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ABSTRACT 

 

mtDNA Heteroplasmy in Hair Shafts versus Buccal Swabs for Forensic 

Applications 

 

Sara R. Bodnar, B.S. 

 
  

 Mitochondrial DNA (mtDNA) analysis has several forensic applications such as criminal 

investigations, identification of human remains, and missing person investigations. It is also the 

only type of DNA that is available from certain sample types such as hair shafts. The presence of 

mtDNA heteroplasmy within and between tissue types can lead to mtDNA sequence differences 

when comparing samples originating from the same individual. Studies on mtDNA heteroplasmy 

are increasingly being carried out for their implications in forensic interpretation of mtDNA 

sequences. Specifically, mtDNA in buccal swabs compared to hair samples from one individual 

may show differences in sequence due to heteroplasmy, and casework samples compared to 

reference swabs may exhibit differences that must be correctly interpreted to prevent faulty 

conclusions made by investigators and scientists alike. Establishing expected rates of heteroplasmy 

in mtDNA extracted from hair shaft samples and comparison to mtDNA extracted from buccal 

swab samples will lead to increased confidence in mtDNA interpretation. 

 The goals of this study were to (1) successfully sequence the entire mtDNA control region 

from buccal swab samples from 5 volunteers using Sanger sequencing, (2) amplify smaller 

(<300bp) sections of overlapping regions of the mtDNA control region from 15-20 hair shafts 

collected from three areas of the scalp using three methods of DNA extraction, and (3) evaluate 

mtDNA sequences from hair shafts and buccal swabs to identify heteroplasmy within and between 

samples. Overall, only 20% of the extracted hair samples resulted in half of Hypervariable Region 

1 (HV1) being successfully sequenced from either the 5´ or 3´ end. Two out of five participants 

showed length heteroplasmy in the poly-cytosine region beginning at position 303 within the HV2 

region. Point heteroplasmy was observed in one participant at one position in the buccal swab 

(nucleotide position 16093) as well as at two different positions in a hair sample (nucleotide 

positions 16258 and 16288) that did not show heteroplasmy in the buccal swab. The heteroplasmy 

seen in the buccal swab could not be compared to the hair sample as position 16093 did not fall 

within the successfully sequenced region in the hair. Although only a small subset of hair shafts 

were successfully sequenced, this study has succeeded in showing that mtDNA heteroplasmy seen 

in a hair shaft may not be present in buccal swab mtDNA. Further research into rates of 

heteroplasmy in hair shafts vs. buccal swabs is paramount to bettering the interpretative abilities 

of forensic scientists working with mtDNA and preventing false exclusions.     
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1. Introduction 

 
1.1 Background 
 

Biological evidence has been at the crux of forensic science since the advent of DNA analysis and 

comparison. Since the first use of DNA fingerprinting by Dr. Alec Jeffreys in 1985, forensic uses 

of DNA have continued to grow and improve [1]. Typically, DNA is extracted from biological 

fluids such as blood, saliva, and semen [2]. When nuclear DNA is in low quantities or degraded 

e.g. in hair shafts, mitochondrial DNA (mtDNA) may be extracted and subsequently tested [3, 4]. 

The first use of mtDNA in a court case was in 1996 where mtDNA results were entered as evidence 

against Paul Ware on trial for murder [5]. This case was also the first use of mtDNA extracted 

from a hair sample [5]. Apart from criminal cases, mtDNA has been utilized in the identification 

of victims of disaster as well as unidentified remains [3]. Resistance to degradation as well as its 

abundance in hair shafts, bones, and teeth relative to nuclear DNA makes mtDNA more reliable 

in terms of providing usable profiles for comparison [2]. While mtDNA provides benefits when 

faced with certain evidentiary samples, the decreased discriminatory power when compared to 

nuclear DNA and the extra precautions needed when handling such biological samples has led to 

only a handful of laboratories across the United States providing any type of mtDNA services for 

casework.  

 

Attempts have been made to simplify the process of mtDNA extraction and processing through 

new methods for hair extraction, sequence alignment, and high through-put Sanger sequencing [6, 

7]. Commercial kits are also available for the extraction, quantitation, and amplification of mtDNA 

[8–10]. Research using massively parallel sequencing (MPS) has targeted the entire mtDNA 

control region to assess heteroplasmy rates in hair versus blood and buccal samples [11]. MPS is 

much more sensitive and novel than traditional Sanger sequencing with the former able to detect 

mutant alleles down to ≥5% versus 15-20% using Sanger sequencing [12, 13]. Regardless of the 

increased sensitivity of MPS, forensic laboratories are simply not equipped with the 

instrumentation needed for such current methods.  

 

 

 

1.2 Nuclear Deoxyribonucleic acid (DNA) 
 

The chromosomes that make up the nuclear human genome and are inherited from both parents 

confer the traits passed down to each new generation of offspring [2]. Approximately 1% of human 

DNA differs between individuals, and these differences can be used in identification of source 

DNA [2]. Non-coding regions of chromosomes are used in the identification of individuals as 

differences between two people are more abundant [2]. Such differences are known as 

polymorphisms [2]. Polymorphisms can be divided in two main types: sequence polymorphisms 

and length polymorphisms [2]. Sequence polymorphisms are differences in the individual 

nitrogenous base pairs [2]. Length polymorphisms are differences in the number of times a portion 

of the DNA sequence is repeated [2]. The most common type of repeat is a short tandem repeat 

(STR), comprised of consecutive repeats of a sequence typically from two to seven base-pairs in 
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length [2]. STRs are compared in forensic science to determine if two or more samples of DNA 

are from the same source [2]. 

 

Due to the variability in the STR loci used in forensic science, STR analysis is highly 

discriminatory [2]. Population studies have allowed for the determination of allelic frequencies 

across various populations. Random match probabilities are calculated using the STR profile of 

unknown evidence samples to provide statistical weight to the finding of a “match” between an 

evidentiary sample and a suspect.  [2]. Oftentimes, this probability of a randomly selected, 

unrelated individual from a given population having the same profile as the evidentiary sample 

can be smaller than one in a trillion, showing the discriminatory power of STR analysis [2]. Such 

high discriminatory power coupled with the use of multiplexing of the twenty Core CODIS Loci 

presently targeted has led to the popularity of such analyses [2, 14]. 

 

1.3 Mitochondrial DNA (mtDNA) 

 

While each human cell only contains two copies of the entire nuclear DNA genome, mitochondrial 

DNA (mtDNA) is much more abundant [15]. Within the cell, mitochondria function as the cell’s 

energy source by producing adenosine triphosphate (ATP). Each cell has thousands of 

mitochondria, each with between two and ten copies of the full mitochondrial genome [3]. Unlike 

most cellular organelles, mitochondria boast a double-membrane with the inner membrane being 

the site of oxidative phosphorylation [15]. In mammals, mtDNA is believed to only be inherited 

from one’s mother as the sperm’s mitochondria-rich midpiece detaches from the sperm head upon 

fertilization of an egg [16]. Since mtDNA only reflects DNA passed down from one parent’s 

lineage, nuclear DNA is much more discriminating when attempting to identify an individual 

through DNA. The evolution of mtDNA down a maternal line can cause differences in the 

mitochondrial genome and thus create different haplotypes, and groups of similar haplotypes 

(haplogroups) of individuals sharing a common ancestor with each mutation [17]. 

 

Figure 1.1 shows the complete human mitochondrial genome at 16,569 base pairs in length [2]. 

Unlike the linear chromosomes of the nuclear genome, the mitochondrial genome is comprised of 

only one circular molecule and has a single non-coding region [2]. The double stranded 

mitochondrial genome is composed of a heavy strand and a light strand [2]. More guanine residues 

are present in the heavy strand, leading to this differentiation [2, 3]. Thirty-seven genes are encoded 

within the mitochondrial genome, including 22 tRNAs, a 23 S rRNA, a 16 S rRNA, and 13 protein 

coding genes [16]. mtDNA originated from a symbiotic relationship between a eukaryote-

precursor and an aerobic prokaryote with the latter eventually becoming what is known today as 

the mitochondrion [18]. These organisms exchanged genetic material, with the prokaryote 

eventually experiencing a reduction in its genes as some material was then exported outside of the 

ancestral eukaryote [15]. Over time, only genes useful to cellular respiration remained within the 

mitochondria, leading to its small size [15]. The control region is the most variable region of the 

genome and is a mere 1,210 base pairs long [15]. In the control region, three hypervariable regions 

(HV1, HV2, and HV3) make up the portions with the highest levels of variability and are the 

regions most commonly investigated for forensic applications [2]. 
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Figure 1.1: Mitochondrial Genome [2]. The circular mitochondrial genome is only 16,569 base 

pairs in size. The 1,210 base pair control region is the most variable region of the genome and 

includes three Hypervariable (HV) Regions.  

 

 

1.3.1 Mitochondrial Haplogroups 

 

Haplogroups for mtDNA are comprised of mtDNA haplotypes within groups of people who 

genetically share a common maternal ancestor and can be determined through mtDNA sequencing 

[19]. Over generations, new mutations or polymorphisms arise and are passed down in 

combination with prior mutations along maternal lineages which can be used to study mtDNA 

phylogeny [20]. Haplogroups have been studied in populations across nearly all geographic 

locations with certain haplogroups being most prevalent in specific geographic regions as a 

consequence of the patterns of human evolution and migration out of Africa (Figure 1.2) [17, 21]. 

