

The additional bromous acid will consume bromide ions, which causes the bromide ion concen-

tration to fall below the critical concentration at a faster rate, Eq. (2.3), and the oscillator to

�re earlier.

The inhibitory channel also begins with the excitation of the metal catalyst with a photon.

The excited catalyst is oxidized by bromomalonic acid (BrMA) and produces free bromide ions,

Eq. (2.16). The oxidized catalyst can then react with more bromomalonic acid and produce

more free bromide ions, Eq. (2.17) [26, 33�35].

Ru(II)∗ +BrMA→ Ru(III) +Br− + products (2.16)

Ru(III) +BrMA→ Ru(II) +Br− + products (2.17)

The liberated bromide ions increase the time it takes to reach the critical concentration and

suppress the autocatalytic production of bromous acid. The initial concentrations of reactants

directly a�ect the prominence of a channel. The excitatory channel is dominate at high levels

of bromate and low levels of bromomalonic acid. The inhibitory channel is more prominent at

low levels of bromate and high levels of bromomalonic acid. At intermediate levels of reactants,

both channels may be involved [16].

2.5 Computational Models of BZ Reaction

Computational models have become a powerful tool in modern scienti�c studies across many

�elds. Models allow questions and hypotheses to be explored that can be di�cult to explore

experimentally and can be either simplistic or detailed representations of the system. Modeling
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a chemical mechanism, even complex schemes such as the BZ reaction, is accomplished by using

the necessary rate equations and transport processes involved in the reaction. This method of

modeling is justi�ed as the state variables are normally the concentrations of the signi�cant

species in a chemical system [19]. A computational model based on the FKN was developed by

Richard Field and Richard Noyes in 1974 at the University of Oregon, called the Oregonator [2].

The Oregonator consists of �ve coupled elementary steps and three variable species derived from

simplifying the FKN model. There have been several variants developed since the publication

of the original Oregonater [6, 34, 36�38]. These modi�ed models help explore and understand

observed behaviors in the BZ system. There are two di�erent models that will be discussed

in this section: �rst, a four-variable model developed by Kádár et al. [26] that includes a

variable representing bromomalonic acid and photosensitive terms [26, 34], and second, a model

developed by Zhabotinsky, Buchholtz, Kiyatkin, and Epstein used to describe the modes of

oscillations and wave propagation in a system with a relatively high oxidized/reduced ratio,

called the ZBKE model [6].

2.5.1 Four-Variable Oregonator

The original Oregonator model proposed by Richard Field and Richard Noyes in 1974 was a

three-variable system that was able to describe the chemical dynamics of the BZ reaction [1].

The Oregonator consists of �ve irreversible steps, Eqs. (2.18)-(2.22):

A+ Y
k1−→X + P, (2.18)

X + Y
k2−→2P, (2.19)

A+X
k3−→2X + Z, (2.20)

2X
k4−→A+ P, (2.21)

Z
k5−→fY, (2.22)

where X ≡ HBrO2, Y ≡ Br-, and Z ≡ oxidized metal catalyst are the variables. Bromate is

considered to be in excess and its concentration constant, and therefore it is represented as a

parameter A ≡ BrO3
-. The concentration of H+ is contained within the rate constants and is not

shown explicitly. The product P ≡ HOBr, which is needed to brominate the organic substrate,
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is not included in the rate equations. The stoichiometric factor, f, is introduced to control

the amount of bromide ions created during Process C [2, 4]. This model was an important

development because it could generate limit-cycle oscillations, which are characterized by a

constant period. Figure 2.1 shows oscillations in the variables X, Y, and Z through time and

the limit cycles produced using the three-variable Oregonator.

The original Oregonator cannot account for the photochemical production of bromide ions

or bromous acid when using a photosensitive catalyst. The production of bromide ions from

bromomalonic acid acts as an inhibitory species delaying the �ring of the oscillation. Production

of bromous acid from bromate, the autocatalytic species in the BZ reaction, will cause the system

to �re earlier than the natural period. To account for these processes, a modi�cation to the

Oregonator was developed. In 2000, building on the earlier work of Kádár et al. [26], Amemiya

et al. showed how this could be accomplished with the addition of a fourth variable to the

Oregonator, V, equivalent to BrMA. This allowed the photo-production of bromide ions and

bromous acid to be explicitly included in the model Eqs. (2.23)-(2.26) [34] :

V
k6−→Products, (2.23)

G
kL0−−−⇀↽−−−
k−L0

E, (2.24)

E + V +H+ kL1−→Y + Z, (2.25)

E +A+ 2H
kL2−→X + 2Z, (2.26)

where V ≡ BrMA, G ≡ Ru(bpy)2+
3 , and E ≡ Ru(bpy)2+∗

3 . At a constant light intensity, the

excitation of Ru(bpy)2+
3 is proportional to the light �ux, Φ, and the reverse reaction is assumed

to undergo a 1st order quenching process Eq. (2.24). Therefore, the concentration of E is

assumed to be constant [26, 34]. A steady state approximation of E can be made using Eqs.

(2.24)-(2.26)

E ≈ Φ

kL1
k−L0

kL1
+HV + kL2

kL1
H2A

. (2.27)

Using this approximation and substituting it into the rate equations for Eqs. (2.25) and (2.26)
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(a) Oscillations in the variable X

(b) Oscillations in the variable Y

(c) Oscillations in the variable Z (Normalized)

(d) Limit cycles of the variables Z vs. X (e) Limit cycles of the variables Z vs. Y

Figure 2.1. (a) Time series of the autocatalytic species X, (b) the inhibitory species Y, and
(c) the oxidized state of the catalyst Z using the 3-variable Oregonator. Figures (d) and (e)
are showing limit cycles of the variables X vs. Z and Y vs. Z, respectively, and the typical
concentrations of each variable with time.
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yields:

rL1 =
HV Φ

k−L0

kL1
+HV + kL2

kL1
H2A

≡ p1(V )Φ, (2.28)

rL2 =

kL2
kL2

H2AΦ

k−L0

kL1
+HV + kL2

kL1
H2A

≡ p2(V )Φ. (2.29)

With the addition of these processes and approximations to the Oregonator, the di�erential

equations for a photo-sensitive model can be written as follows, Eqs. (2.30)-(2.33):

dx

dt
= k1AY − k2XY + k3AX − 2k4X

2 + p2(V )Φ, (2.30)

dy

dt
= −k1AY − k2XY + fk3Z + p1(V )Φ, (2.31)

dz

dt
= 2k3AX − k5Z + (p1(V ) + 2p2(V ))Φ, (2.32)

dv

dt
= k1AY + 2k2XY + k4X

2 − k6V − p1(V )Φ. (2.33)

The model can not only reproduce limit-cycle oscillations generated in the original Oregona-

tor, but photoinduced behaviors such as photoinhibiton, photoinduction, small amplitude os-

cillations, and mixed-mode behaviors, Fig. 2.2 [34]. Simulations produce good qualitatively

agreement with experiments involving the ruthenium-catalyzed BZ system [31, 39].
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(a) Photoinhibition of oscillations

(b) Photoinduction of oscillations

(c) Photoinduced small amplitude oscillations

(d) Photoinduced mixed-mode oscillations

Figure 2.2. (a) Time series showing photoinhibition of oscillations at time 75. The parameter
Φ was set to 1.0× 10−5 , red dot, and was returned to zero at time 125, green dot. The system
ceased oscillating and was put into a photo-induced steady state during the simulated light
pulse. (b) Simulated photoinduction of bromous acid. A short simulated light pulse at times
75 and 210 for 2 seconds at a Φ = 1.3× 10−5 was applied. After each pulse the oscillator �red
with a reduced period of 14 seconds compared to the natural period of 20 sec. (c) Photoinduced
small amplitude oscillations, at time 48 the parameter Φ was set to 1.0× 10−5 for the duration
of the simulation. (d) Photoinduced mixed-mode oscillations, at time 52 the parameter Φ was
set to 1.0× 10−5 for the duration of the simulation.
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2.5.2 The ZBKE Mechanism and Model

In 1993, Zhabotinsky, Buchholtz, Kiayatkin, and Epstein proposed a reaction scheme based on

the FKN mechanism, known as the ZBKE model [6]. Zhabotinsky et al. noted that current

mathematical models did not correctly describe the modes of oscillation when the oxidized form

of the catalyst occupies a signi�cant portion of the cycle [6]. This reaction mechanism includes

a more detailed description in the chemistry of the organic species and HBrO+
2 , shown in Eqs.

(R1)-(RA-2).

HOBr +Br− +H+ −⇀↽− Br2 +H2O (R1)

HBrO2 +Br− +H+ −⇀↽− 2HOBr (R2)

HBrO3 +Br− +H+ −⇀↽− HBrO2 +HOBr (R3)

2HBrO2 −⇀↽− HBrO3 +HOBr (sR4a)

H+ +HBrO2 −⇀↽− H2BrO
+
2 (R4b)

HBrO2 +H2BrO
+
2
−⇀↽− HBrO3 +HOBr +H+ (R4c)

H+ +BrO−3 −⇀↽− HBrO3 (R5a)

H+ +HBrO3 +HBrO2 −⇀↽− HBrO+
2 +BrO•2 +H2O (R5b)

H+ +BrO•2 −⇀↽− HBrO+
2 (R5c)

Mn +HBrO+
2
−⇀↽−Mn+1 +HBrO2 (R6)

Mn+1 + CHBr(COOH)2 −⇀↽−Mn + CBr(COOH)•2 +H+ (R7)

H2O + CBr(COOH)•2 −→ Br− +H+ + COH(COOH)•2 (R8)

H2O + CHBr(COOH)2 −→ Br− +H+ + CHOH(COOH)2 (R9)

2COH(COOH)•2 −→ CHOH(COOH)2 + CO(COOH)2 (R10)

COH(COOH)•2 + CBr(COOH)•2 −→ CHBr(COOH)2 + CO(COOH)2 (R11)

HOBr + CHBr(COOH)2 −→ CBr2(COOH)2 +H2O (RA-1)

Br2 + CHBr(COOH)2 −→ CBr2(COOH)2 +H+ +Br− (RA-2)
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Here, Mn and Mn+1 represent the reduced and oxidized states of the metal catalyst, respectively.

We assume that the reactions shown in Eqs. (RA-1) and (RA-2) are fast enough that all

other reactions of HOBr and Br2 can be neglected and CBr2(COOH)2, CHOH(COOH)2, and

CO(COOH)2 can be treated as �nal products [6].

The mathematical model of the ZBKE mechanism is written using the essential processes

and key intermediates [6]:

dX

dt
= −k2h0XY + k3hoXY − 2k∗4X

2 − k5h0AX + k−5U
2 + k6U(C − Z)− k−6XZ, (2.34)

dY

dt
= −k2h0XY − k3hoAY + k

′
8R1 + k9B, (2.35)

dU

dt
= 2k5h0AX − 2k−5U

2 − k6U(C − Z) + k−6XZ, (2.36)

dZ

dt
= k6U(C − Z)− k−6XZ − k7BZ + k−7h0R1(C − Z), (2.37)

dR1

dt
= k7BZ − k−7h0R1(C − Z)− k′8R1 − k11R1R2, (2.38)

dR2

dt
= k

′
8R1 − 2k10R

2
2 − k11R1R2, (2.39)

where X ≡ [HBrO2], Y ≡ [Br-], U ≡ [HBrO2
+], Z ≡ [Mn+1], R1 ≡ [CBr(COOH)2•], R2 ≡

[COH(COOH)2•], A ≡ [HBrO3] ≡ h0[NaBrO3]0/(0.2+h0), B ≡ [CHBr(COOH)2], C ≡ Z + [Mn],

h0 = Hammet acidity function, k4* = k4(1+0.87h0), and k-5 is substituted for (k-5bk-5c)/(k5ch0).

