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Abstract

Polychromatic colorings of certain subgraphs of complete graphs

and maximum densities of substructures of a hypercube

Ryan Hansen

If G is a graph and H is a set of subgraphs of G, we say that an edge-coloring of G is

H-polychromatic if every graph from H gets all colors present in G on its edges. The

H-polychromatic number of G, denoted by polyH(G), is the largest number of colors in

an H-polychromatic coloring. In Chapter 1 we determine polyH(G) exactly when G is

a complete graph on n vertices, q is a fixed nonnegative integer, and H is one of three

families: the family of all matchings spanning n− q vertices, the family of all 2-regular

graphs spanning at least n − q vertices, and the family of all cycles of length precisely

n− q. There are connections with an extension of results on Ramsey numbers for cycles

in a graph.

Let H and K be subsets of the vertex set V (Qd) of the d-cube Qd (we call H and

K configurations in Qd). We say K is an exact copy of H if there is an automorphism

of Qd which sends H to K. If d is a positive integer and H is a configuration in Qd,

we define λ(H, d) to be the limit as n goes to infinity of the maximum fraction, over all

subsets S of V (Qn), of sub-d-cubes of Qn whose intersection with S is an exact copy of

H.

In Chapter 2, we determine λ(C8, 4) and λ(P4, 3) where C8 is a “perfect” 8-cycle in

Q4 and P4 is a “perfect” path with 4 vertices inQ3, and make conjectures about λ(C2d, d)

and λ(Pd+1, d) for larger values of d. In Chapter 3, we determine λ(H, d) for several

configurations in Q2, Q3, and Q4 as well as for an infinite family of configurations. The

proofs contained in Chapters 2 and 3 include connections with counting the number of

sequences with certain properties and with the inducibility of certain small graphs. In

particular, we needed to determine the inducibility of two vertex disjoint edges in the

family of bipartite graphs. Further, there are strong connections with the inducibility

of other graphs.
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Chapter 1

Polychromatic colorings of

1-regular and 2-regular subgraphs

of complete graphs

Portions of the material for this chapter currently appear in publication in the Journal

of Graph Theory, Volume 87, Issue 4, April 2018 [4]. This chapter also includes material

that was accepted for publication in Discrete Mathematics, Volume 345, Issue 8, August

2022 [27].

1



2 CHAPTER 1. POLYCHROMATIC COLORINGS

1.1 Introduction

If G is a graph and H is a set of subgraphs of G, we say that an edge-coloring of G is

H-polychromatic if every graph from H has all colors present in G on its edges. The

H-polychromatic number of G, denoted by polyH(G) is the largest number of colors

in an H-polychromatic coloring. If an H-polychromatic coloring of G uses polyH(G)

colors, it is called an optimal H-polychromatic coloring of G.

Alon et al. [2] found a lower bound for polyH(G) when G = Qn, the n-dimensional

hypercube, and H is the family of all subgraphs isomorphic to Qd, where d is fixed.

Offner [39] showed this lower bound is, in fact, the exact value for all d and sufficiently

large n. Bialostocki [7] showed that if d = 2, then the polychromatic number is 2 and

that any optimal coloring uses each color about half the time. Goldwasser et al. [28]

considered the case when H is the family of all subgraphs isomorphic to Qd minus an

edge or Qd minus a vertex.

Bollobas et al. [10] treated the case where G is a tree and H is the set of all paths of

length at least r, where r is fixed. Goddard and Henning [25] considered vertex colorings

of graphs such that each open neighborhood gets all colors.

For large n, it makes sense to consider polyH(Kn) = polyH(n) only if H consists of

sufficiently large graphs. Indeed, if the graphs from H have at most a fixed number s

of vertices, then polyH(n) = 1 for sufficiently large n by Ramsey’s theorem, since even

with only two colors there exists a monochromatic clique with s vertices.

Axenovich et al. [4] considered the case where G = Kn and H is one of three families

of spanning subgraphs: perfect matchings (so n must be even), 2-regular graphs, and

Hamiltonian cycles. They determined polyH(n) precisely for the first of these and to

within a small additive constant for the other two. In this chapter, we determine the

exact H-polychromatic number of Kn, where q is a fixed nonnegative integer and H is

one of three families of graphs: matchings spanning precisely n − q vertices, (n − q)-
cycles, and 2-regular graphs spanning at least n− q vertices (so q = 0 gives the results

of Axenovich et al. in [4] without the undetermined constant.)

This chapter is organized as follows. We give a few definitions and state the main

results in Section 1.2. We give some more definitions in Section 1.3. The optimal

polychromatic colorings in this paper are all based on a type of ordering, and in Section

1.4 we state and prove the technical ordering lemmas we will need. In Section 1.5 we

prove Theorem 1.2.1, a result about matchings. In Section 1.6 we use some classical

results on Ramsey numbers for cycles to take care of polychromatic numbers 1 and

2 for cycles. In Section 1.7 we prove Theorem 1.2.6, a result about coloring cycles,

and use some results on long cycles in the literature to prove a necessary lemma. In
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Section 1.8 we give the rather long proofs of the three main lemmas that we require. In

Section 1.9 we describe precisely the various simply-ordered and nearly simply-ordered

optimal polychromatic colorings of Kn. In Section 1.10 we show how our results can be

reconstituted in a context which generalizes the classical results on Ramsey numbers of

cycles presented in Section 1.6. In Section 1.11 we state a general conjecture of which,

if true, most of our results are special cases.

1.2 Main Results

We call an edge coloring ϕ of Kn ordered if there exists an ordering v1, v2, . . . , vn of

V (Kn) such that ϕ(vivj) = ϕ(vivm) for all 1 ≤ i < j < m ≤ n. Moreover this coloring

is simply-ordered if for all i < j < m, ϕ(vivm) = ϕ(vjvm) = a implies that ϕ(vtvm) = a

for all i ≤ t ≤ j. simply-ordered colorings play a fundamental role in this paper. An

ordered edge coloring ϕ induces a vertex coloring ϕ′ on V (Kn) called the ϕ-inherited

coloring, defined by ϕ′(vi) = ϕ(vivm) for i < m ≤ n and ϕ′(vn) = ϕ′(vn−1). We can

represent the induced vertex coloring ϕ′ by the sequence c1, c2, . . . , cn of colors, where

ci = ϕ′(vi) for each i. A block in this sequence is a maximal set of consecutive vertices

of the same color. If ϕ is simply-ordered then the vertices in each color class appear in

a single block, so in that case, the number of blocks equals the number of colors.

Let q be a fixed nonnegative integer. We define four families of subgraphs of Kn as

follows.

1. Fq = Fq(n) is the family of all matchings in Kn spanning precisely n− q vertices

(so n− q must be even).

2. Cq = Cq(n) is the family of all cycles of length precisely n− q.

3. Rq = Rq(n) is the family of all 2-regular subgraphs spanning at least n−q vertices.

4. C∗q = C∗q (n) is the family of all cycles of length precisely n− q where n and q are

such that polyCq
(n) ≥ 3.

Our main result is that for Fq, Rq, and Cq there exist optimal polychromatic colorings

which are simply-ordered, or almost simply-ordered (except for Cq if ϕCq(n) = 2). Once

we know there exists an optimal simply-ordered (or nearly simply-ordered) coloring, it

is easy to construct it and to determine a formula for the polychromatic number. Our

main results are the following.

Theorem 1.2.1. For all integers q and n such that q is nonnegative and n−q is positive

and even, there exists an optimal simply-ordered Fq-polychromatic coloring of Kn.
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Theorem 1.2.2. [4] If n ≥ 3, then there exist optimal R0-polychromatic and C0-

polychromatic colorings of Kn which can be obtained from simply-ordered colorings by

recoloring one edge.

Theorem 1.2.3. If n ≥ 4, then there exist optimal R1-polychromatic and C1-polychro-

matic colorings of Kn which can be obtained from simply-ordered colorings by recoloring

two edges.

Theorem 1.2.4. Let q ≥ 2 be an integer. If n ≥ q + 3, then there exists an optimal

simply-ordered Rq-polychromatic coloring of Kn. If n ≥ q + 4, then there exists an

optimal simply-ordered Cq-polychromatic coloring except if n ∈ [2q+ 2, 3q+ 2] and n− q
is odd.

Theorem 1.2.5. Suppose q ≥ 2 and n ≥ 6.

(a) If n− q is even then there exists a Cq-polychromatic 2-coloring of Kn if and only

if n ≥ 3q + 3.

(b) If n − q is odd then there exists a Cq-polychromatic 2-coloring of Kn if and only

if n ≥ 2q + 2.

Theorem 1.2.5 follows from results of Bondy and Erdős [11] and Faudree and Schelp

[23].

The following result, which is needed for the proof of Theorem 1.2.4, may be of

independent interest, so we state it as a theorem:

Theorem 1.2.6. Let n and j be integers with 4 ≤ j ≤ n, and let ϕ be an edge-coloring

of Kn with at least three colors so that every j-cycle gets all colors. Then every cycle of

length at least j gets all colors under ϕ.

The statements about cycles in Theorems 1.2.2–1.2.5 can be used to get an extension

of the result of Faudree and Schelp [23] in the following manner. Let s and t be integers

with t ≥ 2, s ≥ 3, and s ≥ t. The t-polychromatic cyclic Ramsey number PRt(s) is

the smallest integer N ≥ s such that in any t-coloring of the edges of KN there exists

an s-cycle whose edges do not contain all t colors. Note that in the special case t = 2,

this is the classical Ramsey number for cycles, the smallest integer N such that in any

2-coloring of the edges of KN there exists a monochromatic s-cycle. These numbers

were determined for all s by Faudree and Schelp [23], confirming a conjecture of Bondy

and Erdős [11].
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Theorem 1.2.7. Let PRt(s) be the smallest integer n ≥ s ≥ 3 such that in any t-

coloring of the edges of Kn there exists an s-cycle whose edges do not contain all t

colors. If t ≥ 3,

PRt(s) =


s, if 3 < s ≤ 3 · 2t−3

s+ 1, if s ∈ [3 · 2t−3 + 1, 5 · 2t−2 − 2]

s+ 2, if s ∈ [5 · 2t−2 − 1, 5 · 2t−1 − 4]

s+ Round
(

s−2
2t−2

)
, if s ≥ 5 · 2t−1 − 3

where Round
(

s−2
2t−2

)
is the closest integer to s−2

2t−2 , rounding up if it is 1
2 more than an

integer. Note that, as we mention in Section 1.10, Round
(

s−2
2t−2

)
≥ 3 when s ≥ 5·2t−1−3

so PRt(s) ≥ s+ 3 when s ≥ 5 · 2t−1 − 3.

1.3 Definitions

Recall that if ϕ is an ordered edge coloring of Kn with respect to the ordering v1, . . . , vn
of its vertices, we say that ϕ′ is the ϕ-inherited coloring (or just inherited coloring)

if it is the vertex coloring of Kn defined by ϕ′(vi) = ϕ(vivj) for 1 ≤ i < j ≤ n and

ϕ′(vn) = ϕ′(vn−1). Given an ordering of V (Kn), any vertex coloring ϕ′ such that

ϕ′(vn−1) = ϕ′(vn) uniquely determines a corresponding ordered coloring. We define a

color class Mi of color i to be the set of all vertices v where ϕ′(v) = i. In this paper,

we shall always think of the ordered vertices as arranged on a horizontal line with vi
to the left of vj if i < j. We say that an edge vivm, i < m goes from vi to the right

and from vm to the left. If X is a (possibly empty) subset of V (Kn), we say that the

edge-coloring ϕ of Kn is

• X-constant if for any v ∈ X, ϕ(vu) = ϕ(vw) for all u,w ∈ V \X.

• X-ordered if it is X-constant and the vertices of X can be ordered x1, . . . , xm such

that for each i = 1, . . . ,m, ϕ(xixp) = ϕ(xixm) = ϕ(xiw) for all i < p ≤ m and all

w ∈ V \X.

If Z is a nonempty subset of V (Kn) we say ϕ is

• Z-quasi-ordered if

1. ϕ is Z-constant.
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2. Each vertex vi in Z is incident to precisely n−2 edges of one color, which we

call the main color of vi, and one edge vivj of another color, where vj ∈ Z.

If that other color is t, then vj is incident to precisely n− 2 edges of color t.

It is not hard to show that there are only two possibilities for the set Z in a Z-quasi-

ordered coloring (see Figure 1.1):

1. |Z| = 3, the three vertices in Z have different main colors, and there is one edge

in Z of each of these colors.

2. |Z| = 4, with two vertices u, v in Z with one main color, say 1, and two vertices

y, z in Z with another main color, say 2, and ϕ(uv) = ϕ(uy) = ϕ(vz) = 1, ϕ(yz) =

ϕ(yv) = ϕ(zu) = 2.

• quasi-ordered if it is Z-quasi-ordered for some subset Z of V and the restriction

of ϕ to V \ Z is ordered,

• quasi-simply-ordered if it is Z-quasi-ordered for some subset Z of V and the re-

striction of ϕ to V \ Z is simply-ordered and does not use any of the main colors

of Z,

• nearly X-ordered if it is Z-quasi-ordered and the restriction of ϕ to V \ Z is T -

ordered for some (possibly empty) subset T of V \ Z and X = Z ∪ T . (If ϕ is

nearly X-ordered then one or two edges could be recolored to get an X-ordered

coloring.)

It is easy to check that if ϕ is quasi-ordered (quasi-simply-ordered) for some set Z

then if |Z| = 3 one edge can be recolored, and if |Z| = 4, then two edges can be recolored

to get an ordered (simply-ordered) coloring.

To see this, suppose ϕ is Z-quasi-ordered and quasi-ordered (quasi-simply-ordered).

Suppose Z = {x, y, z} with x, y, z having main colors 1,2,3 respectively, and with

ϕ(xy) = 1, ϕ(yz) = 2, ϕ(zx) = 3, as in (1) above (see Figure 1.1A). If we recolor

zx so that ϕ(zx) = 1, then all edges incident with x have color 1, all edges incident

with y, except xy, have color 2, and all edges incident with z, except zx and yz have

color 3, so the modified coloring is ordered (simply-ordered). Suppose Z = {u, v, y, z}
with u and v having main color 1 and y and z having main color 2, with the colors

of the edges in Z as in (2) above (see Figure 1.1B). If we recolor uz and vy so that

ϕ(uz) = ϕ(vy) = 1, then all edges incident with u and v will have color 1 and all edges

incident with y or z, but not incident with u or v have color 2, so the modified coloring

will be ordered (simply-ordered).
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x

y

z

V \ Z
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1

2

3

A

v
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1

2

2

2

1

1

2

2

B

Figure 1.1: Z-quasi-orderings

The maximum monochromatic degree of an edge coloring of Kn is the maximum

number of edges of the same color incident with a single vertex. If the maximum

monochromatic degree of a coloring is d, and the vertex v is incident with d edges of

color t, and the other n− 1− d edges incident with v have color s, we say v is a t-max

vertex and also a (t, s)-max vertex with majority color t and minority color s.

We extend the notion of inherited coloring to quasi-ordered colorings as follows. If

ϕ is a quasi-ordered coloring with ψ the ordered coloring which is the restriction of ϕ

to V \Z, we define ϕ′, the ϕ-inherited coloring, by letting ϕ′(x) equal the main color of

x if x ∈ Z and ϕ(y) = ψ′(y) if y 6∈ Z. We think of the vertices in Z preceding those not

in Z, in the order left to right, and if |Z| = 4 we list two vertices in Z with the same

main color first, then the other two vertices with the same main color.

1.4 Ordering Lemmas

Let ϕ be an ordered edge coloring of Kn with vertex order v1, v2, . . . , vn, colors 1, . . . , k,

and ϕ′ be the inherited coloring of V (Kn). For each t ∈ [k] and j ∈ [n], let Mt be a

color class t of ϕ′ and Mt(j) = Mt∩{v1, v2, . . . , vj}. The next lemma is a key structural

lemma that characterizes ordered polychromatic colorings.

Lemma 1.4.1. Let ϕ : E(Kn)→ [k] be an ordered or quasi-ordered coloring with vertex

order v1, v2 . . . , vn.

Then the following statements hold:

(I) ϕ is Fq-polychromatic ⇐⇒ ∀t ∈ [k] ∃j ∈ [n] such that |Mt(j)| > j+q
2 ,

(II) ϕ is Cq-polychromatic ⇐⇒ ∀t ∈ [k] either
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(a) ∃j ∈ [q + 1, n− 1] such that |Mt(j)| ≥ j+q
2 or

(b) q = 0, ϕ is Z-quasi-ordered and t is the color of some edge in Z or

(c) q = 1, ϕ is Z-quasi-ordered with |Z| = 4 and t is the color of some edge in

Z.

(III) ϕ is Rq-polychromatic ⇐⇒ ∀t ∈ [k] either

(a) ∃j ∈ [n] such that

(i) |Mt(j)| > j+q
2 or

(ii) |Mt(j)| = j+q
2 and j ∈ {2 + q, n− 2} or

(iii) |Mt(j)| = j+q
2 and |Mt(j + 2)| = j+q+2

2 where j ∈ [4 + q, n− 3].

(b) q = 0, ϕ is Z-quasi-ordered and t is the color of some edge in Z

(c) q = 1, ϕ is Z-quasi-ordered with |Z| = 4 and t is the color of some edge in Z

Proof. Note that to prove the lemma, it is sufficient to consider an arbitrary color t and

show for H ∈ {Fq, Cq, Rq} and for each H ∈ H, that the given respective conditions are

equivalent to H containing an edge of color t.

(I) Let j be an index such that |Mt(j)| = mj > (j + q)/2 and let H be a 1-factor.

Let x1, . . . , xmj be the vertices of Mt in order and let y1, . . . , yj−mj be the other vertices

of {v1, v2, . . . , vj} in order. Since j −mj <
j−q
2 and mj − q > j−q

2 , then at least one

edge of H with an endpoint in Mt(j) must go to the right, and thus, have color t.

On the other hand, by way of contradiction, assume that for each j ∈ [n], |Mt(j)| ≤
(j + q)/2. Letting m = |Mt|, we have m ≤ (n+ q)/2. Consider a 1-factor that spans all

vertices except for q vertices in Mt. Let x1, . . . , xm−q be the m − q vertices remaining

from Mt in order and let y1, . . . , yn−m, be the vertices outside of Mt in order. Note

that since m ≤ (j + q)/2, it follows that n − m ≥ m − q since if n − m < m − q

then n < 2m − q and so j > n which is impossible. Now, let H consist of the edges

x1y1, x2y2, . . . , xm−qym−q and a perfect matching on {ym−q+1, . . . , yn−m} (if this set

is non-empty). We will show that yi precedes xi in the order v1, v2, . . . , vn for each

i ∈ [m− q], so H has no edge of color t.

By way of contradiction, assume xi precedes yi for some i ∈ [m − q]. Letting

j = 2i−1+ q, yi cannot be among the first j vertices in the order v1, v2, . . . , vn, because

if it were there would be at least i + q vertices of color t among these j vertices, so a

total of at least 2i+ q > j vertices. Hence

j + q

2
=

2i+ 2q − 1

2
< i+ q ≤ |Mt(j)| ≤

j + q

2
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which is impossible. Hence yi precedes xi for each i and ϕ is not Fq polychromatic.

(II) If t is a color such that (a) holds with strict inequality, the argument in (I)

shows there is an edge of H with color t. If |Mt(j)| = j+q
2 for some j ∈ [q + 1, n − 1]

and every edge in H incident to a vertex in Mt(j) goes to the left then, since each of

these edges has its other vertex not in Mt(j), H contains j−q
2 vertices in Mt(j) and the

same number not in Mt(j). If j−q
2 = 1, then the vertex in Mt(j) is incident with at least

one edge which goes to the right, and if j−q
2 ≥ 2 then H contains a 2-regular subgraph,

which is impossible because an n − q cycle cannot have a 2-regular subgraph on less

than n− q vertices.

If t is such that (b) holds, then note that t must be the main color of a vertex in Z

and that the cycle must contain 2 edges incident with each vertex in Z. Any choice of

these edges will contain an edge of color t since only one edge incident with each vertex

in Z is not the main color of that vertex.

If t is such that (c) holds, then note that t must be the main color of a vertex in Z

and any cycle on n− 1 vertices must contain 2 edges incident with at least three of the

four vertices in Z. Any choice of these edges will contain an edge of color t since only

one edge incident with each vertex in Z is not the main color of that vertex.

