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Abstract

Bayesian Methods for Multi-Messenger Analysis
of Supermassive Black Hole Binaries:

Pulsars and Quasars and Gravitational Waves, Oh My!

Caitlin A. Witt

Supermassive black hole binaries (SMBHBs) can lurk, often unseen, in the
centers of post-merger galaxies, and pulsar timing arrays (PTAs) are rapidly
approaching the sensitivities required to detect nanohertz gravitational waves
(GWs) from these giant pairs. Independently, numerous electromagnetic sur-
veys are seeking evidence of these dynamic duos’ effects on their host galaxies
by searching for periodicities in time-domain observations. Combining these
two methods to use multi-messenger techniques allows us to learn more about
these binaries than using one messenger alone. In this thesis, we have created
Bayesian methods to search for SMBHBs using electromagnetic observations
of quasars and through GW emission in PTA data.

By using electromagnetic observations to identify an SMBHB candidate,
we gain numerous pieces of information that also define the source’s GW emis-
sion, including the location of and distance to the SMBHB’s host galaxy and
the orbital period of the SMBHB. In our study, we developed the first multi-
messenger techniques used by the North American Nanohertz Observatory
for Gravitational Waves (NANOGrav), and applied them to a well-known su-
permassive black hole binary candidate, 3C 66B. We placed the lowest chirp
mass limit to date on an SMBHB within 3C 66B of M < 1.65× 109M⊙. Fur-
thermore, we learned that multi-messenger techniques can lead to a factor of
two reduction over all-sky GW searches at the same frequency, and an order
of magnitude reduction for completely “blind” searches.

Next, we analyzed the capabilities of Bayesian methods to search for elec-
tromagnetic signatures of these binaries in simulated time-domain data sets
from next-generation surveys. We developed a Bayesian model selection tech-
nique to identify periodicities induced into a quasar light curve by the orbital
motion of an SMBHB from within intrinsic red noise. We discovered that
future surveys, such as the Legacy Survey of Space and Time (LSST), will
identify more robust SMBHB candidates than current surveys, such as the
Catalina Real-time Transient Survey (CRTS).

Finally, we present the results of searches for bright continuous GWs
(CWs) from individual SMBHBs in NANOGrav’s 12.5-year data set. A red
noise process, which could be the first signs of an emerging stochastic GW
background (GWB), was previously detected for the first time in this data
set. In our work, we searched for CWs alongside this common noise process
for the first time in real PTA data, and developed necessary data-handling
techniques which will be critical for the detection of a CW, which may come
soon after the potentially imminent detection of the GWB.
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Chapter 1

Introduction

Over a century has passed since the introduction of General Relativity (Ein-

stein, 1916), and in the time since, black holes have risen to the forefront of astro-

nomical investigation. From massive stellar remnants to gargantuan galactic cores,

these compact mysteries have captured both light and the imagination. Despite

the fact that they cannot be observed directly, black holes’ significant gravitational

impact on the material in their environments and on space-time itself have allowed

astronomers to study these invisible giants. This thesis will focus on the largest

members of the black hole family, supermassive black holes (SMBHs), as well as

the numerous experiments that will unite to provide an unprecedented picture of

SMBHs. By combining electromagnetic observations with gravitational wave (GW)

analyses, this thesis seeks to forge the tools necessary to enable a multi-messenger

detection of an SMBH binary (SMBHB), and explore the improvements that multi-

messenger techniques can offer to our understanding of these dynamic duos.

1.1 Supermassive Black Holes

Black holes come in all shapes and sizes, with many orders of magnitude

separating the masses of the smallest stellar-mass black holes from their largest

cousins, SMBHs. Recent experiments have been able to dramatically expand our

1



knowledge of stellar-mass black holes by electromagnetic observations with GW

detections to populate a “graveyard” of these stellar remnants (Abbott et al., 2021).

With masses exceeding 106 M⊙, SMBHs are thought to reside in the centers

of nearly every massive galaxy (Kormendy & Ho, 2013), with evidence ranging

from gravitational analyses of stellar distributions within galactic cores (Ferrarese

& Merritt, 2000; Ghez et al., 2008), to statistical analyses of active galactic nuclei

(AGN), to direct imaging (Event Horizon Telescope Collaboration et al., 2019).

The formation of stellar-mass black holes can be clearly linked to the life-

cycle of massive stars, but the processes needed to grow an SMBH are not as clear.

Similar mechanisms, such as the direct collapse of an enormous gas cloud, could be

possible (Bromm & Loeb, 2003). Alternatives formation methods include steady

growth of a seed black hole through ongoing accretion (Kulier et al., 2015), but it is

unclear if this is possible within the age of the universe. Finally, it is speculated that

SMBHs may grow through mergers of seed black holes, which may occur in dense

clusters of many black holes or through mergers of galaxies each containing black

holes (Kulier et al., 2015). These formation theories each have implications for the

resulting SMBHs, from accretion driven activity (discussed in subsection 1.1.1) to

the formation and eventual merger of SMBHs binaries (SMBHBs), as discussed in

subsection 1.1.2.

1.1.1 Active Galactic Nuclei

In this thesis, the main electromagnic markers we will use to study SMBHs
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Figure 1.1: Diagram depicting the main features included in unified models of AGN.
Image Credit: Robert Findlay. Figure reproduced with permission from Condon &
Ransom (2016), permission conveyed through Copyright Clearance Center, Inc.

are AGN. AGN are compact galactic cores with enormous luminosities due to active

accretion of material onto a central SMBH. To unify the wide variety of AGN-

related phenomena observed across the electromagnetic spectrum, astronomers have

reduced theories of the components of AGN to the following key elements that make

up the unified model of AGN (Urry & Padovani, 1995):

• a central SMBH surrounded by an accretion disk,

• a region of fast-moving material which creates velocity-broadened spectral

features known as a broad-line region,

3



• a dusty torus, which obscures some observable features depending on the ob-

server’s orientation,

• regions of slow-moving material which emit ordinary, narrow spectral features,

known as the narrow-line region,

• a jet of relativistic particles launched from the central SMBH.

These features, along with sub-classes based on observed properties, are diagrammed

in Figure 1.1. One such class, quasars, includes the brightest AGN that can be seen

across the electromagnetic spectrum. The bright nucleus vastly outshines the rest

of the galaxy and appears nearly point-like in images, giving rise to the original

name of this class, “quasi-stellar objects.” Quasars are distant AGN that are viewed

from a line of sight that is nearly aligned with the jet axis, and therefore appear

distinct from stars by exhibiting spectral features from the visible broad-line region,

synchrotron emission from the AGN jet, and redshifts that equate to large luminosity

distances (i.e. distance measured according to the flux-luminosity relationship).

1.1.1.1 Quasar Variability

When observed in the optical regime of the electromagnetic spectrum, most

quasars exhibit significant (to the order of 20%) stochastic flux variability (Hook

et al., 1994). Potential causes for these random variations in flux include accretion-

disk instabilities, numerous supernova and rapidly evolving remnants in the nuclear

region, and microlensing of the core by an orbiting distribution of compact objects

(Kawaguchi et al., 1998; Aretxaga et al., 1997; Hawkins, 1993; Trèvese & Vagnetti,
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2002).
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Figure 1.2: Simulated photometric data of an AGN with significant DRW variability.

The most common model used to describe this variability has been dubbed a

“damped random walk,” (DRW; Kelly et al., 2009; MacLeod et al., 2010; Koz lowski

et al., 2010) which includes a damping term to return the time series towards the

average value in addition to a pure random walk. This creates a characteristic

noise pattern that is “red,” or time-dependent, on short timescales but “white”, or

gaussian-distributed, on long timescales. The DRW noise is modeled by a power

spectral density function

P (f) =
4σ2τ

1 + (2πτf)2
, (1.1)

where σ2 is the variance of the data, τ is the characteristic timescale of the DRW

process, and f is the Fourier-space frequency.

Quasars are a key object of interest of numerous time-domain photometric sur-

veys, including the Sloan Digital Sky Survey (SDSS), Catalina Real-Time Transient

Survey (CRTS), the Palomar Transient Factory (PTF), and Zwicky Transient Facil-

ity (ZTF), among many others. Using the resultant data sets, significant efforts have

been made to characterize the variability of the quasar population (e.g. MacLeod

et al., 2010). However, due to the selection effects of each individual survey and the
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wavelength-dependent nature of quasar variability, the underlying distributions of

the variability parameters are difficult to infer (Koz lowski et al., 2010) for the entire

quasar population. Future surveys such as the Legacy Survey of Space and Time

(LSST) may be able to probe new areas of parameter space due their high cadence

observations across a range of wavelengths, and will provide invaluable data for use

in the characterization of this effect (LSST Science Collaborations et al., 2017).

1.1.2 Supermassive Black Hole Binaries

As will be described in section 1.3, SMBHBs are among the most luminous

nanohertz GW sources, a key focus of this thesis. Here, I describe their formation

and key attributes. As each massive galaxy is thought to harbor a central SMBH,

when these galactic hosts undergo a major merger, an opportunity exists for the

formation of SMBHBs. The evolution of these titanic pairs is a process that takes

many millions of years, with aspects still open to debate. Through interactions

with massive components of the merged host galaxies (e.g. gas, stars), dynamical

friction will first cause the SMBHs to sink to the center of the merger remnant.

Through continued interactions with the dense environment of a galactic core, the

now gravitationally-bound binary’s orbit will continue to shrink and evolve (Begel-

man et al., 1980).

There are a few quantities that we will define to describe the basic attributes

of an SMBHB; later in subsubsection 1.3.1.3, we will expand these parameters to

include a more complete description of the binary. First are the masses of the two
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SMBHs, with the larger, m1, being dubbed the primary, and the smaller, m2, the

secondary. The sum of these, m1 + m2, is the total mass of the system, sometimes

written as Mtot. The SMBHB mass ratio q, is, logically, defined as m2/m1. This

implies that for an SMBHB consisting of with two nearly equal-mass SMBHs, q will

be ∼ 1; unequal-mass systems will have q < 1. Finally, to describe the orbit of the

SMBHB system, we can define various quantities including the orbital separation

(a) and orbital period (Porb). It is important to note that this orbital period will be

different in the rest frame of the binary and that of the observer at cosmological

distances; the observed redshifted value of P , in the rest frame, Pr = P/(1 + z).

If the SMBHB can evolve to sufficiently small separations (< 0.1 pc), GW

emission will continue the binary’s evolution towards an eventual coalescence. How-

ever, the hotly-debated “final-parsec problem” raises the question of whether or not

there will be sufficient material to drive evolution to these very close separations.

As the binary evolves through dynamical interactions, the surrounding environment

will lose material through scattering processes. If there are not sufficient amounts

of material to drive the dynamical interactions necessary to evolve the orbit until

GWs can take over, the binary will “stall” its evolution, perhaps indefinitely (e.g.

Colpi, 2014). This possibility has enormous implications for multi-messenger as-

trophysics, the main focus of this thesis, which will be discussed in more detail in

section 1.5. If SMBHBs cannot overcome the final parsec problem, they will never

emit detectable nanohertz GWs. Furthermore, the complex processes that may help

drive an SMBHB to sub-parsec separations may dramatically influence the resultant

electromagnetic and GW signatures of the binary. As shown in Figure 1.3, these
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Figure 1.3: After a major galaxy merger, there is a long lifecycle of SMBHBs before
their eventual coalescence. Key stages will have effects on both the electromagnetic
emission from the SMBHB and the host galaxy, as well as any GW emission. Image
credits: Galaxies, Hubble/STSci; 4C37.11, Rodriguez et al. (2006); Simulation visu-
als, C. Henze/NASA; Circumbinary accretion disk, C. Cuadra. Figure reproduced
with permission from Burke-Spolaor et al. (2019) under the Creative Commons At-
tribution 4.0 International License (CC-BY 4.0).

two messengers will each display unique signatures that indicate the evolutionary

progression of the binary.

The presence of an SMBHB and its evolving dynamics can induce changes

to the typical structure of an AGN described in subsection 1.1.1. Clearly, now

two SMBHs are present, rather than a single central engine surrounded by a single

accretion disk. Instead, in most models of SMBHBs where AGN activity is present,

gas is expected to settle in a circumbinary disk (Barnes, 2002), with a central cavity

that has been cleared by the binary. Quasi-periodically, gas will stream through

the cavity to form mini-disks around each of the SMBHs (Farris et al., 2014), with

a higher proportion of this gas accreting onto the secondary black hole due to its

location nearer to the edge of the cavity.
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1.2 Electromagnetic Signatures of SMBHBs

Astronomers have sought the confident discovery of an SMBHB for many years,

and a few hundred candidates have been proposed using a variety of electromagnetic

observations. These range from direct imaging of structures containing an SMBH

to indirect spectroscopic evidence of orbital motion of the proposed binary. Each

method, summarized below, probes a distinct range of orbital separations of the two

SMBHs, creating a unique suite of techniques necessary to investigate the SMBHB

population.

1.2.1 Imaging of Dual and Binary AGN

The most straightforward SMBHB detection technique is direct imaging of

two distinct regions that can each be linked to an SMBH. This technique spans

the electromagnetic spectrum, with candidates discovered through emission from

radio to X-rays (Saade et al., 2020a). However, this method can only probe well

separated SMBH pairs. If the SMBHs are so widely separated so as to not yet be

gravitationally bound, but are separated by less than 1 kpc, they are referred to

as “dual SMBHs” or “dual AGN.” However, some techniques, such as Very Long

Baseline Interferometry (VLBI), are able to probe more closely separated binaries

with separations less than a few parsecs. These more closely separated pairs can

be referred to as “binary” AGN or SMBHs, the most famous of which is 0402+379

(Rodriguez et al., 2006). Despite the incredible resolutions made possible with

VLBI, these sources are still much too widely separated to produce significant GW
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emission.

1.2.2 Radio Jet Morphologies

The jets launched from the central region of an AGN typically follow a pre-

dictable geometry, with the jet axis lying approximately perpendicular to the plane

of the central accretion disk (Donea & Biermann, 2002). However, many AGN jets

display significant helical structure, indicating a precession of the jet orientation.

This has been theorized to be a potential SMBHB indicator, with the orbital mo-

tion of the binary causing periodic changes in the accretion disk orientation, which

therefore affects the direction of the jet. As the relativistic particles are launched

away from the base of the jet, this periodically shifting direction results in a he-

lical structure. However, these observations are also limited by the resolution of

VLBI telescopes, and therefore unable to investigate effects due to closely separated

SMBHBs.

There are numerous SMBHB candidates (Qian et al., 2019) that have been

discovered through precision tracking of these evolving jets. However, there is also

the possibility that this jet precession is possible without the presence of an SMBHB

due to the warping of the accretion disk due to orbital instabilities.

1.2.3 Emission Line Profiles

The high velocities of gas orbiting very close to the central SMBH create broad

spectral line profiles that can be observed depending on the orientation of the AGN.
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In the presence of an SMBHB, these broad lines may appear shifted in frequency

when compared to the narrow lines emitted by slow-moving gas further from the

central region of the AGN as the active SMBH orbits either toward or away from

the observer. In the case of a binary where both SMBHs are active, a double broad

line feature (Begelman et al., 1980) may be observed on either side of the narrow

line. While numerous sub-parsec candidates have been detected (Eracleous et al.,

2012), broad emission lines are truncated at very small separations, leaving the need

for alternative methods to probe the most closely-separated binaries.

1.2.4 Light Curve Features

The continually changing system of an orbiting SMBHB creates opportunities

for dramatic features in long-term photometric observations of the host galaxy. One

of the longest-standing SMBHB candidates, OJ 287 (Lehto & Valtonen, 1996), is

one such example. This eccentric, unequal-mass system is observed as a blazar, and

contains one active 1010M⊙ SMBH. Quasi-periodic flares observed in the decades-

long light curve point to the existence of a second, smaller (108M⊙) black hole, which,

during its orbit, plunges through the accretion disk of the primary SMBH twice per

orbit. This rapid change in the accretion disk vastly increases the temperature,

causing a sharp increase in brightness followed by a gradual decline.

Nearly edge-on systems are also expected to produce sharp gravitational-

lensing spikes in photometric light curves. As one black hole moves behind its

companion as seen by the observer, its emission can be self-lensed by its binary
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companion to drastically amplify the observed brightness (Hu et al., 2020) of the

host.

Finally, longer timescale periodicities provide an excellent way to find SMBHB

candidates in extended time-domain surveys of quasars, such as PG 1302–102 (Gra-

ham et al., 2015a). These periodicities may be induced by either periodically-varying

accretion rates onto the component SMBHs (MacFadyen & Milosavljević, 2008) as

perturbations of the circumbinary disk lead to periodic streaming of gas into the

cavity. The induced periodic variations may be at the orbital period of the binary,

particularly for unequal-mass systems. However, for nearly equal-mass binaries, the

period of the fluctuations may occur at several times the orbital period (D’Orazio

et al., 2013).

Periodic Doppler boosting of the emission from the mini-disks surrounding the

SMBHs due to their relativistic velocities within the binary orbit (De Rosa et al.,

2019) will also induce periodicities into quasar light curves. Emission will be boosted

according to the Doppler factor

D =

√
1 + β∥
1 − β∥

, (1.2)

where β∥ = v∥/c, the line of sight component of the emitting SMBH’s velocity,

normalized by the speed of light. For an SMBHB in a circular orbit, the periodic
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observed flux will become

Fν = F sec
ν,0

[
1 + (3 − αν) v2∥/c

]

= F sec
ν,0 [1 + (3 − αν) v2 sin i sin (ωt+ Φ0) /c]

, (1.3)

where αν is the source spectral index, v2 and F sec
ν,0 are the velocity and flux of the

secondary mini-disk, i is the inclination of the orbital plane, ω is the orbital velocity,

and Φ0 is the initial orbital phase. For a full derivation, see Charisi et al. (2022).

This method will be more likely to detect unequal-mass binaries, due to the

preferential accretion of gas onto the smaller SMBH in such a binary, which is also

moving faster, therefore inducing a higher Doppler boost. In this case, the period

of the Doppler boost effect can be related directly back to the orbital period of the

binary (D’Orazio et al., 2015; Charisi et al., 2018). However, it is important to

note that such a periodic feature will be present in addition to the intrinsic quasar

variability discussed in subsubsection 1.1.1.1, as shown in Figure 1.4, necessitating

careful analyses to disentangle a stochastic red DRW process, which can appear

quasi-periodic, from a true periodicity.

Depending on the orientation of the binary and the makeup of the system,

these features may appear in various combinations. These three methods are some

of the few that are able to probe sub-parsec SMBHBs, the same class which also

emit nanohertz GWs; therefore, this technique will be related the most directly to

the following sections of this thesis.
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Figure 1.4: Simulated photometric data of an AGN with significant DRW variability
and an injected periodicity.

1.2.5 Other Signatures

While the previous sections focus on a few electromagnetic indicators of SMB-

HBs that represent key stages or features, there are numerous others that have

been suggested in the literature. These include features in the continuum spectra of

the host, including low soft X-ray and ultraviolet luminosity (Tanaka et al., 2012;

Tanaka & Haiman, 2013), clipped spectral features surrounding the FeKα spec-

tral line (Tanaka & Haiman, 2013), and a thermal Compton hard X-ray spectrum

(d’Ascoli et al., 2018). There are also suggestions that numerous tidal disruption

events in the same host galaxy may suggest the presence of an SMBHB (Wegg &

Nate Bode, 2011), as well as characteristic drops in the light curve of such an event

(Liu et al., 2014). These systems may also induce velocity shifts which may be

detectable through careful observations of H2O megamasers in AGN (Pesce et al.,

2018). Finally, it is important to note that many more signatures may arise from

the theorized circumbinary disk or mini-disks that may be present within an active

SMBHB system, or from magnetized jets that accompany one or both of the black

holes (e.g. Bogdanovic et al., 2021).
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1.3 Nanohertz Gravitational Waves

In 2015, the window to the gravitational-wave universe was opened when the

first detection of GWs from a black hole binary was made by the Laser Interfer-

ometer Gravitational-wave Observatory (LIGO) (Abbott et al., 2016). However,

as illustrated in Figure 1.5, only a small portion of the GW spectrum can be in-

vestigated by ground-based interferometers. While LIGO and similar observatories

can probe stellar-mass compact binaries, more efforts are needed to see the GWs

emitted by their larger, low-frequency cousins. Space-based interferometers, such as

the proposed Laser Interferometer Space Antenna (LISA) mission (Amaro-Seoane

et al., 2017), will use much longer interferometric baselines to detect the inspirals

of more massive binaries in addition to other longer-period sources such as galac-

tic neutron star and white dwarf binaries. To investigate even lower frequencies

in the nanohertz regime, emitted by SMBHBs, GW astronomers have constructed

a galaxy-sized GW detector called a pulsar timing array (PTA), which will be be

discussed in more detail in subsection 1.3.1 and is the main focus of the work in this

thesis.

While each of these detectors work in different ways to sense the respective

GWs that they are each sensitive to, the subtle shifts in space-time they are seeking

are created with the same basic principles. Commonly analogized to ripples on a

still pond, GWs are, essentially, a wave solution to a slight perturbation to the flat

space-time described by the Minkowski metric ηµν = diag(−1, 1, 1, 1). Therefore,
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Figure 1.5: The GW spectrum, with example sensitivities of ground-based interfer-
ometers, space-based interferometers, and PTAs. Colored regions indicate typical
characteristic strains and GW frequency ranges of typical GW sources. Created
using http://gwplotter.com/ (Moore et al., 2015).
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the total metric can be written as

gµν = ηµν + hµν . (1.4)

Gravitational radiation is emitted as the result of a changing gravitational tidal

field. Due to conservation of mass and momentum, the existence of such a field

requires any system that emits GWs to have a non-zero quadrupole moment, or

second time-derivative of moment of inertia tensor. With this requirement, evolving

binary systems of compact objects, including neutron stars and black holes, make

an ideal example.

GWs are observed through their influence on the massive objects they affect.

By distorting space-time, GWs will alter length-scales between test masses. This

effect is quantified by the strain, which can be defined as

h ≃ ∆L

L
, (1.5)

where L is the initial length-scale, and ∆L is the difference between two measure-

ments of L. In General Relativity, GWs are emitted in two polarizations, “plus”

and “cross,” named for the patterns they create while stretching and squeezing a

circular ring of test masses as shown in Figure 1.6. Therefore, the total strain can

be written as

h = A+h+ + A×h×, (1.6)

where A+,× represents an amplitude of each polarization state.
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Time →

h+

h×

Figure 1.6: As a GW propagates towards the observer out of the page, the induced
deformation will be only perpendicular to the direction of propagation. For a ring
of particles, the induced deformation over time is shown for both the plus (bottom)
and cross (top) polarizations.
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In some cases, it is convenient to represent this strain as a characteristic strain

hc that is integrated over some timescale or, for stochastic sources, an integrated

power spectral density. For further information on GW theory and how nanohertz

GWs are observed, see Maggiore (2007) or Taylor (2021).

1.3.1 Detection Methods

1.3.1.1 Pulsar Timing

Neutron stars, remnants of massive stars with densities comparable to an

atomic nucleus, are some of the most extreme objects known to astronomy. Pulsars

are a unique class of neutron stars which emit a beam of radiation from the star’s

magnetic poles which are oriented so as to be observable from the Earth. As the

pulsar rotates, these beams of emission sweep across our line of sight, resulting in

a narrow “pulse” in high resolution time domain observations. By fitting a pulse

template to measure the times-of-arrival (TOAs) of these pulses, astronomers have

discovered that these natural objects are some of the most precise clocks in the

universe.

