
Graduate Theses, Dissertations, and Problem Reports 

2022 

Machine Learning Based Real-Time Quantification of Production Machine Learning Based Real-Time Quantification of Production 

from Individual Clusters in Shale Wells from Individual Clusters in Shale Wells 

Ayodeji Luke Aboaba 
West Virginia University, aaboaba@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Petroleum Engineering Commons 

Recommended Citation Recommended Citation 
Aboaba, Ayodeji Luke, "Machine Learning Based Real-Time Quantification of Production from Individual 
Clusters in Shale Wells" (2022). Graduate Theses, Dissertations, and Problem Reports. 11269. 
https://researchrepository.wvu.edu/etd/11269 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/245?utm_source=researchrepository.wvu.edu%2Fetd%2F11269&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11269?utm_source=researchrepository.wvu.edu%2Fetd%2F11269&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Machine Learning Based Real-Time Quantification of Production 

from Individual Clusters in Shale Wells 

 

 
Ayodeji L. Aboaba 

 

 
Dissertation submitted  

to the Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University  

 

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy in 

Petroleum and Natural Gas Engineering 

 

 

Shahab D. Mohaghegh, Ph.D., Chair 

Samuel Ameri, M.S., P.E. 

Kashy Aminian, Ph.D. 

Hassan Amini, Ph.D. 

Mehrdad Zamirian, Ph.D. 

Scott Reeves, MBA 

 

Department of Petroleum and Natural Gas Engineering 

 

 

 

 

Morgantown, West Virginia 

2022 

 

 

 

 

Keywords: Fuzzy Logic, Clustering, Fiber Optics, DTS, Production Logging, Real-time 

Monitoring, Hydraulic Fracturing, Machine Learning, Artificial Intelligence, Neural 

Networks. 
©Copyright 2022 Ayodeji L. Aboaba 

 



ABSTRACT 

Machine Learning Based Real-Time Quantification of Production from  

Individual Clusters in Shale Wells 

 

Ayodeji Aboaba 

 

Production logs have proved invaluable for identifying production and completion anomalies and 

problems in oil and gas wells. Conventional production logging especially in horizontal wells 

come with challenges such as the risks associated with lowering the logging tools into the wellbore, 

harsh downhole conditions, and the cost of well intervention. More importantly, measurements 

acquired from conventional production logging is only a snapshot of the downhole condition for 

that moment in time. Over the last two decades, there has been advances in downhole monitoring 

in oil and gas wells with the use of Fiber-Optic sensing technology such as the Distributed 

Temperature Sensing (DTS). Unlike a conventional production log that provides only snapshots 

of the well performance, DTS provides continuous temperature measurements along the entire 

wellbore. Unfortunately, current DTS interpretation methods are based on visualization of the 

temperature change in the DTS measurements, and are qualitative in nature, at best. 

Whether by fluid extraction or injection, oil and gas production changes reservoir conditions, and 

continuous monitoring of downhole conditions is highly desirable. This research study presents a 

tool for real-time quantification of production from individual perforation clusters in a multi-stage 

shale well using Artificial Intelligence and Machine Learning. The technique presented provides 

continuous production log on demand thereby providing opportunities for the optimization of 

completions design and hydraulic fracture treatments of future planned wells. A Fiber-Optic 

sensing enabled horizontal well MIP-3H in the Marcellus Shale has been selected for this work. 

MIP-3H is a 28-stage horizontal well drilled in July 2015, as part of a Department of Energy 

(DOE)-sponsored project - Marcellus Shale Energy & Environment Laboratory (MSEEL). A one-

day conventional production logging operation has been performed on MIP-3H using a flow 

scanner while the installed Fiber-Optic DTS unit has collected temperature measurements every 

three hours along the well since completion. An ensemble of machine learning models has been 

developed using as input the DTS measurements taken during the production logging operation, 

details of mechanical logs, completions design and hydraulic fracture treatments data of the well 

to develop the real-time shale gas production monitoring tool.
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Chapter 1: Introduction 

 

1.1 Problem Statement 

Exploration and exploitation of the shale formations in the United States has continued to 

accelerate since the early 2000's. Once considered to exist only as a cap rock, Shale is now proving 

to be one of the most important reservoir rocks in North America and throughout the world. In 

most Shale formations, horizontal wells are drilled through the reservoir before being hydraulically 

fractured at a series of discrete zones and placed on production. The subsequent zonal gas 

production rates have proved highly variable and inconsistent for the same shale gas reservoirs 

that have been completed and treated in the same way. In fact, production evaluation data have 

confirmed that two-thirds of gas production comes from one-third of perforation clusters, and 

almost one-third of all perforation clusters is not contributing to production [1]. Furthermore, 

studies have indicated that the completion, hydraulic fracture treatment design, operational and 

production issues can all significantly influence multi-fractured horizontal well production and 

economics. However, due to the extreme complexities encountered, determining the specifics of a 

completion and hydraulic fracture design that will result in the highest economic return on 

investment is problematic. This has resulted in increased demand for production logging (PL) in 

these reservoirs to better understand the basis behind higher stimulation efficiency and increased 

production results. Operators use production logs to evaluate fluid movement in and out of the 

wellbores, quantify flow rates and determine fluid properties at downhole conditions. Completion 

engineers can evaluate production and completion efficiency, and plan remediation or modify 

future completion designs based on the interpretation of production logs. 

The traditional production logging technique requires occasionally lowering the logging tool into 

the wellbore to measure flow rate and fluid properties. This method is reactive as it is often used 

as a response to an event or scheduled as part of workover and well intervention plans. The timing 

of such infrequent measurements may not be optimal for diagnosing production problems or 

capturing the dynamic changes that occur in the reservoir. Occasional measurements in wells 

rarely detect production events as they occur and often fail to describe production behavior, or 

even define a trend because of the low frequency at which they are collected. Production logs in 

Shale gas wells are normally recorded 30 to 60 days after the stimulation process has finished [2]. 
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In addition to the inadequacy of the traditional production logs, companies contend with high cost 

of well intervention and the risk of lowering expensive production logging tools into the extended 

reach horizontal wells in Shale. The production log must contend with semi-stagnant water trapped 

in the lateral section because of the wellbore trajectory, substantial wellbore debris impacting 

depth of data capture, and completion configurations that limit equipment options and ease of 

logging. 

Over the last two decades, fiber-optic based sensing such as the Distributed Temperature Sensing 

(DTS) has opened opportunities for in-well reservoir surveillance in the oil and gas industry. A 

characteristic thermal gradient signature is created when fluid flows in or out of a wellbore [3]. 

For example, fluid flows from high-pressure reservoirs into the wellbore during production. The 

recovery of liquid fluids produces a warming trend in the wellbore, whereas gas recovery produces 

a cooling effect known as the Joule Thompson effect [4]. Such basic characteristics help to 

determine liquid and gas movements by using Distributed Temperature Sensing (DTS). Unlike a 

conventional production log that provides only snapshots of the well performance, DTS provides 

a continuous temperature profile of the entire wellbore in real time, which in turn, can provide an 

enhanced understanding of the downhole production (or injection) profile. Thermal profiling along 

the reservoir section and over the well itself reveals trends, which when appropriately analyzed, 

help corroborate reservoir inflow and well performance characteristics.  

DTS data interpretation in the oil and gas industry can be divided into qualitative and quantitative 

methods. For example, to detect a leak in the wellbore, qualitative understanding of the leak 

location based on visualization of the temperature change in the DTS measurements is sufficient 

whereas in flow profiling, a quantitative approach is required. Most quantitative approaches 

combine numerical models with DTS data to convert temperature signals to the desired parameter. 

Unfortunately, current quantitative approaches to flow profiling using DTS data are complicated 

and have assumptions in the thermal models which impacts the ability of such approaches to 

capture the dynamics of flow over time.  

 

1.2 Research Objective 

One goal for oil fields of the future is acquiring continuous and on-demand data; and making 

timely operational decisions as required for field and reservoir management. The objective of this 
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research study is to develop a workflow for real-time quantification of production from individual 

perforation clusters in a multi-stage Shale gas well using Artificial Intelligence and Machine 

Learning. This work leverages the fiber optics Distributed Temperature Sensing (DTS) technology 

to provide continuous production log on demand thereby providing opportunities for the 

optimization of completions design and hydraulic fracture treatments of future planned Shale 

wells. The data-driven approach utilizes spatio-temporal data collected from a 28-stage 

hydraulically fractured horizontal well in the Marcellus Shale, in Northern West Virginia. An 

ensemble of machine learning models, comprising of a random forest model and an artificial neural 

network model was developed using as input the downhole DTS measurements, production 

measurements taken during a production logging operation, details of mechanical logs, 

completions design and hydraulic fracture treatments data of the well. The model provides real-

time measurement of shale gas production from individual perforation clusters of the well. 

 

1.3 Hydraulic Fracturing Overview 

Hydraulic fracturing is a technique used in stimulating hydrocarbon production from shale gas or 

oil formations. Since ultra-low permeability coefficients of shale formation make it hard for 

hydrocarbons to transport towards the wellbore, artificial fractures are induced to the shale 

formation to achieve commercial gas production rate. Directional and horizontal drilling combined 

with hydraulic fracturing have made the production of natural gas from different shale formations 

achievable in some parts of the world. Hydraulic fractures are created by injecting fluid such as 

slick water, under high pressure. The fluid that is used in hydraulic fracturing is mixed with 

proppants, commonly referred to as sand. The proppant is pumped into the fractured rock to prop 

the fractures open and relatively permeable to formation fluids once the fracturing pressure from 

the injected fluid is released. In addition to the fracturing fluid and the proppant, some other 

chemicals (commonly referred to as additives) are added to the fluid mixture. These chemicals 

serve many functions during hydraulic fracturing, such as controlling the injected fluid’s viscosity. 