The ability to determine ancestry through one’s mtDNA haplogroup  has led to the development 

of ancestry tests through companies such as Genebase and Family Tree DNATM [22, 23]. The 

mitochondria’s important role in health has also led to many studies investigating links between 

haplogroups and various diseases [24, 25]. Associations between certain haplogroups and diseases 

such as primary open-angle glaucoma and non-alcoholic fatty liver disease have been reported [24, 

25]. 
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Figure 1.2: Map of mtDNA Haplogroup Phylogeny tree and Geographic Distribution [26]. The 

phylogenetic tree begins with the ancestral haplogroup L. Only a single branch-defining marker 

is provided for each haplogroup.  

 

 

1.4 Forensic Uses of mtDNA 
  

In cases of advanced DNA degradation or tissues containing little to no nuclear DNA, mtDNA has 

been successfully sequenced. The sheer quantity of mtDNA available in each cell makes mtDNA 

sequencing more sensitive than nuclear DNA, especially when samples with limited DNA are 

received as evidence. While mtDNA is more abundant than nuclear DNA, the former is not nearly 

as discriminating in terms of identification [2]. Individuals in the same maternal line cannot be 

distinguished via the comparison of mtDNA [2]. Conversely, the maternal inheritance of mtDNA 

allows for the identification of missing persons or mass disasters through mtDNA analysis of 

suspected matrilineal relatives, even one several generations removed [27]. The Combined DNA 

Index System (CODIS) has mtDNA databases that can be used in the investigations of missing 

persons or familial identification [2].  

 

Current mitochondrial testing involves the amplification of the HV1 and HV2 regions  using 

primers across more conserved regions [28]. The FBI utilizes primers L15997 and H16391 to 

target HV1 and primers L048 and HH408 to target HV2 where L and H refer to the positions on 

the light and heavy strands, respectively [27]. mtDNA sequences encompassing both HV1 and 

HV2 from evidence and reference samples are aligned with the revised Cambridge Reference 

Sequence (rCRS) [29] and then compared to determine whether an exclusion, failure to exclude, 

or inconclusive result is appropriate [27]. All sequences differences from the rCRS for each sample 

are recorded during this process[27]. To exclude an evidentiary sample from coming from a known 

source, there must be at least two nucleotide differences (excluding any length heteroplasmy) 

between the questioned and known sample[27, 30]. The lack of nucleotide differences at any 

position within HV1 or HV2 would result in a failure to exclude determination [27, 30]. 
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Comparisons are inconclusive if there is only one nucleotide difference between the samples [27, 

30]. While HV1 and HV2 are the minimum requirements for comparison, additional portions of 

the control region such as HV3 can be sequenced [27, 30]. 

 

mtDNA testing is preferred in cases of severe nuclear DNA degradation or when the only evidence 

is hair shafts, bones, or teeth as nuclear DNA is not available for analysis or is too degraded [2]. 

Hair evidence without an intact root to provide adequate nuclear DNA contains plenty of mtDNA 

to be extracted and further analyzed [2]. While mtDNA cannot be used to identify a single source, 

mtDNA processing in cases with limited evidence or limited nuclear DNA can be used for 

exclusions. In the case of an inclusion, a haplotype frequency is determined using a population 

database to establish how rare or how common the particular haplotype is within a certain 

population [30]. Established databases of common sequence polymorphisms are available for the 

United States [30].  

 

1.5 mtDNA Heteroplasmy 
 

High mutation rates in mtDNA can cause some individuals to be deemed heteroplasmic, meaning 

they have more than one mtDNA type as seen in Figure 1.4 [3]. The first investigation into 

mitochondrial heteroplasmy was conducted in 1983 with the results showing differences in 

mtDNA caused by nucleotide substitutions, insertions, or deletions [31]. Heteroplasmy has 

become increasingly more evident with improvements in technology, and individuals can be 

heteroplasmic in certain tissues while being homoplasmic (only one detectable mtDNA type) in 

others [3]. Such heteroplasmic tissues can vary between individuals, but the kidney, liver, and 

skeletal muscle tissues have been found to have higher rates of heteroplasmy [32]. Two types of 

heteroplasmy exist: point substitution and length heteroplasmy [3]. Point substitution 

heteroplasmy is a difference in a single base between two same-source samples within the HV1 or 

HV2 region [3].  

 

Maternal inheritance of mtDNA heteroplasmy has been researched with up to 59% of 

heteroplasmies in offspring attributed to being transmitted by the mother as opposed to new 

mutations arising in the offspring [33, 34]. A famous example of heteroplasmy being transmitted 

from mother to offspring was in the identification of the remains of Tsar Nicholas Romanov [35]. 

Presence of point heteroplasmy in both the suspected remains of the Tsar as well as his brother 

Georgij Romanov confirmed the heteroplasmy in the brothers’ maternal lineage as well as put to 

rest controversy around the Tsar’s identification [35]. Studies have explored mtDNA genetic 

bottleneck as a mechanism for mtDNA heteroplasmy inheritance as heteroplasmy frequency has 

been found to change between generations [33, 36, 37]. 

 

The rate of heteroplasmy in different tissue types is an important factor that has been investigated 

by previous papers in regard to forensic interpretations of mtDNA. Differences in the mtDNA 

sequences of two samples from the same source can complicate the interpretation of the 

comparison as well as the report and testimony of the scientist [38]. Heteroplasmy in mtDNA has 

been studied using both traditional Sanger sequencing methods and next generation sequencing.  

Whole mitochondrial genome sequencing has also been completed using next generation 

sequencing to study heteroplasmy in the mtDNA genome [39]. Past studies have focused on the 
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entire mitochondrial genome or only the hypervariable regions of the control region [17, 40, 41]. 

Heteroplasmy in the three hypervariable regions of the mitochondrial genome has been studied 

with findings indicating that point heteroplasmy is more frequent in the HV1 and HV2 regions 

than the HV3 [40, 41]. The mtDNA control region from buccal swabs and blood samples was 

sequenced from 5,000 global samples in which point heteroplasmy was present in 6% of 

individuals across all samples [42].  

 
 

Heteroplasmic occurrences have not been found to be significantly different between different 

populations or mtDNA haplogroups [39]. Heteroplasmic positions are more likely to occur in the 

control region of the mitochondrial genome than in other coding regions, but heteroplasmic 

positions can and do occur within mitochondrial genes [39]. Mitochondrial heteroplasmies in 

certain genes can be correlated to rare diseases and disorders [43, 44]. Several studies have 

demonstrated that mtDNA heteroplasmy present in hair is not always found in other sample types 

such as buccal swabs and blood [45–47]. Heteroplasmy in hair has previously been reported at 

rates up to 10.5%  [45]. Gallimore et al. found 13% of hair samples taken either from the head or 

pubic region possessed heteroplasmy that was not present in buccal swabs or blood samples taken 

from the same participants [11]. Heteroplasmic positions have been also found to vary between 

hair shafts taken from the same individual, demonstrating that mtDNA heteroplasmy is not 

conserved between different hair shafts [48, 49].  

 

Research relating heteroplasmy in hair samples has sometimes utilized nested-PCR in which two 

rounds of PCR are run prior to sequencing [50, 51]. In one such study by Grzybowski [51], high 

rates of point heteroplasmy was found in single hair roots. This study highlighted several issues 

with mtDNA processing that could lead to misleading results. Budowle et al. [52] critiqued the 

paper and cited the abnormally high levels of DNA template along with the exorbitant amount of 

PCR cycles used as reasons for the apparent heteroplasmy. Further research on heteroplasmy rates 

in hair samples is needed to aid in the interpretation of mtDNA comparisons, especially with the 

issues of contamination and processing methods playing such a large role in results and 

conclusions. 
 

 

1.6 Current mtDNA Analysis 
 

Like nuclear DNA testing, mtDNA testing must adhere to the FBI Quality Assurance Standards 

(QAS) outlined in the similarly named “Quality Assurance Standards for Forensic DNA Testing 

Laboratories” [53]. These standards dictate that proper documentation is kept of each step (QAS 

7.1), with each lab having written analytical procedures for each method (QAS 9.1) [53]. mtDNA 

samples must follow similar typing procedures as nuclear DNA including extraction, purification, 

amplification, separation, and interpretation. A reagent blank must be subjected to the same 

extraction procedure at the time of sample extraction, and this reagent blank must be subjected to 

each of the following analytical procedures through separation [53].  While nuclear DNA samples 

must be quantified prior to amplification of the sample, mitochondrial DNA samples are not 

required to be quantified (QAS 9.4) [53]. SWGDAM still recommends that the FBI QAS are 

followed for mitochondrial analysis regardless of whether quantification is required for mtDNA 

[30]. Direct sequencing of mtDNA is typically performed utilizing Sanger sequencing with 
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resulting sequences being compared to a maternal lineage or the FBI mitochondrial DNA database 

[2, 28].  

 

 

1.7 DNA Extraction 

The first step in DNA analysis after confirming the presence of a biological fluid is to extract the 

DNA from the sample. Extracting the DNA is important as the protocol involves cells lysis and 

the separation of DNA from other cellular components such as proteins, lipids, and other elements 

that can interfere in upcoming steps [27]. Removing any potential inhibitors of the polymerase 

chain reaction (PCR) amplification is another goal of extraction that is essential to the successful 

generation of a profile from an evidentiary sample [27]. Common inhibitors that need to be 

removed are hemoglobin found in blood, indigo dye found in denim [27] and melanin found in in 

hair  [2]. 

 

There are several methods of DNA extraction including organic extraction, Chelex extraction, 

solid-phase extraction, and FTA paper [2]. No matter the method, DNA extraction poses the largest 

risk of contamination of any step involved in DNA analysis [2]. Current methods of DNA 

extraction are frequently automated and involve solid-phase extraction through the use of either a 

silicon column or paramagnetic resin [2]. DNA interacts with the column or resin by binding to 

the media in certain conditions (e.g. salinity, pH) during washing steps [2]. Multiple washings are 

required of every extraction method (except Chelex extraction) to ensure all other cellular 

components and PCR inhibitors are removed before the extracted DNA sample moves on to the 

next step of quantitation [2]. Addition of an elution buffer allows the DNA to be eluted from the 

media with the eluate being what is used in future processing steps [27]. 