The reaction shown in Eq. (2.39) can be neglected, assuming very fast radical recombination

of Eqs. (R10) and (R11). Using quasi-steady state approximation, the equation for R1 can be

rewritten as:

dR1

dt
= k7BZ − k−7hoR1(C − Z)− k

′
8R1

q(R1
, (2.40)

where

1

q(R1)
= 1− k2

11R1

4k
′
8k10

1−

(
1 +

8k
′
8k10

k2
11R1

) 1
2

 . (2.41)

The parameter q is introduced to adjust the model to experimental observations based on

reactions R10 and R11. When reaction R10 is much faster than R11, the product q(R1) = 1.

When R11 is much faster than R10, then the product q(R1) = 0.5. To further simplify the
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parameter, q is used in place of q(R1) and k8 = k'8/q [6].

If we assume [CBr(COOH)2] is a fast variable and treat HBrO+
2 as a steady state variable,

USS, a reduced system can be written using three-variables:

dX

dt
=
−k2X + k3A

k2X + k3A
(qk7k8G1 + k9B)− 2k∗4X

2 − k5hoAX + k−5U
2
ss(C − Z)− k−6XZ, (2.42)

dY

dt
= −k2hoXY − k3hoAY + qG2 + k9B, (2.43)

dZ

dt
= k6Uss(C − Z)− k−6XZ −G2, (2.44)

where

Uss =
k6(C − Z)

4k−5
+
√
k2

6(C − Z)2 + (16K5k−5hoAX + 8k−5k−6XZ), (2.45)

G1 =
BZ

k8 + k−7hoR1(C − Z)
, (2.46)

and

G2 =
k7k8BZ

k8 + k−7ho(C − Z)
. (2.47)

The concentrations of bromate, A, and sulfuric acid, ho, are considered to be in large excess and

treated as parameters with a constant value. By using appropriate scaling, a nondimensional

ZBKE model of the ferrion catalyzed BZ reaction can yield qualitative comparisons with ex-

periments [6, 13, 16, 40, 41] and is described by the di�erential Eqs. (2.48)-(2.50). The scaled

variables and parameters are shown in Table 2.1.

dx

dτ
=

1

ε1

(
ϕ− x2 + x+ ε2γu

2
ss(1− z) + δxz +

µ− x
µ− z

(
qαz

ε3 + 1− z

)
+ β

)
(2.48)

dy

dτ
=

1

ε4

(
−xy − µy + q

αz

ε3 + 1− z
+ β

)
(2.49)

dz

dτ
= 2ϕ+ uss(1− z)− δxz −

αz

ε3 + 1− z
(2.50)

This model produces a signi�cant distribution of natural periods by varying the parameter q in

contrast to the Oregantor model, with lower values yielding faster periods. This is an important

feature when investigating populations of oscillators with large heterogeneity. To account for
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Table 2.1. Variable and Parameter Scaling for ZBKE Model [6, 13]

Parameter Scaling Variable Scaling

ε1 k5hoA/2k4C X k5hoAx/2k4
β 2k4k9B/(k5hoA)

2 Y k5Ay/k2
ε2 (k5hoA)

2/2k4k6C Z Cz
µ 2k3k4B/k2k5ho U (k5hoA)

2u/2k4k6C
ε3 k8/k-7hoC t 2k4Cτ/(k5hoA)

2

γ k-5/k6
ε4 k5A/k2C
δ k-6C/k5hoA
α 2k4k7k8B/k4

2k-7ho
3A2

k 2k4CK/(k5hoA)
2

the use of the Ru(bpy)2+
3 catalyst, further modi�cations can be made to the model to include

the photo-production of bromous acid and bromide ions [13, 26, 35]. The in�uence of these

photo-chemical processes can be included in the dynamics of the ZBKE model by the addition

of a parameter representing the light �ux, φ, to Eqs. (2.48)-(2.50) [35].

dx

dτ
=

1

ε1

(
φ− ϕ− x2 + x+ ε2γu

2
ss(1− z) + δxz +

µ− x
µ− z

(
qαz

ε3 + 1− z

)
+ β

)
(2.51)

dy

dτ
=

1

ε4

(
φ− xy − µy + q

αz

ε3 + 1− z
+ β

)
(2.52)

dz

dτ
= φ+ 2ϕ+ uss(1− z)− δxz −

αz

ε3 + 1− z
(2.53)

For a purely excitatory system, φwill not appear in Eq. (2.51), while for a purely inhibitory

system, φwill not appear in Eq. (2.53). However, this modi�cation is limited to either a purely

excitatory or inhibitory system, which cannot describe all the observed behaviors in experiments.

The introduction of a tunable parameter, αo, can account for the photo-chemical processes by

specifying a weight to the excitatory and inhibitory channels of the Ru(bpy)2+
3 catalyzed BZ
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reaction. The three-variable-photosensitive ZBKE model can now be written as:

dx

dτ
=

1

ε1

(
αoφ− ϕ− x2 + x+ ε2γu

2
ss(1− z) + δxz +

µ− x
µ− z

(
qαz

ε3 + 1− z

)
+ β

)
, (2.54)

dy

dτ
=

1

ε4

(
(1− αo)φ− xy − µy + q

αz

ε3 + 1− z
+ β

)
, (2.55)

dz

dτ
= (1 + αo)φ+ 2ϕ+ uss(1− z)− δxz −

αz

ε3 + 1− z
. (2.56)

Figure 2.3 shows the time series for the dimensionless variables x, y, and z, and limit cycles

showing z vs. x and z vs. y for a simulation using the three-variable-photosensitive ZBKE

model.
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(a) Oscillations in the variable X

(b) Oscillations in the variable Y

(c) Oscillations in the variable Z

(d) Limit cycles of Z vs. X (e) Limit cycles of Z vs. Y

Figure 2.3. (a) Time series of the autocatalytic species X, (b) the inhibitory species Y, and (c)
the oxidized state of the catalyst Z using the 3-variable ZBKE model. Figures (d) and (e) are
showing phase plots of the variables X vs. Z and Y vs. Z, respectively, illustrating the typical
concentrations of each variable with time.
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2.6 Phase Response Curves

The photo-sensitive Ru(bpy)2+
3 catalyst, used in the BZ reaction, can be excited by exposure to

450 nm light. The use of brief light pulses to perturb an oscillator can either delay the phase of

an oscillation, an inhibitory response, Fig. 2.4(a) [26, 33�35], advance the phase, an excitatory

response, Fig. 2.4(b), of an oscillation [26, 27, 29�32], or have no e�ect on the oscillation.

In Fig. 2.4(a), the oscillator was phase delayed as the natural period, T, equals 65 seconds,

(a) Phase delay

(b) Phase advancement

Figure 2.4. Time series of PRC experiments showing (a) phase delay, where T < T
′
and (b)

phase advancement, where T > T
′
. Here, T is the natural or unperturbed period and T

′
is the

perturbed period.

and after perturbation the perturbed period, T
′
, is equal to 102 seconds. In Fig. 2.4(b), the

oscillator has a natural period T of 109 seconds and after perturbation has a T
′
equal to 73

seconds, a phase advance. When studying networks of oscillators, a method of understanding

and predicting how an oscillator responses to signals from coupled partner(s) is needed. This

is done by construction of a phase response curve, PRC, which shows the change in the phase

of an oscillator, ∆γ, due to a perturbation at a particular phase, γ, in its cycle [16, 42, 43].

Phase response curves have been used to predict behaviors and stability in neural networks [44,

45] as well as networks of chemical oscillators [16, 43]. This powerful tool can be used to help

understand an individual oscillator's dynamics in a network and that oscillator's in�uence on
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the overall network. Both the initial conditions of the BZ solution and the magnitude of the

perturbation are factors in the overall shape of the PRC [45]. Therefore, in this section we

experimentally investigate the photo-chemical responses of discrete oscillators from short light

pulses immersed in either an excitatory or inhibitory catalyst-free BZ solution [16]. In addition

to this, computational methods will be used to explore the role of coupling strength in excitatory

and inhibitory systems on the shape of a PRC using a three-variable ZBKE model.

2.6.1 Experimental Setup

Instrumentation

The experimental setup consists of a laser-diode projector modifed with a plano lens and a

440-460 nm band pass �lter, a beam splitter, CCD video camera, computer, and reactor. Light

from the modi�ed projector is re�ected down onto the reactor, which is then re�ected back up

to the CCD camera postioned directly above. Recorded images are processed and saved as a

gray-scaled image by the computer. The computer processes the images and calculates the light

intensity and pattern transmitted by the modi�ed projector using a custom algorithm. In PRC

experiments, the algorithm will perturb the oscillators with a single 1.2 mW cm−2 pulse for 1

second. The setup is illustrated in Fig. 2.5.

Tris(2-2'-bipyridine)Ruthenium(II) Chloride Loaded Beads

Individual chemical oscillators are produced by loading cation exchange beads (Dowex 50-100

mesh, radius 150-200 µm) with the photosensitive tris(2,2'-biyridine)ruthenium(II) chloride hex-

ahydrate, Ru(bpy)2+
3 . A Ru(bpy)2+

3 catalyst solution is made by dissolving enough complex to

make a 15 mM solution using deionized water. Three grams of the ion exchange beads are

placed in a beaker with a stir bar and 9 ml of deionized water. While being slowly stirred, the

desired volume of the 15 mM catalyst solution is added dropwise to the beaker containing the

beads and water, along with enough water to bring the total volume to 10 ml. The solution

containing the beads is allowed to stir for 24 hours in a dark environment. Finally, the beads

are �ltered and washed with deionized water and air dried for at least 24 hours. The �nal

concentration of catalyst loaded onto the cation exchange beads is either 2.5× 10−6 mol g−1 or

5.0× 10−6 mol g−1 resin, labeled as the peripheral and hub oscillators, respectively. This di�er-
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(a) Experimental setup (b) Catalyst loaded beads

Figure 2.5. (a) Experimental setup used for all experiments. The projector (A) transmits
collimated light through a 440-460 nm (blue) band bass �lter (B) to the beam splitter (C). The
light is re�ected down to the reactor (D) and back up to the CCD camera (E) positioned above.
The image is processed by the computer (F) and the proper feedback is calculated and applied
by the modi�ed projector. (b) Image of beads submerged in a catalyst-free BZ solution recorded
by the CCD camera. The catalyst on the beads that appears dark is in the reduced state. The
catalyst on the beads that appears bright is in the oxidized state, as they are transparent at
450 nm.

ence in the ruthenium concentrations produces a period variation between hub and peripheral

oscillators of ∼30%. The peripheral oscillators have a natural period range of 80-100 seconds,

while the hub oscillators have a natural period range of 50-70 seconds.

Catalyst-Free BZ Solutions for PRC Experiments

For the PRC experiments, two di�erent catalyst-free BZ solutions are used, the excitatory for-

mula and the inhibitory formula. Both solutions are made from stock solutions of 2.0 M sodium

bromate, NaBrO3, 2.0 M sodium bromide, NaBr, and 6.0 M sulfuric acid, H2SO4, obtained

from Fisher Scienti�c. Malonic acid, MA, from Acros Organics is added to the excitatory and

inhibitory solutions as a dry salt. The excitatory formula has initial concentrations of [NaBrO3]

= 0.640 M, [H2SO2] = 0.780 M, [NaBr] = 0.060 M and [MA] = 0.096. The inhibitory formula

varies only by a change in the bromate concentration [NaBrO3] = 0.320 M. The initial NaBr is

consumed via an enol reaction that brominates the α-carbon of the malonic acid, yielding an

e�ective bromomalonic acid concentration of 0.090 M for both solutions.
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PRC Experimental Procedure

A catalyst-free BZ solution is prepared and 30 ml are transferred to the reactor containing

catalyst loaded beads. The reactor is placed in the experimental setup and the beads are

arranged to have at least two diameters space between them. This space ensures that no

di�usive coupling is a�ecting the periods of the oscillators. The beads are allowed to oscillate

at a constant background intensity of 0.52 mW cm−2. Images of the beads are recorded every

three seconds for the length of the experiment. Before the �rst 1.0 s light pulse is applied the

beads are allowed to oscillate for 7 minutes, which allows them to settle into their natural period

before perturbation. Additional 1 second light pulses are applied at predetermined times after

the oscillators have completed at least three cycles between each pulse.