A lot of factors affect the efficiency of a hydraulic fracturing treatment, some of which include 

formation in-situ stress, fracturing fluid properties, the type and amount of proppant, pumping 

schedule, reservoir fluid and rock properties, completion design among others.  
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1.4 Production Logging Overview 

While several geophysical logs such as sonic log, resistivity log and many more can be run to 

acquire formation and fluid properties during the exploration and development stage of a well, 

production logging is only performed after a well is completed and placed on production. The 

general purpose of production logging is to evaluate the behavior and type of fluids within the 

wellbore during production or injection operations. It is often used to evaluate the success of 

horizontal well placement and reservoir stimulation in Shale reservoirs. Once an hydraulically 

fractured shale well has cleaned up, a production log is run to measure the zonal production from 

each perforation cluster. Results from the production log are used to calibrate the petrophysical, 

reservoir, and fracturing models. The production logging tools are small in diameter and are run 

through tubing for evaluation of the well as it is producing. A production logging assembly usually 

comprises of a combination of a wide range of sensors which provides downhole measurements 

such as temperature, fluid density, fluid capacitance, pressure, fluid velocity and so on. One of 

such tools is the Schlumberger Flow Scan Imager (FSI) which is widely used in the industry for 

production logging in multiphase horizontal wells. The tool provides a phase area measurement 

(holdup) and phase velocity measurement of gas, oil and water in the wellbore using advanced 

probe and micro-spinner technology [5]. The product is a direct, down-hole calculation of multi-

phase production. When combined with seismic, micro-seismic, petrophysical, geological, 

completion and stimulation data, it becomes an invaluable tool for realizing what is required for 

optimal well performance [6] [7]. 

 

1.5 Distributed Temperature Sensing (DTS) Technology Overview 

Fiber-optic distributed-temperature systems offer excellent capabilities to increase the 

effectiveness of temperature surveillance. No cable movement is required, and measurements are 

taken by the fiber-optic cable, so many temperature surveys can be conducted for a given period. 

A modern fiber optic DTS system uses optical fiber as the primary sensing element. This fiber 

sensing element is smaller than a human hair. A DTS system senses temperature much like Doppler 

radar senses weather conditions. Monochromatic light pulses, generated by a laser source, are sent 

down the length of fiber from the surface at periodic intervals. As the light pulses strike 

imperfections in the fiber, some light is scattered and reflected towards the source (Rayleigh 
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scattering), and some light excites the molecules at the imperfection. These excited molecules 

scatter light at wavelengths above and below the incident light. One component of scattered light 

pulses is known as Brillouin scattering, and another component is Raman scattering. Brillouin 

scattering results in wavelengths very close to the incident wavelength and is difficult to process 

for temperature measurements. Raman scattering consists of two wavelengths that are about 

440nm above and below the incident wavelength. These two wavelengths are known as Stokes 

and anti-Stokes. The longer wavelength, or stokes component, is relatively temperature insensitive, 

while the shorter wavelength (anti-stokes) increases intensity with an increase in temperature. 

Thus, by comparing the intensity of stokes and anti-stokes components, the temperature along the 

length of the fiber can be determined. The results from many pulses of light are averaged to 

determine the temperature profile along the length of fiber. Present instruments can determine the 

temperature at each meter interval along the fiber. A fiber-optic distributed-temperature-sensing 

system can be installed on the tubing or casing on either a permanent or semi-permanent basis. It 

can also be run as a retrievable system much like a wireline logging system. DTS system 

components and backscattered lights are demonstrated in the figure below [8]. 

 

Figure 1: Schematics of a DTS Unit 

 

1.6 Machine Learning Overview 

Artificial intelligence and machine learning are widely known technologies that aim to teach 

machines to learn from input data. Machine learning algorithms can be classified mainly into 

Supervised and Unsupervised learning algorithms. Supervised learning algorithms learn a function 
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that, given a sample of data and desired outputs, best approximates the relationship between input 

features and output (also known as ground truth) observable in the data. Unsupervised learning 

algorithms, on the other hand, do not have labeled outputs; so, the goal is to infer the natural 

structure or underlying pattern present within a set of data points. 

 

1.6.1 Fuzzy Clustering 

Clustering is a form of unsupervised learning technique which involves assigning data points (or 

objects) to clusters (groups) such that points in the same cluster are as similar as possible. The 

simplest form of cluster analysis is the hard clustering in which a data point exclusively belongs 

to a single cluster. Fuzzy clustering is useful in avoiding the arbitrariness of assigning an object or 

data point to only one cluster when it may be close to several. In fuzzy clustering (also called soft 

clustering), every object or data point belongs to every cluster with a membership weight that is 

between 0 (absolutely does not belong) and 1 (absolutely belongs). Cluster membership weights 

for any data point must sum up to 1.  

In this study, the skfuzzy package from a popular open-source machine learning library Scikit-

learn is used in performing fuzzy clustering tasks. 

 

1.6.2 Random Forests 

A random forest is a supervised machine learning algorithm that is constructed from decision tree 

algorithms. It is a technique used to solve regression and classification problems. It utilizes 

ensemble learning, which is a technique that combines many classifiers to provide solutions to 

complex problems. A random forest algorithm consists of many decision trees and establishes its’ 

outcome based on the predictions of the decision trees. It predicts by taking the average or mean 

of the output from various trees. Increasing the number of trees increases the precision of the 

outcome. A random forest eradicates the limitations of a decision tree algorithm. It reduces the 

overfitting of datasets and increases precision [9]. 

A decision tree consists of three components: decision nodes, leaf nodes, and a root node. A 

decision tree algorithm divides a training dataset into branches, which further segregate into other 

branches. This sequence continues until a leaf node is attained. The leaf node cannot be segregated 

further. The nodes in the decision tree represent attributes that are used for predicting the outcome. 
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Decision nodes provide a link to the leaves. The following diagram shows the three types of nodes 

in a decision tree. The Random Forest Regressor algorithm from Scikit-learn python library is used 

in this study. 

 

Figure 2: Types of Nodes in a Decision Tree 

 

1.6.3 Artificial Neural Networks 

One of the most common supervised learning algorithms is the Artificial Neural Network (ANN). 

An ANN is a simple mathematical computational algorithm that is capable of learning from input 

data (machine learning) as well as discovering patterns (pattern recognition) [10]. ANN is 

biologically inspired by the interconnections that take place between neurons in a human brain. 

Neurons carry and pass information from one neuron to another via synapse. The architecture of 

artificial neural networks consists of an input layer, one or more hidden layers, and an output layer. 

The input layer contains the information provided to the neural network in the form of attributes. 

The hidden layer is responsible for translating the information from the input layer to the output 

layer by a system of weighted connections and non-linear activation functions [10]. Figure 3 

shows a typical ANN with four input attributes, three neurons in the hidden layer and a single 

neuron in the output layer. The strength of information passed from one artificial neuron to another 

is assigned by its “weight”. Optimization of these weights is crucial in the development of a well-

trained neural network. 
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Figure 3: Artificial Neural Network Architecture 

 

In this study, a machine learning library in Python called Keras is used in modeling artificial neural 

networks [11]. Keras is an open-source high-level neural networks API written in Python and 

capable of running on top of TensorFlow, CNTK, or Theano.  

 

1.7 Structure of Work 

This dissertation report details the research work performed in developing a purely data-driven 

approach to production performance monitoring in hydraulically fractured Shale wells using 

distributed temperature sensing measurements. 

In chapter one (this chapter), the problem was defined, and the final objective of the research was 

articulated. A brief introduction to the key elements of the study was provided in this chapter as 

well, to provide a background. Chapter two provides a literature review on the applications of fiber 

optics DTS in the Petroleum Industry, and DTS interpretation and analysis methods. Chapter three 

provides detail description of the site of study, data collection and preparation. Detailed steps taken 

to build the predictive models are presented in Chapter four while the model validation results, 

and discussion follow in Chapter five. Conclusions and recommendations are provided in Chapter 

six. 
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2 Chapter 2: Literature Review 
 

2.1 Distributed Fiber Optic Sensing Systems 

Low-permeability formations such as Shale present a tremendous challenge to effective 

completion and reservoir drainage, especially in known heterogeneous environments that present 

additional complexity. Several robust diagnostic techniques exist in the market currently that are 

identified as guides to improve completion and stimulation efficiency in basins that require 

hydraulic fracturing to make low-permeability environments viable. Some of these techniques 

include fracture modeling, micro-seismic mapping, diagnostic fracture injection test (DFIT) 

analysis, radioactive and chemical tracers, and pressure matching [12]. During the past decade, 

fiber-optic sensing has been identified as an additional tool that can provide significant benefit to 

complement these more traditional approaches. Fiber optic sensing uses the physical properties of 

light as it travels along a fiber to detect changes in temperature, strain, and other parameters. There 

are various fiber optic sensing systems including Distributed Temperature Sensing (DTS), 

Distributed Acoustic Sensing (DAS), Distributed Vibration Sensing (DVS) or Distributed 

Disturbance Sensing (DDS), Distributed Strain Sensing (DSS), Distributed Pressure Sensing 

(DPS) and Distributed Chemical Sensing (DCS). These are all real-time technologies capable of 

continuous recording of property changes over time. Additionally, they are distributed sensing, 

meaning that the sensing and recordings take place all along the fiber. Thus, the recorded data is a 

function of location and time. DTS has been utilized for temperature monitoring, DAS for acoustic 

signal monitoring, DVS for disturbance (vibration) signature location monitoring, DSS for 

compaction monitoring, DPS for fluid level determination, and DCS for specific fluid molecule 

determination. Among these, DTS is the most matured technology and has been successfully 

examined for a long time. 