 

 

1.8 DNA Extraction from Hair 

 

Extracting DNA from shed hair samples requires that the hair shaft be completely dissolved in 

lysis buffer to release all the DNA from the cells [8]. Proteinase K (ProK) and dithiothreitol (DTT) 

are required to aid in the lysis of hair shafts [8]. ProK acts to hydrolyze proteins [27] while DTT 

aids in disulfide reduction, eliminating the disulfide bonds in keratin [2, 54][54]. 

 

1.8.1 PromegaTM Tissue and Hair Extraction Kit  

 

The PromegaTM Tissue and Hair Extraction Kit is designed to be utilized with the PromegaTM DNA 

IQTM System to extract DNA from a variety of tissues including hair, formalin-fixed tissue, and 

bone [8]. The DNA IQTM System is a solid-phase extraction which utilizes silicon-coated 

paramagnetic resin as a binding agent [2, 55]. When in a solution with high-salt content, the 

paramagnetic resin binds to DNA in the sample [2]. As illustrated in Figure 1.3, the tube 

containing the sample is put on the MagneSphere® Technology Magnetic Separation Stand where 

the magnetic resin is pulled to the side of the tube [2, 55]. Multiple washes are conducted with the 

DNA being bound to the resin on the side of the tube to remove cellular components and potential 
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PCR inhibitors [2]. Once the DNA has been purified via the washes, an elution buffer of low-salt 

content is used to elute the DNA from the resin [2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: DNA IQTM System [55]. A schematic of the DNA IQTM System with MagneSphere® 

Technology Magnetic Separation Stand. Silicon-coated paramagnetic resin is used to bind to DNA 

when in a high-salt solution. The MagneSphere® Technology Magnetic Separation Stand pulls the 

magnetic resin bound with DNA to the side of the tube while multiple washings take place to 

remove cellular components and purify the DNA. 

 

 

1.8.2 Qiagen QIAamp® DNA Investigator Kit 

 

Qiagen manufactures several kits for DNA extraction. The QIAamp® DNA Investigator Kit is 

effective for the extraction of DNA from a variety of sources including hair roots and hair shafts 

[56]. While other extraction methods may require an ample  sample size or volume, the QIAamp® 

DNA Investigator Kit is able to extract DNA from small volumes [56]. Regardless of the substrate, 

cells must first be lysed using an SDS-based detergent along with the addition of ProK for histone 

breakdown. DTT is also required for extraction for hair roots and shafts [56]. 
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Figure 1.4: QIAamp® DNA Investigator Procedure [56]. A schematic of the Qiagen QIAamp® 

DNA Investigator Kit workflow. After lysing cells, the solution is added to a silica-based column 

that selectively binds DNA in a choatropic salt solution. While bound, the DNA is washed using 

ethanol-based wash buffers before a low salt buffer is used to elute the DNA from the column. 

 

The lysate is transferred to a column with a silica-based membrane [56]. This membrane 

selectively binds DNA through the formation of salt bridges between the DNA and the membrane 

[56] In the presence of a chaotropic salt solution [56]. Ethanol-based wash buffers are added and 

spun through the column to wash away any contaminants and impurities from the DNA. A low-

salt buffer is used to break the salt bridges and elute the DNA through the column after the washing 

steps have been performed, leaving purified DNA [56]. The entire workflow is illustrated in 

Figure 1.4. 

 

1.8.3 Organic (Phenol-Chloroform) Extraction 

 

Albeit more toxic than newer DNA extraction methods, the organic or phenol-chloroform 

extraction method is useful for extracting and purifying high molecular weight DNA [27]. SDS-

based detergent, ProK, and DTT are once again used to lyse the cells and break down the histones 

and other proteins. Phenol-chloroform is added to the lysate as this mixture separates the DNA 

from the proteins and other unwanted cellular debris [27]. Upon centrifugation, the aqueous 

components separate from the organic components with the proteins and debris favoring the 

organic phase while the DNA is more soluble in the aqueous phase [27]. The upper aqueous phase 

containing the DNA can then be transferred to a new tube for the addition of more phenol-

chloroform for additional removal of unwanted material [27]. DNA concentration can then be 
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performed with the use of centrifugal filters. This step not only reduces the overall volume of the 

extract, but also serves to remove salts from the extract [27]. 

 

1.9 Amplification and Sequencing of mtDNA 
 

Amplification and sequencing of mtDNA requires two stages: amplification via PCR and cycle 

sequencing [27]. Similar to traditional nuclear DNA amplification, the primers selected are used 

to target a specific region of mtDNA. The PCR commonly targets HV1 and HV2 mtDNA regions. 

While commercial kits for nuclear DNA utilize fluorescently tagged primers, mtDNA 

amplification primers used are not tagged in such a way. This is followed by cycle sequencing 

where DNA polymerase is used to copy the template using one of two primers (either forward or 

reverse) [57]. This cycle sequencing step results in a linear and not exponential accumulation of 

product [57].  

 

Success of the PCR amplification reactions can be determined through the use of agarose gel 

electrophoresis. The resulting bands can also be checked for size by comparison to the DNA 

ladder. While this method merely approximates the concentration of DNA in the PCR product, 

any issues with amplification can be caught before proceeding to the next step. 

 

1.10 Sanger Sequencing 
 

Sanger sequencing is the traditional method for sequencing with instrumentation requirements that 

are already available in current forensic DNA laboratories (Figure 1.5). After the targeted section 

of DNA is amplified in the first round of amplification, cycle sequencing is used to sequence that 

target. As with traditional Sanger sequencing, cycle sequencing uses dideoxy nucleotide 

triphosphates (ddNTPs) in addition to the typical dNTPs [2]. Each ddNTP is labelled with a 

different fluorescent dye to correspond to the base [2]. When the ddNTPs are incorporated during 

extension, no further bases can be added to the fragment being extended [2]. This is due to the 

structural differences of dNTPs and ddNTPs. dNTPs have a hydroxyl group at the 3´-position of 

the deoxyribose while there is only a hydrogen at this location on the ddNTPs [58]. Without the 

3´-hydroxyl group, there is no possibility for the next nucleotide to be incorporated. Mixing the 

dNTPs and a lower concentration of ddNTPs results in the chain-terminating ddNTPs to create 

fragments of varying sizes depending on when the ddNTP is added. 

 

 A size based separation method such as capillary electrophoresis can then be utilized to effectively 

sort the differently sized fragments from smallest to largest [58]. After separation, a laser excitation 

source is used to excite the fluorophores attached to the ddNTPs [58]. Since the ddNTPs indicate 

the end of each chain, the detector reads the last nucleotide of each fragment in order of smallest 

to largest. A chromatogram is generated through the alignment of each final base. The placement 

of the peaks from left to right move from shortest fragments to longest fragments to reveal the 

order of the bases for the region targeted [2]. The resulting sequence can then be compared to other 

mtDNA sequences and databases to determine the likelihood of two individuals sharing the same 

mtDNA sequence [2].  
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Figure 1.5: Sanger Sequencing Workflow [58]. A visual representation of the workflow of Sanger 

sequencing is depicted from PCR to generation of a chromatogram.  

 

 

 

1.11 Purpose, Goals, and Objectives 

 
This research aimed to accomplish two main goals: to successfully sequence the mtDNA control 

region from buccal swabs and to compare mtDNA between hair shafts and buccal swabs. The 

primary hypothesis was that mtDNA found in hair shafts may differ from buccal swabs and 

between hairs due to heteroplasmy being more prevalent in hair. Such differences can be recorded 

and used to better understand the rates of intra-source variability in mtDNA samples to aid in 

forensic interpretations. In addition to comparing mtDNA from the two sample types, three 

different extraction methods were used to compare their success extracting mtDNA from hair 

shafts.  
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2. Methods 
 

2.1 Collection Process 
 

Five willing participants were sampled after International Review Board (IRB) approval and 

informed consent was achieved. Participants were limited to female volunteers with long hair to 

ensure enough sample could be collected. To compare multiple samples from the same source, 

three sections of the scalp were differentiated. Figure 2.1 depicts the three different hair sections, 

used for this research: Section 1 (front of head), 2 (crown of head), and 3 (nape of neck). 15-20 

rootless strands of hair and 15-20 strands of hair containing the root were taken from each section. 

Each hair section was sampled in duplicate for quality control comparisons. Buccal swabs were 

also collected from each participant and were processed as reference samples.  

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2.1: Hair sectioning. Sectioning of the scalp is depicted with three distinct areas being 

differentiated. 

 

2.2 Buccal Swab DNA Extraction, Amplification, and Sequencing 

 
Buccal swabs collected from each participant were extracted using the QIAamp® DNA 

Investigator Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s guidelines for 

DNA isolation from buccal swabs. DNA extracts were quantitated through agarose gel 

electrophoresis. 