Millisecond pulsars (MSPs) are unique in being the most stable rotators, so

their TOAs are able to be measured to incredible precision. These “recycled” pulsars

have gained angular momentum through the accretion of material from a binary

companion, and therefore have spin periods (P ) ≲ 30 ms and period derivatives

(Ṗ ) of about 10−20 s s−1 (Manchester et al., 2005). To model the observed TOAs

of an MSP, any effects that can delay the TOAs, such as spin period derivatives,
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the motion of the pulsar, any binary companions, the Earth, and the remaining

principal delays, must be compiled. The principal terms in this process can be

summarized as

t = tt − t0 + ∆clock − ∆DM + ∆R⊙ + ∆E⊙ + ∆S⊙, (1.7)

where the topocentric time tt is adjusted to that measured from the solar system

barycenter t (Condon & Ransom, 2016; Lorimer & Kramer, 2012). After adjusting

to a reference epoch t0, the remaining delays include a clock correction ∆clock, the

dispersion delay caused by the interstellar medium ∆DM, the Roemer delay ∆R⊙

caused by the time necessary to cross the Earth’s orbit, the Einstein delay ∆E⊙

accounting for the time dilation induced by the moving pulsar and observatories

and any induced gravitational redshifts, and the Shapiro delay ∆S⊙ accounting for

the extra travel time for a pulse to travel through curved space-time. These are each

calculated for the solar system, and additional terms will be necessary for pulsars

in binary systems to describe the same delays induced by a binary companion. The

resultant timing model is then compared with observed TOAs to create “residuals”

as

ρi = TOAi − ti, (1.8)

where for each pulse, the residual ρ is equal to the difference between the observed

TOA and the modeled value t. A perfect timing model of a noiseless pulsar will

result in residual values of zero for all observations of the pulsar as in the top panel
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Figure 1.7: Pulsar timing residuals that are idealized (top), contain only white noise
(middle), and contain white noise and red noise (bottom) over a ten year observation
baseline in Modified Julian Days (MJD).

of Figure 1.7, and for the best MSPs, these values approach nanosecond precision.

Any unaccounted-for signals, such as nanohertz GWs, must be teased out from these

residuals.

However, even the best-timed pulsars have some amount of noise present in

their timing residuals, which can be separated in to two different types: white noise

and red noise. Examples of how these two noise processes effect pulsar timing

residuals are shown in Figure 1.7. While white noise is uncorrelated, red noise is

correlated in time, with a power spectral density modeled with a power-law function

as

P (f) =
A2

red

12π2

(
f

fyr

)−γ

. (1.9)
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Here, fyr ≡ 1/(1year), Ared is the red noise amplitude, and γ is a power-law spectral

index. White noise is induced by processes including template-fitting TOA uncer-

tainty and pulse jitter intrinsic to the pulsar (Lam et al., 2019). Red noise is induced

by multiple processes, including spin noise, pulse profile variations, clock (Tiburzi

et al., 2016) and ephemeris (Vallisneri et al., 2020) errors, and unmodeled dispersion

measure changes (Jones et al., 2017).

1.3.1.2 Pulsar Timing Arrays

A true GW signal will be present in observations of many pulsars, with dis-

tinctive correlations related to the pulsars’ locations relative to the Earth and the

GW source. Therefore, unambiguously detecting a GW signal requires observations

of many pulsars known as a pulsar timing array (PTA) over the span of decades to

unambiguously determine whether an emerging signal is due to a GW or an effect

local to a single pulsar. The methods used to search for two types of nanohertz GWs

visible to PTAs are summarized in subsubsection 1.3.1.3 and subsubsection 1.3.1.4.

The observation strategies used by a PTA will determine the range of GW

frequencies to which it is sensitive. The lowest GW frequency a PTA can detect is

around 1/Tobs, where Tobs is the total time spanned by all of the observations. The

highest frequency which can be detected is equal to 1/tobs, where tobs is the average

observation cadence, or time between observations (Aggarwal et al., 2019).

Currently, there exist multiple distinct PTA collaborations; these include the

North American Nanohertz Observatory for Gravitational waves (NANOGrav), the
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European Pulsar Timing Array (EPTA), the Parkes Pulsar Timing Array (PPTA),

the Indian Pulsar Timing Array (InPTA), and the Chinese Pulsar Timing Array

(CPTA). Due to the restrictions on which pulsars each of these regional PTAs can

observe (due to the portions of the sky visible to each continent), it is extremely

beneficial for PTAs to make use of data from multiple telescopes. Therefore, these

collaborations have joined together in a consortium known as the International Pul-

sar Timing Array (IPTA), which, through regular data combinations (Perera et al.,

2019), will reach greater sensitivities than any lone PTA.

1.3.1.3 Continuous Gravitational Waves

As described in subsection 1.1.2, SMBHBs evolve very slowly over their long

lifetimes, and therefore, nanohertz GWs emitted by individual SMBHBs can be

considered “continuous waves” (CWs) (Aggarwal et al., 2019; Arzoumanian et al.,

2014; Ellis, 2013). These signals can be uniquely identified by eight of the following

nine properties of the binary system, including:

• position on the sky (θ, ϕ);

• GW frequency (fGW );

• orbital phase at some reference time (Φ0);

• GW polarization angle (ψ);

• orbital inclination (i);

• chirp mass (M);

• luminosity distance (dL);
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• strain amplitude (h),

some of which were defined in subsection 1.1.2. The chirp mass is a quantity similar

to a reduced mass that, as will be apparent later in this section, a convenient form

to relate various GW amplitudes and amounts of energy loss. It can be defined as

M =
(m1m2)

3/5

(m1 +m2)
1/5

=

[
q

(1 + q)2

]3/5
Mtot, (1.10)

where m1 and m2 are the masses of the two black holes, and q is the mass ratio of

the system. This is again the redshifted value in the frame of the observer; in the

rest frame of the binary, Mr = M/(1 + z). However, as PTAs are currently only

sensitive to the local universe where z ≲ 1, this adjustment has only a minor effect.

The GW frequency fGW of a circular SMBHB can be related to the orbital period

Porb by fGW = 2/Porb. A careful reader will notice that while eight parameters

are required to define a CW signal, nine are listed above. This is because one is

redundant; the strain amplitude of a CW can be related to the SMBHB chirp mass,

GW frequency, and luminosity distance as

h0 =
2M5/3(πfGW)2/3

dL
. (1.11)

The quadrupolar nature of GW emission creates a signal that is not equally

strong in all directions. Therefore, a CW will induce a larger response in the residuals

of some pulsars than others. This effect is described by the antenna pattern response

functions of a detector, F+,×, which are determined by the sky locations of the
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SMHHB and the pulsar as well as the GW polarization angle ψ (Taylor et al.,

2016). First, we construct a set of right-handed basis vectors

n̂ =(sin θ cosϕ, sin θ sinϕ, cos θ),

p̂ =(cosψ cos θ cosϕ− sinψ sinϕ,

cosψ cos θ sinϕ+ sinψ cosϕ,− cosψ sin θ)

q̂ =(sinψ cos θ cosϕ+ cosψ sinϕ,

sinψ cos θ sinϕ− cosψ cosϕ,− sinψ sin θ)

, (1.12)

including n̂, which is the opposite of the vector pointing to the SMBHB sky location,

Ω̂. Then, we can define

FA(Ω̂) ≡ 1

2

ûaûb

1 + Ω̂ · û
eAab(Ω̂), (1.13)

where e+,×
ab are the GW basis tensors

e+ab = p̂ap̂b − q̂aq̂b

e×ab = p̂aq̂b + q̂ap̂b.

(1.14)

An example set of antenna pattern response functions for an SMBHB located at RA

12h Dec +45d is shown in the first two panels of Figure 1.8. While many pulsars

will be sensitive to a CW emanating from a source located anywhere on the sky,

others may lie in a region where the induced signal is near-zero due to the antenna

pattern response function.

For SMBHBs with quasi-circular orbits, CWs will be emitted at a GW fre-
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Figure 1.8: Antenna pattern response functions F+ (top) and F× (middle) for an
SMBHB located at RA 12h Dec +45d. The cosine of the angle between the source
sky location and the pulsar line of sight (µ) is used to calculate the pulsar time tp
(bottom).
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quency corresponding to the orbital frequency of the binary (to be exact, fGW =

2forb) which may slowly evolve over time as the binary loses energy. This evolution

is described by

dω

dt
=

96

5

(
GM
c3

)5/3

ω(t)11/3, (1.15)

where ω(t) = πfGW (t). This can be integrated to yield

f(τ) =
1

π

(
GM
c3

)−5/8(
5

256

1

τ

)3/8

, (1.16)

where τ is the time until the binary’s coalescence (Hazboun et al., 2019b). Therefore,

we can estimate the magnitude of the binary’s frequency evolution over the course

of a given timescale T to be

∆f ≃ 1

π

(
GM
c3

)−5/8(
5

256

1

τ

)3/8
3

8

T

τ
. (1.17)

For a given PTA experiment which spans approximately a decade, and a typical

SMBHB that would emit GWs within the PTA band, this change in frequency is

much smaller than the frequency resolution of a PTA. Therefore, for most searches,

GWs from a circular SMBHB can be considered to be emitted at a single discrete

frequency.

However, the binary evolution is critical to consider for some aspects of GW

searches with PTAs. Unlike a “small” detector such as an interferometer located on

the Earth, the significant light travel times between the Earth and the numerous

pulsars in the PTA result in a large difference between the form of a CW at the
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time a wavefront passes either a pulsar or the Earth. This results in two distinct,

coupled terms being present in the signal a CW is modelled to induce in each pulsar’s

residuals, helpfully dubbed the “Earth term” and “pulsar term” (Aggarwal et al.,

2019) that each describe the effect of the CW at the location of the Earth and the

pulsar in space, respectively.

If the locations of both the Earth and the pulsar are known, the pulsar term

can be modeled by geometrically calculating the point in time at which the pulsar

is “seeing” the binary as

tp = t− L(1 + Ω̂ · p̂), (1.18)

where L is the distance to the pulsar. This time is then used to relate the GW

frequency of the pulsar term to that of the Earth term. Since there is a longer light

travel time associated with the pulsar term, this frequency is always lower than the

Earth term’s. However, pulsar distances are difficult to measure, and instead can be

calculated through various methods, including measurements of timing parallaxes

and estimates from dispersion measure models. However, due to the uncertainties

associated with pulsar distance measurements, which are often much larger than a

GW wavelength, the pulsar distances must be used as a free parameter in any CW

search that includes the pulsar term. Improved measurements of pulsar distances

with longer timing baselines and more accurate techniques, such as VLBI, will dra-

matically shrink these prior ranges, as discussed in chapter 4. For more discussion

of this point, see section 1.4 and chapter 4.

Combining these effects, the signal induced into a pulsar’s residuals by an
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SMBHB can be written as

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆s×(t), (1.19)

where

∆s+,×(t) = s+,× (tp) − s+,×(t). (1.20)

The GW signal s+,×(t) for a given time t can be written as

s+(t) =
M5/3

dLω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)]

s×(t) =
M5/3

dLω(t)1/3
[−2 cos 2Φ(t) cos i]

, (1.21)

with the time dependent phase and frequency defined as

Φ(t) = Φ0 + 1
32
M−5/3

[
ω
−5/3
0 − ω(t)−5/3

]

ω(t) = ω0

(
1 − 256

5
M5/3ω

8/3
0 t

)−3/8
, (1.22)

respectively. Figure 1.9 shows an example of a CW waveform in two pulsars in

different locations. The top panel shows only the Earth term of the signal, with

the different signal amplitudes related to the antenna pattern response functions

calculated for these SMBHB-pulsar pairs. The lower panel shows the signal with

both the Earth and pulsar terms, with both distinct frequencies visible.
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Figure 1.9: Simulated CW waveforms in two pulsars for an SMBHB located at
1200+4500, with M = 1.5 × 109M⊙, dL = 85 Mpc, and fGW = 60 nHz including
only the Earth term (top) and the Earth and pulsar terms (bottom).

1.3.1.4 The Stochastic Gravitational Wave Background

While only the brightest GWs emitted by SMBHBs could be detected as CWs,

there is an entire population of SMBHBs hosted in galaxies throughout the universe

constantly emitting GWs too faint to be detected individually. However, these

SMBHBs together create a pervasive hum of GW emission known as the stochastic

GW background (GWB).

The GWB will appear as a spatially-correlated common red noise (CRN) pro-

cess in all of the pulsars in the PTA with a specific spectral shape (Romano &

Cornish, 2017), with higher characteristic strains (hc) at lower frequencies. This is

often parameterized as

hc(f) = AGWB

(
f

fyr

)α

, (1.23)

where AGWB is the amplitude of the GWB measured at fyr, and α is the spectral

index. A population of inspiraling SMBHBs, with many sources emitting at low
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frequencies but stronger emission at high frequencies, will have an α = −2/3. Unlike

red noise intrinsic to each pulsar, which may each have a unique spectral index, the

GWB spectral shape will be the same in each pulsar in the PTA.

In a PTA search for the GWB, this information is transformed into the timing-

residual cross-power spectral density

Sab(f) = Γab
A2

GWB

12π2

(
f

fyr

)−γ

f−3
yr , (1.24)

where γ = 3 − 2α, and therefore, for a nominal α = −2/3 (Rajagopal & Romani,

1995) for a GWB produced by SMBHBs, we expect γ = 13/3. Γab is an overlap

reduction function that describes the degree of correlation expected between two

pulsars in the array, which varies according to the angle between their locations on

the sky, θab. This term also differentiates this function, Sab(f), from the pulsar red

noise power spectral density function in Equation 1.9. For an isotropic GWB, Γab

is given by Hellings & Downs (1983) as the “Hellings-Down Curve”

Γab =
3

2

(1 − cos (θab))

2
ln

(
(1 − cos (θab))

2

)
− 1

4

(1 − cos (θab))

2
+

1

2
+

1

2
δab, (1.25)

and is plotted in Figure 1.10. Note that for small separations, Γab will approach a

value of 1/2. This is due to the fact that the correlation induced by the GWB is

present because of the Earth term of the signal; while the GWB affects the pulsars

as well, those signals will not be correlated according to their position relative to

one another. However, as a GWB signal in one pulsar will inherently be correlated

31



0 20 40 60 80 100 120 140 160 180
θab (degrees)

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Γ
a
b

Figure 1.10: Overlap reduction function Γab for Hellings-Downs correlations plotted
as a function of the angle between pulsars a and b (θab).

with itself, the Kroneker delta δab term accounts for the possibility that two pulsars

at the same sky location are in fact the same object, in which case Γab = 1. For

a full description, see Burke-Spolaor et al. (2019) and Taylor (2021), as well as

Arzoumanian et al. (2018a) and Arzoumanian et al. (2020a) for recent applications.

While this thesis focuses primarily on the detection of CWs and their elec-

tromagnetic counterparts, the presence of the GWB must be a consideration for all

types of GW searches by PTAs. As PTAs start to approach the sensitivities required

to detect the GWB, the particular realization of the GWB that exists in the uni-

verse may appear similar to a CW in the discrete data sets. Much like a periodicity

needs careful treatment to be differentiated from a DRW process in an AGN light

curve as described in subsection 1.2.4, care is needed to ensure that a GWB, which

is expected to be the first detection made by PTAs, is not falsely identified as a CW
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(Baker et al., 2019).

1.4 Computational Methods and Bayesian Inference

While the data used to search for SMBHBs using electromagnetic signatures

of GW emission varies widely, the computational techniques used for each type

of project in this thesis are remarkably similar. As described thoroughly in Zhu

& Thrane (2020), both PTA searches for CWs and SMBHB searches in quasar

light curves fundamentally aim to determine whether a periodicity exists within an

unevenly-sampled time series that contains red noise. Therefore, similar methods

are easily applied to both types of analysis.

To investigate this possibility, we make use of Bayesian statistics, which, rather

than questioning “how likely it is that we observe data D given our theorized model

M ,” investigates the probability that the underlying parameters ΘM are equal to

a value given the observed data. These various probabilities can be described with

Bayes Theorem

P (ΘM | D,M) =
P (D | ΘM ,M)P (ΘM |M)

P (D |M)
, (1.26)

with the following components:

1. the likelihood P (D | ΘM ,M), which describes the probability of both having

a set of parameters ΘM that describe the data and observing the particular

set of data D
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2. the prior, P (ΘM |M), which describes the probability of having a given set

of values ΘM for our model M , without knowledge of the data D

3. the evidence, P (D |M) = Z, which quantifies how well the model M fits the

data D after integrating over all possible values of the parameters θM

4. the posterior, P (ΘM | D,M), which describes the probability of having a

given set of values ΘM for our model M given the data D.

Throughout this work, we make use of Markov-Chain Monte Carlo (MCMC)

analyses, which use random number draws to investigate many-dimensional param-

eter spaces. After randomly sampling the priors of each model parameter, the

algorithm will then calculate the likelihood of the chosen model parameters. The

sampler will then take a step by drawing new values for each parameter and again

calculating the likelihood for the new set, and the difference in the value of the

likelihoods for the two steps will determine if the later step is accepted or rejected.

After continuing this process for many steps to create a chain of samples, the accu-

mulated samples made up of accepted steps will equal the posterior distribution for

each model parameter if the chain has converged.

Perfect convergence, in theory, could require an infinite number of MCMC

iterations; however, numerous methods, such as computing effective independent

samples and calculating autocorrelation lengths of MCMC chains, can be used to

determine sufficient levels of convergence. These tests are particularly critical for

analyses with many parameters and models with highly complex likelihood surfaces,

such as PTA searches for CWs. For further discussion of Bayesian analyses using
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MCMCS, see Speagle (2019), and for specific applications, see Aggarwal et al. (2019)

and chapter 2 of this thesis.

The resulting posterior distributions can then be used to estimate the preferred

values and uncertainties of the model parameters. If these resulting credible regions

are one-sided, upper limits can be calculated for any parameter in the model by

integrating the posterior distribution until 95% of it is enclosed.

Numerous methods exist to perform a Bayesian model selection as conducting

such an analysis. First among these is the Bayes factor B12 = Z1/Z2, which, given

the data and strength of the model, tells us how much a given model is preferred

over the other. As the full Bayesian evidence is difficult to calculate, Bayes factors

are often estimated. One such technique uses the Savage-Dickey approximation

(Dickey, 1971) to calculate Bayes factors for nested models by comparing the prior

to the posterior distribution at the relevant parameter value. For example, for a

CW search, a recovered CW strain value consistent with zero would be identical to

a model with only noise and no CW. In this case,

B10 ≡
Z1

Z0

=
p(h0 = 0|M1)

p(h0 = 0|D,M1)
. (1.27)

The strength of model preference given by a Bayes factor can be summarized ac-

cording to the rules of thumb in Table 1.1 (Taylor, 2021; Jeffreys, 1939).

For a fuller comparison, a metric such as the Bayes Information Criterion

(BIC) may be used. After performing an MCMC analysis for each model being

compared, the BIC adjusts the maximized log-likelihood values by the number of
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Bayes factor, B ln(B) Strength of evidence

< 1 : 1 < 0 Negative (supports M0 )
1 : 1 to 3 : 1 0 − 1.1 Barely worth mentioning
3 : 1 to 10 : 1 1.1 − 2.3 Substantial
10 : 1 to 30 : 1 2.3 − 3.4 Strong
30 : 1 to 100 : 1 3.4 − 4.6 Very strong

> 100 : 1 > 4.6 Decisive

Table 1.1: Bayes factors can be interpreted using loose rules of thumb which indicate
the strength of the preference for one model over another in a Bayesian model
selection.

parameters in the model as

BIC = k ln(n) − 2 ln(L̂), (1.28)

where k is equal to the number of free parameters, n is equal to the number of data

points in the light curve, and L̂ is the maximum likelihood value (Liddle, 2007).

∆BIC = BIC0 − BIC1. (1.29)

A lower value of ∆BIC indicates more support for the hypothesized model M1

over M0. The strength of model preference given by a ∆BIC can be summarized

according to the rules of thumb in Table 1.2 (Kass & Raftery, 1995).

∆BIC Strength of evidence

> 0 Negative (supports M0 )
0 to − 2 Barely worth mentioning
−2 to − 6 Substantial
< −6 Strong

Table 1.2: ∆BIC values can be interpreted using loose rules of thumb which indicate
the strength of the preference for one model over another in a Bayesian model
selection.
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For many PTA GW analyses, the python package enterprise1 (Ellis et al.,

2019) is used to construct Bayesian priors and calculate the PTA likelihood. For all

chapters in this thesis, the python package PTMCMCSampler2 (Ellis & van Haasteren,

2017) is used for all MCMC analyses, due to the easy construction of custom sam-

pling techniques to explore high-dimensional parameter spaces.

1.5 Multi-Messenger Astrophysics

Unlike the effects described in section 1.2, as well as the vast majority of

astronomical observations, GWs are not carried by photons. Instead, they are their

own unique “messenger,” which, through extensive observations, observers can use

to learn about the universe entirely independently from light.

However, while these two messengers can be used to observe the same objects

independently, this does not imply that they should. By combining data to con-

duct multi-messenger observations, astronomers have the opportunity to learn more

about the universe than with either messenger alone. For example, the first multi-

messenger analysis of a GW source was a detection of merging neutron stars by

LIGO and the resulting kilonova by numerous electromagnetic telescopes worldwide

(Abbott et al., 2017). While both observations were spectacular in their own right,

the combination provided an unprecedented confirmation of numerous theories of

kilonova emission mechanisms and heavy metal nucleosynthesis. This result was

made possible by by an unparalleled level of cooperation between worldwide tele-

1https://github.com/nanograv/enterprise
2https://github.com/jellis18/PTMCMCSampler
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scope operations to create a target-of-opportunity observation scheme which makes

rapid follow up of LIGO alerts possible.

Low-frequency GWs, including those observable by PTAs, have yet to be de-

tected, with a multi-messenger detection of an SMBHB being a key goal for the field

in the coming years (Astro2020). However, as described above, GWs from SMBHBs

are not short-duration events like the chirping mergers detectable by LIGO. Instead

of a rapid dash to coordinate observations of an electromagnetic counterpart of a

brief, cataclysmic event, these observations rely on vast efforts regularly undertaken

over years to decades.

Significant efforts already have been undertaken to prepare for multi-messenger

analyses of SMBHBs. In chapter 2 of this work, it is shown that multi-messenger

methods will lead to improved SMBHB mass limitations, even without a GW detec-

tion. Simulations have also shown that targeting a specific SMBHB candidate in a

PTA search leads to vastly improved parameter estimation results (Liu & Vigeland,

2021).