On the other hand, suppose that for each j ∈ [q + 1, n − 1], |Mt(j)| = m < j+q
2

and ϕ is not Z-quasi-ordered with t a main color. In particular, when j = n − 2, we

have that |Mt(j)| = m < n+q
2 − 1. Consider a cycle that spans all vertices except

for q vertices in Mt. Let x1, . . . , xm−q be the other m − q vertices in Mt in order

and y1, . . . , yn−m be the vertices outside of Mt in order. Note that if m < j+q
2 , then

n−m > m− q since n−m ≤ m− q =⇒ j > n which is impossible. Consider the cycle

y1x1y2x2 · · · ym−qxm−qym−q+1 · · · yn−my1. Suppose yi is to the right of xi for some i.

Then at most i of the first j = 2i+ q vertices are not in Mt(j), so |Mt(j)| ≥ i+ q = j+q
2 ,

which is impossible. Hence yi and yi+1 are to the left of xi for each 1 ≤ i ≤ m, all edges

of H incident to Mt go to the left, and thus are not of color t.

Observation. If H is a 2-regular subgraph that has no edge of color t, and M is any

subset of Mt, then all edges of H incident to M go to the left, so at most half the

vertices in H are in Mt and if |Mt(j)| = j+q
2 , then of the first j vertices, precisely j − q

are in H, precisely half of these in Mt, and if j − q ≥ 4 then these j − q vertices induce

a 2-regular subgraph of H.

(III) Let j be an index such that (III)(a) (i), (ii), or (iii) holds. Assume first that

(i) holds, i.e., that |Mt(j)| > j+q
2 and let H be a 2-factor. Then the argument given in

(I) shows that at least one edge of H with an endpoint in Mt(j) must go to the right,

and thus, have color t. Assume that (ii) holds. If j = 2 + q, then Mt contains q + 1 of
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the first q + 2 vertices, so H contains a vertex in Mt which has an edge that goes to

the right, so there is an edge of color t in H. If j = n− 2 and H has no edges of color

t, then (by the above observation) the subgraph of H induced by [n− 2] is a 2-regular

graph spanning n − 2 − q vertices. Since {vn−1, vn} do not induce a cycle, H is not a

2-factor, a contradiction. Finally, assume that (iii) holds. If H does not have an edge of

color t, then by the previous observation, H has a 2-regular subgraph spanning j−q+2

vertices, which has a 2-regular subgraph spanning j − q vertices, which is impossible.

If (III)(b) or (III)(c) holds, by an argument identical to those for (II)(b) and (II)(c),

H has an edge of color t.

On the other hand, suppose that none of (III)(a), (III)(b), or (III)(c) hold. We shall

construct a 2-factor that does not have an edge of color t. If |Mt(j)| < j+q
2 for each

j ∈ [q+1, n−1], then there is a cycle with no color t edge as described in (II). If not, let

i1, i2, . . . , ik be the values of j in [4+q, n−3] for which |Mt(j)| = j+q
2 . Since (III)(a)(iii)

is not satisfied, iq+1− iq is at least 4 and even for q = 1, 2, . . . , k−1. As before, suppose

there are m vertices of color t. Let x1, x2, . . . , xm−q be the last m− q of these, in order,

and let y1, y2, . . . , yn−m be the other vertices, in order. Note that since m ≤ n+q
2 we

have m− q ≤ n−q
2 and n−m ≥ n−q

2 . For each q in [1, k− 1], moving left to right within

the interval [iq + 1, iq+1], there are always more y’s than x’s (except an equal number

of each at the end of the interval), since otherwise there would have been another value

of j between iq and iq+1 where |Mt(j)| = j+q
2 . Form an (iq+1 − iq)-cycle by alternately

taking y’s and x’s, starting with the y with the smallest subscript. Also form an i1 − q
cycle using the first i1−q

2 y’s and the same number of x’s, and an n− ik cycle at the end,

first alternating the y’s and x’s, putting any excess y’s at the end.

�

Lemma 1.4.2. Let H ∈ {Fq, Rq, Cq}. If there exists an ordered (quasi-ordered) H-

polychromatic coloring of Kn with k colors, then there exists one which is simply-ordered

(quasi-simply-ordered) with k colors.

Proof. Let V (Kn) = [n] with the natural order. If c′ is a coloring of [n], a block of c′ is a

maximal interval of integers from [n] which all have the same color. So a simply-ordered

k-polychromatic coloring has precisely k blocks. We define a block shift operation as

follows. Assume that t ∈ [k] is a color for which there are at least 2 blocks. Let j(t) = j

be the smallest integer so that Mt(j) > (j + q)/2 if such exists. If there is a block

[m, s] in Mt where m > j, delete this block, then take the color of the last vertex in

the remaining sequence, and add s−m+ 1 more vertices with this color at the end of

the sequence. If each block of color t has its smallest element less than or equal to j,

consider the block B of color t that contains j and consider another block B1 of color
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t that is strictly to the left of B. Form a new coloring by “moving” B1 next to B. We

see that the resulting coloring has at least one less block.

Let c be a ordered (quasi-ordered) Fq-polychromatic coloring of Kn on vertex set [n]

with k colors such that the inherited vertex coloring c′ has the smallest possible number

of blocks. Assume that color t has at least 2 blocks. Let j(t) = j be the smallest integer

so that Mt(j) > (j + q)/2. Such j exists by Lemma 1.4.1(I), and the color of j is t.

Apply the block shifting operation. The condition from part (I) of Lemma 1.4.1 is still

valid for all color classes, so the new coloring is Fq-polychromatic using k colors. This

contradicts the choice of c having the smallest number of blocks.

If c is an ordered (quasi-ordered) Cq-polychromatic coloring of Kn, an argument

very similar to the one above shows if (II)(a), (b), or (c) hold, there exists a simply-

ordered (quasi-simply-ordered) coloring that uses the same number of colors and that

is Cq-polychromatic.

Finally, let c be an ordered (quasi-ordered) Rq-polychromatic coloring of Kn on

vertex set [n] with k colors such that the inherited vertex coloring c′ has the minimum

possible number of blocks. Assume that t ∈ [k] is a color for which there are at least

2 blocks. If (III)(b) or (III)(c) hold, then the block shifting operation gives a coloring

that is still Rq-polychromatic with the same number of colors and fewer blocks.

Thus, by Lemma 1.4.1(III) there exists j such that

(1) |Mt(j)| > (j + q)/2 or

(2) |Mt(2 + q)| = 1 + q or

(3) |Mt(n− 2)| = (n+ q − 2)/2 or

(4) |Mt(n− 1)| = (n+ q − 1)/2 or

(5) |Mt(j)| = (j + q)/2 and |Mt(j + 2)| = (j + q + 2)/2 and 4 + q ≤ j ≤ n− 3.

If (1) holds, then we apply the block shifting operation and observe, as in the case of

Fq, that the resulting coloring is still Rq-polychromatic with the same number of colors

and fewer blocks. The case when (2) applies is similar.

Assume neither (1) nor (2) holds. If (3) holds then, since c′(vn−1) = c′(vn), neither

vn−1 nor vn can have color t. Hence there is another block of color t vertices to the left

of the one containing vn−2, so we can do a block shift operation ot reduce the number

of blocks, a contradiction.

The same argument works if (4) holds.

Finally, assume that none of (1)–(4) holds, but (5) holds. This implies that c′(j) =

c′(j + 2) = t and c′(j + 1) = u 6= t. Now define c′′ by c′′(i) = c′(i) if i 6∈ {j + 1, j +
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2}, c′′(j + 1) = t, and c′′(j + 2) = u. Clearly c′′ has at least one fewer block than c′.

Since j + q + 1 is odd, the only situation where c′′ would not be Rq-polychromatic is

if Mu(j + 1) > j+q+1
2 . However, then |Mu(j − 1)| = |Mu(j + 1)| − 1 > j+q−1

2 , so c′′ is

Rq-polychromatic after all. �

1.5 Proof of Theorem 1.2.1 on Matchings

We prove Theorem 1.2.1. This proof is similar to the proof of Theorem 1 in [4]. Let

k = polyFq
(n) be the polychromatic number for 1-factors spanning n − q vertices in

G = Kn = (V,E). Among all Fq-polychromatic colorings of Kn with k colors we choose

ones that are X-ordered for a subset X (possibly empty) of the largest possible size, and,

of these, choose a coloring c whose restriction to V \X has the largest possible maximum

monochromatic degree. Let v be a vertex of maximum monochromatic degree, r, in c

restricted to G[V \X], let the majority color on the edges incident to v in V \X be color

1. By the maximality of |X|, there is a vertex u in V \X such that c(uv) 6= 1. Assume

c(uv) = 2. If every 1-factor spanning n − q vertices containing uv had another edge

of color 2, then the color of uv could be changed to 1, resulting in a Fq-polychromatic

coloring where v has a larger maximum monochromatic degree in V \X, a contradiction.

Hence, there is a 1-factor F spanning n − q vertices in which uv is the only edge with

color 2 in c.

Let c(vyi) = 1, yi ∈ V \X, i = 1, . . . , r. Note that for each k ∈ [r], yk must be in

F . If not, then F − uv + vyk is a 1-factor spanning n− q vertices with no edge of color

2 (since uv was the unique edge of color 2 in F and vyk is color 1). For each i ∈ [r],

let yiwi be the edge of F containing yi (perhaps wi = yj for some j 6= i). See Figure

1.2. We can get a different 1-factor Fi by replacing the edges uv and yiwi in F with

edges vyi and uwi. Since Fi must have an edge of color 2 and c(vyi) = 1, we must have

c(uwi) = 2 for each i ∈ [r].

If wi ∈ X for some i then, since c is X-constant, c(wiyi) = c(wiu) = 2, so yiwi

and uv are two edges of color 2 in F , a contradiction. So, wi ∈ V \X. Thus c(uv) =

c(uw1) = · · · = c(uwr) = 2, and the monochromatic degree of u in V \ X is at least

r+1, larger than that of v, a contradiction. Hence X = V , c is ordered, and, by Lemma

1.4.2, there exists a simply-ordered Fq-polychromatic coloring cs with k colors. �
A formula for polyFq

(n) appears in Section 1.9.
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Figure 1.2: Maximum polychromatic degree in an Fq-polychromatic coloring

1.6 Cq-polychromatic Numbers 1 and 2

The following theorem is a special case of a theorem of Faudree and Schelp.

Theorem 1.6.1. [23] Let s ≥ 5 be an integer and let c(s) denote the smallest integer n

such that in any 2-coloring of the edges of Kn there is a monochromatic s-cycle. Then

c(s) = 2s− 1 if s is odd and c(s) = 3
2s− 1 if s is even.

Faudree and Schelp actually determined all values of c(r, s), the smallest integer n

such that in any coloring of the edges ofKn with red and blue, there is either a red r-cycle

or a blue s-cycle. Their theorem extended partial results and confirmed conjectures of

Bondy and Erdős [11] and Chartrand and Schuster [13] (who showed c(3) = c(4) = 6).

The coloring of K2s−2 to prove the lower bound for s odd is a copy of Ks−1,s−1 of red

edges with all other edges blue, while for s even it’s a red K s
2
−1,s−1 with all other edges

blue.

Proof of Theorem 1.2.5. By Theorem 1.6.1, if s ≥ 5 is odd then there is a polychromatic

2-coloring ofKn if and only if n ≤ 2s−2 = 2(n−q)−2, so if and only if n ≥ 2q+2. If s ≥ 5

is even then there is a polychromatic 2-coloring if and only if n ≤ 3
2s− 2 = 3

2(n− q)− 2,

so if and only if n ≥ 3q + 4. Hence if n ∈ [2q + 2, 3q + 2] then ϕCq(n) = 1 if n − q
is even and ϕCq(n) = 2 if n − q is odd. The smallest value of n for which there is a

simply-ordered Cq-polychromatic 2-coloring is n = 3q+ 3, so there does not exist one if

n− q is odd and n ≤ 3q + 2. �

We remark that the only values for q ≥ 2 and n such that there is no optimal

simply-ordered Cq(n)-polychromatic coloring of Kn are the ones given in Theorem 1.2.5
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(n ∈ [2q + 2, 3q + 2] and n− q is odd), and q = 2, n = 5 (two monochromatic C5’s is a

coloring of K5 with no monochromatic C3’s).

1.7 Proofs of Theorem 1.2.6 and Lemmas on Long Cycles

We will need some results on the existence of long cycles in bipartite graphs.

Theorem 1.7.1 (Jackson [34]). Let G be a connected bipartite graph with bipartition

V (G) = S ∪ T where |S| = s, |T | = t, and s ≤ t. Let m be the minimum degree of a

vertex in S and p be the minimum degree of a vertex in T . Then G has a cycle with

length at least min{2s, 2(m+ p− 1)}.

Theorem 1.7.2 (Rahman, Kaykobad, Kaykobad [41]). Let G be a connected m-regular

bipartite graph with 4m vertices. Then G has a Hamiltonian cycle.

Lemma 1.7.3. Let B be a bipartite graph with vertex bipartition S, T where |S| = s,

|T | = t, and s ≤ t. Suppose each vertex in T has degree m and each vertex in S has

degree t−m. Then B has a 2s-cycle unless s = t = 2m and B is the disjoint union of

two copies of Km,m.

Proof. Suppose s < t. Summing degrees in S and T gives us s(t−m) = tm, so

m =
st

s+ t
>
st

2t
=
s

2

so B is connected. By Theorem 1.7.1, B has a 2s-cycle, since 2[m + (t − m) − 1] =

2(t−1) ≥ 2s. If s = t, then B is an m-regular graph with 4m vertices. If B is connected

then, by Theorem 1.7.2, it has a 2s-cycle. If B is not connected then clearly it is the

disjoint union of two copies of Km,m. �

We say that a cycle H ′ of length n − q is obtained from a cycle H of length n − q
by a twist of disjoint edges e1 and e2 of H if E(H) \ {e1, e2} ⊆ E(H ′), i.e. we remove

e1, e2 from H and introduce two new edges to make the resulting graph a cycle. Note

that the choice of the two edges to add is unique (due to connectedness), however, both

choices would result in a 2-regular subgraph.

One main difference between the definitions of Cq(n) and Rq(n) is that for the

former, we consider only cycles of length precisely n − q, whereas, in the latter, we

consider all 2-regular subgraphs spanning at least n − q vertices. This is because we

can prove Theorem 1.2.6 for cycles, however, a similar result for 2-regular subgraphs

remains elusive (see Conjecture 1.11.1).
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1.7.1 Proof of Theorem 1.2.6

Suppose not. Let m be an integer in [j, n − 1] such that every m-cycle gets all colors

but there is an (m+ 1)-cycle H = v1v2 · · · vm+1v1 which does not have an edge of color

t. Then c(vivi+2) = t for all i, where the subscripts are read mod (m + 1), because

otherwise, there is an m-cycle with no edge of color t.

Case 1. If m+ 1 is odd, then v1v3v5 · · · vm+1v2v4 · · · vm−2v1 is an m-cycle with at most

two colors, since all edges except possibly vm−2v1 have color t. This is impossible.

Case 2. Suppose m + 1 is even. Then cE = v2v4 · · · vm+1v2 and cO = v1v3 · · · vmv1 are
m+1
2 -cycles with all edges of color t. Suppose H has a chord vjvj+r with color t for some

j and odd integer r in [3,m−2]. Then vj+2vj+4 · · · vj−2vjvj+rvj+r+2 · · · vj+r−4 is a path

with m vertices (missing vj+r−2) and all edges of color t, so there is an m-cycle with at

most two colors, which is impossible. Hence if vi is a vertex in cE and vj is a vertex in

cO, then v(vivj) 6= t.

We claim that for each j and even integer s, c(vjvj+s) = t. If not, then vjvj+svj+s+1 · · ·
vj−3vj−2vj+s−1vj+s−2 · · · vj+1vj is an m-cycle (missing vj−1) with no edge of color t (note

c(vj−2vj+s−1) 6= t because j−2 and j+s−1 have different parities). Hence, the vertices

of cE and cO each induce a complete graph with m+1
2 vertices and all edges of color t,

and there are no other edges of color t in Kn.

If there is a color w, different than t, such that there exist two disjoint edges of color

w, then it is easy to find an m-cycle with two edges of color w and the rest of color t. If

there do not exist two such edges of color w, then all edges of color w are incident to a

single vertex x, so any m-cycle with x incident to two edges of color t does not contain

an edge of color w (these exist since m+1
2 ≥ 3). �

We remark that the statement in Theorem 1.2.6 would be false without the require-

ment that there be at least three colors. If m ≥ 3 is odd, then two vertex disjoint

complete graphs each with m+1
2 vertices and all edges of color t with all edges between

them of color w has an (m+ 1)-cycle with all edges of color w, while every m-cycle has

edges of both colors. This is the reason for the difference between odd and even values

of n− q in Theorem 1.2.5. The statement would also be false with three colors if j = 3

and n = 4.

1.8 Main Lemmas and Proofs of Theorems

We now state and prove the three main lemmas needed for the proofs of Theorems 1.2.2,

1.2.3, and 1.2.4.

Lemma 1.8.1.
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(a) Let H ∈ {Rq(n), C∗q (n)}. Of all optimal H-polychromatic colorings, let ϕ be one

which is X-ordered on a (possibly empty) subset X of V (Kn) of maximum size

and, of these, such that Gm = Kn[Y ] has a vertex v ∈ Y of maximum possible

monochromatic degree d in Gm where Y = V (Kn)\X, |Y | = m, and d < (m−1).

If v is incident in Gm to d edges of color 1 and u ∈ Y is such that ϕ(vu) = 2,

then v is a (1, 2)-max vertex in Gm and u is a (2, t)-max vertex in Gm for some

color t (possibly t = 1).

(b) The same is true if X 6= ∅ and ϕ is nearly X-ordered.

Proof of (a). Let y1, y2, . . . , yd ∈ Y be such that ϕ(vyi) = 1. Let H ∈ C∗q or H ∈ Rq

be such that uv is the only edge of color 2. There must be such an H otherwise we

could change the color of uv from 2 to 1, giving an H-polychromatic coloring with

monochromatic degree greater than d in Gm. Orient the edges of H to get a directed

cycle or 2-regular graph H ′ where # „uv is an arc.

If yi ∈ H ′ then the predecessor wi of yi in H ′ must be such that ϕ(wiu) = 2, because

otherwise we can twist uv and wiyi to get an (n − q)-cycle (if H ∈ C∗q ) or a 2-regular

graph (if H ∈ Rq) with no edge of color 2. Note that wi must be in Y because otherwise,

since ϕ is X-constant, ϕ(wiu) = ϕ(wiyi) = 2, contradicting the assumption that uv is

the only edge in H of color 2.

Suppose yi 6∈ H for some i ∈ [d]. If ϕ(yiu) 6= 2, then J = (H \ {uv}) ∪ {vyi, yiu}
has no edge of color 2. This is impossible if H ∈ Rq, because J is a 2-regular graph

spanning n − q + 1 vertices. If H ∈ C∗q , then J is an (n − q + 1)-cycle with no edge of

color 2, so by Theorem 1.2.6, since the polychromatic number of H is at least 3, there

exists an (n − q)-cycle which is not polychromatic, a contradiction. Hence ϕ(yiu) = 2

in either case.

Thus, for each i ∈ [d], either yi 6∈ H and ϕ(yiu) = 2, or yi ∈ H and ϕ(wiu) = 2

where wi is the predecessor of yi in H ′. That gives us d edges in Gm of color 2 which

are incident to u. Since v has maximum monochromatic degree in Gm, it follows that

v = wi for some i (otherwise uv is a different edge of color 2 incident to u) and it also

follows that no edge in Gm incident to v can have color t where t 6∈ {1, 2}. This is

because if vz were such an edge, as shown above, then either z ∈ H and ϕ(w′u = 2)

where w′ is the predecessor of z in H ′, or z 6∈ H and ϕ(zu) = 2. In either case we get

d+ 1 edges of color 2 in Gm incident to u, a contradiction. So v is a (1, 2)-max vertex

and u is a (2, t)-max vertex for some color t.

The proof of (b) is exactly the same. �

Lemma 1.8.2. Let n ≥ 7 and H ∈ {Rq(n), Cq(n)}. If there does not exist an optimal

H-polychromatic coloring of Kn with maximum monochromatic degree n − 1, then one
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of the following holds.