 

The entire mtDNA control region (1,357 bp) was amplified via PCR with a total reaction volume 

of 25 L using the F15851 and R639 primers (Table 2.1). Each reaction was comprised of 0.125 

L AmpliTaq Gold® DNA Polymerase (Thermo Fisher Scientific Inc., Carlsbad, CA, USA), 2.5 

L 10X PCR Buffer II, 3.0 L 25 mM MgCl2 (Thermo Fisher Scientific), 1 L 10 mM dNTPs 

(Thermo Fisher Scientific), 0.5 L of each 10 M primer (F15851 and R639), and ~20 ng of DNA 

template. Amplification was performed on a GeneAmpTM PCR System 9700 thermal cycler 

(Thermo Fisher Scientific) under the following conditions: 95C for 15 minutes; 30 cycles of 95C 

for 30 seconds, 56C for 1 minute, 72C for 90 seconds; and a final extension at 72C for 10 

minutes. The PCR reactions were verified to be successful through gel electrophoresis. ExoSAP-

ITTM (Thermo Fisher Scientific) was used to purify the PCR products according to the 

manufacturer’s guidelines.  

1 

2 

3 
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The cleaned PCR products were sequenced using eight internal primers (five forward primers and 

three reverse primers) to ensure both strands were sequenced (Table 2.2). Sequencing reactions 

were a total of 10 L comprised of 2 L BigDyeTM Terminator 3.1 Ready Reaction Mix (Thermo 

Fisher Scientific), 1 L 5X Sequencing Buffer (Thermo Fisher Scientific), 0.5 L 10 M either 

forward or reverse primer, and 3 L of the purified PCR product. Cycle sequencing was performed 

on a GeneAmpTM PCR System 9700 (Thermo Fisher Scientific) under the following conditions: 

96C for 1 minute; 25 cycles of 96C for 10 seconds, 50C for 5 seconds, and 60C for 4 minutes. 

Sequenced products were cleaned using the BigDyeTM XTerminator Purification Kit (Thermo 

Fisher Scientific) following the manufacturer’s guidelines.  

 

For separation of sequenced products, 10 L of the cleaned product in HiDi formamide was loaded 

into a MicroAmpTM Optical 96-well reaction plate (Thermo Fisher Scientific) and separated via 

capillary electrophoresis using a 3500 Genetic Analyzer (Thermo Fisher Scientific) with the 

following specifications: POP-7TM Polymer (Thermo Fisher Scientific), 3500 Genetic Analyzer 8-

capillary array, 36 cm (Thermo Fisher Scientific). The instrument protocol run module used was 

FastSeq36_POP7 (included in the Applied Biosystems® 3500 Series Data Collection Software) 

with no parameter changes made. The injection time was 8 seconds, and the injection voltage was 

1.2 kV. Sequencing data was uploaded into the Sequencher® Sequence Analysis Software version 

5.4.6 for Mac for sequence alignment and analysis. 

 
 

Table 2.1: Amplification primers for the mtDNA control region as used by Chaitanya et al. [59].  

Primer Primer Sequence 

F15851 5´- ATCTCCCTAATTGAAAACAAAATACTCAAA -3´ 

R639 5´- GGGTGATGTGAGCCCGTCTA -3´ 

 

Table 2.2: Sequencing primers for the mtDNA control region.  

Primer Primer Sequence 

F16268 5´- CACTAGGATACCAACAAACC -3´ 

F15971 5´- TTAACTCCACCATTAGCACC -3´ 

F15851 5´- ATCTCCCTAATTGAAAACAAAATACTCAAA -3´ 

F314 5´-CCGCTTCTGGCCACAGCACT-3´ 

F15 5´-CACCCTATTAACCACTCACG-3´ 

R16 5´-TGATAGACCTGTGATCCATCGTGA-3´ 

R484 5´-TGAGATTAGTAGTATGGGAG-3´ 

R639 5´GGGTGATGTGAGCCCGTCTA-3´ 
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2.3 Hair Sample Preparation and Extraction 
 

For each hair sample, one inch of hair (either one inch including the hair root or one inch of the 

hair shaft) was cut into smaller sections 1-4 cm in length. Prepared hair samples from each scalp 

section of each participant were extracted using three extraction methods: Tissue and Hair 

Extraction Kit (PromegaTM, Madison, WI, USA), QIAamp® DNA Investigator Kit, and phenol-

chloroform extraction. 

 

Hair samples extracted using the Tissue and Hair Extraction Kit were processed following the 

manufacturer’s guidelines for extracting mtDNA from hair follicles and hair shafts and eluted at 

35 L. Hair samples extracted using the QIAamp® DNA Investigator Kit were processed following 

the manufacturer’s guidelines for extracting DNA from hair roots and hair shafts. These samples 

underwent a final room temperature incubation for 5 minutes as opposed to 1 minute and were 

eluted at 35 L. Hair samples extracted using phenol-chloroform extraction were processed 

following the WVU Forensic Biology Laboratory protocol as shown in Appendix A. All samples 

were eluted with 35 mL of TE buffer.  
 

2.4 Hair Extract Complete HV1 Amplification and Sequencing 

 
The mtDNA HV1 region was amplified from hair extracts via PCR with a total reaction volume 

of 10 L using the F15971 and R16410 primers (Table 2.3; product size 439 bp). Each reaction 

was comprised of 0.05 L AmpliTaq Gold® DNA Polymerase (Thermo Fisher Scientific), 1 L 

10X PCR Buffer II, 1.2 L 25 mM MgCl2 (Thermo Fisher Scientific), 0.4 L 10 mM dNTPs 

(Thermo Fisher Scientific), 0.2 L of each 10 M primer (F15971 and R16410), and 6.95 L of 

DNA extract. Amplification was performed on a GeneAmpTM PCR System 9700 thermal cycler 

(Thermo Fisher Scientific) under the following conditions: 95C for 10 minutes; 40 cycles of 95C 

for 30 seconds, 56C for 1 minute, 72C for 90 seconds; and a final extension at 72C for 10 

minutes. The PCR reactions were verified to be successful through gel electrophoresis. The 

successfully amplified products were purified using ExoSAP-ITTM (Thermo Fisher Scientific) 

according to the manufacturer’s guidelines.  

 

The cleaned PCR products were sequenced in separate reactions using the same forward and 

reverse primers used for amplification (Table 2.3). Sequencing reactions were a total of 10 L 

comprised of 2 L BigDyeTM Terminator 3.1 Ready Reaction Mix (Thermo Fisher Scientific), 1 

L 5X Sequencing Buffer (Thermo Fisher Scientific), 0.5 L 10 M primer, and 3 L of the 

purified PCR product. Cycle sequencing was performed on a GeneAmpTM PCR System 9700 

(Thermo Fisher Scientific) under the following conditions: 96C for 1 minute; 25 cycles of 96C 

for 10 seconds, 50C for 5 seconds, and 60C for 4 minutes. Sequenced products were cleaned 

using the BigDyeTM XTerminator Purification Kit (Thermo Fisher Scientific) following the 

manufacturer’s guidelines. For size separation of sequenced products, 10 L of the cleaned product 

in Hi Di formamide was loaded into a MicroAmpTM Optical 96-well reaction plate (Thermo Fisher 

Scientific) and separated via capillary electrophoresis using a 3500 Genetic Analyzer (Thermo 

Fisher Scientific) with the following specifications: POP-7TM Polymer (Thermo Fisher Scientific), 

3500 Genetic Analyzer 8-capillary array, 36 cm (Thermo Fisher Scientific). The instrument 
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protocol run module used was FastSeq36_POP7 (included in the Applied Biosystems® 3500 Series 

Data Collection Software) with no parameter changes made. The injection time was 8 seconds, 

and the injection voltage was 1.2 kV. Sequencing data was uploaded into the Sequencher® 

Sequence Analysis Software version 5.4.6 (Gene Codes Corporation, Ann Arbor, MI, USA) for 

Mac for sequence alignment and analysis. 

 

 

 

Table 2.3: Primers for amplification and cycle sequencing of the mtDNA HV1 region. 

Primer Primer Sequence 

F15971 5´- TTAACTCCACCATTAGCACC -3´ 

R16410 5´- GAGGATGGTGGTCAAGGGA -3´ 

 

 

2.5 Hair Extract Partial HV1 Amplification and Sequencing 
 

The mtDNA HV1 region was amplified from hair extracts via PCR with a total reaction volume 

of 10 L using in two parts. The first half of HV1 (280 bp) was amplified using the F15971 and 

R16251 primers (Table 4) and is henceforth referred to as HV1 5´. The second half of HV1 (266 

bp) was amplified in separate reactions from HV1 5´ using the F16144 and R16410 primers (Table 

2.4) and is henceforth referred to as HV1 [3´]. Each reaction was comprised of the same reagents 

and quantities as described in Section 2.4 with the appropriate primer pairs added. Amplification 

and cycle sequencing were performed using the same methods as described in Section 2.4. 

Sequencing data was uploaded into the Sequencher® Sequence Analysis Software version 5.4.6 

(Gene Codes) for Mac for sequence alignment and analysis. 

 

 

Table 2.4: Primers used for both amplification and cycle sequencing of the mtDNA HV1 [5´] and 

HV1 [3´] regions. 

Region Primer Primer Sequence 

HV1 [5´] F15971 5´-TTAACTCCACCATTAGCACC-3´ 

HV1 [5´] R16251 5´-GGAGTTGCAGTTGATGT-3´ 

HV1 [3´] F16144 5´-TGACCACCTGTAGTACATAA-3´ 

HV1 [3´] R16410 5´-GAGGATGGTGGTCAAGGGA-3´ 
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2.6 Data Analysis  

All sequences were uploaded to the Sequencher® Sequence Analysis Software version 5.4.6 

(GeneCodes) for Mac. Forward and reverse reactions for each sample were aligned using the 

software. Coverage of both strands for the entire control region was confirmed for each 

participant’s buccal swab samples. Hair shaft samples for HV1 [5´] and HV1 [3´] were aligned 

and only samples with coverage of both strands were considered successful. 

