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Abstract

A Tool for Biometric Interpretation of Forensic STR DNA Profiles

Ahmad Jamal Baroudi

Rapid DNA biometric identification applications are becoming more essential and widely
used in human identity validation processes. Despite their powerful identification capabili-
ties, processing a sample to generate a forensic DNA profile still takes longer compared with
other rapid biometric technologies. Methods used to speed up the analysis could lead to
signal artifacts similar to those arising from low copy or degraded DNA samples, making
the electropherogram unsuitable for forensic interpretation and analysis. The goal of this
research effort is to apply biometrics and mathematical approaches to forensic STR (Short
Tandem Repeat) profiles. To accomplish this goal, a multi-function software tool was de-
veloped to evaluate STR profiles in the form of electropherograms. This tool is capable
of generating degraded and non-degraded STR profiles based on allele statistics from the
human population using MATLAB.

The software also acts as an interface to apply a previously developed signal processing
method to recover alleles in electropherograms produced from degraded DNA samples. The
user interface offers the capability of visualizing and comparing those discovered peaks with
the allelic ladder to confirm recovery or a rejection. The software is demonstrated on both
artificial and real degraded STR electropherograms, indicating a higher allele recovery rate
when compared with commercial GeneMapper IDx software. Finally, the software produces
a match score based on the number of matching alleles when comparing two or more DNA
profiles based on the number of existing and recovered allele peaks in the electropherogram.
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1

Chapter 1

Introduction

1.1 Background

Rapid DNA is described as a fully automated or hands-free process in developing a Core

STR profile for CODIS from a reference sample in less than 90 minutes. This consists of

automated DNA detection, separation, amplification, extraction, and analysis (allele call-

ing) and has no requirement for human intervention once the sample has been collected and

placed into the instrument. In 2010 the FBI established a program office to facilitate the

development and integration of rapid DNA technology used by law enforcement, also known

as the Rapid DNA Program Office. The program office works to ensure the coordinated

development of this new technology among federal agencies such as the Department of De-

fense, the National Institute of Standards and Technology, the National Institute of Justice,

and other federal agencies. The program office also facilitates the effective and efficient in-

tegration of Rapid DNA in the booking environment with state and local law enforcement

agencies and state bureaus of identification through the FBI’s Criminal Justice Information

Service Division Advisory Policy Board.

Both forensic science and biometrics can be used to identify a person. The difference is

how they are used and what is needed to apply them. In general forensic science is usually

invoked after an event, whereas biometrics is typically used before the occurrence of the

event; Due to the nature of the biometric systems, the biological traits that will be used

are already known, Whereas, in forensics, the sample is meticulously extracted from a crime

scene. The quality of evidence data obtained is typically lower, also in forensic cases, verbal

reasoning is crucial. Computational efficiency is essential in biometric applications because
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recognition decisions in biometric systems must be rendered in real-time; Forensics does not

require real-time recognition.

Every human possesses a unique genome made up of distinctive characteristics and qual-

ities such as hair and eye colors, blood type, skin color as well as height, and weight.DNA

can be used to distinguish one person from another. Genomic DNA can be found in a hair

follicle, a blood sample, or skin. DNA contains genes. Genes have multiple forms located

in the same position (or genetic locus) on a chromosome. A variant form of a gene is also

known as an allele. Humans have two alleles at each genetic locus, one inherited from each

parent. Each set of alleles depicts the genotype of a specific person. There are two types of

genotypes; homozygous, when there are two identical alleles at a locus, and heterozygous,

when the two alleles are different.

Multiple loci creates a DNA profile known for an individual. STR profiles identify people

from each other by containing alleles at a locus; this makes a very distinctive pattern That

will be different among individuals.

STRs are described as repeated segments of DNA that are typically 2-16 base pairs in

length scattered throughout our genome. There is one STR allele at each locus coming from

the father and one from the mother. In the human population, the number of repeats of each

STR at each locus varies. The variability in repetitions makes STR DNA testing extremely

valuable as a human DNA identification tool.

The result of many biometrics applications does not often require a 100 percent match,

especially since it is comparing the data to an existing database. A biometric match can

consist of a score that designates the similarity between the reference template and the

sample. Typically, this match should never be identical; due to subtle changes over time

and errors in data collection, freshly gathered samples will inevitably vary somewhat from

the reference template. Given this information, a match with 70 percent of degraded data

would be closer to a positive match in the database. Whereas a 40 percent match would

leave you with many possibilities, making this useless and less valuable., If all 20 alleles are

not present, applying signal processing will amplify the signal and improve the amount of

information there. Then performing a matching analysis will get some idea of a match score.

The obtained data can be used to identify a person solely. The final results will be presented

to the person who makes the decision.

The FBI officially launched a nationwide DNA database on October 13, 1998. At the end

of 2003, it was named the Combined DNA index system or CODIS and contained over 1.5
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million STR (short tandem repeat) profiles [26]. This connected all 50 states with a DNA

profile database like the FBI fingerprint database, revolutionizing the ability to use DNA

profile information in linking crime scene evidence to perpetrators. [27] When testing the

core loci of only 13 CODIS, the average random match probability is rarer than 1 in a trillion

among unrelated individuals. This probability was based on the calculation of one million

samples. Although this is an infrequent possibility compared to the world’s population, there

is still a chance that a match might occur knowing that the world’s current population is a

little over seven and a half billion.

Research in this area has rapidly improved over the last decade, leading to a powerful

way to differentiate new loci in the human genome. This is done by using expanded DNA

testing kits, increasing the discriminating power of DNA analysis.

1.2 Problem statement

There are several barriers to the use of DNA as a biometric. One issue is processing

time. However, rapid DNA systems have been developed that can process DNA samples in

1.5hrs or less, and whole genome approaches may become even faster [28]. However, as with

benchtop DNA analysis, these systems are designed to produce results with ‘pristine’ buccal

samples, with called allele count dropping rapidly as the quality of the sample degrades

due to either environmental exposure or a low starting amount of genetic material (low-

copy samples). While these are significant issues in forensic applications of DNA analysis,

biometrics applications of DNA as a unique identifier could benefit from partial information

extracted from low-quality STR profiles that come from degraded and low-copy samples.

This ‘all or nothing’ paradigm of forensic DNA analysis extremely limits the use of partial

or incomplete profiles that could have significant utility in biometric DNA applications. A

degraded DNA sample cannot identify a person if it is missing multiple alleles and/or loci.

DNA‘s degradation can happen as a result of environmental damage prior to DNA extraction

and analysis, leading to partial or incomplete DNA profiles. Incomplete DNA profiles have

diminished uniqueness, especially in large datasets. Generally, these degraded samples will

not be used in the identification process. There have been multiple attempts to match the

degraded profiles with existing profiles in databases [29] [30][31]. And other attempts have

been made using chemical techniques [32], but there have been no attempts to generate and

recover STR profiles using FBI population records and probability ratios.
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1.3 Electropherogram creation

The section below gives an overview of the DNA analysis process, from DNA sample

collection to creating a forensic DNA profile in the form of an electropherogram signal.

In the later sections of this introduction, we will discuss the challenges identified in this

high-level overview.

Figure 1.1: The overall block diagram shows the process to create STR DNA profile in

form of electropherogram signal.
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1.3.1 Sample collection and Storage

Collecting an appropriate sample is essential to the

final DNA sample quality (see Figure 1.2) [1]. A sam-

ple can be collected from varies sources. A Buccal, or

cheek swab, contains a large amount of viable DNA,

while crime scene samples may contain degraded DNA

due to humidity, temperature, or other environmental

conditions.
Figure 1.2: Collecting

DNA sample using Buccal

Swab method [1]

1.3.2 Sample Extraction

After the collection of cells containing DNA, the

DNA must be extracted before further processing can

occur. The extraction method separates and isolates

the DNA from other parts of the cell, such as the other

proteins, nucleus, etc. (see Figure 1.3) [2] It is also dur-

ing this process when the different loci and short tan-

dem repeat (STR) regions of the genomic DNA, which

are critical to forensic DNA analysis, are isolated

Figure 1.3: DNA

extraction method through

laboratories process [2]
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1.3.3 Sample Quantitation

After the DNA is separated from the other cell ma-

terial, the amount of DNA must be measured before it

is amplified (see Figure 1.4) [3]. This process, known

as quantitation, determines how much DNA is present

in the starting sample so that it is not over or under-

amplified in the following amplification process. Figure 1.4: Wavelength method is

used to determine DNA

quantitation [3]

1.3.4 PCR Amplification

The starting amount of DNA in a given sample, even

a buccal swab, is often very small. Therefore, a process

known as the Polymerase Cycle Reaction (PCR) is used

to make exact copies of the various STR regions isolated

in the previous step. The process involves thermal cy-

cles (i.e., heating and cooling) that ‘unzip’ the DNA

double helix and create an exact replica using comple-

mentary nucleic acids. The number of cycles is deter-

mined by the DNA quantity available in the sample.

It is also during this process where STR fragments are

labeled with fluorescence-emitting molecules called flu-

orophores which will allow the STRs of varying sizes to

be detected after separation. (see Figure 1.5) [4]

Figure 1.5: Shows Bio-Rad

real-time PCR detection

systems with multiplex PCR

capability [4]
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1.3.5 Separation/detection process

After amplification, the DNA is injected into a microscale capillary tube containing a

sieving polymer.(see Figure 1.6) [5] A high voltage potential is applied to the capillary from

one end to the other. Because the fragments of DNA have a polarity, the voltage induces

their travel through the capillary, with the sieving polymer causing fragments of different

size to travel at different speeds. DNA fragments of the same size, such as those for a specific

allele, group together as they travel. This process allows the different loci and alleles to be

spatially separated along the length of the channel, making it easier to detect the different

colored fluorescent labels attached to these DNA fragments in the next step.

Figure 1.6: Schematic demonstration of the separation and detection of STR alleles [5]

A photodetector is located at the end of the capillary. As the separated groups of

DNA pass near the detector, they are illuminated by a laser, causing the fluorophores to

emit photons. This emission intensity, proportional to the amount of DNA of a given size

present, is measured, causing an allele peak in the resulting electropherogram (y-axis is

relative fluorescence intensity).
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Figure 1.7: Peak sizing with DNA fragment analysis. (a) An internal size standard is analyzed along with

the DNA sample and used to calibrate the peak data points to their DNA size (b) This standard is labeled

with a different color fluorescent dye so that it can be spectrally distinguished from the STR alleles [6]

The electropherogram has heterozygous or homozygous allele peaks for each DNA loci of

interest. The time it takes for each allele packet to travel through the capillary and create

a peak in the electropherogram when measured at the detector is proportional to the size

of the STR fragments in the packet.(See Figre 1.7) [6] This collection of peaks scattered

in time along the x-axis is compared to a sizing standard that is simultaneously passed

through the capillary with the sample to correlate time with allele size (x-axis is base pair

size, which is proportional to time). In addition, the electropherogram also has an ‘allelic

ladder’ standard that ensures that the allele peak positions correlate with those expressed

in the human population.(see Figure 1.8) [7]
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Figure 1.8: Genotype results on the two samples obtained with AmpFlSTR SGM Plus

STR kit amplification and Genotyper 2.5 analysis. [7]
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1.4 Issues associated with DNA profiling

1.4.1 Sample degradation

Degraded DNA comes from an alleled source of DNA such as skin, hair, blood, etc.

After DNA becomes degraded when its molecules are randomly broken into smaller pieces,

due to environmental exposure. The RFLP technique used high molecular weight DNA

molecules need to be present in a sample to detect large VNTR (variable number of tandem

repeats) alleles (eg., 20 000 bp). To evaluate the quality of a DNA sample, an ethidium-

bromide stained agarose “yield-gel”. In some cases, a ”yield gel” or ethidium-bromide-stained

agarose can be used to evaluate the quality of a DNA sample. Relative to an appropriate

close molecular mass marker, usually high-quality genomic, high molecular weight DNA runs

as a relatively tight band of approximately 20,000bp. Whereas degraded DNA looks like a

smear of much less in size than 20,000bp. Figure (1.10a) [9]

Commonly high molecular weight, high-quality genomic DNA runs as a comparatively

tight band of approximately 20 000 bp base pair relative to an appropriate molecular weight

marker. A degraded DNA sample will appear as a smear of DNA that is much less than 20

000 bp in size. Contemporary PCR methods like multiplex STR typing are great, because

small amounts of DNA can be amplified to a level at which can be detected. It’s now

possible to analyze less than 1 ng of DNA using multiplex PCR amplification of STR alleles,

in contrast with 100ng or more that might have been needed using RFLP several years ago.

The more degraded a DNA sample becomes, the more breaks happen in the template, and

less and fewer DNA molecules contain the full length that is needed in PCR amplification.

[33]

Degraded DNA samples have better results when smaller short tandem repeat (STR)

alleles are used. With restriction fragment length polymorphism (RFLP) and older tech-

nologies, DNA samples that were severely degraded would have been almost impossible to

analyze. A high molecular weight or relatively high molecular mass, DNA molecules needed

to be intact to detect large strands of (variable number of tandem repeat) VNTR alleles that

contain a whole locus for one of the unique loci required (Figure 1.9) [8]

A few short years ago, 100ng or more of DNA was required with RFLP to be analyzed, but

now less than 1ng of DNA is sufficient with the multiplex PCR amplification of STR alleles.

The newer modern-day methods like multiplex STR typing, and PCR methods, are proving
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Figure 1.9: Clarification of DNA fragment sizes for different DNA tests [8]

to be powerful because they only need a minuscule amount of DNA for amplification to the

level where they can be detected. This brings a new challenge yet of avoiding contamination

of the samples by the crime scene technician or police. Officers collecting the biological

evidence must be caution because of tests’ sensitivity to a low copy of DNA. For amplification

to occur, the DNA template must be intact between the primers and where the two primers

bind so that PCR amplification may occur. Primer extension will halt at the break in a

template, and PCR will not be successful if the DNA strand surrounding the STR region

and serving as a template strand is not intact. As a DNA sample becomes more degraded,

more breaks will occur in the template, and less DNA molecules contain the entire length of

loci needed for the PCR amplification. [27]

When STR loci can be amplified, there is a greater chance of the STR primers find-

ing some intact DNA strands for amplification. Also, since both alleles in a heterozygous

individual are similar in size, it is less likely to have alleles drop out during preferential

amplification of the smaller allele, therefore making the narrow size range of STR alleles is

beneficial to the analysis of degraded DNA samples.