2.6.2 Experimental and Computational Results

In the experimental system, a PRC is constructed by perturbing discreet oscillators with a 1.0

s light pulse at arbitrary phases and then recording the time of the next �ring. The phase of

the oscillator, γ, at any time is given by:

γ(t) =
2π(t− tpeak)

T
, (2.57)

where t is the current time and tpeak is the time of the previous peak. The change in the phase

of an oscillator, ∆γ, is calculated by comparing the natural period, T, to the period of the

perturbed cycle, T
′
, Eq. (2.58) [16, 46, 47].

∆γ =
2π(T − T ′)

T
(2.58)

An interval of at least three periods between the perturbations is used, allowing the oscillations

to relax back to their natural periods.

Using the excitatory solution, both the hub Fig. 2.6(a) and peripheral Fig. 2.6(c), oscillators

have a phase advancing region in the latter half of their cycle. Preceding this is a small phase

delaying region. Very early in the cycles of both systems, they are refractory, and therefore

the perturbation has a minimal impact. When placed in an inhibitory solution, both hub Fig,
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2.6(b) and peripheral oscillators, Fig. 2.6(d), oscillators show only a phase delay and refractory

regime. These results show that varying the initial concentrations of the catalyst-free BZ solution

(a) Hub oscillators using excitatory solution (b) Hub oscillators using inhibitory solution

(c) Peripheral oscillators using excitatory solution (d) Peripheral oscillators using inhibitory solution

Figure 2.6. Experimentally constructed phase response curves using excitatory or inhibitory
solutions for both hub and peripheral oscillators. (a) PRC for the hub oscillators in an excitatory
catalyst-free solution showing both phase resetting and phase delaying regions. (b) PRC using
inhibitory catalyst-free solution showing a phase delaying region for the hub oscillators. (c) PRC
for the peripheral beads using excitatory catalyst-free solution and (d) inhibitory catalyst-free
solution for the peripheral oscillators.

changes the predominance of the photo-chemical channels. They also show that the di�erence

in the catalyst concentration has a minimal a�ect on the phase response of the oscillator in a

given solution.

The PRCs for the model system are constructed in a similar manner to the experimental

system using the three-variable photosensitive ZBKE mechanism. A given oscillator is brie�y

perturbed through a small change in the light intensity φ at a given phase and the impact
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on the time of the next �ring is measured using Eq. (2.58). The resulting PRCs are for both

the hub, Fig. 2.7 (a) and (b), and peripheral oscillators, Fig. 2.7 (c) and (d), for the cases of

α = 1 (a) and (b) and α = 0 (c) and (d). The results are a good quantitative match to the

(a) Low q value in excitatory system (b) Low q value in inhibitory system

(c) High q value in excitatory system (d) High q value in inhibitory system

Figure 2.7. Computational PRCs constructed using the three-variable-photosensitive ZBKE
model. Figure 2.7(a) and (b) show the results for the hub oscillator using excitatory and
inhibitory coupling, respectively. The peripheral oscillators are shown in (c) and (d), also using
excitatory and inhibitory coupling, respectively.

experimental results. The excitatory pathway, α= 1, showing a phase advancing region in the

latter part of the oscillator's phase and a small inhibitory region preceded by a refractory region

early in the phase, Fig. 2.7 (a) and (d). For α= 0, the inhibitory pathway the oscillators only

show a phase delaying region that is preceded by a large refractory region, Fig. 2.7(b) and (d).

The variation in natural period of the oscillators had a minimal impact on the shape and slope

of the PRCs, which is also in agreement with the experimental results.
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The magnitude of the perturbation, P, also has an a�ect on the overall shape of the PRC

by changing the slope and location of the response regions. This can be shown by constructing

PRCs using the ZBKE model and varying the parameter P. In the inhibitory system, α = 0,

the magnitude of the perturbation P was varied from 0.18 to 0.88. In Fig. 2.8(a), the slope of

the inhibitory regime becomes more negative. The refractory region earlier in the phase is also

reduced in length. Therefore, as P is increased, the earlier in an oscillator's phase it can be

delayed and to a greater extent. For the excitatory system, α = 1, P was also varied from 0.18

to 0.88. Figure 2.8(b) shows as P was varied the slope of the excitatory region in the latter part

phase does not change. However, it does extend to earlier phases down to π , at P = 0.88, in

the cycle. The slope does not change because once the oscillator receives an excitatory signal it

�res almost immediately and the phase is advanced to 2π. We can also see that the inhibitory

region is reduced with minimal changes to the slope. These computational results demonstrate

the impact of the magnitude of a perturbation on both systems.

(a) Computational PRCs for the inhibitory system.(b) Computational PRCs for the excitatory system.

Figure 2.8. (a) Computational PRC of the inhibitory system and (b) excitatory system using
the ZBKE model. The magnitudes of the perturbations was varied from 0.18 to 0.88.
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Chapter 3

Novel Synchronization in Star

Networks

3.1 Introduction

Complex biological, technological, and sociological networks can vary greatly in size and connec-

tivity. Currently, there is interest in the relationship between the structure (connectivity) and

the function (activity) in the dynamics of these complex networks. The structure-function rela-

tionship of biological networks, such as neurons or pancreatic beta cells, have some dependency

on the topological structure of the network [1�4], and current neuroimaging techniques can show

both structural and functional relationships in the brain. However, research reveals that there

is commonly a mismatch between the two. This implies that the functional connectivity cannot

be fully explained by considering only the structural connectivity of a network [5�7]. This leads

to a hypothesis that the anatomic structure cannot fully explain the network dynamics [7]. Un-

derstanding the structure-function relationship is critical toward gaining insights into natural

network design.

Investigating these complex networks can pose many challenges due to the large numbers of

individual nodes and multiple degrees of connectivity. However, many of the complex networks

that occur in nature share global statistical features [8�12], including small-world networks [8,

10�12] and scale-free networks [3, 9, 13�15]. Small world networks consist of a population of

nodes that are not globally connected but will have a short path between any two nodes in the
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population [9, 11�13]. In many natural networks, a small number of nodes will have many more

connections than the average node. These types of networks are termed as scale-free networks

[9, 15, 16]. In scale-free networks the fraction of nodes having k edges (p(k)) decays as a power

law, where p(k)∼k-γ and γ is typically between 2 and 3 [13]. These reoccurring patterns, de�ned

as network motifs, can greatly reduce the number of nodes needed in studies, as the dynamics

of a complex network are thought to be governed by the smaller constituent networks or motifs

[13, 17].

One means of investigating the dynamical properties of a network is to consider the link be-

tween elements with similar structural symmetries and the functional modules that arise within

the network [18, 19]. In 2012, Bergner et al. presented a di�erent approach to demonstrate

how network dynamics can emerge through functional rather than structural connectivity [15].

Utilizing a star network of Stuart-Landau (SL) oscillators consisting of a central hub oscilla-

tor bidirectionally coupled to a number of peripheral oscillators, they reported a phenomenon

termed "remote synchronization". This star network can be described as a minimal scale-free

network, as it possess one highly connected oscillator and several peripheral oscillators with only

a single connection [3, 9, 13, 14]. During experiments and computational studies, the indirectly

connected peripheral oscillators would become phase synchronized but would not synchronize

with the hub oscillator. The ability of the peripheral oscillators to synchronize was thought to

depend on a memory of the amplitude of the hub oscillator. Several requirements were proposed

to observe remote synchronization in a star network: (a) a large frequency di�erence between

the hub oscillator and the peripheral oscillators, (b) an intermediate coupling strength that

would not cause global synchronization of the system, and (c) a small degree of heterogeneity

between the peripheral nodes, as the signal from the hub is considered weak. Finally it was

originally hypothesized that the oscillators must be capable of amplitude modulations, as this

is how the synchronizing signal was transmitted [15, 20]. This last condition would preclude

the use of oscillators that do not display amplitude, such as the Kuramoto phase oscillators.

This early work on remote synchronization has been reported in a variety of scale-free networks

using both SL oscillators and Kuramoto oscillators [18, 21�23], suggesting that there may be

more than one mechanism that can produce remote-synchronization-like behavior in networks

comprising non-SL oscillators.
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The dynamical properties of a network are not only dictated by structure-function rela-

tionships but also by the intrinsic properties of the individual oscillators and their response to

perturbations [24�26]. The majority of the work into remote synchronization to date has used

the sine-like SL oscillators, which are capable of large variations in their amplitude. However,

many of the oscillators found in biological networks have relaxation-type dynamics and can

respond to both activatory and inhibitory perturbations. Relaxation-type oscillators are also

characterized by a portion of their cycle being refractory during which time they are unable to

respond to a perturbation. The Belousov-Zhabotinsky (BZ) reaction has been used many times

as a model for a variety biological systems due to the relaxation form of its oscillations, which

was discussed in Chapter 2, Fig. 2.7 experimental, and Fig. 2.8 computational phase response

curves (PRC) [27�30].

This chapter will provide details of experimental and computational results exploring a star

network comprising photochemically coupled BZ micro-oscillators using excitatory or inhibitory

coupling conditions. The experimental system consists of micro-oscillators constructed by load-

ing the catalyst tris(bipyridine)ruthenium(II) chloride onto cation exchange beads, which are

immersed into a catalyst-free BZ solution. Selection of the appropriate catalyst-free solution

allows for the excitatory and inhibitory responses to the real-time light-based feedback used to

couple the star networks. Computational results reported here were completed with a 3-variable-

photosensitive ZBKE model using either excitatory or inhibitory conditions. Finally, we discuss

a mapping approach used to give insights into the mechanism that produces the phase cluster-

ing, maximum heterogeneity, and grouping of the peripheral oscillators found during the study.

This clustering behavior of the peripheral oscillators is a novel form of synchronization, as the

mechanism does not depend on amplitude modulations seen in remote synchronization. The

mapping approach shows that perturbations are transmitted through the hub via a change in

the hub's phase. The hub then aligns the phases of the peripheral oscillators by a phase-delaying

perturbation.
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3.2 Experimental

The instrumental set-up and preparation of the catalyst-free BZ solutions used in this study

are detailed in chapter two. To achieve the required signi�cant di�erence in the natural periods

of the oscillators, the amount of the ruthenium catalyst loaded onto the micro-oscillators is

varied. The micro-oscillators are loaded with either 2.5× 10−6 mol g−1 or 8.36× 10−6 mol g−1

of ruthenium catalyst and labeled as the peripheral and hub oscillators, respectively. The natural

period range of the peripheral oscillators is 80-100 s, while the hub oscillators have a range of 50-

70 s. Small variations in the loading of the catalyst introduce a natural heterogeneity in both the

peripheral and hub micro-oscillators. The creation of the individual chemical micro-oscillators

is detailed in chapter two.

The micro-oscillators are illuminated with a constant light intensity φ0 at 440 nm, using a

spatial light modulator (SLM). During a chemical oscillation, the oxidation state of the ruthe-

nium catalyst changes from +2 to +3. Since the catalyst is virtually transparent at 440 nm,

this change in oxidation state changes the amount of light that is re�ected into the CCD cam-

era, which transmits the image as a gray scale to the computer. The photosensitive nature

of the ruthenium catalyst allows for real-time coupling through changes in the illumination on

a micro-oscillator based upon the current oxidation states of the micro-oscillators within the

network.