(a) H = Cq(n), n− q is odd and n ∈ [2q + 2, 3q + 2] (and ϕCq(n) = 2).

(b) q = 0 and there exists an optimal H-polychromatic coloring which is Z-quasi-

ordered with |Z| = 3.

(c) q = 1 and there exists an optimal H-polychromatic coloring which is Z-quasi-

ordered with |Z| = 4.

Proof. First assume that H = Cq(n) and that q ≥ 2 and n are such that ϕCq(n) ≤ 2.

If n − q is even then, by Theorem 1.2.5, there is a Cq-polychromatic 2-coloring if and

only if n ≥ 3q + 3. Since 3q + 3 is the smallest value of n such that the simply-ordered

Cq-polychromatic coloring ϕCq uses two colors, if ϕCq(n) ≤ 2 and n − q is even, then

there is an optimal simply-ordered Cq-polychromatic coloring, and this coloring has a

vertex (in fact q + 1 of them) with monochromatic degree n− 1.

If n − q is odd then, by Theorem 1.2.5, there is a Cq-polychromatic 2-coloring if

and only if n ≥ 2q + 2. Since there is a simply-ordered Cq-polychromatic 2-coloring

if n ≥ 3q + 3, that means that if n − q is odd, ϕCq(n) ≤ 2 and n 6∈ [2q + 2, 3q + 2]

then there is a simply-ordered Cq-polychromatic coloring. Thus if ϕCq(n) ≤ 2, there

is an optimal simply-ordered Cq-polychromatic coloring, and hence one with maximum

monochromatic degree n− 1, unless n− q is odd and n ∈ [2q+ 2, 3q+ 2], which are the

conditions for (a).

Now let H ∈ {Rq(n), C∗q (n)} and suppose there does not exist an optimal H-poly-

chromatic coloring of Kn with maximum monochromatic degree n − 1. Of all optimal

H-polychromatic colorings of Kn, let ϕ be the one with maximum possible monochro-

matic degree d (so d < n− 1).

Claim 1. d > n−1
2 .

Proof. Since there are only two colors at a max vertex, certainly d ≥ n−1
2 . Assume

d = n−1
2 (so n is odd) and that x is a -max vertex where colors i and j appear. Then

x is both an i-max and j-max vertex so, by Lemma 1.8.1, each vertex in V is a -max

vertex.

Suppose there are more than 3 colors, say colors i, j, s, t are all used. If i and j

appear at x then no vertex y can have colors s and t, because there is no color for

xy. So the sets of colors on the vertices is an intersecting family of 2-sets. Since there

are at least 4 colors, the only way this can happen is if some color, say i, appears at

every vertex. Let nij , nis, and nit be the number of (i, j)-max, (i, s)-max, and (i, t)-max

vertices with nij ≤ nis ≤ nit. Then nij <
n
2 (in fact, nij ≤ n

3 ). If x is an (i, j)-max
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vertex and y is an (i, s)-max vertex, then c(xy) = i. Hence the number of edges of color

j incident to x is at most nij − 1 < n−2
2 < d, a contradiction.

Now suppose there are precisely 3 colors. Let A,B,C be the set of all (1, 2)-max,

(2, 3)-max, and (1, 3)-max vertices, respectively, with |A| = a, |B| = b, and |C| = c. All

edges from a vertex in A to a vertex in B have color 2, from B to C have color 3, from

A to C have color 1; internal edges in A have color 1 or 2, in B have color 2 or 3, in C

have color 1 or 3. We clearly cannot have a, b, or c greater than n−1
2 so, without loss of

generality, we can assume a ≤ b ≤ c ≤ n−1
2 and a+ b+ c = n.

Consider the graph F formed by the edges of color 1 or 2. Vertices of F in B or C

have degree n−1
2 , while vertices in A have degree n − 1. Since a ≤ c we have a ≤ n−b

2 .

The internal degree in F of each vertex in B is n−1
2 − a ≥

n−1
2 −

n−b
2 = b−1

2 . As is well

known (Dirac’s theorem), that means there is a Hamiltonian path within B. Similarly

there is one within C. If a ≥ 2, that makes it easy to construct a Hamiltonian cycle in

F . If a = 1 we must have b = c = n−1
2 , so F is two complete graphs of size n+1

2 which

share one vertex. This graph has a spanning 2-regular subgraph if n ≥ 7 (a 3-cycle and

a 4-cycle if n = 7), so no Rq-polychromatic coloring with 3 colors for any q ≥ 0 if n ≥ 7.

If a = 1 and b = c = n−1
2 consider the subgraph of all edges of colors 1 or 3. It

consists of a complete bipartite graph with vertex parts A ∪ B and C, with sizes n+1
2

and n−1
2 , plus internal edges in C. Clearly this graph has an (n − 1)-cycle, but no

Hamiltonian cycle. Hence there can be a Cq-polychromatic 3-coloring only if q = 0.

However, the C0-polychromatic coloring ϕC0 uses at least 4 colors if n ≥ 7, so there is

no optimal one with maximum monochromatic degree n−1
2 .

Claim 2. If q = 0, then, up to relabeling the colors, there is a (1, 2)-max vertex, a

(2, 3)-max vertex and a (3, 1)-max vertex.

Proof. Assume that every -max vertex has majority color either 1 or 2. Then u must

be a (2, 1)-max vertex. This is because by Lemma 1.8.1, if it were a (2, t)-max vertex

for some third color t, and c(uz) = t, then z would have to be a t-max vertex, a

contradiction. Hence, every -max vertex is either a (1, 2)-max vertex or a (2, 1)-max

vertex. Let S be the set of all (1, 2)-max-vertices, T be the set of all (2, 1)-max-vertices,

and W = V \ (S ∪T ). Edges within S and from S to W must have color 1 (because any

minority color edge at a -max vertex is incident to a max vertex of that color), edges

within T and from T to W must have color 2, and all edges between S and T must have

color 1 or 2. If |S| = s and |T | = t and m = n− 1− d, then each vertex in S is adjacent

to m vertices in T by edges of color 2 (and adjacent to t−m vertices in T by edges of

color 1), and each vertex in T is adjacent to m vertices in S by edges of color 1.
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Suppose s < t and consider any edge ab from S to T of color 2. As before, there

is an H ∈ H which contains ab, but no other edges of color 2. Hence H has no edges

from T to W . Since s < t there must be an edge of H with both vertices in T , so it

does have another edge of color 2 after all, a contradiction. The same argument works

if t < s with an edge with color 1. To avoid this, we must have s = t = 2m. If there

is an edge from S to W then, again, H has an internal edge in T , which is impossible.

Hence if H = C∗0 then W = ∅ and every edge has color 1 or 2, which is impossible since

H has at least 3 colors. If H = R0 then the subgraph of H induced by S ∪ T is the

union of cycles. If m = 1 then S ∪ T induces a 4-cycle in H, two edges of each color, so

ab is not the only edge with color 2. If m ≥ 2 then two applications of Hall’s Theorem

gives two disjoint perfect matchings of edges of color 1 between S and T , whose union

is a 2-factor of edges of color 1 spanning S ∪ T , which together with the subgraph of H

induced by W , produces a 2-factor H ′ ∈ R0 with no edge of color 2.

We have shown that u is not a (2, 1)-max vertex, so it must be a (2, 3)-max vertex

for some other color 3. Say ϕ(uz) = 3. Then, by Lemma 1.8.1, z is a 3-max vertex. If

ϕ(vz) = 2, then z would be a 2-max vertex. So z would be both a 2-max and a 3-max

vertex, and so d = n−1
2 , a contradiction to Claim 1. Hence ϕ(vz) = 1, which means z

must be a (3, 1)-max vertex.

Claim 3. If q = 0 then V can be partitioned into sets A,B,D,E where the following

properties hold (see Figure 1.3).

1. All vertices in A are (1, 2)-max-vertices.

2. All vertices in B are (2, 3)-max-vertices.

3. All vertices in D are (3, 1)-max-vertices.

4. No vertex in E is a -max vertex.

5. All edges within A, from A to D, and from A to E have color 1.

6. All edges within B, from B to A, and from B to E have color 2.

7. All edges within D, from D to B, and from D to E have color 3.

8. |A| = |B| = |D| = m = n− 1− d.

Proof. Let A = {x : x is a (1, 2)-max vertex}, B = {x : x is a (2, 3)-max vertex}, D =

{x : x is a (3, 1)-max vertex} and E = V \ (A ∪ B ∪ D). Let x ∈ A. If y ∈ A, then

ϕ(xy) = 1 because if ϕ(xy) = 2, then y would be a 2-max vertex. If y ∈ B, then
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Figure 1.3: A C0-polychromatic and R0-polychromatic coloring.

ϕ(xy) = 2 because that is the only possible color for an edge incident to x and y and,

similarly, if y ∈ D, then ϕ(xy) = 1.

Suppose w is a -max vertex in E. Then the two colors on edges incident to w must

be a subset of {1, 2, 3}, because, otherwise, it would be disjoint from {1, 2}, {2, 3}, or

{1, 3}, so there would be an edge incident to w for which there is no color. Say 1 and

2 are the colors at w. Since w 6∈ A, w is a (2, 1)-max vertex. Let z be a (3, 1)-max

vertex. Then the edge wz must have color 1 so, by Lemma 1.8.1, z is a 1-max vertex,

a contradiction. We have now verified (1)–(4). If x ∈ A and w ∈ E then ϕ(xw) = 1

because if ϕ(xw) = 2 then w would be a 2-max vertex. Similar arguments show that if

y ∈ B then ϕ(yw) = 2 and if y ∈ D then ϕ(yw) = 3. We have now verified (1)–(7).

We have shown that if x is in A then ϕ(xy) = 2 if and only if y ∈ B. That means

|B| = m, and by the same argument |A| = |C| = m as well, completing the proof of

Claim 3.

Claim 4. If H ∈ {C∗0 , R0}, and there exists an optimal H-polychromatic coloring sat-

isfying (1)–(8) with m > 1, then there exists one with m = 1, i.e. one that is Z-quasi-

ordered with |Z| = 3.

Proof. Let A = {ai : i ∈ [m]}, B = {bi : i ∈ [m]}, D = {di : i ∈ [m]}. Define an edge
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coloring γ by

γ(a1bi) = 1 if i > 1

γ(b1di) = 2 if i > 1

γ(d1ai) = 3 if i > 1

γ(uv) = ϕ(uv) for all other u, v ∈ V.

It is easy to check that γ has the structure described above with m = 1. We have

essentially moved m − 1 vertices from each of A, B, and D, to E. Since a1, b1, and c1
each have monochromatic degree n− 2, any 2-factor must have edges of colors 1,2, and

3 under the coloring γ, so if it had all colors under ϕ, it still does under γ. �

We remark that the coloring γ with m = 1 in Claim 4 is Z-quasi-ordered with

|Z| = 3. As we have shown, if there exists such an R0-polychromatic coloring ϕ with

m > 1, then there exists one with m = 1. However, if m > 1 and n > 6, a coloring ϕ

satisfying properties (1)–(8) might not be R0-polychromatic. This is because if E has no

internal edges with color 1, then any 2-factor with a 2m-cycle consisting of alternating

vertices from A and B has no edge with color 1. However, the modified coloring γ (with

m = 1) is an R0-polychromatic coloring because then colors 1, 2, and 3 must appear in

any 2-factor.

Claim 5. If q ≥ 1 then, up to relabelling colors, every max vertex is a (1, 2)-max vertex

or a (2, 1)-max vertex.

Proof. As before, we assume v is a (1, 2)-max vertex, that ϕ(uv) = 2 and that H ∈ Rq

(or H ∈ C∗q ) is such that uv is the only edge of color 2. We know that u is a (2, t)-max

vertex for some color t. By way of contradiction, suppose u is a (2, 3)-max vertex. Then

we have the configuration of Figure 1.3, with |A| = |B| = |D| = m. If uw is also an edge

of H then w ∈ D, since otherwise ϕ(uw) = 2. Let Q be the set of vertices not in H (so

|Q| = q > 0) and suppose p ∈ Q but p 6∈ B. Then we can replace u in H with p to get

a 2-regular graph (cycle) with no edge of color 2. Hence Q ⊆ B. Orient the edges of H

to get a directed graph H ′ where # „uv is an arc. Since |B \Q| < |D|, and every vertex in

D appears in H ′, for some d ∈ D and e 6∈ B,
#„

de is an arc in H ′. Since ϕ(du) = 3 and

ϕ(ev) = 1, when you twist uv and de you get a 2-regular graph (cycle) with no edge of

color 2, a contradiction. Hence every -max vertex is a (1, 2)-max vertex or (2, 1)-max

vertex.
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Claim 6. If q = 1 then, up to relabelling colors, the vertex set can be partitioned into

S, T,W such that

1. S is the set of all (1, 2)-max vertices

2. T is the set of all (2, 1)-max vertices

3. W has no max vertices

4. All internal edges in S and all edges from S to W have color 1; all internal edges

in T and all edges from T to W have color 2

5. The edges of color 1 between S and T form two disjoint copies of Km,m, as do

the edges of color 2 (so |S| = |T | = 2m, where n − m − 1 is the maximum

monochromatic degree)

Proof. By Claim 5, if q ≥ 1, then every max vertex is a (1, 2) or (2, 1)-max vertex.

Let S be the set of all (1, 2)-max vertices and T be the set of all (2, 1)-max vertices,

with |S| = s and |T | = t, s ≤ t, and let m be the maximum monochromatic degree. Let

W = V (G) \ (S ∪ T ) and let B be the complete bipartite graph with vertex bipartition

S, T and edges colored as they are in G. So each vertex of B in S is incident with m

edges of color 2 and t−m edges of color 1, and each vertex of B in T is incident with

m edges of color 1 and s −m edges of color 2. All edges of G within S and between

S and W have color 1 (otherwise there would be a (2, 1)-max vertex not in T ) and all

edges within T and between T and W have color 2.

We note that the edges of color 1 in B satisfy the conditions of Lemma 1.7.3, so B

has a 2s-cycle of edges of color 1 unless s = t = 2m and the edges of color 1 (and those

of color 2) form two disjoint copies of Km,m.

Again, let v ∈ S and u ∈ T be such that c(uv) = 2, and let H ∈ C∗q (n) (or

H ∈ Rq(n)), q ≥ 1, be such that uv is the only edge of color 2. If uw is also an edge

of H then w ∈ S, because otherwise c(uw) = 2. Hence if z is a vertex of G not in H

then z ∈ T , because otherwise we can replace u with z in H to get H ′′ ∈ C∗q (n) (or

H ′′ ∈ Rq(n)) with no edge of color 2. That means that if Q is the set of vertices of G

not in H, then Q ⊆ T . Since uv is the only edge in H with color 2, each vertex in T \Q
is adjacent in H to two vertices in S, so there are 2(t − q) edges in H between S and

T , where q = |Q| ≥ t− s.
Let M be the subgraph of H remaining when the 2(t− q) edges in H between S and

T have been removed (along with any remaining isolated vertices). If q = t − s then,

since every edge in H incident to a vertex in T goes to S, either H is a 2s-cycle and

W = ∅ (if H ∈ C∗q (n)) or the union of the components of H which have a vertex in T is
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a 2-regular graph spanning S and s = t− q vertices in T . In either case, since s < t, we

can replace the components of H which intersect T with the 2s-cycle of edges of color

1 promised by Theorem 1.7.1, to get an H ′′ ∈ C∗q (n) (or H ′′ ∈ Rq(n)) with no edge of

color 2. Hence q > t− s.
Each component of M is a path with at least one edge, both endpoints in S with

interior points in S or W . If a component has j > 2 vertices in S, we split it into j − 1

paths which each have their endpoints in S with all interior points in W . If a vertex of

S is an interior point in a component then it is an endpoint of two of these paths. The

number of such paths is 2(s−(t−q))
2 = s− (t− q) > 0.

We denote these paths by P1, P2, . . . , Pr where r = s−(t−q). For each i in [r] where

Pi has more than 2 vertices, we remove the edges containing the two endpoints (which

are both in S), leaving a path Wi whose vertices are all in W (the union of the vertices

in all the Wi’s is equal to W ).

We will now show that there cannot be a 2s-cycle of edges of color 1 in B. Suppose

J is such a 2s-cycle. Let R = {x1, x2, . . . , xr} be the set of any r vertices in T ∩ V (J)

and let K be the subgraph of J obtained by removing the r vertices in R. For each

i ∈ [r] let yia and yib be the vertices adjacent to xi in J . Both are in S and possibly

yib = yja if i 6= j. Now, for each i ∈ [r], attach Wi to yia and yib (Ri can be oriented

either way). More precisely, if Wi is the path wi1wi2 . . . wid in W , we attach it to K by

adding the edges yiawi1 and yibwid, while if Wi is empty (meaning the ith component

of M has only two vertices, so none in W ) we add the edge yiayib. The resulting graph

H ′′ has no edge of color 2, since we constructed it using only edges from J and edges

from H within S ∪W . Since V (H ′′) = V (G) \ R, H ′′ has n − q vertices. Clearly H ′′

is 2-regular and, if H is a cycle, so is H ′′ (if H is not a cycle, H ′′ will still be a cycle

if H does not have any components completely contained in W ). Thus H ′′ ∈ Rq(n)

(H ′′ ∈ C∗q (n)) and has no edge of color 2, a contradiction. Hence there is no 2s-cycle of

edges of color 1 in B.

By Lemma 1.7.3 it follows that s = t = 2m with the edges of color 1 forming two

vertex-disjoint copies of Km,m. (If these two disjoint copies have vertex sets S1∪T1 and

S2∪T2, where S1∪S2 = S and T1∪T2 = T , then S1∪T2 and S2∪T1 are the vertex sets

which induce two disjoint copies of Km,m with edges of color 2.) We have now verified

that properties (1)–(5) hold if q ≥ 1. We will now show we get a contradiction if q ≥ 2.

Assume q ≥ 2. Let T1 and T2 be the sets of vertices in T in the two s-cycles of

edges of color 1 (|T1| = |T2| = s
2 , T1 ∪ T2 = T ). Recall that v ∈ S, u ∈ T , and uv

is the only edge of H of color 2. The subgraph M of H defined earlier still consists

of paths which can be split into paths P1, P2, . . . , Pq (since r = s − t + q = q) with

endpoints in S and interior points in W . Let J be the union of the two s-cycles of edges
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of color 1. Choose the subset Q of size q so that it has at least one vertex in each of

T1 and T2, say Q = {x1, x2, . . . , xq} where x1 ∈ T1 and xq ∈ T2. Again, let K be the

subgraph obtained from J by removing the vertices in Q. Then, as before, the paths

W1,W2, . . . ,Wq (perhaps some of them empty) can be stitched into K. We attach Wi

to yia and yib if i ∈ [2, q− 1] (just adding the edge yiayib if Wi is empty). We attach W1

to y1a and yqb and Wq to y1b and yqa, creating an (n − q)-cycle if no component of H

is contained in W , and a 2-regular graph spanning n− q vertices if H has a component

contained in W . There is no edge of color 2 in this graph contradicting the assumption

that if q ≥ 2 and H ∈ {Rq(n), C∗q (n)} then the maximum monochromatic degree in all

optimal H-polychromatic colorings is less than n− 1.

Claim 7. If H ∈ {C∗1 , R1} and there exists an H-polychromatic coloring satisfying

(1)–(5) in Claim 6 with m > 1, then there exists one with m = 1, i.e. one that is

Z-quasi-ordered with |Z| = 4.

Proof. Assume there is an R1-polychromatic coloring (C∗1 -polychromatic coloring) c

with q = 1 satisfying (1) – (5) of Claim 6 where s = t > 2. Let v and x be vertices in S

and u and y be vertices in T such that c(vu) = c(xy) = 2 and c(xu) = c(vy) = 1. Let

c′ be the coloring obtained from c by recoloring the following edges (perhaps they are

recolored the same color they had under c):

c′(vp) = 1 for all p ∈ T \ {u, y}
c′(xp) = 1 for all p ∈ T \ {u, y}
c′(zu) = 2 for all z ∈ S \ {v, x}
c′(zy) = 2 for all z ∈ S \ {v, x}
c′(zp) = 3 for all p ∈ T \ {u, y} and z ∈ S \ {v, x}

Since all but one edge incident to v and x have color 1 under c′, certainly every

(n − 1)-cycle contains an edge of color 1. Similarly for u and y and edges of color 2.