 

2.2 Applications of Distributed Temperature Sensing (DTS) in Petroleum Industry 

DTS has been deployed for various purposes in the petroleum industry such as hydraulic fracturing 

characterization, well treatment or stimulation, organic/inorganic depositions, leak detection, flow 

monitoring, reservoir and fluid characterization in both injectors and producers. Soroush et al. [8] 

have performed an extensive literature review on various applications of DTS in the oil and gas 

industries. 
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2.2.1 Hydraulic Fracturing 

Hydraulic fracturing characterization is one of the main applications of DTS deployment. Wang 

and Bussear [13] used qualitative DTS analysis for real-time monitoring of the movement and 

distribution of fluid in fractures during and after fracturing as well as to analyze fracture stage 

effectiveness. Malanya et al. [14] used DTS data before, during and after re-fracturing to identify 

new fracture positions in hydraulic fracturing. Holley et al. [12] used DTS to estimate fracture 

height during hydraulic fracturing and fluid placement during each stage in Permian basin. 

Fracture modeling was performed, using data acquired by fiber optics to constrain the model. 

Sierra et al. [15] presented their experience on DTS deployment for hydraulic fracturing. They 

believe that the location of fiber (for example, if it is conveyed with coiled tubing or permanently 

installed behind the casing) had a significant impact on the temperature measurements. Huckabee 

[16] illustrated three types of DTS installation, including temporary call-out survey, velocity string 

installation and permanent behind the casing. Then, they analyzed horizontal and vertical well 

stimulation and hydraulic fracture containments in a disposal well using DTS. They stated that 

DTS can be used as a complementary tool to radioactive tracer surveys. Holley et al. [17] [18] 

discussed the DTS data along with log data of an uncemented multistage hydraulic fracturing to 

analyze the effectiveness of the stimulation. In open hole completion, understanding of hydraulic 

fracturing geometry, number and locations of fractures are challenging. Therefore, DTS data is 

useful for overall effectiveness. 

Tabatabaei and Zhu [19] developed a thermal model to use DTS data and simulate temperature 

behavior during fracturing and shut-in period. They interpreted fracture fluid distribution from 

DTS data using inversion methods (stochastic and gradient-based). Sun et al. [20] developed a 

numerical model to simulate flow and temperature. They included multi-component, multiphase 

flow, slippage, and mass transfer between phases in their model and finally, they analyzed the 

influence of different parameters on the results. Tarrahi et al. [21] used Ensemble Kalman Filter 

to characterize hydraulic fracturing using DTS data including fracture geometry (height and half 

length) and conductivity. Kalia et al. [22] developed a thermo-hydraulic model to capture the effect 

of Joule-Thomson and transient period and interpret DTS data in hydraulic fracturing. Holley et 

al. [23] stated that the combination of micro-seismic mapping and DTS data have the advantages 

of enabling real-time decision-making during fracture treatment, more accurate post-fracture 
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analysis and ability to combine diagnostic tools with production analysis. McCullagh et al. [24] 

used micro-seismic data to improve or calibrate temperature models (real time and warm back 

temperature models) which are based on DTS data to evaluate fluid distribution and hydraulic 

fracturing characterization of Eagle Ford. 

 

2.2.2 Well Treatment and Stimulation 

DTS has been extensively used in many acid stimulation projects to monitor the stimulation job. 

Fahim et al. [25] presented the experience of Carbonate coiled tubing stimulation with DTS for 

Abu Dhabi onshore fields. They stated that DTS records before, during and after stimulation job 

indicate whether injected acid and diverter are efficient. They were able to perform a velocity 

interpretation of the injection profile and optimized fluid placement. Sharma et al. [26] presented 

the application of permanently installed DTS to optimize acid treatment in a case study of 

carbonate formation. They used Inflow Control Device (ICD) with packer completion and 

monitored acid injection before and after various acid stages. Santin et al.  [27] presented the 

results of DTS application in one injector to monitor the stimulation job. They used DTS to ensure 

fluid placement in different zones, have optimum pumping schedule and rate; and assess 

stimulation effectiveness. Al-Najim et al. [28] used DTS in coiled tubing and smart fluid for the 

stimulation of a well with high water-cut. The viscosity of smart fluid builds up when it contacts 

with water and breaks down when it comes in contact with hydrocarbon. Therefore, it can plug the 

water zone and divert the acid toward the hydrocarbon zone. Reyes et al. [29] assessed stimulation 

effectiveness during pumping job and efficiency of fluid placement into the zones using DTS data. 

Grayson et al. [30] used a fiber optic slickline DTS system to monitor the stimulation job in a 

naturally fractured reservoir in California. They stated that fractures with higher conductivity show 

larger response than the ones with lower conductivity.  

Tardy et al. [31] [32] used DTS in coiled tubing and couple the DTS data with inversion algorithm 

to quantitatively analyze acidizing and evaluate zonal coverage and fluid placement performance. 

In inversion algorithm, DTS recordings are transformed to zonal coverage log using numerical 

models. Operators have also used DTS to optimize fluid placement and distribution. For example, 

Glasbergen et al. [33]  used DTS and a thermal model to quantify fluid distribution in matrix 

treatment. Vazquez et al. [34] used DTS in a case study from offshore Mexico to monitor the fluid 

distribution and fluid allocation in stimulation. Pinto et al. [35] performed lab tests using a flow 
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loop with installed DTS to simulate fluid placement during acid stimulation. Wang and Bussear 

[36] used DTS data and a modeling technique to perform qualitative analysis (using type curves) 

and quantitative analysis of fluid placement in acid stimulation. Tabatabaei et al. [37] [38] used a 

mathematical model and DTS data to obtain acid profile distribution in matrix acidizing. They 

used the heat of reaction, conduction and convection heat transfer and mass transfer to model near 

wellbore. They used inversion method to interpret acid distribution from DTS data. Ramondenc 

and Baez [39] used DTS to evaluate fluid placement in acid stimulation treatment in two case 

studies of carbonate formations. Lopez et al. [40] presented the application of inversion algorithm 

with thermal model to use DTS data for zonal coverage and fluid distribution quantification in acid 

treatment of a carbonate rock. Their fluid distribution inside the stimulated intervals agreed with 

the PLT data. Davies et al. [41] used DTS system along with PLT and water flow log to determine 

thief zones in acid stimulation job. They also developed a thermo-hydraulic mathematical model 

to determine temperature signatures associated with thief zones. 

 

2.2.3 Leakage Detection 

Mao et al. [42] established an analytical model to obtain leakage rate around the wellbore in CO2 

injection at storage zones using DTS data. Their model is based on energy balance of major 

mechanisms including Joule-Thomson effect and heat conduction. Sun et al. [43] used DTS and 

high-pressure water jet in two wells to analyze cement quality and evaluate wellbore integrity in a 

geological storage project. Setiawan et al. [44] presented the results of DTS slickline deployment 

in two examples of offshore Malaysia to determine temperature anomalies and wellbore leak 

detection. Thompson et al. [45] presented the results of a case study for which DTS was used in a 

SAGD injector for casing and cement integrity evaluation. They observed that one injector was 

affected by neighboring steam chamber as temperature did not fall off. 

Mishra et al. [46] presented the application of DTS technology in a case study for monitoring gas 

leakage in the pipeline and mentioned the key advantages of using this technology. These 

advantages include long-distance monitoring, accuracy, speed of the method, durability, and low 

maintenance. Bersan et al. [47] investigated the leak detection caused by backward erosion and 

seepage in piping using DTS. They used large-scale testing and with the help of numerical 

modeling they detected the onset of thermal anomalies. Weppenaar et al. [48] presented the 
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application of DTS in monitoring flowline, risers, and trenched section of risers to detect possible 

breach or damage and manage riser integrity. 

 

2.2.4 Flow Monitoring 

Several authors used thermal models coupled with DTS measurements to determine flow rate. For 

example, Kabir et al. [49] utilized DTS data and a wellbore model using steady flow and unsteady 

heat transfer to determine the flow rate in both gas and oil reservoirs. Wang et al. [50] [51] used 

DTS data and steady-state energy balance and developed a flow profiling model. Later, Wang et 

al. [52] used Fourier series approximation to improve flow profiling while spatial resolution was 

preserved. They determined the best fit time interval and multipoint pressure data integration with 

DTS to achieve this goal. Ouyang and Belanger [53] [54] developed a thermal model for single 

and multiphase flow along the wells (vertical, deviated and horizontal) which uses DTS data for 

predicting injection and production profiles. They stated that for multiphase flow, beside DTS 

data, additional data is needed. Lanier et al. [55] used DTS data in a 1000-meter open hole 

horizontal producer to evaluate flow profile along the well. They used thermal model analysis and 

stated that only a portion of the heel was producing. Johnson et al. [56] used DTS data in an 

analytical-numerical temperature-pressure model to estimate the gas flow rate in gas reservoirs. 