The creation of a star network begins by monitoring both peripheral and hub oscillators

submerged in the chosen catalyst-free BZ solution to determine the natural period of each micro-

oscillator. The star network is created by choosing a hub that will produce an ∼30% di�erence

in natural periods between the hub and the fastest peripheral oscillator. The peripheral micro-

oscillators selected are chosen to reduce the di�erence in their natural periods as much as

possible, ∼1-2%, Fig. 3.1. Coupling of the micro-oscillators into a star network, as illustrated

in Fig. 3.1, is created by illuminating each oscillator j with a light intensity φj according to

φj = φ0 +
K

d

N+1∑
i=1

A (gi − gj) , (3.1)

where φj is the projected light intensity on oscillator j, φ0 is the background light intensity, K

is the coupling strength, d is the degree of each node, A is an adjacency matrix, and gi and gj
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Figure 3.1. Five node star network consisting of �ve peripheral nodes (red) and a hub (blue).
The peripheral nodes have a di�erence in their natural periods of ∼1-2%. The hub oscillator
will have a natural period ∼ 30% faster than the faster peripheral node.

are the normalized gray levels of oscillators i and j. In this star network, N + 1 = 6, for the �ve

peripheral nodes and a single central hub. The response of a micro-oscillator due to changes in

the light intensity is dependent upon the initial concentrations of the catalyst-free BZ solution

used. The predicted responses for each solution are given by the experimental PRCs shown in

Chapter 2, Fig. 2.7.

3.3 Experimental Results

Experiments are carried out by constructing star networks, Fig. 3.1, using hub and peripheral

micro-oscillators submerged in either an excitatory or inhibitory catalyst-free BZ solution, with

coupling according to Eq. (3.1). Remarkably, very similar results are seen in both excitatory

and inhibitory coupled star networks, where two types of novel synchronization are observed.

The �rst type is a single cluster state of phase-locked peripheral micro-oscillators (1-cluster syn-

chronization). The second type involves two clusters of phase locked peripheral micro-oscillator

(2-cluster synchronization), which are occupied as either a 4-1 or 3-2 cluster. The numbers

correspond to the number of peripheral micro-oscillators occupying a cluster. In all cases, the

hub micro-oscillator does not phase synchronize with the peripheral micro-oscillators. A visual

representation of the behaviors is constructed by plotting the unwrapped phase of the micro-

oscillators as a function of time, Fig. 3.2 (inhibitory) and Fig. 3.3 (excitatory). The single

cluster state can be seen in Fig. 3.2(a) and Fig. 3.3(a), where the unwrapped phases of the

peripheral micro-oscillators are parallel with each other indicating they are phase-locked. How-
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ever, the hub (red) has a divergent phase from the peripheral micro-oscillator's phase lines. To

discern the 1-cluster state shown in Figs. 3.2(a) and 3.3(a), a small section of time is plotted

in Figs. 3.2(b) and 3.3(b). The phase lines for the peripheral micro-oscillators are parallel,

implying they are phase-locked and also overlapping with nearly identical �ring times, marked

by squares indicating they are oscillating in phase. In Figs. 3.2(c), 3.2(d), 3.3(c), and 3.3(d),

2-cluster states are illustrated with the 4-1 state in (c) and the 3-2 state shown in (d). The

phase lines of the peripheral micro-oscillators are still parallel with each other, indicating they

are phase-locked. However, they are clearly separated by a constant phase, which when mea-

sured is ∼ π. This result indicates the two clusters are �ring approximately anti-phase to one

another. The �ring times for the micro-oscillators contained in a cluster are marked with a

square or diamond.
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(a) Inhibitory 1-cluster state (long term) (b) Detail of (a) 1-cluster state

(c) Inhibitory 2-cluster state with 4-1 occupancy (d) Inhibitory 2-cluster state with 3-2 occupancy

Figure 3.2. The unwrapped phase of each oscillator as a function of time from experiments with
inhibitory coupling. (a) A 1-cluster synchronization state with the peripheral oscillators forming
a single phase-locked cluster. The dashed lines show when the coupling was switched on and
switched o�. (b) Detail of (a). (c) A 2-cluster synchronization state with a 4-1 occupancy. The
�ring times for the cluster of 4 are indicated with squares, and those of the single oscillator are
indicated with diamonds. (d) A 2-cluster synchronization state with 3-2 occupancy. The �ring
times for the cluster of 3 are indicated with squares, and those of the cluster of 2 are indicated
with diamonds. In each plot, green, cyan, magenta, or blue indicate peripheral oscillators and
the red line indicates the hub oscillator. Initial concentrations of the catalyst-free BZ solution:
[BrO−3 ] = 0.320, [MA] = 0.096, [H+] = 0.780, and [Br−] = 0.0600. The background light
intensity was set to Φ0 = 0.081 mW cm−2.
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(a) Excitatory 1-cluster state (long term) (b) Detail of (a) 1-cluster state

(c) Excitatory 2-cluster state with 4-1 occupancy (d) Excitatory 2-cluster state with 3-2 occupancy

Figure 3.3. The unwrapped phase of each oscillator as a function of time from experiments
with excitatory coupling. (a) A 1-cluster synchronization state with the peripheral oscillators
forming a single phase-locked cluster. The dashed lines show when the coupling was switched on
and switched o�. (b) Detail of (a). (c) A 2-cluster synchronization state with a 4-1 occupancy.
The �ring times for the cluster of 4 are indicated with squares, and those of the single oscillator
are indicated with diamonds. (d) A 2-cluster state with 3-2 occupancy. The �ring times for
the cluster of 3 are indicated with squares, and those of the cluster of 2 are indicated with
diamonds. In each plot, green, cyan, magenta, or blue indicate peripheral oscillators and the
red line indicates the hub oscillator. Initial concentrations of the catalyst-free BZ solution:
[BrO−3 ] = 0.640, [MA] = 0.096, [H+] = 0.780, and [Br−] = 0.0600. The background light
intensity was set to Φ0 = 0.095 mW cm−2.
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3.4 Computational Results

A modi�ed three-variable ZBKE model was used in all computational studies of the star net-

work in this study [31�34] to simulate each oscillator in the network. The model incorporates

a parameter, α, that determines the response of the photosensitive catalyst to light [31]. A de-

tailed description of the ZBKE mechanism and model is discussed in chapter 2.5.2. To simulate

experimental results, α was set at either 1 or 0 during simulations. For α = 1, an oscillator

primarly responds via the excitatory pathway, in which bromous acid is the critical product

following the photoexcitation of the ruthenium complex. In contrast, for α = 0, an oscillator

responds via the inhibitory channel, in which bromide is the critical product of the photoex-

citation. Computational PRCs, based on the modi�ed three-variable ZBKE model with either

excitatory or inhibitory responses to light perturbations, Fig. 2.7, are in good agreement with

the experimental PRCs, Fig. 2.6. Computational star networks of oscillators using either ex-

citatory or inhibitory ZBKE oscillators exhibit essentially all of the behavior observed in the

experiments. Figures 3.4(a) and 3.4(b) show 1-cluster synchronization states for the excitatory

and inhibitory systems, respectively. Figures 3.4(c) and 3.4(d) show the 2-cluster synchroniza-

tion states in inhibitory systems with 4-1 and 3-2 occupancies, respectively. In all cases, the

hub oscillator is not synchronized with the peripheral oscillators.

Observations from the experimental system show that di�erent occupancies of the 2-cluster

states may occur for the same value of the coupling constant during di�erent trials. This

multistability is also seen in the ZBKE simulations. Targeting a particular cluster state at

a given value of coupling strength can be achieved by the appropriate choice of the initial

conditions. This is shown in Figs. 3.4(c) and 3.4(d), where using the same parameters as in

3.4(b), a 4-1 or 3-2 synchronized 2-cluster state can be produced. Multistability is also observed

in the excitatory system, with the coexistence of the synchronized 1-cluster, 2-cluster 4-1 and

3-2 states.

Remote synchronization reported by Bergner et al. [15] occured at coupling strengths less

than those required for global synchronization. The �ndings in star networks of BZ osillators are

consistent with this result. Figures 3.5(a) and 3.5(b) show the dominant behaviors at di�erent

coupling strengths from simulations of excitatory and inhibitory oscillators, respectively. In the
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case of excitatory oscillators, clustering behavior is dominant at intermediate coupling strengths

prior to the onset of global synchronization, Fig. 3.5(a). Global synchronization at large coupling

strengths is also observed in the experimental system. In contrast, oscillators in a star network

using inhibitory coupling exhibit oscillator death at higher coupling strengths, Fig 3.5(b). The

strong signal provided by the hub oscillator su�ciently delays the peripheral oscillators such that

they do not have time to �re before receiving the next signal. This is predicted to occur at high

coupling strengths corresponding to light intensities beyond those available in the experiments.

Examples of global synchronization and oscillator death in ZBKE simulations are shown in Figs.

3.5(c) and 3.5(d), respectively.

During the transition from low coupling strength to the synchronized region and from the

synchronized region to global synchronization or oscillator death, regions of complex behavior

are found. This investigation shows that this complexity takes the form of high-order periodicity

or aperiodic dynamics.
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(a) Single cluster state in the excitatory system (b) Single cluster state in the inhibitory system

(c) 2-cluster state having a 4-1 occupancy (d) 2-cluster state having a 3-2 occupancy

Figure 3.4. Novel synchronization in star networks of coupled ZBKE oscillators in simulations.
(a) Excitatory system and (b) inhibitory system (insets show the long-term behavior). (c)
Inhibitory system with a 2-cluster synchronization state having a 4-1 occupancy. The �ring
times for the cluster of 4 are indicated with squares, and those of the single oscillator are
indicated with diamonds. (d) Inhibitory system with a 2-cluster state having a 3-2 occupancy.
The �ring times for the cluster of 3 are indicated with squares, and those of the cluster of 2
are indicated by diamonds. The natural period of the hub oscillator is 29.72, while the natural
period of the peripheral nodes are equally spaced in the range of 44.26-44.95. Caluclations are
performed utilizing Euler's method with a dt = 0.0019. Time is dimensionless in all simulations
(Chapter 2.5.2).
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(a) Regions of behavior in excitatory system

(b) Regions of behavior in inhibitory system

(c) Global synchronization at high coupling strength in excitatory system

(d) Oscillator death at high coupling strength in inhibitory system

Figure 3.5. Regions of behavior with increasing coupling strength in simulations of the exci-
tatory system (a) and the inhibitory system (b): complex behavior (c), synchronization (S),
global synchronization (GS), and oscillator death (OD). Both 1-cluster and 2-cluster synchro-
nization occur across the entire synchronization regions. (c) Global synchronization exhibited
in increasing coupling strength from S region to GS region in (a). (d) Oscillator death exhibited
on increasing coupling strength from S region to OD region in (b). Time is dimensionless in all
simulations (Chapter 2.5.2).
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3.5 Mapping Approach

Studies of remote synchronization in networks of Stuart-Landau oscillators by Bergner et al.

[15] reported that the signal leading to remote synchronization is transmitted via modulation

of the hub oscillator amplitude. In this study of novel synchronization using a star network

comprising BZ oscillators, it was found that the coupling perturbation has little e�ect on the

amplitude of the hub oscillation. It may, however, lead to signi�cant changes in the timing of

an oscillator �ring, as illustrated by the PRCs shown in Fig. 2.6.

We now will focus on how the change in �ring time leads to the 1-cluster and 2-cluster syn-

chronization seen in this system. Figure 3.6(a) shows simulation results of a star network using

excitatory photochemical oscillators. Coupling is initiated at 950 (dashed line), and following a

short transient, a repeating �ring sequence of the oscillators in a 1-cluster state is established.

We can observe that the hub will �re twice within each cycle of the peripheral oscillators. The

(a) Firing sequence of single cluster state with excitatory coupling

(b) Firing sequence of single cluster state with inhibitory coupling

Figure 3.6. (a) Firing sequence of single cluster state with excitatory coupling switched on
at 950. The hub oscillator �res twice within the cycle of the peripheral oscillators, where the
unperturbed cycle is the natural period of the hub. The perturbed cycle of the hub is shorter
than the natural period due to the excitatory coupling. The peripheral oscillators 1-5 align
in phase due to an inhibitory response to the perturbation from the hub. (b) Firing sequence
of single cluster state with inhibitory coupling switched on at 950. The hub oscillator �res
twice within the cycle of the peripheral oscillators, where the unperturbed cycle is the natural
period of the hub. The perturbed cycle of the hub is longer than the natural period due to the
inhibitory coupling. The peripheral oscillators 1-5 align in phase due to an inhibitory response
to the perturbation from the hub. Time is dimensionless in all simulations.
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�rst �ring of the hub occurs early in the refractory region of its cycle, while the second �ring

occurs when the peripheral oscillators are in the inhibitory portion of their cycle and are there-

fore each phase delayed. When they �re, they do so almost at the same time, and the hub is

phase advanced. The hub then completes an unperturbed cycle and the �ring sequence repeats.