Every edge which was recolored had color 1 or 2 under c, so c′ must be a polychromatic

coloring with the same number of colors. It has the desired form with |S| = |T | = 2, so,

in fact, is Z-quasi-ordered with Z = {v, x, u, y}. �

We remark that a coloring c satisfying properties (1)–(5) of Claim 6 with s = t > 2

is actually not R1-polychromatic. To see this, let S1 ∪ T1 and S2 ∪ T2 be the vertex

sets of the two copies of Km,m of edges of color 1 (S1 ∪ S2 = S, T1 ∪ T2 = T ) where

v ∈ S1, u ∈ T2 and uv is the only edge of color 2 in H ∈ R1. The subgraph M of H in

the proof of Claim 6 has only one component (since s−(t−q) = 1), a path dw1w2 . . . wez

where d ∈ S1, z ∈ T1, and {w1, w2, . . . , we} ⊆ W . To construct a 2-regular subgraph

with no edges of color 2 spanning n − 1 vertices, remove a vertex x in T2 from one of
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the two s-cycles of edges of color 1. If ya and yb are the two vertices in S2 adjacent to

x in the s-cycle, attach the path w1w2 . . . we to ya and yb to get a 2-regular subgraph

with no edge of color 2 spanning n − 1 vertices. However, this construction cannot be

done when m = 1, so in this case you do get an R1-polychromatic coloring.

Lemma 1.8.3. Let H ∈ {Rq(n), C∗q (n)}.

(a) Suppose for some X 6= ∅ there exists an optimal X-ordered H-polychromatic col-

oring of Kn. Then there is one which is ordered.

(b) Suppose there exists an optimal Z-quasi-ordered H-polychromatic coloring of Kn.

Then there is one which is quasi-ordered

Proof. Among all such H-polychromatic colorings we assume ϕ is one such that

(a) if ϕ is X-ordered then X has maximum possible size

(b) if ϕ is Z-quasi-ordered then the restriction of ϕ to V (Kn) \Z is T -ordered for the

largest possible subset T of V (Kn) \ Z. In this case, we let X = Z ∪ T so ϕ is

nearly X-ordered (one or two edges could be recolored to make it X-ordered).

For both (a) and (b) we assume that ϕ is such that its restriction to Gm = Kn[Y ] has

a vertex v of maximum possible monochromatic degree in Gm, where Y = V (Kn) \X,

|Y | = m, and the degree of v in Gm is d < m−1 (if d = m−1 then |X| is not maximal).

Since v has maximum monochromatic degree d in Gm, by Lemma 1.8.1 it is a (1, 2)-

max vertex in Gm, for some colors 1 and 2, and if u ∈ Y is such that ϕ(uv) = 2, then

u is a (2, t)-max vertex for some color t (perhaps t = 1).

As before, let y1, y2, . . . , yd be vertices in Y such that c(vyi) = 1 for i = 1, 2, . . . , d.

As before, let H ∈ H be such that uv is its only edge with color 2. Let H ′ be a cyclic

orientation of the edges of H such that # „uv is an arc, and let wi be the predecessor of yi
in H ′ for i = 1, 2, . . . , d. As shown before, c(wiv) = 2 for i = 1, 2, . . . , d.

Suppose there is an edge of H which has one vertex in X and one in Y . Then

there exist w ∈ Y and x ∈ X such that #  „wx ∈ H ′. Certainly w is not the predecessor

in H ′ of any yi in Y . Since ϕ is X-constant and uv is the only edge of color 2 in H,

ϕ(xv) = ϕ(xw) 6= 2. Now twist xw, uv in H. Since ϕ(xv) 6= 2, we must have ϕ(wu) = 2,

so u is incident in Gm to at least d + 1 vertices of color 2, a contradiction. Hence H

cannot have an edge with one vertex in X and one in Y .

Now suppose x ∈ X and x 6∈ H. If ϕ(xv) = ϕ(xu) 6= 2 then H \ {uv} ∪ {ux, xv} is

an (n − q + 1)-cycle with no edge of color 2, which is clearly impossible if H = Rq(n),

and is impossible if H = C∗q (n) by Theorem 1.2.6. Hence ϕ(xv) = ϕ(xu) = 2 for each

x ∈ X.
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Since u is a (2, t)-max vertex for some color t 6= 2, we can repeat the above argument

with u in place of v. That shows that ϕ(xv) = ϕ(xu) = t for each x ∈ X, which is

clearly impossible.

It remains to consider the possibility that H = Rq(n) and X is spanned by a union

of cycles in H. Suppose xz is an edge of H contained in X. Then we can twist xz

and uv to get another subgraph in Rq and, unless either x or z has main color 2, this

subgraph has no edge of color 2. Hence at least half the vertices in X have main color

2 (and more than half would if H had an odd component in X).

The above argument can be repeated with u in place of v. If u is a (2, t)-max vertex

then that would show that at least half the vertices in X have main color t 6= 2. So

each vertex in X has main color 2 or t. Since ϕ is X-ordered or nearly X-ordered, some

vertex x ∈ X has monochromatic degree n − 2 or n − 1 and the main color of x must

be 2 or t. Assume it is 2. Then every cycle containing x has an edge with color 2,

contradicting the assumption that H has only one edge with color 2. Similarly, we get

a contradiction if the main color of x is t. We have shown there is no vertex v with

monochromatic degree d < m− 1, so ϕ is ordered or quasi-ordered. �

Now there is not much left to do to prove Theorems 1.2.2, 1.2.3, and 1.2.4.

1.8.1 Proof of Theorem 1.2.4

Theorem 1.2.5 takes care of the case of Cq-polychromatic colorings when q ≥ 2 and

n ∈ [2q + 2, 3q + 2]. The smallest value of n for which there is a simply-ordered Cq-

polychromatic 2-coloring is n = 3q + 3 (the coloring ϕCq in Section 1.9.3). Hence

if q ≥ 2 and ϕCq ≤ 2 then there exists an optimal simply-ordered Cq-polychromatic

coloring except if n − q is odd and n ∈ [2q + 2, 3q + 2], or if q = 2 and n = 5 (the

coloring of K5 with two monochromatic 5-cycles has no monochromatic 3-cycle). So

we need only consider H ∈ {Rq(n), C∗q (n)} (when q ≥ 2). Since none of (a), (b), or

(c) of Lemma 1.8.2 are satisfied, there exists an optimal H-polychromatic coloring with

maximum monochromatic degree n−1. That means it is X-ordered, for some nonempty

set X, so by Lemma 1.8.3 there exists an optimal H-polychromatic coloring which is

ordered, and then, by Lemma 1.4.2, one which is simply-ordered. �

1.8.2 Proof of Theorem 1.2.2

If H ∈ {R0(n), C0(n)} then, by Lemma 1.8.2, if there does not exist an optimal H-

polychromatic coloring with maximum monochromatic degree n − 1, then there exists

one which is Z-quasi-ordered with |Z| = 3. Hence by Lemma 1.8.3(b), there exists one

which is quasi-ordered, and then, by Lemma 1.4.2, one which is quasi-simply-ordered



1.8. MAIN LEMMAS AND PROOFS OF THEOREMS 27

with |Z| = 3. Such a coloring is one candidate to be an optimal H-polychromatic

coloring.

If there does exist an optimal H-polychromatic coloring with maximum monochro-

matic degree n − 1, then, since this coloring is X-ordered with |X| = 1, by Lemma

1.8.3(a), there is an optimal ordered H-polychromatic coloring, and by Lemma 1.4.2,

one which is simply-ordered. This is the other candidate to be an optimal H-polychro-

matic coloring.

For each of these candidates, the conditions in Lemma 1.4.1 ((II)(a) for C0-poly-

chromatic and (III)(a) for R0-polychromatic) provide lower bounds for the sizes of the

successive coloring classes. For fixed n we clearly will get the maximum number of col-

ors if we make the successive classes as small as possible, while satisfying the required

inequalities, so it is a simple matter to determine which candidate is better.

If H = R0(n), the sizes of the successive color classes for simply-ordered are 1,

1, 3, 6, 12, 24, . . . (|Mt| >
∑t−1

i=1 |Mi| if t ≥ 3), while for quasi-simply-ordered the sizes

are 1, 1, 1, 4, 8, 16, . . . (with |Z| = 3 the inequality is required only for t ≥ 4, since the

main colors in Z will automatically appear in every 2-factor). Hence the quasi-simply-

ordered coloring is always at least as good. For example, if n− 29, then both will use 5

colors (color class sizes 1, 1, 3, 6, 18 for simply-ordered and 1, 1, 1, 4, 22 for quasi-simply-

ordered), while if n = 35 the simply-ordered coloring will still use 5 colors (color class

sizes 1, 1, 3, 6, 24), while the quasi-simply-ordered coloring will use 6 colors (color class

sizes 1, 1, 1, 4, 8, 20). A formula for polyR0
(n) appears in Section 1.9.

The situtation is similar if H = C0: The color class sizes for the simply-ordered

candidate are 1, 1, 2, 4, 8, 16, . . . and for the quasi-simply-ordered candidate are 1, 1, 1, 3,

6, 12, . . .. Again, the quasi-simply-ordered candidate is at least as good for any value of

n. A formula for polyC0
(n) appears in Section 1.9.

We have already remarked that these optimal quasi-simply-orderedH-polychromatic

colorings can be obtained by recoloring one edge of a simply-ordered coloring (which is

not H-polychromatic).

�

1.8.3 Proof of Theorem 1.2.3

As in the proof of Theorem 1.2.2, there are two candidates to be an optimal H-poly-

chromatic coloring wiht H ∈ {R1(n), C1(n)}, one of them simply-ordered and the other

quasi-simply-ordered with |Z| = 4. If H = R1(n), the successive color class sizes are

2, 4, 8, 16, 32, . . . for simply-ordered and 2, 2, 6, 12, 24, . . . for quasi-simply-ordered, so the

quasi-simply-ordered coloring is at least as good. If H = C1(n), the color class sizes

are 2, 3, 6, 12, 24, . . . for simply-ordered and 2, 2, 5, 10, 20, . . . for quasi-simply-ordered, so
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again the quasi-simply-ordered coloring is at least as good. We have already remarked

that these optimal quasi-simply-ordered colorings with |Z| = 4 can be obtained from a

(non-H-polychromatic) simply-ordered coloring by recoloring two edges. Formulae for

polyR1
(n) and polyC1

(n) appear in Section 1.9. �

1.9 Optimal Polychromatic Colorings

The seven following colorings are all optimal Fq, Rq, or Cq polychromatic colorings for

various values of q and n. Each of them is simply-ordered or quasi-simply-ordered. We

describe the color classes for each, and give a formula for the polychromatic number k

in terms of q and n.

1.9.1 Fq-polychromatic coloring ϕFq of E(Kn) (even n− q ≥ 2).

Let q be nonnegative and n− q positive and even with k a positive integer such that

(q + 1)(2k − 1) ≤ n < (q + 1)(2k+1 − 1). (1.9.1)

Let ϕFq be the simply-ordered edge k-coloring with colors 1, 2, . . . , k with the inherited

vertex k-coloring ϕ′Fq
having successive color classesM1,M2, . . . ,Mk, moving left to right

such that |Mi| = 2i−1(q+ 1) if i < k and |Mk| = n−
∑k−1

i=1 |Mi| = n− (2k−1− 1)(q+ 1).

We have k ≤ log2
n+q+1
q+1 < k + 1 so polyFq

(n) = k = blog2
n+q+1
q+1 c.

1.9.2 Rq-polychromatic coloring ϕRq (q ≥ 2)

If q ≥ 2, n ≥ q+3 and n and k are such that (1.9.1) is satisfied, we let ϕRq = ϕFq (same

color classes), giving us the same formula for k in terms of n.

1.9.3 Cq-polychromatic coloring ϕCq (q ≥ 2).

If q ≥ 2, n ≥ q + 3 and

(2k − 1)q + 2k−1 < n ≤ (2k+1 − 1)q + 2k (1.9.2)

let ϕCq be the simply-ordered edge k-coloring with colors 1, 2, . . . , k and the inherited

vertex k coloring ϕ′Cq
with successive color classes M1,M2, . . . ,Mk of sizes given by:
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|M1| = q + 1,

|Mi| = 2i−1q + 2i−2 if i ∈ [2, k− 1],

|Mk| = n−
k−1∑
i=1

|Mi| = n− 2k−1q − 2k−2.

From equation (1.9.2) we get polyCq
(n) = k = blog2

2(n+q−1)
2q+1 c.

1.9.4 R0-polychromatic coloring ϕR0 (q = 0).

If n ≥ 3 and 2k−1 − 1 ≤ n < 2k−1 let ϕR0 be the quasi-simply-ordered coloring with

|X| = 3 and color class sizes |M1| = |M2| = 1 and |M3| = n − 2 if 3 ≤ n ≤ 6, and if

n ≥ 7:

|M1| = |M2| = |M3| = 1,

|Mi| = 2i−2 if i ∈ [4, k− 1],

|Mk| = n−
k∑

i=1

−1 |Mi| = n− 2k−2 + 1.

From this, we get polyR0
(n) = k = 1 + blog2(n+ 1)c where n ≥ 3.

1.9.5 C0-polychromatic coloring ϕC0 (q = 0)

If n ≥ 3 and 3 · 2k−3 < n ≤ 3 · 2k−2 let ϕC0 be the quasi-simply-ordered coloring with

|X| = 3 and color class sizes |M1| = |M2| = 1 and |M3| = n − 2 if 3 ≤ n ≤ 6, and if

n ≥ 7:

|M1| = |M2| = |M3| = 1,

|Mi| = 3 · 2i−4 if i ∈ [4, k− 1],

|Mk| = n−
k−1∑
i=1

|Mi| = n− 3 · 2k−4.

From this, we get polyC0
(n) = k = blog2

8(n−1)
3 c where n ≥ 4.
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1.9.6 R1-polychromatic coloring ϕR1 (q = 1)

If n ≥ 4 and 3 · 2k−1 − 2 ≤ n < 3 · 2k − 2 let ϕR1 be the quasi-simply-ordered coloring

with |X| = 4 and color class sizes |M1| = 2 and |M2| = n−2 if 4 ≤ n ≤ 9, and if n ≥ 10:

|M1| = |M − 2| = 2,

|Mi| = 3 · 2i−2 if i ∈ [3, k− 1],

|Mk| = n−
k−1∑
i=1

|Mi| = n− 3 · 2k−2 + 2.

From this, we get polyR1
(n) = k = blog2

2(n+2)
3 c where n ≥ 4.

1.9.7 C1-polychromatic coloring ϕC1 (q = 1)

If n ≥ 4 and 5 · 2k−2 ≤ n < 5 · 2k−1 let ϕC1 be the quasi-simply-ordered coloring with

|X| = 4 and color class sizes |M1| = |M2| = 2 and |M3| = n− 4 if 4 ≤ n ≤ 9 and change

every edge of color 3 to color 2, and if n ≥ 10:

|M1| = |M2| = 2,

|Mi| = 5 · 2i−3 if i ∈ [3, k− 1],

|Mk| = n−
k−1∑
i=1

|Mi| = n− 5 · 2k−3 + 1.

From this, we get polyC1
(n) = k = blog2

4n
5 c where n ≥ 4.

1.10 Polychromatic cyclic Ramsey numbers

Let s, t, and j be integers with t ≥ 2, s ≥ 3, s ≥ t, and 1 ≤ j ≤ t−1. We define CR(s, t, j)

to be the smallest integer n such that in any t-coloring of the edges of Kn there exists an

s-cycle that uses at most j colors. Erdős and Gyárfás [19] defined a related function for

cliques instead of cycles. So CR(s, t, 1) is the classical t-color Ramsey number for s-cycles

and CR(s, 2, 1) = c(s), the function in Theorem 1.6.1. While it may be difficult to say

much about the function CR(s, t, j) in general, if j = t−1 we get CR(s, t, t−1) = PRt(s)

the smallest integer n ≥ s such that in any t-coloring of Kn there exists an s-cycle that

does not contain all t colors. This is the function of Theorem 1.2.7 if t ≥ 3, while
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PR2(s) = c(s).

1.10.1 Proof of Theorem 1.2.7

Let q ≥ 0, s ≥ 3, and n be integers with n = q+s. Assume q ≥ 2. By Theorem 1.2.4 and

the properties of the coloring ϕCq (see Section 1.9.3), there exists a Cq-polychromatic

t-coloring of Kn if and only if

q + s = n ≥ (2t − 1)q + 2t−1 + 1,

s ≥ (2t − 2)q + 2t−1 + 1,

q ≤ s− 2t−1 − 1

2t − 2
=

s− 2

2t − 2
− 1

2

Since q ≥ 2, we want to choose s so that the right-hand side of the last inequality is at

least 2, so

s− 2 ≥ 5

2
(2t − 2) = 5 · 2t−1 − 5

s ≥ 5 · 2t−1 − 3

So if s ≥ 5 · 2t−1 − 3, then the smallest n for which there does not exist a Cq-

polychromatic k-coloring is n = q + s where q > s−2
2t−2 −

1
2 , so n = s +

⌊
s−2
2t−2 + 1

2

⌋
=

s+ Round
(

s−2
2t−2

)
.

We note that if s ≥ 5·2t−1−3 then Round
(

s−2
2t−2

)
≥ Round

(
5
2

)
= 3, so PRt(s) ≥ s+3

if s ≥ 5 · 2t−1 − 3.

Now we assume that PRt(s) = s + 2. So s + 2 is the smallest value of n for which

in any t-coloring of the edges of Kn there is an s-cycle which does not have all colors,

which means there is a polychromatic t-coloring when n = s+ 1. Since q = 1 in such a

coloring, by Theorem 1.2.3 and the properties of the coloring ϕC1 , n ≥ 5 · 2t−2. Hence

if s ∈ [5 · 2t−2 − 1, 5 · 2t−1 − 4], then PRt(s) = s+ 2.

Now we assume that PRt(s) = s+ 1. So n− s is the largest value of n such that in

any t-coloring of Kn, every s-cycle gets all colors. So q = n − s = 0 and, by Theorem

1.2.2 and properties of the coloring ϕC0 , n ≥ 3 · 2t−3 + 1.

Finally, since the t-coloring ϕC0 requires n ≥ 3 · 2t−3 + 1 where t ≥ 4 if n ≤ 3 · 2t−3

and t ≥ 4, then in any t-coloring of Kn, some Hamiltonian cycle will not get all colors,

so PRt(s) = s if 3 < s ≤ 3 · 2t−3. �
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1.11 Conjectures

We mentioned that we have been unable to prove a result for 2-regular graphs analogous

to Theorem 1.2.6 for cycles. In fact, we think it holds even for two colors, except for a

few cases with j and n small.

Conjecture 1.11.1. Let n ≥ 6 and j be integers such that 3 ≤ j < n, and if j = 5 then

n ≥ 9, and let ϕ be an edge-coloring of Kn so that every 2-regular subgraph spanning j

vertices gets all colors. Then every 2-regular subgraph spanning at least j vertices gets

all colors under ϕ.

This does not hold for j = 3, n = 4, and 3 colors (proper edge 3-coloring) or for

n = 5, j = 3, and 2 colors (two monochromatic K5s).

We can extend the notions of Z-quasi-ordered, quasi-ordered, and quasi-simply-

ordered to sets Z of larger size, allowing a main color to have degree less than n − 2.

Let q ≥ 0 and r ≥ 1 be integers such that q ≤ 2r − 3. Hence 2r−2
q+1 ≥ 1, and we let

k =
⌊
2r−2
q+1

⌋
+ 1 ≥ 2 and z = k(q + 1). Let Z be a set of z vertices. We define a seed-

coloring ϕ with k colors on the edges of the complete graph Kz with vertex set Z as

follows. Partition the z vertices into k sets S1, S2, . . . , Sk of size q+1. For j = 1, 2, . . . , k,

all edges within Sj have color j, all edges between Si and Sj (i 6= j) have color i or

j, and for each j and each vertex v in Sj , v is incident to
⌈
(q+1)(k−1)

2

⌉
or
⌊
(q+1)(k−1)

2

⌋
edges with colors other than j (so, within round off, half of the edges from each vertex

in Sj to vertices in other parts have color j). We say each vertex in Sj has main color

j.

If n ≥ z, we get a Z-quasi-ordered coloring c of Kn which is an extension of the

coloring ϕ on Z if for each j and each v ∈ Sj , c(vy) = j for each y ∈ V (Kn) \ Z. If c

is Z-quasi-ordered then it is quasi-ordered if c restricted to V (Kn) \ Z is ordered, and

quasi-simply-ordered if c restricted to V (Kn) \ Z is simply-ordered.