The results of several experiments show that there is an inverse relationship in degraded

DNA samples, successful PCR amplification, and the size of the locus, for samples being

obtained from a mass disaster or a crime scene [34][35][36] STR loci with larger- sized am-

plicons are the first to drop out of a DNA profile when significantly degraded DNA samples

are amplified in multiplex amplifications, loci such as CSF1PO and Penta D or FGA and
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Figure 1.10: Degraded DNA impact results [9]

D18S51. (Figure 1.10b) [9]

During one of the first studies of degraded DNA samples, the Forensic Science Service

demonstrated the value of multiplex STR analysis, they obtained and successfully typed a

majority of 73 duplicate pathological samples from the Waco Branch Davidian fire with four

STR markers [34]. On all the samples where alleles were scored, the observation showed

no allele dropout and obtained concordant results. The statement also showed a correlation

between successful typing at a locus and the average length of the alleles at that locus. The

VWA locus containing alleles ranging from 130bp to 169bp had 115 successful amplification,

while the FES/FPS locus containing alleles in the size range of 212bp to 240bp only showed

91 successful amplifications. As part of the Waco identification program, 24 examples were

examined, and amelogenin amplicons (106bp or 112bp) were obtained on all of them. Failing

first were loci with larger alleles [34].

Multiplex STR systems are far superior for analysis of degraded DNA samples over the

DNA markers that were previously used. STRs are less prone to having dropout alleles

than VNTR systems (AmpFLPs) such as D1S80 and are more sensitive than single-locus

probe RFLP methods, and more discriminating than some other PCR-based typing methods.

Ones such as AmpliType PolyMarker and HLA-DQA1 lead to STR profiles, either due to

inhibition or degradation. Figure (1.11) [10]
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Figure 1.11: DNA profiles from different qualities, but same biological sources, in

comparison [10]

1.4.2 Mixtures

Mixtures arise when there is DNA from two or more individuals present in a sample.

Fluorescent measurements paired with PCR sensitivity have advanced technologies more

sensitive. This has dramatically improved the ability to see minor components in the DNA

profile of mixed samples.[29] the presence of a mixture can now be discovered when there are

notable differences in allele intensities or when three or more alleles are observed at multiple

loci in a short tandem repeat (STR) profile. [37]

When two or more individuals are present in a one sample, it is called a mixture. These

“mixtures” can be challenging to interpret and clarify without substantial experience and ex-

tensive training. Compared to what was accessible with RFLP methods just a few years ago,

the potential to detect small components in the DNA profile of mixed samples has advanced

dramatically. Furthermore, the unproven side of statistical calculations for understanding

mixture has been studied more thoroughly [38]

There can be several indications when deciding if a mixture is present. For example, the

loci will display more than two peaks in the expected allele size range. Also, there will be

a peak height imbalance between heterozygous alleles at a locus. Another indication is that

the stutter will appear abnormally high (e.g., 15-20 percent). The Forensic Science Service
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has extensively examined mixture interpretation [39][40]. When three or more prominent

peaks are present at one or more loci, the mixture can usually first be identified. Due to the

possible genotype combinations, a sample with DNA from two different sources at a single

locus can display one, two, three, or even four peaks.

If a mixed stain with two donors shares one or more alleles, the alleles may be ”masked”,

therefore making it hard to decipher the contributing genotypes. For instance, two people

with genotypes 23,24 and 24,24 at the FGA locus, by taking the ratio 1:1, will give us a

percentage of 1:3 for the 23:24 peak sections. A large peak can be found considering stutter

products and no other data with this specific occurrence. Although, this sample could be

analyzed accordingly into its components by studying the STR profiles at other loci with

unshared alleles, i.e., three or four peaks per locus. In a simulated mixture analysis by the

Forensic Science Service, including 120,000 individual STR profiles from their Caucasian

database, scientists attempted to see if masking would occur at every locus in a multiplex

[39]. It was discovered that a more significant amount of the artificial mixtures displayed 15-

22 peaks throughout a six-plex STR marker multiplex. In a mix of two heterozygous people

without overlapping alleles at six STRs, the most significant amount would be 24 peaks.

Consequently, in this instance with random people, simple mixtures are easily identified by

the appearance of three or more alleles at various loci. Only four cases have been noted, with

one or two alleles present at each locus in the six-plex, in over 212,000 pairwise comparisons.

They could be designated mixtures due to peak imbalances [39]. The following steps are

shown in Figure 1.12 [11] and have been taken and applied in an example to show how to

interpret a mixture. In Figure 1.13 [12], two types of DNA could be seen, one female and

the other male, typically seen in sexual assault investigations. The STR markers for the

mixture have been separated into three panels based on their dye label to make each STR

locus easier to visualize. Showing is a presence of more than two peaks at most of the loci,

as D3S1358 contains four peaks, and VWA has three. Also shown here is the imbalance of

the X and Y alleles of the amelogenin sex-typing marker.

It was not likely that there were more than two contributors to the mixture, as there were

not more than four peaks at any one locus. Using universal designations to track possible

allele combinations, the called alleles had been labeled, with letters ‘A’, ‘B,’ ‘C,’ and ‘D.’

By studying the loci with four peaks, a ratio of individuals contributing to the mixture

can be estimated. Figure 1.14 [13] shows labeled peak areas from the green panel STR data.

As observed at both D18S51 and D21S11, four peaks are present. It can be assumed that
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Figure 1.12: Interpretation of Mixture [11]

AD and BC are the best possible combination of alleles to explain the data because A and

D alleles and B and C alleles are similar in the peak areas in D21S11. Just like A and C

alleles have similar peak areas in D18S51 and can be grouped, showing the best possible

combination of alleles at this locus is BD and AC. Then by dividing the amount of larger

alleles (B and C) by the amount of smaller alleles (A and D), you will get a mixture ratio of

about 2:1 for D21S11.

Therefore, the most significant contributor has about twice as much DNA as the smaller

contributor in the mixture. Applying the same equation, the mixture ratio for D18S51 is

about 2:1 for the most significant contributor. Due to the imbalances in heterozygote peak

areas and stutter products. Calculating these ratios at loci with four noticeable alleles is

easier than with one or more shared alleles. With D8S1179, there are three visible peaks, and

at least one of the peaks stands for an allele from both the minor and major contributors.

Every possible mix of alleles has to be thoroughly examined to decide which one best fits

the data.

Shown in Figure 1.14 [13] are the presumed peak patterns for each possible mixture

combination of combination 2:1, including three peaks.

Figure 1.15 [14] gives data for D8S1179, showing AC and BC allele combinations, pre-

senting BC as the major contributor. Hence, allele C (or 14) is shared in the case in D8S1179,

the major contributors genotype is 12,14, and the minor is 10,14. In this mixture, the male
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Figure 1.13: Typical result in a forensic case involving mixed DNA (male/female) samples

[12]

Figure 1.14: Green panel data, peak areas of example mixture [13]
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Figure 1.15: possible peak profiles for mixture combination 2:1, including three peaks [14]

DNA was the major contributor, at two times that of the female. Therefore, it was possible

to see that the major contributor was the male and that alleles 14 and 17 in D18S51, 30 and

32.2 in D21S11, and 12 and 14 in D8S1179 belonged to him. The genotype profile of the

major and minor contributors can be distinguished by processing all the loci in the way it

has been shown above.

• Conclusion of mixtures interpretation:

STR typing procedures have shown to be an excellent way to differentiate components of

mixed samples; these types are often seen in many forensic investigations. Although evidence

sometimes contain multiple stains, not all of them are mixtures. Also, if there are various

samples for testing, the easiest ones to decipher are the ones that should be tested first

[41]. As suggested by Petr Gill, from the Forensic Science Service, a mixture should not be

interpreted unless necessary. His lab [42] studied all mixture STR profiles over four years.
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Only 6.7 % or 163 mixed profiles were solved of 2424 total samples obtained from 1547

criminal cases. Because it is easier to either include or exclude a suspect’s DNA profile from

a crime scene mixture profile, some labs don’t even decipher the genotypes possibilities. A

suspect cannot be removed as a contributor to a crime scene stain if all the alleles from that

suspect’s DNA are present in the crime scene mixture, just as the alleles of a victim’s DNA

profile can be eliminated from the mixture profile to simplify it, thus making it easier to

decipher the perpetrator’s DNA profile.
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1.4.3 Low-copy-number DNA analysis

Using only a few cells from a biological sample to try and generate a reliable STR profile

is like looking for an object in the mud or deciphering the image in a fuzzy photograph.

Some recovered DNA profiles are innocently left before the crime occurred and may not

be associated with the crime itself [39]. At least three artifacts typically arise when LCN

(low-copy number) testing is performed, (1) where an allele fails to amplify due to stochastic

effects, commonly known as allele ”dropout”, (2) allele ”drop-in” when additional alleles

are often observed from sporadic contamination, and (3) enhanced stutter product (non-

allelic data) amounts that are often higher than the typical 5-10 percent of the nominal

allele [34]. When one of the alleles is amplified by chance in the early rounds of PCR in a

preferential fashion, heterozygote peak imbalance is typically exacerbated due to stochastic

PCR amplification. Allele dropout could be an extreme form of heterozygote peak imbalance.

LCN- which stands for low copy number and is probably one of the most commonly used

terms, reflects that small amounts of DNA are examined. Recently some labs have begun to

refer to LCN as low template DNA (LT-DNA) since some collected samples contained as little

DNA as a single [43]. STR typing results have been demonstrated, and the (PCR) polymerase

chain reaction is very sensitive. Positive attempts have been made to recover DNA profiles

from touch evidence, encouraged by this capability. However, unless appropriate measures

are taken to demonstrate the reproducibility of allele calls, this type of low copy DNA

analysis can sometimes question what constitutes reliable results. Efforts have been made

to strengthen reliability with low copy DNA testing, and an approach to improve DNA

sensitivity are addressed here.

To obtain better results from limited biological evidence, a valuable asset is usually

an improved sensitivity in the detection technique. Laboratories have applied what some

term ”enhanced interrogation techniques” because of the failure of getting results with low

amounts of DNA template [44]. Yet DNA testing has been successful while being applied

on a single-cell level (D.N.A. Box 11.3). At the same time, it shows various strategies for

improving sensitivity with low copy DNA samples (shown in Table 1.1) lists some of the

advantages and disadvantages. Increasing detection sensitivity is just like turning up a

radio’s volume, so it can better hear from a distance. Although, as you turn the volume

up, it could distort the quality of the sound. When the sensitivity of PCR is heightened,

contamination of low amounts of DNA from outside sources and the chance of gaining cells
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from secondary transfer typify noise that can obstruct detection of the actual signal.

Strategy Advantage Limitation

Increased Number of

PCR cycle

Create More PCR

Product

Allele drop-in possible

Post-PCR sample Improves injection of

PCR product into CE

capillary

Extra expense to sample processing

stochastic threshold needs to be raised

to avoid homozygote designations

Increased CE injection Improves amount of

PCR product injected

into CE capillary

Stochastic threshold needs to be raised

to avoid false homozygote designations

Reduced volume PCR Concentrates PCR

product relatives to

amount subjected to

CE analysis

PCR inhibitors may be concentrated

causing amplification failure; pipetting

precision can be more challenging

Nested PCR Creates more PCR

product

Prone to contamination because tubes

are opened to add a second round of

primers and reagents

PCR enhancements

(primer positions,

polymerase concen-

tration, etc.)

Creates more PCR

product

Stochastic threshold needs to be raised

to avoid false homozygote designations

mtDNA Higher starting copy

number per cell

Lower power of discrimination; cannot

resolve individuals from same maternal

lineage.

Table 1.1: Pros and cons of different strategies to solve low-copy DNA

1.5 Methods to overcome issues with DNA profiling

1.5.1 Basics of electropherogram creation

It is required that DNA testing is performed in a laboratory with equipment and dedi-

cated facilities that meet the FBI’s stringent QAS (Quality Assurance Standards) require-
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ments. DNA is often tested at the crime scene before being analyzed in a laboratory to

determine the type of biological material in question. Generally, samples are taken directly

from a victim or suspect and then compared to samples collected from a crime scene. These

samples are sent to a laboratory and undergo testing to determine who deposited biological

material at a crime scene. This process starts with an extraction, obtains DNA from the

cell, then moves on to quantitation, determining how much DNA is available. The next step

is amplification, which is when multiple copies of that DNA are produced to be character-

ized, followed by separation, which is done to permit subsequent identification. An analysis

and interpretation process compares the DNA samples qualitatively and quantitatively to a

known profiles. The final step is quality assurance; this is done by reviewing analyst reports

to assure technical accuracy. This process ultimately provides the analyst with a chart called

an electropherogram, which gives a display of each locus tested from the genetic material

present see Figure 1.16 [45] [15]

Figure 1.16: Complete profile for a random individual [15]

The number of alleles in each locus is what determines whether the person is homozygous

(a pair of matching alleles) or heterozygous See Figure 1.17. [16]
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Figure 1.17: The difference between homozygous and heterozygous loci [16]

DNA molecules become degraded by randomly breaking into smaller pieces, this can

happen in several ways. Environmental exposure is a significant degrading factor; other

factors include exposure to water or enzymes called nucleases destroy part of the DNA.see

Figure 1.18 [17].