The simulation shown in Fig. 3.6(b) demonstrates 1-cluster synchronization with inhibitory

coupling. After a short transient, the same repeating �ring sequence is established as in the

excitatory system. In both cases, with excitatory or inhibitory oscillators, it is an inhibitory

signal from the hub that leads to the phase alignment of the peripheral oscillators. In both

cases, the hub �res twice within the cycle of the peripheral oscillators, and in both cases the

�rst signal has minimal impact because the peripheral oscillators are in their refractory period.

The primary di�erence between the two systems is that the peripheral oscillators phase advance

the hub in the excitatory system and phase delay the hub in the inhibitory system.

Changing initial conditions in a simulation can produce a di�erent �ring sequence and es-

tablish a 2-cluster state. A 2-cluster 4-1 state is shown in Fig. 3.7(a) for an inhibitory system,

and a 2-cluster 3-2 state is shown in Fig. 3.7(b) for an excitatory system. During 2-cluster

synchronization, the �ring sequence is the following: the hub �res, and then the �rst cluster

�res, the hub �res again, and the second cluster �res. When the peripheral oscillators �re in the

inhibitory system the hub is delayed; however, when they �re in the excitatory system, the hub

�res almost immediately and is phase advanced. The occupancy of the clusters is dependent on

the initial conditions.

The 1-cluster state provides a well-de�ned sequence of �ring times that can be used to develop

a map representation of the sequential �rings and perturbations of the oscillators. The map can

then be used to understand the underlying dynamics that lead to the novel synchronization. We

will use a minimal star network consisting of two peripheral oscillators and a hub oscillator to

develop the map representation, Fig. 3.8. To construct the map representation, we will need to

make two assumptions on how the peripheral nodes will respond to a perturbation at phase φ

from the hub. First, we assume we can determine directly from the PRC the response of each

oscillator. We will also assume that the �rst perturbation received by the peripheral oscillators

from the hub, during a given cycle, occurs in the refractory region. Support for this assumption

comes from the computational PRC's, Fig. 2.7, which show large refractory regimes early in the
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(a) 4-1 occupancy in inhibitory system

(b) 3-2 occupancy in excitatory system

Figure 3.7. Firing sequence of 2-cluster states with coupling switched on at 475. (a) A 4-1 state
in an inhibitory system, and (b) a 3-2 state in an excitatory system. Time is dimensionless in
all simulations.

Figure 3.8. Minimal network consisting of two peripheral nodes (red) and a hub (blue). The
peripheral nodes represent the fastest and slowest nodes in the �ve nodes system. The hub
oscillator will have a natural period ∼ 30% faster than the faster peripheral node.

phase of both exictatory and inhibitory oscillators. Therefore, the �rst perturbation by the hub

is ignored in the analysis. The natural periods of oscillator 1, 2, and the hub are T1, T2, and

Tnath , respectively. Oscillator 1, being the faster oscillator, �res �rst, and it therefore follows

that it is receiving the perturbation from the hub at a phase φi1 later in its cycle than at phase

φi2, at which the oscillator 2 receives the perturbation. Using this we assume that T2 > T1

and φ1 > φ2. A schematic of the �ring sequence of the inhibitory coupled 1-cluster state is

shown in Fig. 3.9. In the inhibitory system, the period of the hub on the perturbed cycle T i
h is

larger than the natural period Tnath . In the excitatory system, the period Tih is less than Tnath .

However, the mapping approach is valid for both as the sequence of �rings are the same in both

systems.
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Figure 3.9. Map representation of the 1-cluster RS �ring sequence. The hub oscillator �res
twice for each cycle of the peripheral oscillators. The �rst �ring of the hub is considered to have
no e�ect on the peripheral oscillators. On the i-th cycle, oscillator 1 receives the perturbation
from the hub at phase φi1 and oscillator 2 receives the perturbation at phase φi2

We begin the mapping description by constructing a piece-wise linear approximation, black

line Fig. 3.10, of the PRC (Z(φ)). The phase response is de�ned as zero between 0 and φ*.

Figure 3.10. Three PRCs, red line, blue line and green line, produced using an increasing size,
respectively, of perturbation. A larger perturbation corresponds to a larger coupling strength in
the coupled oscillator system. Black line: piece-wise linear representation of the red line PRC.
φ∗ corresponds to 2πTnat

h
Tj

where Tj is the natural period of peripheral oscillator j. Examination
of Fig. 3.6 shows that in the indicated �ring sequence, a length of time of at least Tnath occurs
before the peripheral oscillators are perturbed for the second time within their cycle. Therefore,
for convenience the value of the PRC is set to 0 in the region, 0 ≤ φ ≤ φ∗.

Z(φ) then decreases linearly to a minimum value at phase φcrit. Between phase φcrit and 2π,
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the PRC is again de�ned to be zero. The slope of the linearly decreasing region of the PRC

will be de�ned as Z′. As discussed in Chapter 2.6.2, a larger perturbation will cause the PRC

to have a more negative slope. This is also shown in Fig. 3.10 with the slope becoming more

negative with larger perturbations. The approximation can be �t to any of the scenarios in Fig.

3.10 by shifting φ* and changing Z' to �t the new curve. This piece-wise approximation of the

real PRC is considered valid, as both are monotonically decreasing functions in the phase range

of interest.

The di�erence in the �ring times of the peripheral oscillators after a perturbation from the

hub is related to their phase synchronization. The map g of the di�erence in �ring acts on the

previous di�erence in �ring times such that tif2-t
i
f1 = g(ti−1

f2 -ti−1
f1 ). We can obtain the time of

�ring for oscillator 1 on its ith cycle after the perturbation directly from Fig. 3.9, such that

tif1 =
T1

2π

(
2π − φi1 −∆φi1

)
, (3.2)

with the change in phase, ∆φ1, obtained from the PRC, where ∆φ1 = Z(φ1). The value of

Z(φ1) can be shown using the appropriate section of the piece-wise linear PRC as

Z(φ) = Z
′
(
φ− 2π

Tnath

T1

)
. (3.3)

Substituting this value into Eq. (3.1) yields

tif1 = T1 −
T1

2π

(
1 + Z

′
)
φi−1

1 + Z
′
Tnath . (3.4)

We can de�ne the phase at which oscillator 1 is perturbed by

φi1 =
2π

T1

(
T ih + Tnath

)
− ti−1

f1 , (3.5)

and substitute this into Eq. (3.3). The time that oscillator 1 will �re after perturbation can

now be expressed in terms of its �ring time on its previous cycle as

tif1 = T1 −
(

1 + Z
′
)(

τ − ti−1
f1

)
+ Z

′
Tnath , (3.6)
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where τ = (Tih+T
nat
h ). Likewise, an expression for tif2 is given by

tif2 = T2 −
(

1 + Z
′
)(

τ − ti−1
f2

)
+ Z

′
Tnath . (3.7)

By subtracting Eq. (3.5) from Eq. (3.6) the di�erence in �ring times gives the expression for

the map g

(tif2 − ti)f1 = ∆T +
(

1 + Z
′
)(

ti−1
f2 − t

i−1
f1

)
, (3.8)

where ∆T = T2 - T1. Solving for the �xed point at tif2 - tif1 = ti−1
f2 - ti−1

f1 of this map gives

tf2 − tf1 =
∆T

Z ′
. (3.9)

Stability analysis shows the �xed point is stable for -2 < Z′ < 0. Qualitatively, the relationship

shown in Eq. (3.9) is described as a competition between two process, divergence and realign-

ment. The di�erence in the natural periods, ∆T, of the peripheral nodes leads to a di�erence

in their phase velocities, which creates a divergence in their phases. The perturbation from the

hub counteracts this divergence by delaying the faster oscillator more than the slower oscilla-

tor, which realigns the phases. The faster peripheral oscillator is always perturbed later in its

phase and receives a larger delay, as both the real and approximated PRCs are monotonically

decreasing functions.

The result of these competing processes is a stable �ring di�erence in the �ring times of the

peripheral oscillators, Eq. (3.9). The relationship in Eq. (3.9) also predicts that the di�erence

in �ring times will also increase as the di�erence in natural periods, ∆T, increases. Close

examination of the computational results, Figs. 3.6 and 3.7, shows that the oscillators do not

�re at exactly the same time and the di�erence in the �ring times increases as ∆T increases.

To further illustrate this relationship, ZBKE simulations using the simpli�ed network, Fig. 3.8,

were performed by holding the coupling strength constant and increasing the di�erence in the

natural periods of the peripheral oscillators. The results from these simulations, Fig. 3.11, show

the di�erence in �ring times increase approximately linearly with an increasing ∆T, as predicted

by Eq. (3.8).
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Figure 3.11. The di�erence in �ring times, tf2 - tf1, of the peripheral oscillators after receiving
a perturbation from the hub as the di�erence in their natural periods increases at a constant
coupling strength. The linear relationship is predicted by equation 3.8.

In ZBKE simulations of both the inhibitory and activatory coupled systems at a given cou-

pling strength there is a maximum di�erence in the natural periods of the peripheral oscillators,

∆Tmax, above which synchronization is no longer observed. In the inhibitory system, this maxi-

mum di�erence increases with increasing coupling strength. As discussed earlier in section 2.62,

the larger the magnitude of the perturbation, the steeper and more negative the inhibitory slope

of the PRC and the approximation Z
′
. We can de�ne this maximum allowed heterogeneity in

the natural periods (Rmax) as a ratio

Rmax =
T2 − T1

T2
. (3.10)

To develop a value for Rmax we must consider a restriction on the system's ability to produce

phase clusters. The divergence due to the ∆T in the peripheral oscillators is compensated for by

delaying the faster oscillator more than the slower oscillator, which leads to the phase alignment.

For this condition to be true, oscillator 1 must be perturbed at a later phase than oscillator 2,

but before φcrit, Fig. 3.10. If oscillator 1 receives the perturbation after φcrit, the delay would

be less than that of oscillator 2. Therefore, the value of φ1 must be within the range

φ2 < φ1 ≤ φcrit. (3.11)
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An approximate expression for the di�erence in the phases of perturbations for a given ∆T can

be developed by �rst de�ning these phases directly from Fig. 3.9:

φ1 =
2π

T1
(τ − tf1) , (3.12)

φ2 =
2π

T2
(τ − tf2) , (3.13)

where tf1 and tf2 are the �ring times at the �xed point of the map g. The di�erences in these

phases are then given by Eq. (3.11),

φ1 − φ2 =
2π

T1
(τ − tf1)− 2π

T2
(τ − tf2) . (3.14)

By making the approximation of T1 = T2,

φ1 − φ2 =
2π

T2
(tf2 − tf1) . (3.15)

Then substituting in the �xed point value from Eq. (3.8),

φ1 − φ2 =
2π∆T
T2

Z ′
. (3.16)

Using the upper limit from Eq. (3.9), φ1 = φcrit, the maximum allowed heterogeneity in the

natural periods (Rmax) is given by

∆Tmax
T2

= Rmax = −(φcrit − φ2)Z
′

2π
. (3.17)

ZBKE simulations investigating the e�ect of coupling strength on Rmax show agreement with

Eq. (3.16), Fig. 3.12. The maximum heterogeneity increases with increasing coupling strength

up to ∼4× 10−3. At this point the peripheral nodes are pushed into a non-oscillatory state due

to the large delays as a result of perturbations received from the hub.

The value of φ2 will have a dependence on the natural period Tnath and perturbed period Tih

of the hub. Examining the period of the peripheral oscillators during synchronization at the Rmax

value using the ZBKE model shows that both oscillators are signi�cantly delayed, Fig. 3.13.