As previously mentioned, one of the best possibilities for a nanohertz multi-

messenger detection is through the collaboration of PTAs and photometric time-

domain surveys of quasars due to the significant overlap in relevant source popula-

tions. Numerous candidates have been found electromagnetically (Graham et al.,

2015b), and have been shown to be excellent PTA targets in the coming years (Xin

et al., 2020b). With the advance of next generation surveys with high sensitivities,

long durations, and fast cadences, more are sure to follow, so long as efficient data

processing methods can be developed to identify the most likely candidates.
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In addition to the increased sensitivity multi-messenger techniques can bring

to GW analyses, ongoing multi-messenger observations of an SMBHB will provide

insights that are impossible with one messenger alone. These include the nature of

SMBHBs’ interactions with their environments and host galaxies, as well their co-

evolution (Shankar et al., 2016). These observations will also closely study accretion

in the presence of an SMBHB, and test models of induced variability and other

SMBHB identification methods. Finally, independent distance measurements from

electromagnetic and GW observations can turn an SMBHB into a standard siren

to probe cosmological models (Holz & Hughes, 2005). For a detailed overview, see

Kelley et al. (2019a).
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Chapter 2

Multi-Messenger Gravitational-wave Searches with Pulsar Timing

Arrays: Application to 3C66B Using the NANOGrav 11-year Data

Set

2.1 Abstract

When galaxies merge, the supermassive black holes in their centers may form

binaries and, during the process of merger, emit low-frequency gravitational radia-

tion in the process. In this paper we consider the galaxy 3C 66B, which was used

as the target of the first multi-messenger search for gravitational waves. Due to

the observed periodicities present in the photometric and astrometric data of the

source, it has been theorized to contain a supermassive black hole binary. Its ap-

parent 1.05-year orbital period would place the gravitational wave emission directly

Published in ApJ as Arzoumanian et al. (2020b).
Contributing authors: Zaven Arzoumanian, Paul T. Baker, Adam Brazier, Paul R. Brook,
Sarah Burke-Spolaor, Bence Bécsy, Maria Charisi, Shami Chatterjee, James M. Cordes, Neil J.
Cornish, Fronefield Crawford, H. Thankful Cromartie, Kathryn Crowter, Megan E. DeCesar, Paul
B. Demorest, Timothy Dolch, Rodney D. Elliott, Justin A. Ellis, Robert D. Ferdman, Elizabeth C.
Ferrara, Emmanuel Fonseca, Nathan Garver-Daniels, Peter A. Gentile, Deborah C. Good, Jeffrey
S. Hazboun, Kristina Islo, Ross J. Jennings, Megan L. Jones, Andrew R. Kaiser, David L. Kaplan,
Luke Zoltan Kelley, Joey Shapiro Key, Michael T. Lam, T. Joseph W. Lazio, Lina Levin, Jing
Luo, Ryan S. Lynch, Dustin R. Madison, Maura A. McLaughlin, Chiara M. F. Mingarelli, Cherry
Ng, David J. Nice, Timothy T. Pennucci, Nihan S. Pol, Scott M. Ransom, Paul S. Ray, Brent
J. Shapiro-Albert, Xavier Siemens, Joseph Simon, Renée Spiewak, Ingrid H. Stairs, Daniel R.
Stinebring, Kevin Stovall, Joseph K. Swiggum, Stephen R. Taylor, Michele Vallisneri, Sarah J.
Vigeland, Weiwei Zhu
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in the pulsar timing band. Since the first pulsar timing array study of 3C 66B,

revised models of the source have been published, and timing array sensitivities and

techniques have improved dramatically. With these advances, we further constrain

the chirp mass of the potential supermassive black hole binary in 3C 66B to less

than (1.65±0.02)×109 M⊙ using data from the NANOGrav 11-year data set. This

upper limit provides a factor of 1.6 improvement over previous limits, and a factor

of 4.3 over the first search done. Nevertheless, the most recent orbital model for the

source is still consistent with our limit from pulsar timing array data. In addition,

we are able to quantify the improvement made by the inclusion of source proper-

ties gleaned from electromagnetic data over ‘blind’ pulsar timing array searches.

With these methods, it is apparent that it is not necessary to obtain exact a priori

knowledge of the period of a binary to gain meaningful astrophysical inferences.

2.2 Introduction

Continuous gravitational waves (GWs), defined by single-source cyclic GW

emission, are expected to arise from the supermassive black hole binaries (SMBHBs)

that form during a galaxy merger. When a SMBHB evolves such that it emits

GWs in the microhertz to nanohertz GW band (orbital periods of weeks to several

decades), a sufficiently massive and/or nearby SMBHB may be detectable by pulsar

timing arrays (PTAs; e.g., Aggarwal et al. 2019) (hereafter A19).

While GWs from individual sources in the PTA regime have been sought

after in multiple works (Arzoumanian et al., 2014; Feng et al., 2019; Jenet et al.,
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2004) through a variety of methods, none have been detected. However, numerous

advances have been made in the field of pulsar timing. As PTA experiments gain

longer time baselines and higher cadences and the numbers of millisecond pulsars

grows, sensitivity to GW sources increases. The notable ongoing PTA programs

in the world include the European PTA, Parkes PTA, and the North American

Nanohertz Observatory for Gravitational Waves (NANOGrav) (e. g. Desvignes et al.,

2016; Manchester et al., 2013; Arzoumanian et al., 2018b, respectively). Altogether,

these PTAs time approximately 100 pulsars to high precision with the goal of GW

detection, among other endeavors (e. g. Caballero et al., 2018; Hobbs et al., 2020).

In addition, sophisticated GW detection methods have been developed to de-

tect quadrupolar continuous-wave signals in the data of coordinated timing arrays

(e. g. Babak et al., 2016; Zhu et al., 2014; Aggarwal et al., 2019). However, past anal-

yses that used the most up-to-date methods have used ‘blind’ detection methods;

that is, the software did not consider any binary model information gained from elec-

tromagnetic data to directly benefit the search. In comparison, most works that do

target limits on specific sources using electromagnetic information have used smaller

data sets consisting of a single pulsar with as a periodogram approach (Jenet et al.,

2004; Feng et al., 2019), or have been derived from the stochastic GW background

(Zhu et al., 2019) rather than the full GW analysis pipeline. Here, we have combined

these methods in the first search of this type, where we used the entire NANOGrav

array of pulsars and full GW search analysis, while incorporating electromagnetic

data to conduct a more informed search for GWs from our test source, 3C 66B.

Since the report of a hypothesized orbital motion in the core of the galaxy
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3C 66B by Sudou et al. (2003) (hereafter S03), it has been an ideal test case for

searches for GWs from SMBHBs. Using long-baseline interferometry, the authors

found apparent elliptical motions in 3C66B’s radio core, modeling this motion as

the gyration of the jet nozzle due to an orbit-induced precession of the smaller

black hole’s jet. S03 proposed a period and chirp mass for the binary of 1.05 ± 0.03

years and 1.3 × 1010 M⊙, respectively. Given the relatively small redshift of the

galaxy (z = 0.02126), a binary with those properties would be emitting gravitational

radiation well within the sensitivity of pulsar timing arrays (PTAs).

As such, 3C 66B has long been a prime candidate for continuous GW detection.

It was the first object targeted for continuous wave detection, as reported by Jenet

et al. (2004) (hereafter J04), in which seven years of Arecibo timing data from

PSR B1855+09 (Kaspi et al., 1994) was used to search the Fourier domain timing

residuals (commonly referred to as a Lomb-Scargle periodogram), using harmonic

summing (Press et al., 1992), for a GW signal consistent with the binary period

modeled by S03. With these methods, they did not see evidence of a significant

signal, and were able to place an upper limit of 7 × 109 M⊙ on the chirp mass of

the system at a binary eccentricity of e = 0.

Since the study of J04, Iguchi et al. (2010) (hereafter I10), reported a 93-

day variability in the active galactic nucleus’s millimeter light that was interpreted

as likely due to doppler boosting of a relativistic outflow that is modulated by

orbital motion (its period differs due to geometric effects). The new model as-

sumed the 1.05-year orbital period from S03, but predicted an updated chirp mass

of 7.9 × 108 M⊙, almost a full order of magnitude lower than the upper limit set by
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J04.

3C 66B was also one of the objects targeted by Zhu et al. (2019), which used

a novel approach to test 3C66B indirectly by using the source to predict the GW

background strength implied by this source’s existence. They concluded that the

I10 model produced GW backgrounds that were larger than are currently probed

by pulsar timing arrays, implying that the source was not likely to be a binary with

parameters as proposed by I10.

The work reported here presents a Bayesian cross-validation framework in

which we use 3C66B’s binary parameter measurements as priors for our continuous

wave search. Our search has resulted in the most stringent direct GW derived limit

to date on the chirp mass of 3C66B’s candidate SMBHB. We also test, more generi-

cally within our search framework, what sensitivity improvements can be gained by

knowing the GW frequency of a target to increasingly good precision.

Therefore, we have quantified the improvement made by searching for GWs

from a specific source, including cases where the orbital period is only known with

large error or not known at all.

Note that because J04 used only one pulsar in their study, they would have

been unable to perform a formal experiment to detect 3C 66B, as the use of one

pulsar precludes the ability to demonstrate the quadrupolar signature that is unique

to the influence of gravitational waves. Thus, our study here is the first formal

targeted detection experiment for 3C 66B using a pulsar timing array.

This paper is laid out as follows: in section 2.3, we describe our data, mathe-

matical model, and software pipeline. In section 2.4 we report the detection Bayes

44



factor and chirp mass upper limit for 3C 66B, as well as results for new test meth-

ods. In section 2.5 and section 2.6, we present our conclusions as well as discuss

implications for future detection prospects of this and other SMBHBs.

2.3 Analysis Methods

2.3.1 Pulsar Timing and Electromagnetic Data

We make use of the NANOGrav 11-year Data Set (Arzoumanian et al., 2018b),

which provides high precision timing of 45 millisecond pulsars. Only the 34 pulsars

with baselines of at least 3 years are used for GW detection analyses (Arzoumanian

et al., 2018a). We describe slight differences in the use of the data set in this work

as compared to other papers in section 2.3. However, the majority of the data are

treated similarly to A19. Due to the 11-year timing baseline, the data set is most

sensitive to binaries with orbital periods of less than a decade.

The electromagnetic data we incorporate into our models are mainly derived

from S03 and I10, as well as the location from the NASA/IPAC Extragalactic

Database (NED)1. These values are summarized in Table Table 2.1. The right

ascension, declination, and luminosity distance are taken as constants throughout

the analysis, as the PTA sensitivity to sky location and distance is much lower

than any associated errors. For consistency with earlier work, we take the lumi-

nosity distance of 3C 66B to be 85 Mpc, as in S03. Therefore, all calculations use

1The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Labora-
tory, California Institute of Technology, under contract with the National Aeronautics and Space
Administration, and can be accessed at https://ned.ipac.caltech.edu/
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Table 2.1: GW Model Values and Uncertainties

Parameter Value Reference

Chirp Mass (M) 7.9+3.8
−4.5 × 108M⊙ I10

GW frequency (fGW) 60.4 ± 1.73 nHz S03

Redshift (z) 0.02126 Huchra et al. (1999)

RA 02h 23m 11.4112s Fey et al. (2004)

Dec +42d 59m 31.384s Fey et al. (2004)

GW strain (h) 7.3+6.8
−5.8 × 10−15 S03; I10

H0 = 75 km s−1 Mpc−1. Note that minor differences in the distance due to different

reports of redshift or H0 cause only a small fractional variation in the results. If the

fractional change in the luminosity distance is defined as

d85 ≡
(

dL
85 Mpc

)
, (2.1)

any GW strain limit can be converted to the reader’s preferred distance by multi-

plying the strain by d85, and M limits by multiplying by d
3/5
85 .

2.3.2 Signal Model

We use the methods presented in A19 for the generation of expected pul-

sar timing residuals influenced by a signal from a continuous GW from a circular

SMBHB. While we will not present the full derivation, we will summarize below the

relevant equations needed to follow our analysis on the NANOGrav data and refer

the reader to A19 for more detail. Note that throughout this section, equations are

written in natural units (where G = c = 1).
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Pulsar timing residuals describe the deviation of an observed pulse arrival time

from that predicted from a model based on spin, astrometric, interstellar delay, and

if needed, binary parameters of the pulsar. These are the basic data product that

we use to search for GWs, which will not be included in the pulsar’s timing model.

A vector of timing residuals (δt) that is fit without a GW for each pulsar is modeled

as

δt = Mϵ+ nwhite + nred + s , (2.2)

where M is the design matrix, which describes the timing model, and ϵ is a vector

of the linearized timing model parameter offsets from the best fit solution. In other

words, the timing model, which was originally derived without the presence of a

GW, must now be adjusted. We write a vector describing the white noise in the

data as nwhite, and the same for the red noise, nred, which is correlated over long

timescales. The noise terms are described in more detail in subsection 2.3.3.

The signal s can be derived as follows. For a GW source whose sky location is

described by polar and azimuthal angles θ and ϕ, the strain induced by the emitted

GWs is written in terms of two polarizations as

hab(t, Ω̂) = e+ab(Ω̂)h+(t, Ω̂) + e×ab(Ω̂)h×(t, Ω̂) , (2.3)

where h+,× are the polarization amplitudes and e+,×
ab are the polarization tensors,

which we write in the solar system barycenter (SSB) frame as
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e+ab(Ω̂) = m̂am̂b − n̂an̂b (2.4)

e×ab(Ω̂) = m̂an̂b + n̂am̂b, (2.5)

(Wahlquist, 1987). In these equations, we define Ω̂ as a unit vector pointing from

the GW source to the SSB, written as

Ω̂ = − sin θ cosϕx̂− sin θ sinϕŷ − cos θẑ . (2.6)

We define the vectors m̂ and n̂ as

m̂ = sinϕx̂− cosϕŷ, (2.7)

n̂ = − cos θ cosϕx̂− cos θ sinϕŷ + sin θẑ . (2.8)

The pulsar’s response to the GW source is described by the antenna pattern

functions (Sesana & Vecchio 2010; Ellis et al. 2012; Taylor et al. 2016 and references

therein)

F+(Ω̂) =
1

2

(m̂ · p̂)2 − (n̂ · p̂)2
1 + Ω̂ · p̂

, (2.9)

F×(Ω̂) =
(m̂ · p̂)(n̂ · p̂)

1 + Ω̂ · p̂
, (2.10)

where p̂ is a unit vector pointing from the Earth to the pulsar.
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Finally, we write the signal s induced by the GW, as seen in pulsar’s residuals,

as

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆s×(t). (2.11)

Here, ∆s+,× represents the difference between the signal induced at the Earth (the

Earth term) and that at the pulsar (the pulsar term), and can be written as

∆s+,×(t) = s+,× (tp) − s+,×(t) (2.12)

where t is the time at which the GW passes the SSB and tp is the time the GW

passes the pulsar.2 These times can be related from geometry by

tp = t− L(1 + Ω̂ · p̂) (2.13)

where L is the distance to the pulsar.

For a circular binary at zeroth post-Newtonian order, s+,× is given by (Wahlquist,

1987; Lee et al., 2011; Corbin & Cornish, 2010)

2This definition is occasionally written as the negative of the right side of the equation here,
e.g., s+,×(t) − s+,× (tp) as in A19. This is resolved with a change of convention in the definition
of the GW antenna pattern, as we have done here; thus all results are consistent between these
works.
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s+(t) =
M5/3

dLω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)
cos 2ψ

− 2 cos 2Φ(t) cos i sin 2ψ],

s×(t) =
M5/3

dLω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)
sin 2ψ

+ 2 cos 2Φ(t) cos i cos 2ψ],

(2.14)

where i is the inclination angle of the SMBHB, ψ is the GW polarization angle, dL

is the luminosity distance to the source, and M is the chirp mass, which is related

to the two black hole masses as

M =
(m1m2)

3/5

(m1 +m2)
1/5
. (2.15)

It is important to note that M and ω, in this case, refer to the observed redshifted

values.

For a circular binary, we relate the orbital angular frequency to the GW fre-

quency with ω0 = πfGW, where ω0 = ω (t0). For this work, as in A19 we define t0 as

the last MJD in the 11-year data set (MJD 57387). The orbital phase and frequency

of the SMBHB are given by

Φ(t) = Φ0 +
1

32
M−5/3

[
ω
−5/3
0 − ω(t)−5/3

]
, (2.16)

ω(t) = ω0

(
1 − 256

5
M5/3ω

8/3
0 t

)−3/8

, (2.17)

where Φ0 and ω0 are the initial orbital phase and frequency. As in A19, we use the

50



full expression for ω(t) to maintain consistency across runs, as this form is needed

to model the signal at the higher frequencies sampled in some runs, as described in

subsubsection 2.3.4.3.

2.3.3 Software and Analyses

In this work, we make use of NANOGrav’s GW detection package, enterprise3,

an open-source code written fully in Python that contains a built-in interface with

the pulsar timing data and noise models required to perform Bayesian GW analysis

(Arzoumanian et al., 2018a, limits and detection). Basic algorithms for Bayesian

continuous wave analysis are described in detail in a number of past works (e. g.

Ellis, 2013; Ellis & Cornish, 2016)

Using enterprise, we can use a priori constraints on a binary system, which

come from electromagnetic observation (for instance, the period of 3C66B) to set pri-

ors on GW parameters that are derived from the binary model. Within enterprise

we can easily add these priors to the timing model and noise model to obtain a

full model of the signal. We then perform Markov-Chain Monte Carlo (MCMC)

methods implemented in PTMCMCSampler4 to find the posterior distribution for each

of the free parameters. For ‘blind’ continuous wave (CW) searches as in A19, we

typically set uninformative priors, which are uniform across the allowed range of

values, for the binary system’s parameters, such as sky location, frequency, mass,

and distance to the source. Thus, the methods here could be considered a “targeted”

3https://github.com/nanograv/enterprise
4https://github.com/jellis18/PTMCMCSampler
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search by our use of informed priors.

For instance, in the simplest treatment of 3C 66B, a specific binary model has

been hypothesized, with measurements and associated unknowns in the mass, mass

ratio, and orbital frequency (e. g. S03; I10). We can use these electromagnetically

constrained parameters, in addition to knowledge of the location of this object on

the sky, to restrict our priors.5

Assuming a SMBHB with a circular orbit, a continuous GW signal can be

characterized by eight of the following nine parameters:

{θ, ϕ, fGW,Φ0, ψ, i,M, dL, h0}, (2.18)

which represent the GW source’s:

• position on the sky (θ, ϕ);

• GW frequency, related to the orbital frequency at some reference time (fGW);

• orbital phase at some reference time (Φ0);

• GW polarization angle (ψ);

• orbital inclination (i);

• chirp mass (M);

• luminosity distance (dL);

5Note that our restricted priors might not always be Gaussian; in some cases, electromagnetic
observations of a source may produce a model that contains greater complexity than Gaussian error
bars. In such cases, non-Gaussian priors must be used. The functionality exists in enterprise

for studies that would require such a setup. As an example, if cyclic flux variability is observed,
the period of variability might represent the fundamental orbital frequency, a harmonic, or even
a resonance, requiring a multi-valued prior. In our analysis, the reported errors on binary masses
from I10 were asymmetric, and thus for some analyses, our chirp mass prior required an asymmetric
distribution.
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• strain amplitude (h0), which is related to the chirp mass, GW frequency, and

luminosity distance .

The ninth parameter is redundant, as the strain amplitude h0 can be defined

by

h(t) = F+h+ + F×h× = Ah0 cos (Φ(t) − Φ0) (2.19)

(Sathyaprakash & Schutz, 2009), where

A =
(
A2

+ + A2
×
)1/2

A+ =
1

2
F+

(
1 + cos i2

)

A× = F× cos i,

and can be related to other physical parameters by

h0 =
2M5/3(πfGW)2/3

dL
. (2.20)

Since the strain is entirely determined by M, fGW, and dL, a limit on h0 based on

a PTA search can be translated into constraints on these source parameters. Since

the uncertainties on θ, ϕ, and dL are much smaller than the PTA sky localization

accuracy, by targeting a specific source with a known position and redshift, we can

set these parameters as constant values, and therefore reduce the number of search

parameters to five.

53



In all runs, there is also a set of free parameters associated with each pulsar

included in the PTA which are varied in the analysis. First of these is the pulsar

distance, which has a Gaussian prior in all cases. In pulsars where the distance

is reported in Verbiest et al. (2012), the Gaussian is defined using the recognized

distance and the associated error. For the remaining pulsars, the Gaussian prior is

set to a fiducial 1.0±0.2 kpc, which is consistent with the distribution of distances

and uncertainties obtained from Verbiest et al. (2012). Although this range does not

necessarily encompass the actual distances to most of these pulsars, it works as a

proxy value, and the choice of this value does not affect our results. As in A19, this

assumption can be seen to hold in the posteriors for these pulsars, as the prior is

returned in all cases, meaning this analysis cannot inform on the distances for these

pulsars. This is expected, as these pulsars are largely those with shorter observation

baselines, which are influencing the PTA to a smaller degree. The recovered pulsar

distances also affect the GW frequency difference between the Earth and the pulsar,

which therefore will be related to the chirp mass. When a wide range of chirp

mass values are allowed by the data, the uncertainty in the pulsar distances is not

significant to the final result of the search. Additionally, for small chirp masses, for

even a large change in the distance to the pulsar, the change induced in the GW

frequency at the pulsar is well below the resolution limit of the PTA (1/Tobs). This

angular frequency at the pulsar can be calculated as

ωp,0 = ω0

(
1 +

256

5
M5/3ω

8/3
0 dp(1 + Ω̂ · p̂)

)−3/8

, (2.21)
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where dp is the distance from the Earth to the pulsar.

Also included is the GW phase at the pulsar. While this quantity could be

calculated geometrically from the other parameters, including it as a search param-

eter mitigates potential issues sampling the complex parameter space, which arise

due to the large uncertainty on the distances to the pulsars compared to the GW

wavelength.

As is standard for these types of analyses, (e.g., Arzoumanian et al. 2018a;

Aggarwal et al. 2019) the white noise of each pulsar (described as EFAC, EQUAD,

and ECORR) is held fixed. The power spectral density of the pulsar intrinsic red

noise is modeled as

P =
A2

red

12π2

(
f

fyr

)−γ

yr3, (2.22)

where Ared (the red noise amplitude) and γ (the red noise spectral index) are also al-

lowed to vary in each pulsar in our Markov-Chain Monte Carlo simulation. Here, fyr

is 1/(1yr) in Hz. To assist the sampler, empirical distributions of the red noise pa-

rameters were made from single pulsar noise run posteriors and used to create jump

proposals. These determine how steps in the MCMC are taken through generating

proposed samples, and were added to significantly improve sampling and decrease

burn-in time for our analyses. For a more detailed description, see Appendix A of

A19.

Our treatment of the red noise in one pulsar, J0613−0200, required additional

noise modeling. As described in A19, this pulsar possesses extra unmodeled noise

processes that, in the 11-year continuous wave search, presented as an increase in
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strain upper limit at a frequency of 15 nHz. In this work, this manifested as poor

sampling in the CW parameters, particularly in fGW. Because of this poor sampling,

the fGW parameter would periodically get stuck near this frequency. Due to this

pulsar’s location relative to 3C 66B, which places it among the ten pulsars with

the highest antenna pattern response amplitudes, it is important to find a robust

solution to these issues rather than remove the pulsar from the analysis. To mitigate

this effect, we applied more sophisticated noise modeling techniques to allow the red

noise to deviate from the typical power-law, with corresponding jump proposals to

assist sampling. The noise model that was chosen is a t-process spectrum, which

allows for ‘fuzziness’ in the typical power-law spectrum by scaling the power spectral

density by a variable factor for each frequency. This model is created by generalizing

the typical Gaussian process prior to a Student’s t-distribution. This process will

be discussed in more depth in Simon & Hazboun (in prep), and, due to increasingly

complex data, will likely become more typical in future analyses.

Even with this model, poor sampling in the fGW parameter still occurred, and

can be attributed to unmodeled noise due to changes in the dispersion measure of

pulsar J1713+0747, caused by variations in the interstellar medium along the line

of sight (Lam et al., 2018; Hazboun et al., 2020). While this pulsar is NANOGrav’s

most sensitive in general, it is not particularly sensitive to 3C 66B, as shown in

Figure 2.1, and thus excluding it did not significantly effect the upper limit on

target 3C 66B. As such, this pulsar was removed from our search.

The above procedure is used for all enterprise runs as described in detail in

the next subsection.
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J1713+0747
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Figure 2.1: Sky map depicting the antenna pattern response amplitude (F 2
× + F 2

+)
due to a GW located at the sky position of 3C 66B. Also plotted are the locations
of the 34 pulsars used in GW analyses of the NANOGrav 11-year data set, with the
two pulsars in need of special attention noted with separate colors.
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2.3.4 Four Distinct Tests

We constructed several separate set-ups for enterprise for the purpose of

testing distinct hypotheses. The purpose of each of these, and the difference in

procedures within enterprise, is described below.

2.3.4.1 Detection

To determine if a CW from 3C 66B is detected, we conduct an enterprise

search using a single frequency, with a value corresponding to the 1.05-year orbital

period for a circular binary, making the final set of search parameters

{Φ0, ψ, i,M}. (2.23)

Due to the frequency resolution of the PTA, which is defined by the timing baseline,

it is reasonable to set a parameter with errors of this magnitude (Table 2.1) to

a constant value. However, we will explore the relaxation of this assumption in

later sections. Note that the I10 and S03 models make assumptions about the

electromagnetic data which may or may not be correct; our model simply tests the

presence of a SMBHB in this system at a period of 1.05 years.