If r > 0 and q ≥ 0 are integers, we let R(n, r, q) be the set of all r-regular subgraphs

of Kn spanning precisely n − q vertices (assume n − q is even if r is odd, so the set

is nonempty), and if r ≥ 2 let C (n, r, q) be the set of all such subgraphs which are

connected.

Since k−1 =
⌊
2r−2
q+1

⌋
≤ 2r−2

q+1 , we have r ≥ (q+1)(k−1)
2 +1 >

⌈
(q+1)(k−1)

2

⌉
. So if H is in

R(n, r, q) or C (n, r, q), then H contains an edge with each of the k colors on edges within

Z, because it contains at least one vertex in Sj for each j, and fewer than r of the edges

incident to this vertex have colors other than j. We can get an R(n, r, q)-polychromatic

or C (n, r, q)-polychromatic quasi-simply-ordered coloring of Kn with m > k colors by

making the color classes Mt on the vertices in V (Kn) \ Z for t = k + 1, k + 2, . . . ,m
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sufficiently large. If H ∈ R(n, r, q), for each t ∈ [k + 1,m] we will need the size of Mt

to be at least q + 1 more than the sum of the sizes of all previous color classes, while if

H ∈ C (n, r, q) we will need the size of Mt to be at least q more than the sum of the sizes

of all previous classes, with an extra vertex in Mm. To try to get optimal polychromatic

colorings we make the sizes of these color classes as small as possible, yet satisfying

these conditions.

For example, if r = 2 and q = 0 then k =
⌊
2r−2
q+1

⌋
+ 1 = 3 and z = k(q + 1) = 3, and

we get the quasi-simply-ordered colorings ϕR0 and ϕC0 with |Z| = 3 of Theorem 1.2.2.

If r = 2 and q = 1 then k = 2 and z = 4, and we get the colorings ϕR1 and ϕC1 with

|Z| = 4 of Theorem 1.2.3.

Example 1 (r = 3, q = 0, so k = 5, z = 5). Let ϕ be the edge coloring obtained where

{v1, v2, v3, v4, v5} = Z such that vivi+1 and vivi+2 (mod 5) have color i. The edges

connecting vi to the remaining vertices in V (Kn) \ Z are color i. See Figure 1.4.

v1

v2

v3 v4

v5

1

1

2 2

3

3 4

4

5

5
2

3 4

5

1

V (Kn) \ Z

Figure 1.4: The coloring for Example 1.

Example 2 (r = 3, q = 3, k = 2, z = 8). Z has two color classes, 4 vertices in each.

The complete bipartite graph between these two sets of vertices could have two vertex

disjoint copies of K2,2 of one color and also of the other color, or could have an 8-cycle

of each color.

Example 3 (r = 4, q = 2, k = 3, z = 9). So S1, S2, S3 each have size q + 1 = 3. One

way to color the edges between parts is for j = 1, 2, 3, each vertex in Sj is incident
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with 2 edges of color j to vertices in Sj+1 and 1 edge of color j to a vertex in Sj−1 (so

is incident with one edge of color j + 1 and two edges of color j − 1, cyclically). The

smallest value of n for which this seed can generate a quasi-simply-ordered R(n, 4, 2)-

polychromatic coloring with 5-colors is n = 45 (the 4th and 5th color classes would have

sizes 9 + 2 + 1 = 12 and 21 + 2 + 1 = 24 respectively), while to get a simply-ordered

R(n, 4, 2)-polychromatic coloring with 5 colors you would need n ≥ 69 (color class sizes

3, 3, 9, 18, 36 works).

Conjecture 1.11.2. Let r ≥ 1 and q ≥ 0 be integers such that q ≤ 2r − 3. Let

k =
⌊
2r−2
q+1

⌋
+ 1 ≥ 2 and z = k(q + 1). If n ≥ z and n − q is even if r is odd,

then there exist optimal quasi-simply-ordered R(n, r, q) and C (n, r, q)-polychromatic

colorings with seed Z with parameters r, q, k, z.

It is not hard to check that each of these quasi-simply-ordered colorings does at least

as well as a simply-ordered coloring for those values of r and q. The only quesiton is

whether some other coloring does better and the conjecture says no.

What if 2r−2
q+1 < 1? Then k =

⌊
2r−2
q+1

⌋
+ 1 = 1, which seems to be saying no seed Z

exists with at least 2 colors.

Conjecture 1.11.3. Let r ≥ 1 and q ≥ 0 be integers with q ≥ 2r−2, n ≥ q+r+1, and

not both r and n− q are odd. Then there exists an optimal simply-ordered R(n, r, q)-

polychromatic coloring of Kn. If r ≥ 2 then there exists a C (n, r, q)-polychromatic

coloring of Kn (unless r = 2, q ≥ 2, n− q is odd, and n ∈ [2q + 2, 3q + 1]).

Theorem 1.2.1 says this conjecture is true for r = 1. Theorem 1.2.4 says it is true

for C (n, r, q) for r = 2 and that it would be true for R(n, r, q) for r = 2 if Theorem

1.2.6 held for 2-regular graphs.
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2.1 Background

The n-cube, which we denote by Qn, is the graph whose vertex set Vn = V (Qn) is the

set of all binary n-tuples, with two vertices adjacent if and only if they differ in precisely

one coordinate (so Hamming distance 1). Let [n] = {1, 2, . . . , n}. We sometimes denote

a vertex (x1, x2, . . . , xn) of Qn by the subset S of [n] such that i ∈ S if and only if xi = 1.

So if n = 4, then ∅ denotes (0000), and {1, 3} or 13, denotes (1010) and {{1} , {1, 3}}
(or {1, 13}) denotes {(1000) , (1010)}. The weight of a vertex is the number of 1s. For

each positive integer d less than or equal to n, Qn has
(
n
d

)
2n−d subgraphs which are

isomorphic to Qd (d coordinates can vary, while n− d coordinates are fixed).

Let H and K be subsets of V (Qd) (we call H and K configurations in Qd). We say

K is an exact copy of H if there is an automorphism of Qd which sends H to K. For

example, {∅, 12} is an exact copy of {2, 123} in Q3, but {2, 13} is not (the vertices are

distance 3 apart). So if K is an exact copy of H then they induce isomorphic subgraphs

of Qd, but the converse may not hold.

Let d and n be positive integers with d ≤ n, let H be a configuration in Qd and

let S be a subset of Vn. We let G(H, d, n, S) denote the number of sub-d-cubes R of

Qn in which S ∩ R is an exact copy of H, g(H, d, n, S) = G(H,d,n,S)

(nd)2n−d
, Gmax(H, d, n) =

maxS⊆Vn G(H, d, n, S) and

λ(H, d, n) =
Gmax(H, d, n)(

n
d

)
2n−d

= max
S⊆Vn

g(H, d, n, S).

Note that λ(H, d, n) is the average of 2n densities g(H, d, n − 1, Sj), each of them the

fraction of sub-d-cubes R in a sub-(n− 1)-cube of Qn in which R ∩ Sj is an exact copy

of H, where Sj is the intersection of a maximizing subset S of Vn with one of the 2n

sub-(n − 1)-cubes. Hence λ(H, d, n) is the average of 2n densities, each of them less

than or equal to λ(H, d, n− 1), which means λ(H, d, n) is a nonincreasing function of n,

so we can define the d-cube density λ(H, d) of H by

λ(H, d) = lim
n→∞

λ(H, d, n).

So λ(H, d) is the limit as n goes to infinity of the maximum fraction, over all S ⊆ Vn,

of “good” sub-d-cubes – those whose intersection with S is an exact copy of H.

As far as we know, our paper [26], which is the basis for this chapter’s material,

was the first to define the notion of d-cube density. There have been many papers

on Turán and Ramsey type problems in the hypercube. There has been extensive

research on the maximum fraction of edges of Qn one can take with no cycle of various
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lengths [16,18,24,42] and a few papers on vertex Turán problems in Qn [35–37]. There

has also been extensive work on which monochromatic cycles must appear in any edge-

coloring of a large hypercube with a fixed number of colors [3,5,16,17], and a few results

on which vertex structures must appear [29]. Leader and Long [38] showed that if the

average degree in a subgraph of Qn is at least d, then there must be a geodesic of length

d, and their geodesic is what we call a perfect path.

In [2, 28, 39] results were obtained on the polychromatic number of Qd in Qn, the

maximum number of colors in an edge coloring of a large Qn such that every sub-d-cube

gets all colors.

We wanted to investigate a different extremal problem in the hypercube: the max-

imum density of a small structure within a subgraph of a large hypercube. Instead

of using graph isomorphism to determine if two substructures are the same, it seemed

to capture the essesnce of a hypecube better if the small structure was “rigid” within

a sub-d-cube, and that is what motivated our definition of d-cube density. It is not

quite the same thing as “isomorphism preserving Hamming distance” either. If H =

{(0000), (1100), (1010), (0110)} and K = {(0000), (1100), (1010), (1001)} then H and K

are each 4 isolated vertices, each pair of them Hamming distance 2 apart, but K is not

an exact copy of H (H embeds in a 3-cube and K does not).

There are strong connections between d-cube density and inducibility of a graph,

a notion of extensive study over the past few years. Given graphs G and H, with

|V (G)| = n and |V (H)| = k, the density of H in G, denoted dH(G), is defined by

dH(G) =
# of induced copies of H in G(

n
k

)
Pippenger and Golumbic [40] defined the inducibility I(H) of H by

I(H) = lim
n→∞

max
|V (G)|=n

dH(G).

Within the past few years, I(H) has been determined for all graphs H with 4 vertices

except the path P4 [20, 21,33].

Given a graph H, a natural candidate for maximizing the number of induced copies

of H is a balanced blow-up of H. Equipartition the n vertices into |V (H)| = k classes

corresponding to the vertices of H and add all possible edges between each pair of parts

corresponding to an edge of H. Any k-subset which has one vertex in each part will

induce a copy of H, so I(H) ≥ k!
kk

for any graph H with k vertices. Iterating blow-ups

of H within each part improves the bound to I(H) ≥ k!
kk−k .

A natural generalization of I(H) is to restrict the host graph G to a particular class
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of graphs. Let G be a class of graphs. The inducibility of H in G is defined by

I(H,G ) = lim
n→∞

max
|V (G)|=n,G∈G

dH(G),

if the limit exists (if G is all graphs the limit always exists). Let T be the family of all

triangle-free graphs. Hatami et al. [32] and Grzesik [31] used flag algebras to show that

I(C5,T ) = 5!
55

= 24
625 , achieving the non-iterated blow-up lower bound.

In [15], Choi, Lidicky, and Pfender consider the inducibility of oriented graphs (di-

rected graphs with no 2-cycles). For the directed path
# „

Pk they conjectured that

I(
# „

Pk) =
k!

(k + 1)k−1 − 1

the lower bound provided by an iterated blow-up of the directed cycle
#        „

Ck+1. To eliminate

the possibility of iterated blow-ups, they considered the family
#„T of oriented graphs

with no transitive tournament on three vertices (so every 3-cycle is directed). They

conjectured that

I(
# „

Pk,
#„T ) =

k!

(k + 1)k−1

Again, the lower bound is provided by a blow-up of
#        „

Ck+1 (no iterations). They used

flag algebras to prove their conjecture for k = 4:

I(
# „

P4,
#„T ) =

4!

53
=

24

125
.

It has been shown [8,12] that if H is a complete bipartite graph then the graph that

maximizes I(H) can be chosen to be complete bipartite. There are also a few results

on inducibility of 3-graphs [22].

A different kind of blow-up can be used to produce a lower bound for λ(H, d) for

any configuration H in Qd (Proposition 2.3.1). As with inducibility, d-cube density is

exceedingly difficult to determine for all but a few configurations H. We have some

results in Chapter 3 for certain configurations H when d is equal to 2, 3, or 4, and for a

couple of infinite families with d any integer greater than 2. If H is two opposite vertices

in Q2, clearly λ(H, 2) = 1 (let S be all vertices in Qn of even weight). A more interesting

example is when H is two adjacent vertices in Q2. Then it is not hard to show that

λ(H, 2) = 1
2 . (For the lower bound, take S to be all vertices in Qn such that the sum of

coordinates 1 through bn2 c is even. Any sub-2-cube which has one varying coordinate

in and one out of
[
1, bn2 c

]
will have an exact copy of H.) A single vertex seems to be

one of the hard ones. Let Wd be the configuration in Qd consisting of a single vertex.
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We have been unable to determine λ(Wd, d) for any d ≥ 2. Letting S be the set of all

vertices in Qn with weight a multiple of 3 shows that λ(W2, 2) ≥ 2
3 . Using flag algebras

Rahil Baber [6] has shown that λ(W2, 2) ≤ .686. We conjecture that λ(W2, 2) = 2
3 and

that for sufficiently large d, one cannot do better than choosing vertices randomly with

uniform probability
(
1
2

)d
, which gives d-cube density 1

e in the limit as d goes to infinity.

This has the same flavor as a special case of the edge-statistics conjecture of Alon et.

al. [1] which says (though formulated differently) that the limit as k goes to infinity of

the inducibility of a graph with k vertices and one edge is 1
e .

In this chapter, we determine the d-cube density of a “perfect” path with 4 vertices

in Q3 and a “perfect” 8-cycle in Q4.

2.2 Results

Let Pd+1 denote the vertex set of a path in Qd with d+ 1 vertices whose endpoints are

Hamming distance d apart. We call Pd+1 a perfect path. For example, {∅, 1, 12, 123, 1234}
and {13, 3, ∅, 4, 24} are both perfect paths inQ4, while {13, 3, ∅, 4, 14} is not, even though

these 5 vertices do induce a graph-theoretic path.

Let C2d denote the vertex set of a 2d-cycle in Qd where all d opposite pairs of

vertices are distance d apart. We call C2d a perfect 2d-cycle. The only graph-theoretic

induced 6 cycle in Q3 is perfect, but while {∅, 1, 12, 123, 1234, 234, 34, 4} is a perfect

8-cycle, {∅, 1, 12, 123, 23, 234, 34, 4} and {∅, 1, 12, 123, 1234, 134, 34, 3} induce 8-cycles in

Q4 which are not perfect (and are not exact copies of each other).

The main results in this paper are the two following theorems.

Theorem 2.2.1. λ(C8, 4) = 3
32

Theorem 2.2.2. λ(P4, 3) = 3
8

These are special cases of the following conjectures.

Conjecture 2.2.3. λ(C2d, d) = d!
dd

for all d ≥ 4.

Conjecture 2.2.4. λ(Pd+1, d) = d!
(d+1)d−1 for all d ≥ 3.

Note that the formulas in these two conjectures are the same as in the conjectures

about the inducibility of directed cycles and paths in oriented graphs. Conjecture 2.2.3 is

significant because, as we show in Proposition 2.3.1, λ(H, d) ≥ d!
dd

for all configurations

H in Qd for all d ≥ 1. So Conjecture 2.2.3 says that the perfect 2d-cycle has the

minimum possible d-cube density for all d ≥ 4, and Theorem 2.2.1 says the conjecture

is correct for d = 4. To show d!
dd

is also an upper bound when d = 4 we needed to find
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the inducibility of two vertex disjoint edges in the family of all bipartite graphs. To

prove both Theorem 2.2.1 and Theorem 2.2.2, we show that the d-cube density we are

trying to determine is equal to the fraction of d-sequences of an n-set which have certain

properties and we then solve the sequence problems.

2.3 Constructions

Consider the following construction which gives a lower bound for the d-cube density

of any configuration H in Qd, for any d. Recall that [n] denotes the set {1, 2, . . . , n}.
We partition [n] into A1, A2, . . . , Ad and let B be the set of binary d-tuples representing

H. For each vertex v = (v1, v2, . . . , vn) in Qn we let v(Ai) equal 0 or 1 according to

v(Ai) ≡
∑
j∈Ai

vj mod 2. We put v in S if and only if the d-tuple (v(Aj))j∈[d] is in B. For

example, for a perfect 8-cycle in Q4, we could have B = {0000, 1000, 1100, 1110, 1111,

0111, 0011, 0001} and v would be in S if and only if its number of 1s in coordinates

in A1, A2, A3, A4 is either even,even,even,even, or odd,even,even,even, and so on. We

observe that if a sub-d-cube has one coordinate in each of A1, A2, . . . , Ad, then it will

contain an exact copy of H. By taking an equipartition of [n], we find the following

lower bound:

Proposition 2.3.1. λ(H, d) ≥ d!

dd
for all configurations H in Qd for all positive integers

d.

We call a set S constructed in this way a blow-up of H. This notion of blow-up

is clearly related to, but not the same as, the blow-up of a graph G (for one thing a

blow-up of a graph has one part for each vertex, whereas a blow up of a configuration in

Qd has d parts). In Q2, the only configuration H for which equality holds in Proposition

2.3.1 is two adjacent vertices. The smallest upper bound for the 3-cube density of any

of the 22 possible configurations in Q3 as computed by Rahil Baber using flag algebras

is .3048 (when H is two adjacent vertices in Q3, see Chapter 3), so it is highly unlikely

that any configuration in Q3 has 3-cube density equal to 2
9 , the lower bound provided by

Proposition 2.3.1. Of the 238 possible configurations in Q4, only three have flag algebra

calculated upper bound 4-cube densities less than .1: one is the perfect 8-cycle, for which

Theorem 2.2.1 says the exact value is 3
32 = .09375 and another is a graph theoretic, but

not perfect, induced 8-cycle, with flag algebra 4-cube density upper bound .094205. So

there seems to be something special about the perfect 8-cycle.

For the perfect path Pd+1 in Qd it turns out that a blow-up of C2d+2 gives a better

lower bound than that provided by Proposition 2.3.1:
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Proposition 2.3.2. λ(Pd+1, d) ≥ d!

(d+ 1)d−1
for all positive integers d.

Proof. Let S be a blow up of C2d+2. That is we partition [n] into A1, A2, . . . , Ad+1 and

let B be the set of binary (d+ 1)-tuples in a copy of C2d+2.

For each vertex v = (v1, . . . , vn) in Qn, we let v(Ai) equal 1 or 0 according to

v(Ai) ≡
∑
j∈Ai

vj mod 2. We put v in S if and only if the (d + 1)-tuple (v(Aj))j∈[d+1]

is in B. If a sub-d-cube has one coordinate in each of d parts (and none in the other),

then it will contain an exact copy of Pd+1. For example, if d = 3 and B = {0000, 1000,

1100, 1110, 1111, 0111, 0011, 0001} and we select a sub-3-cube with one coordinate in

each of A1, A2, and A4 (so each coordinate in A3 is fixed) then if v(A3) = 0 the 4-tuples

0001, 0000, 1000, 1100 in B give us an exact copy of P4 in any such sub-3-cube, while if

v(A3) = 1, then 1110, 1111, 0111, 0011 does the same. If it is an equipartition, selecting

the coordinates of the sub-d-cube one-by-one shows that

λ(Pd+1, d) ≥ (d+ 1)!

(d+ 1)d
=

d!

(d+ 1)d−1
.

�

2.4 Local density, perfect cycles, and sequences

Let H be a configuration in Qd and S be a subset of Vn. For each vertex v in S, we

let Gv(in)(H, d, n, S) be the number of sub-d-cubes R of Qn containing v in which S ∩R
is an exact copy of H, Gmax(in)(H, d, n) = maxv∈S Gv(in)(H, d, n, S) where the max is

over all v and S such that v ∈ S and λlocal(in)(H, d, n) =
Gmax(in)(H,d,n)

(nd)
. Since there

are
(
n
d

)
sub-d-cubes which contain v, λlocal(in)(H, d, n) is the maximum fraction, over

all v ∈ S ⊆ Vn, of sub-d-cubes containing v which have an exact copy of H. As with

λ(H, d, n), a simple averaging argument shows that λlocal(in)(H, d, n) is a nonincreasing

function of n, so we define λlocal(in)(H, d) by

λlocal(in)(H, d) = lim
n→∞

λlocal(in)(H, d, n).