This result implies that φ2 has a value close to φcrit. The importance in the relationship between

64



3.5. MAPPING APPROACH

Figure 3.12. The maximum allowed heterogeneity ratio, Rmax, observed in the inhibitory system
as a function of the coupling strength (k).

Figure 3.13. The period of the synchronized peripheral oscillators, observed in the inhibitory
system as a function of the maximum allowed heterogeneity ratio, Rmax.

realignment and heterogeneity is expressed in Eq. (3.16). A higher coupling strength will yield

a larger and steeper Z
′
, which implies a larger realignment role by the perturbation. This will

allow for a larger heterogeneity in the peripheral oscillators natural periods. The derivation of

expression Eq. (3.16) shows that the origin of the heterogeneity limit is associated with the

maximum realignment/delay that the faster oscillator can experience due to the perturbation

from the hub. We can also evaluate the heterogeneity in Eq. (3.16) at di�erent values of φ2

close to the value φcrit using the linear approximations to the three real PRCs in Fig. 3.10. In

Fig. 3.14 we can see that as the phase di�erence between φ2 and φcrit increases at the time
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of the perturbation, the allowed heterogeneity increases with coupling strength. The mapping

Figure 3.14. Mapping representation of Rmax values for three di�erent PRC's. The color scheme
corresponds to the PRCs from Fig. 3.10.

approach does not allow for the explicit determination of φ2. However, it clearly shows a

relationship in Rmax and the coupling strength in an inhibitory system.

This mapping approach was developed for the inhibitory system and an equivalent approach

can be used to develop an understanding of the activatory system. The only di�erence in the

�ring sequence shown in Fig. 3.9 for the activatory system is that Tih < Tnath , which is due to a

phase advancing perturbation from the peripheral oscillators. The underlying competition be-

tween divergence and realignment of the peripheral oscillators by a phase delaying perturbation

from the hub remains identical.

The piece-wise linear approximation of the mapping approach can also be used to understand

the clusters that are formed in the 5 node star system. Both experiments and computations

produce the 1-cluster and 2-cluster (4-1 and 3-2) states only. The importance of the relationship

between divergence and realignment has been discussed previously, Eq. (3.8). In Eq. (3.16),

this relationship is reinforced as well as the role of the slope of the PRC (Z
′
). We have also

referred to a restriction on the phase φ1 of oscillator 1 that it must receive the perturbation from

the hub before surpassing φcrit, Eq. (3.10). The relationship shown in Eq. (3.8) shows that the

di�erence in the �ring times is inversely proportional to the slope of the PRC. Therefore, we

can assume a restriction on the formation of a phase cluster, which is all oscillators that form

a cluster must be between φ* and φcrit when they receive the perturbation from the hub. If

66



3.6. SUMMARY

an oscillator has a phase between 0 and φ*, it is in the refractory regime of the PRC and the

perturbation from the hub will not a�ect the phase of the oscillator. This is also true for the

area of the PRC after φcrit to 2π. We can see that the 1-cluster and 2-cluster (4-1 and 3-2)

states are the only possible combinations that can form in this system.

3.6 Summary

This chapter describes the discovery and dynamics of a novel form of synchronization in a star

network of photochemically coupled BZ chemical oscillators. Investigations into this system

brings an important understanding of how functionality within network dynamics can arise

through cooperative behavior of indirectly connected components. This understanding is signif-

icant and is in agreement with studies that revealed a mismatch between function and structure

in natural networks [5�7]. The relaxation dynamics of chemical oscillators expand the possibil-

ity of novel synchronization occurring more broadly in natural networks composed of oscillators

capable of similar dynamics. The novel synchronization seen in this chapter has many of the

previously reported characteristics, such as requiring both intermediate coupling strengths and

signi�cant hub-peripheral node period mismatch. It di�ers, however, in both the relaxation

nature of the oscillators and their dynamical response to coupling perturbations, as well as a

predictable �ring of both the hub and peripheral oscillators

Studies using star networks of SL oscillators have reported that the synchronizing signal

leading to remote synchronization is transmitted via modulation of the amplitude of the hub os-

cillator. In contrast, the underlying mechanism for synchronization using BZ oscillators appears

to be di�erent from that previously reported. Examination of the �ring patterns in simulations

shows that the clustering of the peripheral oscillators arises via a delaying signal from the hub.

This delaying signal can produce a signi�cant change in the timing of an oscillator's �ring time.

Because of the monotonically decreasing PRC, this acts to slow the faster oscillators more than

the slower oscillators and aligns the �ring times of the oscillators, Eq. (3.9). A maximum al-

lowed heterogeneity for the existence of synchronization is associated with the presence of the

sharp transition in the PRC at φcrit, Fig. 3.10. If the faster oscillator �res at a phase later

than this, it is no longer delayed more than the slow oscillators and their phases diverge. At
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higher coupling strengths, we see larger heterogeneity allowed due to stronger realignment of the

faster oscillators relative to the slower oscillators. The minimal piece-wise linear PRC used in

our mapping approach satis�es the condition that the PRC is a monotonically decreasing func-

tion of phase in the region where the oscillators are perturbed. For this reason, the mapping

approach is able to reproduce much of the behavior seen in the more complex BZ system.
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Chapter 4

Extreme Events in Coupled Chemical

Oscillators

4.1 Introduction

This chapter will discuss and describe the occurrence of extreme events (EE) in an excitable

system using the 4-variable Oregonator model. Many biological, natural, social, and �nancial

systems are capable of generating large intermittent deviations from their normal dynamics

[1, 2]. Natural events such as earthquakes, tsunamis, rouge waves, algal blooms, or extreme

weather events can all cause large scale damage [1, 3�5]. Sudden bursts of electrical activity in

the brain, known as epileptic seizures, can be devastating to people who su�er from them [6].

Other examples of these events include large-scale failures in the power grid [7], stock market

crashes [8], social unrest [9], and wars [10]. Recent literature has provided a framework to de�ne

what quali�es as extreme events [11�14]. The events are described as rare, aperiodic in occur-

rence, and have signi�cant consequences on the system. The aperiodic nature of these events

makes predictions and interventions di�cult or nearly impossible. This makes the development

of models and experimental methods to study these events important to understanding the

underlying mechanisms.

Previous investigations have modeled excitable-oscillatory networks of FitzHugh-Nagumo

(FHN) oscillators to demonstrate the emergence of extreme events in a coupled system [11�14].

FitzHugh-Nagumo (FHN) oscillators are a widely studied excitable system, which qualitatively
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captures the dynamics of neuronal �ring using the following di�erential equations [15, 16].

dxi
dt

= xi(ai − xi)(xi − 1)− yi (4.1)

dyi
dt

= bixi − ciyi (4.2)

Here the activation variable xi represents the membrane voltage, which is diminished over time

by the recovery variable yi with ai, bi, and ci as internal parameters. Integrating these equations

produces a spike train of relaxation oscillations with a constant period, Fig. 4.1.

(a) Oscillations in the variable X

(b) Oscillations in the variable Y

Figure 4.1. (a) Time series in the activator variable X, (b) the recover variable Y, illustrating
the relaxation oscillations and constant period of each variable with time. For this simulation,
the parameters are set to ai = -0.0265, bi = 0.0065, and ci = 0.02. Time is dimensionless in this
simulation.

An investigation completed by Ansmann et al. showed the emergence of extreme events in

coupled FHN systems [11]. The coupled system is comprised of two homogeneous FHN oscil-

lators xi and xj . The predominant behavior in the coupled system, for both oscillators, are

irregular small amplitude oscillations that have maximum and minimum x(t) values between

0.34 and -0.2, respectively. However, the system will exhibit large deviations from the normal

dynamics with large amplitude oscillations that are roughly six times larger than the maxima

of the small oscillations, Fig. 4.2(a). The authors concluded that in the 2 oscillator system
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(a) Temporal oscillations in FHN oscillators (b) Enlargement from (a)

Figure 4.2. (a)Temporal oscillations in x(t) exhibiting aperiodic large deviations from normal
dynamics. (b) An enlargement of a large amplitude oscillation in (a).

when one of the oscillators becomes excited into a large excursion it recruits the other oscilla-

tor and generates an extreme event. This recruitment behavior is shown in Fig. 4.2(b). The

red oscillator begins a large excursion at 1.109× 10−5 , which is followed by the blue oscilla-

tor. The behavior was only reported in the two oscillator system for a single coupling value

of 1.28× 10−3. For coupling less than 1.28× 10−3 , only small amplitude oscillations are ob-

served, and for coupling above 1.28× 10−3 , periodic mixed-mode oscillations are the dominate

behavior. The aperiodic behavior was reported to be due to a saddle focus at the origin. At a

coupling value of 1.28× 10−3 , a small channel-like structure exists in state space such that the

trajectory can escape and undergo a large excursion before returning to the origin. The authors

noted the apparent chaotic behavior of the system was due to the width of this channel-like

structure. The width of this channel is dependent on the systems parameters and at coupling

above 1.28× 10−3 extreme events will no longer be observed.

Further investigation into this system was conducted by Saha et al. using time-delayed

coupling between two FHN oscillators [12]. This study focused on the e�ects of single and

multiple time-delayed signals on the emergence of extreme events. For a single time delay, the

authors report only periodic mixed-mode oscillations and no extreme events are observed. The

authors did observe a change in the limit cycles by varying the time delay, and that change was

attributed to a change in the stability of the attractor. In a three-dimensional representation of

the trajectories of coupled oscillators, the invariant synchronization manifold is de�ned where
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x1 = x2 at y1. This creates a plane of synchronization where both oscillators are in-phase with

each other while on the manifold. At constant coupling strength and a delay equal to 80, the

limit cycle on the manifold was found to be attracting and contains the only attractor in the

system. For this case, all nearby trajectories will converge to the limit cycle and execute several

small amplitude oscillations before being ejected into a single large excursion. Both the small

and large amplitude oscillations are on the manifold and therefore the oscillators are in-phase,

Fig. 4.3. However, they are not considered extreme events due to the periodic pattern they

produce. When the delay is decreased to 70, the limit cycle on the manifold becomes unstable.

(a) Mixed-mode in-phase oscillations (b) 3D trajectory

Figure 4.3. (a) Mixed-mode in-phase oscillations in x(t) exhibiting periodic large deviations from
normal dynamics. (b) 3D representation of trajectory. The light green plane is the invariant
synchronization manifold. The black line is the small amplitude oscillations and the blue line is
the large amplitude oscillations.

A new limit cycle gains stability that is located o� the manifold, Fig. 4.4. Trajectories starting

o� the manifold will spiral toward the manifold along the new limit cycle until they are ejected

o� into a large excursion. Trajectories that start on the manifold stay on the manifold and will

perform only small amplitude oscillations on the manifold. However, the small amplitude limit

cycle is unstable, as any perturbations will cause the trajectories to converge to the stable limit

cycle o� the manifold. Here again, the large excursions are not considered extreme events due

to the periodic nature of the events. The stability of the attractors was reported to play a role

in the type of large oscillation. If the limit cycle on the manifold is stable, then only in-phase

oscillations are observed. When the limit cycle on the manifold is unstable, trajectories starting

o� the manifold only produce out-of-phase events. The authors did not report the emergence
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of extreme events using a single time delay.

(a) Out-of-phase mixed-mode oscillations (b) 3D trajectory

Figure 4.4. (a) Out-of-phase mixed-mode oscillations in x(t) exhibiting periodic large deviations
from normal dynamics. (b) 3D representation of trajectory. The light green plane is the invariant
synchronization manifold. The black line is the small amplitude oscillations and the red line is
the large amplitude oscillations.