Figure 1.18: shows a green dye for individual missing information at two of its loci [17]

When any of those situations occur, the alleles are missing from the loci, which leaves us

with a partial DNA profile, also known as degraded DNA [33]
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1.5.2 Biology approaches

It has been a significant challenge to integrate processing DNA to obtain a ”swab- to-

profile” result without user intervention. In August 2010, a report on one such integrated

device from the University of Arizona Center for Applied Nano-Bioscience and Medicine and

the Forensic Science Service was published [46]. A DNA cartridge with wax seals delivered

reagents and samples to the necessary reaction chambers to allow PCR amplification, DNA

purification, and a collection of the amplified product, resulting in less than four hours. This

type of DNA separation is performed by connecting a Teflon tubing to an accompanying CE

chip [47].
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• Reduction of PCR product size (mini STRs)

Comparing established sequences for the same loci that generated longer amplicons, high

and low amounts of DNA were successively typed using some newly redesigned PCR primers

nearest to the STR repeat[32].

Stated in an article entitled “Less is more- length reduction of STR amplicons using

redesigned primers”[32]. If the established sequences are compared to that generated longer

amplicons for the same loci, very low amounts of DNA and highly degraded DNA were

successfully typed, using some newly redesigned PCR primers close to the STR repeat.[32]

Figure 1.19: MiniSTR primers, being closer to the STR repeat region, compared with

conventional PCR primers [18]

STR loci can extend in size past 400bp in commercially available kits. Most of this

length comes from the flanking sequences surrounding the STR repeat of interest. To make

it fit into the desired size range for a multiplex assay, PCR primers are taken away from the

repeat region that imparts variability to the locus [48]

For example, of the core AAAGA, repeat the two PCR primers used for the PowerPlex

16 locus Penta D anneal 71bp upstream and 247bp downstream. Amplifying these PCR

primers gives us alleles ranging from 2.2 to 17 repeats and generates amplicons in a size

range of 376bp to 449bp [35]. For alleles 2.2bp to 17bp, overall PCR product sizes are

reduced from 282bp to a range of 94bp to 167bp, when primers are brought to within 11bp

upstream and 247bp downstream of the repeat region [49]. (Figure 1.19) [18] miniSTR in
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STR’s” or the size reduction principle when making smaller STR amplicons. Some loci can

be smaller in size than others. Since the size aspect has been taken away, this creates several

disadvantages, meaning that only a few loci can be amplified simultaneously.

Figure 1.20: is depicting relative dye and size labels of PCR products generated with

MiniFiler STR and Identifiler kits [19]

Primers are shifted away from the repeat region to create larger PCR products. Four or

more loci are packed into a single dye color in large multiplex assays such as GlobalF ilerTM

(PCR Amplification kit). Because all of the loci have almost the same size range of 100bp,

“typically only having one locus per dye color,” the “mini-plexes” created for amplifying

miniSTRs have primers that are as close as possible to the repeat region [49].

Applied Biosystems managed to put eight miniSTRs and amelogenin into their single

amplification MiniF ilerTM kit by using mobility modifiers to adjust the electrophoreti-

cally ob-served PCR product sizes [50] (Figure 1.20) [19] To verify that allele dropout from

primer binding site mutations is rare or non-existent, concordance studies must be per-

formed because different PCR primers are used with miniSTRs compared to conventional

STR megaplexes [51]. This is done by examining the genotyping results and comparing them

to see if they are the same between the primers sets [27]. Sometimes, a deletion, insertion,
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and even a point mutation can occur outside a miniSTR primer binding site in the flanking

region. This can lead to undetectable and problematic differences in a heterozygous allele

call [49][52][51]. It is likely that miniSTRs will be used in the future analysis of degraded

DNA, no matter the disadvantages. It can help recover information on larger loci that have

been lost using conventional megaplex amplification.

MiniSTR loci performed better than loci from a commercial STR kit, with enzyme-

digested DNA [53]. Using only burned and damaged bone samples, some victim identifica-

tions from the World Trade Center were possible thanks to reduced size STR assays [54].

Reduced-size STR amplicons have been used to type a lot of DNA successfully, even telogen

hair shafts, which contain very little nuclear DNA. [55][56][57].

The European DNA Profiling Group (EDNAP) published results of a study in 2006,

con-taining degraded DNA samples where miniSTR primer sets were compared to conven-

tional STR multiplex kits and an experimental single nucleotide polymorphism (SNP) assay

[58].Leaders of the European community were led to advocate for miniSTR loci in future

STR kits because all the miniSTR assays performed the best on degraded DNA samples [59].

• New miniSTR Loci

MiniSTR systems currently being used in forensic DNA typing and STR loci are being

developed to focus on small size ranges and loci processing low copy samples. A battery

of additional assays has been made available to assist forensic practitioners working with

degraded DNA specimens.

MiniSTR systems that are currently used in forensic DNA typing and STR loci other

than the CODIS markers have been developed with a focus on loci possessing few alleles

and small size ranges [60][61][62]. A battery of additional assays have been made available

to assist researchers and forensic practitioners who work with degraded DNA specimens. A

set of 26 new miniSTR loci taken from over 900 candidate STR loci with multiple allele

ranges and the capability to create PCR primers close to the flanking range were selected by

scientists at the U.S. National Institute of Standards and Technology (NIST) [61][63]. While

26 of these loci were characterized in U.S. population samples (Figure 1.21), 25 of them were

added to amelogenin and put in a single 26plex assay for typing reference samples [64].
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Figure 1.21: 26 miniSTRs Characterized at NIST
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1.5.3 Neural network approaches

Recent studies have explored the possibility of using neural networks to evaluate DNA

profiles. While some of them confirmed the possibility of replacing human validation with

a specific type of neural network, others investigated the possibility of recovering damaged

DNA samples. I have listed a few of these studies and efforts below.

• Evaluation of STR typing by neural networks as a replacement for human

reading

Two forensic laboratory personnel typically interpret the STR capillary electrophoresis pro-

file data independently, compare results, and resolve any discrepancies. Recent research has

focused on developing a machine learning tool that classifies areas of fluorescence in raw

capillary electrophoresis profile raw signal data in the same way as a human profile reader.

For reading GlobalFilerTM DNA profiles, FaSTRTM DNA has integrated the ANN approach.

A test was carried out at Forensic Science South Australia (FSSA) to determine if one of

the human profile readers could be replaced by an ANN reader using the ANN feature of

FaSTRTM DNA. In reference profiles, FaSTRTM DNA accuracy was 99.7% and was deemed

high enough to be incorporated into the FSSA’s reference reading workflow as a one-reader

workflow.[65]

Validation work presented in this research shows the FaSTRTM DNA software performs

to a high standard and is suitable for supplementing or replacing existing forensic analysis

software. As a result of this research, ANNs are a significant step forward for improving

routine processes and applying lean thinking principles. This can be used in the majority

of forensic laboratories. DNA profile analysis still has room for further innovation using

machine learning algo-rithms. As an example, one could eliminate the use of ATs (and

evaluate all scan points inde-pendently as a baseline, pull-up, stutter, or allele) for complete

information to be extracted from an EPG. When using a semi-automated system that re-

quires human decision-making, there is the potential to train the underlying ANN within

the software, which needs further research. In such a scenario, the human reader would

override decisions made by the ANN, allowing it to make better peak classifications and

to learn from wrong decisions run by run, strengthening the algorithm over time. Several

questions must be considered moving forward, including whether or when machine learning

algorithms will completely replace human reading, as well as the risks, policy requirements,

and modifications needed for existing accreditation obligations.[65]
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• Bayesian model for peak detection using (LC-MS) untargeted data

The present study develops a Bayesian peak detection algorithm for liquid chromatography-

mass spectrometry (LC-MS). With the probabilistic result, one can make a final determi-

nation about which points in a chromatogram are the result of chromatographic peaks. In

contrast, some points are merely the result of noise. Probabilities contrast the traditional

method, which relies on a threshold to determine a binary answer. The Bayesian peak detec-

tion presented here, on the other hand, allows the values of probability to be propagated into

other preprocessing steps, potentially increasing the importance of chromatographic regions

to the final results (or decreasing their significance). The present study uses the statistical

overlap theory of component overlap from Davis and Giddings as a prior probability in the

Bayesian formulation. [66]. It was demonstrated that the algorithm was successful in dis-

tinguishing chemical noise from actual peaks to be used with LC-MS Orbitrap data without

any preprocessing.

Bayesian statistics is becoming a valuable tool in many areas of analytical chemistry.

A case in point would be peak detection, where (unlike the conventional binary ”yes” or

”no” result applied by most existing algorithms), a Bayesian statistical model could offer

a solution that would allow the end-user to incorporate the prior knowledge they already

possess with the probabilistic outcome in order to reach an informed decision. As a result,

threshold-based approaches delivering binary answers are likely to generate spurious results.

Data preprocessing and filtering do not appear to be necessary with the current algorithm.

In addition, the method doesn’t use any threshold. As a result, the data is just weighted

with a probability score that can be propagated into other processing steps. In contrast,

the data is discarded as part of the peak detection process. Using this algorithm, This

method proved that the statistical overlap approach from Davis and Giddings is able to

fully integrate the overlap theory, as well as being robust against errors in the parameters

(noise in the signal and N/nc). Considering the computation time required to implement

the proposed method for each chromatogram, the proposed method might not be feasible.

By using the approximations presented, the computation time can be reduced by a factor

of 10, resulting in nearly the same results. Nevertheless, 10% error does not equate to 10%

of features, but to 10% of possible data points. Feature detection does not significantly

differ if a 10% loss of information is distributed across different regions in 2D space, because

the user can make the final decision based on the cluster of probabilistic results. As a
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competitive feature detection algorithm, Bayesian 2D peak detection can be used because

of its sensitivity to detect especially low-abundant peaks in raw LC-MS data, which are

typically more biologically/chemically significant. [67]

1.5.4 Prior accomplishments by Dr. Dawson’s research group

The endeavor and difficulty of finding the location of STR peaks were formulated as a

problem of anticipating the shape of signals using differentiation. A peak-type electrophero-

gram signal was provided in STR analysis data; in its first derivative, the location of the

maximum could be computed as the zero-crossing points. Positive peaks are detected in

the smoothed first derivative by looking for zero-crossing points. Discrimination is based

on an adaptive amplitude threshold of the loci peak amplitude. This identifies the com-

mercial STR electropherogram analysis software’s inability to detect drop-out STR peaks in

degraded DNA samples. The systems work on a fixed ”quality” threshold set by the forensic

lab. The software does not call (i.e., measure) an allele peak below the threshold. A more

accurate model of the noise in the input DNA signal has been developed by improving the

quality of the signal before its peak detection. To allow reconstruction of the signal based on

characteristics of a pristine DNA sample, the modeled noise from the degraded DNA sample

has been subtracted to obtain a short tandem repeat (STR) analysis involving degraded

DNA samples. Lastly, an automated scheme for quality enhancement and assessment for

DNA signatures has been created. [68].

1.6 Motivation and Impact

Every day in the US, the number of unsolved crime cases increases. Many cases could

easily be solved if the collected DNA samples could be processed. Unfortunately, many

samples are not collected or stored correctly. Whatever the reason is, it leaves millions

of degraded DNA samples sitting in evidence rooms, as well as millions of unsolved cases.

With the developed system, some of these samples may be useful again. Those can be rerun

through the database system and possibly connect a suspect with a crime committed years

ago. On the other hand, it would be easier to access a device, pay a bill, or even send money

worldwide with today’s technology. And all of this can be done instantly by using biometrics

techniques. It has been a decade of fast technological advances, and what used to take hours
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to verify can now be done in milliseconds. In the world of biometrics, a DNA sample could

be one of the most potent ways of identifying a person. In today’s world, you can change

eye color and modify many identifiable traits in the human body, but one thing that cannot

be altered is a person’s DNA. If a database of DNA profiles for each human is established

and linked to their personal information and government identification, there would be no

way to misrepresent this person, which decreases the crime rate, improves society, eliminates

identity theft, and makes it a problem of the past.

The goal of this thesis is to develop a way to artificially generate STR degraded and

non degraded profiles based on 2017 FBI population genetics [69] using signal processing

techniques developed into the graphic user interface.

The research goal can be accomplished by completing the following tasks:

Task A: Generation of artificial electropherograms based on population ge-

netics

To have realistic and efficient results, a giant database is needed to run peaks finding

developed method through. This will help to ensure that the conclusion represents the best

available choice. Since it is hard to obtain real profiles from existing labs and there are

few available through any other sources, the study uses an STR generator to find real STR

peaks. The developed STR profile generator can produce many artificial profiles using the

latest probability loci chance from the FBI database. This will give the used approach higher

efficiency, with a realistic rate of 100 percent of obtained data ratio, while assisting us in

the recovery of missing alleles. By running the profile generator, discovered are may apply

developed approaches to recover partial profiles.

Task B: Match score for degraded profiles

The developed software can represent all the recovery methods and matching scores that

the WVU engineering group has achieved to move the research methods and the obtained

results to the next level. It is always helpful to know how much of the degraded profile

checking. The used database assists us in finding the closest possible match by comparing

the degraded profile to the NIST (National Institute of Standards and Technology) artificial
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database to see if there are any matches by the ratio in the whole database. This excludes

a lot of profiles existing in the database, which enhances the conclusion. This is done best

by generating match score matrices. Then compare each allele in the degraded profile to all

profiles in the existing database, followed by scoring each locus by either zero or one, then

adding all loci matching numbers together to obtain a profile score. Finally, by compar-

ing them to each other, which include sorting them in descending order to find the closest

match once we get “38”, double the number of loci included in the 20 CODIS identifying

DNA mapping. It can be considered a perfect match, meaning, The DNA profile sample we

were looking for is found, which can be used once it develops more as one of the biometric

matching techniques.

Task C: Apply peak detection and signal recovery enhancement

After enhancing the quality of the STR profile signal, A script has been written to detect

the peaks in any signal. The GUI (Graphic user interface) can display the height and size

for each allele in the DNA profile enhancing program, calculating the quality ratio and

denoising for any signal—finally, adding and combining all those scripts into one GUI for a

better user experience. The new system shows all degraded alleles in any STR profile signal

by enhancing and denoising them. In the end, this gave a whole and complete method to

recover the STR profile, which can be used to study and recover any degraded STR profile

data.