For each vertex v 6∈ S, a similar procedure defines the functions Gv(out)(H, d, n, S),

Gmax(out)(H, d, n), λlocal(out)(H, d, n), and λlocal(out)(H, d). This means λlocal(in)(H, d)

and λlocal(out)(H, d) are the limit as n goes to infinity of the maximum fraction of sub-d-

cubes ofQn containing a particular vertex v which have an exact copy ofH, for v ∈ S and

v 6∈ S respectively. Finally, we define λlocal(H, d) as max{λlocal(in)(H, d), λlocal(out)(H, d)}.
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Since the global density cannot be more than the maximum local density, we must have

λ(H, d) ≤ λlocal(H, d).

For most configurations H for which we have been able to determine λ(H, d), our

procedure has been to prove an upper bound for λlocal(H, d) which matches the density

of a construction.

If H is a configuration in Qd we let H denote V (Qd) \H. Clearly λ(H, d) = λ(H, d)

and λlocal(in)(H, d) = λlocal(out)(H, d). If H is self-complementary in Qd, i.e. H is an

exact copy of H, then λlocal(in)(H, d) = λlocal(out)(H, d) = λlocal(out)(H, d) = λlocal(H, d).

Each of the six distinct configurations in Q3 with 4 vertices is self-complementary,

including P4 (see Figure 2.1A), and C8 is self-complementary in Q4 (see Figure 2.1B).

The complements of the two non-perfect induced 8-cycles in Q4 are not 8-cycles.

A: P4 and its complement in Q3. B: C8 and its complement in Q4.

Figure 2.1: Two self complementary configurations.

We now pose and solve a different maximization problem whose answer we will show

to be λ(C8, 4). Let S be a set of size n and d a positive integer. Let M(d, n) be the set of

all sequences of d distinct elements of S. Given a sequence w in M(d, n) an end-segment

of w is the set of the first j elements of w or the set of the last j elements of w, for

some j in [1, d). We say a subset A(d, n) of M(d, n) has Property U if the two following

conditions are satisfied:

1. For each pair of sequences w and x in A(d, n), if L is an end-segment of w and all

elements of L are in the sequence x, then L is an end-segment of x with elements

in the same order as in w (so if abc is the beginning of w, and a, b, and c all appear

in x, then either x begins abc or ends cba).

2. A sequence and its reversal are not both in A(d, n) (unless d = 1).

For example, if x and w are sequences in a set A(5, n) with Property U and if x is

abcde, then w cannot be abceg (or its reversal), abegh (or its reversal), or ghiaj (or its

reversal), but could be fbdcg (or its reversal) or edgbh (or its reversal). It is easy to see

that no two sequences in A(d, n) can have the same set of d elements.
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Let T (d, n) denote the maximum size of a family A(d, n) with Property U .

Proposition 2.4.1. Gmax(in)(C2d, d, n) = T (d, n) for all d ≥ 2.

Proof. Without loss of generality, we can assume that ∅ is a vertex where the local

d-cube density of C2d is a maximum and that G∅(in)(C2d, d, n, S) = Gmax(in)(C2d, d, n).

Now we construct a set A(d, n) of d-sequences.

The sequence a1, a2, . . . , ad or its reversal is in A(d, n) if and only if the sub-d-cube

R containing ∅ where a1, a2, . . . , ad are the nonconstant coordinates contains an exact

copy of C2d, say S ∩R = {∅, a1, a1a2, a1a2a3, . . . , a1a2 · · · ak, a2a3 · · · ad, . . . , ad−1ad, ad}.
Note that S ∩R contains ∅ and all the end-segments of the sequence a1, a2, . . . , ad.

We claim that A(d, n) has Property U . Suppose it does not, say x = a1a2 . . . ad
and w = b1b2 . . . bd are sequences in A(d, n) with b1b2 · · · bj an end-segment in w all of

whose elements are in x but not an end-segment in x. Then {b1, b2, . . . , bj} is a subset

of {a1, a2, . . . , ad}, so is another vertex in S which is in the sub-d-cube containing the

perfect 2d-cycle {∅, a1, a1a2, . . . , ad−1ad, ad}, a contradiction because this sub-d-cube has

an exact copy of C2d.

Similarly, by reversing the procedure, a family of sequences with Property U and

size T (d, n) can be used to construct T (d, n) sub-d-cubes containing ∅ with exact copies

of C2d. �

We define t(d, n) to be T (d,n)

(nd)
. Hence t(d, n) =

Gmax(in)(C2d,d,n)

(nd)
= λlocal(in)(C2d, d, n)

is a nonincreasing function of n, so we can define t(d) by setting t(d) = limn→∞ t(d, n) =

limn→∞ λlocal(in)(C2d, d, n) = λlocal(in)(C2d, d). Hence we have

Proposition 2.4.2. For all d ≥ 2

λlocal(in)(C2d, d) = t(d).

We now calculate t(3).

Let A(3, n) be a set of 3-sequences with Property U . No symbol can appear at the

end in one sequence and in the middle of another, so we let D be the set of symbols

which appear at the beginning or end and E be the set of symbols which appear in the

middle. If |D| = m and |E| = p ≤ n−m, then, since a sequence and its reversal cannot

both be in A(3, n), the total number of sequences is at most
(
m
2

)
p ≤ (n−m)m(m−1)

2 which

is maximized when m =
⌈
2n
3

⌉
. Hence,

λlocal(in)(C6, 3) = t(3) ≤ lim
n→∞

(
2
3n
)2 (1

3n
)

2
(
n
3

) =
4

9
.
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We can construct a set A(3, n) with Property U by partitioning [n] into sets D and

E with |D| =
⌈
2n
3

⌉
and |E| =

⌊
n
3

⌋
by putting one of the sequences abc and cba in

M(3, n) into A(3, n) if and only if a, c ∈ D and b ∈ E. Since |A(3, n)| =
(|D|2 )|E|

(n3)
, we

have t(3) ≥ limn→∞
|A(3,n)|

(n3)
= limn→∞

1
2( 2n

3 )
2 n
3

n3

6

= 4
9 . Hence

λlocal(in)(C6, 3) = t(3) =
4

9
.

To find λlocal(out)(C6, 3), we just note that if S is the set of all vertices in Qn with

weight not divisible by 3, then every Q3 containing ∅ has an exact copy of the 6-cycle

(the unique vertex with weight 3 in each Q3 containing ∅ is also not in the 6-cycle), so

λlocal(out)(C6, 3) = 1. Using this same set S, it is not hard to show that λ(C6, 3) ≥ 1
3

(any Q3 whose smallest weight vertex is a multiple of 3 has an exact copy of C6). We

have been unable to show equality, but Baber’s flag algebra upper bound of .3333333336

would seem to imply equality should hold.

To prove Theorem 2.2.1, we will prove a result about inducibility in bipartite graphs.

Theorem 2.4.3. Let G be a bipartite graph with n vertices. Then the limit as n goes

to infinity of the maximum fraction of sets of 4 vertices of G which induce two disjoint

edges is equal to 3
32 . The unique optimizing graph when n is divisible by 4 is two disjoint

copies of Kn
4
,n
4

.

Proof. Suppose M,P is a bipartition of V (G) where |M | = m and |P | = p. Let

{u1, u2, . . . , um} and {v1, v2, . . . , vp} be the vertices of M and P with respective de-

grees r1, r2, . . . , rm and c1, c2, . . . , cp. For i 6= j, let ti,j denote the number of vertices in

P which are adjacent to both ui and uj . Hence the total number of “good” sets of 4

vertices is

N =
∑
i<j

(ri − ti,j)(rj − ti,j)

where the sum is over all pairs i, j such that 1 ≤ i < j ≤ m. To get an upper bound for

this we first get an upper bound on the sum S of all pairs of the factors in the products:

S =
∑
i<j

[(ri − ti,j) + (rj − ti,j)] = (m− 1)
m∑
i=1

ri − 2

p∑
i=1

(
cj
2

)
.

This is because each ri appears in a sum with each rj where j 6= i and because
∑m

i=1 ti,j =(cj
2

)
since each pair of edges adjacent to vj is counted precisely once in the sum.
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Let w =
∑m

i=1 ri =
∑p

j=1 cj . Then

S = (m− 1)

m∑
i=1

ri −
p∑

j=1

c2j +

p∑
j=1

cj

= mw −
p∑

j=1

c2j

≤ mw −
p∑

j=1

(
w

p

)2

= mw − w2

p

where the inequality is by Cauchy-Schwartz.

The function f(w) = mw − w2

p is maximized when w = mp
2 , so S ≤ m2p

4 .

Now, we return to our consideration of N =
∑

i<j(ri − ti,j)(rj − ti,j).
The product (ri − ti,j)(rj − ti,j) is at most

(p
2

)2
, achieved when ri = rj = p

2 and

ti,j = 0, in which case (ri − ti,j) + (rj − ti,j) = p. Since S ≤ m2p
4 , to maximize N the

two factors in each product should be equal, which reduces the problem to maximizing

(m2 )∑
k=1

x2k where xk ∈
[
0,
p

2

]
and

∑
xk =

m2p

8
.

To do this, we clearly want each xk to be equal to either 0 or p
2 , so we want to have m2

4

products of
(p
2

)2
, with all other products being 0 ·0. Hence N ≤ m2p2

16 . Since m+p = n,

this is maximized when m = p = n
2 , so N ≤ n4

256 . Equality can hold only if n is divisible

by 4 and there are n2

16 summands, each of them equal to
(
n
4

)2
, so G must be two disjoint

copies of Kn
4
,n
4
.

This gives a fraction of “good” sets of 4 vertices as

n4

256(
n
4

) =
n3

(n− 1)(n− 2)(n− 3)
· 3

32
.

�

Interestingly, two disjoint copies of Kn
4
,n
4

is also the graph which maximizes, among

all graphs with n vertices, the number of induced subgraphs with 4 vertices consisting

of two edges which share a vertex and an isolated vertex [20].
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We remark that the inducibility of 2K2 (among all host graphs G, not just bipartite)

is 3
8 , the maximum density achieved when G = 2Kn

2
[20]. Stated differently, Theorem

2.4.3 says that if m + p = n then the m × p (0,1)-matrix with the maximum number

of 2 × 2 submatrices which have precisely two 1s in different rows and columns is an

equi-blow-up of I2.

Proof of Theorem 2.2.1. By Proposition 2.3.1, λ(C8, 4) ≥ 3
32 . Since C8 is self-comple-

mentary in Q4, λ(C8, 4) ≤ λlocal(C8, 4) = λlocal(in)(C8, 4) = t(4) the last equality by

Proposition 2.4.2. So to complete the proof we just need to show that t(4) ≤ 3
32 .

Let A(4, n) be a maximum size set of 4-sequences with Property U with elements

from [n]. Let A = {i ∈ [n] : i is the first or last element in a sequence in A(4, n)} and

let B = [n]\A. We construct a bipartite graph G with vertex bipartition A,B. If a ∈ A
and b ∈ B, then [a, b] is an edge of G if and only if a and b are consecutive elements in

some sequence in A(4, n) (so some sequence begins ab or ends ba).

Suppose a1b1b2a2 is a sequence in A(4, n). Then [a1, b1] and [a2, b2] are edges of G.

Suppose a1b2 (or a2b1) is also an edge. Then a1b2 is an end-segment of some sequence

in A(4, n), which is impossible because {a1, b2} ⊆ {a1, b1, b2, a2}, but a1b2 is not an

end-segment in a1b1b2a2. Hence the size T (4, n) of A(4, n) is at most the number of sets

of 4 vertices in G which induce two disjoint edges, and by Theorem 2.4.3,

t(4) = lim
n→∞

T (4, n)(
n
4

) ≤ 3

32
.

�

So Conjecture 2.2.3 is true for d = 4. Zongchen Chen [14] has shown that t(d) = d!
dd

for all d ≥ 4, so we know that λlocal(in)(C2d, d) = t(d) = d!
dd

for all d ≥ 4. However, we

have been unable to show that λlocal(out)(C2d, d) = λlocal(in)(C2d, d) if d ≥ 5 (our proof

for d = 4 used the fact that C8 is self-complementary in Q4), which would complete a

proof of Conjecture 3.

We have seen that equality in Conjecture 2.2.3 does not hold for d = 3 (since

λ(C6, 3) ≥ 1
3).

2.5 Perfect Paths

To determine the d-cube density of P4 in Q3, as mentioned in Section 2.4, our procedure

is to prove an upper bound for λlocal(P4, 3) which matches the density of the construction

given in Proposition 2.3.2. We will show
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Proposition 2.5.1. λlocal(P4, 3) ≤ 3

8
.

Let S be a set of size n and d a positive integer. Let P (d, n) be the family of pairs

of sequences x = {x1;x2} of elements in S, which we call d-bisequences, one sequence

of length k and the other of length d− k, where k ∈ [0, d], and where the d elements in

the pair of sequences {x1, x2} are distinct. Given a bisequence x = {x1;x2} in P (d, n)

an initial segment of x is the set of the first j elements of either xi where j ∈ [1, d] and

i = 1 or 2. We also say these j elements are an initial segment in xi. We say that a

subset R(d, n) of P (d, n) has Property V if the following conditions are satisfied:

1. For each pair of bisequences w = {w1;w2} and x = {x1;x2} in R(d, n), if L is an

initial segment of w and all elements of L are in x, then L is an initial segment of

x1 or x2, with elements in the same order as in w.

2. The bisequences {x1;x2} and {x2;x1} are not both in R(d, n).

Let B(d, n) denote the maximum size of a family of bisequences R(d, n) with property

V and let b(d, n) = B(d,n)

(nd)
.

Proposition 2.5.2. λlocal(in)(Pd+1, d, n) = b(d, n).

Proof. Without loss of generality, we can assume that ∅ ∈ S and ∅ is a vertex where

the local d-cube density of Pd+1 is a maximum. Now we construct a set R(d, n) of

bisequences.

The bisequence {(a1, a2, . . . , aj); (b1, b2, . . . , bi)} or its reversal is inR(d, n) if and only

if the intersection of S and the sub-d-cube containing ∅ where a1, a2, . . . , aj , b1, b2, . . . , bi
are the nonconstant coordinates is precisely equal to {a1a2 · · · aj , a1a2 · · · aj−1, . . . , a1, ∅,
b1, b1b2, . . . , b1b2 · · · bi}. Note that i or j could be equal to 0. We claim that R(d, n) has

property V .

Suppose it does not, say w and x are bisequences in R(d, n) with a1a2 · · · al an initial-

segment of w all of whose elements are in x but not an initial-segment (or not in the

same order as in w) of either of the sequences in x = {(b1, b2, . . . , bj); (c1, c2, . . . , ci)}.
Then {∅, a1, a1a2, . . . , a1a2 · · · al} is a path contained in the sub-d-cube containing the

path {b1b2 · · · bj , b1b2 · · · bj−1, . . . , b1, ∅, c1, c1c2, . . . , c1c2 · · · ci}, but is not a subpath, a

contradiction.

Similarly, reversing the procedure, a family of bisequences with Property V and size

B(d, n) can be used to construct B(d, n) sub-d-cubes containing ∅ with exact copies

of Pd+1. Hence Gmax(in)(Pd+1, d, n) = B(d, n), and dividing by
(
n
d

)
gives the desired

equality. �



48 CHAPTER 2. PERFECT CYCLES AND PATHS

Since b(d, n) = λlocal(in)(Pd+1, d, n) is a non-increasing function of n, we can define

b(d) to be equal to lim
n→∞

b(d, n). So b(d) is the limit as n goes to infinity of the maximum

fraction of d-subsets of n which can be the sets of elements of a family R(d, n) of

bisequences with Property V . We have

λlocal(in)(Pd+1, d) = lim
n→∞

λlocal(in)(Pd+1, d, n) = lim
n→∞

b(d, n) = b(d)

and we can find λlocal(in)(Pd+1, d) by finding b(d).

Clearly if R(d, n) is a family of d-bisequences with Property V , then no symbol can

appear as the first element of some sequence and not as the first element of another.

Furthermore, the following properties are easy to verify.

Lemma 2.5.3. Suppose R(3, n) is a family of 3-bisequences with Property V .

(i) If {bxy; ∅} and {bxz; ∅} are in R(3, n), then {byz; ∅} is not.

(ii) If {bxz; ∅} and {byz; ∅} are in R(3, n) then {bxy; ∅} is not.

(iii) If {bx; c} and {bx; d} are in R(3, n), then {dx; c} is not.

(iv) If {bx; c} and {dx; c} are in R(3, n), then {dx; b} is not.

Proof. Let A = {i ∈ [n] : i is the first element of some sequence in a 3-bisequence in

R(3, n)} and let W = [n] \A. Let a = |A|
n and w = |W |

n = 1− a.

(i) If the assumption in (i) holds, then {byz; ∅} cannot be in B(3, n) because it has

“by” as an initial segment, and that is a subset of one of the sequences in {bxy; ∅} but

is not an initial segment, violating property V .

Statements (ii), (iii), and (iv) are just as easy to verify. �

Proof of Proposition 2.5.1. By Proposition 2.5.2 it suffices to show that b(3) ≤ 3
8 . Let

R(3, n) be a family of 3-bisequences with Property V . Let A be the set of elements in [n]

which appear as the first element of some sequence in R(3, n), let W = [n] \A, and let

a = |A| and w = |W |. For each e ∈ A, let Ge be the graph with vertex set W and edge

set {[x, y] : {eyx; ∅} or {exy; ∅} or one of their reversals is in R(3, n)}. By statements

(i) and (ii) in Lemma 2.5.3, Ge is a triangle free graph for each e ∈ A. Hence by Turán’s

theorem, at most w2

4 unordered pairs (x, y) of element x and y in W can appear as

edges in Ge. That means that the total number of 3-subsets of [n] which can be the

set of elements of a 3-bisequence in B(3, n) with one element in A and two in W is at

most w2

4 · a. Similarly, for each element x in W we let Gx be the graph with vertex set

A and edge set {[b, c] : {bx, c} or {bc, x} or either of their reversals is in R(3, n)}. By

statements (iii) and (iv) in Lemma 2.5.3, Gx is triangle free, and an identical argument



2.6. OPEN PROBLEMS 49

to the one for Ge shows that the total number of 3-subsets of [n] which can be the set of

elements of a 3-bisequence in B(3, n) with two elements in A and one in W is at most

w · a24 . If B(3, n) is the size of R(3, n) then

B(3, n) ≤ a · w
2

4
+ w · a

2

4

=
aw

4
· n

This is maximized when a = w = n
2 , so B(3, n) ≤ n3

16 and b(3) = limn→∞
B(3,n)

(n3)
≤ 3

8 . �

Further, this also shows Theorem 2.2.2 holds.

Proof of Theorem 2.2.2. By Proposition 2.3.2 and Proposition 2.5.1

3

8
≤ λ(P4, 3) ≤ λlocal(P4, 3) ≤ 3

8
.

�

So Conjecture 2.2.4 holds for d = 3. Lending credence to this conjecture is that

Baber’s flag algebra upper bound for λ(P5, 4) is .19200000058, while the conjecture

with d = 4 gives 24
125 = .192.

2.6 Open Problems

In this section, we racapitulate the main conjectures and open problems suggested in

this chapter.

Conjecture 2.2.3. λ(C2d, d) = d!
dd

for all d ≥ 4.

As mentioned in Section 2.4 Zongchen Chen [14] has shown that t(d) = d!
dd

for all

d ≥ 4, so λlocal(in)(C2d, d) = d!
dd

for all d ≥ 4.

To prove Conjecture 2.2.3 it would suffice to show that λlocal(out)(C2d, d) = d!
dd

. The

difficulty in doing this is that a vertex v 6∈ S with maximum local density could lie at

different distances from the perfect 2d-cycles in two good sub-d-cubes in which it lies.

As mentioned in the discussion before Theorem 2.4.3, a simple construction shows

that λ(C6, 3) ≥ 1
3 and Baber’s flag algebra result is that λ(C6, 3) ≤ .3333333336, so the

obvious conjecture is:

Conjecture 2.6.1. λ(C6, 3) = 1
3 .
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In Section 2.1, we mentioned that we have shown that 2
3 ≤ λ(W2, 2) ≤ .686, the

upper bound from Baber’s flag algebra result.

Conjecture 2.6.2. λ(W2, 2) = 2
3 .

Conjecture 2.2.4. λ(Pd+1, d) = d!
(d+1)d−1 for all d ≥ 3.

In Section 2.1 we mentioned that we believe that for sufficiently large d, choosing

vertices to be in S with uniform probability
(
1
2

)d
is an optimal construction to maximize

the number of exact copies of Wd in Qd where Wd is a single vertex.

Conjecture 2.6.3. limd→∞ λ(Wd, d) = 1
e .