The detection prior on M is log-uniform in the range 107 to 1010 M⊙, and is

sampled in log-space. This prior is convenient for calculating Bayes factors as a

measure of detection significance, using the Savage-Dickey formula (Dickey, 1971),

B10 ≡
evidence[H1]

evidence[H0]
=

p(h0 = 0|H1)

p(h0 = 0|D,H1)
, (2.24)
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Here, H1 is the model with a GW signal plus individual pulsar red noise, and H0 is

the model with individual pulsar red noise only. The prior and posterior volumes at

h0 = 0 are p (h0 = 0|H1) and p (h0 = 0|D,H1), respectively. We are able to apply

the Savage-Dickey formula because these models are nested (H0 is H1 where h0 = 0),

and p (h0 = 0|D,H1) is approximated as the fraction of quasi-independent samples

in the lowest-amplitude bin of a histogram of h0. The error in the Bayes factor is

computed as

σ =
B10√
n
, (2.25)

where n is the number of samples in the lowest amplitude bin. This process is done

once the samples in GW strain are calculated from the directly sampled parameters.

In the detection analyses, the red noise amplitude is sampled with a matching prior

(log-uniform in Ared). All other GW parameters are searched with a uniform prior.

2.3.4.2 Upper Limits

To set an upper limit on the chirp mass of 3C 66B, we again conduct an

enterprise search using a single frequency, with a value corresponding to the 1.05-

year orbital period, making the final parameter set as in the previous section (Equa-

tion 2.23). However, in contrast with the case for detection, the upper limit prior

on M is uniform (rather than log-uniform) meaning the prior set on the log10M

exponentially increases over the range {7, 10}. This is done as an astrophysically

reasonable prior, as we expect SMBHBs to lie anywhere in this mass range, while

still allowing for efficient sampling. Additionally, this prior choice allows the derived

59



upper limit to be as conservative as possible by allowing a higher proportion of high

chirp mass samples, and be independent from the choice of lower prior bound. In

the upper limit analyses, the red noise amplitude is sampled with a matching prior

(uniform in Ared). Upper limits are taken to be the value of the 95th percentile of

the posterior distribution. Following the approach of Arzoumanian et al. (2018a),

we calculate the error on upper limit calculations as

σ =

√
x(1 − x)/Ns

p
(
h0 = h95%0 |D

) , (2.26)

where x = 0.95 and Ns is the number of effective samples in the chain, which is

estimated by dividing the total number of samples by the autocorrelation length of

the chain.

2.3.4.3 Frequency Prior Testing

In addition to the tests described above of the S03 and I10 models, where the

GW frequency is fixed to discrete values as in other continuous wave searches (A19;

Arzoumanian et al. 2014), it is also crucial to test frequencies within the confidence

region of these values. For this aim, we have developed methods to directly sample in

fGW. These include specialized parameter groupings and jump proposals to help the

sampler move through the more complex parameter space. Using these techniques,

we are able to obtain an upper limit from the M posteriors for a variety of frequency

priors from various enterprise setups.

When searching over GW frequency, a log-uniform chirp mass prior is used,
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and the samples are re-weighted during upper limit calculations to modify the prior

choice from a uniform-in-log distributions of masses to a uniform-in-linear distribu-

tions of masses, the latter of which is more common in upper-limit analyses by virtue

of insensitivity to the lower sampling boundary. This both assists with sampling

and maintains a consistent prior on the GW strain, which is not directly sampled.

To match the M prior, a log-uniform prior is used on Ared. Since we are no longer

fixing fGW to a single value, our final parameter set for these searches was

{Φ0, ψ, i,M, fGW}, (2.27)

In addition, we also chose to limit our GW frequency prior to a range of 1–100

nHz, rather than the 1–300 nHz used in A19. Besides the PTA’s insensitivity at

these high frequencies, we expect a source to remain in these frequency bins for very

little time, with residence timescales as small as months, so their detection prospects

are minimal (Burke-Spolaor et al., 2019; Hazboun et al., 2019b).

Using the three priors shown in Table 2.2, we are able to find re-weighted

upper limits for a variety of scenarios. These include:

1. The GW frequency is known, and set to a single value

2. The GW frequency is known with large errors, and the error region is searched

over

3. The GW frequency is not known or has significant uncertainty, and the entire

PTA sensitivity band is searched over.

Then, we examined the change in re-weighted chirp mass upper limit as a function
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Table 2.2: Frequency Prior Testing Weighted Upper Limits

Scenario fGW Prior Weighted M Upper Limit (109M⊙)

1 Constant 1.57± 0.02

2 10σ 1.54 ± 0.01

3 Log-Uniform 8.68 ±0.07

of frequency prior width. In addition to allowing for possible errors in the orbital

period measured by S03, these widened priors allow us to test the feasibility of

this process on a less constrained source. Additionally, if there was any significant

frequency evolution in the source, a signal would still have the chance to be detected

in either of these setups. In addition to a single value and a uniform prior across the

PTA sensitivity bandwidth, we also use 10 times the uncertainty on the predicted

frequency as an example of a search with significant uncertainty. We also bin the

samples of the widest fGW search to interpolate between these three individual

prior widths. The results of this examination are described in section 2.4, and are

summarized in Figure 2.5

2.3.4.4 Test of a Specific Binary Model

To directly test the consistency of the model presented in I10 with the NANOGrav

data, we create priors for an enterprise run corresponding to the values presented

(see the first line of Table 2.3). For fGW, we are able to use a Gaussian prior, where

the error on the measured value from I10 directly corresponds to the standard de-

viation of the prior. However, M has uneven error bars, so a more complicated
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prior is needed. Here, we fit a skewed normal distribution to the reported value and

error, and construct a skewed normal prior based on this distribution, and also keep

a log-uniform prior on Ared. Therefore, the final parameter set for this search was

{Φ0, ψ, i,M, fGW}. (2.28)

To analyze the amount of information gained between the prior and posterior

models, we employed the Kullback–Leibler divergence (Kullback & Leibler, 1951).

We calculate this information gain in bits between the posterior p(x|d) and the prior

p(x) as

DKL(P∥Q) =

∫ ∞

−∞
p(x|d) log

(
p(x|d)

p(x)

)
dx. (2.29)

This is done for the distributions for both M and fGW. To maintain consistency

between forms of the posterior and the prior, we fit a skewed normal distribution to

both posteriors to directly compare to the prior.

2.4 Results

The results discussed in this section can be reproduced, and the MCMC data

examined, using code provided for the reader’s convenience.6

2.4.1 Detection

Using the setup for a detection run as described in subsubsection 2.3.4.1, we

find no evidence for a GW signal from 3C 66B. We calculate a Savage-Dickey Bayes

6https://github.com/nanograv/11yr_3c66b
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Figure 2.2: Posterior for the detection analysis described in subsection 2.4.1 (blue).
The vertical orange region describes the area of parameter space where a signal with
the parameters found by I10 would lie. While the upper end of the parameter space
is ruled out, there is clearly no value that is preferred by the sampler.

factor of B10 = 0.74 ± 0.02. Therefore, there is no evidence for the detection of a

GW signal in the data. The posterior for this run is plotted in Figure 2.2.

2.4.2 Upper Limits

As no GW signal is detected from 3C 66B, we set upper limits on the chirp

mass using the procedure described in subsubsection 2.3.4.2. Using the constant-

value frequency prior at 60.4 nHz (corresponding to the 1.05-year orbital period),

we set a 95% upper limit of (1.65±0.02)×109 M⊙ for M of the SMBHB in 3C 66B.

This value corresponds to a strain of (2.47±0.05)×10−14. To compare, the expected

strain of the model in I10 is (7.2+6.8
−5.8) × 10−15. As can be seen in Figure 2.3, while

we achieve a factor of 4.3 improvement over the limit set by J04, we cannot rule out

the I10 model. The posterior distribution of samples does include a peak at about
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Figure 2.3: The chirp mass posterior histogram is plotted in blue, with a vertical line
depicting the 95% upper limit. Shown in orange is the chirp mass upper limit of I10,
with the shaded region representing the error on the value. With these methods,
the I10 mass estimate is impossible to rule out. We also note that the peak in the
posterior at 1 × 109M⊙ is not statistically significant.

1× 109 M⊙, which is within the error region for the chirp mass calculated from I10.

However, this peak is not statistically significant, and is able to be traced to a single

pulsar, J1909−3744. By examining the posterior distributions constructed from

samples corresponding to this peak, we find structure in the GW phase posterior

at J1909−3744 that does not occur for any other pulsar. This likely occurs due to

covariances between the model and sinusoidal behavior caused by noise processes in

the data as a real GW signal would be recovered by more than one pulsar. Therefore,

this peak in the posterior is not indicative of a signal, and our upper limit can be

considered robust. We will note that the upper limit listed can be calculated for the

reader’s preferred distance using the transformation described in subsection 2.3.1.
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2.4.3 Frequency Prior Testing

As described in subsubsection 2.3.4.3, we also performed tests to quantify how

much our upper limits might improve if we have constrained (through electromag-

netic observation) the orbital frequency of the target. While for 3C 66B the orbital

frequency is assumed to be known to within small errors, for other targets, a fre-

quency may not be known or be only poorly constrained. This test provides a sense

of how well the period must be constrained to provide effective sensitivity gains for

a GW search.

Using the three scenarios described above, we are able to characterize the

change in re-weighted upper limit between the setups. The result of the log-uniform

prior search over the entire frequency band is summarized with Figure 2.4. The

white area represents the area of M-fGW parameter space ruled out in this analysis.

From the uniformity of the samples over the parameter space, it is clear there are

no sampling issues. This is due to the improved sampling methods described in

subsection 2.3.3. The weighted 95% upper limit is plotted for each frequency bin,

allowing us to quantify for which frequencies we are the most sensitive to 3C 66B.

We note that for the very lowest frequencies, the upper limit is dependent upon the

choice of prior, as the search cannot rule out any of the prior range.

In addition to the three runs described above, it was also possible to infer the

upper limit that would be derived from a run with a frequency prior width between

those of the three separate runs. To do this, we bin the samples in the scenario 3

(widest fGW prior) run to keep only a certain range of frequencies and recalculate
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Figure 2.4: 2D histogram of samples in the log-uniform prior setup. Also plotted is
the weighted 95% upper limit for each frequency bin (blue) from the scenario 3 setup.
The white area indicates the section of parameter space ruled out by our search.
It is clear from the uniform distribution of samples across all frequency and mass
channels that all sampling issues have been resolved. This uniform distribution also
makes clear that there is no indication of a signal at the distance and sky location
of 3C 66B. We only plot the upper half of the parameter space in M to resolve
more detail. Below log10M = 8.5, all sampling is uniformly distributed, identically
to the upper half of the figure. For comparison, the scenario 1 weighted upper limit
(orange triange) and I10 chirp mass estimate (red star) are also shown.
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the weighted upper limit for this subset. These bins increase symmetrically in log

space about the value of fGW reported by S03, from a log space full-width of 0 dex (a

constant) until the upper bound reaches fGW = 100 nHz. After this, only the lower

bound expands to reach a full log space full-width of 2 dex (essentially, 2 orders of

magnitude in linear space). The weighted upper limits calculated from these binned

samples are plotted in Figure 2.5.

Also plotted in Figure 2.5 are the upper limits from the three individual runs.

From the consistency of these points with the calculated curve, it is clear that this

technique is robust. Additionally, this shows the feasibility of searching over fGW,

as the results are consistent with those calculated for both an individual frequency

and a small range.

As can be seen in Figure 2.5 and Table 2.2, there is nearly an order of mag-

nitude difference in the upper limits derived from frequency varied runs of different

prior widths. Because the upper limits at the very lowest frequencies are depen-

dent upon the prior choice, the difference seen here is a lower limit. However, from

the curve calculated from binned samples, we see that this increase does not begin

until about one order of magnitude in frequency space about the I10 value is in-

cluded. This implies that a targeted search such as this is worthwhile even without

exact orbital information, as long as the frequency is known to within an order of

magnitude.
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Figure 2.5: Chirp mass upper limits plotted with respect to frequency prior width
(blue). Also shown as horizontal lines are previous upper limits set by S03 (red), J04
(green), and I10 (orange), from top to bottom. Shaded regions describe error bars
on the quoted limit. It is clear that none of these upper limits rule out that of I10.
However, this figure accentuates the fact that when a period is known to less than
1 order of magnitude of precision, the limits on the target’s mass improve by nearly
one order of magnitude; that is, while the tightest prior produces the lowest upper
limit, moderately wide priors also produce similar results, indicating that perfect
orbital models would not be necessary to perform such a search on other systems.
It is not until the prior spans approximately an order of magnitude that sensitivity
is lost. Also plotted for comparison are the weighted upper limits for each of the
three separate runs.
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Figure 2.6: Posteriors (blue) and priors (orange) for the direct test of the model
presented in I10. Vertical bars mark the 16.86, 50, and 84.13 percentiles of each, to
represent the 1σ error bars.

2.4.4 Test of a Specific Binary Model

To directly test our sensitivity to a GW from the model of 3C 66B proposed

in I10, we directly test priors as described in subsubsection 2.3.4.4. In Figure 2.6,

we can compare the prior and posterior for both fGW and M. These distributions

are quantified in Table 2.3, where the error on the posterior values are calculated

with the percentiles of the posterior distribution corresponding to 1σ error bars.

The values of fGW are consistent with those of the prior, but for M, we are able to

significantly lower the upper bound on the value, effectively ruling out part of the

high mass region of the model.

Additionally, we report the information gained between the posterior and the

prior as described in subsubsection 2.3.4.4. The differences in the distributions for

fGW produce a KL divergence of 0.0096, while those of the M distributions produce

a KL divergence of 0.2597. While neither of these values is large, it is clear that

much more information is gained about the chirp mass of 3C 66B from this model
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Table 2.3: Model Testing Prior and Posterior Values

log(Frequency) log(Chirp Mass)

Iguchi (Prior) −7.219 ± 0.012 8.90+0.21
−0.24

This Work (Posterior) −7.217+0.012
−0.013 8.87+0.16

−0.24

test than the GW frequency.

2.5 Discussion

To provide context for the upper limit on 3C 66B set in this work, we can

compare to the limits set in A19, which do not have the benefit of electromagnetic

constraints (i. e. a ‘blind’ search). This comparison will allow us to estimate the

improvement in sensitivity gained by including electromagnetic data over a typical

blind search. By comparing our strain upper limit of (2.47 ± 0.05) × 10−14 to the

sensitivity curve in Figure 3 of A19, where the strain upper limit at the nearest

searched frequency is 5.3 × 10−14 nHz, we observe that we have gained a factor of

2.1 in sensitivity by holding the source position fixed in our search. Note that a

much greater improvement comes from knowing the binary candidate’s period, as

demonstrated in Figure 2.4 and Figure 2.5.

With the framework developed in Hazboun et al. (2019b) we can construct

detection sensitivity curves to estimate the PTA that will be required to detect or

rule out the mass model presented in I10. The hasasia (Hazboun et al., 2019a)

package7 allows us to construct these detection sensitivity curves using a straight

7https://hasasia.readthedocs.io/
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forward matched filter statistic and to simulate PTA data with control over the

number of pulsars, observing cadence, timing precision, and data length. Using

this software to estimate an idealized signal-to-noise ratio (S/N) (see Eqn (79) in

Hazboun et al. (2019b)), assuming the parameters in I10 and using the pulsar noise

parameters in Arzoumanian et al. (2018b) we obtain S/N = 0.87. We used this

software to extend the baseline of the the existing 11-year NANOGrav data set by

adding new data to the existing pulsars with a timing precision and cadence that

matches recent data. We also augmented the PTA, adding new pulsars with timing

precisions and cadences similar to those already in the array; we added pulsars for

each projected year at a rate comparable to the current growth-rate of NANOGrav,

which has been approximately 7 pulsars per year for the past three data sets.

We find that NANOGrav should be able to detect or rule out the existence of

a SMBHB in 3C 66B with the I10 mass within five to eight years from the end of the

data set considered here. However, while hasasia allows us to calculate the PTA’s

sensitivity to a CW at a specific sky location, it is unable to set other parameters

(such as luminosity distance) as known due to electromagnetic information about

the GW source as is done in this work. As is discussed above, including source

parameters that are electromagnetically derived to reduce the parameter space of

the GW search allows for an increased sensitivity. Because of this, using electro-

magnetic information will likely allow us to accelerate this estimated timeline. To

more reliably estimate this timescale, detailed simulation work will be necessary

to quantify the improvement made by including electromagnetic information over

typical searches.
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Because the sensitivity of the array depends heavily on the observing baseline

of each pulsar, the inclusion of additional data can help tremendously. Data of this

sort are accessible through the IPTA (Perera et al., 2019), and followup analyses of

3C 66B by the international community could prove fruitful. This timeline to the

PTA sensitivity required to confirm or deny 3C 66B as a SMBHB will be reduced

with the more rapid addition of pulsars to the array, e.g., by adding more than 7 per

year. This improvement will be accelerated if the newly included pulsars are near

the sky location of 3C 66B, as, currently, there are few pulsars in the array that are

very sensitive to 3C 66B. To accomplish this, pulsar searches should be undertaken

near the sky locations of potential PTA targets to begin improving our sensitivity

more rapidly. Some pulsars in this area of the sky can be included through use

of data provided by the IPTA (Perera et al., 2019), showing once again that an

international effort to detect 3C 66B could be worthwhile.

In addition to the results for GWs from 3C 66B, our work has many impli-

cations for detection prospects of other binary candidates. As discussed in subsec-

tion 2.4.3 and shown in Figure 2.5, for 3C 66B, it was not until we widened our

prior to span an order of magnitude in frequency space on either side of the target

frequency that sensitivity was lost. For similar candidates, particularly those at

similarly high orbital frequencies, we presume that this result will hold. Therefore,

as long as the sky location and luminosity distance of a potential target are known,

a search of this type is worth attempting if at least an estimate of an orbital period

can be obtained. We will caution that this improvement will differ depending on

the sky location of the source, and that the amount of frequency-space that can be

73



effectively searched with this method will be larger for higher-frequency sources. As

can be seen in Figure 2.4, it is the inclusion of samples at low frequencies that raise

the upper limit. However, typical errors on binary periods are quite a bit smaller

than the limit suggested here, meaning that this method should prove useful for

most binary candidates. This method will also account for any frequency error

due to unaccounted for frequency evolution of the SMBHB, which, in the case of a

detection, would provide important constraints for evolutionary models.

2.6 Conclusions

In this work, we present a new method for performing multi-messenger searches

for individual SMBHBs, using 3C 66B as a test case. 3C 66B was first identified as

a binary candidate by S03, and was first visited by PTAs in J04, which ruled out the

proposed binary model. In the intervening 15 years, a revised model was published

by I10 and PTA data and analysis methods have greatly improved. We used the

NANOGrav 11-year data set, as well as the collaboration’s flagship GW detection

package, enterprise, to search for GWs from 3C 66B. Here, we are able to limit

3C 66B’s chirp mass, at 95% confidence, to (1.65 ± 0.02) × 109 M⊙, a factor of 4.3

smaller than the limit set in J04. However, we are unable to rule out the existence

of a binary corresponding to the revised model proposed in I10.

In addition to directly placing a limit on the chirp mass of 3C 66B for the

published orbital period, we are able to quantify how much this multi-messenger

approach increases our sensitivity over a typical ‘blind’ PTA search. We have con-
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ducted a search on real data that includes GW frequency as a free parameter, and

from this analysis, we learn that by including frequency constraints from electromag-

netic binary source measurements to restrict the prior, we can gain approximately

an order of magnitude in sensitivity when compared to a frequency-blind search

spanning the whole PTA band. However, this drop in sensitivity does not occur

until a relatively wide range of frequencies is searched over, meaning that this ap-

proach will be useful even for candidates with relatively poor constraints on their

orbital periods.
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Chapter 3

Quasars with Periodic Variability: Capabilities and Limitations of

Bayesian Searches for Supermassive Black Hole Binaries in

Time-Domain Surveys

3.1 Abstract

Supermassive black hole binaries (SMBHBs) are an inevitable consequence of

galaxy mergers. At sub-parsec separations, they are practically impossible to resolve

and the most promising technique is to search for quasars with periodic variability.

However, searches for quasar periodicity in time-domain data are challenging due

to the stochastic variability of quasars. In this paper, we use Bayesian methods to

disentangle periodic supermassive black hole binary (SMBHB) signals from intrinsic

damped random walk (DRW) variability in AGN light curves. We simulated a wide

variety of realistic DRW and DRW+sine light curves. Their observed properties

(cadence, gaps, photometric uncertaintly) are modeled after the Catalina Real-time

Transient Survey (CRTS) and expected properties of the upcoming Legacy Survey

of Space and Time (LSST) from the Vera C. Rubin Observatory. Through a careful

Submitted to ApJ.
Contributing authors: Maria Charisi, Stephen R. Taylor, Sarah Burke-Spolaor
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analysis of parameter estimation and Bayesian model selection, we investigate the

range of parameter space for which binary systems can be detected. We also ex-

amine which DRW signals can mimic periodicity and be falsely classified as binary

candidates. We found that periodic signals are more easily detectable if the period is

short, the amplitude of the signal is large, and the contribution of the DRW noise is

weak. We saw similar detection rates both in the CRTS and LSST-like simulations.

On the other hand, the false detection rate depends on the quality of the data and

is minimal in LSST, with every set of DRW parameters being equally capable of

producing false positives in CRTS. Our idealized simulations provide an excellent

way to uncover the intrinsic limitations in quasar periodicity searches and set the

stage for future searches for supermassive black hole binaries.

3.2 Introduction

Supermassive black hole binaries (SMBHBs) should form frequently in the af-

termath of galaxy mergers (Haehnelt & Kauffmann, 2002). However, the evolution

from this initial stage to the formation of a bound binary and the final coalescence

is complex. After the galaxy merger, the SMBHs hosted in the cores of their parent

galaxies sink to the center of the created galactic remnant through dynamical fric-

tion. At scales of a few parsecs, stellar scatterings and interactions with ambient

gas continue shrinking the binary orbit. If these processes remove sufficient energy

and angular momentum so that the binary efficiently overcomes the “final-parsec

problem”, then gravitational waves (GWs) dominate the binary decay and drive the
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binary to the final merger (Begelman et al., 1980; Colpi, 2014; De Rosa et al., 2019).

The most massive binaries (total mass of 108 − 1010M⊙) emit GWs at low

frequencies (few to hundreds of nanohertz). GWs in this frequency band can be

detected by Pulsar Timing Arrays (PTAs), and offer one of the only direct probes

to SMBHBs at close (roughly milli-parsec) separations (Burke-Spolaor et al., 2019;

Taylor et al., 2019). Electromagnetic observations can also infer the existence of

a SMBHB, and provide a unique probe of the binary’s environment (Bogdanovic

et al., 2021). The detection of GWs along with associated electromagnetic counter-

parts will mark the beginning of multi-messenger astrophysics in the low-frequency

regime (Kelley et al., 2019a). In fact, multi-messenger techniques are already being

developed. Incorporating information from SMBHB candidates in GW searches al-

lows us to place tighter constraints on the SMBHB chirp mass (Arzoumanian et al.,

2020b), and can boost the detectability of the candidate in a typical “blind” search

(Liu & Vigeland, 2021).

Closely-separated SMBHBs in the GW regime may be detected as Active

Galactic Nuclei (AGNs) or quasars with periodic variability (Haiman et al., 2009).

