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ABSTRACT

Landmark Enforcement and Principal Component Analysis for Improving

GAN-Based Morphing

Samuel Price

Facial Recognition Systems (FRSs) are a key target for adversaries determined

to circumvent security checkpoints. Morph images threaten FRS by presenting as

multiple individuals, allowing an adversary to swap identities with another subject.

Although morph generation using generative adversarial networks (GANs) results

in high-quality morphs without possessing the spatial artifacts caused by landmark-

based methods, there is an apparent loss in identity with standard GAN-based mor-

phing methods. In this thesis, we examine landmark-based and GAN-based morphing

methods to fuse the advantages of both methodologies. We propose a novel Style-

GAN2 morph generation technique by introducing a landmark enforcement method.

Considering this method, we aim to enforce the landmarks of the morph image to

represent the spatial average of the landmarks of the bona fide faces.

Loss in visual quality of images projected into the latent space of the StyleGAN2

model reduces the potential quality of the morphs. We compare previous image

inversion methods to derive a novel method to improve the latent space representation

of an image. To further improve the perceptual quality of the morphs, we examine

the noise inputs of our model. Trainability of the noise input is evaluated to learn

reconstruction information the latent codes cannot represent. Further exploration of

the latent space of our model is conducted using Principal Component Analysis (PCA)

to pronounce the effect of the bona fide faces on the morphed latent representation.

This work’s contributions include a novel GAN-based morphing method to attack

FRS at higher success rates than alternative GAN-based methods. We improve image

inversion into the latent space by exploring the model’s noise input while enforcing

the balance of latent identities through PCA.
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Chapter 1

Introduction

1.1 Motivation

Generative Adversarial Networks [5] (GAN) continue to grow in popularity in areas

such as deepfake generation: realistic images generated by a deep neural network

(DNN) [6]. With recent improvements in the realistic generation abilities of GANs

[2, 3], the threat deepfakes pose to personal reputation, corporate sabotage, and

national security grow increasingly concerning [7]. As such, attacks on Facial Recog-

nition Systems (FRS) mount as they continue to serve an integral part of national

security, law enforcement, and numerous personally owned devices to verify identity

[8, 9]. Border security is a key target as facial recognition is the only biometric re-

quired in electronic Machine-Readable Travel Documents (eMRTD) approved by the

International Civil Aviation Commission [10]. Deepfakes can attack the enrollment

stage of the biometric system integration guideline set by the ICAO by passing two

1



safeguards: image tampering detection and identity verification. If a deepfake fools

both the detector and is identified as the individual in question, a bad actor could slip

right through these security measures [11]. Our proposed technique generates a type

of deepfake known as a morph that possesses the identity of two individuals capable

of fooling both human inspectors and FRS using a GAN.

Facial morph images have proven a threat to FRS when submitted by a bad actor

as a means to identify themselves [11]. A facial morph is an artificial face image

generated by blending two or more real face images of different individuals. Good

facial morphs balance the identities of each real face image used during generation.

The contributing subjects can use the morph for verification as FRS would find their

identities indistinguishable to that of the morph. A bad actor under scrutiny could

find a look-alike individual, morph their faces, and use the resultant morph to pass

themselves off as their look-alike. We explore the threat GAN-based morphing poses

to FRS as well as improve upon current GAN-based morphing techniques.

1.2 Goals and Objectives

In this thesis, we build upon the works of [3, 4, 12] to generate a face morphing

technique utilizing StyleGAN2. Compared to other face morphing techniques, GAN-

based face morphing falls short when used to attack FRS [12, 13]. Improvements to

early face generating GANs made by Karras et al. [2] have increased their threat to

FRS due to increased image resolution size and visual quality. Regardless, GAN-based

morphs continue to perform significantly worse than alternative techniques such as

landmark-based morphing [1]. Whereas landmark-based morphs are generated in the

2



image domain, GAN-based morphs occurs in the latent space by blending the latent

representation of the original facial images. Our technique augments the calculation

of the latent representations by blending the landmarks of the original facial images

before finding their respective latent representations. This work shows how morphing

the landmarks before inverting the bona fide faces into their latent representation

allows the morphed face’s landmarks to be equidistant from the original subjects’,

increasing their threat to FRS.

To calculate the latent representations of our bona fide subjects, we derive a loss

function from [3, 4, 14] to improve the preservation of identity. Our loss function

includes perceptual loss using a DNN to extract features from the bona fide and

synthesized images, pixel-wise loss, and regularization losses to improve the quality

of the latent representation. Then, we explore alternatives to latent averaging to

further improve the quality of the morph image using Principal Component Analysis

(PCA). We explore the effects of element-wise and vector-wise selection to blend

the latent representations for morphing (see Figure 1.1). With our novel technique,

we generate GAN-based morph images which fool FRS at an increased rate while

maintaining the image quality to fool human inspectors.
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1.3 Thesis Contributions

In this work, we explore the StyleGAN2 [3] architecture to develop a novel technique

for image morphing. We evaluate our technique against current landmark-based and

GAN-based methods. Therefore, major contributions of this work are as follows:

• An exploration of current landmark-based and GAN-based morph generation

methods.