They compared the results with PLT data and quantified zonal production. Figure 4 shows the 

workflow of their simulation. They also stated that DTS transient analysis can be used to estimate 

oil and gas injection and production rates. By monitoring real-time temperature variations, 

operators can assess problems and promptly make decisions. 

 

 

Figure 4: Modeling Workflow to Estimate Flow Rate using DTS Data (Johnson et al. 2006) 
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John et al. [57] integrated DTS with open hole gravel pack completion in a field of Azerbaijan for 

real-time production estimation. Hembling et al. [58] used DTS in advanced well completion 

systems and maximum reservoir contact wells in Saudi Arabia for efficient and accurate flow 

monitoring. Mehmood et al. [59] analyzed a case study in Pakistan for which DTS was used with 

coiled tubing where production logging could not be mechanically deployed. 

Carlsen et al.  [60] used permanent DTS and pressure monitoring to monitor/optimize production 

in horizontal wells in the Danish North Sea. 

Tolan et al. [61] used DTS with inflow control valves to manage the amount of water into the 

producer in Douglas Field. Using DTS, layering, permeability variation within a single zone and 

zonal contribution can be investigated. DTS system has been used in various water injection 

projects to monitor water injection. When water is injected into a reservoir, it cools down the 

wellbore surrounding and the drainage radius. By shutting the injection, the reservoir and wellbore 

surrounding will warm back. This warm-back rate is significantly slower in porous zones which 

depends on the zone permeability. This mechanism has been used for permeability distribution 

and injection profiling. Foo et al. [62] discussed the application of DTS for injection profiling in 

Cardium Formation, Pembina field located in Alberta to detect channels and perform workover for 

water cut reduction. They used warm-back analysis along with storage analysis and waterfront 

analysis to assess the data. Khamatdinov et al. [63] stated that DTS can measure the real-time 

temperature along the wellbore at 0.01-0.1 °C temperature resolution and 1-meter spatial 

resolution. They used a case study in which DTS data was utilized as a history match parameter 

of simulation for waterflood optimization and efficient water injection. 

Brown et al. [64] presented the results of DTS with a portable fiber unit named as Sensa tube unit. 

This unit which is like slickline unit with fiber inside a tube was used for water injection warm-

back analysis to provide water injection profile through the production interval. 

Nuñez-Lopez [65] used DTS data to monitor temperature and hence CO2 flow within injection 

zones as well as detection of CO2 leakage to overburden in the US Gulf Coast. Wiese [66] 

correlated heat transfer and thermodynamic conditions to DTS data in Ketzin, Germany in a CO2 

project. Mawalkar et al. [67] presented the results of real-time DTS and multi-level pressure data 

to monitor CO2 migration into the reservoir in a CO2-EOR project in northern Michigan. They 

used warm-back analysis to determine where CO2 enters the reservoir as well as monitor its 
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vertical migration. Richard and Pevzner [68] used DTS data to monitor the location of thermal 

anomalies for a carbon capture and storage research project. 

Chin et al. [69] discussed the application of a dual laser DTS system in monitoring of water 

alternating gas (WAG) project in Malaysia. They stated that dual laser DTS eliminates the need 

for a double-ended fiber and tolerates the hydrogen darkening. They recorded temperature in 5- 

second intervals. Comparing to PLT, therefore, they eliminated the need of intervention, reduced 

the costs and decreased the number of personnel and increased operational efficiency. 

Mehtiyev et al. [70] used a thermal-fluid model and Temperature Inflection Point (TIP) and 

analyzed the results of DTS for injection zonal allocation determination in a field in California. 

They stated that DTS has a higher measurement frequency, lower risk and cost compared to PLT 

and Radioactive Tracer Survey (RTS). Furniss et al. [71] used DTS to interpret the flow zone 

contribution qualitatively in a coal seam gas producer which is located in Surat basin, Queensland, 

Australia. They combined DTS with air assisted flow test by which kh (permeability-thickness) is 

measured for comparison purpose. Similarly, Bottomley et al. [72] discussed the application of 

permanent DTS in coal seam gas production wells to determine zonal flow allocation. This is 

important in commingled wells which are completed in stacked reservoir units. They developed a 

thermal model to obtain zonal allocation for single phase water production period. Uncertainty in 

geothermal gradient and fluid level, and multiphase flow were the challenges they encountered. 

Brown et al. [73] presented the results of DTS deployment in three case studies from northern and 

southern Mexican regions for gas lift valves operation and gas lift optimization. Costello et al. [74] 

used hybrid DTS to monitor gas lift functionality and completion integrity. The system monitors 

downhole pressure, and all gas lift valves. Wang et al. [75] developed a software which is based 

on a model derived from steady state energy balance. The software has two modes: forward mode 

and simulation flow profiling. They used forward mode to model gas lift surveillance. They 

compared their model with other existing models. 

 

2.3 Machine Learning based Flow Monitoring Using DTS 

Machine learning algorithms have become increasingly popular in the oil and gas industry because 

of their capabilities in efficiently recognizing hidden patterns in extremely complex, non-linear, 

and multivariate data. Sadigov et al. [76] used data (including DAS and DTS) collected from a 

flow loop facility equipped with fiber optic cables as per the completion design in Clair Ridge 
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reservoir. Several laboratory experiments (flow loop tests) were performed covering a range of 

fluid type and rate combinations expected from the actual well, to detect relative inflow rates of 

different fluid types along the wellbore during production. The laboratory experiments were 

designed to replicate reservoir conditions as closely as possible in production and injection wells 

in Clair Ridge. Ghahfarokhi et al. [77] trained a multi-layer perceptron (MLP) neural network with 

stage based daily DTS data, and daily flowing time to predict the well gas production for the next 

day in a Marcellus Shale well. Data-driven machine learning algorithms were applied to shale gas 

production performance analysis by integrating distributed acoustic sensing (DAS), distributed 

temperature sensing (DTS) fiber-optic, completions, flow scanner production log, and surface data 

to model daily gas production from a 28- stage stimulated horizontal well drilled in the Marcellus 

Shale [78]. Each completed stage was assumed to produce its share calculated from the flow 

scanner production log. Li et al. [79] developed ResNet and Convolutional LSTM networks to 

predict stage-based pump pressure and slurry rates using DAS, DTS and micro-seismic 

measurements as input. Sherman et al. [80] developed a physics-informed deep neural network 

model capable of interpreting DAS measurements in near-real time, and imaging hydraulic fracture 

propagation in an unconventional oil and gas reservoir. The synthetic data used in developing the 

neural network model was generated using a physics-based thermal-hydraulic-mechanical model 

to simulate synthetic DAS measurements for a range of subsurface conditions such as fracture 

propagation, fault slip etc. 

Alkhalaf et al. [81] developed a methodology to use machine learning in detecting water-cut 

measurements from raw DAS data. The data used in the study was generated from the production 

logging of an oil well with fiber optics capability. Three different classification models were 

developed in their approach: a simple Decision Tree and two ensemble models - adaptive boost 

and Random Forest. Atakishiyev et al. [82] proposed a physics-based Machine Learning approach 

using DAS and DTS measurements for inflow profiling in a high-rate gas condensate well. 

Distributed acoustic and temperature sensing (DAS & DTS) data were acquired simultaneously 

while the well was producing approximately 70 MMSCF/D gas. Conventional production log data 

was also acquired under the same condition to validate the flow profiling results obtained from 

distributed fiber optics sensing measurements. The DAS and DTS data were processed to extract 

information regarding the presence of inflow as well as its phase and rate. The output was a set of 

thermal and acoustic features. The features were then labelled and used in training the machine 
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learning models. The library that is fed into these models consists of more than 650 experiments 

where independent parameters such as phase and rate were varied in a controlled lab environment. 

A logistic regression model was developed to predict inflow likelihood while a Ridge regressor 

model was trained to predict the phase rate and sand rate. 

Obviously, most of the DTS applications in the Petroleum Industry have utilized qualitative 

interpretations or at best mathematical models which are characterized by assumptions and 

uncertainties in their approach. The latest developments and studies in application of machine 

learning to DTS interpretation shows a great potential to successful inflow profiling. However, no 

machine learning based approach has focused on quantifying production from Shale wells in real-

time using DTS measurements, especially at the individual perforation cluster level.   
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3 Chapter 3: MIP-3H Data Collection 
 

3.1 Study Area 

The well selected for this study is in the Morgantown Industrial Park (MIP) area in West Virginia, 

United States. The well is part of the Marcellus Shale Energy and Environment Laboratory 

(MSEEL); a field site and dedicated multi-disciplinary research laboratory provided by the U.S. 

Department of Energy with the objective of identifying and demonstrating technologies required 

for best practices in shale resource development, from drilling to completion through production. 

At the MIP site, two horizontal wells (MIP-4H and MIP-6H) were drilled in Marcellus Shale and 

have produced natural gas since December 2011. Two more horizontal wells (MIP-3H and MIP-

5H) were drilled within the existing pad and placed on production in December 2015. MIP site 

also includes a vertical scientific observation well (MIP-SW) drilled approximately one-half mile 

to the northwest between the two new horizontal wells for the purpose of additional subsurface 

data collection, and micro-seismic monitoring [83]. The locations of the existing and newly drilled 

wells are depicted in Figure 5. 