Previous studies have demonstrated a link between AGN and galaxy mergers; this

follows naturally from the idea that the mergers bring significant amounts of gas

to the central regions of the post-merger galaxies, which may actively accrete onto

the SMBHs, triggering AGN activity (Goulding et al., 2018). Similarly, binaries

are expected to be surrounded by significant amounts of gas, which can give rise to

bright quasar-like electromagnetic emission (Armitage & Natarajan, 2002; Tanaka

et al., 2012; Bogdanovic et al., 2021).
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Specific predictions for periodic variability in binary AGN has been demon-

strated in multiple hydrodynamical simulations of binaries embedded in gaseous

disks (MacFadyen & Milosavljević, 2008; D’Orazio et al., 2013; Roedig et al., 2012;

Farris et al., 2014). The consensus of these simulations is that the binary carves

out a central cavity, i.e. a region of low-density gas. As the binary orbit perturbs

the edge of this cavity (especially the secondary SMBH, which moves closer to the

edge), it pulls streams of gas inwards. Periodic accretion onto the SMBHs from

these streams may produce periodic brightness fluctuations. Another mechanism

that produces periodic variability is relativistic Doppler boosting (D’Orazio et al.,

2015; Tang et al., 2018). Some of the gas that penetrates the cavity ends up bound

to the SMBHs forming mini-disks which orbit with relativistic speeds. The emis-

sion from these mini-disks may be periodically boosted (and dimmed), even if the

rest-frame luminosity is constant. This signature is prominent for unequal-mass bi-

naries orbiting close to edge-on, where the emission of the faster-moving secondary

—which is also typically brighter—dominates the variability.

In recent years, vast photometric databases of time-domain surveys have pro-

vided light curves for large samples of AGNs, which are ideal for searches of SMB-

HBs. Numerous candidates have been identified from systematic searches in optical

surveys, such as the Catalina Real-time Transient Survey (CRTS; Graham et al.

2015b), the Palomar Transient Factory (PTF; Charisi et al. 2016), the Panoramic

Survey Telescope and Rapid Response System (Pan-STARRS; Liu et al. 2019), and

the Dark Energy Survey (DES; Chen et al. 2020). However, AGN also have intrin-

sic stochastic variability which makes periodicity identification quite difficult. AGN
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variability is successfully modeled by a “damped random walk” (DRW) model, which

takes the form of a red-noise process at high frequencies, but a white-noise process at

low frequencies (MacLeod et al., 2010; Koz lowski et al., 2010). This intrinsic noise

is impressively capable at mimicking periodicity, particularly in sparsely sampled or

short-baseline time series (Vaughan et al., 2016). So far, studies have focused on

additional signatures for the binary nature of candidates, such as multi-wavelength

Doppler boost (D’Orazio et al., 2015; Charisi et al., 2018; Xin et al., 2020a), period-

icity with multiple components (Charisi et al., 2015), X-ray spectral excess (Saade

et al., 2020b) and distorted radio jets (Kun et al., 2015; Mohan et al., 2016).

However, multi-wavelength follow-up monitoring of candidates is demanding

and such studies will be impractical (if not impossible) in the upcoming generation

of surveys like the Legacy Survey of Space and Time (LSST) of the Vera C. Ru-

bin Observatory (LSST Science Collaboration et al., 2009). LSST is expected to

observe over 20 million of quasars, delivering an unprecedented data set for quasar

periodicity searches both in terms of quality and quantity. If we extrapolate the de-

tection rate of SMBHB candidates in the current time-domain surveys (∼ 1/1000)

to LSST, we expect several thousands of candidates. However, we know that these

samples likely contain many false detections (as demonstrated by their tension with

the GW background limits when extrapolated to a full binary population; Sesana

et al. 2018). On the other hand, theoretical models predict that hundreds of genuine

binaries should be detectable in LSST (Kelley et al., 2019b; Xin & Haiman, 2021;

Kelley et al., 2021). Because of this, the time is ripe to develop a careful model

selection in order to reliably identify binary candidates.
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In this work, we explore the capabilities and limitations in identifying quasars

with periodic variability in the data sets of the upcoming decade. We simulate ide-

alized AGN light curves that contain DRW noise with realistic parameters, while

a subset of those contains sinusoidal variations on top of the DRW noise. We con-

struct a pipeline that employs Bayesian model selection and parameter estimation

to identify periodic signals (i.e. the binary candidates) in our sample, and constrain

their parameters. Finally, we quantify our ability to select genuine binaries and the

degree of contamination with false detections.

This paper is laid out as follows. In section 3.3, we describe the methodology

for creating simulated light curves, as well as the Bayesian parameter estimation and

model selection methods. In section 3.4, we examine the efficacy of our Bayesian

pipeline, as well as present a statistical analysis of this efficacy across the simulated

SMBHB population. In section 3.6 we present the conclusions we can draw from

our analysis. These include the following key findings:

• Our method can recover orbital periods extremely accurately (even very long or

short values), provided the signal is of sufficient strength. The detectability of

periodicity also depends on the amplitude of the sinusoid and the contribution

of the DRW noise.

• While a DRW process can mask some sinusoids in current surveys, the false

positive rate is very low for LSST, and thus it is expected to deliver reliable

candidates.

• Particular combinations of DRW and sinusoidal parameters are more likely to

mask a signal than others. This will help inform future analyses as we attempt
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Figure 3.1: An example of simulated light curves containing a DRW process (top
panel) and a DRW process plus a sinusoid (bottom panel). The sinusoid is shown
in the solid black curve, while the simulated data for a CRTS-like and LSST-like
survey are shown as red X’s and blue points, respectively. Depending on the DRW
and sinusoid parameters, it is possible for these two models to produce deceptively
similar results.

to confront the massive data volume that will be produced by LSST.

Finally, in section 3.5, we discuss caveats of our method, future improvements,

and the prospects of multi-messenger observations of binaries. This work presents

a necessary first step in preparation for the flood of SMBHB candidates in the

upcoming Rubin era.

3.3 Methods

As mentioned above, identifying periodicity in quasars is challenging because

of the intrinsic stochastic variability of quasars, the relatively short observation

baselines compared to the potential binary periods, and the noisy, irregular data.

Our goal is to explore the variety of binary signals (e.g., range of periods, amplitudes)

that can be detected in current and upcoming time domain surveys. We also aim to

assess the expected false positive rate in systematic searches for quasar periodicity.

82



For this, we simulate typical quasar light curves with realistic DRW noise properties

as well as SMBHB light curves which include sinusoidal signals with a variety of

periods and amplitudes on top of DRW noise. We chose to model the binary signal

with a pure sinusoid both for simplicity, and because previous searches for quasars

with periodic variability have focused on quasi-sinusoidal signals. We construct a

periodicity detection pipeline that employs a Bayesian model parameter estimation

and selection between a DRW and DRW+sine model, and apply it in a wide range

of simulated light curves. Below we describe the light curve simulations and the

periodicity detection method.

3.3.1 Simulated Data

To ensure that our analysis was realistic, we constructed our simulated light

curves with properties that reflect the observational capabilities of ongoing and

planned time-domain surveys. Each survey has a distinct observing strategy (de-

pending on their primary scientific objectives), which defines the average cadence

(frequency of observations), and observation baseline (length of light curve). Addi-

tionally, each survey has a limiting depth, which depends on the size of the telescope

used and the exposure time of the typical observation. This defines the photometric

uncertainty, which is typically a function of apparent magnitude; dimmer sources

have larger photometric errors and vice versa. To limit the complexity of our anal-

ysis, we did not incorporate the magnitude dependence of the photometric errors,

and used an average photometric error for all the simulated light curves. However,
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a future study should address this and other limitations, as discussed in section 3.5.

To assess the detectability of SMBHBs in current surveys, we used CRTS-like light

curves, whereas for future surveys, we used idealized LSST light curves as described

below.

In order to construct the CRTS-like light curves, we extracted 10,000 AGN

light curves spread across the sky from the online database.1 We examined the

sampling pattern in this set, which turns out to be similar for most light curves. In

particular, for each night the source was observed, the light curves contain clusters of

four successive data points, then the next set of observations is taken about one week

to one month later for as long as the source is observable (for about six months).

Subsequently, there is a significant gap of no data for about six months, e.g., when

the source is obstructed by the sun or below the horizon of the specific telescope, and

then the pattern roughly repeats. For the sampling of the simulated light curves,

we use one typical light curve from that sample as a template. This light curve

has an average span of ∼20 days between successive nights of observations, gaps

of ∼200 days, and a total observation baseline of ∼8 years. This gives an effective

cadence (observation baseline divided by the number of data points) of 46 days.

Since very short term variations are not relevant for our study, this calculation

did not include multiple observations within the same night. By examining the

distribution of photometric errors in these 10,000 light curves, we found that the

peak occurs at ∼ 0.1 mag, and thus set the average photometric uncertainty in the

CRTS-like light curves at this value.

1http://nesssi.cacr.caltech.edu/DataRelease/
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Survey Mean Cadence Photometric Baseline
(days) Error (mag) (years)

CRTS 46 0.1 8
LSST 7 0.01 10

Table 3.1: Average parameters for each survey used to create simulated data sets.

For LSST, the nominal duration is set to ten years, but the observing strategy

is not finalized yet (LSST Science Collaborations et al., 2017). The majority of time

will be spent on the deep-wide-fast survey mode, which will cover the 18,000 deg2

footprint with a regular cadence. We set our simulation cadence at a conservative

value of seven days, while actual observations may repeat every five or even three

nights. We note, however, that LSST will rotate between six filters, and successive

observations will provide data in different photometric bands. We do not take this

into account in our simulations, but we discuss this caveat further in section 3.5.

Since the observations will not repeat in exactly seven day increments, we create a

linear grid of time stamps separated by seven days and add Gaussian noise with a

standard deviation of one day. In our idealized LSST-like light curves, we did not

include gaps between observations, although we recognize that they are unavoidable

and the observed light curves will have gaps of a few months each year (but see

also section 3.5). Finally, we set the average photometric error at 0.01 mag. See

Table 3.1 for a summary of the parameters of the simulated light curves for each

survey.

With the observed properties of the time series, we proceeded to simulate

DRW and DRW+sine light curves following the steps from Charisi et al. (2016).
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The power power spectral density function (PSD) of DRW is

P (f) =
4σ2τ

1 + (2πτf)2
, (3.1)

where σ2 is the variance of the light curve data points, τ is a characteristic DRW

timescale, and f is the Fourier-space frequency. With the inverse Fourier transform

of the PSD, we generate evenly sampled light curves (with ∆t = 1 d) using the

prescription from Timmer & Koenig (1995), included in the python package astroML

(Vanderplas et al., 2012; Ivezić et al., 2014). We downsample the data to match

the desired sampling pattern of the survey setup described above and in Table 3.1.

Next, we add Gaussian errors with zero mean and standard deviation equal to the

average photometric uncertainty of the respective survey (Table 3.1).

For the set of simulations that also include SMBHB signals, we inject a sinusoid

on top of the DRW light curve. This signal has the form

s(t) = A sin

(
2π

P
(t− t0)

)
(3.2)

where A is the amplitude in magnitudes, P is the period of the sinusoid, and t0 is a

reference time. Both the period and the amplitude of the sinusoid can be linked to

the parameters of the binary; the observed period is typically the redshifted orbital

period of the binary, and if the periodicity is produced by relativistic Doppler boost,

the amplitude A depends on the line of sight velocity of the secondary SMBH.

Example time series with a simulated DRW-only process, and DRW+sine, can be
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seen in Figure 3.1, where with blue (and red) data points we show the LSST-like

(and CRTS-like) light curve.

We generated DRW and DRW+sine light curves for a wide variety of these five

input parameters (P, A, t0, σ, and τ). First, in order to test the Bayesian pipeline’s

ability to recover the model parameters, we choose values across an extreme range

of τ corresponding to those used in Koz lowski (2017). Injected values are randomly

selected from the range τ = [10−3T, 15T ], where T=10 yr is the nominal LSST

observation baseline. However, for the model selection analysis, we restrict the

values of τ to a realistic distribution derived from those presented in MacLeod

et al. (2010). For σ, we draw values from a log-uniform distribution ranging from

[−1.6,−0.25], corresponding to a range of greater than an order of magnitude in

σ, to encompass a wide range of DRW variability amplitudes similar to the range

presented in MacLeod et al. (2010).

The periods of the injected sinusoids range from 30 days to 10 years. The

maximum value is set by the LSST baseline, so that at least one full orbital cycle is

observed. This wide range of periods covers all the potential SMBHBs that have GW

frequencies detectable by PTAs. However, it does not include very high-frequency

SMBHBs possibly detectable by the Laser Interferometer Space Antenna (LISA; Xin

& Haiman 2021), which are expected to have periods of only a few days (P < 1−2 d).

In section 3.5, we explore whether such short period binaries need a distinct strategy

for detection, such as accounting for filter alternation and combining the multi-band

data in a single light curve. Previous studies have required that at least 1.5 cycles

(or more) of the periodicity be observed within the available baselines. We relax this
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requirement to assess the ability to recover binaries in this regime and the resulting

contamination with false positives. This is significant, since binaries evolve slower at

large separations, and long-period binaries are expected to be more common. The

reference time is set to any time between 0 and the period of the specific realization,

which corresponds to a phase range of [0, 2π]. The amplitude is set to a value in

the range [0.05, 0.5] mag. These distributions of simulated values are summarized

in Table 3.2.

3.3.2 Likelihood and MCMC Methods

For the DRW process defined in Equation 3.1, the covariance matrix S that

determines the correlation between two data points at times ti and tj is given by

Sij = σ2 exp

(
−|ti − tj|

τ

)
(3.3)

where σ2 and τ are the same values defined above. The full covariance matrix is

C = S + N , where N = diag(σ2
err) is the noise covariance matrix with σerr the

survey’s photometric error. The DRW likelihood function marginalized over the

mean of the light curve is given by

P (y | p) ∝ |C|−1/2
∣∣LTC−1L

∣∣−1/2

× exp

(
−yTC−1

⊥ y

2

)
,

(3.4)
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with y the vector of the data (observed magnitudes) and L a vector of ones with a

length equal to the number of data points, and

C−1
⊥ = C−1 − C−1L

(
LTC−1L

)−1
LTC−1. (3.5)

For a detailed derivation we refer the reader to Koz lowski et al. (2010). The likeli-

hood function for the DRW+sine model is given by

P (y | p) ∝|C|−1/2
∣∣LTC−1L

∣∣−1/2

× exp

(
−(y − s)TC−1

⊥ (y − s)

2

)
,

(3.6)

with s a vector of the sinusoid s(t) = Asin(2π/P (t − t0)) sampled at the observed

times.

We utilize Markov-Chain Monte Carlo (MCMC) methods for both parameter

estimation and model selection. In particular, we sample the likelihood using a

parallel tempering MCMC sampler called PTMCMCSampler (Ellis & van Haasteren,

2017). This sampler was developed for GW searches in PTA data sets, which employ

similar Gaussian likelihoods for the analysis of the PTA time series. The main

advantages of using this sampler is that it allows for easy implementation of custom

jump proposals within the MCMC sampler and the pipeline developed here can

easily be extended to multi-messenger searches of SMBHBs with joint PTA and

time-domain data (see section 3.5).

In general, we use relatively uninformative priors for our MCMC analyses

(either uniform or log-uniform), as summarized in Table 3.2. The priors typically
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Parameter Simulation Distribution Prior

log10σ Log-Uniform[–1.6, –0.25] Log-Uniform[–1.6, –0.25]
log10τ (Wide Range) Log-Uniform[0.56, 4.73] Log-Uniform[0.56, 4.73]

log10τ (Realistic Distribution) SkewNorm(3.0, 0.5, –1.4) Log-Uniform[0.56, 4.73]
log10P Log-Uniform[1.5, 3.5] Log-Uniform[1.5, 3.5]
A Uniform[0.05, 0.5] Uniform[0.05, 0.5]
t0 Uniform[0, 3650] Uniform[0.05, 0.5]

Table 3.2: Simulation ranges for each of our five parameters, and prior shapes and
ranges for our MCMC. Note that for model selection analyses, we simulate the
realistic distribution of τ values derived from MacLeod et al. (2010).

mirror the distributions of simulated parameters described in subsection 3.3.1. We

chose flat priors to avoid introducing potential biases, and to emulate an unin-

formed systematic search. More informative priors could be imposed for the DRW

parameters; for example, MacLeod et al. (2010) found that σ and τ are correlated

with properties of the AGN (e.g., the SMBBH mass, the luminosity, etc). Since in

our simulated light curves we did not vary luminosity-related parameters (e.g., the

observed magnitude) a fairly unrestricted search is more appropriate.

For each simulated light curve, we performed the MCMC analysis for two mod-

els (DRW and DRW+sine): The first uses the DRW likelihood from Equation 3.4

to search over only the two DRW parameters, σ and τ , and the second uses Equa-

tion 3.6 that also searches over the sinusoid parameters. To ensure convergence,

each MCMC was conducted for 10,000 MCMC iterations, each resulting chain was

thinned by a factor of 10, and the first 25% of the chain was trimmed to ensure

burn-in. From these MCMC searches, we estimated the values of the two (or five)

parameters that are most likely given each simulated light curve. The posterior dis-

tributions provided both median values and uncertainties for the parameters. From
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the MCMC samples we also determined the value for set of parameters that maxi-

mized the likelihood. For each simulation, we also calculated a signal-to-noise ratio

(SNR), where

SNR2 = sT · C−1 · s. (3.7)

Here, s is the vector containing the input signal and sampled at the simulated

timestamps, and C−1 is the inverse of the DRW covariance matrix (Equation 3.3).

We used the outcome of the two MCMC searches (DRW, and DRW+sine) to

perform Bayesian model selection using the Bayes Information Criterion (BIC)

BIC = k ln(n) − 2 ln(L̂), (3.8)

where k is equal to the number of free parameters, n is equal to the number of data

points in the light curve, and L̂ is the maximum likelihood value (Liddle, 2007).

The BIC provides a simple metric through which to compare our two models, and

avoids overfitting the data by accounting for the number of parameters in the model.

When selecting among multiple models, the one with the smallest BIC is usually

preferred. Here we selected the preferred model by comparing the BIC values for

the DRW-only search to that of the DRW+sine search by introducing

∆BIC = BICDRW − BICDRW+sine. (3.9)

A lower value of ∆BIC indicates more support for the DRW+sine model. In general,

evidence for the DRW+sine model can be considered positive for −2 > ∆BIC > −6,
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and strong for ∆BIC < −6 (Kass & Raftery, 1995). Here, we defined our threshold

to claim a detection of a sinuosidal signal as ∆BIC = −2. Using this threshold, we

sorted each result into one of four categories:

• True Positive: A sinusoid was injected and the DRW+sine model was pre-

ferred.

• False Negative: A sinusoid was injected, yet the DRW-only model was pre-

ferred.

• False Positive: No sinusoid was injected, yet the DRW+sine model was

preferred

• True Negative: No sinusoid was injected, and the DRW-only model was

preferred.

In an idealized search we would have only true positives/negatives and no false

positives/negatives, but typically one needs to compromise and balance the rate of

detection of true signals with the contamination of a few false positives. One of

the main goals of this analysis is to constrain these rates for current and future

survey capabilities. We note, however, that these rates refer to our specific method

of Bayesian model selection and cannot be extended to existing samples of SMBHB

candidates, since these candidates were selected with completely different methods,

as we explain in section 3.5.
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3.4 Results

We assessed our ability to identify periodicity in AGN light curves by simu-

lating DRW and DRW+sine light curves and performing Bayesian model selection.

First, we tested how the MCMC algorithm performs in constraining the parame-

ters of each model independently. Subsequently, we determine the performance of

the model selection method by calculating the true and false-positive rates, and

characterizing their dependence on the signal and noise parameters.

3.4.1 Parameter estimation

3.4.1.1 DRW model

For both our CRTS-like and LSST-like simulations, we simulated 500 DRW

light curves with properties as described in subsection 3.3.1 and conducted the

MCMC analysis for the DRW likelihood (Equation 3.4). In Figure 3.2 we show the

median values of σ and τ as a function of the respective input values for the LSST

light curves. We note that the parameter estimation for the DRW model shows very

similar trends for the CRTS-like light curves.

We saw that low values of τ are recovered accurately, while high values were

poorly constrained. This is a known limitation in DRW studies. For instance,

Koz lowski (2017) found that for τ to be well-recovered, the baseline of the light

curve must be at least ten times greater than τ (τ ≤ 10T ). In that study, the

authors demonstrated this effect with simulated light curves for a fixed parameter

σ. Here, by varying the values of σ for each simulation, we demonstrate that this

93



−1.5 −1.0 −0.5
log10(σo) In

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

lo
g

10
(σ

o
)

O
u

t

Perfect Recovery

1

2

3

4

lo
g

1
0
(τ

)
In

1 2 3 4
log10(τo) In

1

2

3

4

lo
g

10
(τ
o
)

O
u

t

Perfect Recovery

1

2

3

4

lo
g

10
(τ

)
In

Figure 3.2: Parameter estimation capability of our MCMC methods for LSST light
curves with a DRW process, colorized by the simulated value of τ . For low values
of τ , both parameters are recoverable as expected. However, for very high values of
τ , both are unlikely to be constrained accurately.
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limitation affects the recovery of σ as well. In Figure 3.2 we colorized the data points

by the input value of τ . We observed that for light curves with large values of τ ,

where τ is not constrained (orange-yellow points), the algorithm fails to recover the

input value of σ. On the other hand, for light curves with small values of τ (purple

points), the recovery of both σ and τ is very accurate.

3.4.1.2 DRW+Sine Model

Once we confirmed that the DRW parameters can be recovered by the MCMC

methodology (within already known limitations), we expanded our search to also

include the sinusoidal signal representing an SMBHB. We repeated the 500 sim-

ulations of both CRTS- and LSST-like DRW light curves, and added a randomly

generated sinusoid to the data. This was then searched with a 5-parameter MCMC

using the DRW+sine likelihood from Equation 3.6.

Figure 3.3 summarizes the recovery capability of the DRW+sine model in

LSST-like simulations, color-coded by the SNR of the input signal. We note that

even though it is preferable to sample the likelihood in terms of a reference time

t0, we present results converted to an initial phase ϕ0 = 2πt0/P to avoid potential

biases or correlations with the period. In general, for LSST-like simulations, we

recovered strong sinusoids (SNR>5) extremely accurately, with 75% of these signals

having both their periods and amplitudes recovered accurately (i.e., within the 90%

credible region of the posterior distribution). 64% of these strong signals had all

parameters recovered accurately, and 80% of signals with SNR>5 had both DRW
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Figure 3.3: Recovery capabilites for the three sinusoid parameters (P , A, and ϕ0)
and two DRW parameters (σ, and τ), as demonstrated by our LSST-like light curve
simulations. Color axis represents the SNR of the input signal, with red points
being strong signals (SNR>5). The sinusoids in these simulations were able to be
recovered extremely accurately, and the DRW parameters were recovered to the
extent we expect from noise-only simulations.
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parameters recovered accurately. These proportions are nearly identical for the

CRTS-like simulations, but for a smaller fraction of light curves having a sinusoid

with SNR>5. This method is successful at recovering sinusoids with a wide range of

injected parameters. It is important to note that the algorithm accurately recovered

periods from 30 days to 10 years, and it was not required for all light curves to cover

more than two cycles of the sinusoid for their parameters to be recoverable, as may

be expected based on analyses by Vaughan et al. (2016). We further explore the

longer period regime in subsection 3.4.2.

The DRW parameters σ and τ were recovered with the same accuracy as in

the DRW-only search, even in the presence of the sinusoid. We also saw the same

limitations in recovering long τ and resulting limitations in recovering σ for this

subset of light curves. However, our inability to constrain the DRW parameters in

certain light curves was not propagated to the recovery of the parameters of the

periodic signal. Additionally, the highest σ values are at near the maximum of the

observed quasar population, and will be fairly rare in reality (MacLeod et al., 2010).

3.4.2 Model Selection

Next, we used a Bayesian model selection, described in detail in section 3.3, to

select quasars with periodic variability. With simulated DRW and DRW+sine light

curves, we traced the algorithm’s effectiveness. We considered two distinct surveys

(CRTS and LSST, reflecting current and future capabilities of time-domain surveys)

to explore how the light curve quality and properties affect the detection rates of
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this method.