This research contains two advanced tools that will vastly open the door to validate

and assist all future biometrics research. First, the STR generator tool will help create an

unlimited number of STR profiles which can help to expedite the validation process to any

new signal processing methodology that needs to be proven. Creating and degrading an

artificial profile with a different degradation level can lead to a more robust result-driven

method with unlimited samples to test on, which can solve a challenging problem research.

Secondly, the enhancement tool can impact biometrics applications differently by taking

a swab from an individual to create an STR profile. This individual who is initially trying

to cross a border or seek asylum in a foreign country and comparing his DNA profile to an

international database with worldwide criminal records, can in result, expedite and redirect

an investigation to an individual in the right direction and will eliminate the possibility of

acceptance in case of a possible match and provide validation for his records.
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1.7 Overview of thesis

This section provides a short hierarchy of signal processing for degraded DNA as a bio-

metric module its pros and cons. Also, the assessment of used algorithms and implementation

of the various user interfaces are discussed. The rest of the research is ordered as follows:

• Chapter 2: indicates a summary of the basic terminology related to DNA typing,

describing the biological laboratory processes which are used to recover a degraded

DNA sample, in additional for an overview of used signal processing methodology.

• Chapter 3: describes the method behind developing STR profile generator based on

FBI population statistics of 2017. It explains in details how we can form a data set of

STR profiles starting from just alleles probabilities.

• Chapter 4: contains all the techniques that have been used to degrade the artificial

STR profile. Also discussed are added noise characteristics with examples for some

common values.

• Chapter 5: contains all the mathematical calculations and signal processing theories

that have been used to analyze STR profiles and perform signal processing to degraded

alleles to provide a partial or complete recovery for the tested profile.

• Chapter 6: summarizes the conclusions from all results and discuss possible future

extensions to this work scoop
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Chapter 2

Theory

2.1 Describing DNA typing

DNA sample processing has been developed throughout the years, evolving the ability

of forensic science to match criminals with cases. The number of closed cases increases with

criminals behind bars while more wrongfully accused are freed using the power of hidden

forensic techniques.

A summary of the biological process is clarified in figure (2.1) [20]. After collecting all

sample materials from a crime scene or individuals, DNA gets extracted from its biological

sources and is then quantified to calculate the measurement of recovered DNA. Certain re-

gions of captured DNA are multiplied with PCR (Polymerase Chain Reaction). By using

commercial kits, concurrent PCR of 20+ short tandem repeat (STR) markers can be com-

monly enabled. STR alleles are illustrated in correspondence to PCR amplification, where it

remains by measurements utilizing capillary electrophoresis and statistics scanning software.

A statistical illustration evaluates the exception of the alleles from created DNA profiles,

which might be a mixture or individual based on the data origin.
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Figure 2.1: Overview of steps involved in DNA testing [20]
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2.2 Rapid DNA analysis

Living in a quick, rapid era where any type of technology would be almost obsolete

in five or ten years makes it hard to foretell the future of forensic DNA typing a decade

from now. It results from the parallel efforts in all sciences, and our case: biotechnology

developments tools for forensic DNA analysts. Forensic DNA typing techniques have been

improved rapidly over the past two decades but settled down into two major concepts: (1)

short tandem repeat (STR) typing (2) capillary electrophoresis detection. The innovations

have changed almost every single aspect related to DNA profile typing. There’s always a

huge desire to achieve faster DNA analysis, greater detection accuracy, and more powerful

discrimination capabilities. Below, we will review some ongoing efforts with expert systems

for DNA profile analysis.

2.2.1 RapidHIT 200 Rapid DNA Profiling System

IntregenXTM developed RapidHITTM 200 Human DNA Identification System (See Fig-

ure 2.2) [21] . STR-based Human Identification (HID) is a first-of-its-kind fully automated

system created by IntegenX. Microfluidic and STR-based chemistry are integrated for the

success of the IntegenX system. Up to eight buccal swab samples are loaded into disposable

cartridges of reagents, and then the system initiates sample processing without further user

interaction. In about 90 minutes, the system extracts DNA from the samples, amplifies

it, separates it by electrophoretic gradient, and analyzes it using software to generate full

DNA profiles. Data for the U.S. market are stored in CODIS-compatible format within the

embedded GeneMarker HID R© software (SoftGenetics R©, LLC). If necessary, additional data

formats are available [70]. NDIS law enforcement booking stations will be able to use the

RapidHITTM ID DNA Booking System v1.0 starting July 1, 2021 [71].
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Figure 2.2: RapidHITTM 200 instrument by IntegenX [21]

2.2.2 ANDE Rapid DNA instrument

A CODIS Core Loci STR profile can be generated from a buccal swab using Rapid DNA

by ANDE’s completely automated (hands-free) process. Without human intervention, ”swab

in - profile out” involves automatic extraction, amplification, separation, detection, and allele

calling.

ANDE received FBI approval for the National DNA Index System (NDIS) on June 4,

2018, DNAscan 6C Rapid DNA Analysis System. As a result of this approval, NDIS accred-

ited laboratories can use the ANDE system to analyze DNA samples and search resulting

ANDE DNA IDsTM against the FBI’s Combined DNA Index System (CODIS) without

manual interpretation and technical review.

Under the Rapid DNA Act of 2017, DNA will be taken from arrestees in police booking

stations with the intent of identifying arrestees who are wanted in connection with rapes,

murders, and other crimes while they are still in custody (instead of releasing them without

testing for DNA evidence as it currently is). The rapid identification of suspects through
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DNA testing of arrestees can dramatically reduce violent crime by identifying repeat of-

fenders. ANDE is the first Rapid DNA System to receive NDIS approval for use in police

booking stations imposed by the Rapid DNA Act of 2017 [72] (Figure 2.3) [22]. NDIS law

enforcement booking stations will be able to use the ANDE 6C Series G starting February

1, 2021 [71].

Figure 2.3: The ANDE Rapid DNA instrument - FBI NDIS Approved [22]
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2.2.3 Summary of rapid DNA technology uses

In addition to being essential in forensics, rapid DNA technology is critical to immigration

controls. As of May 2019, ICE and U.S. CBP (Customs and Border Protection) piloted a

program with Massachusetts-based ANDE to expose’ ’family unit fraud,” which involves

asylum-seekers posing illegally as biologically related by traveling with their children. An

expansion contract worth $5.2 million was awarded to Bode Cellmark Forensics, Inc. in

June 2019. Test refusal may be considered in the amnesty conditions, despite the fact the

tests are voluntary. Privacy advocates question whether the program is genuinely voluntary,

uses a narrow definition of a family, and whether it could lead to errors.[[73]. The US

Department of Defense and related intelligence agencies have supported the development of

rapid DNA systems that can be applied to forward field operations. In addition to developing

DNA profiles from buccal swabs, the RapidHIT and ANDE systems can also analyze tiny

amounts of samples, like the residue left on a glass after a suspect had used it. According to

reports, the US military has tested several DNA-based systems to combat terrorism globally.

[74].

2.3 Types of signal non-idealities (Drop-out, Drop-in,

Stutter)

Getting results from low amounts of template DNA still has several challenges. However,

STR typing results have been obtained from as little as a single buccal cell using fluorescent

multiplexes. An underlying scientific obstacle of stochastic amplification can be faced when

attempting to produce results with a low copy of DNA because of a random amplification of

alleles. When a weakened DNA template-to-primer-to-polymerase ratio exists, the stochas-

tic effects occur. However, sample enrichment techniques like whole genome amplification

have been used [36]. Four artifacts commonly arise when enhanced detection methods are

employed. (1) Allele drop-out, an allele present in the original sample, fails to amplify due

to stochastic effects. See Figure 2.4. [23]
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Figure 2.4: Challenging with low copy DNA samples. (2) Allele drop-in, due to sporadic

contamination, more alleles are often observed in the DNA profile (3) Heterozygote peak

imbalance, because of stochastic PCR amplification it is often exacerbated and (4)

Increased stutter, when the stutter products are higher than the normal 5% to 10% of the

symbolic allele.[23]

When testing with small amounts of DNA, stochastic effects cannot be avoided, so basi-

cally there are two thoughts on how to work with these types of samples: (1) try to confine

the impact of stochastic variation by more testing and cautious expedition guidelines based

on affirming studies, or (2) stop testing or decipher the data before it becomes low enough

to be in the stochastic realm [44] Those who support the first method usually increase their

procedure responsiveness, like enlarging the number of PCR cycles. They may get as many

possible ones from the limited sample. While the other approach usually includes duplicate

testing and the expansion of consensus profiles.
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Figure 2.5: Summary of Performance and sensitivity for Identifiler with 28 and 31 cycle

data [24]

In Figure 2.5 [24] the results of one sample tested using the Identifiler kit at 28 cycles

and 31 cycles can be seen. By using a larger number of cycles (31 cycles) more correct

genotypes can be obtained, as shown by the green squares in the figure. The success rate

for a correct heterozygous call is shown to have improved with the three extra PCR cycles

from 60% (290/480 possible) to 88% (423/480 possible). The most substantial improvement

from locus drop-out to correct genotype can be seen at the 10pg level as shown in the figure

with red-to-green squares, where full genotype recovery was enhanced from 4% (7/160) to

68% (108/160). When using 31 cycles, the three DNA amounts tested show that the allelic

drop-out amounts fell from 14% (65/480) to 9% (43/480). Also, the locus drop-out lowered

from 26% (125/480) to 2% (10/480), showing that the overall success rate and sensitivity are

enhanced by increasing the number of cycles. Unfortunately, allele drop-in occurred in four

cases while using a more significant number of PCR cycles, as shown by the black squares in

the figure, while none occurred when using a lower number of cycles. The probability of allele
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drop-in reveals the significance of duplicate amplifications growth of consensus profiles elude

miscalls when employing increased interrogation techniques. Performing ten amplifications

cannot be done if the sample recovered DNA is restricted to a limited amount of amplification.

Furthermore, if a larger DNA sample were available, the example would most likely be used

in a single high copy DNA analysis rather than dividing it into multiple samples. When

doing forensic casework, low amounts of DNA template retrieved from evidentiary items and

DNA degradation or PCR inhibition can complicate elements. It can be tough to retrieve the

correct profile of the first contributors to the mixture, the stochastic effects become worse,

and the single components will be even smaller in size when we are observing mixtures at

low DNA amounts. Statistical procedures that account for allele dropout become an option

when a complete profile cannot be retrieved, even by using replication and consensus.

2.4 DNA profile generator (Data source)

To prove any new biotechnology method or computer program, you need to run it and

test it against proven legacy methods. This will provide a standard ground accuracy that

can later be a globally used solution. For this reason and during this research, the most

significant difficulty was providing enough data from random samples to support the used

technique. This is why a new software is invented, which most labs will be using soon. It is

called (DNA profile generator).

This computer software has been developed in Matlab; its main idea is to generate all

possible situations in humanity. This’s based on population genetics taken from the NIST

DNA database.

FBI population database release of 2017 is used. This release has nine races. Each of

those races differs from the others in two major aspects. Firstly, the locus that might exist in

that race, and secondly, the alleles that might be found. The final DNA profiles are generated

using GlobalF ilerTM chemical kits, and the script is built to match that. Therefore, only

the locus in that kit will be shown.

There are 87 possible allele sizes per locus. Each locus should have two alleles. One to

represent each parent. According to population genetics, each allele has a different proba-

bility of appearing in the profile. The script will randomly choose from available options.

This depends on its chance and will fill out the loci with two alleles. Then it moves to

the following loci until it picks up all alleles and builds an artificial DNA profile completely
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extracted from those probabilities. At the same time, it might match the DNA profile of

someone who lives somewhere else.

2.5 Signal processing methodology

Measuring peaks in a signal and their measurement of positions, heights, widths, or areas

are common aspects of scientific data processing. In this technique, we take advantage of the

fact that a peak’s first derivative has a downward crossover at its maximum [75]. In actual

experimental signals, however, there will be a lot of false zero crossings as a result of random

noise. This problem is avoided by first smoothing the signal’s first derivative, then looking

for zero crossings in the downward direction and selecting only those whose slope exceeds

a certain minimum. This property is called the ”slope threshold”) at a point where the

original signal exceeds a certain minimum (called the ”amplitude threshold”). The smooth

width, slope threshold, and amplitude threshold can be carefully adjusted so that the filter

detects only the desired peak and ignores peaks that are too narrow, too wide, or too small.

Further, this approach can be extended to estimate each peak’s location, height, and

width in the vicinity of a zero-crossing by fitting a segment of the unsmoothed signal to

a least-squares curve. Consequently, even if heavy smoothing of the peaks is necessary to

discriminate from noise, peak parameter estimation by curve fitting is not adversely affected

by smoothing. The effect of random noise in the signal is reduced by curve fitting over

multiple points in the peaks. This technique can be measure peak heights and positions.

However, measurements of peak widths and areas are more accurate when peaks are Gaussian

shaped.