 

 

Figure 5:Wells Located in the Marcellus Shale Energy and Environment Laboratory (MSEEL) Site 

 

The gas well chosen for this study is the MIP-3H well, which has the distributed fiber optics 

sensing system installed. The 28-stage horizontal well MIP-3H, with a lateral length of 6,058 feet, 

drilled and completed in the Marcellus Shale, contains a plethora of multi-scale and multi-sensor-
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based spatio-temporal data, such as surface pressure, surface temperature, Distributed Acoustic 

Sensing (DAS), Distributed Temperature Sensing (DTS), petrophysical logs, geomechanical logs, 

and flow scanner production log for each completed stage, which were used in this study. The data 

used are publicly available from the MSEEL website [84]. 

 

3.2 Completion Data 

The MIP-3H well was completed with 133 perforation clusters over 28 stages in 5 sections from 

the toe to the heel Table 1. Section A, B and D were completed using a geometric design approach 

in which perforation clusters are geometrically spaced with no consideration for the geomechanical 

properties (such as fracture closure stress and fracture intensity) along the well lateral.  

 

 

Table 1: Summary of the Completion Design 
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Section C comprising of stages 13 to 19 was completed using an Engineered Completion approach. 

The Engineered Completion approach takes the reservoir heterogeneity into consideration and 

attempts to place perforation clusters in the same stage in zones of similar geomechanical 

properties such as fracture closure stress, fracture intensity, and gamma ray. In addition to the 

engineered placement of perforation clusters, a limited entry approach was taken by varying the 

number of shots per cluster to enhance stimulation efficiency [85]. Section E includes stages 22 to 

28, in which stages were completed using either the geometric design or the limited entry approach.  

Each stage is approximately 200ft long with 4 or 5 perforation clusters, 3ft to 5ft in length and 

each consisting of 5-6 shots/foot. Stage spacing varies from 20 to 50 feet with an average of 24feet 

between plug depths to the nearest cluster in the previous stage. Table 2 shows the list of available 

features in the completion data. 

 

Completion Data 
Cluster Top (ft MD) 

Cluster Bottom (ft MD) 

Cluster Length (ft) 

Stage Length (ft) 

Shot Count 

Shot Orientation 

Blast Shield (Perf) Depth 

Blast Shield Orientation (deg) 

Blast Shield Spacing (ft) 

Table 2: Available Completion Data 

 

3.3 Mechanical Logs 

A series of geomechanical logs obtained from the MIP-3H well using the Sonic Scanner tool from 

Schlumberger is available on the MSEEL website. Measurements obtained from the Sonic Scanner 

tool can be used to optimize cluster placements by identifying shale anisotropy and favorable 

fracturing conditions based on calculated young modulus, poison’s ratio, minimum horizontal 

stress, pore pressure and overburden pressure. All these values can be interpreted to design a 

completions program that takes into account the physical properties of the shale formation. Logs 

available from sonic scanner measurements on the MIP-3H well are shown in Table 3, with their 
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definitions and how these values were obtained [86]. The log measurements were obtained at every 

0.5ft MD of the lateral section of the well.  

 

 

Table 3: Schlumberger Sonic Scanner Logs 

As shown in the table, some of the logs were direct property measurements while others have been 

derived (or calculated) from direct measurements. For a purely data-driven approach, it is 

important to avoid human biases or assumptions in measurements; we therefore focus on only 

geomechanical logs that are direct property measurements. Table 4 lists the logs that have been 

considered useful for analysis in this study. The logs were collected from the MSEEL website [84] 

for every 0.5ft MD interval of the well. 

 
Table 4: Selected Geomechanical Logs for Analysis 
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3.4 Hydraulic Fracturing Treatment Data 

Two types of proppants are used for hydraulic fracturing of MIP-3H: 100 mesh sand and 40/70 

mesh white sand. Section A has around 38% 100 Mesh proppants and 62% 40/70 white sand, while 

Section B has 75% 100 Mesh Sand and 25% 40/70 white sand. The proportion of proppants varies 

between stages in Section C: Stages 13, 14, 15, 17, and 19 have 35% 100 mesh while Stage 16 has 

67% mesh 100 and Stage 18 around 43% mesh 100. A new guar-free viscoelastic fracturing fluid 

known as Sapphire VF® is used in stages 20 and 21 (Section D) to maximize the well performance 

(Schlumberger, 2014). Sapphire fluids are designed to enhance proppants transport, deliver higher 

retained proppant pack permeability, improve fracture clean up, and lower the treatment pressure. 

Section E used Sapphire fluid, and an accelerated pumping schedule. 

 

Proppants & Fluids Treatment Schedule 
Pad Volume (bbl.) Fracture Gradient (psi/ft) 

Total Clean Fluid (bbl.) Initial Shut-in Pressure (ISIP) (psi) 

Prop.1-Type 5 Min ISIP (psi) 

Prop.1-Amount (lbs.) 10 Min ISIP (psi) 

Prop.2-Type 15 Min ISIP (psi) 

Prop.2-Amount (lbs.) Breakdown Rate (BPM) 

Total Proppant Amount (lbs.) Breakdown Pressure (psi) 

Flush Volume (bbl.) Breakdown Volume (bbl.) 

Screen Out (X) Avg Treating Pressure (psi) 

Acid % Strength Max Treating Pressure (psi) 

Total Acid (gals) Avg Treating Rate (BPM) 

Total Slickwater (bbl.) Max Treating Rate (BPM) 

Total Linear (bbl.) Duration of Fracturing Treatment (secs) 

Total Cross-Link (bbl.)  
Friction Reducer Amount (gals)  
Gel Amount (gals or lbs.)  
Breaker Amount (gals or lbs.)  
Scale Inhibitor (gals)  
Biocide (gals)  
Pump Down Volume (bbl.)  
Plug Depth  
Proppant Concentration (lb./ft)  
Proppant Concentration 

(lb./gal)  
Fluid Load (bbl./ft)  
Gel Volume (%)  
Pad Volume (%)  
Overflush Volume (bbl.)  

Table 5: Available Hydraulic Fracturing Treatment Data 
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3.5 DTS Measurements 

The MIP-3H well is equipped with the Schlumberger WellWatcher Hyperion DTS system. The 

WellWatcher Hyperion portable DTS system acquisition system uses Raman spectroscopy along 

optical fibers in the well to measure the temperature at each fiber location. In MIP-3H, the fiber 

optic cable is installed behind the casing and temperature measurements have been collected since 

February 2016 at every 4ft or 5ft interval along the horizontal section of the well, every three 

hours. Table 6 shows a snapshot of DTS measurements on a typical day, in a section of the well 

from 7,701 ft MD to 7,747 ft MD in 4ft or 5ft intervals. 

 

 

Table 6: Snapshot of DTS Measurements at a Well Section 

 

Plots of DTS measurements for all clusters in each stage on the day of production log are presented 

in the Appendix section. The plots show the minimum, maximum and average DTS measurements 

for each cluster in every stage, against the recorded gas production rate measurements from the 

production log. 

 

3.6 Production Log 

A production logging operation was performed on the MIP-3H well on March 2, 2017, using the 

Schlumberger Flow Scanner. The production logging interpretation report obtained from the Flow 

Scanner logging tool contained 5 mini-spinners, 6 water holdup measurements, 6 gas holdup 

measurements, relative bearing, deviation, caliper, pressure and temperature measurements that 

were recorded at various cable speeds [84]. Figure below is an illustration of the tool trajectory 

and travel time during the logging operation. 
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Figure 6: Production Logging Tool Trajectory and Travel Time 

 

Figure 7 shows an excerpt from the production log interpretation report. Interpretated gas rates 

were calculated at downhole conditions using Schlumberger’s MapFLO and Mass Fraction 

proprietary models, and then converted to standard surface conditions. Calculated total gas rates 

from production log was 5,435 MCF/D while the actual reported surface rate totaled 4,763 MCF/D. 

The production log reported no liquids. 

According to the Schlumberger log analyst report, the Flow Scanner tool could not log deeper than 

13,530 ft measured depth due to debris in the lateral. As illustrated in Figure 6 and shown in 

Figure 7, seven perforation clusters (all five clusters in Stage 1 and the first two clusters in Stage 

2) were not traversed by all four passes of the Flow Scanner tool. Production rates beyond the 

13,530 ft measured depth were therefore grouped and reported as a lumped production sum of 243 

MCF/D for all seven clusters combined. 
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Figure 7: Excerpt from the Flow Scanner Log Interpretation Report 
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3.7 Building the Spatial-Temporal Database 

The objective is to use MIP-3H completion data, geomechanical logs, hydraulic fracturing 

treatment data and DTS measurements to continuously predict the gas flow rate at the perforation 

cluster level of the well. The only source of gas production rate data at such granular resolution is 

a single day of production log where production rates have been reported for each perforation 

cluster. The spatio-temporal database to be developed therefore must be at the perforation cluster 

resolution. The measured depth interval of all 133 perforation clusters in MIP-3H were identified, 

and all attributes were prepared for each perforation cluster.  

DTS measurements have been recorded in 4ft or 5ft intervals while a perforation cluster could be 

3ft or 4ft or 5ft in length. As shown in Figure 8, this means that a perforation cluster could be 

located completely inside a DTS measurement grid (or interval) or overlap multiple DTS 

measurement grids. In scenario (a) where the perforation cluster lies within a single DTS 

measurement grid, the cluster is assigned the temperature measurement at that interval. In scenario 

(b) however, a weighted average of the measurements in the adjoining DTS intervals is calculated 

based on the proportion of overlapping cluster lengths. 