Recall that the perfect 6-cycle in Q3 can be described by saying it is the set of all

vertices in V (Qd) with weight 1 or 2. That it can be described in this way led to two

phenomena:

1. λlocal(out)(C6, 3) = 1

2. The weight pattern in C6 suggested a set S in Qn which seems to maximize the

number of exact copies of C6: S = {v ∈ Vn : wt v is not divisible by 3}.

Let W be a subset of [d] and H be the configuration in Qd defined by H = {v ∈
V (Qd) : wt v ∈ W}. The two phenomena mentioned above will still hold. What more

can be said about this type of configuration?
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3.1 Introduction

In Chapter 2 and [26] we initiated the investigation of d-cube-density. Using a kind of

blow–up, we showed that λ(H, d) ≥ d!
dd

for every configuration H in Qd. We defined a

perfect 2d-cycle C2d in Qd to be a cycle with d pairs of vertices each Hamming distance

d apart. We showed that λ(C8, 4) = 4!
44

, achieving the smallest possible value for any

configuration in Q4. We also showed λ(P4, 3) = 3
8 where P4 is the induced path in Q3

with 4 vertices.

Finding d-cube density seems to be very difficult even for most small configurations.

In this paper, we find the d-cube density for one configuration in Q3 and two configura-

tions in Q4. We find a construction to produce a lower bound and then find a matching

upper bound by using known results on the inducibility of small graphs to show the

local density cannot be larger.

In Section 3.2 we again discuss local d-cube density, the notion we use to find the

upper bounds. In Section 3.3 we consider the possible configurations in Q2. In Section

3.4 we summarize the results on inducibility of graphs which we will use for config-

urations in Q3 and Q4. In Section 3.5 we consider d-cube density for configurations

in Q3, and in Section 3.6 we consider several configurations in Q4. In Section 3.7 we

find d-cube density for a nontrivial infinite family of configurations. In Section 3.8 we

discuss layered configurations in Qd, those that are defined in terms of the weights of

the d-vectors.

3.2 Local d-cube density

As in 2.4, we let H be a configuration in Qd and S be a subset of Vn. For each vertex

v ∈ S, we let Gv(in)(H, d, n, S) be the number of sub-d-cubes R of Qn containing v in

which S ∩R is an exact copy of H, Gmax(in)(H, d, n) = maxv∈S Gv(in)(H, d, n, S) where

the max is over all v and S such that v ∈ S, gv(in)(H, d, n, S) =
Gv(in)(H,d,n,S)

(nd)
denote

the fraction of sub-d-cubes R of Qn containing v in which S ∩R is an exact copy of H,

and λlocal(in)(H, d, n) =
Gmax(in)(H,d,n)

(nd)
. As with λ(H, d, n), a simple averaging argument

shows that λlocal(in)(H, d, n) is a nonincreasing function of n, so we define λlocal(in)(H, d)

by

λlocal(in)(H, d) = lim
n→∞

λlocal(in)(H, d, n)

For each vertex v 6∈ H, a similar procedure defines the functions Gv(out)(H, d, n, S),

Gmax(out)(H, d, n), gv(out)(H, d, n, s), and λlocal(out)(H, d). This menas λlocal(in)(H, d)

and λlocal(out)(H, d) are the maximum local densities of sub-d-cubes with an exact copy
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of H among all sub-d-cubes containing v in S and out of S respectively. Finally, we

define λlocal(H, d) to be max{λlocal(in)(H, d), λlocal(out)(H, d)}. Since the global density

cannot be more than the maximum local density, we must have λ(H, d) ≤ λlocal(H, d).

3.3 Configurations in Q2

The following type of construction is referred to as a partition-modular construction.

These are constructions generated by choosing a partition of [n] = A1 ∪ A2 ∪ · · · ∪ Ai

and taking as S the set of vertices such that their binary n-tuples satisfy a chosen set

of congruences for the weight of the coordinates within the partitions. Sometimes we

denote this as a list of i-tuples along with a list of their moduli for convenience. For

example, A ∪ B taking 01 mod (2, 2) would indicate a partitioning of [n] = A ∪ B and

taking all vertices with weight 0 mod 2 in A and weight 1 mod 2 in B. The fractional

sizes of the Ai which maximize the number of Qds having the configuration may also be

indicated.

Note that the sets in the partition may be of any sizes, however, when i = 1 we call

such a construction layered since it is equivalent to choosing all vertices of particular

weights modulo a (i.e. entire “levels” of Qn).

It is obvious that λ(H) = λ
(
H
)
, thus we may restrict our consideration to only one

configuration in each of the complementary pairs.

A list of all of the configurations in Q2, subject to the above restriction, are given

in Figure 3.1. In the figure, red vertices are in the configuration and open blue are not.

The red and blue edges have been added for emphasis but edge choices are not the focus

of this chapter as the configurations are sets of vertices.

V1 V2 V3 V4

Figure 3.1: Configurations in Q2.

3.3.1 Lower Bounds by Construction

Showing λ(V1) = 1 is trivial, since we would simply consider S = ∅. To show λ(V4) = 1,

we consider S to be the layered construction 0 mod 2. This leaves only V2 and V3.
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We can find a lower bound for V2 by considering the layered construction given by

0 mod 3. This gives 2
3 ≤ λ(V2). However, an upper bound other than the flag algebra

bound provided in Table 3.1 for this configuration remains elusive at this time.

A construction for V3 is given by considering [n] = A ∪ B then taking S to be the

set of all vertices given by binary n-tuples with weight 0 mod 2 in A. This gives a

“good” Q2 for each Q2 with one flip bit in each of A and B. If |A| = a and |B| = b, we

then want to maximize ab which occurs when |A| = bn2 c and |B| =
⌈
n
2

⌉
. This results in

bn2 c
⌈
n
2

⌉
≈ n2

4 many “good” Q2s which shows 1
2 ≤ λ(V3).

Table 3.1 summarizes the best results obtained in Q2.

Configuration Construction Lower Bound Upper Bound

V1 ∅ 1 1

V2 Layered: 0 mod 3 2/3 .6857141

V3 A ∪B taking 0 mod 2 in A 1/2
1/2

(Theorem 3.3.1)

V4 Layered: 0 mod 2 1 1

Table 3.1: Summary of the best results for configurations in Q2.

3.3.2 Upper Bounds

In order to show that λ(V3) = 1
2 , we use an argument that will be applied, in a slightly

more general form, to an infinite family of configurations in Section 3.7.

Theorem 3.3.1. λ(V3) = 1
2 .

Proof. Recall in Section 3.3.1 we showed λ(V3) ≥ 1
2 .

Now let S be a set which achieves λ(V3), Let αx =
|{v ∈ N(x) ∩ S}|

n
, the density of

neighbors of x in S. Consider s ∈ S and let R0, R1, R2 be the fraction of K1,2 subgraphs

of Qn containing s in which s is degree 2 and has 0, 1, or 2 chosen neighbors, respectively.

R0 R1 R2

Figure 3.2: The red vertices are vertices in S and the blue are vertices not in S.

1The upper bound for V2 is given by a flag algebra bound calculated by Rahil Baber [6].



3.4. INDUCIBILITY 55

Note that R0+R1+R2 = 1 and we want to maximize R1. We do this by minimizing

R0 +R2 which is given by f(αs) = (1−αs)
2 +α2

s = 2α2
s − 2αs + 1 and so it is clear that

αs = 1
2 . This gives a minimum value of f

(
1
2

)
= 1

2 . This means that R1 ≤ 1
2 .

Since V3 is self-complimentary, λlocal(out)(V3, 2) = λlocal(in)(V3, 2) = λlocal(V3, 2) and

so λ(V3) ≤ 1
2 . �

3.4 Inducibility

As mentioned in Section 2.1, there are strong connections between d-cube density and

inducibility of a graph. Recall that, given graphs G and H, with |V (G)| = n and

|V (H)| = k, the density of H in G, denoted dH(G), is defined by

dH(G) =
# induced copies of H in G(

n
k

)
Pippinger and Golumbic [40] defined the inducibility i(H) of H by

i(H) = lim
n→∞

max
|V (G)|=n

dH(G)

Clearly i(H) = i(H) where H is the complement of H. We summarize a few inducibility

results, some of which we will use to prove upper bounds for d-cube density.

1. i(K1,2) = 3
4 . The optimizing graph G is Kn

2
,n
2
. That it cannot be larger than 3

4 fol-

lows immediately from a theorem of Goodman [30] that says that in any 2-coloring

of the edges of Kn, at least 1
4 (asymptotically) of the K3s are monochromatic.

2. i(K2,2) = 3
8 . In [8], Bollobás et. al. showed that the graph on n vertices which

has the most induced copies of Kr,r, for any r ≥ 2, is Kdn2 e,bn2 c.

3. i(K1,3) = 1
2 . In [12], Brown and Siderenko showed that the graph on n vertices

which has the most induced copies of Kr,s, for any r, s (except r = s = 1), is

complete bipartite. The optimizing graph for K1,3 is not equibipartite; the sizes

of the parts are roughly n
2 ±
√
n.

4. In [33], Hirst used flag algebras to show that i(K1,1,2) = 72
125 = .576 and i(KPAW) =

3
8 where K1,1,2 is K4 minus an edge and KPAW is K3 plus a pendant edge, leaving

the path as the only graph on 4 vertices whose exact inducibility has yet to be

determined.
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5. In [20], Even-Zohar and Linial improve earlier best bounds [21, 43] for i(P4) and

find the inducibility of some graphs on 5 vertices.

3.5 Configurations in Q3

Recalling λ(H) = λ
(
H
)
, we may restrict ourselves to only considering one configuration

in each complementary pair, a list of all of the configurations in Q3, subject to this

restriction, are given in Figure 3.3.

W1 W2 W3 W4 W5 W6

W7 W8 W9 W10 W11 W12

W13 W14

Figure 3.3: Configurations in Q3.

3.5.1 Trivial configurations

Showing λ(W1) = 1 is trivial since we take S = ∅. Further, λ(W14) = 1 since we can

consider S given by the layered construction given by 0 mod 2.

3.5.2 Layered constructions

Recalling the definition of “layered” from Section 3.3 these constructions choose all

vertices of particular weights modulo m, for some m (i.e. entire “levels” of Qn).

The layered constructions given in Table 3.2 for W7, W8, and W12 provide lower

bounds which agree with Baber’s flag algebra upper bounds to within 10−9, so they are

likely to be exact. We do not know if our lower bound for λW3, 3 is the actual value.
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3.5.3 Other partition modular constructions

For W4, we partition [n] = A ∪ B and take S to be the set of all vertices given by

binary n-tuples with weight 0 mod 3 in A. Suppose a Q3 contains precisely two flip

bits in A. If the sum of the other bits in A is m, then the Q3 will have configuration

W4 precisely when m = 0, or 1. When m = 2, it will have configuration W13. Thus

we will have a “good” Q3 for 2/3 of the Q3s with exactly two flip bits in A. If we let

|A| = a and |B| = b, then we want to maximize the function 2
3 ·

1
2a

2b which occurs when

|A| =
⌈
2n
3

⌉
and |B| = bn3 c. This results in 1

3

⌈
2n
3

⌉2 bn3 c ≈ 4n3

81 many “good” Q3s which

shows 8
27 =

(
2
3

)3 ≤ λ(W4).

When considering W9, we partition [n] = A∪B and take S to be the set of all vertices

given by binary n-tuples with weight 0 or 1 mod 3 in A and weight 2 mod 3 in B or vice

versa. Suppose a Q3 contains precisely two flip bits in A. If the sum of the other bits in

A is m and in B is p, then the Q3 will have configuration W9 precisely when m = 0, 2

and p = 1, 2. This means that 4
9 of these will be “good” Q3s. Similarly, 4

9 of the Q3s will

be “good” with precisely two flip bits in B. Thus, we want to maximize the function
2
9a

2b+ 2
9ab

2 which occurs when |A| =
⌈
n
2

⌉
and |B| = bn2 c giving 2

9n
⌈
n
2

⌉
bn2 c ≈

n3

18 “good”

Q3s which shows 1
3 ≤ λ(W9). This is likely not best possible since the flag algebra upper

bound is just above 4
9 .

The constructions for W6 and W13 use similar partition modular constructions to

each other. For both, we take [n] = A ∪ B and S to be the set of all vertices given by

binary n-tuples with weight 0 mod 2 in A.

For W6, this gives a “good” Q3 when we have exactly two flip bits in A. If we

let |A| = a and |B| = b, then to maximize the number of “good” Q3s we want to

maximize the function 1
2a

2b which occurs when |A| =
⌈
2n
3

⌉
and |B| = bn3 c. This results

in 1
2

⌈
2n
3

⌉2 bn3 c ≈ 2n3

27 many “good” Q3s which shows 4
9 ≤ λ(W6).

For W13, this construction gives a “good” Q3 when we have exactly one flip bit in A.

If we let |A| = a and |B| = b, then to maximize the number of “good” Q3s we want to

maximize the function 1
2ab

2 which occurs when |A| =
⌈
n
3

⌉
and |B| = b2n3 c. This results

in 1
2

⌈
n
3

⌉
b2n3 c

2 ≈ 2n3

27 many “good” Q3s which shows 4
9 ≤ λ(W13).

Equality for the densities of W6 and W13 will follow from Theorem 3.7.1 in Section

3.8 which is a generalization of Theorem 3.3.1.

A construction for W2 is found by considering [n] = A∪B and taking S to be the set

of all vertices given by binary n-tuples with weight 0 mod 2 in both A and B (i.e. weight

00). This gives a “good” Q3 for each Q3 with exactly two flip bits in A or exactly two in

B. If we let |A| = a and |B| = b, we then want to maximize the number of “good” Q3s.

This means we want to maximize 1
2a

2b+ 1
2ab

2 and so we find |A| = bn2 c and |B| =
⌈
n
2

⌉
.
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This results in 1
2b

n
2 c

2
⌈
n
2

⌉
+ 1

2b
n
2 c
⌈
n
2

⌉2 ≈ n3

8 many “good” Q3s which shows 3
4 ≤ λ(W2).

Theorem 3.5.1 shows equality holds.

Table 3.2 summarizes the best results obtained in Q3. In Table 3.2, the upper bounds

written in decimal form are flag algebra bounds calculated by Rahil Baber.

Configuration Construction Lower Bound Upper Bound

W1 ∅ 1 1

W2 A ∪B taking 00 mod (2,2) 3/4
3/4(

Theorem 3.5.2
)

W3 Layered: 0 mod 4 1/2 .610043

W4
A ∪B taking 0 mod 3 in A

where a = 2
3

(2/3)3 ≈ 0.2963 .304762

W5
A ∪B taking

00,01,10,11 mod (3, 3)
1/3 .333398

W6
A ∪B taking 0 mod 2 in A

where a = 1
3

4/9
4/9

(Theorem 3.7.1)

W7 Layered: 0 mod 3 1/3 .333333

W8 Layered: 0 mod 3 2/3 .666667

W9
A ∪B taking

02, 12, 20, 21 mod (3, 3)
1/3 .444444

W10 .416667

W11 Perfect 8-cycle blow-up 3/8
3/8

(Chapter 2)

W12 Layered: 0 and 1 mod 4 1/2 .500000

W13
A ∪B taking 0 mod 2 in A

where a = 2
3

4/9
4/9

(Theorem 3.7.1)

W14 Layered: 0 mod 2 1 1

Table 3.2: Summary of the best results for configurations in Q3.

The following Lemma is used in the proof that λ(W2) = 3
4 .

Lemma 3.5.1. Let G be a graph with n vertices where n is even. If |E(G)| = e, then

G has at most min
{
n
(n

2
2

)
, e2(n− 2)

}
induced copies of K1,2.

Proof. That it has at most n
(n

2
2

)
was proved in [40]. The optimizing graph is Kn

2
,n
2
.

Each uv ∈ E(Gs) can be in at most n− 2 induced K1,2s and summing over all edges

uv counts each K1,2 twice. �

Theorem 3.5.2. λ(W2) =
3

4
.
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Proof. Recall that we have a construction which shows that λ(W2) ≥ 3
4 .

Suppose ∅ ∈ S, and let M be the set of good Q3s containing ∅. Construct a graph

Gs with V (Gs) = [n] and E(Gs) = {uv : ∅, uv are the vertices in S for some M ∈M }.
If u, v, x are flip bits for some M in M , and if uv is in M , then neither ux nor vx can be

in E(Gs), so |M | is less than or equal to the number of induced copies of the graph with

three vertices and a single edge. Equivalently, this is less than or equal to the number of

induced copies of K1,2 in a graph on n vertices. This means λlocal(in)(W2) ≤ i(K1,2) = 3
4 .

Now suppose ∅ 6∈ S. Let A = {i ∈ [n] : i ∈ S}, B = [n] \ A, |A| = a, and |B| = b.

Let M be the set of all good Q3s containing ∅. If M ∈ M , then the two vertices of

M ∈ S have the structure of Type I, II, or III as in Figure 3.4.

Type I

j i

Type II

i

ixy

Type III

uv vx

Figure 3.4: The three structures of vertices in S for M ∈M where ∅ 6∈ S.

Define a graph Gs by V (Gs) = B and E(Gs) = {uv : uv and vx are the vertices in

S of some Type III M ∈M with flip bits u, v, x}. For such an M , ux cannot be in S

so the number of Type III Q3s in M is at most the number of induced copies of K1,2

in Gs.

If L is a Type I Q3 in M with flip bits i, j, x and with i, j the vertices of L in S,

then i, j ∈ A and x ∈ B. So the number of Type Is in M is at most b
(
a
2

)
. If L is

a Type II Q3 in M where i, ixy are the vertices of L in S, then i ∈ A and x, y ∈ B,

but xy 6∈ E(Gs). So, if e = |E(Gs)|, then the number of Type II Q3s in M is at most

a
[(

b
2

)
− e
]
. By Lemma 3.5.1, we have that the number of Type III Q3s in M is at most

min
{
b
( b

2
2

)
, e2(b− 2)

}
.

One good candidate to maximize |M | is for M to have no Type IIIs (i.e. |E(Gs)| =
0), which would give |M | = b

(
a
2

)
+ a
(
b
2

)
. Another good candidate would be to have Gs

be K b
2
, b
2
, so as to maximize the number of Type IIIs. This would mean that |M | =

b
(
a
2

)
+ a

[(
b
2

)
− b2

4

]
+ b
( b

2
2

)
= b
(
a
2

)
+ (2a+ b)

( b
2
2

)
.

If |E| = e, then we have

|M | ≤ b
(
a

2

)
+ a

[(
b

2

)
− e
]

+ min

{
b

( b
2

2

)
,
e

2
(b− 2)

}
. (?)
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If e ≥ b2

4 then min{b
( b

2
2

)
, e2(b − 2)} = b

( b
2
2

)
, so the right-hand side of inequality (?) is a

decreasing function of e. Hence to maximize |M | we can assume e ≤ b2

4 .

Case 1: If b−2
2 ≤ a, then

|M | ≤ b
(
a

2

)
+ a

[(
b

2

)
− e
]

+
e

2
(b− 2)

≤ b
(
a

2

)
+ a

[(
b

2

)
− e
]

+ ea

= b

(
a

2

)
+ a

(
b

2

)
which is the size of M in the first good candidate above.

Case 2: If b−2
2 > a, then

|M | ≤ b
(
a

2

)
+ a

[(
b

2

)
− e
]

+
e

2
(b− 2)

= b

(
a

2

)
+ a

(
b

2

)
+ e

(
b− 2

2
− a
)

≤ b
(
a

2

)
+ a

(
b

2

)
+
b2

4

(
b− 2

2
− a
)

= b

(
a

2

)
+ a

(
b

2

)
+ b

( b
2

2

)
− b2

4
a

= b

(
a

2

)
+ a

((
b

2

)
− b2

4

)
+ b

( b
2

2

)
= b

(
a

2

)
+ 2a

( b
2

2

)
+ b

( b
2

2

)
= b

(
a

2

)
+ (2a+ b)

( b
2

2

)
which is the size of M in the second good candidate above.