The functions locate the positive peaks in a noisy data set, perform a least-squares curve-

fit on the upper half of the peak, then compute the peak’s position, height, and width. We

define FitWidth as the number of points around each peak top fitted in the script (6th input

argument). In addition to the peak number and the estimated position, height, width, and

area of each peak, the other arguments will return a list (in matrix P). The program can

detect and curve-fit over 2,800 peaks per second in very large signals. A signal with multiple

points in each peak will find this helpful, rather than spikes with only one or two points.
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2.5.1 Fitting Gaussian peaks:

The natural logarithm transformation is used to convert a positive Gaussian peak to the

form that can be fit by polynomial curve fitting. [76] which has the fundamental functional

form exp(−x)2, ), into a parabola of the form −X2, Which can be fit with a second order

polynomial (quadratic) function:

γ = α + bx+ c(κ)2 (2.1)

The equation for a Gaussian peak is:

y = h ∗ exp(−((x−P)/(1/(2 ∗ sqrt(ln(2))) ∗w))2)) (2.2)

where h is the peak height,P is the x-axis location of the peak maximum, w is the full

width of the peak at half-maximum. The natural log of y can be shown to be:

log(h)−
(
4 ∗P2log(2)

)
/w2 + (8P ∗ log(2)) /w2 −

(
4 ∗ x2log(2)

)
/w2 (2.3)

Which is a quadratic form in the independent variable x because it is the sum of x2, x,

and constant terms. Expressing each of the peak parameters h, p, and w in terms of the

three quadratic coefficients, equation to calculate all peaks parameters. [75] will show the

peak (height, maximum position, and width) can be calculated from the three quadratic

coefficients a, b, and c; it’s a classic ”3 unknowns in 3 equations” problem. The peak height

is given by:

exp
(
ac ∗ (b/(2 ∗ c))2

)
(2.4)

The peak position by

−b/(2 ∗ c) (2.5)

The peak half-width by:

2.35482/ (sqrt(2) ∗ sqrt(−c)) (2.6)

This is called ”Caruana’s Algorithm” [77]. The area under the Gaussian peak of height

”height” and full width at half maximum ”width” can be shown to be:

1.064467 ∗ height ∗ width (2.7)
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Figure 2.6: Shows how to calculate peaks parameters using Gaussian fit[25]

One advantage of this type of Gaussian curve fitting, as opposed to simple visual estimation,

is illustrated in the figure (2.6). The signal is a Gaussian peak with a true peak height of

100 units, a true peak position of 100 units, and a true half-width of 100 units, but it is

sparsely sampled only every 31 units on the x-axis.

Table below data points, shown by the red points in the upper left, has only 6 data points

on the peak itself. If we were to take the maximum of those 6 points (the 3rd point from

the left, with x=87, y=95) as the peak maximum, we’d get only a rough approximation to

the true values of peak position (100) and height (100). If we were to take the distance

between the 2nd the 5th data points as the peak width, we’d get 3*31=93, compared to the

true value of 100. If we were to attempt to estimate the area under the peak from those

measurements, we would get 1.064467 ∗ 95 ∗ 93 = 9404.6, much lower than the theoretical

width of 1.064467 ∗ height ∗ width = 10644.67.
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X Y

25 21.56

56 60.3

87 93.16

118 92.27

149 51.71

180 15.65

Table 2.1: Original data points with Computed Gaussian fit

However, taking the natural log of the data (upper right) produces a parabola that

can be fit with a quadratic least-squares fit (shown by the blue line in the lower-left panel

Figure(2.6))[25]. From the three coefficients of the quadratic fit, we can calculate much

more accurate values of the Gaussian peak parameters, shown at the bottom of the figure

(height = 100.93; position = 99.11; width = 99.25; area = 10663). The panel in the lower

right shows the resulting Gaussian fit (in blue) displayed with the original data (red points).

The accuracy of those peak parameters (about 1% in this example) is limited only by the

noise in the data. In order for this method to work properly, the data set must not contain

any zeros or negative points; if the signal-to-noise ratio is very poor, it may be useful to skip

those points or to pre-smooth the data slightly to reduce this problem. Moreover, the original

Gaussian peak signal must be a single isolated peak with a zero baseline, that is, must tend

to zero far from the peak center. In practice, this means that any non-zero baseline must be

subtracted from the data set before applying this method.

2.5.2 Slope method and math details:

The least-squares best fit for an x,y data set can be computed using only basic arithmetic.

Here are the relevant equations for computing the slope and intercept of the first-order best-

fit equation:

y = intercept+ slope ∗ x (2.8)

as well as the predicted standard deviation of the slope and intercept, and the coefficient

of determination, R2, which is an indicator of the ”goodness of fit”.
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(R2 is 1.0000 if the fit is perfect and less than that if the fit is imperfect).

n = number of x,y data points

sumx =
∑

x (2.9)

sumy =
∑

y (2.10)

sumxy =
∑

x ∗ y (2.11)

sumx2 =
∑

x ∗ x (2.12)

meanx =
sumx

n
(2.13)

meany =
sumy

n
(2.14)

slope =
n ∗ sumxy − sumz ∗ sumy
n ∗ sumx2 − sumx ∗ sumx

(2.15)

intercept = meany − (slope ∗meanx) (2.16)

ssy =
∑

(y −meany)2 (2.17)

ssr =
∑

(y − intercept− slope ∗ x)2 (2.18)

R2 = 1− (
ssr

ssy
) (2.19)

Standard Deviation of the slope = SQRT

(
ssr

(n− 2)

)
∗

SQRT

(
n

(n ∗ sumx2 − sumx ∗ sumx)

)
(2.20)
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Standard Deviation of the intercept = SQRT

(
ssr

(n− 2)

)
∗

SQRT

(
sumx2

(n ∗ sumx2 − sumx ∗ sumx)

)
(2.21)

(In these equations, Σ represents summation; for example, Σx means the sum of all the x

values, and Σx ∗ y means the sum of all the x * y products, etc).

The last two lines predict the standard deviation of the slope and the intercept, based only

on that data sample, assuming that the deviations from the line are random and normally

distributed. These are estimates of the variability of slopes and intercepts you are likely

to get if you repeated the data measurements over and over multiple times under the same

conditions, assuming that the deviations from the straight line are due to random variability

and not systematic error caused by non-linearity. If the deviations are random, they will be

slightly different from time to time, causing the slope and intercept to vary from measurement

to measurement, with a standard deviation predicted by these last two equations.[78]

The reliability of these standard deviation estimates depends on assumption of random

deviations and also on the number of data points in the curve fit; they improve with the

square root of the number of points.
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Chapter 3

STR Generator

To verify the Peak Finding method, two different types of data were considered: 1) real

data from an actual rapid DNA instrument, and 2) artificial STR data. In Case 2, a software

tool was developed to create an unlimited number of STR profiles based on population

genetics statistics [69]. The enhancement tool was tested on artificial STR profiles and

samples from the FBI National Institute of Science and Technology (NIST) database to

ensure credibility. Creating each STR profile included four main steps: 1) creating the main

structure for the artificial signal, 2) degrading the sample based on an exponential function,

3) adding a random noise signal to it, and 4) creating several profiles based on user entry

(Figure 3.1). The following sections discuss how each step was accomplished, the difficulties

along the way, and how these difficulties were solved.

3.1 Overall STR profile structure

The FBI’s population genetics release of 2017 was used to build each profile, as shown

in Appendix A, for the blue dye channel. This release contained all alleles in each locus

and its probability was registered from collected samples. A system was built for each

locus to identify all possible outcomes. The outcomes for each locus were then listed in a

table for a special script to randomly choose alleles from each table depending on its weight

(probability), as shown in Appendix B. The GlobalFiler chemical kit was used as a reference

while developing the script. The script identified all alleles that may appear during alleles

calling progress in four different dyes (blue, green, yellow, and red). It was designed to select

an allele and generate one dye before moving on to the next allele. Profiles were generated
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via the script in the following order: blue, green, yellow, then red. Each dye had the following

alleles:

• Blue dye: D3S1358, vWA, D16S539, CSF1PO, TPOX

• Green dye: Yindel, AMEL, D8S1179, D21S11, D18S51, DYS391

• Yellow dye: D2S441, D19S433, TH01, FGA

• Red dye: D22S1045, D5S818, D13S317, D7S820, SE33

Figure 3.1: The overall block diagram shows step by step functionality of the STR profile

generator.
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3.2 Detailed Functions description:

The script uses a combination of inputs a user can determine depending on why the

user is generating a profile. The script will create two folders in the same location as the

main file. The first folder will have a determined number of non-degraded profiles while the

second folder will have the same number of artificial profiles but in a degraded form. The

following sections discuss each step in detail and what choices can change the outcome of

the generated profiles.

3.2.1 User input

After running the executable file, the user determines the following three inputs: the

number of generated profiles, the level of degradation, and the required amount of added

white Gaussian noise.

• Degradation level:

Users can determine the level of degradation depending on why they generate artificial

profiles. This is essential to the degraded profiles outcome. This item is discussed more in

detail in Chapter 4. Users can enter any number between 1 and 20. If a user tries to enter

a character, a negative number, or a positive integer greater than 20, the system errors out

and displays an error message (Figure 3.2).

Figure 3.2: The error message when entering an invalid value.

• Number of artificial profiles:

Users can determine the total number of artificial profiles based on the number of needed

profiles to perform a complete validation for their research purposes. When executing the

final STR function, it goes into a “FOR” loop. This “FOR” loop repeats the entire profile

generation process to create a different STR profile than the one that has been just created.
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The number of artificial profiles is determined by the user at the beginning of the exe-

cuting process. Choosing an input value equal to “1” will generate two profiles: one non-

degraded profile in a .MAT file and an exact matching degraded profile in another file. The

non-degraded file will be generated in the “STR sample” folder, while the degraded one will

be created in the “degraded STR sample” folder. As another example, choosing a value of

“5” will result in five different STR profiles in the “STR sample” folder and another five

degraded profiles in the “degraded STR sample” folder.

The user can enter any positive integer to determine the number of copies needed. Failing

to enter a positive number greater than zero will cause the script to error out, thus displaying

an error message (Figure 3.3).

Figure 3.3: The error message when entering an invalid number or character.

• Noise level:

White Gaussian noise is chosen due to its similarity with the noise signal that comes from

the instrument during the separation/detection process. The user has to add a number

between “one” and “twenty”. When smaller numbers are added, the script is designed to

add more noise to the artificial STR profile. “One” is very noisy, while “twenty” add the least

noise—almost no noise—to the signal. Adding positive numbers outside of the range 1–20,

negative integers, and/or characters will lead the graphic user interface (GUI) to promote an

error message as shown in Figure (3.4). This function is being described in detail in Chapter

4. If the user enters no input to all the three required fields, all error messages will pop up

at once.

3.2.2 Supporting data files

As shown in the block diagram in Figure (3.1), the script will use supported data files

(FBI genetics probabilities and construction method) to construct the electropherogram

signal. Both files are used each time the script is creating a locus.
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Figure 3.4: The error message when entering an invalid noise level or character.

• FBI genetic probabilities

The table in Appendix A shows that each allele in a certain locus has a different probability

to appear in the locus. This probability also differs from one race to another; some races

have a higher probability of having a specific allele in their profile while others may not have

this allele at all in their profiles. The FBI genetics probability release of 2017 that was used

in this study is a database of all races alleles probabilities.

The script starts from the first locus located on the blue dye with the smallest base pair

and moves to the second locus with a bigger base-pair allele. Each locus has two alleles: one

from the mother and one from the father. In the demonstration of the blue dye in this study,

the first allele in the chemical used kit was D3S1358. This allele could be either heterozygous

or homozygous. It randomly depended on the weight of its probability in the FBI population

genetics release considering the entire data set. Therefore, the script is designed to weigh in

the possibility of that allele and to choose the alleles accordingly.

The software was developed using MATLAB, which uses a random selector instruction

(see Equation 3.1) to weigh in the possibility of that allele. The entire alleles table from the

FBI genetic release of 2017 was inserted as a reference file for this script/instruction to select

from (See Appendix B). The system has all alleles, and the possibility of appearing in each

locus is hardcoded as a file called (weights) inside the script main source. Once the script

executes, it randomly selects the first allele for the first locus; after that, the script moves

on and chooses the second allele for that locus. A very high probability for a specific allele

in a particular locus means that the profile has a homozygous locus. In this case, the script

adds both alleles’ heights together, making the allele’s height in that specific locus double

that of heterozygous alleles in the same locus. If the software chooses a different allele as

the second allele for that locus, this results in heterozygous alleles for that particular locus
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with normal height.

datasample(AAD8S1179(:, 1), 1,′Weights′, AAD8S1179(:, 3)); (3.1)

Considering the locus “D3S1358” as one example in a dataset of one million samples, the

allele “14” appeared 87,400 times while allele 15 appeared 9,200 times. Data set can be

updated in the FBI genetics probabilities file inside the script source to allow the user to

include bigger data set with more accurate alleles probability if needed.

After completing the first locus in the blue dye, the script moves to the next locus and

chooses the second locus alleles. Similarly, the second locus alleles might be homozygous or

heterozygous. Once both alleles are selected for the second locus in the blue dye, the script

continues to the third locus and repeats the same process until all blue dye alleles have been

chosen for all five loci the blue dye has (see Figure 3.5).

For advanced chemical kits such as GlobalFiler, the blue dye has five different loci to

identify; therefore, the positive control and the ladder need to fill one less locus with different

alleles possibilities for the MATLAB script to choose from.

Upon finishing the blue dye, the script moves on to the green dye and repeats the same

process, then the yellow dye, and finally, the red dye. All identified dyes are then stored in

one file as a separated artificial sample.

• Allele construction method

The slope method is used to construct alleles based on the characteristics of each locus.

Each locus of the allelic ladder has its specific height, width, and size. Ascertaining those

characteristics allows to determine what should be changed to create an allele that possesses

the exact specifications as the one that currently exists in the ladder; therefore, the following

steps are followed:

• Allele setpoints are grouped to make up one allele.

• Each slope between two following points in those alleles is recorded then compared

with the same allele in the same locus with a different ladder sample to verify the

most common slope between every two following points. Next, those slopes are used

to identify two points for both axes of the signal.

• The most average slope values are saved in an array from which the script can choose

when constructing the profile, as shown in the example in Table 3.1.
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Slope 8 14.5 9 51 186.5 350 384.5 195 -119.5 -348 -365.5 -230

Y Value 0 16 45 63 165 538 1238 2007 2397 2158 1462 731

X Value 1 2 3 4 5 6 7 8 9 10 11 12

Table 3.1: All slope values for the first allele from the first locus

• After the script has chosen the alleles based on the FBI population genetics file, there

are two possible outcomes: homozygosity or heterozygosity. In the case of homozy-

gosity, the alleles are slightly different in height and size compared with those of het-

erozygosity. This important fact has been considered when constructing and building

artificial profiles in the system by multiplying the Y value by two (as shown in Table

3.1) and recalculating the slope.