 

 

Figure 8: Identifying DTS Measurements at Individual Perforation Cluster Location 
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The WellWatcher measured temperature along the well every three hours, so eight temperature 

profiles were obtained on the day of production log. The data processing described is performed 

for all 8 DTS measurement profiles obtained. 

Like the DTS data, the geomechanical log data were prepared at the perforation cluster level. The 

original resolution of the log measurements is 0.5ft interval. This means that each perforation 

cluster covers multiple log measurement intervals. The log measurements were upscaled to the 

perforation cluster resolution by taking the simple average of measurement intervals within a 

cluster, for each geomechanical log. 

The attributes in the original database prepared from MIP-3H data collected from the MSEEL 

website is shown in Table 7. All the database attributes have been prepared for each of the 133 

hydraulic fracturing perforation clusters in the well. As already mentioned, gas production rates 

for clusters 1 through 7 were reported as a lumped sum value. 

 

 

Table 7: MIP-3H Data Collected from MSEEL Website 
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4 Chapter 4: Model Development 
 

Several factors influence the production performance of a shale well. These factors among others 

include the completion design (such as number of clusters per stage, cluster length and spacing), 

the hydraulic fracturing treatment design (such as amount of proppant and fracturing fluid, 

treatment pressure and rate), the reservoir characteristics (such as fracture density, mechanical rock 

properties). Optimizing production from shale wells is often challenging due to the complex 

relationship among these performance driving factors. Modeling the complex relationship between 

the set of input parameters that contribute to the production performance of shale well using 

temperature (DTS) measurements was completed in two main steps. The first step involved 

developing a random forest machine learning model to qualitatively determine the quality of 

production from a perforation cluster based on the temperature (DTS) measurement at the 

perforation cluster location. The second step involves coupling the random forest model in 

previous step to an artificial neural network to quantify the gas production from a perforation 

cluster based on the temperature (DTS) measurements and the qualitative assessment of the quality 

of production. 

Machine learning algorithms cannot work without data. Little to nothing can be achieved if there 

are too few features to represent the underlying pattern in the data to a machine learning algorithm. 

Before building the machine learning models, comprehensive descriptive analytics of the MIP-3H 

dataset was performed and more features that further represents the underlying complex 

relationship among the shale performance influencing factors are generated. Following sections 

detail the steps taken to generate more features for model development. 

 

4.1 Feature Engineering – Completion Data 

Cluster spacing is essential to fracturing performance. If the cluster spacing is too small, the 

stimulated area between major fractures will be overlapped, and the efficiency of fracturing 

stimulation will be decreased. If the cluster spacing is too large, the area between major fractures 

cannot be stimulated completely and reservoir recovery extent will be adversely impacted. To 

provide additional completions design information on MIP-3H well into the proposed model, the 

offset perforation cluster distances immediately before and after each focal perforation cluster is 

generated. Figure 9 shows an illustration of the offset cluster distances termed “Left Cluster 
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Distance (LCD)” and “Right Cluster Distance (RCD)”. The cluster distances accounts for whether 

the offset perforation cluster is in the same stage as the focal cluster or not. 

 
Figure 9: Offset Perforation Cluster Distances 

 

The generated features listed in Table 8 were added to the spatial-temporal database. 

 

 

Table 8: Offset Perforation Cluster Distance Features 

 

4.2 Feature Engineering – Geomechanical Logs 

Lateral heterogeneity is often a key variable in shale well productivity. Geometrically spacing 

perforation clusters and stages without considering the toe-to-heel heterogeneity often results in a 

number of perforation clusters that do not contribute to well performance. This is because when 

multiple perforation clusters are placed in rocks of different stress, and treated simultaneously, the 

fluid will preferentially enter the clusters with the lowest stress. This causes the low-stress areas 

to be overstimulated relative to the clusters in higher stressed areas. Figure 10 is an illustration of 

the traditional completions design approach where the lateral heterogeneity is not considered in 

the cluster placement. To overcome this challenge, the engineered completions design approach is 

usually applied by targeting rock with similar properties within the same stage. This increases the 

chances of more even proppant and fluid distribution across all perforation clusters, leading to 

enhanced production. Figure 11 provides an illustration of the engineered completion design.  

 

Generated Features

Left Cluster Distance (ft)

Right Cluster Distance (ft)
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Figure 10: Traditional Completions Design with no Consideration for Lateral Heterogeneity 

 

 

 

Figure 11: Engineered Completion Design 

 

As stated in the previous chapter, some stages in the MIP-3H well were completed using the 

engineered completion design. To incorporate the effectiveness of the completion design for each 

stage into the proposed model, an unsupervised machine learning technique called Fuzzy 

Clustering is used to characterize the degree of heterogeneity (Heterogeneity Index) at each 

perforation cluster in the MIP-3H well, based on the geomechanical log measurements around the 

perforations. A brief description of the Fuzzy Clustering technique is provided in chapter one. 
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To capture the degree of lateral heterogeneity in geomechanical rock properties along the well, log 

measurements in intervals of 1ft immediately before and after each perforation cluster were 

identified as shown in Figure 12. The geomechanical logs used in the fuzzy clustering algorithm 

include DT-Compressional, Fast Shear Slowness, Slow Shear Slowness, Borehole Deviation and 

Bulk Density. 

 

 

Figure 12: Identifying Geomechanical Log Measurement Intervals for Clustering 

 

Clustering is used to identify groups in data such that data points that are close together are grouped 

in the same cluster. In hard clustering, each data point is clustered or grouped to any one cluster 

and cannot belong to more than one cluster. In fuzzy clustering (also known as soft clustering), 

each data point can belong to multiple clusters (or groups) with its probability of belonging to each 

cluster (or group). The Fuzzy C-means (FCM) clustering algorithm is used to classify the 

geomechanical log measurements at the perforation clusters, the left intervals, and right intervals 

into three fuzzy groups or clusters. The output of the fuzzy clustering is three numbers (values 

between 0 and 1) for each perforation cluster or interval representing the degrees of membership 

in each of the three fuzzy clusters or groupings. The degree of cluster memberships are represented 

as CM1, CM2 and CM3 as shown in Figure 12. Classifying the geomechanical log measurements 

at the perforation clusters and surrounding intervals provides the opportunity of identifying the 

degree of heterogeneity around the perforations by answering following questions. 

 

a. How similar are the geomechanical rock properties in a perforation cluster compared with 

the rock properties in areas surrounding the cluster? 
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b. How similar are the geomechanical rock properties in a perforation cluster compared with 

the rock properties in its immediate neighboring clusters? 

c. How similar are the geomechanical rock properties in a perforation cluster compared with 

the rock properties in every other cluster in the same stage? 

 

The first question can be addressed by first identifying the Heterogeneity Index between the focal 

cluster and the left interval (that is, the Left Heterogeneity Index), as well as between the focal 

cluster and the right interval (that is, the Right Heterogeneity Index), and summing up the 

heterogeneity indices. The Left Heterogeneity Index or the Right Heterogeneity Index is calculated 

by taking the absolute difference between the cluster memberships of the Focal Cluster and the 

corresponding left or right interval. This is presented in the following equations: 

 

Left Interval Heterogeneity Index = |FCCM1 - LICM1| + |FCCM2 – LICM2| + |FCCM3 – LICM3| 

Right Interval Heterogeneity Index = |FCCM1 - RICM1| + |FCCM2 – RICM2| + |FCCM3 – RICM3| 

Focal Cluster Heterogeneity Index = Left Interval Heterogeneity Index + Right Interval 

Heterogeneity Index 

where FC = Focal Cluster, LC = Left Interval, RI = Right Interval 

 

In a similar manner, the similarity between the geomechanical rock properties in a 

perforation cluster compared with the rock properties in its immediate neighboring clusters 

can be determined as depicted in Figure 13 and following equations. 

 

 

Figure 13: Offset Cluster Heterogeneity Index 
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Left Cluster Heterogeneity Index = |FCCM1 - LCCM1| + |FCCM2 – LCCM2| + |FCCM3 – LCCM3| 

Right Cluster Heterogeneity Index = |FCCM1 - RCCM1| + |FCCM2 – RCCM2| + |FCCM3 – RCCM3| 

Offset Cluster Heterogeneity Index = Left Cluster Heterogeneity Index + Right Cluster 

Heterogeneity Index 

where FC = Focal Cluster, LC = Left Interval, RI = Right Interval 

 

The similarity between the geomechanical rock properties in a perforation cluster compared with 

the rock properties in every other cluster in the same stage can be determined as depicted in Figure 

14 and following equations. 

 

Same Stage Cluster 119 HI = |FCCM1 – SSC(119)CM1| + |FCCM2 – SSC(119)CM2| + |FCCM3 – 

SSC(119)CM3|  

Same Stage Cluster 117 HI = |FCCM1 - SSC(117) CM1| + |FCCM2 – SSC(117)CM2| + |FCCM3 – 

SSC(117)CM3|  

Same Stage Cluster 116 HI = |FCCM1 - SSC(116)CM1| + |FCCM2 – SSC(116)CM2| + |FCCM3 – 

SSC(116)CM3|  

Stage Heterogeneity Index = Sum of all Same Stage Cluster HI = SSC(119) + SSC(117) + 

SSC(116)  

 

 

Figure 14: Stage Heterogeneity Index 

 

The generated features listed in Table 9 were added to the spatial-temporal database. 
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Table 9: Generated Features from Geomechanical Logs 

 

4.3 Feature Engineering – Gas Production Rate Data 

Initial attempts at modeling the gas production rate yielded poor results due to imbalance in the 

production rate data. Figure 15 shows the distribution of production rate data for all 126 

perforation clusters. Approximately 44% of the perforation clusters have zero gas production rate 

value and so the distribution is largely skewed to the left. Initial modeling results showed 

overfitting to the zero producing clusters such that perforation clusters were being predicted to be 

non-producing when in fact they were producing. To address this issue, a fuzzy logic system (based 

on fuzzy sets theory) was designed to infer the quality of gas production from the perforation 

clusters based on temperature (DTS) measurements, before predicting the actual gas production 

rates. More details are presented in following section. 