This expression can be rewritten as

b

2

(
a

2

)
+
b

2

(
a

2

)
+ a

( b
2

2

)
+
b

2

( b
2

2

)
+
b

2

( b
2

2

)
which is equal to

x

(
y

2

)
+ x

(
z

2

)
+ y

(
x

2

)
+ y

(
z

2

)
+ z

(
x

2

)
+ z

(
y

2

)
(??)
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when x = z = b
2 and y = a. The expression in (??) is the number of induced K1,2s in a

complete tripartite graph with part sizes x, y, and z. We know that Kn
2
,n
2

is the graph

with n vertices which has the maximum number of induced K1,2s, so (??) attains its

maximum value when x = z = n
2 and y = 0, so b = n and a = 0. The size of M for

the first candidate a
(
b
2

)
+ b
(
a
2

)
is the value of (??) when x = a, y = b, and z = 0, so it

attains its maximum value when a = b = n
2 and both good candidates have size

2 · n
2

(n
2

2

)
=
n2(n− 2)

8
=

3

4

(
n

3

)
n

n− 1

and |M | cannot be bigger. Hence

3

4
≤ λ(W2, 3) ≤ λlocal(W2, 3) ≤ 3

4
.

�

We remark that in the construction we have with density 3
4 , of the vertices not in S,

2
3 of them are in good Q3’s only of the type of the first good candidate (those vertices

which have an odd sum in precisely one of A or B) and 1
3 are in good Q3’s only of the

type of the second candidate (those vertices with an odd sum in both A and B). The

local density at all of these vertices is 3
4 .

3.6 Configurations in Q4

In [26] we initiated the investigation of d-cube-density and considered two specific config-

urations, one of which was in Q4. Using a kind of blow–up, we showed that λ(H, d) ≥ d!
dd

for every configuration H in Qd. We defined a perfect 2d-cycle C2d in Qd to be a cycle

with d pairs of vertices each Hamming distance d apart. We showed that λ(C8, 4) = 4!
44

,

achieving the smallest possible value for any configuration in Q4.

Theorem 3.6.1. If Y is the configuration {0000, 1100, 0011, 1111} in Q4 (see Figure

3.5), then λ(Y ) =
3

8
.

Proof. Suppose ∅ ∈ S and let M be the set of good Q4s containing ∅. We construct a

graph Gs with V (Gs) = [n] and E(Gs) = {uv : ∅, uv, xy, uvxy are the vertices in S of

some M ∈ M }. If uv and xy are in M ∈ M , then neither ux, uy, vx, nor vy can be

in E(Gs), so |M | is less than or equal to the number of induced copies of 2K2 in Gs.

That means λlocal(in)(Y ) ≤ i(2K2) =
3

8
.
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Figure 3.5: The configuration Y .

Now suppose ∅ 6∈ S. Let A = {i ∈ [n] : i ∈ S}, B = [n] \ A, |A| = a, and |B| = b.

Let M be the set of all good Q4s containing ∅. If M ∈M , then the four vertices of M

in S have the structure of Type I or Type II as in Figure 3.6.

Type I

j

jux

i

iux

Type II

yuxyvxuv

Figure 3.6: The two structures of vertices in S for M ∈M where ∅ 6∈ S.

Define a graph Gs by V (Gs) = B and E(Gs) = {uv : uv, vx, xy, yu are the vertices

in S of some Type II M ∈M }. For such an M , neither ux, nor vy can be in S, so the

number of Type II Q4s in M is at most the number of induced copies of K2,2 in Gs.

Lemma 3.6.2. Let G be a graph with n vertices where n is even. If |E(G)| = e, then

G has at most min

{(n
2

2

)2

,
e

4

(n− 2)2

4

}
induced copies of K2,2.

Proof. That it has at most

(n
2

2

)2

copies of K2,2 is proved in [12] and [9] (the optimizing

graph is Kn
2
,n
2
). If uv ∈ E(G), define an auxiliary graph F with V (F ) = V (G) \ {u, v}

and E(F ) = {xy : {u, v, x, y} induces K2,2}. The graph F is triangle-free since if

{u, v, x, y} and {u, v, x, z} both induce K2,2, then either {uy, uz} ⊆ E(G) or {vy, vz} ⊆
E(G). In either case, {u, v, y, z} induces K1,3. Since F is triangle free, uv is in at

most (n−2)2
4 induced K2,2s. Finally, summing over all edges uv counts each K2,2 four

times. �

If L is a good Type I in M where i, j, iux, and jux are the vertices of L in S,

then i, j ∈ A, u, x ∈ B, but ux 6∈ E(Gs). If |E(Gs)| = e, then the number of

Type I Q4s in M is at most
[(

b
2

)
− e
] (

a
2

)
and of Type II, by Lemma 3.6.2, is at most
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min

{( b
2

2

)2

,
e

16
(b− 2)2

}
. If a and b are fixed, then one good candidate to maximize

|M | is for M to have no Type II Q4s. Then Gs has no edges and |M | =
(
a
2

)(
b
2

)
. Another

good candidate is when M has the maximum possible number of Type II Q4s. Then

Gs is K b
2
, b
2

(assuming b is even) and |M | =
[(

b
2

)
− b2

4

] (
a
2

)
+
( b

2
2

)2
= b(b−2)

4

(
a
2

)
+
( b

2
2

)2
.

If e = E(Gs), we have |M | ≤
[(

b
2

)
− e
] (

a
2

)
+ min

{( b
2
2

)2
, e4

(b−2)2
4

}
.

Case 1: If e ≥ b2

4 , then

|M | ≤
[(
b

2

)
− b2

4

](
a

2

)
+

( b
2

2

)2

=
b(b− 2)

4

(
a

2

)
+

( b
2

2

)2

which is the size of M in the second good candidate above.

Case 2: If e < b2

4 , then

|M | ≤
[(
b

2

)
− e
](

a

2

)
+

e

16
(b− 2)2

=

(
a

2

)(
b

2

)
+ e

[
1

16
(b− 2)2 −

(
a

2

)]
.

If 1
16(b − 2)2 ≤

(
a
2

)
, then |M | ≤

(
a
2

)(
b
2

)
which is the size of M in the first good

candidate above.

If 1
16(b− 2)2 >

(
a
2

)
, then

|M | <
(
a

2

)(
b

2

)
+
b2

4

[
1

16
(b− 2)2 −

(
a

2

)]
=

(
a

2

)[(
b

2

)
− b2

4

]
+

(
b(b− 2)

8

)2

=
b(b− 2)

4

(
a

2

)
+

( b
2

2

)2

(?)

the same upper bound as in Case 1.

Clearly the maximum value of
(
a
2

)(
b
2

)
is

(n
2

2

)(n
2

2

)
=
n2(n− 2)2

64
=

3

8

(
n

4

)
n(n− 2)

(n− 1)(n− 3)
.

Lemma 3.6.3. If x, y, and z are nonnegative real numbers such that x + y + z = n,
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then the maximum value of(
x

2

)(
y

2

)
+

(
x

2

)(
z

2

)
+

(
y

2

)(
z

2

)
(∗)

is

(n
2

2

)2

.

Proof. To simplify notation, let n ≡ 0 mod 6.

This function counts the number of induced copies of K2,2 in a complete tripartite

graph with parts X,Y, and Z with part sizes x, y, and z, respectively, subject to the

constraint x + y + z = n. In [], it was shown that for all n ≥ 4 the maximum number

of induced copies of K2,2 in any graph is
(n

2
2

)2
. �

If x = a and y = z = b
2 , then ∗ reduces to ?, so the maximum of ? occurs when

a = 0 and b = n and is equal to
3

8

(
n

4

)
n(n− 2)

(n− 1)(n− 3)
. Hence, 3

8 is an upper bound for

λlocal(out)(Y ) and λlocal(in)(Y ), so 3
8 ≤ λ(Y, 4) ≤ λlocal(Y, 4) ≤ 3

8 .

�

Theorem 3.6.4. If H is the configuration {0000, 1100, 1010, 0110} in Q4 (see Figure

3.7), then λ(H, 4) = 1
2 .

Figure 3.7: The configuration H for Theorem 3.6.4.

Proof. Explain the construction given by A ∪ B taking 00 mod 2 gives density 1
2 (be-

cause 3-1 and 1-3 always give “good” Q4s).

Suppose ∅ ∈ S and let M be the set of good Q4s containing ∅. We define a graph GS

with V (GS) = [n] and E(GS) = {xy : ∅, xy, yz, xz are the vertices in S of someM ∈M }.
If x, y, z, w are the coordinates of a good Q4 where ∅, xy, yz, xz are the vertices in S,

then wx,wy,wz are not in E(GS), so {w, x, y, z} induces K3 plus an isolated vertex in

GS . Since this is the complement of K1,3, λlocal(in)(H, 4) = i(K1,3) = 1
2 .

Now suppose ∅ 6∈ S. Let A = {i ∈ [n] : i ∈ S}, B = [n] \ A, |A| = a, |B| = b. Let

M be the set of all good Q4s containing ∅. If M ∈M then the four vertices of M in S
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have the structure of Type I, Type II, or Type III in Figure 3.8 (where i, j, k ∈ A and

w, x, y, z ∈ B).

Type I

i j

ijk

k

Type II

i

ixy iyz ixz

Type III

wx wy

wxyz

wz

Figure 3.8: The three structures of vertices in S for M ∈M where ∅ 6∈ S.

Define a graph G by V (G) = A∪B and E(G) = {ix : i ∈ A and x ∈ B}∪{wx : wx,

wy,wz, wxyz are the vertices in S of a Type III M ∈ M for some y, z ∈ B}. If M

is a Type I Q4 with coordinates i, j, k, x, then {i, j, k, x} induces K1,3 in G. If M is a

Type III Q4 with vertices wx,wy,wz, wxyz in S, then {w, x, y, z} induces K1,3 in G,

since xy, yz and xz are not edges in G. That means {i, x, y, z} induces K1,3 in G since

ix, iy, iz are all edges. It also means that the number of Type II Q4s in M is at most

the number of K1,3s in G with one vertex in A and three vertices in B, since if i, x, y, z

are the coordinates of a Type II M, then xy, yz, and xz are all non-edges. Thus |M |
is at most the number of K1,3s in G which have precisely 3,1, or 0 vertices in A, so

is certainly at most the maximum number of K1,3s in a graph with n vertices. Hence

λlocal(out)(H, 4) ≤ i(K1,3) = 1
2 , and 1

2 ] ≤ λ(H, 4) ≤ λlocal(H, 4) ≤ 1
2 . �

We remark that since the only optimizing host graph to maximize the number of

induced K1,3 subgraphs is complete bipartite, the graph G defined above can only be

optimal if either there are no Type III M ∈M (so both A and B are independent sets),

or A = ∅, each M ∈ M is Type III, and B induces a complete bipartite graph (with

parts not quite equal in size).

3.7 An Infinite Family

Theorem 3.3.1 can be generalized to apply to an infinite family of configurations con-

taining V3, W6, and W13. Let d and i be positive integers with 1 ≤ i < d. We define

the configuration H(d, i) in Qd by

H(d, i) =

(v1, v2, . . . , vd) ∈ V (Qd)

∣∣∣∣∣∣
i∑

j=1

vj is even

 .
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Theorem 3.7.1. λ(H(d, i)) =
(
d
i

) ii(d−i)d−i

dd
.

Proof. Each vertex in H(d, i) has d − i neighbors in H(d, i) (change any one of the

last d − i coordinates). Since H(d, i) is self-complementary in Qd

(∑i
j=1 vj is odd

)
,

λlocal(H(d, i)) = λlocal(in)(H(d, i)) = λlocal(out)(H(d, i)).

If n ≥ d and v ∈ S ⊆ V (Qn) and R is a sub-d-cube of Qn containing v, then R can be

good only if precisely d− i neighbors of v in R are in S. If x is the fraction of neighbors

of v in V (Qn) which are in S, then the fraction of sub-d-cubes of Qn containing v which

have precisely d− i neighbors in S is f(x) =
(
d
i

)
xd−i(1− x)i. By simple calculus, f(x)

is maximized on [0, 1] when x = d−i
d , so λlocal(in)(H(d, i)) ≤

(
d
i

) (d−i)d−iii

dd
.

To show this upper bound is a lower bound as well, let S ={(v1, v2, . . . , vn) :
∑m

j=1 vj
is even, where m = b ind c}. Then any sub-d-cube of Qn with precisely i flip-bits in [1,m]

is good, and this is a fraction

(
d

i

)
mi(n−m)d−i

nd
=

(
d

i

)(b ind c
n

)i

⌈
(d−i)n

d

⌉
n

d−i

of all sub-d-cubes, and the limit as n goes to infinity is
(
d
i

) ii(d−i)d−i

dd
. �

Note that the configuration W6 in Q3 is H(3, 1), W13 is H(3, 2), and V3 in Q2

is H(2, 1). Further note that limd→∞ λ(H(d, i)) = ii

i!ei
. In particular, when i = 1,

limd→∞(H(d, 1)) = 1
e . (H(d, 1) is a copy of Qd−1 in Qd)

3.8 Layered Configurations

Recall that we say a configuration H in Qd is layered if it is an exact copy of a configu-

ration K in Qd such that v ∈ K if and only if wt(v) ∈W for some set W of nonnegative

integers. For example, H = {1001, 1110, 0010, 0100, 0111} is layered because there is an

automorphism of Q4 (interchange 0 and 1 in the 2nd and 3rd coordinates) which maps

H onto K = {1111, 1000, 0100, 0010, 0001}and K = {v ∈ Q4 : wt(v) = 1 or 4}. We

call K a canonical layered configuration. The configurations W1,W3,W7,W8,W12, and

W14 (and their complements) are layered configurations in Q3. One can get a good

lower bound construction for any layered configuration in Qd by using an appropriately

layered set S in Qn. If WH is the set of weights for the vertices in a canonically layered

configuration H in Qd, and if we choose a layered set S in Qn where WS is the set of

weights, and if WS ∩ {0, 1, . . . , d} = WH , then every sub-d-cube containing ∅ is “good”,

so λlocal(H, d) = 1. That means our usual procedure of using λlocal(H, d) to get an upper
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bound for d-cube density cannot work and that is why we have not been able to obtain

good upper bounds by hand for any layered configurations other than the three with

d-cube density equal to 1 (∅, V (Qd), and all even weight vertices in Qd).

For example, if we represent the configuration W8 by H = {110, 101, 011} we define

S by S = {v ∈ Vn : wt(v) ≡ 2 mod 3}. Any sub-3-cube whose smallest weight vertex

has weight congurent to 0 or 1 mod 3 is “good”, showing that λ(W8, 3) ≥ 2
3 . Baber’s

flag algebra upper bound is .66666666675 so undoubtedly λ(W8, 3) = 2
3 , but we have

not proved it.

For each positive integer n let Fn denote the set of binary n-tuples. If u ∈ Fn

we let uR denote the n-tuple obtained by reversing the order of the digits in u. If

k ≤ n, u ∈ F k, and v ∈ Fn, we let fn(u, v) denote the fraction of the n− k + 1 strings

of k consecutive digits of v which are equal to u or uR and we define f(u) by

f(u) = lim
n→∞

max
v∈Fn

f(u, v).

So f(u) is the limit as n goes to infinity of the maximum fraction of strings of k con-

secutive digits in any n-tuple wihch are equal to u or uR.

A beginning segment of u = (u1, u2, . . . , uk) is the t-tuple (u1, u2, . . . , ut) for some

t ∈ [1, k − 1] and an ending segment is the m-tuple (uk−m+1, . . . , uk) for some m ∈
[1, k − 1]. We let s(u) be the maximum length of a beginning segment of u which is

equal to an ending segment, and we let p(u) = p = k − s(u). We construct v = (v1, v2,

. . . , vn) ∈ Fn by repeating the p-tuple (u1, u2, . . . , up), that is vi = uj if j = i mod p.

For example, if u = 1101001101 then k = 10, s(u) = 4 (1101), p = 6, and we form v

by repeating the string 110100. Each k consecutive digits of v whose first digit is in a

position congruent to 1 mod p is a copy of u, so f(u) ≥ 1
k−s(u) .

There is another way to get overlapping copies of u or uR in v. We say x ∈ Fn is a

palindrome if x = xR. If u ∈ F k, let b(u) and e(u) be the lengths of the largest beginning

segment and ending segment of u which are palindromes, so 1 ≤ b(u) and e(u) ≤ k− 1.

We construct v ∈ Fn for large n as follows. Take a copy of u for the first k digits. Then

digits k− eu + l through 2k− e(u) are a copy of uR, overlapping the initial copy of u in

e(u) digits, and these digits are a palindrome. Then digits 2k− e(u)− b(u) + 1 through

3k−e(u)−b(u) are a copy of u, overlapping the previous uR in b(u) digits, and these are

a palindrome. Then we repeat this process. Since the second copy of u begins in digit

number 2k− e(u)− b(u) + 1, we are generating an n-tuple with period 2k− e(u)− b(u),

perhaps with something extra at the end. Hence f(u) ≥ 2
2k−e(u)−b(u) .

For example, if u = 110101101101 then k = 12, b(u) = 7.e(u) = 9, and the 2k −
b(u) − e(u) = 8 repeating digits are 11010110. A copy of u begins in digits 1,9,17,. . .
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and a copy of uR begins in digits 4,12,20,. . ..

Since there is no other way to get overlap in v between two successive copies of u

and/or uR, we have proved the following:

Proposition 3.8.1. If u ∈ F k let s(u) be the longest beginning segment of u which is

equal to an ending segment, and let b(u) and e(u) be the lengths of the largest beginning

segment and ending segment, respectively, of u which are palindromes. Then

f(u) = max

{
1

k − s(u)
,

2

2k − b(u)− e(u)

}
.

If u = (a1, a2, . . . , ak) ∈ F k then clearly b(u) + e(u) ≥ 2 with equality if and only

if u = 100 . . . 001 or the complement. It is easy to see that b(u) + e(u) ≤ 2k − 2 with

equality if and only if u is all 1’s or all 0’s or k is even and u is alternating 0’s and 1’s.

It is not hard to check that if k ≥ 4 then for each j in [2, 2k− 2], except j = 3, there

exists u ∈ F k such that b(u) + e(u) = j. Hence f(u) can equal 2
2k−j for any integer j in

[2, 2k − 2] except j = 3.

If K is a canonical layered configuration in Qd then we define its weight vector

wK = (a0, a1, . . . , ad) ∈ F d+1 by ai = 1 if and only if the vertices of weight i are in

K. If K is an exact copy of H then we define wH to be equal to wK . Given a vector

wH ∈ F d+1, we can choose a layered configuration in Qn just as we chose v ∈ Fn to

maximize fn(u, v). Hence we have the following

Proposition 3.8.2. Let H be a layered configuration in Qd. Then

λ(H, d) ≥ f(wH) = max

{
1

d+ 1− s(wH)
,

2

2(d+ 1)− b(uH)− e(wH)

}
.

Proposition 3.8.3. For each d ≥ 2, there is a layered configuration H in Qd with

λ(H, d) ≥ 2
3 .

For d = 7, 8, 9 the layered configurations with weight vectors 10010010, 100100100,

and 0100100100 respectively have density at least 2
3 . But for 1001001001 we have

s = b = e = 7 we can only say the density is at least 1
10−7 = 2

20−7−7 = 1
3 .

Example 4. Let K5 = {v = (a1, a2, a3, a4, a5) : a1 + a2 = a3 + a4 + a5 = 0 mod 2}. If

A,B is a partition of the vertices [n] of Qn and S is the set of all vertices such that the

number of 1s in A and in B is even, then any Q5 with 2 or 3 vertices in A has an exact

copy of K5. Hence λ(K5, 5) ≥ (52)+(53)
25

= 5
8 .
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Conjecture 3.8.4. If H is a configuration in Qd such that 5
8 < λ(H, d) < 1 then either

d = 3 and H = W2 (λ(W2, 3) = 3
4) or H is layered with a period 3 (possibly with

remainder) weight vector.

There are 6 different layered configurations (counting each complementary pair once)

in Q3 and 10 of them in Q4. For 13 of these 16 configurations the flag algebra upper

bound that we have is very close to the lower bound provided by the layered construction.

The exceptions are one vertex in Q3 (d(1000) = 1
2 , flag algebra bound .6100), one vertex

in Q4 (d(10000) = 2
5 , flag algebra bound .6025), and all even weight vertices except

one in Q4 (d(10100) = 2
5 , flag algebra bound .6123). We have no idea if the layered

construction is optimal for these configurations, while it probably is for the other 13.

Finally, we have remarked that ifH is a layered configuration inQd then λlocal(H, d) =

1. We suspect the converse is true.

Conjecture 3.8.5. If H is a configuration in Qd such that λlocal(H, d) = 1 then H is

layered.
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