First, we simulated 1,500 DRW light curves, added a randomly generated

sinusoid and then applied our model selection scheme. In Figure 3.4 we show the

true positive rate of periodic signals in the presence of DRW noise, as a function of

the input parameters P,A, σ, τ , and ϕ0. Here, we define the true positive rate as the

number of detected periodic signals (true positives), divided by the total number

of simulated DRW+sine signals (condition positives). In each bin, the associated

uncertainty of the rate is calculated with a binomial proportion confidence interval

(Newcombe, 1998), where the rate can be considered as

nS

n
± z

n
√
n

√
nSnF , (3.10)

where n is the number of trials with nS successes and nF failures, and z is the 1−α/2

quantile of a normal distribution (for a 95% confidence interval, α = 1 − 0.95). We

observed that our ability to detect periodicity depends both on the parameters of

the sinusoid and the intrinsic DRW variability. As expected, the true positive rate

increased for high sinusoidal amplitudes and was independent of the initial phase.

The true positive rate was highest for short sinusoid periods, however, it was non-

zero even for periods equal to the observation baseline, which is an unexpected

improvement from Vaughan et al. (2016), which showed a requirement of > 2 cycles

for a sinusoid to be differentiated from a stochastic process. The true positive rate

decreased for increasing input σ; therefore, when the noise contribution became

more significant, it hindered the periodicity detection, as expected. We also saw
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Figure 3.4: True positive rates (red) and false positive rates (blue) for LSST-like
(solid lines) and CRTS-like (dashed lines) simulations, shown as a function of the
input values of each parameter in the simulations. Note that false positive rates
are only shown as a function of the two DRW parameters, as there are no input
sinusoids present in the false positives. The rates in each parameter bin are shown
with associated uncertainties.

in subsection 3.4.1 that high values of σ (or equivalently low SNR) resulted in an

innaccurate estimation of the parameters. On the other hand, τ did not seem to

have a significant effect on the detection rate, despite the inability to constrain large

values of τ , with the true positive rate slightly increasing for longer τ . Surprisingly,

the overall true positive rate varied only slightly between the two surveys.

Next, we explored how the periodicity detection rate varies as a function of the

periodic parameters normalized by the noise parameters. In Figure 3.5 we present

the input ratios of A/σ against P/τ , colorized by the resulting ∆BIC. In the side

panels, we track the fraction of recovered sinusoids (true positive rate) as a function
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of either A/σ (for the vertical panel) or P/τ (for the horizontal panel), again with

the associated binomial uncertainty marked in each bin.

As can be expected, the fraction of binaries recovered was highly correlated

with A/σ. This value can be considered similar to an SNR; we saw that even

though it was not absolutely necessary that A > σ for a periodic signal to be

detected, the detection rate dropped to ∼50% when the amplitude of the sinusoid

was comparable to the standard deviation of the DRW noise. The recovery fraction

also clearly depends on the value of P/τ , albeit less strongly than with A/σ. That is,

even without considering A/σ, the periodic signal is more likely to be detected (i.e.,

∆BIC is lower) for smaller ratios of P/τ . In terms of detectability, we see that all

binary signals were identified for small values of P/τ , whereas the true positive rate is

∼75% when P and τ are comparable and is further reduced to 50% for larger values.

This is consistent with our findings in Figure 3.4, where we see that detectability

increases for small periods and for larger values of τ , although the latter correlation

is weaker. The correlation of the true positive rate with the period seen in Figure 3.4

is fairly intuitive; a relatively weak signal can be confidently detected if the period is

short and enough cycles are repeated within the data. However, it is somewhat less

obvious what drives the correlation with P/τ . One potential explanation is that it

may be easier to detect a periodic signal if the two characteristic timescales (P and

τ) of the light curve are fairly distinct. Otherwise, if the values are similar, they

may be misidentified by the model selection process (e.g., see subsection 3.5.3).

As a counterpoint to the previous analysis, we subsequently simulated 1,500

DRW-only signals, ran our model selection pipeline, and calculated the false positive
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rate for our same detection method. This represents a scenario in which only DRW

processes are occurring, and either and an SMBHB is not present in the target, or it

is not influencing the AGN light curve. Here, the false positive rate is defined as the

number of DRW-only signals identified as periodic (false positives), divided by the

total number of DRW simulations (condition negatives). In Figure 3.4, we show the

false positive rate for both surveys as a function of input σ and τ with blue curves,

and again using the associated uncertainties calculated with Equation 3.10. We

see that the false positive rate is significantly higher in CRTS, reflecting the lower

measurement precision and sampling rate of the light curves, whereas in LSST the

false positives are almost negligible. The overall false positive rate for CRTS-like

simulations is 14%, while for CRTS-like simulations, it is 0.8%, an improvement of

over an order of magnitude. Interestingly, the false positive rate does not show any

significant trend with σ or τ . This indicates that any combination of the DRW pa-

rameters is equally likely to produce a signal that can be misidentified as a sinusoid.

We also observed that the false positive rate did not increase for large recovered

sinusoid periods, as was suggested by Vaughan et al. (2016); this is likely due to the

use of a DRW+sine model, as opposed to a pure sinusoid.

In the above we examined the true-positive and false-positive rates as a func-

tion of the input parameters of the noise and the signal, considering a quasar to

be periodic if ∆BIC ≤ −2. However, as is obvious from Figure 3.5, these rates

would be different had we chosen a different detection threshold. This is typically

quantified by a receiver operating characteristic (ROC) curve, which we construct in

Figure 3.6. More specifically, we show the true positive rate against the false positive
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Figure 3.6: ROC curves for CRTS-like (orange-lined diamonds) and LSST-like (blue-
lined circles) light curves. Overall, LSST can be seen to perform better than CRTS
at selecting the correct model. For comparison, with our standard ∆BIC = −2,
the true positive rate is 64%, and the false positive rate is 0.8%. Stars in the
curves represent the point where ∆BIC = −2. Additionally, the model selection
is significantly improved when white noise (small points) is present instead of a
DRW process (large points), indicating that red processes are indeed a significant
hindrance.

rate color-coded with the threshold value for periodicity detection (i.e. the maxi-

mum ∆BIC required for detection of a sinusoid within the light curve). We remind

the reader that a smaller ∆BIC means stronger support for the binary model.

In Figure 3.6, we indicate the current threshold of ∆BIC ≤ −2 with a star.

The corresponding true positive rate is ∼64% for both surveys, whereas the false

positive rate is ∼0.8% for LSST and ∼14% for CRTS. We note that even though

we chose this particular threshold following standard practices for model selection

based on BIC, it turns out to be a reasonable threshold for both CRTS and LSST.
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In fact, for a survey such as CRTS, it is sensible to set the threshold at a level that

maximizes true positives, even if this allows some false positives. High-quality light

curves are available for ∼ 105 quasars, and given that SMBHBs are relatively rare,

it is manageable to pursue follow-up observations to distinguish genuine binaries

from interlopers for all candidates. For LSST, on the other hand, it is critical to

minimize false positives. LSST will observe millions of quasars, and follow-up of

candidates needs to be significantly more selective. The colorization of Figure 3.6

also illustrates the much larger range of ∆BIC values in an LSST-like survey, as

compared to CRTS. This results in a much larger number of strongly preferred

signals, which will allow for a dramatically more effective ranking system for the

follow-up of binary candidates.

We also show the respective ROC curve, for both CRTS and LSST, for the

case of periodicity on top of white noise. This allowed us to test the hypothesis that

the classifier performs sub-optimally due to the covariance between the sinusoid and

DRW. We repeated our simulations with 1,500 simulations containing white noise

and a sinusoid and another 1,500 with only white noise, and performed an identical

model selection procedure. Nearly all of the sinusoids were identified with accurately

estimated parameters, across the entire parameter space. The ROC curve for LSST

is excellent, with close to 100% recovery for true periodic signals and almost 0%

false detections. The ROC curve is slightly worse for CRTS due to the lower data

quality. This indicates that, without the red DRW noise process included, there

was no confusion, allowing the sinusoids to be identified accurately. The white noise

realization of the population, albeit unrealistic, demonstrates that the limiting factor
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CRTS LSST

DRW 0.809 0.864
White Noise 0.960 0.999

Table 3.3: Area under curve (AUC) values for each of the ROC curves shown in
Figure 3.8, including those with or without a DRW process. LSST is expected to
be a much more sensitive and reliable survey for the identification of periodicities
induced by SMBHBs.

in detecting quasar periodicity is primarily the stochastic DRW variability.

Finally, we quantitatively evaluated the performance of our method in each

survey by computing the area under the ROC curve, also known as the AUC value.

In general, a larger AUC value indicates a better performing classifier, as this metric

equals the probability that the classifier will rank a positive simulation better than a

negative one (Fawcett, 2006, i.e. the probability that we will calculate a lower ∆BIC

if a sinusoid is present). In Table 3.3, we summarize the AUC values for CRTS and

LSST both for idealized white noise simulations and for the more realistic case that

includes DRW variability. The white-noise-only ROC curve for LSST has near-

perfect AUC value of 0.99, indicating that the DRW process can mask a sinusoid

from the model selection process, while white noise cannot.

So far we have presented our results with respect to the input signals. However,

in real observations, we will not know the true parameters of the signals, and thus

will be required to base our model selection conclusions on the output parameters

of the MCMC method. In Figure 3.7, we present the recovered parameters A/σ

versus P/τ in order to map the parts of parameter space where simulations with

and without a sinusoid in addition to DRW noise are more likely to lie. For instance,

if the DRW+sine model returns A/σ > 1 in LSST, it is highly likely to be a true
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Figure 3.7: Simulations of DRW light curves with (red) and without (blue) a sinusoid
lie in regular regions of parameter space when parametrized by the ratio of A/σ and
P/τ . This makes apparent the cause of the location of false negatives in Figure 3.5.
It is also clear that more signals will become detectable in future surveys as cadences
and baselines improve.

detection regardless of P/τ . In the weak signal regime A/σ ≤ 1, the two populations

overlap, although given the low number of false positives, a detected signal is more

likely to be genuine periodicity. In CRTS-like survey, it is more challenging to derive

a conclusion about the validity of the detection based on the inferred parameters

of the light curve, due to the higher rate of false positives. Overall, identifying

periodicity in the strong signal regime (e.g., A/σ > 2) can boost our confidence that

the detection is real, since no true negatives lie in this area.

One way to quantify the distinction between the populations with and with-

out a simulated sinusoid is with the Mahalanobis distance (Mahalanobis, 1936).

This metric measures the distance between a point and a distribution, measured in

standard deviations of the distribution, while accounting for correlations between

the data points. For the CRTS-like observations, the median Mahalanobis distance
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between the two populations is 0.73, while for the LSST-like survey, this median

distance increases to 0.97. This indicates that, in next-generation surveys, the pop-

ulations of AGN with and without sinusoidal variations will become even more

clearly resolved.

3.5 Discussion

3.5.1 Previous Work

In this paper, we simulated CRTS-like and LSST-like light curves and used a

Bayesian model selection to assess our capability to detect SMBHBs in time-domain

surveys. This is the first study that explores the parameter space of sinusoidal binary

signals in the presence of a DRW process, employing an array of idealized simulated

data. This allowed us to examine both the detectability/completeness of binary

signals and the contamination of a sample of candidates with false detections.

We found that the sample of periodic quasars is expected to be fairly incom-

plete for longer period binaries and for binaries that cause weak periodic modulations

in the brightness of the AGN compared to the DRW variability. This limitation is

caused by the stochastic variability of quasars, since in the presence of only white

noise, almost all the periodic signals would be detectable with nearly zero contam-

ination. These results are independent of the time-domain survey setup. On the

other hand, the false-positive rate is higher in the CRTS-like light curves compared

to LSST. This suggests that the contamination of the samples of SMBHB candi-

dates depends on the quality of the data. The reduced false-positive rate in LSST
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is extremely encouraging for future searches for candidate signatures of SMBHBs.

This is particularly important, since LSST will observe at least 20 million quasars,

and a high false-positive rate would render follow-up studies of SMBHB candidates

nearly impossible.

We emphasize that even though our results provide an excellent qualitative

picture of limitations and detectability trends as a function of the signal and noise

parameters, they cannot be directly applied to determine the number of false posi-

tives in existing samples of SMBHB candidates (Graham et al., 2015b; Charisi et al.,

2016; Liu et al., 2019). These candidates were chosen with a different methodology,

and likely suffer from distinct biases that cannot be captured by our analysis. We

have already observed that with our algorithm, changing the detection threshold

would change the true- and false-positive rate. This demonstrates that it will be

enlightening for future systematic searches for quasar peridocity to use simulated

light curves to carefully construct an ROC curve, as in our study, to highlight the

effectiveness of the selection criteria of the search, given the specific survey proper-

ties.

We also note that to date, a Bayesian model selection method has not applied

in an extensive search for binaries. This is unsurprising, as this method is computa-

tionally demanding, and thus for a large sample of quasars (of order 105 for CRTS

and 107 for LSST) it is practically impossible. Our idealized data sets require a

few hours of CPU time per light curve to complete the model selection analysis,

and realistic data, with a larger number of associated parameters, will expand this

requirement. Therefore, this method may be applied in combination with some
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other classifier which will make an initial pre-selection, and therefore significantly

reduce the size of the sample. Such a complementary method will filter out most

non-periodic quasars, and thus the main requirements for it are speed and a high

true-positive rate, rather than a perfect false-positive rate.

However, several Bayesian-model-selection algorithms have been used in mul-

tiple studies to validate (or invalidate) the periodicity for one of the most promi-

nent candidates, quasar PG1302-102 (Graham et al., 2015a; D’Orazio et al., 2015;

Vaughan et al., 2016; Liu et al., 2018; Zhu & Thrane, 2020). It is intriguing that

the results of these studies are not in complete agreement, neither for the best-fit

parameters nor for the preferred model. This is potentially due to choices made in

these analyses; for example, Vaughan et al. (2016) introduced an extra parameter to

account for poorly estimated photometric errors, Liu et al. (2018) binned the light

curves in wide bins of 150days, and D’Orazio et al. (2015) fixed the parameters of

the DRW model. This clearly illustrates the complexities of observed data sets that

may not be reflected in idealized simulations, such as the ones we presented in this

study.

3.5.2 LSST Observing Strategy and Future Improvements

To assess the prospects of detecting SMBHBs in LSST, we simulated light

curves with semi-regular sampling (evenly sampled, but also adding a Gaussian

error to the timestamps). As a conservative scenario for the wide-fast-deep survey,

we chose a cadence of seven days, but in reality, observations of the same source
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Figure 3.8: ROC curves for variations on our nominal LSST simulations (solid
curve), including increased observation baseline (dashed curve) and increased ob-
seration cadence (dotted curve).

may repeat more often. We explore two additional optimistic scenarios. First, we

increase the cadence to three days, and second, we extend the observation baseline

to 15 years while keeping the cadence at seven days. We simulate both DRW and

DRW+sine light curves and repeat the Bayesian model selection.

In Figure 3.8, we present the ROC curve for these two scenarios, compared

with the initial LSST setup as reported in Table 3.1. The AUC for these two

scenarios are 0.834 (3 day cadence, 10 year baseline) and 0.883 (seven day cadence,

15 year baseline) compared to 0.864 for our typical LSST simulations with a 7 day

cadence and 10 year baseline. We see both from the figure and the AUC values that

increasing the baseline has a positive impact in our periodicity search, allowing us
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to better constrain longer τ and detect longer periods at higher rates. This confirms

that in preparation for LSST, it is advantageous to prepare strategies that will allow

us to extend the LSST light curves with already existing data by combining data

from multiple surveys, such as in Liu et al. (2018). On the other hand, increased

cadence does not improve our results. This is expected given that the minimum

searched period is set to 30 days. We note that the higher cadence will likely

significantly affect the search for short period binaries, which are potential LISA

sources (Xin & Haiman, 2021). In this work, we did not examine the shortest end of

the period distribution, because for very short periodicities, a different method may

be necessary; for example, the deep coverage and more frequent sampling planned

for LSST Deep Drilling Fields will certainly be beneficial for this type of source.

Moreover, even though the finalized survey strategy has not yet been decided,

we recognize that our simulations are idealized for several reasons. First, our light

curves do not include gaps of no observations, which are inevitable in a real survey,

since the sources will be obscured by the sun or low on the horizon. We also used an

average photometric uncertainty for all of the simulated light curves, even though

the photometric errors are in reality magnitude-dependent. Lastly, even though

the observations in the deep-wide-fast survey will repeat semi-regularly, they will

rotate among six narrow-band photometric filters from visit to visit. Therefore, if we

consider light curves in only one photometric band, they will be significantly more

sparse with ∼10 observations per year. The preferred route would be to combine the

data in a single multi-band light curve. In fact, a multi-band periodogram has been

developed for this purpose (VanderPlas & Ivezić, 2015). However, for quasars, this
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process is more complicated, due to their color-dependent variability, which must

be taken into account.

In future work, we intend to address several of the limitations of this current

idealized study. In the near future, LSST’s observing strategy (such as cadence,

epoch/gap length, order of filter alternation and frequency of observations in each

photometric band, etc.) will be finalized. Projections of the final survey have be-

gun to be released (LSST Dark Energy Science Collaboration (LSST DESC) et al.,

2021), and as more accurate data previews, such as LSST Data Preview 0,2 become

available over the next year, we will modify our simulations to include all the above

decisions to more accurately reflect the full capabilities of the survey. To do so,

we must also incorporate the magnitude dependence of the photometric errors. For

this, we will simulate a more realistic quasar population, based on the quasar lumi-

nosity function and incorporate correlations of the DRW parameters with the AGN

properties (MacLeod et al., 2010).

In addition to improvements to the simulated observation strategies, in future

work it will be critical to include a more realistic binary population and an advanced

model for quasar variability. More specifically, our analysis (and most searches for

periodicity) assume that quasar variability is described by a DRW model. This

model, albeit successful, comes with its own limitations. A future study will include

advanced noise modeling and employ a continuous-time autoregressive moving av-

erage model, which also includes quasi-periodic oscillations. For the population of

SMBHBs, we randomly drew the periods and amplitudes from (log)-uniform dis-

2https://rtn-001.lsst.io/
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tributions. However, binary evolution models suggest that binaries spend more

time at larger separations (and longer periods) and should be more common than

short-period binaries, while the amplitudes can be linked to the orbital properties of

the binary (e.g., mass-ratio, and inclination for relativistic Doppler boost). We also

modeled binary signals with pure sinusoids, which, while a decent approximation for

a circular binary dominated by Doppler boost variability, real binaries can produce

more complicated signatures. For instance, if the periodicity arises from periodic

accretion or if the binary has an eccentric orbit, the light curves will significantly

deviate from sinusoidal.

3.5.3 Covariance of Timescales

We found that the stochastic DRW noise hinders the detection of the deter-

ministic signal of a SMBHB. One potential reason is the covariance between the

parameters of the signal and the noise. For instance, both the amplitude of the

sinusoid and the DRW σ determine the overall SNR of the light curves. Unsurpris-

ingly, we saw that our ability to detect sinusoidal variability increases when σ is

small and A is large, and vice versa. The covariance of the characteristic timescales

P and τ is less obvious, so we explore this issue in more detail below.

First, we examined our results for potential correlations when we fit for the

incorrect model (i.e. injected DRW+sine using the DRW likelihood from Equa-

tion 3.4). Searching a light curve that has a sinusoid injected with a DRW-only

model will result in a biased recovery of τ , as can be seen in Figure 3.9, where the
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recovered τ value is related to the injected period. For LSST-like simulations, this

was best fit with a quadratic function where

log10 τ = −0.72 (log10 P )2 + 5.46 (log10 P ) − 6.21. (3.11)

However, for CRTS-like simulations, this covariance is best fit with a linear function

log10 τ = 1.14 (log10 P ) − 0.76. (3.12)

Koz lowski et al. (2010) found a similar effect when they applied the DRW formalism

to periodic stellar light curves (e.g., their Fig. 12 and the related discussion). We

also confirm their finding that these correlations are sensitive to the light curve

properties, since we find a different correlation in our CRTS and LSST light curves.

When τ is fit in conjuction with the periodicity (i.e in the DRW+sine model), this

bias is resolved.

3.5.4 Prospects for Multi-Messenger Observations

Sub-parsec SMBHBs have remained a missing piece in the puzzle of hierar-

chical structure formation despite decades-long observational efforts seeking their

detection. The upcoming decade is expected to bring tremendous improvements

both in electromagnetic observations and in GW searches. PTAs may be on the

verge of detecting the GW background from a population of unresolvable SMBHBs

(Arzoumanian et al., 2020a). The detection of individually resolvable SMBHBs is
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expected to follow soon after. Addtionally, LSST will provide a revolutionary data

set for searches targeting SMBHBs. In this analysis, we have demonstrated that

the unprecedented quality of the light curves will minimize the false detection rate,

while the large sample of quasars will likely lead to at least a few confident detec-

tions. Some of these binary candidates will have periods of a few months to a year,

allowing us to see the periodicity repeat for many cycles.

This opens the possibility of combined GW and electromagnetic observations

of SMBHBs. Liu & Vigeland (2021) found that incorporating priors from elec-

tromagnetic observations in the GW analysis boosts the detectability of binaries

and improves parameter estimation of continuous GW searches. Arzoumanian et al.

(2020b) showed that having a candidate to target significantly improves GW-derived

upper limits on the binary chirp mass. Therefore, it is logical for GW searches to

specifically target SMBHB candidates identified in time-domain surveys. Produc-

ing a large number of high-quality electromagnetic SMBHB candidates from LSST

will provide a wealth of candidates to search for in PTA data. This population of

candidates will also provide critical information about the population of SMBHBs

that create the stochastic gravitational wave background, which, as stated above,

may be detectable by PTAs extremely soon (Pol et al., 2021).

3.6 Conclusions

Using extensive simulations of time-domain observations of AGN, coupled with

a Bayesian model selection and parameter estimation framework, we have explored
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the capabilities of current and future surveys for SMBHB identification. In partic-

ular, we simulated quasar light curves with DRW variability with a realistic distri-

bution of σ and τ , as well as binary light curves with sinusoidal variability on top

of a DRW process including a wide range of periods and amplitudes. We explored

the likelihoods of the respective models with an MCMC analysis, and determined

the preferred model using the BIC. Our findings are summarized as follows:

• Our ability to detect periodicity on top of DRW variability depends on the

parameters both of the sinusoid and of the noise. Short periods and high

amplitudes are found at higher rates, whereas light curves with significant

noise contribution (high σ) are recovered at lower rates. The input phase and

τ do not appear to affect the detection rate.

• While our ability to discover long-period signals is decreased, about 50% are

recoverable. This is significant, because longer-period SMBHBs are expected

to be more common.

• The true positive rate is similar in both surveys.

• The incompleteness of the detectable binary signals is intrinsic due to the

stochastic variability of quasars. In the presence of white noise, all periodic

signals would be detectable almost independently of the data quality.

• The false positive rate is higher for CRTS and almost minimal for LSST. This

indicates that the high quality of LSST light curves will allow for the detection

of very reliable SMBHB candidates.
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• The false positive rate does not depend on the input parameter of a simulated

DRW signal, i.e. all DRW light curves are equally likely to produce false

detections.

• There are parts of the parameters space where there is no significant overlap

between true signals and false detections. If the recovered parameters of a

light curve fall in that regions (e.g., A/σ > 1 for LSST) it can significantly

increase our confidence in the periodicity detection.

• If periodicity is present in a light curve, and only a DRW model is fit, the

recovery of the parameters is biased.