• The script starts by constructing the alleles based on a set of options available in the

slope array so that the two-point slope corresponds to one of the possibilities, which

provides similar appearances and characteristics for ladder alleles.

• This script then stores those two points in a temporary final sample array and continues

until all the points of an allele have been chosen to match their equivalents in the ladder.

• The script calculates the height and size of the current allele and then compares it

with the ladder with an error margin of 5% to ensure that the random allele points are

realistically chosen and differ for each artificial sample.

3.2.3 Script main functions

• Graphic user interface:

To make the software more appealing and user friendly, a GUI was created to allow the user

to easily enter the main three inputs inside the script. The script takes those inputs and

executes the main program based on their values.

The GUI, source code, and the rest of the data files were packed in form of an executable

file to make it easier to use on any computer without MATLAB being installed on it.
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• Final STR profile:

Once the user enters all required fields and clicks on the “generate” button on the GUI

interface, the GUI will first ensure that all inputs are in the correct ranges. Once that

condition is met, the GUI will start executing the final STR profile function. This function

works as the main backbone for all the user inputs and supported data files. This function

connects all information while executing the program as follows:

1. In case the user running the executable file for the first time, the GUI automatically

creates two folders to save the artificially generated profiles: the “STR Sample” folder

and the “degraded STR sample” folder.

2. The function starts creating the profiles from the first locus in the blue dye as mentioned

earlier; it runs Equation (3.1) which chooses two different alleles for that locus.

3. Once the code has both alleles for that specific locus, it starts constructing the allele

based on the allele construction method mentioned earlier. This process results in an

array of zeros except for those two constructed alleles that have been chosen. The code

places data points that shape the allele within a range of +/- 5% compared with the

ladder.

4. The function then goes back and executes the same equation to choose two different

alleles for the second locus and repeats Step 2 above.

5. The function keeps executing Steps 2, 3, and 4 until the entire blue dye is constructed.

The result will be an array of one row and 4,500 columns which will plot a 2D plot

representing the blue dye.

6. Upon completion, the function moves to the next dye (green), where it starts a new

array of zeros with one row and 4,500 columns. The function repeats Steps 1, 2, 3,

and 4 and saves the array as a green dye.

7. The same previous process applies to the yellow and red dye which finally results in

four different arrays; each one represents a separate dye.

8. After completion, the degradation function occurs for each array separately. The out-

come of this is another four different arrays for each array that have been constructed

before degradation.
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9. The noise function is then called to add noise for each constructed array (dye). The

level of noise can be determined by the user’s input before generating the profiles.

10. Lastly, the function saves the first undegraded four dyes that represent one sample into

one .MAT file, while the other four degraded arrays are saved into another file. Each

file is saved in its designated folder.

3.2.4 Script output

The last steps generate two samples: non-degraded in the “STR sample” folder and

degraded in the “degraded STR sample” folder. In case of more than one requested copy,

the code repeats Steps 2 to 10 until the entire requested samples are generated.
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Figure 3.5: The GUI used to generate artificial STR profiles. The user needs to enter three

values only: a) the level of degradation between 1 to 20 which corresponds to very low

degradation up to extreme degradation, respectively, b) the number of generated profiles

that the user wants to generate at one time, and c) the noise level required to be added to

the generated profiles. There is no limit on how much the user can generate at one time;

the system is enhanced enough to construct up to 1000 profiles in less than one minute.
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Chapter 4

Artificial STR degradation

As discussed in the Theory chapter, multiple non-idealities might occur for a degraded

DNA sample. Drop out and drop in challenges were addressed in this study. They mainly

occur on the alleles displacement of their locations and rely heavily on a possible outcome

for a specific locus compared with its ladder. The software can identify drop-out and drop-in

alleles. It tests the possibility of being a true allele by comparing the location and base pair

of this allele to the ladder to determine whether this might be a dropout allele or a stutter

in the same fashion. If the software indicates that there is any drop-in allele, it will also

test the possibility of being a true allele by comparing its parameters and characteristics to

the ladder. In case the allele is located in an accurate location, the software will compare it

to the rest of the finding peaks, including height, to determine whether it is a drop-in or a

stutter. It will also label it with a different color to allow the user to visually differentiate

the true alleles from drop-in considering the complete STR profile.

4.1 Degrade artificial STR profile

How samples are degraded was determined based on actual data from individuals. All

models were collected and degraded to study the pattern those samples followed in order

to determine the most common way of degradation. The longer the DNA strand is, the

higher chance is for this strand to become broken and degraded. As a result, the amount

of DNA decreases during the amplification, which causes longer base-pair strands to be

completely dropped out. Four different sets of data (non-degraded, low degradation, medium



Ahmad Jamal Baroudi Chapter 4 60

degradation, and high degradation) were examined. The first set was the original non-

degraded samples with all the alleles still present. The low degradation set was exposed to

ultraviolet light for 75 µs and partially degraded. The medium degradation set was exposed

to ultraviolet light for about 150 µs. Finally, the high degradation was exposed to ultraviolet

light for 240 µs. When each degraded sample was compared with the non-degraded one, it

was found that the degradation happened in a negative exponential pattern. Applying this

theory to the artificial STR profiles that have been generated before, the degraded profile is

formed by multiplying the original signal with the following equation:

DegradedDNAsample = eωf(κ) (4.1)

where ω is a user input and represents the level of degradation from 1 low degradation to 20

high degradations. f(κ) is the artificial DNA signal that needs degradation. This function

allows the user to compare a non-degraded STR profile with a degraded version of itself,

which also provides an excellent foundation for the enhancement tool (Figures 4.1–4.5).
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Figure 4.1: The blue dye for the same sample before and after degrading the sample with

Level (5) degradation

4.2 Adding artificial noise

When building artificial profiles, it is essential to consider the noise contained in the

instrument sensor during the detection process. A MATLAB instruction was used to generate

a characteristic noise level similar to that measured in an actual instrument. The user can

change the added noise level before saving the final profile. This noise provides another layer

of verification to the enhancement tool. A false allele might come up as a drop-in allele if

its amplitude is high enough to be considered as an allele. Because the developed tool can

detect a false allele, it provides a good solution for the challenge researchers are currently

facing. The “awgn” function used in the script adds white Gaussian noise to any signal.

The white noise is added to the degraded blue dye sample with a level of “L” which is an

input determined by the user. The result is then compiled in the final “blue deg dye sample”

which is a 2-D array that can plot the final noisy degraded blue dye signal.
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Blue.Deg.Dye.Noise = awgn(deg.blue.dye.Sample, L′measured′); (4.2)

Where “deg.blue.dye.Sample” is the input degraded sample before adding noise to it, “L” is

the level of generated noise, “measured” allows to generate a noise based on the standard

deviation of the signal, and “Blue.Deg.Dye.Noise” is the final degraded noisy signal.Figures

4.6–4.8 show the differences between different levels of noise for one sample with and without

degradation.



Ahmad Jamal Baroudi Chapter 4 63

Figure 4.2: The blue dye for the same sample before and after degrading the sample with

Level (10) degradation

4.3 Compile and save STR profiles

The last step is to generate profiles based on three main elements: degradation level,

noise level, and the number of copies the user wants to generate. The new profiles are saved

in the folders mentioned before to be used and analyzed by the enhancement tool.
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Figure 4.3: The blue dye for the same sample before and after degrading the sample with

Level (15) degradation
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Figure 4.4: The blue dye for the same sample before and after degrading the sample with

Level (15) degradation
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Figure 4.5: Level (3) noise added to a sample before and after the same level of

degradation.
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Figure 4.6: Level (7) noise added to a sample before and after the same level of

degradation.
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Figure 4.7: Level (10) noise added to a sample before and after the same level of

degradation.
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Figure 4.8: Level (15) noise added to a sample before and after the same level of

degradation.



70

Chapter 5

Enhancement of DNA profile’s peaks

5.1 Overall structure of the enhancement tool:

A GUI (see Figure 5.1) was designed to represent, view, and demonstrate the methods

used: Peak finding function, Analysis function, Quality function, and Match score results.

Figure 5.2 represents the relationship between the main GUI functions and other functions

that are being used to analyze samples

Figure 5.1: The enhancement tool GUI and available functions to analyze STR profiles
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Figure 5.2: Block diagram represents the relationship between the main GUI functions and

other functions that are being used to analyze samples

This GUI was developed to visualize, test, and analyze one dye at a time to allow the

user to check detected peaks and perform match scores on them using available functions

(Figure 5.2). Each function includes a set of instructions to perform. The results are then

represented inside the GUI to allow the user to compare and analyze the outcomes.

5.2 Peak finding algorithm

The enhancement tool can be used with real data coming from a lab after converting it

into a .MAT file or after running the STR generator tool and generating profiles.
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• Load Profile:

To load an STR profile, the user clicks the “Load Profile” button to choose a sample that

needs to be analyzed. A window then appears to allow the user to browse for and select

the .MAT data array file. When the sample is loaded, the user can proceed to the next

step—selecting the dye to start analyzing. The user can choose between four different dyes

(Blue, Green, Yellow, and Red) as shown in Figure (5.3).

• View Ladder

The “View Ladder” button displays the ladder for the chosen dye. Clicking this button leads

the GUI to run the “View Ladder” function which evaluate the chosen dye first. It then

displays the correct ladder dye that corresponds to the chosen dye from the drop-down menu

using the following script instruction:

e v a l i n ( ’ base ’ , [ ’ load ’ ’Run RH200−0076 2017 11 06 10 33 . mat ’ ] ) ;

popup se l index = get ( handles . popupmenu1 , ’ Value ’ ) ;

switch popup se l index

case 1 % Blue dye i s s e l e c t e d

L1 = e v a l i n ( ’ base ’ , ’ Trace A6 Ladder1 0076 2017 11 06 10 33 ’ ) ;

B = L1 ( 1 , 1 : 3 5 0 0 ) ;

p l o t ( handles . axes1 , B, ’ co lo r ’ , [ 0 . 7 0 . 7 0 . 7 ] ) ;

case 2 % Green dye i s s e l e c t e d

L2 = e v a l i n ( ’ base ’ , ’ Trace A6 Ladder2 0076 2017 11 06 10 33 ’ ) ;

G = L2 ( 1 , 1 : 3 5 0 0 ) ;

p l o t ( handles . axes1 , G, ’ co lo r ’ , [ 0 . 7 0 . 7 0 . 7 ] ) ;

case 3 % Yellow dye i s s e l e c t e d

L3 = e v a l i n ( ’ base ’ , ’ Trace A6 Ladder3 0076 2017 11 06 10 33 ’ ) ;

Y = L3 ( 1 , 1 : 3 5 0 0 ) ;

p l o t ( handles . axes1 , Y, ’ co lo r ’ , [ 0 . 7 0 . 7 0 . 7 ] ) ;

case 4 %red dye i s s e l e c t e d

L4 = e v a l i n ( ’ base ’ , ’ Trace A6 Ladder4 0076 2017 11 06 10 33 ’ ) ;

R = L4 ( 1 , 1 : 3 5 0 0 ) ;

p l o t ( handles . axes1 , R, ’ co lo r ’ , [ 0 . 7 0 . 7 0 . 7 ] ) ;

end
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This ladder dye represents all possible outcomes for all alleles that can be discovered by

using the GlobalFiler kit. A light gray color is selected to allow peaks to be seen (Figure,

5.3).

Figure 5.3: The enhancement tool after selecting the sample and choosing the blue dye to

analyze the data.

• View Alleles

The next step is displaying the alleles for the selected samples. The user can click on the

“View Alleles” button to run the script below. Using a simple “plot” instruction in MATLAB

will display all the selected sample alleles with a color that fits the chosen dye (Figure 5.4):

Blue for blue dye, green for green dye... etc. This script will output the peaks in the “Peaks”

table on the right of the GUI. The peak finding algorithm detailed is available in Appendix

C.

hold ( handles . axes1 , ’ on ’ )

popup se l index = get ( handles . popupmenu1 , ’ Value ’ ) ;

switch popup se l index

case 1
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P1 = e v a l i n ( ’ base ’ , ’ Final Sample ’ ) ;

p l o t ( handles . axes1 , P1 ( 1 , : ) , ’ co lo r ’ , ’B ’ ) ;

y f = P1 ( 1 , : ) ;

x = 1 : l ength ( y f ) ;

peakgroup =5;

smoothtype =3;

WidthPoints =4; % Average number o f po in t s in ha l f−width o f peaks

SlopeThreshold =0.5∗WidthPoints ˆ−2; % Formula f o r e s t imat ing

value o f SlopeThreshold

AmpThreshold = 11 ;

%AmpThreshold= mean( y f )+2∗ std ( y f ) ; %0.4∗max( y ) ;

smoothwidth=round ( WidthPoints / 2 ) ; % SmoothWidth should be

roughly equal to 1/2 the peak width ( in po in t s )

FitWidth=round ( WidthPoints / 2 ) ; % FitWidth should be roughly

equal to 1/2 the peak widths ( in po in t s )

P = findpeaksG (x , yf , SlopeThreshold , AmpThreshold

, smoothwidth , peakgroup , smoothtype ) ;
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Figure 5.4: The enhancement tool represents a level eight degradation sample. Once the

user clicks on the View alleles button, it will show each peak’s location, height, width, and

size in the peaks table.

• View Peaks

The “View Peaks” button runs the peak finding script which analyzes each peak that might

exist in the data point file (STR profile) and lists all those findings as dark gray vertical

lines (Figure 5.5). This allows the user to visualize the results of the peak-finding algorithm

on the chosen STR profile before analyzing those peaks in the next steps. The method is

described at the end of the Theory chapter. Please see Appendix C for a full MATLAB

script.
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Figure 5.5: The results of all available peaks in the sample. The script will find any peak

and display it in a vertical gray line to be analyzed later.