The revised Cambridge Reference Sequence (rCRS) [29] was uploaded and aligned to each sample 

to ensure the correct mtDNA base positions were used to describe the sample sequences. Each 

instance of divergence from the rCRS was investigated to determine if the difference was due to 

an error in base calling as opposed to a true polymorphism from the rCRS. All polymorphisms 

were recorded for each participant. The haplogroup of each participant was determined by 

uploading the buccal swab sequences to Foswiki Mitomaster [60]. All ambiguous base calls for 

each uploaded sequence were investigated in Sequencher® to determine instances of two different 

base calls at the same location. Instances of point heteroplasmy were verified by noting the 

presence of two bases at that position on all forward and reverse strands for those samples. Any 

samples with point heteroplasmy were aligned with and compared to the reference buccal swab 

and any other successfully sequenced hair samples from that participant. Length heteroplasmy was 

verified by confirming the presence of out-of-phase chromatograms in the appropriate sections on 

both the forward and reverse strands for the sample.   
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3. Results and Discussion 

3.1 Polymorphism and Haplogroup Determination 

Polymorphisms identified in the control region for each participant are shown in Table 3.1. The 

presence of each polymorphism was confirmed in both strands as well as in sequenced hair shaft 

samples. As the presence of certain polymorphisms are the basis for the identification of mtDNA 

haplogroups and haplotypes, the sequence of each participants’ control region was uploaded to  

Mitomaster [60]. 

 

 

Table 3.1: Polymorphisms from rCRS in each participant. 

 Position 

Participant 

1

6

2

2

3 

1

6

2

4

0 

1

6

2

7

8 

1

6

2

8

2 

1

6

2

9

2 

1

6

2

9

4 

1

6

3

0

9 

1

6

3

1

1 

1

6

3

2

5 

1

6

3

5

6 

1

6

3

9

0 

1

6

5

1

9 

7

3 

1

4

6 

1

5

2 

1

8

9 

1

9

5 

2

0

0 

2

6

3 

3

0

9

* 

3

1

5

* 

4

9

7 

4

9

9 

5

2

4

* 

5

2

5

* 

1 T - T T - T C - - - A C G C C - C - G C C - - - - 

2 T G - - T - - C - - - C G - C G - G - - - - - - - 

3 - - - - - - - C - - - C G - - - - - G - C T - A C 

4 - - - - - - - - C - - C - - - - - - G C C - - - - 

5 - - - - - - - - - C - C G - - - C - G - - - A A C 

* Indicates the base shown was an insertion after the listed position. 

 

 

Table 3.2 shows the assigned haplogroups. Two participants belong to haplogroup L which is the 

oldest haplogroup showing humankind’s African roots [21]. Haplogroup L3 in particular led to 

haplogroups M and N which are known to represent groups that migrated out of Africa with 

haplogroup N  leading to subclade R [20]. Both haplogroup H and U are lineages of haplogroup R 

and are common in western Eurasia [61]. Haplogroup K in turn is a lineage of U (specifically, 

haplogroup U8) [20].  

 

 

Table 3.2: Participant Haplogroups. Haplogroups assigned by Mitomaster. The consensus 

reference sequence for each participant was uploaded. Haplotypes included in brackets.  

Participant Haplogroup  

1 L [L2a1a2] 

2 L [L3f1b + 16292] 

3 K [K1a] 

4 H [H2a2a] 

5 U [U4] 
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3.2 Hair Shaft PCR Amplification Success 

 
3.2.1 Control Region 

 

Sequencing of the mtDNA control region was largely successful using buccal swab extracts. All 

reference sequences for the entire control region were successfully sequenced using just one 

forward and one reverse primer for amplification followed by five forward and three reverse 

primers during cycle sequencing. This led to the ability to align all sequencing reactions in 

Sequencher® to verify each base in multiple overlapping strands. 

 

Attempting to sequence the control region in the same manner using hair shafts was not met with 

the same success. No successful amplified products were visualized using gel electrophoresis for 

any hair shaft sample (n = 45). Even when increasing the number of amplification PCR cycles to 

40 there were no successful products. The size of the amplicon (1,357 bp) was determined to 

simply be too large to be amplified as one fragment for hair samples. Previous research on 

sequencing mtDNA from hair targeted much smaller products. Allen et al. amplified products 567 

bp and 520 bp [50]. Another study targeted even smaller overlapping fragments between 176-409 

bp in buccal swabs, bone, and hair [62]. Degraded DNA sometimes requires the use of mini primer 

sets. Gabriel et al. used such mini primers sets to target fragments 126-170 bp in length when 

studying mtDNA sequencing from dried skeletal remains [63]. 

 

3.2.2 HV1 

 

After the failure to amplify the entire control region from hair shafts, an adjustment was made to 

target only HV1 (439 bp). Only four hair samples across all five participants were successfully 

amplified (n = 45) showing a 9% success rate. If the 439 bp fragment failed to amplify, two smaller 

overlapping fragments, HV1 [5´] (280 bp) and HV1 [3´] (266 bp) were amplified to improve the 

success of amplification. This change resulted in ten successfully amplified products for HV1 [5´] 

and twenty successfully amplified products for HV1 [3´] with success rates of 11% and 22% for 

each region, respectively (n = 90 for each HV1 region). As not all amplified products yielded 

sequencing results for both the light and heavy strand, overall success of samples from extraction 

to sequencing were also calculated. Overall sequencing success rates for HV1 [5´] and HV1 [3´] 

were 4% and 15%, respectively. Success of each HV1 region is shown in Table 3.3.  

 

Table 3.3: Comparison of HV1 region success rates from hair shafts (n = 90 for each HV1 [5´] 

and HV1 [3´]).  

 HV1 Region 

 5´ [280 bp] 3´ [266 bp] 

# Successfully amplified 10 20 

Success rate (ext-amp) 11% 22% 

# Successfully sequenced 4 14 

Success rate (ext-seq) 4% 15% 
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Additionally, the success rates of each extraction method were calculated to compare the efficacy 

of each kit for the extraction of mtDNA from hair shafts. The number of successfully amplified 

samples was recorded for each extraction method and each HV1 region (5´ or 3´). Success rates 

for each extraction method are shown in Table 3.4 with the rates for success from extraction to 

amplification as well as from extraction to sequencing included. 

 

 

Table 3.4: Comparison of extraction method success rates from hair shafts (n= 30 for each 

extraction method). The bracketed numbers show the number of samples with HV1 [5´] targeted 

followed by the number of samples with HV1 [3´] targeted. Only samples with coverage of both 

light and heavy strands were considered successful. 

 Extraction Method 

 PromegaTM* Qiagen* Organic 

# Successfully amplified 12 [5,7] 4 [0,4] 15 [5,10] 

Success rate (ext. to amp.) 40% 13% 50% 

# Successfully sequenced 6 [3,3] 4 [0,4] 8 [1,7] 

Success rate (ext. to seq.) 20% 13% 27% 

* Shortened names for each extraction method were used above. The PromegaTM extraction kit used was the Tissue 

and Hair Extraction Kit following the manufacturer’s protocol for mtDNA from hair. The Qiagen extraction kit used 

was the QIAamp® DNA Investigator Kit following the manufacturer’s protocol for extraction from hair shafts.  

 

Out of the eighteen samples successfully sequenced there were seven from Participant 1, six from 

Participant 2, one from Participant 3, three from Participant 4, and one from Participant 5. This 

uneven distribution of success indicates that the ability to extract and amplify mtDNA from hair 

shafts may be due to differences between participants such as hair type and mtDNA copy number.  

Desmyter et al. [64] demonstrated that mtDNA sequencing success can vary based on the location 

of the hair shaft cutting to the hair root with 96% of hair shafts taken 1 cm from the root resulting 

in the control region being successfully sequenced. The same study also reported 51% control 

region sequencing success in a longitudinal study in which twenty 2 cm fragments from each hair 

shaft were taken moving away from the root [64]. Other studies have also shown that mtDNA copy 

number generally decreases  and mtDNA degradation increases as cuttings of hair farther from the 

root are used [65–67]. As the proximity to hair root was not investigated in this research, the 

location along the hair shaft was not recorded during sampling or extraction preparation and could 

have played a role in the sequencing success of the hair shafts. mtDNA copy number in hair can 

also vary between individuals as well as between different hair shafts taken from the same 

individual [65, 66]. mtDNA quantities from extracts were not determined, so copy number may 

affect the amplification success between samples and individuals.  

 

Regarding hair type, studies have reported conflicted results on whether hair color or diameter 

affects amplification or sequencing success [68, 69]. Melton et al. [68] found the likelihood of 

obtaining a mtDNA profile from hair was higher for hair samples that were darker in color and 
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larger in diameter.  A later study by Roberts and Calloway [69] found that amplification success 

from hair shafts did not have any correlation to hair color, hair diameter, or hair treatment (i.e. 

bleaching, coloring). Melanin has been previously reported to be a PCR inhibitor as it binds to 

DNA [70]. Studies have shown that inhibition due to melanin affects PCR efficiency of larger 

amplicons (>300 bp) than smaller amplicons (<230 bp) [70, 71]. Even so, Melton et al. [68] found 

melanized hair to yield abundant mtDNA. The samples used in the current study were anonymized 

to meet IRB requirements so no conclusions about melanin and its effects on PCR efficiency were 

reported.  

 

AmpliTaq Gold® DNA polymerase used in the current study has recently been compared to eleven 

other DNA polymerases on the market [72]. When the entire control region was amplified from 

hair samples, AmpliTaq Gold® was outperformed by five other polymerases [72]. The same study 

also found that amplifying head hair resulted in lower mtDNA yields than beard/pubic hair [72]. 