• Future work will include more realistic LSST light curves, a wider range of

binary signal models, and a physically motivated binary population.
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Chapter 4

The NANOGrav 12.5-year Data Set: Limits on Gravitational Waves

from Individual Supermassive Black Hole Binaries

4.1 Abstract

Pulsar timing arrays (PTAs), such as the North American Nanohertz Ob-

servatory for Gravitational Waves (NANOGrav), are the only observatories that

can detect low-frequency (10−9 − 10−7 Hz) gravitational waves (GWs). We have

searched for continuous waves (CWs) from individual supermassive black hole bi-

naries (SMBHBs) using NANOGrav’s recent 12.5-year data set. We created new

methods to accurately model the uncertainties on pulsar distances in our analysis,

and implemented new techniques to account for an emerging common red noise pro-
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cess in PTA data sets while searching for deterministic GW signals. As we found

no strong evidence for CWs in our data, we placed 95% upper limits on the strain

amplitude of CWs emitted by these sources. At our most sensitive frequency of

7.65 nanohertz, we placed a sky-averaged limit of h0 < (6.82 ± 0.35) × 10−15, and

h0 < (2.66 ± 0.15) × 10−15 in our most sensitive sky location. Finally, we placed

a multi-messenger limit of M < (1.41 ± 0.02) × 109M⊙ on the chirp mass of the

SMBHB candidate 3C 66B.

4.2 Introduction

Supermassive black hole binaries (SMBHBs) are expected to form in the after-

math of galaxy mergers, when the two constituent supermassive black holes eventu-

ally become gravitationally bound (Begelman et al., 1980). Once they have reached

a sufficient stage of evolution, and therefore orbital separation, these binaries are

predicted to be among the brightest sources of low-frequency gravitational waves

(GWs) in the universe, emitting at frequencies of ∼ 1 − 100 nHz. The GWs emit-

ted by discrete SMBHBs are known as continuous waves (CWs), while the domi-

nant source of nanohertz GWs is expected to be the stochastic background of GWs

(GWB) that has contributions from the entire cosmic population of SMBHBs and

potentially other sources (Sesana et al., 2004; Burke-Spolaor et al., 2019).

By carefully monitoring the radio pulses from stable millisecond pulsars (MSPs)

over many years, pulsar timing arrays (PTAs) seek to detect correlated fluctuations

in the pulse times of arrival due to the influence of low-frequency GWs (Detweiler,
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1979; Foster & Backer, 1990). There are multiple PTA collaborations currently

operating; among them, the North American Nanohertz Observatory for Gravita-

tional Waves (NANOGrav; McLaughlin, 2013), the Parkes Pulsar Timing Array

(PPTA; Manchester et al., 2013; Hobbs, 2013), and the European Pulsar Timing

Array (EPTA; Desvignes et al., 2016), have each produced multiple pulsar timing

data sets with which to search for GWs. These three groups, along with the recently

formed Indian Pulsar Timing Array (InPTA), also combine efforts as a consortium

known as the International Pulsar Timing Array (IPTA; Verbiest et al., 2016a).

These PTA data sets have enabled numerous searches for GWs from SMBHBs,

as well as primordial GWs (e.g. Benetti et al., 2022), cosmic strings (e.g. Arzouma-

nian et al., 2018a), and cosmological phase transitions (Arzoumanian et al., 2021;

Xue et al., 2021). Modeling has suggested that the GWB signal will be detected

first (Rosado et al., 2015). While PTAs have not yet detected a GWB, they have

continually placed steadily improving limits on such a signal (van Haasteren et al.,

2011; Demorest et al., 2013; Shannon et al., 2013; Lentati et al., 2015; Shannon

et al., 2015; Verbiest et al., 2016b; Arzoumanian et al., 2016, 2018a) until around

2015, when published limits began to stabilize at a characteristic strain value of a

few times 1015. In the NANOGrav 12.5-year data set (Alam et al., 2021a), PPTA

second data release (Kerr et al., 2020), and IPTA data release 2 (Perera et al., 2019),

not only does the upper limit fail to decrease, but a common red noise (CRN) pro-

cess with some characteristics similar to those predicted for a SMBHB-origin GWB

was detected to high significance (Arzoumanian et al., 2020a; Goncharov et al., 2021;

Antoniadis et al., 2022).
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While this common red-noise process is heartening for future GWB searches, it

has sparked new challenges for CW searches, as the background takes the form of a

noise process, which (like any noise process underlying a signal) may work to disrupt

the sensitivity of CW searches. Over the past decades, all-sky and all-frequency CW

searches have improved their sensitivity by several orders of magnitude in GW strain

(e.g. Yardley et al., 2010; Arzoumanian et al., 2014; Zhu et al., 2014; Babak et al.,

2016; Aggarwal et al., 2019), allowing the sensitivity horizon of PTAs to expand by

several orders of magnitude. This has allowed the PTA horizon to include increasing

numbers of specific systems of interest (e.g. Lommen & Backer, 2001; Jenet et al.,

2004; Aggarwal et al., 2019; Charisi et al., 2022). PTAs are likely to reach the

sensitivities required to detect a CW soon after the GWB is detected (Mingarelli

et al., 2017; Kelley et al., 2018), and we are working to revise and improve CW

search methodologies as CW upper limits decrease.

In this paper, we present the results of an all-sky search for CWs from indi-

vidual SMBHBs in the NANOGrav 12.5-year data set. This work is an extension of

the searches performed in previous NANOGrav datasets (presented in Arzoumanian

et al. 2014 and Aggarwal et al. 2019 for the 5- and 11-year data sets, respectively).

Our new search benefits from the use of the more sensitive 12.5-year data set. Most

critically, however, in this work we must account for the existence of an emerging

common noise signal in this data set, and understand the impact that this signal

may have on CW sensitivity.

This paper is organized as follows. In section 4.3, we present an overview of the

data used for our analysis, details of new pulsar distance modeling methods created
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for CW searches, and a description of the GW signals and analysis methods used

throughout this paper. In section 4.4, we present the results of our GW searches.

For the busy reader, our main results can be summarized as follows:

• For accurate low-frequency CW searches, the common red noise (CRN) process

that has been seen in GWB searches must be accounted for in our signal

modeling; otherwise, our detection metrics may report a false positive result.

• Once this was taken into account, we found that no CWs were detected in the

12.5-year data set.

• With this knowledge, we place stringent limits on the CW amplitude as a

function of GW frequency. For the most sensitive frequency of 7.65 nHz, this

limit reaches strains of (6.82 ± 0.35) × 10−15, and we also place limits on the

CW amplitude at this frequency as a function of sky location.

• While our all-sky sensitivity has improved with each subsequent NANOGrav

data set, we find herein that for a portion of the sky, the upper limit at the

most sensitive frequency of 7.65 nHz is stable compared to or worse than in

previous data sets. Through extensive simulations, we link this effect to the

newly-detectable CRN process in the 12.5-year data set.

• We use these limits to make inferences about the local population of SMBHBs,

and limit the distance to an SMBHB emitting at 7.65 nHz to be greater than

86.65 Mpc for a 109M⊙ binary in the most sensitive sky location.

• We use multi-messenger techniques to update limitations on the chirp mass of
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the SMBHB candidate 3C 66B to be less than (1.41 ± 0.02) × 109M⊙

In section 4.6, we discuss the implications of these results. In section 4.7, we sum-

marize our conclusions.

4.3 Methods

4.3.1 The 12.5-year Data Set

We analyzed the NANOGrav 12.5-year data set, originally published as Alam

et al. (2021a,b), which consists of times-of-arrival (TOAs) and timing models from

47 pulsars. Two versions of the data set were created from the original observations,

taken between 2004 and 2017, using independent analyses. Here, we make use of

the narrowband version of the data set (Alam et al., 2021a). This adds 2 pulsars

and 1.5 years of observations over previous GW searches. For GW analyses, we

require the pulsars to have a timing baseline of at least 3 years; therefore, we use

only 45 of the 47 pulsars included in the full data set. However, as the 11-year data

set included only 34 pulsars that could be used in GW analyses, this represents

a significant addition of data, which will add to the sensitivity of the PTA. It is

important to note that the 12.5-year data set is not merely an addition of TOAs to

previous releases, but a full re-analysis with an updated pipeline, described in detail

in (Alam et al., 2021a). Thus, our search will also benefit from improved timing

precision for pulsars shared with previous data sets.
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4.3.2 Signal Model

As in previous NANOGrav searches for continuous gravitational waves, we

will describe the effect of an individual SMBHB on a pulsar’s residuals δt. While

the methods remain nearly identical to previous iterations, slight alterations have

been made to improve consistency with other work in the field, as well as updates

to reflect more recent data. As such, we will lay out the methods with particular

focus on any instances that have changed since Aggarwal et al. (2019).

The pulsar residuals can be separated into multiple components as

δt = Mϵ+ nwhite + nred + s, (4.1)

where M is the design matrix, and describes the linearized timing model, and ϵ

is a vector of the timing model parameter offsets. This term allows the timing

model parameters of each pulsar to be adjusted in accordance with the presence

of any additional signals. The variables nwhite and nred refer to vectors describing

the pulsar white and red noise, respectively, and s is a vector of GW-induced signal

present in the residuals.

4.3.2.1 CW Signal

For a GW source located at right ascension α and declination δ, it is preferable

to rewrite the coordinates in terms of the polar angle θ = π/2 − δ and azimuthal

angle ϕ = α. The strain of GWs emitted from such a source can be written in terms

of two polarizations as
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hab(t, Ω̂) = e+ab(Ω̂)h+(t, Ω̂) + e×ab(Ω̂)h×(t, Ω̂), (4.2)

where Ω̂ is a unit vector pointing from the the GW source to the earth (along the

direction of propagation), h+,× are the polarization amplitudes, and e+,×
ab are the

polarization tensors. These can be written in the solar system barycenter frame as

e+ab = p̂ap̂b − q̂aq̂b

e×ab = p̂aq̂b + q̂ap̂b,

(4.3)

and are constructed from basis vectors1

n̂ =(sin θ cosϕ, sin θ sinϕ, cos θ) = −Ω̂,

p̂ =(cosψ cos θ cosϕ− sinψ sinϕ,

cosψ cos θ sinϕ+ sinψ cosϕ,− cosψ sin θ),

q̂ =(sinψ cos θ cosϕ+ cosψ sinϕ,

sinψ cos θ sinϕ− cosψ cosϕ,− sinψ sin θ).

(4.4)

These polarization tensors are used to construct the antenna pattern function F+,×(Ω̂),

which describes the pulsar’s response to the GW source, as

FA(Ω̂) ≡ 1

2

ûaûb

1 + Ω̂ · û
eAab(Ω̂) (4.5)

1Note: This basis is different than that used in Aggarwal et al. (2019) to maintain better
consistency with previous references and the standards used by other GW detectors. Differences
can be reduced to a rotation of the frame by an angle equivalent to the GW polarization angle ψ.
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(Taylor et al., 2016).

Now, we can write the signal s induced by the GW as seen in the pulsar’s

residuals as

s(t, Ω̂) = F+(Ω̂)∆s+(t) + F×(Ω̂)∆sx(t), (4.6)

where ∆s+,x is the difference between the signal induced at the Earth (the “Earth

Term”) and at the pulsar (the “pulsar term”). This can be written as

∆s+,x(t) = s+,x (tp) − s+,×(t), (4.7)

where t and tp represent the time when the GW passes the Earth and the pulsar,

respectively. These times can be related geometrically by

tp = t− L(1 + Ω̂ · d̂), (4.8)

where d̂ is the line of sight vector to the pulsar and L is the distance to the pulsar

(see subsubsection 4.3.6.1 for further discussion of this value).

For a circular binary at zeroth post-Newtonian (0-PN) order, s+,× can be

written as

s+(t) =
M5/3

dLω(t)1/3
[
− sin 2Φ(t)

(
1 + cos2 i

)]

s×(t) =
M5/3

dLω(t)1/3
[2 cos 2Φ(t) cos i]

(4.9)

where i is the inclination angle of the SMBHB, dL is the luminosity distance to the

source, and M ≡ (m1m2)
3/5 / (m1 +m2)

1/5 is a combination of the two black hole

masses known as the chirp mass. Again, note that the forms of these signals have
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changed slightly from those used in Aggarwal et al. (2019); due to the rotated frame

of the antenna pattern functions now in use, they are equivalent. The variables M

and ω refer to the redshifted values of these quantities, which relate to the rest-frame

versions Mr and ωr as

Mr =
M

1 + z

ωr = ω(1 + z).

(4.10)

However, PTAs are currently only sensitive to the local universe, where (1 + z) ≈ 1.

For a circular SMBHB, the initial orbital angular frequency is related to the

GW frequency by ω0 = πfGW, where ω0 = ω(t0). For this search, we define the

reference time t0 as MJD 57933 (June 29, 2017), the last observation date for the

12.5-year data set. The time-dependent orbital phase and frequency of the binary

are given by

Φ(t) = Φ0 + 1
32
M−5/3

[
ω
−5/3
0 − ω(t)−5/3

]

ω(t) = ω0

(
1 − 256

5
M5/3ω

8/3
0 t

)−3/8
(4.11)

where Φ0 refers to the initial orbital phase (Arzoumanian et al., 2014). To account

for the evolution of high chirp mass binaries over our observations, we use the full

expression for ω(t) as in Aggarwal et al. (2019).

4.3.2.2 Noise Model

For individual each individual pulsar, we model both white and red noise. We

use an identical white noise model as previous NANOGrav analyses, using three

parameters: EFAC, EQUAD, and ECORR. EFAC scales the TOA uncertainties
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by a factor, EQUAD adds white noise in quadrature, and ECORR describes white

noise that is correlated only within the same observing epoch.

To model individual pulsar red noise, the noise spectrum is divided into 30

linearly spaced bins, ranging from 1/Tobs to 30/Tobs, where Tobs is the total obser-

vation baseline for each pulsar. Then, the power spectral density of the red noise is

fit to a power-law model

P (f) =
A2

red

12π2

(
f

fyr

)−γ

. (4.12)

Here, fyr ≡ 1/(1year), Ared is the red noise amplitude, and γ is the power law

spectral index.

As mentioned above, for the first time, a CRN signal is now detectable in

the 12.5-year data set (Arzoumanian et al., 2020a). Because of this, we included a

CRN term in our signal model for a portion of our analyses. The results of searches

that only model a CW necessitated this addition, and are described in detail in

section 4.4. The power spectral density of the CRN

P (f) =
A2

CRN

12π2

(
f

fyr

)−γ

. (4.13)

takes the same form as that of the pulsar red noise in Equation 4.12, but with an

amplitude ACRN and spectral index γ that are common to all of the pulsars in the

array.
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4.3.3 Bayesian Methods

We utilized Bayesian inference techniques to determine the posterior distribu-

tions of GW parameters. In each analysis, we include the BayesEphem model (Val-

lisneri et al., 2020) to account for the uncertainties in the Solar System ephemeris,

which, as first described in Arzoumanian et al. (2018a), can have large impacts on

the computation of GW upper limits with PTAs. We used DE438 (Folkner & Park,

2018) plus BayesEphem to transform from individual observatory reference frames

to an inertial frame centered at the Solar System Barycenter.

As in previous NANOGrav CW searches, we use the enterprise (Ellis et al.,

2019) package to construct the priors and evaluate the likelihood, which takes

the same form as in Aggarwal et al. (2019) and Arzoumanian et al. (2014). The

Markov Chain Monte Carlo (MCMC) sampler package PTMCMCSampler (Ellis & van

Haasteren, 2017) was used to explore the parameter space.

The CW signal model can be described by nine global parameters:

{θ, ϕ, fGW,Φ0, ψ, i,M, dL, h0}, (4.14)

which describe the circular SMBHB’s:

• position on the sky (θ, ϕ);

• GW frequency, related to the orbital frequency at some reference time (fGW);

• orbital phase at some reference time (Φ0);

• GW polarization angle (ψ);

• orbital inclination (i);
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• chirp mass (M);

• luminosity distance (dL);

• strain amplitude (h0), which is related to the chirp mass, GW frequency, and

luminosity distance.

However, due to a degeneracy between h0, M, fGW, and DL, since h0 can be

defined as

h0 =
2M5/3(πfGW )2/3

dL
, (4.15)

only eight of these parameters are required to fully describe the global CW signal.

The following types of searches use a variety of prior setups to sample the necessary

eight global parameters, and are described below and summarized in Table 4.1.

4.3.4 All-Sky Searches

To search for GWs from SMBHBs located in any direction, we use uniform

priors on the source sky position (cos(θ), ϕ), as well as the cosine of the source

inclination cos(i), polarization angle ψ, and GW phase Φ0. We used log-uniform

priors on h0 for detection analyses, and uniform priors on h0 for upper limit analyses,

so as to set the most conservative upper limit. For both analysis types, priors on

log10(h0) span the range [−18,−11], which accounts for an over-conservative range

around the sensitivity of the most recent data sets (order -15).

We performed many searches at fixed values of fGW, to evaluate the detec-

tion statistics and sensitivity of the PTA across the entire nanohertz GW band.
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The lowest frequency value was set by the total observation time of the PTA,

fGW = 1/(12.9 years) = 2.45 nHz. The highest frequency value is limited by the

observation cadence of the PTA (approximately one observation per 2-4 weeks).

However SMBHBs at that frequency, at the mass range where their strains would

be large enough to be detectable by PTAs, have exceedingly short inspiral timescales

(a few weeks up to ∼ 3 months). Thus, they are unlikely to be detectable in our

data set. Therefore, we set our maximum frequency to 317.8 nHz (equivalent to

around one GW cycle every 36 days). This is the same high-frequency cutoff value

used in Arzoumanian et al. (2014); Aggarwal et al. (2019).

For most of the frequency band, we searched over log10
M
M⊙

with a log-uniform

prior with a range of [7, 10]. However, for very high-frequency sources, we limit the

maximum value of the prior to account for high-chirp-mass binaries never emitting

GWs at the highest frequencies in our band, as they will have merged prior to

emitting GWs at fGW ≥ 191.3 nHz. Assuming binaries merge when the orbital

frequency is equal to the innermost stable circular orbit (ISCO) frequency, M must

satisfy

M ≤ 1

63/2πfgw

[
q

(1 + q)2

]3/5
, (4.16)

where q is the SMBHB mass ratio. Here, we calculated the chirp mass cutoff for

q = 1.
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4.3.5 Sky Map

Due to the non-uniform distribution of pulsars on the sky, PTAs are typically

not equally sensitive in all directions. To analyze the differences in sensitivity, once

detection analyses have been completed, we also place upper limits on 768 pixels

distributed isotropically across the sky. The sampler is able to search a uniform

prior across the small pixel, so as to still sample the entire sky across the entire

analysis.

Due to the large computational cost required to conduct 768 independent runs,

the sky map is created at only a single frequency. We selected 7.65 nHz, as it was

the most sensitive in the sky-averaged analysis. As this is in the low-frequency

regime where we expect the inclusion of the CRN to be significant, it is included in

our signal model. All other modeling is done identically to subsection 4.3.4, and is

summarized in Table 4.1.

4.3.6 Targeted Search

In addition to the two variations searches described above, we also perform

a targeted search for a known SMBHB candidate, 3C 66B. This source was the

subject of study by Arzoumanian et al. (2020b), and here, we are able to provide an

updated analysis with the addition of the new data included in the 12.5-year data

set.

For the targeted search, we perform detection and upper limit analyses in the

same way as in subsection 4.3.4, with a few differences in the model priors. Because
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we know the sky location and luminosity distance to 3C 66B, as well as a frequency

estimate, these parameters are set to constants in this search. This allows us to

place constraints directly on the chirp mass of the binary, rather than its GW strain

amplitude. For a detection analysis, the prior on log10

( M
M⊙

)
is log-uniform in the

range [7, 10], while for upper limit analyses, the prior is uniform over this range.

The remaining priors are identical to the above analyses, and are summarized in

Table 4.1.

4.3.6.1 Pulsar Distance Priors

In this work, we adopt a data-driven approach to handle the large uncertainties

on pulsar distance measurements. As in previous searches, the pulsar distance is

used as a free parameter in the search. This allows us to marginalize over the pulsar

distance, and avoid incorrect modeling of the signal at the the location of the pulsar.

In previous versions of this search (e.g. Aggarwal et al., 2019; Arzoumanian

et al., 2020b), the pulsar distance prior was constructed from a Gaussian scaled to

the parallax distance and associated uncertainty listed in Verbiest et al. (2012). If

no distance was listed, a value of 1.0± 0.2 kpc was assumed. While this assumption

is reasonable while placing upper limits (see discussion within Arzoumanian et al.

2020b), as the PTA reaches sensitivities where a detection is nearly possible, an

improvement is needed.

In this work, every pulsar distance prior is constructed from a measurement

or estimate. If a pulsar has a significant independent parallax measurement2, such

2http://hosting.astro.cornell.edu/research/parallax/, with values compiled from
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as from Very Long Baseline Interferometry (VLBI), or timing parallax measured in

the 12.5-year data set, this value is used to construct a prior on pulsar distance (dp)

p(dp) =
1√

2πσPXd2p
exp

−(PX − d−1
p )2

2σ2
PX

, (4.17)

which inverts the approximately Gaussian shape of a parallax prior to describe the

prior for distance (Vigeland & Vallisneri, 2014). Here, significance is defined by the

parallax measurement (PX) having an associated uncertainty (σPX) of less than

30%, so as to avoid the introduction of any errors due to the Lutz-Kelker bias

(Lutz & Kelker, 1973). If multiple measurements of sufficient quality exist, these

values and uncertainties are combined with a weighted average before being used to

construct the prior.

If there are no parallax measurements that can be used, the pulsar’s dispersion

measure (DM) is used to construct a distance estimate using NE2001 (Cordes &

Lazio, 2002) and subsequently, the distance prior. Since these values are only an

estimate, we construct a broad, nearly uniform prior for the DM-distance value and

a 20% uncertainty (Cordes & Lazio, 2002; Jones et al., 2017; Lam et al., 2016), with

the shape

p(dp) =





Gaussian if dp < 0.8 dDM

Uniform if 0.8 dDM ≤ dp ≤ 1.2 dDM

Gaussian if dp > 1.2 dDM

(4.18)

(Ding et al., 2020; Jennings et al., 2018; Deller et al., 2019; Guillemot et al., 2016; Stovall et al.,
2014; Abdo et al., 2013; Freire et al., 2012; Verbiest et al., 2009; Lazaridis et al., 2009; Chatterjee
et al., 2009; Hotan et al., 2006; Lommen et al., 2006; Jacoby et al., 2005; Splaver et al., 2005;
Löhmer et al., 2004; Toscano et al., 1999; Camilo et al., 1994)
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Here, the Gaussian additions have standard deviations of 0.25 times the DM-distance

uncertainty, to allow the sampler to move into the edges of this prior range, to ac-

count for any differences in distance estimates by alternative electron density models,

such as Yao et al. (2017). While pulsar distance priors will still only induce minor

influences on the results of an upper limit analysis (Arzoumanian et al., 2020b),

by constructing new priors to accurately handle pulsar distance measurements and

estimates, we have prepared our methods for the eventual detection of a CW, which

will be more reliant on the pulsar term of the signal than upper limit evaluations.

4.4 Results

4.4.1 All-Sky Searches

For each GW frequency in our search, we performed a detection analysis on

the 12.5-year data which marginalized over the source sky location. Figure 4.1 shows

the Bayes factor for a CW at each searched GW frequency in purple. However, it is

important to note the large (near-infinite) Bayes factor for fGW = 2.45 nHz, with a

steady decrease in the following few frequency bins. Ordinarily, this would be a first

indication for the detection of a CW. However, given the strong evidence for the

existence of a CRN process in the 12.5-year data set (Arzoumanian et al., 2020a), it

is clear that this signal appears to be of similar form; that is, what we have detected

is bright at low frequencies and declines toward higher frequency. Once a common

red-noise process is added to the model, with the ACRN and γ parameters fixed to

the maximum likelihood values found by the search of Arzoumanian et al. (2020a),
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CW+CRN

CW

Figure 4.1: Savage-Dickey Bayes factors for a CW at each GW frequency. At low
frequencies, inclusion of a CRN in the model (red) is necessary to avoid a false
CW detection (purple). Triangle markers indicate an infinite Savage-Dickey Bayes
Factor, which could be an effect of inadequate sampling at high frequencies.

the Bayes factors for a CW at low fGW return to < 1 (red points in the figure).

Therefore, throughout this paper, we will present the results of many analyses with

a fixed CRN included in our model.