• Analysis function

This function gets activated through the “Analysis” button. It determines whether all

discovered alleles are true or false alleles. The script for this function analyzes each peak

found through the peak finding algorithm and sorts it into three main categories:

• True alleles: those alleles are above the threshold and in the acceptance, location to

be in alleles in the STR sample.

• Recovered alleles were detected as true alleles using the peak finding method but

under the threshold acceptance level. Those alleles’ location is perfectly correlated to

the allelic ladder to be considered recovered alleles. They have a yellow color vertical

line. See Figure 5.6

• False allele: Each allele discovered in the used method but not in the correct loca-

tion compared with the used ladder can be considered a false allele, regardless of its

amplitude. See Figure 5.6 for details
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Figure 5.6: The enhancement tool sorts out each allele in its category.

• Quality function:

The Quality function measures the quality of a signal from 0 to 1; the closer this number

is to zero, the better the signal quality is. This number is calculated based on the average

of four functions: 1) Average value, 2) Peaks presence, 3) standard deviation, and 4) signal-

to-noise ratio. (Figure 5.7). The final score is calculated by adding all measurements and

dividing the final answer by four (Equation 5.1).

Quality Score =
Average value + Peak presence + StdDev + SNR

4
(5.1)

(a) Average value:

The average value is important to provide the mean of the analyzed signal which is

an important factor in the final calculation of the signal-to-noise ratio. It is calculated

using the following equation:

Average Value =
mean−min average

max average−min average
(5.2)
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(b) Peaks Presence:

The Peak Presence function counts how many peaks are present in the sample which

affects the quality of the signal considering the other factors. The following formula is

used to calculate this factor:

Peak presence =
number of peaks−min

max−min
(5.3)

Where min = 4 , max = 10

(c) Standard deviation:

This function outputs the normalized standard deviation of the signal. First, the

standard deviation of the signal is calculated, then the output signal is normalized

using the following equation:

StdDev =
StdDev −minStd

maxStd−minStd
(5.4)

Where minStd = 3.4167, and maxStd = 257.0095

(d) Signal to noise ratio:

This function is a MATLAB function that can estimate and calculate the noise in the

signal used, which is followed by the following formula to calculate the noise to signal

ratio.

SNR =
mean(F(κ))2

noise2
(5.5)
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Figure 5.7: Shows the quality score for the example with blue dye.

• Match score results:

The “Match Score” algorithm compares the loaded profile alleles with each profile in the

database and then represents the data in a table in ascending order (see the script below).

This feature helps the user to identify which person/STR profile is the closest match to

the under-examination profiles data set. It also offers the investigator a closer look at the

suspect in a criminal case investigation.

so r t ed mat r ix = sort rows ( Top Matches ,−2) ;

s e t ( handles . u i tab l e2 , ’ Columnformat ’ , ( { [ ] { ’ c e l l ’}} ) ,

’ Data ’ , s o r t ed mat r ix )

s e t ( handles . text4 , ’ Str ing ’ , num2str ( matches ) ) ;

i f a l l e l e s (1 , 12 ) == 1

C{1 ,1} = char ( ’X’ ) ;

end
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i f a l l e l e s (1 , 12 ) == 2

C{1 ,1} =char ( ’Y’ ) ;

end

i f a l l e l e s (1 , 13 ) == 1

C{1 ,2} = char ( ’X’ ) ;

end

i f a l l e l e s (1 , 13 ) == 2

C{1 , 2} = char ( ’Y’ ) ;

end

a l l e l e s 1 = a l l e l e s (1 , 1 : 1 1 ) ;

a l l e l e s 2 = a l l e l e s (1 , 1 4 : 3 8 ) ;

a l l e l e s = [ a l l e l e s 1 a l l e l e s 2 ] ;

columnformat = { ’ char ’ } ;

s e t ( handles . u i tab l e3 , ’ Data ’ , a l l e l e s ,

’ BackgroundColor ’ , [ 0 1 1 ] ) ;

s e t ( handles . u i tab l e4 , ’ Columnformat ’ , ( { [ ]

{ ’ char ’}} ) , ’ Data ’ , C, ’ BackgroundColor ’ , [ 0 1 1 ] )

The backend script compares each allele from the loaded profile with the same allele in

the first profile in the database. Each matched allele adds one to the number of matches

until it tests 38 alleles. It then moves on to the following profile and repeats the same testing

pattern while keeping the number of matches associated with each profile. Once the entire

script is completed, it orders all the profiles that exist in the target folder according to the

number of matches in ascending order. It then puts the highest ten matches into the table

next to the Peaks table, as shown in Figure (5.8).
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Figure 5.8: Shows the Top 10 matches profiles comparing to the under-study profile

5.3 Analyzing real samples

The enhancement tool was used to enhance and examine 42 profiles from seven partici-

pants in this study. The samples were enriched individually, and the results were recorded

to demonstrate the differences between them. All the 75/50 heat/humidity degradation

profiles that had all the correct alleles were called without any dropouts. In the case of

samples with the 85/50 heat/humidity combination, a different dropout/recovery ratio was

noticed between the GeneMapperTM ID-X Software, RapidHIT TM 200, and the enhance-

ment tool developed. When using the GeneMapperTM ID-X Software, 95/40 heat/humidity

combinations had a higher dropout rate. GeneMapperTM produced better results that can

be immediately accessed compared with GeneMapperTM . Results from the instrument lab

were taken from a study [79] made to evaluate the RapidHIT TM 200 on degraded biologi-

cal samples. The study [79] used GeneMapperTM as a reference to evaluate the results of

RapidHIT TM [79]. In the current study, the FSA samples were converted into .MAT files

that were run through the enhancement tool. The findings were recorded into an Excel sheet

to test the credibility of the method on real data samples. Figures 5.9 to 5.15 summarize

the outcome of the enhancement tool using the Gaussian alleles finding method. This would

improve the alleles calling ratio by more than 20 % when dealing with degraded samples.
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The strength of signal processing in finding and recovering dropped-out alleles when using

a mathematical method empowers and enhances the signal to pick up a degraded allele that

would not be called using other software/methods.
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Figure 5.9: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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Figure 5.10: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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Figure 5.11: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels



Ahmad Jamal Baroudi Chapter 5 86

Figure 5.12: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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Figure 5.13: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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Figure 5.14: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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Figure 5.15: The enhancement tool’s actual peaks detection capability versus

GeneMapperTM for one sample with different degradation levels
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The number of called alleles was improved substantially (see Figure 5.16), leading to

the recall of 34 more alleles using the enhancement tool in 84/50 heats/humidity samples

and 28 alleles in 95/40 heats/humidity samples. Better results by 20.86% were achieved

when working with 85/50 heat humidity degradation and 27.96% for 95/40 heat humidity

degradation. Every sample was tested and enhanced separately to ensure and record those

results. Although the sample was degraded, this study demonstrates that applying signal

processing and mathematical techniques can improve the outcomes of a sample by more than

20%. Using Gaussian or Lorentzian functions can increase the number of alleles by applying

mathematical calculations to detect the peaks.

Figure 5.16: shows Final result after using the enhancement tools on real data samples
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Chapter 6

Conclusion and Future work

This chapter summarizes the value of this research, establishes the foundation for all

future research, and suggests some directions for continuous engineering improvements in

signal processing in DNA typing analysis.

6.1 Conclusion

A new method of generating STR profiles has been developed to provide scientists and

forensic lab experts with unlimited STR profiles based on genetic population. A MATLAB

code and GUI are implemented to provide unlimited STR profiles based on user recommen-

dations. Those profiles are based on mixed population genetics where a higher variation is

noticed and probabilities in all races in FBI population genetic release of 2017.

A degradation feature is added to allow the user to generate a degradation sample match-

ing the non-degraded ones. The user also can choose the level of degradation between (1)

and (20), which depends on what he would like to do his research on. The degradation is

based on an exponential function being multiply to the original STR profile where the small

base pair have a smaller degradation comparing the higher base pair loci.

Dr.Dawson research engineering group developed a peak finding method based on math-

ematical solution of first and second derivative of the DNA STR profile signal. This signal

processing method will allow detection for a high number of alleles buried in the noise. By

using his method, any small shaped signal can be detected which can be classified as an

allele. Then matching this peak with allelic ladder of GlobalFiler to see if it has the location

to be considered a true allele.
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To maximize the benefits coming from this approach, and to provide a better way to

represent the data. A GUI is developed which can load the STR profile for any degraded/non

degraded artificial profile and run the main three comparison methods to better visualize

and study the data. (1) Analysis, (2) Quality score, (3) match score.

Analysis feature allows the user to provide analysis on each discovered peak based on

peak finding algorithm then match those peaks with the allelic ladder and label them with

green, yellow and red color depends on the peak. Quality score is a combination of four

calculations to determine the quality of the analysis after calculating the amount of noise

built into it during amplification and detection steps in the lab. Match score is way to

determine the highest STR profile match to the one is getting analyzed. Using this method,

the code can run the database and order the entire data set from the highest to the lowest

match. Which’s considered one of the quickest ways to scan the sample.

6.2 Future work

This research is considered the spark of signal processing efforts in DNA typing analysis.

It can be continued and improved in varies ways depends on the end goal we’re trying to

achieve. Firstly, adding a feature to the STR generator can allow the user to choose between

different races to generate. Secondly, it can be added to a computer/mobile application

where it can take a sample and rabidly test the individual to see if he/she is wanted for

justice before entering the borders. Thirdly, you can add the ability to modify the dataset to

include more accurate probabilities when new population genetics gets released to generate

more accurate data and up to date to each race. Fourthly, you can add the ability to

generate STR profiles to a different chemical kit with a different allelic ladder. Finally, you

can provide a customized the enhancement tool to detect mixture profiles and do analysis

on given conditions.
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Allele D3S1358 vWA D16S539 CSF1PO TPOX

1

2

3.2

5 0.0048 0.0005

6 0.0319

6.4

7 0.0232 0.0072

8 0.0212 0.0212 0.4662

9 0.1626 0.0294 0.1377

9.3

10 0.1081 0.2321 0.0599

10.1

11 0.0005 0.0014 0.2915 0.2736 0.2444

11.2

11.3

12 0.0014 0.0010 0.2568 0.3446 0.0512

12.2

12.3

13 0.0029 0.0034 0.1371 0.0656 0.0010

13.2

13.3

14 0.0874 0.0956 0.0217 0.0092

14.2

15 0.3045 0.1347 0.0005 0.0010

15.2 0.0005

15.3

16 0.2828 0.2302
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Allele D3S1358 vWA D16S539 CSF1PO TPOX

16.1

16.2

16.3

17 0.2042 0.2621

17.1

17.2

17.3

18 0.1057 0.1800

18.2

18.3

19 0.0092 0.0787

19.1 0.0010 0.0116

20

20.1

20.2

21 0.0014

21.2

22

22.2

22.3

23

23.2

24

24.2

25

25.2

26

Allele D3S1358 vWA D16S539 CSF1PO TPOX

Table 7.1: blue dye alleles probabilities (CODIS 2017)
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7.2 Appendix B

Allele ”1” Allele ”2” Probabilities

8 8 0.0093

8 9 0.0086

8 10 0.0057

8 11 0.0280

8 12 0.0294

8 13 0.0112

8 14 0.0041

8 15 0.0001351

9 8 0.0086

9 9 0.008

9 10 0.0053

9 11 0.0259

9 12 0.0272

9 13 0.0104

9 14 0.0038

9 15 0.000125

10 8 0.0057

10 9 0.0053

10 10 0.0035

10 11 0.0171

10 12 0.018

10 13 0.0069

10 14 0.0025

10 15 8.246e-05

11 8 0.028

11 9 0.0259

11 10 0.0171
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Allele ”1” Allele ”2” Probabilities

11 11 0.0844

11 12 0.0886

11 13 0.0338

11 14 0.0122

11 15 0.00041

12 8 0.0294

12 9 0.0272

12 10 0.0180

12 11 0.0886

12 12 0.093

12 13 0.0355

12 14 0.0128

12 15 0.00043

13 8 0.0112

13 9 0.0104

13 10 0.0069

13 11 0.0338

13 12 0.0355

13 13 0.0135

13 14 0.0049

13 15 0.000163

14 8 0.0041

14 9 0.0038

14 10 0.0025

14 11 0.0122

14 12 0.0128

14 13 0.0049
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Allele ”1” Allele ”2” Probabilities

14 14 0.0018

14 15 5.8e-05

15 8 0.00014

15 9 0.00013

15 10 8.246e-05

15 11 0.00041

15 12 0.00043

15 13 0.000163

15 14 5.88e-05

15 15 1.96e-06

Table 7.2: A combined probability for alleles one and two for D13S317 Locus
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7.3 Appendix C

• Peak finding Script

f unc t i on P=findpeaksG (x , y , SlopeThreshold , AmpThreshold ,

smoothwidth , peakgroup , smoothtype )

% func t i on P=findpeaksG (x , y , SlopeThreshold , AmpThreshold ,

smoothwidth , peakgroup , smoothtype )

% Function to l o c a t e the p o s i t i v e peaks in a no i sy

x−y time s e r i e s data

% s e t . Detects peaks by look ing f o r downward

zero−c r o s s i n g s in the f i r s t

% d e r i v a t i v e that exceed SlopeThreshold . Returns

l i s t (P) conta in ing peak

% number and pos i t i on , height , width ,

and area o f each peak , determined

% by l e a s t−squares f i t t i n g o f a Gaussian to

”peakgroup” data po in t s a c r o s s

% the top o f each peak . Arguments ” s lopeThresho ld ”

, ”ampThreshold” and

% ”smoothwidth” c o n t r o l peak s e n s i t i v i t y .