As head hair was amplified using AmpliTaq Gold® in the current study, this combination may 

have affected amplification success. Additionally, chemically treated head hair (i.e. bleaching, 

coloring, chemical straightening) resulted in lower mtDNA yields compared to untreated head hair 

contrary to the Roberts and Calloway findings when determining amplification success [69, 72]. 

Amplification success in the current study may have been affected by hair treatment as participants 

were not asked about chemical treatments prior to sampling.  

 

A validated Sanger sequencing method for HV1 and HV2  utilized one of the same extraction 

methods (Qiagen QIAamp® DNA Investigator Kit) as the current study and sequenced hair shafts 

[62]. All five hair shafts used in this validation study were all successfully sequenced, and the 

study  targeted smaller overlapping fragments (176-490 bp) during amplification [62]. The major 

differences between Mita et al. [62] and the current study was the former’s use of Terg-A-Zyme 

for hair shaft cleaning prior to extraction and the use of different primers for mtDNA amplification. 

Additionally, Mita et al. [62] utilized AmpliTaq Gold® Fast PCR Master Mix. The differences in 

the primers and DNA polymerase used between the current study and Mita et al. [62] may explain 

the difference in success.  

 

 

3.3 Heteroplasmy 

 
3.3.1 Point Heteroplasmy 

 

Point heteroplasmy was found in the buccal swab (n = 5) and one hair sample (n = 18) from the 

same participant (Participant 3). Chromatograms from Participant 3’s hair buccal swab and hair 

shaft can be found in Appendix B. Table 3.5 shows the comparison of point heteroplasmy 

positions to the reference sequence of the participant. The buccal swab showed heteroplasmy at 

only one position (16093), but this position was not within the HV region sequenced in the hair 

shaft and therefore could not be verified in the hair shafts from the same participant. Position 

16093 has been previously reported to have a high mutation rate resulting in heteroplasmy. 

Heteroplasmy at position 16093 has been reported in other studies involving blood samples and 
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hair samples [42, 68] Position 16093 has been found to not only be an evolutionary mutational 

hotspot, but has also demonstrated to have an increased rate of mutation in individuals exposed to 

radiation [73].  

 

In the current study, point heteroplasmy was found in one out of five participants (Participant 3). 

An estimation of point heteroplasmy rate could not be determined due to the small number of 

successful samples.  Heteroplasmy in the hair shaft from Participant 3 was seen at two different 

positions (16258 and 16288) in the HV1 [3´] region. No heteroplasmy was seen in the participant’s 

buccal swab at these positions. Past studies have reported heteroplasmy in hair that is not seen in 

blood or saliva samples from the same individual [47, 74]. Heteroplasmy in hair has been reported 

at rates between 4.4-7% in HV1 and HV2 [46, 47]. While having more than one position showing 

heteroplasmy is uncommon, several studies have reported individuals showing heteroplasmy at 

two or more positions. Out of 35 individuals showing heteroplasmy, Tully et al. [75] found two 

individuals to each be heteroplasmic at two positions when sequencing HV1 in blood samples. 

Irwin et al. [42] found 0.14% of blood samples and buccal swabs to show heteroplasmy at two or 

three positions. A more recent study sequencing the whole mtDNA genome from hair reported out 

of thirteen participants showing heteroplasmy in hair, seven of them showed heteroplasmy at more 

than one position [74].  

 

 

Table 3.5: Heteroplasmy in samples. Hair shaft sample was collected from Section 2 of the scalp 

and extracted using an organic extraction. 

 

Participant Sample type Sequenced region Heteroplasmy 

position 

Bases 

called 

Participant 

reference 

3 Hair shaft  HV1 [3´] 16258 A/G A 

   16288 C/T T 

  3 Ref.* Buccal swab Control region 16093 T/C T/C 

* Reference buccal swab taken from participant and extracted using the Qiagen QIAamp® DNA Investigator Kit 

following the manufacturer’s Surface and Buccal Swab Protocol.  

While each participant had three different scalp regions sampled for hair shafts, no other samples 

were successfully sequenced for Participant 3, so variability in heteroplasmy between scalp regions 

could not be assessed. In terms of interpretation when comparing Participant 3’s buccal swab to 

the hair sample, one base present in the hair sample was concordant with the buccal swab base call 

at each position. Following the SWGDAM guidelines for mtDNA analysis interpretation [30], the 

samples would not be excluded as coming from the same source. As no other hair samples from 

Participant 3 were successfully sequenced, it is unknown whether any hair shaft would show a 

single base at the present heteroplasmic positions. A hair shaft showing the non-concordant base 

when compared to the buccal swab at both positions would indeed result in a false exclusion based 

on the SWGDAM guidelines [30]. 
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3.3.2 Potential Length Heteroplasmy 

 

No length heteroplasmy was seen in any hair sample sequenced. Two participants (Participants 4 

and 5) showed potential length heteroplasmy in their buccal swabs. For both participants, this 

heteroplasmy was seen at the HV2 poly-cytosine (poly-C) stretch at positions 303-315 of the light 

strand. Out-of-phase chromatograms were seen after this position for both the light and heavy 

strands (Figure 3.2). Length heteroplasmy at this particular stretch is common  and can be 

identified by the presence of out-of-phase chromatograms after position 309 on the light strand 

and before position 309 on the heavy strand [76, 77]. Participant 4 shows a combination of 8 

cytosine repeats and 9 cytosine repeats beginning at position 303 on the light strand. Participant 5 

shows a combination of 7 cytosine repeats and 9 cytosine repeats beginning at the same position. 

 

 Length heteroplasmy has been reported in all three HV regions in previous studies. Rasmussen et 

al. [41] saw length heteroplasmy in 19% of individuals sampled in either HV1, HV2, or both 

regions. Paneto et al. [40] focused on heteroplasmy in HV3 and found one participant showed 

length heteroplasmy in the CA repeat region in both blood and hair samples. Three participants in 

the Paneto et al. [40] study also showed length heteroplasmy at position 573 (poly-C stretch).  

 

Figure 3.2: Chromatograms for Participants 4 (A) and 5 (B) showing potential length 

heteroplasmy. Top chromatograms for A and B show the light strand while the bottom 

chromatograms show the heavy strand. 

 

No length heteroplasmy was seen in HV1 in any buccal swab or hair sample in this study, but the 

low success rates seen in the hair samples (particularly in HV1[5´]) prevented the entirety of HV1 

(A) 

(B) 
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from being sequenced in most hair samples. A challenge with interpreting length heteroplasmy is 

that polymerase slippage at homopolymeric stretches can also result in what seems like 

heteroplasmy. Length heteroplasmy is consequently disregarded in forensic interpretation. Berger 

et al. [78] remarked upon the difficulty in interpreting Sanger sequencing data in which length 

heteroplasmy is present. One study found that 52% of 5,015 individuals showed length 

heteroplasmy somewhere within the control region [42]. Presence of length heteroplasmy results 

in difficult-to-interpret chromatograms that may be mistaken for mixed samples and complicates 

sequence interpretation.   

 

3.4 Importance of Sequence Comparison 
 

mtDNA sequencing requires a clean laboratory space to reduce the risk of contamination [79]. Due 

to the high copy number of the mtDNA genome per cell versus that of nuclear DNA, even 

contamination involving few cells can result in a mixed sample when targeting mtDNA. Cleaning 

and washing of hair samples prior to extraction removes exogenous DNA from the hair, and 

different washing methods have been studied to limit the amount of contamination from such 

exogenous DNA [80, 81]. Studying heteroplasmy relies on the assumption of uncontaminated 

samples so the presence of more than one base at a single position can be attributed to the 

individual’s actual sequence and not a mixture of one or more contributors. In the event of point 

or length heteroplasmy in this research, comparison of sequences containing the heteroplasmy to 

other participants’ samples proved helpful in identifying contamination as the source of the 

heteroplasmic positions. 

 

 

3.4.1 Assessing Point Heteroplasmy  

 

One hair shaft sample (HV1 [3´] sequenced) in this study showed heteroplasmy at nine different 

positions that were not heteroplasmic in any of three other hair shaft samples processed from the 

same participant. While an objective of this study was to determine if hair shafts from different 

scalp sections could show differences in heteroplasmy, for one sample to have nine different 

heteroplasmic positions in a target barely longer than 260 bp would have been unprecedented. 

Grzybowski [51] previously reported high rates of point heteroplasmy in hair when sequencing 

HV1, and one individual in this study had heteroplasmy at six different positions. A critique of 

Grzybowski’s [51] paper explained the heteroplasmy seen at two or three positions are possible 

but occur at very low rates [52]. As six heteroplasmic positions is considered higher than anything 

previously reported, a thorough investigation into the hair shaft sample with nine such positions 

was conducted. 

 

The hair shaft sample was aligned with not only the reference buccal swab sequence for its 

participant (Participant 1), but for every other participant as well. This was done to determine (1) 

which base at each heteroplasmic position could be attributed to the expected participant’s buccal 

swab and (2) which of the other participants could have contributed the second base at each 
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position. Only one participant (Participant 2) who did not contribute the hair shaft in question 

could have contributed the second base at each heteroplasmic position based on their buccal swab  

sequence. To account for any differences that may be in the sequences of the buccal swab and hair 

shaft, an additional comparison was made between the heteroplasmic hair shaft from Participant 1 

and a hair shaft processed from Participant 2. The results of this comparison are shown in Table 

3.6. Comparison of the hair shaft from Participant 1 with Participant 2 hair samples showed no 

locations where the participants’ sequences differed apart from the heteroplasmic positions seen 

in Participant 1 hair shaft. This indicates that the “heteroplasmy” is merely due to contamination 

by a sample from Participant 2.  

 

 

Table 3.6: Investigation of Participant 1 hair shaft heteroplasmy. Participant 2 could have 

contributed the second base at each position with one base called.  