We note that a few frequencies above fGW = 100 nHz have B10 values that are

returned as very large. However, upon inspection, this is due to inadequate sampling

in a few frequency bins, rather than a detection of a CW. With further sampling, it

is expected that these values will settle near B10 ∼ 10, and therefore, these results

should be treated as preliminary for frequencies greater than 1 × 10−7nHz.

As we found no strong evidence for a GW from an individual SMBHB in the

12.5-year data set, we proceeded to place all-sky upper limits on the GW strain,
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with results shown in Figure 4.2. We again conduct this analysis using two different

models, one which includes only a CW (purple) and one which includes both a CW

and a CRN process (red). While in both cases, the most sensitive frequency (that

with the lowest strain upper limit) is 7.65 nHz, the strain upper limits are lower

when the CRN is included in the model. In this case, we can limit the strain to h0 <

(6.82± 0.35)× 10−15, while when the CRN is neglected, the best limit we can place

on CW strain is h0 < (9.11 ± 0.10) × 10−15. This trend of the CW+CRN model

resulting in lower upper limits than a CW-only model continues until frequencies

of approximately 10 nHz, above which the upper limit values are nearly equal.

Therefore, throughout the remainder of this work, we will opt to include the CRN in

computationally expensive analyses which can not be completed with both models,

such as the sky map analyses those described in subsection 4.4.2.
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Figure 4.2: CW strain 95% upper limits and associated error regions, with (red)
and without (purple) a CRN included in the model.
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Figure 4.3: The upper limits on CW strain are continuing to decrease. The 12.5-
year data set (red curve and error region is more sensitive than the 11-year, 9-year,
and 5-year (blue, orange, and blue curves, respectively).

In Figure 4.3, we compare this result to those of previous NANOGrav searches

for CWs (Aggarwal et al., 2019). While analyses have shown a factor of ∼ 2 im-

provement between the previous three data sets, we see only a modest sensitivity

improvement between the 11-year and 12.5-year data, with only a factor of 1.07 be-

tween the two lowest strain limits. In addition to the smaller fractional increase in

observing baseline between the 11- and 12.5-year data sets as compared to previous

data sets, this is likely due to the presence of the CRN, which, while it is no longer

causing a false positive in the CW search if included in the model, does represent

a significant noise process that will limit our sensitivity to low-frequency CWs over

the years to come (Hazboun et al., 2019b).
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GW Strain Upper Limit ×10−14

Figure 4.4: Map of CW strain 95% upper limits at fGW = 7.65 nHz, the most
sensitive frequency searched, for the 12.5-year data set. Pulsar locations are shown
as white stars, with new pulsars added in the 12.5-year data set outlined in red.
The most sensitive pixel is marked with a red dot.

4.4.2 Sky Map

The GW strain upper limits, for a model including a CRN, at the most sensitive

CW frequency fGW =7.65 nHz as a function of sky location are shown as a map in

Figure 4.4. As expected, the portion of the sky that is the least sensitive to CWs is

that which contains the fewest pulsars in the PTA. At the most sensitive pixel, the

strain upper limit is h0 < (2.66 ± 0.15) × 10−15, while at the least sensitive pixel,

h0 < (1.12 ± 0.05) × 10−14, a range of sensitivities that varies by a factor of ∼ 4.

In Figure 4.5, we compare the 12.5-year CW strain map to that constructed in

Aggarwal et al. (2019) for the 11-year data set by plotting ∆h95 = h95,12.5 − h95,11.

While a portion of the sky shows a significant reduction in strain upper limits, many
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−4 −2 0 2 4
∆UL ×10−15

Figure 4.5: Difference in strain 95% upper limits for the 12.5-year data set versus
the 11-year data set. Blue pixels indicate a decrease in upper limit, while red pixels
indicate an increase.

pixels show an increase in strain upper limit, indicating a loss of sensitivity in the

newest data set for much of the sky at the PTA’s most sensitive frequency, including

in the most sensitive area of the sky.

To investigate the cause of this apparent sensitivity loss, we conducted an

analysis of the simulated data utilized in Pol et al. (2021). We selected portions of

the data set with included pulsars and observation baselines corresponding to the

11- and 12.5-year data sets that also included a CRN corresponding to that found

in Arzoumanian et al. (2018a). Then, we conducted identical upper limit analyses

for an equatorial slice of sky pixels (i.e. for the pixels with θGW ∼ π/2). When

plotted against ϕGW in Figure 4.6, the patterns in ∆h95 in the real data are well

within the range represented by the same analysis in the 10 simulated data sets, each
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Figure 4.6: The difference in strain upper limits for an equatorial slice of the sky map
shown in Figure 4.5 plotted against ϕGW . The results for the real data (red points)
are well within the range of values encompassed by the ten realizations simulated
(blue), with near-identical mean values of ∆h95 (horizontal red and blue lines).

containing a different realization of the CRN. The mean value of ∆h95 across each

included pixel is nearly identical for the real data and the simulations. Together, this

allows us to confidently state that this apparent pattern in our evolving sensitivity

across the sky is due to the emerging CRN.

4.5 Astrophysical Limitations of Nearby SMBHBs

In recent years, numerous studies have modeled the SMBHB population in

the nearby universe (Mingarelli et al., 2017) and multiple SMBHB candidates have

been discovered with electromagnetic techniques (Sudou et al., 2003; Graham et al.,

2015b; Hu et al., 2020; Lehto & Valtonen, 1996). Even without a CW detection,
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Figure 4.7: The 95% lower limits on the luminosity distance to an individual
SMBHB. While we can limit SMBHBs emitting GWs at the most sensitive value of
fGW = 7.65 nHz to dL > 33.85 Mpc, at fGW = 38.17 nHz, they can be limited to
farther away at dL > 34.99 Mpc.

our limits can add crucial insights to these works, including limiting the distance to

nearby SMBHBs and placing multi-messenger mass constraints on SMBHB candi-

dates.

4.5.1 Distance Limitations

Our limits on CW strain can be transformed using Equation 4.15 to calculate

the 95% lower limit on the luminosity distance to a source of a given chirp mass.

The distance limits for an SMBHB with M = 109M⊙ are shown in Figure 4.7. For

the most sensitive frequency of fGW = 7.65 nHz, we can limit the distance to an

SMBHB with M = 109M⊙ to dL > 33.85 Mpc. These limits may be scaled to larger
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Figure 4.8: Map of the 95% lower limit on the distance to individucal SMBHBs with
M = 109M⊙ and fGW = 7.5 nHz. White diamonds indicate the positions of known
SMBHB candidates and large galaxy clusters that could contain an SMBHB.

or smaller SMBHBs directly using Equation 4.15, which results in a factor of

D95,M = D95,109M⊙ ×
( M

109M⊙

)5/3

. (4.19)

However, it is important to note that while this frequency is produces the lowest

strain upper limit, it does not produce the farthest luminosity distance lower limit.

This value is dL > 34.99 Mpc at fGW = 38.17 nHz.

This technique can be applied to the strain upper limit sky map as well, to

calculate the 95% luminosity distance lower limit for an SMBHB emitting CWs at

fGW =7.65 nHz as a function of sky location. The results of this transformation
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Figure 4.9: The 95% strain upper limit curve for the all-sky (solid red) CW search
compared with the 95% strain upper limit curve in the most sensitive sky location
(red dashed).

are shown in Figure 4.8. At the most sensitive sky location, we can limit the

minimum distance to an M = 109M⊙ SMBHB to be dL > 86.65 Mpc, and that to

an M = 1010M⊙ SMBHB to dL > 4.02 Gpc. In the least sensitive sky location, we

can limit the minimum distance to an M = 109M⊙ SMBHB to be dL > 20.50 Mpc,

and that to an M = 1010M⊙ SMBHB to dL > 0.95 Gpc. These values vary by over

a factor of 4 between the most and least sensitive parts of the sky.

At the most sensitive sky pixel, we conducted a final upper limit analysis

across the entire frequency band, with results plotted in Figure 4.9. Across the

entire nanohertz frequency band, the PTA is dramatically more sensitive to CWs

from sources at this sky location than across the entire sky on average.
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4.5.2 Multi-Messenger Analyses

Using the methodology described in subsection 4.3.6, we conduct a multi-

messenger search for GWs from the SMBHB candidate 3C 66B to provide an update

to results of (Arzoumanian et al., 2020b). The detection analyses result in nearly

identical Savage-Dickey Bayes factors, whether the CRN was included or not. This

is to be expected, as the CRN is very weak at frequencies as high as that of 3C

66B. The Bayes factors for the CW-only analysis and the CW+CRN analysis are

0.70 ± 0.02 and 0.67 ± 0.01, respectively. Both of these values are very near 1,

meaning that the data does not indicate the presence of a CW corresponding to a

binary within 3C 66B.

Because no GW was detected, we constrain the chirp mass of a potential binary

with an upper limit analysis, again performed with and without a CRN to confirm

consistency. The posteriors from these two searches are plotted in Figure 4.10, with

resulting 95% upper limits of (1.41 ± 0.02) × 109M⊙when a CRN is included, and

(1.34 ± 0.01) × 109M⊙when only CWs are included in the signal. For comparison,

the 95% chirp mass upper limit for 3C 66B from the 11-year data set was 1.65 ×

109M⊙. This represents an improvement of 1 × 108M⊙, or a factor of 1.5 smaller;

by adding pulsars, extending timing baselines, and improving timing and searching

methods, the PTA’s sensitivity has clearly improved. These upper limits are nearer

to the value of the upper bound of the Iguchi et al. (2010) chirp mass estimate.

In subsequent data sets, or by using more sophisticated analyses such as advanced

noise modeling (Simon & Hazboun, in prep), this error region will be within reach.
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Figure 4.10: Posterior distributions for a targeted upper limit analysis of the
SMBHB candidate 3C 66B. While 95% upper limits (red and purple lines) are lower
than in the 11-year data set (blue line), they cannot rule out the model from (Iguchi
et al., 2010) (orange region).

In Arzoumanian et al. (2020b), it was shown that a targeted search, like this

analysis, results in a factor of ∼ 2 reduction in upper limits than those of an all-

sky search at a corresponding GW frequency. When converted to strain amplitudes

rather than chirp masses, the 95% upper limits are 1.90 × 10−14 and 1.74 × 10−14

for the searches with and without a CRN, respectively. In comparison, the all-

sky analysis in subsection 4.4.1 returned strain upper limits of 3.56 × 10−14 and

3.82 × 10−14 at 60.1 nHz, the nearest frequency to that of 3C 66B at 60.4 nHz.

These all-sky strain upper limits are a factor of 1.88 and 2.20 larger, very similar
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to the value for the 11-year data set. Therefore, the improvement in upper limits

gained by using multi-messenger techniques has stayed stable accross the addition

of new pulsars, more data, and the emergence of the CRN.

4.6 Discussion and Future Prospects

While the NANOGrav PTA is continuing to add data from ongoing obser-

vations, discover new pulsars, and therefore increase our sensitivity to GWs, we

have entered an interesting era where surprising results will continue to be uncov-

ered. Due to the CRN first detected in the 12.5-year data set in Arzoumanian et al.

(2020a), our limitations on CW strains across the nanohertz GW frequency band

(Figure 4.3) and the sky (Figure 4.5) have not improved as steadily as in previous

data sets. While adding a CRN to the search model that is fixed to the maximum-

likelihood values from a dedicated search avoids confusion in detection analyses, this

adds a significant source of noise to the PTA, and therefore limits our sensitivity to

CWs at frequencies below 10 nHz.

In future data sets, the CRN will likely be even more apparent in the data,

and may eventually resolve to be due to a stochastic GWB from SMBHBs (Pol

et al., 2021). In any case, this will continue to impact CW searches, and significant

efforts will be needed to continue development on methods that will allow for effi-

cient detection of both types of nanohertz GW signal such as in Bécsy & Cornish

(2020), as well as extensive simulations that evaluate detection possibilities, as in

Pol et al. (2021), that include multiple types of GW signal in the simulated data
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sets. Additionally, significant effort will be needed to improve sampling methods

that can efficiently explore the complex CW parameter space, particularly at high

GW frequencies, complexities which will only be exacerbated as data sets expand.

4.7 Conclusions

With extensive Bayesian analyses, we have searched the NANOGrav 12.5-year

data set for CWs from individual SMBHBs. In our detection analyses, we showed

that no CWs were detected to a high degree of confidence. We then placed all-sky

upper limits on the strain amplitude for all CWs emitting between 2.5 and 319 nHz,

as well as upper limits as a function of sky location for the 12.5-year data set’s most

sensitive frequency of 7.65 nHz.

This analysis also included the development of new methods to accurately

reflect the realistic distribution of possible values of pulsar distances from updated

measurements. The way we treat these values in search pipelines has a significant

impact on our ability to detect the pulsar term of a CW signal, and these methods

will be critical as we proceed towards PTA sensitivities which enable a CW detection.

Unlike previous data sets, the 12.5-year data set contains a significant CRN.

Therefore, for the first time, we included the CRN in our Bayesian searches by fixing

the model parameters to those recovered in Arzoumanian et al. (2020a). This had

a significant effect on the results of many of our analyses, and proved critical to

avoid a false detection of a CW at 2.45 nHz. This process also significantly impeded

the improvement of our upper limits between the 11-year and 12.5-year NANOGrav
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searches at the most sensitive frequency of 7.65 nHz in most areas of the sky.

Despite these new necessities, we are able to place significant astrophysical con-

straints on the local SMBHB population. In our most sensitive sky location, we can

rule out the existance of any SMBHB with a mass of at least 109M⊙ emitting at 7.65

nHz within 86.65 Mpc. Furthermore, we demonstrate significant improvements to

chirp mass upper limits of SMBHB candidates can be made through multi-messenger

analysis techniques, and limit the chirp mass of 3C 66B to (1.34 ± 0.01) × 109M⊙.

With the inclusion of more data, we will soon be able to rule out or confirm this

source and other binary candidates.
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Chapter 5

Conclusion

We have created Bayesian methods critical to the analysis of supermassive

black hole binaries (SMBHBs), from model selection techniques to identify electro-

magnetic SMBHB markers from within complex noise processes to advanced searches

for continuous gravitational waves (CWs) in pulsar timing array (PTA) data across

the entire sky. These were applied to detailed simulations and real PTA data, to cre-

ate realistic expectations on our ability to discover SMBHBs in time domain surveys,

and place sensitive limits on CWs in the North American Nanohertz Observatory

for Gravitational Waves (NANOGrav) 12.5-year data set. We also combined these

two identification methods to create multi-messenger techniques, which we applied

to a specific SMBHB candidate in NANOGrav’s first multi-messenger search on the

11-year data set. Through this broad effort, we have expanded our ability to inves-

tigate the wide aspects linked to SMBHB science. In the near future, as the window

to the low-frequency gravitational wave (GW) universe steadily opens, we will be

well prepared to use each messenger at our disposal to characterize these dynamic

pairs.
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5.1 NANOGrav Multi-Messenger Searches: 3C66B

All-sky and frequency-agnostic searches for CWs, while necessary, are becom-

ing increasingly computationally expensive for ever-expanding PTA data sets. By

specifically targeting SMBHB candidates in CW searches, the computational foot-

print is reduced by multiple orders of magnitude, and as we have shown in this

thesis, limitations on the SMBHB mass can be even more stringent through multi-

messenger techniques, even without a GW detection. In chapter 2, we constructed

foundational multi-messenger methods to search for CWs from specific SMBHB

candidates in PTA data sets, and applied them to a well-known candidate, 3C

66B. After searching for CWs from 3C 66B and finding no evidence for detectable

GW emission, we were able to limit 3C 66B’s chirp mass, at 95% confidence, to

(1.65±0.02)×109 M⊙, a factor of 4.3 smaller than the limit set in J04, and a factor

of 2 lower than the mass limit calculated for the same GW frequency from an all-sky

search using the same data (Aggarwal et al., 2019). However, we were unable to

rule out the existence of a binary corresponding to the revised model proposed in

I10.

While 3C 66B’s measured orbital period of 1.05 years is reasonably well con-

strained (Sudou et al., 2003), there are still associated uncertainties on this mea-

surement. For other candidates, this quantity may be even less constrained. We

investigated this possibility by varying the GW frequency within the CW search

pipeline for the first time on real data, and discovered that knowledge of the orbital

period of a binary target improves upper limits by up to an order of magnitude.
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However, perfect measurements are not necessary, and upper limits are consistent

with prior widths of up to an order of magnitude in GW frequency. This vastly ex-

pands the possibilities for targeted GW searches for SMBHB candidates in the near

future, as it will take many years to improve orbital models of long-period binaries

emerging in time domain surveys. We also showed that testing a specific binary

model by constructing priors corresponding to measured quantities is possible, and

new information can be gained without a detection of GWs. These methods will

be critical in the near future as PTAs approach the sensitivities required to detect

CWs and new SMBHB candidates emerge.

5.2 Searching for Periodic Variability in Quasars

Time-domain surveys of quasars provide an excellent place to search for SMBHB

candidates. However, these same quasars exhibit significant intrinsic variability that

can be modeled as a damped random walk (DRW), which may mimic or mask pe-

riodicities used to identify the presence of a binary (Vaughan et al., 2016). In

chapter 3, we conducted large-scale simulations to test a Bayesian model selection

pipeline to identify periodic light curves that contain DRW noise processes. By

simulating data corresponding to two different optical surveys, we evaluated the

effectiveness of current and future SMBHB identification efforts.

For a wide range of DRW and sinusoid parameters, we determined that a

strong DRW process can effectively mask low-amplitude and long-period sinusoids,

regardless of the observation strategy used. However, denser observations signifi-
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cantly lowered the rate of false positive SMBHB detections, meaning that candidates

observed in future, high-cadence surveys such as the Legacy Survey of Space and

Time (LSST) can be considered more reliable. These signals will also become more

distinct from DRW processes in future data from LSST. We also confirmed that if

the simulated quasars did not contain red noise, nearly all sinusoids were identified,

and there were no false detections; therefore, these effects are purely due to the

similarities between a DRW process and a periodicity in unevenly-sampled obser-

vations. Finally, we emphasized the need to fit all DRW and sinusoid parameters

simultaneously. If this is not done, significant biases may be introduced into either

measurement.

These results are extremely promising for future SMBHB searches in time-

domain surveys, and provide necessary recommendations for how they may be dis-

covered reliably. These sources will provide ideal candidates for multi-messenger

GW searches with PTAs, due to the two techniques’ common frequency sensitivi-

ties.

5.3 NANOGrav 12.5-year Continuous Wave Limits

CWs provide one of the best opportunities to study individual SMBHBs, and

a detection of these bright GWs will provide a unique insight into these complex

systems through a new lens. However, the recent strong detection of a common

red noise process (CRN) in PTA data sets has complicated searches for CWs, and

if future searches for the GWB proceed as anticipated through simulations, this
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impediment will only grow more complex.

In chapter 4, we performed Bayesian searches for CWs from sources located

anywhere on the sky, across two orders of magnitude in GW frequency in NANOGrav’s

12.5-year data set. No CWs were detected in our detection analyses; however, we

discovered that to avoid a false detection at the lowest frequency of 2.45 nHz, it was

critical to include the CRN in our signal model. Therefore, for the first time, we

search for CWs alongside the presence of a CRN. In the near future, we will expand

these searches to also include a Frequentist search for CWs across the nanohertz

GW frequency band.

Next, we placed all-sky upper limits on the CW strain at each frequency,

as well as upper limits as a function of sky location at the PTA’s most sensitive

frequency of 7.65 nHz. These analyses were also heavily effected by the presence of

the CRN. We confirmed the source of these effects through searches on simulated

PTA data sets containing a CRN, and found that the effects we observed were well

within the range of possibilities observed in the simulated searches.

Additionally, even without a CW detection, we placed stringent astrophysical

constraints on the existence of nearby SMBHBs. In our most sensitive sky location,

we can rule out the existance of any SMBHB with a mass of at least 109M⊙ emit-

ting at 7.65 nHz within 86.65 Mpc. We also maintained the improvements made

by conducting multi-messenger CW searches for specific SMBHB candidates, and

limited the chirp mass of 3C 66B to (1.41 ± 0.02) × 109M⊙.
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5.4 Looking Forward

While no multi-messenger detections of SMBHBs have been made thus far, the

future is blindingly bright. PTAs are rapidly approaching the sensitivities required

to detect a GWB (Pol et al., 2021), and CWs are expected to follow soon after

(Kelley et al., 2018). Concurrently, next-generation time-domain surveys, including

LSST, are preparing to commence within the next few years (LSST Science Col-

laborations et al., 2017) and will dramatically increase our capabilities of detecting

SMBHB candidates. Through strong cooperation by both efforts, the field will enter

a unique era of opportunity for multi-messenger studies of SMBHBs.

However, significant efforts are still needed to ensure that a multi-messenger

detection will be possible. As the GWB becomes detectable in PTA data sets, new

methods, in addition to those developed in chapter 4 will be critical to differentiate

between a detection of a CW or an effect of the GWB. To test these methods,

extensive simulations of PTA data sets will be necessary to identify clear indicators

for the presence of a CW in addition to the GWB.

While LSST will provide an incredible data set with which to search for peri-

odicities induced by SMBHBs, the data volume of over 20 million quasar light curves

will prohibit detailed Bayesian analyses, such as those conducted in chapter 3, on

every quasar in the database. Instead, a fast evaluation technique will be needed

to identify promising candidates for follow-up with the full pipeline. Additionally,

further modeling of the intrinsic quasar population and more accurate SMBHB or-

bital models will allow us to improve predictions about the overall expectations for

157



finding these sources in time-domain surveys.

The results of chapter 2 have shown that the possibilities created by multi-

messenger analyses of SMBHBs are broader than expected, and the methods de-

veloped are already being applied to numerous other candidates, and new methods

are being developed to jointly analyze electromagnetic and GW data sets. In the

near future, as PTA sensitivities grow and more periodic candidates are identified,

the possibilities for multi-messenger analyses will increase dramatically. However,

predictions are often incomplete; as the first detections are made, surprises are sure

to abound. Fortunately, surprising discoveries are often the most thrilling, and will

provide ample opportunities for the development of new physics. Therefore, it is

critical to use every tool and messenger in our arsenal as we explore the unknown.
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Löhmer, O., Kramer, M., Driebe, T., et al. 2004, A&A, 426, 631, doi: 10.1051/

0004-6361:20041031

Lommen, A. N., & Backer, D. C. 2001, ApJ, 562, 297, doi: 10.1086/323491

Lommen, A. N., Kipphorn, R. A., Nice, D. J., et al. 2006, ApJ, 642, 1012, doi: 10.

1086/501067

Lorimer, D. R., & Kramer, M. 2012, Handbook of Pulsar Astronomy

LSST Dark Energy Science Collaboration (LSST DESC), Abolfathi, B., Alonso, D.,

et al. 2021, ApJS, 253, 31, doi: 10.3847/1538-4365/abd62c

LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009, arXiv e-prints,

arXiv:0912.0201. https://arxiv.org/abs/0912.0201

170

http://doi.org/10.1111/j.1745-3933.2007.00306.x
http://doi.org/10.1088/0004-637X/786/2/103
http://doi.org/10.1088/0004-637X/786/2/103
http://doi.org/10.3847/2041-8213/aac2ed
http://doi.org/10.3847/2041-8213/aac2ed
http://doi.org/10.3847/1538-4357/ac1da9
http://doi.org/10.3847/1538-4357/ab40cb
http://doi.org/10.3847/1538-4357/ab40cb
http://doi.org/10.1051/0004-6361:20041031
http://doi.org/10.1051/0004-6361:20041031
http://doi.org/10.1086/323491
http://doi.org/10.1086/501067
http://doi.org/10.1086/501067
http://doi.org/10.3847/1538-4365/abd62c
https://arxiv.org/abs/0912.0201


LSST Science Collaborations, Marshall, P., Anguita, T., et al. 2017, ArXiv e-prints,

doi: 10.5281/zenodo.842712

Lutz, T. E., & Kelker, D. H. 1973, PASP, 85, 573, doi: 10.1086/129506
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