 

 

Figure 15: Gas Production Rate Distribution from Production Log 

Generated Features

Fuzzy Memberships (CM1, CM2, CM3)

Left Interval Heterogeneity Index

Right Interval Heterogeneity Index

Focal Cluster Heterogeneity Index

Right Cluster Heterogeneity Index

Left Cluster Heterogeneity Index

Offset Cluster Heterogeneity Index

Stage Heterogeneity Index
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Fuzzy sets can be considered as an extension and oversimplification of classical sets. It can be best 

understood in the context of set membership. Basically, it allows partial membership which means 

that it contains elements that have varying degrees of membership in the set. Classical set contains 

elements that satisfy precise properties of membership while fuzzy set contains elements that 

satisfy imprecise (or vague) properties of membership. The membership function which defines 

how each point (production rate value) in the input space is mapped to membership value between 

0 and 1 is shown in Figure 16. The input space is the universal set (U), which contains all the 

possible elements of interest, in this case the range of values of gas production rate. Table 10 

shows the range of values with which the fuzzy sets were constructed. Perforation clusters with 

gas production rates up to 10 (1000 ft3/d) are classified to be in the “Low Production Category”, 

clusters with gas production rates from 5 (1000 ft3/d) to 110 (1000 ft3/d) are classified to be in the 

“Mid Production Category” while clusters with gas production rates from 85 (1000 ft3/d) to 216 

(1000 ft3/d) are classified to be in the “High Production Category”. Table 11 shows the percentage 

and number of perforation clusters in each fuzzy set. The output of the fuzzy logic classification 

is the degrees of membership in each of the three fuzzy sets or categories. These additional input 

features shown in Table 12 were added to the database. 

 

 
Table 10: Fuzzy Sets for Gas Production Rate Data 

 

 
Table 11: Number and Percent of Cases Per Fuzzy Set 
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Figure 16: Fuzzy Set Memberships from Gas Production Rate Data 

 

 

Table 12: Gas Production Rate Fuzzy Membership Features 

 

4.4 Database Construction for Model Development 

Following the addition of new generated features, the current database contains a total of 133 

records, 78 input features and the gas production rate as the output feature. A total of 126 

perforation clusters has gas production rate measurements. Considering that the objective is to 

quantify the gas production rate based on fiber optic temperature (DTS) measurements, a single 

day of production log is all that is available to use in terms of source of production rate 

measurements. A small sample of 126 perforation clusters does not provide enough opportunity 

for a machine learning algorithm to learn the complex relationship and patterns in the dataset. To 

address this challenge, a fundamental assumption in conventional production logging is adopted; 

the fact that the production rate measurements taken during a few hours of the logging operation 

are assumed to remain the same on the day of production log and beyond. For each perforation 

cluster in the dataset, the measured gas production rate is assumed to remain constant throughout 

the 8 temperature (DTS) measurements taken on the day of production log. This increases the 

number of samples with gas production rate measurements from 126 to 1,008 and decreases the 

Fuzzy Set Membership

Low Production Category Membership

Mid Production Category Membership

High Production Category Membership
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number of input features from 78 to 71. A snapshot of the features contained in the database is 

presented in Table 13 below. 

 

 

 

Table 13: MIP-3H Database Features Post Descriptive Analytics 
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4.5 Feature Selection 

Feature selection is an important part of building machine learning models. Adding redundant 

variables reduces the generalization capability of the model and may also reduce the overall 

performance. Furthermore, adding more and more variables to a model increases the overall 

complexity of the model. To find the best set of features in the database that sufficiently represents 

the shale production performance phenomena, a few steps were taken including performing a key 

performance indicator (KPI) analysis on each category of features, performing several trial-and-

error modeling with different combinations of features, as well as feature selection based on 

petroleum engineering domain knowledge. The following features were selected for model 

development. 

 

 

 

Table 14: MIP-3H Database Features Selected for Model Development 
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4.6 Fuzzy Classification Model using Random Forest 

As previously mentioned at the beginning of this chapter, a coupled random forest – neural network 

model was developed to meet the objective of this research work. Some background information 

has been provided on the random forest algorithm in chapter one. The skewness and unbalance of 

the gas production rate data as shown earlier in this chapter makes machine learning susceptible 

to overfitting. The random forest algorithm is an ensemble method which offers a parallel and 

sequential training schemes that increases the variance and reduces the bias in the model.    

As shown in Figure 17, the random forest regressor model takes as input the completion design, 

mechanical log measurements and hydraulic fracturing treatment design pertaining to a perforation 

cluster and predicts the quality of production from the perforation cluster based on the temperature 

(DTS) measurements at the perforation cluster location. The output of the model is the degree of 

memberships in the three different gas production fuzzy classes (that is Low Production Category, 

Mid Production Category and High Production Category), for each perforation cluster in the well.  

 

 

Figure 17: Gas Production Fuzzy Classification Model Using Random Forest 
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4.7 Regression Model using Artificial Neural Network 

The regression model uses all the input to the fuzzy classification model (random forest model) as 

well as the gas production rate fuzzy class memberships as input to quantify the gas production 

rate from a perforation cluster based on the temperature (DTS) measurements. The network is 

designed fully connected with a single hidden layer, rectilinear activation function in the hidden 

layer and sigmoid activation function in the output layer. The structure of the final model is shown 

in Figure 18. 

 

 

Figure 18: Gas Production Regression Model Using Artificial Neural Network 
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5 Chapter 5: Model Validation & Discussion 
 

The model validation step is a very crucial part of the whole process of developing the data-driven 

models. Considering the limited amount of data available for modeling the complex relationship 

between the set of input parameters that contribute to the production performance of hydraulically 

fractured shale well using temperature (DTS) measurements, it is important to validate that the 

developed machine learning models are stable. The validation step helps to check whether the 

model results quantifying hypothesized relationships between variables (completions design, 

mechanical logs, hydraulic fracturing treatment, fiber optics (DTS)) and gas production rate, are 

acceptable as descriptions of the data. A unique approach to model validation is taken, and in 

multiple steps. This chapter details steps taken to validate the models and results are presented. 

  

5.1 Data Partitioning 

Prior to training the production fuzzy classification model (Random Forest model) and the 

production regression model (Artificial Neural Network), blind validation samples were identified 

and separated out from the entire dataset. The blind validation samples are perforation clusters 

whose data are never used in training the models. The remaining dataset contains what is referred 

to as the development samples which must further be divided into training, calibration, and 

validation samples. The training samples are perforation clusters whose data is used to teach the 

machine learning algorithms patterns in the dataset by establishing correlations between the input 

and output features. The calibration data is used to monitor the performance of a neural network 

as it learns and determines when to stop the training process. The validation samples are the most 

important as these are used to validate the performance of the trained model. The validation data 

checks the ability of the model to generalize on out of sample data and has no bearing on the 

machine learning model’s training or calibration. The models are deployed on the blind validation 

samples only when a satisfactory result is obtained on the validation dataset. 

Considering that the gas production rate data is highly skewed with approximately 44% of the 

perforation clusters not producing, it is important to ensure that the percentage of each fuzzy 

production class (Low, Mid, High) in each partition (training, calibration and validation) described 

above is consistent; this helps the machine learning models to learn the correct pattern in the dataset 

and prevent overfitting to a particular fuzzy production class. The training and calibration data 
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contains 80% of samples from each fuzzy production class, while the validation partition contain 

10% of samples from each fuzzy production class. 

Three model validation scenarios were performed using a stage and perforation clusters 1 through 

7 as blind validation in each scenario. The blind stage (blind perforation clusters from a stage) was 

picked towards the toe (stage #4), the heel (stage #26) and the middle (stage #15) of the well 

lateral. Following sections show an illustration of the data partitioning and the model results for 

each validation scenario. 

 

5.2 Model Validation Scenario 1: Blind Stage #4 & Clusters 1 – 7  

A total of 12 perforation clusters used as blind validation with 5 clusters in Stage #4 and clusters 

1 through 7. Total number of development samples is 968 (121 perforation clusters and 8 DTS 

measurements per cluster). The training and calibration data contains 80% of samples from each 

fuzzy production class, while the validation partition contains 10% of samples from each fuzzy 

production class. 