 
*Hair shaft collected from scalp section 2 and was extracted via the Qiagen QIAamp® DNA Investigator kit following 

the manufacturer’s Hair Shaft protocol. Only HV1 [3´] was successfully sequenced. 

†All hair shafts from Participant 2 with HV1 [3´] successfully sequenced were aligned for comparison and all shared 

the same base at each position. Five hair shafts were included: three extracted via phenol-chloroform extraction (one 

each from the front of head, crown of head, and nape of neck) and two extracted via the Qiagen QIAamp® DNA 

Investigator kit following the manufacturer’s Hair Shaft protocol (one from the front of head and one from the nape 

of neck). 

   

 

As the methods of this study did not include cleaning of the hair shafts prior to extraction, this 

contamination may have been due to the presence of exogenous DNA from Participant 2 on the 

hair shaft that was subsequently extracted along with the mtDNA found within the hair. The peak 

height ratio of major to minor heteroplasmic peaks ranged from 44% (positions 16278 and 16294) 

to 72% (position 16240). Due to the amount of exogenous DNA that would need to have been 

present to result in such ratios, a better explanation for the contamination would be analyst error. 

All hair samples with HV1 [3´] amplified were processed together. Therefore, a contamination 

 Participant 1 Participant 2 

Heteroplasmy 

position  
Reference Hair shaft* Reference Hair shafts† 

16209 T C/T C C 

16240 A A/G G G 

16278 T C/T C C 

16286 T C/T C C 

16292 C C/T T T 

16294 T C/T C C 

16309 G A/G A A 

16311 T C/T C C 

16390 A A/G G G 
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event due to analyst error is a possible explanation that could have occurred at any step from 

extraction through sequencing.  

 

A similar investigation was conducted to assess the possibility of contamination playing a role in 

the heteroplasmy found in the Participant 3 hair shaft where two heteroplasmic positions were 

observed. No other participant could have contributed the second base at either heteroplasmic 

position when the reference buccal swab and hair shaft samples were compared. Additionally, the 

buccal swab sequence from the analyst was compared and was found that this sequence also could 

not account for the second base found at either heteroplasmic position.  

 

 

3.4.2 Assessing Potential Length Heteroplasmy 

 

Potential length heteroplasmy was seen in Participants 4 and 5, with a different number of repeated 

cytosines beginning at position 303 in the HV2 region. Length heteroplasmy at this position has 

been previously reported in two homopolymeric regions (C-stretches) within the mtDNA control 

region, one within the HV2 region between positions 303-315 and another within the HV1 region 

between positions 16184-19193 [76, 81].  If the length heteroplasmy came from contamination by 

another sample, we would expect to see point heteroplasmy at positions that differ between each 

participant and the second contributor. Comparison of Participants 4 and 5 reference buccal swabs 

to each of the other participants’ reference buccal swabs showed multiple positions in which the 

sequences differed from the other participants, yet no point heteroplasmy was seen for Participants 

4 or 5. All sequence differences between participants can be found in Appendix A. This supports 

that the length heteroplasmy in both participants is indeed a result of a combination of mtDNA 

containing a different number of repeated cytosines. 

 

While contamination was investigated as a possible source of the out-of-phase chromatograms, 

Taq slippage during PCR amplification was not ruled out in the current study. Taq polymerase 

slippage during PCR can cause sequence errors such as a combination of different poly-C repeats 

in one sample [82–84]. Nakai et al. [84] found heteroplasmy between nucleotide positions 303-

315 that were confirmed through the use of varying primers along with proof-reading polymerases.   
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4. Conclusions 
 

Success in sequencing the control region of mtDNA from buccal swabs and HV1 from hair shafts 

showed that differences between sample types due to heteroplasmy is possible. While the small 

sample size prevents heteroplasmy rates from being estimated, appearance of length and point 

heteroplasmy were able to be reported. Two out of five unrelated participants (40%) showed 

potential length heteroplasmy in the 303-315 poly-C region of HV2 when mtDNA from buccal 

swabs was sequenced. One out of five unrelated participants (20%) showed point heteroplasmy at 

position 16093 (HV1) when mtDNA from their buccal swab was sequenced. Only one hair sample 

showed point heteroplasmy within HV1 (nucleotide positions 16258 and 16288). Neither position 

was heteroplasmic in the buccal swab from the same participant. 

 

Past studies have shown higher success in sequencing HV1 from hair shafts than was seen in this 

research. There seemed to be a difference in the success rates for the HV1 sections sequenced with 

only 11% of HV1 [5´] samples being successfully amplified while the success rate for 

amplification of HV1 [3´] was 22% (n = 90 for each section of HV1). Such a disparity between 

the success rates may be due to DNA quality from the hair shafts as targeting a smaller amplicon 

size showed higher success.  Future studies recording distance of the hair cutting from the root can 

help improve PCR amplification from hair shafts as hair cutting location has been correlated to 

mtDNA copy number and degradation. Furthermore, studying the effects of hair treatments such 

as bleaching and dyeing on the efficacy of mtDNA amplification would be helpful as such factors 

were not reported for the participants of the current study. Applying such methods to tissues other 

than buccal swabs would require additional protocol development and optimization to increase the 

success rate of amplification. 

 

While three different methods of extraction were used, it was possible to successfully sequence 

mtDNA using each kit. Although all extraction methods used in this study involved purification 

of the extracted mtDNA, washing the hair prior to extraction may decrease the chances of sample 

contamination as one hair sample sequenced showed contamination from another participants’ 

mtDNA.  Optimizing  a method in which more samples can be sequenced for additional 

comparison would increase the weight of future data related to heteroplasmy rates in hair compared 

to other sample types. Sampling from an increased number of scalp sections would also allow for 

additional comparison to determine the rate in which heteroplasmy may be expressed in only some 

hair shafts collected from a single individual. 

Even with the low success rates reported in this study, the importance of research involving 

mtDNA heteroplasmy and its potential effect in forensic sample interpretation is evident. 

Comparing the hair sample with point heteroplasmy to the same participant’s buccal swab revealed 

the buccal swab sequence did not share heteroplasmy at either position. While the hair sample 

would not be excluded as coming from the same source as the buccal swab, no other hair samples 

from the participant were successful. Given the inability of this study to compare multiple hair 

samples from the participant, a question is raised as to whether some hair shafts may only show 

the presence of the non-concordant base. If this were the case, then a sample with two non-

concordant positions to the reference buccal swab would justify a false exclusion. Without the 

success of additional hair shaft samples taken from other scalp sections of the participant, this 
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question could not be answered in this study. Nevertheless, continued research in identification 

and comparison of heteroplasmy in hair shafts, buccal swabs, and other sample types is paramount 

to the strengthening of mtDNA analysis and interpretation in forensic science.  
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5. Appendix A: Protocols 

Organic Extraction Protocol:  

1. Place the sample cutting in a sterile 1.5 mL microcentrifuge tube. 

2. Add 500 L of stain extraction buffer, 15 L of ProK, and 50 L DTT. 

3. Pulse vortex for 10 seconds and briefly centrifuge (8,000 rpm for 1 minute). 

4. Incubate the sample at 56C for 2-24 hours or until the hair is completely broken down. 

5. Centrifuge at 8,000 rpm for 1 minutes to force condensation to the bottom of the tube. 

6. In a fume hood, add 500 L of Phenol Chloroform : Isoamyl Alcohol to the stain extract. 

Pulse vortex to attain a milky emulsion. 

7. Spin the tube at 14,000 rpm for 3 minutes. There should be two clearly separated layers.  

8. Remove the bottom organic phase and the interface from the tube and discard into a 

dedicated waste container. 

9. Repeat steps 6-8 until middle layer is clear (at least 2 times). 

10. Place a Microcon® 30kDA Centrifugal Filter Unit (Millipore Sigma, St. Louis, MO, USA) 

into a microcentrifuge tube.  

11. Add 100 L of TE buffer to the Microcon®.  

12. Transfer the top aqueous phase from the tube in step 9 to the Microcon®. Avoid pipetting 

any of the bottom organic phase or interface. Discard the tube containing the organic phase 

and interface into a dedicated waster container. 

13. Cap the Microcon® and centrifuge at 14,000 rcf for 10 minutes. Repeat until all of the 

solution flows through the Microcon®. 

14. Carefully remove the Microcon® from the microcentrifuge tube and discard the fluid from 

the tube. Return the Microcon® to the tube. 

15. Add 200 L of TE buffer to the Microcon®. Cap and centrifuge at 14,000 rcf for 10 

minutes. Repeat until all the solution flows through the Microcon®. 

16. Add TE buffer to the Microcon® to bring the total volume between 20-200 L. Carefully 

invert the Microcon® into a fresh, sterile microcentrifuge tube. 

17. Centrifuge at 1,000 rcf for 3 minutes. 

18. Store the sample at 5C or frozen. When ready to use, vortex and centrifuge for 5 seconds. 
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DNA Amplification Protocol 

Store all reagents on ice while preparing reactions 

 

1. Calculate the volume of DNA extract of each sample needed to add 20 ng of total DNA  

NOTE: Maximum volume of added DNA is 17.375 μL, so extract may need to be 

diluted or concentrated 

2. Determine number of reactions needed by adding number of samples, number of 

extraction blanks, one positive control, and one negative control 

3. Add 4 to the calculated number of reactions to ensure enough master mix is made. This 

value is your N for the next step 

4. Create the master mix by vortexing each of the following components and mixing the 

appropriate amount of each in a tube: 

a. N x 0.125 μL AmpliTaq Gold® DNA Polymerase  

b. N x 2.5 μL 10X PCR Buffer II 

c. N x 3.0 μL 25 mM MgCl2  

d. N x 1.0 μL 10 mM dNTPs 

e. N x 0.5 μL 10 μM forward primer* 

f. N x 0.5 μL 10 μM reverse primer* 

5. Pulse vortex the master mix for ten seconds and briefly centrifuge to remove any bubbles 

6. Dispense 7.625 μL of master mix into each PCR tube 

7. Vortex and briefly centrifuge DNA extracts. Add the volume of DNA extract calculated 

in Step 1 to target 20 ng of total DNA. 