To further investigate the dynamics of this system, Saha et al. added a second coupling term

with a unique delay time. This two-delay system will combine the in-phase and out-of-phase

delay times. The authors set the coupling strength for the in-phase delay to be constant at 0.005

and varied the coupling strength for the out-of-phase delay. When the second coupling strength

is above 0.0058, the attractor on the manifold is unstable and the trajectories are similar to the

single time-delay system with a delay of 70 with out-of-phase dynamics. At coupling strengths

less than 0.0048, the system is qualitatively the single time-delay system with a delay of 80

producing in-phase events. However, when the coupling strength is between 0.0048 and 0.0058,

the authors report several changes to the system. The unstable limit cycle on the manifold

gains transverse stability, and remains unstable in the direction of the manifold, creating a

saddle point. This attractor becomes chaotic via a period-adding cascade. Since the manifold is

now transversely stable, trajectories starting o� the manifold are attracted to it. As a trajectory

approaches the saddle point, it executes small amplitude oscillations until it is ejected away in

an out-of-phase event. Trajectories may also be ejected along the manifold as an in-phase event.

Because the attractor is unstable along the manifold, the trajectory will leave the manifold as it

again approaches the saddle point along the stable direction. This mixed behavior of in-phase

and out-of-phase events can be seen in Fig. 4.5. Finally, Saha et al. demonstrated that there
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(a) In-phase and out-of-phase oscillations (b) 3D trajectory

Figure 4.5. (a) In-phase and out-of-phase mixed-mode oscillations in x(t) due to changes in
stability in the system. (b) 3D representation of trajectory. The light green plane is the
invariant synchronization manifold. The black line is the small amplitude oscillations and blue
and red lines are large amplitude in-phase and out-of-phase oscillations, respectively.

is a fraction of parameter space where the timing of the events become irregularly spaced, Fig.

4.6(a). The aperiodic emergence of the events follow a Poisson-like distribution, Fig 4.6(b).

Therefore, the events can be considered extreme events because of the rarity of their emergence.

The reported rate of events found by Saha et al. was 1.15× 10−4 events per time unit.

(a) Time series showing extreme events (b) Possion-like Distribution

Figure 4.6. (a) Partial time series of two FHN oscillators using 2 time-delayed signals exhibiting
extreme events. (b) Histogram showing Poisson-like distribution for the full time series in (a).
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4.2 Extreme Events using the Oregonator Model

One shortcoming of the FHN system is the lack of an equivalent experimental system to observe

the emergence of extreme events in a real-world system. To address this, we use the four-

variable modi�ed Oregonator to explore extreme events, which is a model based on the Belousov-

Zhabotinsky (BZ) reaction.

Both FHN and BZ oscillators are relaxation oscillators that demonstrate similar dynamics.

Both the FHN [11�13, 17] and the Oregonator [18�20] are capable of displaying mixed-mode

oscillations. A time series showing these mixed-mode oscillations in the Oregonator model were

shown in Chapter 2, Fig. 2.2(d). The mixed-mode oscillations in the Oregonator are due to

the presence of a subcritical-Hopf bifurcation in the vicinity of the reduced steady state. Shown

in Fig. 4.7(a), the sub-Hopf bifurcation is characterized by a stable steady state (SSS), solid

line, that acts as a focus, where small amplitude oscillations can occur. As the trajectory moves

to the left, the steady state becomes unstable (USS), shown as a broken line. The trajectories

will begin unwinding as the oscillations grow until a large amplitude oscillation occurs. This

unwinding behavior is shown in the limit cycle of an oscillation in Fig. 4.7(b). Since the

(a) Sub-Hopf bifurcation

(b) Limit cycle in the Y and V variable

Figure 4.7. (a) Sub-Hopf bifurcation showing a stable steady state, which can support small am-
plitude oscillations, and an unstable steady state where full amplitude oscillations are observed.
A limit cycle of the variable V (bromous acid) and Y (bromide) that shows the unwinding be-
havior as the trajectory moves from the stable to unstable steady state.

4-variable Oregonator model is based on the kinetics of the BZ reaction and possess similar

dynamics to the FHN, it makes an ideal candidate to explore extreme events. The investigation
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discussed in this chapter will consider three di�erent systems. All three systems will consist of

two bidirectionally coupled oscillators coupled using a coupling term omega. The �rst system

will not use time delays in the coupling terms. The second system will use a single time-delayed

signal and the �nal system will contain double time-delayed signals. Since the FHN oscillators

used by Saha et al. show an inhibitory response to a perturbation, Eqs. (2.30)-(2.33), will be

modi�ed to account for this inhibitory response, Eqs. (4.3)-(4.7). The parameters values and

rate constants used in all simulations are listed in Table 4.1.

dxi
dt

= k1AYi − k2XiYi + k3AXi − 2k4X
2
i − kf (Xi −Xsur), (4.3)

dyi
dt

= −k1AYi − k2XiYi + fik3Zi − kf (Yi − Ysur) + p1(Vi)Φ + Ω, (4.4)

dzi
dt

= 2k3AXi − k5Zi + (p1(Vi) + Ω, (4.5)

dvi
dt

= k1AYi + 2k2XiYi + k4X
2
i − k6Vi − kf (Vi − Vsur)− p1(Vi)Φ− Ω. (4.6)

Here, kf is used to represent the exchange between the oscillator and the surrounding solution.

The coupling term Ω is

Ωi = M1(Zj(t− τ1)− Zi(t)) +M2(Zj(t− τ2)− Zi(t)), (4.7)

where M1 and M2 are the coupling strengths, Z represent the oxidized catalyst of oscillator i

and j, and τ1 and τ2 are the time delays.

Table 4.1. Parameter Values for Oregonator Model [19, 20]

Parameter Value Variable Value

A 6.0× 10−2 k1 2H2

H 4.0× 10−1 k2 3.0× 106 H
Φ 4.66× 10−5 k3 42H
kf 2.0× 10−2 k4 3.0× 103

f 0.70 k5 2.013× 10−1

Xsur 1.0× 10−6 k−L0

kL1
3.3

Ysur 3.0× 10−5

Vsur 1.0× 10−6 kL2
kL1

5.54
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4.3 Instantaneous Coupling

In this section we explore the computational results of two coupled oscillators that exhibit small

amplitude oscillations with an average amplitude of 3.9× 10−6. Since there are no time delays

in this system, Eq. (4.7) is simpli�ed to

Ωi = M(Zj(t)− Zi(t)). (4.8)

To investigate the dynamics of this system, we will vary the coupling strength from 0.05 to

14.9 using Eq. (4.8). Below 0.05 the coupling is too weak to have any noticeable e�ects on

the oscillators, and above 14.9 the system becomes non-oscillatory. First, two homogeneous

oscillators with identical initial conditions are coupled according to Eq. (4.8). For this range of

coupling strengths, the trajectories are observed to converge to a small amplitude limit cycle.

This limit cycle (black line) can be observed using a 3D representation of the trajectories in the

Zi, Zj and Yi terms, Fig. 4.8. However, when the initial conditions are such that the oscillators

Figure 4.8. A 3D representation of Zi, Zj and Yi for a pair of identical coupled oscillators with
the same initial conditions. The limit cycle, black line, is on the synchronization manifold.
Trajectories will converge to this limit cycle for all identical initial conditions.

do not start in phase, the dynamics of the system vary greatly. Applying a coupling strength

from 0.05 to 8.1, again the small amplitude limit cycle seen in Fig. 4.8 is the only attractor

in the system and all trajectories will eventually converge to it. At a coupling strength of 8.2,

this limit cycle loses it stability and trajectories will no longer converge to it. Another limit
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cycle o� the manifold gains stability and is the only stable attractor in the system, which can

be seen in Fig. 4.9 as a red line. As we increase coupling beyond 8.1 the system goes through

Figure 4.9. A 3D representation of Zi, Zj and Yi for a pair of identical coupled oscillators
with di�erent initial conditions. The unstable limit cycle, black line, is on the synchronization
manifold. The out-of-phase trajectories will now converge to the new attractor in the system,
which is shown by the red lines.

a period-doubling cascade leading to chaotic behavior in the amplitude of the oscillators at a

coupling strength of 9.2, Fig. 4.10(a). To demonstrate the behavior is chaotic, we can produce a

next return map, which plots the next peak amplitude of an oscillators Zn+1 verses the current

peak amplitude Zn, Fig 4.10(b). If the behavior was periodic we would expect to observe

clusters form, but we can clearly see no clusters are formed. As we continue to increase coupling

to 11, the system begins to display large amplitude oscillations. These large oscillations have

amplitude from 3.8× 10−4 to 4.0× 10−4 , and are roughly 100 times larger than the smaller

oscillations observed in the system, Fig 4.11(a). The 3D projection of the trajectories show that

both small and large oscillations are out-of-phase, Fig. 4.11(b) These large oscillations represent

large deviations from normal dynamics, which is one part of our de�nition of an extreme event.

To determine if the criteria of rare and irregular is satis�ed, we measure the time between

large events referred to as the interevent interval. When the interevent intervals are plotted

in a histogram, they �t a Poisson-like distribution, which will allow for the calculation of a

rate of appearance, Fig. 4.12. The rate at which the large events occur was calculated to be

3.24× 10−5 events per time unit. With this low rate of occurrence and aperiodic emergence,
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(a) Bifurcation diagram (b) Next return map

Figure 4.10. (a) Bifurcation diagram showing the period-doubling cascade with increasing cou-
pling strength leading to chaotic behavior. (b) Next return map for a single oscillator showing
the lack of grouping that periodic behavior would display.

(a) Time series (b) 3D projection

Figure 4.11. A time series showing the emergence of large amplitude oscillations in the system
with a coupling strength of 11. The inset shows a close-up of the small amplitude oscillations
of a single oscillator. (b) 3D representation of the trajectories for two coupled oscillators. The
light green plane is the invariant synchronization manifold. The black line represents the small
out-of-phase oscillations, and the red line is the out-of-phase large amplitude oscillations.

the system meets the criteria of extreme events. As we increase the coupling strength to 11.1,

the interevent intervals still �t a Poisson-like distribution; however, the rate of occurrence has

risen to 2.91× 10−4, Fig. 4.13(a). As the coupling is increased again to 11.2 and 11.3, the rates

increase slightly to 3.91× 10−4 and 3.80× 10−4, respectively, Fig 4.13(b) and 4.13(c). This is

a signi�cant increase in the rate, but the systems still meets all three requirements for extreme

events. Increasing the coupling to 11.4 changes the nature of the attractor, as it is no longer

81



4.3. INSTANTANEOUS COUPLING

Figure 4.12. A Poisson-like distribution for two coupled oscillators using a coupling strength of
11. There are 4864 total events over a 150 million time units simulation, which yields a rate of
3.24× 10−5 events per time unit.

(a) Coupling 11.1 (b) Coupling 11.2 (c) Coupling 11.3

Figure 4.13. (a) Poisson distribution for a coupling strength of 11.1. The total number events
was 43650 with a rate of 2.91× 10−4. (b) A coupling strength of 11.2 produced 58662 total
events with a rate of 3.91× 10−4. Using a coupling strength of 11.3 produces 56934 events at
a rate of 3.81× 10−4. All three simulations where completed over a length of 150 million time
units.

chaotic and the systems settles into periodic mixed-mode oscillations, Fig. 4.14. This behavior

continues until a coupling strength of 14.9 is reached and the system becomes non-oscillatory.

The lack of aperiodicity in the system excludes the large oscillations from being de�ned as

extreme events.
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Figure 4.14. Mixed-mode oscillations at a coupling strength of 11.4. The large oscillations are
periodic in occurrence.

4.4 Single Time Delay Coupling

We now explore the computational results of two coupled oscillators with a time delay in the

coupling term, Eq. (4.9).