Higher va lue s w i l l n e g l e c t

% sma l l e r f e a t u r e s . ”Smoothwidth” i s the width

o f the smooth app l i ed be f o r e

% peak d e t e c t i o n ; l a r g e r va lue s i gno re narrow peaks .

I f smoothwidth=0, no

% smoothing i s performed .

% ”Peakgroup” i s the number po in t s around the

top part o f the peak that are

% taken f o r measurement . I f Peakgroup=0 the

l o c a l maximum i s takes as the

% peak he ight and p o s i t i o n .

% ”smoothtype” determines the smooth a lgor i thm :



Ahmad Jamal Baroudi Chapter 7 105

% I f smoothtype=1, r e c t angu l a r ( s l i d i n g−average or boxcar )

% I f smoothtype=2, t r i a n g u l a r (2 pas s e s o f s l i d i n g−average )

% I f smoothtype=3, pseudo−Gaussian (3 pas s e s o f s l i d i n g−average )

% Examples :

% findpeaksG ( 0 : . 0 1 : 2 , humps ( 0 : . 0 1 : 2 ) , 0 , −1 , 5 , 5 )

% x = [ 0 : . 0 1 : 5 0 ] ; y=(1+cos ( x ) ) . ˆ 2 ; P=findpeaksG (x , y ,0 ,−1 ,5 ,5)

% x = [ 0 : . 0 1 : 5 ] ’ ; y=x .∗ s i n ( x . ˆ 2 ) . ˆ 2 ;P=findpeaksG (x , y ,0 ,−1 ,5 ,5)

% x =[ −10 : . 1 : 10 ] ; y=exp(−(x ) . ˆ 2 ) ; P=findpeaksG (x , y , 0 . 0 0 5 , 0 . 3 , 3 , 5 , 3 )

%

% Find , measure , and p lo t no i sy peaks with unknown p o s i t i o n s

% x =−50: .2 :50;

% y=exp(−(x ) .ˆ2)+ exp(−(x+50∗rand ( ) ) . ˆ 2 ) + . 0 2 .∗ randn ( s i z e ( x ) ) ;

% p lo t (x , y , ’m. ’ )

% P=findpeaksG (x , y , 0 . 0 0 1 , 0 . 2 , 5 , 5 , 3 ) ;

% text (P( : , 2 ) ,P( : , 3 ) , num2str (P( : , 1 ) ) )

% disp ( ’ peak # Pos i t i on Height ’ )

% di sp (P)

i f narg in ˜=7; smoothtype =1;end % smoothtype=1

i f not s p e c i f i e d in argument

i f smoothtype>3; smoothtype =3;end

i f smoothtype<1; smoothtype =1;end

i f smoothwidth<1; smoothwidth=1;end

smoothwidth=round ( smoothwidth ) ;

peakgroup=round ( peakgroup ) ;

i f smoothwidth>1

d=fastsmooth ( de r i v ( y ) , smoothwidth , smoothtype ) ;

e l s e

d=der i v ( y ) ;

end

n=round ( peakgroup /2+1);

P=[0 0 0 0 0 ] ;

v e c to r l eng th=length ( y ) ;
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peak=1;

f o r j =2∗round ( smoothwidth /2)−1: l ength ( y)−smoothwidth−1

i f s i gn (d( j ) ) > s i gn (d( j +1)) % Detects zero−c r o s s i n g

i f d ( j )−d( j +1) > SlopeThreshold % i f s l ope o f

d e r i v a t i v e i s l a r g e r than SlopeThreshold

i f y ( j ) > AmpThreshold % i f he ight o f peak i s

l a r g e r than AmpThreshold

xx=ze ro s ( s i z e ( peakgroup ) ) ; yy=ze ro s ( s i z e ( peakgroup ) ) ;

f o r k=1: peakgroup % Create sub−group o f po in t s near peak

groupindex=j+k−n+2;

i f groupindex <1, groupindex =1;end

i f groupindex>vector l ength , groupindex=vec to r l eng th ; end

xx ( k)=x ( groupindex ) ;

yy ( k)=y ( groupindex ) ;

end % f o r k=1: peakgroup , . . .

i f peakgroup>2

[ Height , Pos i t ion , Width]= g a u s s f i t ( xx , yy ) ;

PeakX=r e a l ( Po s i t i on ) ;

% Compute peak p o s i t i o n and he ight o f f i t t e d parabola

PeakY=r e a l ( Height ) ;

MeasuredWidth=r e a l (Width ) ;

% i f the peak i s too narrow f o r l e a s t−squares

techn ique to work

% wel l , j u s t use the max value o f y

in the sub−group o f po in t s near peak .

e l s e

PeakY=max( yy ) ;

pindex=va l2 ind ( yy , PeakY ) ;

PeakX=xx ( pindex ( 1 ) ) ;

MeasuredWidth=0;

end % i f peakgroup > 2 , . . .

% Construct matrix P. One row f o r each peak detected ,
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% conta in ing the peak number , peak p o s i t i o n (x−value ) and

% peak he ight (y−value ) . I f peak measurement f a i l s and

% r e s u l t s in NaN, or i f the measured peak he ight i s l e s s

% than AmpThreshold , sk ip t h i s peak

i f i snan (PeakX) | | i snan (PeakY) | | PeakY<AmpThreshold

% Skip t h i s peak

e l s e % Otherwise count t h i s as a v a l i d peak

P( peak , : ) = [ round ( peak ) PeakX PeakY MeasuredWidth

1 . 0646 .∗PeakY∗MeasuredWidth ] ;

peak=peak+1; % Move on to next peak

end % i f i snan . . .

end % i f y ( j ) > AmpThreshold , . . .

end % i f d( j )−d( j +1) > . . .

end % i f s i gn (d( j ) ) > . . .

end % f o r j =2∗round ( smoothwidth / 2 ) −1 : . . .

% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on [ index , c l o s e s t v a l ]= va l2 ind (x , va l )

% Returns the index and the value o f the element o f

vec to r x that i s c l o s e s t to va l

% I f more than one element i s equa l l y c l o s e ,

r e tu rn s ve c to r s o f i n d i c i e s and va lue s

% Tom O’ Haver (toh@umd . edu ) October 2006

% Examples : I f x=[1 2 4 3 5 9 6 4 5 3 1 ] , then

va l2 ind (x ,6)=7 and va l2 ind (x , 5 . 1 ) = [ 5 9 ]

% [ i n d i c e s va lue s ]= va l2 ind (x , 3 . 3 ) r e tu rn s

i n d i c e s = [ 4 10 ] and va lue s = [ 3 3 ]

d i f=abs (x−va l ) ;

index=f i n d ( ( d i f−min( d i f ))==0);

c l o s e s t v a l=x ( index ) ;

f unc t i on d=der iv ( a )

% F i r s t d e r i v a t i v e o f vec to r us ing
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2−point c e n t r a l d i f f e r e n c e .

% T. C. O’ Haver , 1988 .

n=length ( a ) ;

d=ze ro s ( s i z e ( a ) ) ;

d(1)=a(2)−a ( 1 ) ;

d (n)=a (n)−a (n−1);

f o r j = 2 : n−1

d( j )=(a ( j+1)−a ( j −1)) . / 2 ;

end

func t i on SmoothY=fastsmooth (Y,w, type , ends )

% fastbsmooth (Y,w, type , ends ) smooths vec to r Y with smooth

% of width w. Vers ion 2 . 0 , May 2008 .

% The argument ” type ” determines the smooth type :

% I f type =1, r e c t angu l a r ( s l i d i n g−average or boxcar )

% I f type =2, t r i a n g u l a r (2 pas s e s o f s l i d i n g−average )

% I f type =3, pseudo−Gaussian (3 pas s e s o f s l i d i n g−average )

% The argument ” ends ” c o n t r o l s how the ” ends ” o f the s i g n a l

% ( the f i r s t w/2 po in t s and the l a s t w/2 po in t s ) are handled .

% I f ends=0, the ends are zero . ( In t h i s mode the e lapsed

% time i s independent o f the smooth width ) . The f a s t e s t .

% I f ends=1, the ends are smoothed with p r o g r e s s i v e l y

% sma l l e r smooths the c l o s e r to the end . ( In t h i s mode the

% e lapsed time i n c r e a s e s with i n c r e a s i n g smooth widths ) .

% fastsmooth (Y,w, type ) smooths with ends =0.

% fastsmooth (Y,w) smooths with type=1 and ends =0.

% Example :

% fastsmooth ( [ 1 1 1 10 10 10 1 1 1 1] ,3)= [ 0 1 4 7 10 7 4 1 1 0 ]

% fastsmooth ( [ 1 1 1 10 10 10 1 1 1 1 ] ,3 ,1 ,1 )= [ 1 1 4 7 10 7 4 1 1 1 ]

% T. C. O’ Haver , May, 2008 .

i f narg in==2, ends =0; type =1; end

i f narg in==3, ends =0; end
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switch type

case 1

SmoothY=sa (Y,w, ends ) ;

case 2

SmoothY=sa ( sa (Y,w, ends ) ,w, ends ) ;

case 3

SmoothY=sa ( sa ( sa (Y,w, ends ) ,w, ends ) ,w, ends ) ;

end

func t i on SmoothY=sa (Y, smoothwidth , ends )

w=round ( smoothwidth ) ;

SumPoints=sum(Y( 1 :w) ) ;

s=ze ro s ( s i z e (Y) ) ;

hal fw=round (w/ 2 ) ;

L=length (Y) ;

f o r k=1:L−w

s ( k+halfw−1)=SumPoints ;

SumPoints=SumPoints−Y( k ) ;

SumPoints=SumPoints+Y( k+w) ;

end

s ( k+halfw)=sum(Y(L−w+1:L ) ) ;

SmoothY=s . /w;

% Taper the ends o f the s i g n a l i f ends =1.

i f ends==1

s t a r t p o i n t =(smoothwidth + 1)/2 ;

SmoothY(1)=(Y(1)+Y( 2 ) ) . / 2 ;

f o r k=2: s t a r t p o i n t

SmoothY( k)=mean(Y( 1 : ( 2∗ k−1)) ) ;

SmoothY(L−k+1)=mean(Y(L−2∗k+2:L ) ) ;

end

SmoothY(L)=(Y(L)+Y(L−1) ) . /2 ;

end
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% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f unc t i on a=rmnan( a )

% Removes NaNs and I n f s from vector s ,

r e p l a c i n g with nea r e s t r e a l numbers .

% Example :

% >> v=[1 2 3 4 I n f 6 7 I n f 9 ] ;

% >> rmnan( v )

% ans =

% 1 2 3 4 4 6 7 7 9

l a=length ( a ) ;

i f i snan ( a ( 1 ) ) | | i s i n f ( a ( 1 ) ) , a (1)=0; end

f o r po int =1: l a

i f i snan ( a ( po int ) ) | | i s i n f ( a ( po int ) )

a ( po int )=a ( point −1);

end

end

func t i on [ Height , Pos i t ion , Width]= g a u s s f i t (x , y )

% Converts y−a x i s to a log s ca l e , f i t s a parabola

% ( quadrat i c ) to the (x , ln ( y ) ) data , then c a l c u l a t e s

% the pos i t i on , width , and he ight o f the

% Gaussian from the three c o e f f i c i e n t s o f the

% quadrat i c f i t . This i s accurate only i f the data have

% no b a s e l i n e o f f s e t ( that i s , t r ends to zero f a r o f f the

% peak ) and i f the re are no z e ro s or negat ive va lues in y .

%

% Example 1 : S implest Gaussian data s e t

% [ Height , Pos i t ion , Width]= g a u s s f i t ( [ 1 2 3 ] , [ 1 2 1 ] )

% re tu rn s Height = 2 , Pos i t i on = 2 , Width = 2

%

% Example 2 : bes t f i t to s y n t h e t i c no i sy Gaussian

% x =50:150; y=100.∗ gauss ian (x ,100 ,100)+10.∗ randn ( s i z e ( x ) ) ;
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% [ Height , Pos i t ion , Width]= g a u s s f i t (x , y )

% re tu rn s [ Height , Pos i t ion , Width ] c l u s t e r e d

around 100 ,100 ,100 .

%

% Example 3 : p l o t s data s e t as po in t s and best− f i t

Gaussian as l i n e

% x=[1 2 3 4 5 ] ; y=[1 2 2 .5 2 1 ] ;

% [ Height , Pos i t ion , Width]= g a u s s f i t (x , y )

% p lo t (x , y , ’ o ’ , l i n s p a c e ( 0 , 8 ) , Height .∗ gauss ian ( l i n s p a c e ( 0 , 8 ) ,

Pos i t ion , Width ) )

% Copyright ( c ) 2012 , Thomas C. O’ Haver

% To prevent problems from tak ing the log

o f ze ro or negat ive values ,

% make the lowest va lue o f y equal to 1%

of the maximum value .

maxy=max( y ) ;

f o r p=1: l ength ( y )

i f y (p)<(maxy/100) , y (p)=maxy/100 ; end

end % end o f f o r p=1: l ength ( y ) ,

logabsy=log ( abs ( y ) ) ;

s i z e x=s i z e ( x ) ;

s i z e y=s i z e ( logabsy ) ;

i f ( s i z e x (1)== s i z e y ( 1 ) )

[ coe f , ˜ ,MU]= p o l y f i t (x ’ , logabsy ’ , 2 ) ;

e l s e

[ coe f , ˜ ,MU]= p o l y f i t (x , logabsy ’ , 2 ) ;

end

c1=c o e f ( 3 ) ; c2=c o e f ( 2 ) ; c3=c o e f ( 1 ) ;

% Compute peak p o s i t i o n and he ight or f i t t e d parabola

Pos i t i on =−((MU( 2 ) . ∗ c2 /(2∗ c3 ))−MU( 1 ) ) ;

Height=exp ( c1−c3 ∗( c2 /(2∗ c3 ) ) ˆ 2 ) ;
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Width=norm(MU( 2 ) .∗2 . 3 5 7 0 3 / ( s q r t (2)∗ s q r t (−1∗c3 ) ) ) ;
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