• We introduce a novel GAN-based morph generation method enforcing land-

marks.

• An in-depth study into the noise input of the StyleGAN2 model to improve

inverted image quality.

• We explore alternative methods to blend latent representations to generate

higher quality morphs.

• An evaluation of morphs generated using our novel technique and current GAN-

based morphing techniques.
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1.4 Thesis Organization

The organization of this thesis are as follows:

• Chapter 2 reviews previous work related to morph generation and the threat

they pose to FRS. After discussing FRS used in this work, we discuss landmark-

based and GAN-based morphing techniques followed by a review of StyleGAN2

[3] and image inversion.

• Chapter 3 discusses experiments made on GAN-based morphing techniques us-

ing StyleGAN2 [3]. We compare previous GAN-based morphing techniques to

the new landmark-enforced morphs to evaluate their threat to FRS. Addition-

ally, experiments on applying texture to the generated images and their effect

on FRS are discussed.

• Chapter 4 explores alternative latent representation blending to improve the

balance the identities of both subjects present in the morph.

• Chapter 5 summarizes our contributions and outlines future work to build upon

our techniques.
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Figure 1.1: Our proposed morphing technique utilizing landmark warping and latent
representation averaging.
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Chapter 2

Literature Review

2.1 Morph Threat to Facial Recognition Systems

Biometrics are used in areas such as law enforcement, security, and every day con-

veniences in increasing frequency as a means to identify individuals [8, 9]. Although

fingerprints have been used for over a century in law enforcement, fingerprints are not

ideal in situations where collecting scans or imprints are not possible, impractical, or

too invasive [15]. Facial recognition is the most widely used method of biometric

identification. Although this ability is one most humans take advantage of, we are

unable to identify faces which we have not seen. Automated approaches are neces-

sary to streamline recognition of faces while improving the accuracy compared to the

abilities of a human.
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2.1.1 Facial Recognition Systems

In this thesis, two deep face recognition systems were used: FaceNet and ArcFace

[16, 17]. Both networks operate as feature extractors which output an embedded

vector representation of the inputted image. The embeddings of different subjects

are compared to determine the difference in their identities.

In this work, the inception-based [18] FaceNet model is used due to the improved

validation performance compared to the Zeiler&Fergus [19] model. Instead of focus-

ing solely on reducing the difference between the embeddings of images of the same

subject, an additional comparison is added to simultaneously increase the difference

between the embeddings of different subjects: Triplet-Loss [16]. ArcFace employs a

similar approach on a ResNet-based architecture, but compares the angular represen-

tation of the feature outputs to increase the distance between dissimilar subjects while

increasing the stability of the training [17]. Both methods have been well established

as state of the art facial recognition systems [12]. We utilize FaceNet as our primary

FRS for evaluating our morphs while using ArcFace as a secondary evaluation model.

2.1.2 Attacking with Morphs

Although not the only threat morphs pose, fooling a facial recognition system is a

key objective. Ferrara et al. in [11] presented a scenario in which a hostile subject

submits an image for a passport that is a morph between themselves and another

bona fide subject. The morphs generated for their study were made using manual

techniques, and shown to be a viable threat to FRS. With the development of auto-

mated morphing techniques, the threat of morphs to FRS grows concerning as their
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generation becomes widely accessible.

2.2 Morph Image Generation Techniques

2.2.1 Facial Landmark Morphing

There have been several automated face morphing techniques published in recent

years, but most of which can be classified as either landmark-based or GAN-based.

The latter utilizes the latent space of a generative adversarial network (GAN), whereas

landmark-based techniques map the subjects’ facial features and brings them closer

toward each other [20, 21, 22, 1]. It has been documented that landmark-based

morphing is superior to GAN-based methods [12, 13], so experiments were done using

an open-source morphing technique utilizing landmarks to compare against the GAN

generated morphs: Face Morpher [1].

Face Morpher [1], written by Quek, begins by calculating the landmarks of both

subjects’ face. Utilizing Dlib’s detector, 68 landmarks in total are predicted sur-

rounding the eyes, nose, mouth, chin, and the upper edges of the eyebrows [23].

These points are used to calculate a convex hull, cropping out a mask of each subject.

The generated points are averaged to a set of points equidistant to each subjects’

points, and using Delaunay Triangulation, the triangles of each subject are warped

toward the averaged points. After warping, the faces are structurally aligned. Dif-

ferent blending approaches are used to combine the pixel values of the two faces to

create an averaged mask. The warped and averaged masks are then pasted onto both

original subjects; this results in two morph images of the bona fide subjects. Example

9



Figure 2.1: Example landmark-based morphs using [1] on the FRGC dataset.

morphs using FaceMorpher are shown in Figure 2.1.