Ωi = M(Zj(t− τ)− Zi(t)). (4.9)

Simulations used the same parameters as the no-delay system from Table 4.1. For all simulations,

the coupling strength will be held constant at a value of 10, where a chaotic attractor was found

in the no-delay system. The delay will be varied from 1 to 58 to observe the e�ect of delay on

the system. As discussed earlier, using a coupling strength of 10 with no time delay results in

the system producing chaotic small-amplitude oscillations, Fig. 4.9. When a time delay between

1 and 9 is used, periodic out-of-phase oscillations are now observed, Fig 4.15. The introduction

of the time delay has resulted in a change in the nature of the attractor. The new limit cycle

contains large amplitude oscillations and is not chaotic. As we increase the time delay to 10,

another change occurs in this mixed-mode attractor. The oscillations are now in-phase for both

large and small oscillations, Fig. 4.16. The mixed-mode attractor is now on the synchronization

manifold for all points. This in-phase behavior continues until a delay of 14 is used. Here

the limit cycle becomes complex in that it contains both out-of-phase, Fig 4.17 (red line), and

approximately in-phase oscillations, Fig 4.17 (blue line). The occurrence of the large amplitude
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(a) Out-of-phase mixed-mode oscillations (b) 3D trajectory

Figure 4.15. (a) Out-of-phase mixed-mode oscillations exhibiting periodic large deviations from
normal dynamics. (b) 3D representation of trajectory. The light green plane is the invariant
synchronization manifold. The black line is the small amplitude oscillations and the red line is
the large amplitude oscillations.

(a) In-phase mixed-mode oscillations (b) 3D trajectory

Figure 4.16. (a) In-phase mixed-mode oscillations exhibiting periodic large deviations from
normal dynamics. (b) 3D representation of trajectory. The light green plane is the invariant
synchronization manifold. The black line is the small amplitude oscillations and the red line is
the large amplitude oscillations.

oscillations are fairly regular in occurrence; however, the pattern of out-of-phase to in-phase

excursions is irregular. When the time delay reaches 20 the limit cycle again changes in form

to a single small oscillation followed by a large oscillation. When oscillator i is producing a

large amplitude oscillation, oscillator j is producing a small amplitude oscillation. When the

next �ring occurs , oscillator j will produce a large oscillation as oscillator i produces a small

oscillation, Fig. 4.18. This behavior continues until a delay time of 58. We do not continue to
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(a) Out-of-phase and in-phase mixed-mode oscilla-
tions

(b) 3D trajectory

Figure 4.17. (a) Out-of-phase and in-phase mixed-mode oscillations exhibiting regular large
deviations from normal dynamics. (b) 3D representation of trajectory. The light green plane is
the invariant synchronization manifold. The black line is the small amplitude oscillations and
the red line is the large amplitude out-of-phase oscillations. The blue line corresponds to the
in-phase large amplitude oscillations.

increase the delay past 58 because this is the natural period of the oscillators. The addition of a

(a) Time series of single large and small oscillation (b) Enlargement of (a)

Figure 4.18. (a) Mixed-mode oscillations with a time-delay of 21. A short transient followed by
periodic alternating large oscillations. (b) A close up of (a) showing the periodic behavior. The
inset shows the small oscillation that appear between large excursions.

time delay to the system has changed the attractor from a small amplitude chaotic attractor to

a mixed-mode periodic one. This periodicity excludes all of the observed behaviors from being

de�ned as extreme events. However, at a time delay of 21, there is a transient behavior that

appears to be aperiodic in nature, Fig. 4.18(a).
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4.5 Double Time-Delay Coupling

A second time delay was added to the system using Eq (4.7) in an e�ort to take advantage

of the aperiodic dynamics found in the single time-delay system at τ = 25. Again using the

same parameters from the previous two systems, Table 4.1. In previous work by Saha et al.,

the coupling strength used in the single time-delay system was split between the two delays.

We will also use this strategy in our system. The �rst delay, τ1 = 21, will be given a coupling

strength of M1 = 7.4. The second delay chosen, τ2 = 11, corresponds to a delay that produces

only in-phase oscillations. The coupling strength for this delay is M2 = 2.3. Therefore, M1 +

M2 = 9.7, approximately the value of the coupling value used in the signal delay value of 10.

A simulation was completed using these values for a length of 400 million time steps. A small

fraction of the time series is shown to illustrate the aperiodic apperance of the large oscillations,

Fig. 4.18(a). A close up of this time series reveals that this system is producing both in-phase

and out-of-phase events, unlike the single time-delay system that only produced out-of-phase

events. To further illustrate the in-phase and out-of-phase behavior, a 3D projection of the

time series shown in Fig. 4.18(b) can be created, Fig. 4.19. To �nd the rate of occurrence

(a) Time series extreme events (b) Enlargement of (a)

Figure 4.19. (a) Section of a time series for the two delay system. The aperiodic behavior of the
large oscillations can be observed, meeting one requirement of extreme events. The inset shows
the small amplitude oscillations that are considered the normal behavior. (b) A close up of (a)
showing the large amplitude oscillations occur as both in-phase and out-of-phase oscillations.

for the large oscillations, the interevent intervals are calculated and �tted with a Poisson-like

distribution. The occurrence rate was calculated to be 1.12× 10−4events per time unit. This
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Figure 4.20. A 3d projection of the time series in Fig. 4.18(a). The black line shows the small
amplitude oscillations close to the origin. The blue line depicts the large in-phase oscillation.
The red line is the large out-of-phase oscillation and the small oscillations as it spirals back
toward the origin.

small rate of occurrence satis�es the �nal requirement that the large deviations are rare.

Figure 4.21. Poisson distribution for the two delay system. The simulation produced 44672
large events over 400 million time units yielding a rate of 1.12× 10−4 events per time unit.

4.6 Summary

We have observed extreme events in both the instantaneous and the two delay system. In the

case of the instantaneous system, the coupling strength was varied. At low coupling strength,

the stable attractor in the system was an in-phase small amplitude limit cycle. As the coupling
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strength was increased, this limit cycle became unstable and a new small amplitude out-of-phase

limit cycle gained stability. On increasing the coupling strength, the limit cycle underwent a

cascade of period doubling bifurcations, which is seen in Fig. 4.10(a). When the coupling was

increased to 9.2, the attractor became chaotic. This chaotic behavior is characterized using a

next return map, Fig. 4.10(b). At this value of delay, the amplitude of the oscillations are

aperiodic and do not exceed 5.0× 10−6. When a coupling strength of 11 is reached, large

oscillations with an average amplitude of 3.65× 10−4 are observed. These large oscillations

are roughly 100 times the size of the small amplitude oscillations, which are considered the

normal dynamics of the system. By increasing the coupling strength, the limit cycle now has

these large trajectories available. Producing large deviations from normal dynamics is the

�rst criteria for extreme events. The next criteria is that the large deviations are irregular.

This is also satis�ed since the attractor is chaotic and spends more time close to the origin

undergoing small oscillations. It is much more likely that the oscillator will stay close to the

origin and complete only small oscillations. However, due to the chaotic behavior, the oscillator

is intermittently ejected onto a large trajectory and completes a large oscillation. The �nal

criteria is the events must be rare and this can be shown with a Poisson distribution, Fig 4.12.

The rate of occurrence was calculated to be 3.24× 10−5, satisfying the �nal requirement. The

system continued to produce extreme events as coupling was increased to 11.3, Fig. 4.13. When

the coupling strength reached 11.4, the chaotic attractor loses its stability and a mixed-mode

limit cycle gains stability. This new mixed-mode attractor is periodic and no longer satis�es the

de�nition of an extreme event.

In the single time-delay system, a coupling strength of M = 10 was used that would have

produced a small amplitude chaotic attractor in the instantaneous system. However, the in-

troduction of a time delay was su�cient to produce mixed-mode oscillations. Depending on

the time delay used, several di�erent behaviors were observed. Each behavior was discussed

previously, but the two behaviors of interest are the in-phase mixed mode at 10 ≥ τ ≤ 13 and

the switching between small and large oscillations at 20 ≥ τ ≤ 58. During the in-phase mixed

mode behavior at τ = 11, the limit cycle on the synchronization manifold is the only stable

attractor in the system, and the trajectories are in-phase for all time. The next time delay of

interest is τ = 25, but not for the dominate behavior, but for the transient aperiodic behavior.
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The transient behavior produces aperiodic small and large oscillations but is not stable. Due to

the short lived nature of this behavior, we do not consider it is an example of extreme events

by itself. Therefore, in the parameter space explored here no extreme events are observed.

When two time delays are used, as described earlier, we can observe extreme events in the

system. The delay of τ = 11 produces an attractor located on the manifold. Nearby is another

attractor produced by the delay τ = 25, located just o� the manifold. The Oregonator model

is an example of an excitable system. For small perturbations away from the limit cycle, the

return is monotonic. However, when a perturbation is large enough, the trajectory can get

close enough to another attractor and undergo di�erent dynamics. To understand how this two

delay system is producing extreme events, we will examine a section of the time series. In Fig.

4.22, we can observe both in-phase and out-of-phase events occurring. When we examine an

Figure 4.22. Section of a time series showing both in-phase and out-of-phase extreme events.
The in-phase events appear as blue lines without being paired with a red line. This is due to
the overlap of the trajectories where the red oscillation can not be observed.

in-phase event in more detail, we can explain the behavior produced. Figure 4.23 shows the

large in-phase event around time 5000 and the small amplitude oscillations just before and after

the large event. We can observe that the two oscillators are clearly out-of-phase at time 4600.

They begin to approach the stable limit cycle present on the manifold. Approximately at time

5000, the trajectory reaches this limit cycle and the oscillators are now in-phase. As expected,

they perform a large in-phase excursion. In the single time-delay system, we would predict that

the system would now stay on this attractor. As we can see at approximately time 5650, the
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Figure 4.23. Section of a time series showing an in-phase extreme event. We observe the
oscillations moving to synchrony before being ejected into a large in-phase event. After the
event, the trajectories again perform small amplitude in-phase oscillations, but they soon lose
phase sychrony due to a perturbation from the delay at τ = 25.

oscillators lose phase synchrony. This is likely due to a perturbation occurring via the other

time delay at τ = 25. This perturbation is su�cient in magnitude to push the trajectory o�

the manifold. Next, we examine the out-of-phase events in more detail to observe how they

are produced. In Fig. 4.24, we can observe two out-of-phase events and the small amplitude

oscillations that precede and follow them. At time 24000, the two oscillators are out-of-phase

Figure 4.24. Section of a time series showing two out-of-phase extreme events. We can observe
the oscillations moving to synchrony just before the large events. In both cases, a perturbation
is able to push the trajectories close to the unstable attractor and the oscillators are ejected into
a large out-of-phase event. After the large event, the trajectories spiral back toward the stable
attractor on the manifold.

with each other. As before in the in-phase example, the trajectory is spiraling toward the
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limit cycle on the manifold. However, in this case before the trajectory reaches the manifold, a

perturbation pushes them o� the manifold and su�ciently close to the attractor produced by

the delay τ = 25 . The oscillators are then ejected into large out-of-phase excursions at time

25000. We can observe this same behavior in the next large oscillation just before time 28000.

The presence of an attractor due to the time delay of 11 on the manifold, and a second

attractor created by the second time delay of 25 just o� the manifold allows the two delay

system to undergo extreme events. All trajectories are attracted to the stable limit cycle on the

manifold. If the trajectory can avoid getting to close to the second limit cycle, the trajectory will

be ejected into a large in-phase amplitude event. Perturbations caused by the time delay of 25

can cause the oscillators to lose phase synchrony, as the trajectories complete small amplitude

oscillations. If the perturbation is of su�cient magnitude, the trajectories can get close enough

to the second limit cycle to be ejected in an out-of-phase event.

The �ndings of this computational study share some similarities to those found in previous

studies [11, 12]. Extreme events are found in the instantaneous coupling and two delay system.

However, the mechanism for the extreme events using the Oregonator is di�erent [11, 12]. For

the single time-delay case, the extreme events are due to the presence of a chaotic mixed-mode

attractor. Ansmann et al. discussed the events as a loss of phase sychrony between oscillators.

In the double time-delay system, the extreme events are produced by the existence of two limit

cycles formed by the two di�erent delays. The interplay between the two perturbations keeps

the trajectories from settling on one of the limit cycles. Saha et al. contributed the extreme

events in a two delay system to a chaotic saddle. We also did not �nd extreme events in the

single time-delay system as in earlier work [12]; however, only a small section of parameter space

was explored.
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