 

 

Figure 19: Data Partitioning for Model Validation Scenario 1 

 

For better visualization, the gas production fuzzy classification model (Random Forest) results are 

presented using a confusion matrix. A confusion matrix is a summary of prediction results on a 

classification problem. The number of correct and incorrect predictions are summarized with count 

values and broken down by each class. Though the output from the fuzzy classification model is 

degree of membership in each class, the hard cluster memberships are shown in the confusion 

matrix only for the purpose of checking the accuracy of the model. The fuzzy (soft) cluster 

memberships are used as input into the regression (artificial neural network) model. 
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Figure 20: Fuzzy Classification Training Results for Validation Scenario 1 

 

 

Figure 21: Fuzzy Classification Validation Results for Validation Scenario 1 

 

 

Figure 22: Fuzzy Classification Blind Validation Results for Validation Scenario 1 

 

The following bar graph in presents the results of the regression model compared with the 

production log measurements for the blind perforation clusters in stage #4. The model has an 

average percent error of 3.2%. Figure 24 compares the total model predictions for perforation 

clusters 1 through 7 against the lumped production sum for these clusters as reported in the 

production log. The predictions compare very nicely at less than 1% error. 
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Figure 23: Production Log vs. ANN Regression Results for Blind Validation in Scenario 1 

 

 

Figure 24: Production Log vs. ANN Regression Results for Clusters 1-7 for Validation Scenario 1 

 

5.3 Model Validation Scenario 2: Blind Stage #15 & Clusters 1 – 7  

A total of 11 perforation clusters used as blind validation with 4 clusters in Stage #15 and clusters 

1 through 7. Total number of development samples is 976 (122 perforation clusters and 8 DTS 

measurements per cluster). The data partition is as described in the Scenario 1. 
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Figure 25: Data Partitioning for Model Validation Scenario 2 

 

 

Figure 26: Fuzzy Classification Training Results for Validation Scenario 2 

 

 

Figure 27: Fuzzy Classification Validation Results for Validation Scenario 2 

 

 

Figure 28: Fuzzy Classification Blind Validation Results for Validation Scenario 2 

 

The following bar graph presents the results of the regression model compared with the production 

log measurements for the four blind perforation clusters in stage #15. The model shows an average 

percent error of less than 1%. Figure 30 compares the total model predictions for perforation 
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clusters 1 through 7 against the lumped production sum reported in the production log. The 

predictions compare very nicely at less than 1% error. 

 

 

Figure 29: Production Log vs. ANN Regression Results for Blind Validation in Scenario 2 

 

 

 

Figure 30: Production Log vs. ANN Regression Results for Clusters 1-7 for Validation Scenario 2 
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5.4 Model Validation Scenario 3: Blind Stage #26 & Clusters 1 – 7  

A total of 12 perforation clusters used as blind validation with 4 clusters in Stage #26 and clusters 

1 through 7. Total number of development samples is 968 (121 perforation clusters and 8 DTS 

measurements per cluster). The data partition is as described in the Scenario 1. 

 

 

Figure 31: Data Partitioning for Model Validation Scenario 3 

 

 

Figure 32: Fuzzy Classification Training Results for Validation Scenario 3 

 

 

Figure 33: Fuzzy Classification Validation Results for Validation Scenario 3 

 

 

Figure 34: Fuzzy Classification Blind Validation Results for Validation Scenario 3 
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Figure 35 presents the results of the regression model compared with the production log 

measurements for the five blind perforation clusters in stage #26. The model shows an average 

percent error of 23.6%. Figure 36 compares the total model predictions for perforation clusters 1 

through 7 against the lumped production sum reported in the production log. The model predictions 

show an error of 6.5% compared to the production log. 

 

 

Figure 35: Production Log vs. ANN Regression Results for Blind Validation in Scenario 3 

 

 

 

Figure 36: Production Log vs. ANN Regression Results for Clusters 1-7 for Validation Scenario 3 
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6 Chapter 6: Conclusion & Recommendations 
 

6.1 Conclusion 

Based on the validation results shown in Chapter five, the developed machine learning models 

reliably predict the gas production rate from individual perforation clusters in the MIP-3H well 

given the completion data, mechanical logs, hydraulic fracturing treatment data relating to the well, 

as well as real-time temperature (DTS) measurements along the well lateral. The on-demand real-

time production logging model presented in this research study provides a useful alternative to the 

reactive traditional production logging tool as real-time production measurement makes it easier 

to diagnose production problems and take timely remedial actions. The unique modeling approach 

taken to generate features that represent the complex relationship between the model input shale 

performance factors and gas production rate indicates that machine learning algorithms such as 

fuzzy set theory and artificial neural networks are capable of identifying complex data patterns 

with high accuracy when properly applied.  

Some limitations were identified in the modeling approach taken in this study. One of such 

limitations is the fact that the developed models are constrained to a single day of production log. 

This means a very limited amount of data is available to learn the complex relationship between 

gas production rate and the several production performance driving factors in a shale well. Though 

the fuzzy classification machine learning technique was useful in finding the complex patterns in 

the dataset, a more significant issue regarding data availability is the fact that the model may not 

generalize on some days other than the production logging day. This limitation may be more 

evident for days where the range of temperature (DTS) measurements recorded by the Fiber Optics 

cable is significantly different than it was on the day of production logging. Additionally, 

production rate measurements obtained from a single day of production log could be highly prone 

to noise from various sources such as human bias during the logging operation or log interpretation. 

For instance, calculated total gas rates from the production log was 5,435 MCF/D while the actual 

reported surface rate totaled 4,763 MCF/D as stated in Section 3.6. The single day production log 

measurements have approximately 15% error which could be lower if multiple day production 

logs were taken. The noise in production log measurements could impact the performance or 

reliability of the developed predictive models. 
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6.2 Recommendation 

Machine learning algorithms cannot learn patterns without sufficient data. Solving a complex 

problem such as in this study using a data driven approach often requires that the right data is 

collected at the right frequency. To have a more robust and generalized real-time predictive model, 

more days of actual production log measurements is highly desirable. A more generalizable 

predictive model will require a well-designed plan for data gathering such that multiple production 

measurements are taken over a period of say weeks or months such that the measurements capture 

a wide range of temperature (DTS) values as much as possible, for all perforation clusters in the 

well. Obtaining multiple production logs over a period rather than a single day will provide the 

opportunity to incorporate well operational conditions into the modeling workflow. Operational 

conditions such as surface pressure and temperature, casing pressure and tubing pressure could 

provide a lot more information about the production performance of the well. 

The cooling effect created when gas flows into the wellbore was used in modeling gas production 

based on DTS measurements in this study. When water flows in well, it creates a warm effect 

which needs to be accounted for in wells with significant amount of water production. The MIP-

3H well used in this study is a dry gas well. After the initial production and outside of the clean-

up associated with the production logging, the well produces less than 10 barrels of water per day. 

Water production from this well was considered insignificant for analysis purpose. For further 

studies, it is recommended that a real-time predictive production logging model considers the 

impact of the produced water on temperature (DTS) measurements along the wellbore. 

The workflow and predictive model developed in this study help to determine which perforation 

clusters are producing and at what rate, at any given point in time based on DTS measurements. A 

more interesting and important question for Shale resource development and optimization would 

be “Why are certain perforation clusters or stages producing more or less than others?”. The 

workflow and predictive model presented in this study could be extended as a completion design 

and hydraulic fracturing optimization tool for Shale wells. Information available from some other 

sources such as Fiber Optics Distributed Acoustic Sensing (DAS) and Seismic data could be 

incorporated into the workflow presented in this study for further detailed analysis of key shale 

performance indicators in MIP-3H. 
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8 Appendix 
 

 
Figure 37: DTS Measurements in Stage 1 on Day of Production Log 

 
Figure 38: DTS Measurements in Stage 2 on Day of Production Log 
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Figure 39: DTS Measurements in Stage 3 on Day of Production Log 

 

 
Figure 40: DTS Measurements in Stage 4 on Day of Production Log 
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Figure 41: DTS Measurements in Stage 5 on Day of Production Log 

 

 
Figure 42: DTS Measurements in Stage 6 on Day of Production Log 
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Figure 43: DTS Measurements in Stage 7 on Day of Production Log 

 

 
Figure 44: DTS Measurements in Stage 8 on Day of Production Log 
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Figure 45: DTS Measurements in Stage 9 on Day of Production Log 

 

 
Figure 46: DTS Measurements in Stage 10 on Day of Production Log 
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Figure 47: DTS Measurements in Stage 11 on Day of Production Log 

 

 
Figure 48: DTS Measurements in Stage 12 on Day of Production Log 
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Figure 49: DTS Measurements in Stage 13 on Day of Production Log 

 

 
Figure 50: DTS Measurements in Stage 14 on Day of Production Log 
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Figure 51: DTS Measurements in Stage 15 on Day of Production Log 

 

 

 
Figure 52: DTS Measurements in Stage 16 on Day of Production Log 
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Figure 53: DTS Measurements in Stage 17 on Day of Production Log 

 

 
Figure 54: DTS Measurements in Stage 18 on Day of Production Log 
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Figure 55: DTS Measurements in Stage 19 on Day of Production Log 

 

 
Figure 56: DTS Measurements in Stage 20 on Day of Production Log 
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Figure 57: DTS Measurements in Stage 21 on Day of Production Log 

 

 
Figure 58: DTS Measurements in Stage 22 on Day of Production Log 
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Figure 59: DTS Measurements in Stage 23 on Day of Production Log 

 

 
Figure 60: DTS Measurements in Stage 24 on Day of Production Log 
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Figure 61: DTS Measurements in Stage 25 on Day of Production Log 

 

 
Figure 62: DTS Measurements in Stage 26 on Day of Production Log 
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Figure 63: DTS Measurements in Stage 27 on Day of Production Log 

 

 
Figure 64: DTS Measurements in Stage 28 on Day of Production Log 
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