8. Add the appropriate volume of 0.1 TE buffer to bring each reaction volume to 25 μL 

9. Pulse vortex each reaction for 10 seconds and centrifuge for 20-30 seconds.  

10. Ensure there are no bubbles and perform a pre-PCR volume check 

11. Load the reactions on a thermal cycler and run with the following parameters: 

 

Hold Cycling (30 cycles) Final Extension Hold 

95°C 95° 56°C 72°C 72°C 12°C 

15 min. 30 sec. 1 min. 90 sec. 10 min. ∞ 

 

12. Store PCR products at –20°C until ready for PCR product cleanup 

*Forward and reverse primers will vary based on the region of DNA being targeted. Only add 

one forward and one reverse primer to the master mix 

PCR Product Cleanup (if sequencing) 

Remove ExoSAP-IT™ reagent from –20°C freezer and keep on ice throughout this procedure 

1. Add 2 µL ExoSAPITTM reagent for every 5 µL of PCR product being cleaned 

2. Use a thermal cycler to incubate at 37°C for 15 minutes followed by 80°C for 15 minutes 

3. Store cleaned PCR products at –20°C until ready to sequence 
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Agarose Gel Preparation Protocol: 

1. Create or obtain 1X TBE Electrophoresis Buffer. To create buffer from a solution, simply 

dilute the TBE solution to 1X using deionized water  

2. Create a 1% agarose solution by combining 0.5 g of agarose with 50 mL of 1X TBE 

Buffer 

3. Gently swirl the agarose solution and microwave the solution for 1 minute. Use autoclave 

gloves to remove the beaker from the microwave and gently swirl 

4. Continue microwaving in intervals of 15-30 seconds until the agarose is completely 

dissolved and the solution is clear 

5. Use a thermometer to monitor the solution as it cools to 65°C 

6. When the solution is cooled to 65°C, add 2.5 μL of 10,000X Gel Red Gel Stain and swirl 

to mix 

7. Pour the solution into a prepared gel tray with a gel comb inserted on the end closest to 

the edge. 

8. Let the gel set for 20-30 minutes. The gel is set when it appears slightly opaque and does 

not move when the tray is jiggled 

 

Preparing the Samples 

1. Once the gel is poured, you can begin preparing the samples to be run  

2. Prepare the samples by combining 1/10th of the amplified product with 1 μL of loading 

buffer and distilled water to a total of 10 μL 

3. Store the prepared samples in the fridge until ready to load into the gel 

 

Running the Gel 

1. Carefully remove the gel comb by pulling straight up. 

2. Pour the 1X TBE Buffer into the anode (black/negative) side of the gel chamber first 

until the buffer reaches the gel 

3. Pour the 1X TBE Buffer into the cathode (red/positive) side of the gel chamber next until 

the chamber is filled 

4. Wait ~15 minutes, then pour the 1X TBE Buffer over the gel so it is 3-5 mm above the 

gel 

5. Remove the prepared samples from the fridge and vortex each again to ensure they are 

well-mixed. Load 10 μL of 0.1X 100 bp ladder in the first well Load the amplified 

samples in the remaining wells 

6. After loading all samples, place the cover on the gel chamber so the red and black wires 

are on the appropriate sides, and plug the wires into the matching sections of the power 

source 

7. Turn on the power source and set it to 150 V for 30 minutes. Verify there are small 

bubbles on forming on both ends of the chamber. Check the location of the loading dye 

after 30 minutes and add more time if necessary 
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Sanger Sequencing Protocol: 

Store all reagents on ice while preparing reactions 

 

1. Add 4 to the number of samples to be sequenced to ensure enough master mix is made. 

This number will be N for the following step 

2. Create the master mix by vortexing each of the following components and mixing the 

appropriate amount of each in a tube: 

a. N x 2.0 μL BigDyeTM Terminator v3.1 Ready Reaction Mix 

b. N x 1.0 μL Sequencing Buffer 

c. N x 0.5 μL 10 μM primer 

d. N x 3.5 μL nuclease-free water 

3. Pulse vortex the master mix for ten seconds and briefly centrifuge to remove any bubbles 

4. Dispense 7.0 μL of master mix into each PCR tube 

5. Vortex and briefly centrifuge PCR products. Add 3.0 μL of PCR product to each reaction 

6. Pulse vortex each reaction for 10 seconds and centrifuge for 20-30 seconds.  

7. Ensure there are no bubbles and perform a volume check 

8. Load the reactions on a thermal cycler and run with the following parameters: 

 

Hold Cycling (25 cycles) Hold 

96°C 96° 50°C 60°C 12°C 

1 min. 10 sec. 5 sec. 4 min. ∞ 

 

9. Store products at –20°C until ready for product cleanup 

 

Sanger Sequencing Product Cleanup 

4. Remove sequencing products from freezer and thaw. Keep on ice while adding the 

cleaning reagents. 

5. Dispense 45 μL of SAM Solution to each product 

6. Vortex the XTerminator Solution bulk container 

7. Dispense 10 μL of XTerminator Solution to each product. Vortex XTerminator Solution 

bulk container before pipetting each time 

8. If using a plate, seal the plate with heat seal or Clear Adhesive Film. If using tubes, 

secure the lids 

9. Vortex products for 30 minutes 

10. Centrifuge products briefly 

11. Cleaned products can be stored at –20°C for up to two weeks  

When ready to load products for capillary electrophoresis, only the clear upper phase should be 

used. If samples were cleaned on a plate, the BDx run module must be used. If samples were 

cleaned in tubes, 10 L of the clear upper phase should be pipetted into a plate. 
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Sequencher® Data Upload and Analysis Protocol: 

1. Open the Sequencher® software and drag samples into the window to upload sequencing 

data 

2. To import the rCRS, navigate to File>Import>From Template>rCRS 

NOTE: This will automatically set the rCRS as a reference sequence with the appropriate 

base positions labeled to match the mtDNA genome. This rCRS only covers the control 

region 

3. To align samples, select the desired samples including the rCRS and click “Assemble 

Automatically” 

4. Rename the new contig appropriately and double click on the contig to see the 

information for the aligned sequences 

5. To view the chromatograms, click “Bases” then “Show Chromatograms” 

6. The top window shows the sequence of each aligned sample with the consensus sequence 

underneath. The bottom window shows the chromatograms for all samples with data at 

the selected consensus position 

7. To find positions with disagreements in the base call between the aligned samples, click 

Command+D. This function is helpful for finding polymorphisms from the rCRS as well 

as any differences in the aligned sequences 

8. To view a table of all disagreements between the aligned sequences and the reference, 

right-click the contig on the main Sequencher® window and select “Compare Bases to” 

then select “Reference Sequence”. You can also choose to compare the bases to the 

consensus sequence to see all disagreements between all aligned sequences 

9. A detailed report on any variances between aligned sequences and the rCRS can be 

viewed by selecting “Reports” then clicking “Entire Table” and selecting “Variance 

Detail Report” as the report format. This report provides snippets of the chromatograms 

at each position of disagreement as well as defines the primary and secondary peaks if an 

ambiguous base is called 

10. Individual sequences or consensus sequences can be exported in various formats by right-

clicking the sample/contig on the main Sequencher® window and selecting “Export” 

followed by the type of sequence you would like exported. The format can be changed 

using the drop-down arrow 
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6. Appendix B: Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Chromatograms for Participant 3 buccal swab point heteroplasmy. The top two 

chromatograms show the light strand from two different primer reactions with overlapping 

sequences. The bottom chromatogram shows the heavy strand with position 16093 highlighted. 
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Figure 6.2: Chromatograms for Participant 3 hair shaft point heteroplasmy. For each set, the 

light strand is above the heavy strand. (A) Participant 3 hair shaft point heteroplasmy at position 

16258. (B) Participant 3 reference buccal swab at position 16258. (C) Participant 3 hair shaft 

point heteroplasmy at position 16288. (D) Participant 3 reference buccal swab at position 

16288. 

 

 

Table 6.1: All sequence differences in reference buccal swabs from each participant. 

 Position 

Participant 

160

93 

1

6

2

0

9 

1

6

2

2

3 

1

6

2

2

4 

1

6

2

4

0 

1

6

2

7

8 

1

6

2

8

6 

1

6

2

9

2 

1

6

2

9

4 

1

6

3

0

9 

1

6

3

1

1 

1

6

3

2

5 

1

6

3

5

6 

1

6

3

9

0 

7

3 

1

4

6 

1

5

2 

1

8

9 

1

9

5 

2

0

0 

3

3

1 

4

9

7 

4

9

9 

1 T T T T A T T C T G T T T A G C C A C A A C G 

2 C C T T G C C T C A C T T G G T C G T G G C G 

3 T/C T C C A C C C C A C T T G G T T A T A A T G 

4 T T C T A C C C C A T C T G A T T A T A A C G 

5 T T C T A C C C C A T T C G G T T A C A A C A 

rCRS* T T C T A C C C C A T T T G A T T A T A A C G 

*rCRS = revised Cambridge Reference Sequence  

16258 

16258 

16258 

16258 

16288 

16288 

16288 

16288 

(A) (B) 

(C) (D) 

1 
6 

0 
9 
3 
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