2.2.2 Generative Adversarial Networks for Morphing

Generative adversarial networks have been a hot-button topic since their inception

[5]. GANs involve two networks, a generator and a discriminator, pitted against each

other during training. Both the generator and discriminator are traditionally mirror

images of the other in both layer type and dimensionality (convolutional layers or

fully connected layers for example). During training, the generator takes in a random

noise input, generates some output, and the output is then fed to the discrimina-

tor. The discriminator then determines whether the output from the generator is a

valid/real output or an invalid/fake output. This result serves as the loss to propagate

through both networks. The discriminator is also trained on valid/real outputs using

a separate loss function. Thus, the final result is a generator capable of generating

10



outputs similar to the real input images and a discriminator capable to distinguishing

between the two.

The noise serving as the input to the generator is referred to as a latent code or

representation. By using a latent representation of a particular output, we are able

to change attributes of the output in the latent space. For example, a generator for

making landscapes along with the latent code for generating a landscape of a tree-

filled valley could be manipulated to change the weather, the color the trees, or add

clouds in the sky. This opens up a new frontier for areas like graphic design [24],

animation [25], and face editing [26].

One of the earliest GAN-based face morphing techniques used the MorGAN archi-

tecture [27]. Both the generator and discriminator are constructed using convolutional

layers along with rectified linear unit activations (ReLU) for nonlinearization [28]. In

this example, an encoder is also trained to estimate the latent representation of a

given input image. The loss for this encoder takes into account a pixel-wise loss of

the input and output image and an adversarial loss derived from the cross-entropy of

the discriminator and generator losses. Thus, the encoder is trained along with the

generator and discriminator. The latent code dimensionality for the MorGAN gener-

ator is 1×512 which is convolved into an output image of size 64×64×3. To morph

two subjects, linear interpolation of their corresponding latent codes is inputted into

the generator to produce a morph of the two images.

In a study by Venkatesh et al. [12], landmark-based and GAN-based morphed im-

ages were evaluated against FRS. To evaluate the morphs’ performance, they adapt

a metric from [29] known as Mated Morph Presentation Match Rate (MMPMR).

11



MMPMR is calculated using a pre-trained FRS to produce a similarity (or dissimi-

larity) score between a given morph and images of the contributing subject. If the

minimum similarity score from the comparisons is greater than a given threshold, the

morph attack is successful resulting in a score of 1. The cumulative average of the

scores produce the success rate of the morphs (see Equation 2.1. Landmark-based

morphs had significantly higher MMPMRs than the GAN-based approachs. Using

ArcFace [17] as the FRS, the landmark-based morphs [21] had an MMPMR of 95%,

whereas none of the MorGAN morphs were successful (MMPMR of 0%). Venkatesh

et al. [12], in addition to MorGAN, also evaluated morphs generated using a style-

based GAN known as StyleGAN [2]. The StyleGAN morphs achieve an MMPMR of

39%, showing significant improvement from the MorGAN architecture while under

performing compared to landmark-based techniques. Our work strives to improve

upon the StyleGAN-based results by adapting techniques used in landmark-based

techniques to improve the quality and performance of the morph images.

MMPMR(τ) = 1/M ∗
M∑

m=1

[ min
n=1,....Nm

Sn
m] > τ (2.1)

2.3 Style Based Image Generation

Karras et al. [2] proposed an improved GAN architecture (StyleGAN) to generate

high resolution images of a much higher quality than previous GANs. In addition, the

network’s design makes it ideal for mixing styles of different images in the latent space.

Although the resultant images were of a high caliber, there were noticeable artifacts

in some samples. StyleGAN2, presented by Karras et al. [3], corrects these artifacts

12



while improving the quality even further. In this work, we utilize the StyleGAN2

architecture due to the improved image quality.

2.3.1 StyleGAN2 Architecture

The StyleGAN [2] model is constructed by a series of convolutional and upsampling

layers organized into blocks based on the resultant resolution of the image outputted

by the final convolutional layer of the block. This design is based on [30] to generate

images at high resolutions through a progressive learning approach. When training,

the generator and discriminator only have two blocks of convolutional layers, pro-

ducing an 8x8x3 output. As the loss of the lower resolution layers converge, higher

resolution layers are added and trained again. This repeats until reaching the final

resolution of 1024× 1024× 3. Using this methodology, the network’s training stabi-

lizes while reducing the amount of time it takes to train [30]. The other significant

change to the traditional GAN architecture [5] is the input to the generator. In place

of the latent code input to the first convolutional layer, a constant, learned input is

used. The latent code is instead mapped through a series of fully connected layers

to generate an intermediate latent code vector of size 1 × 512, which is then put

through an affine transform for each convolutional layer before being mapped into

the network. Due to this significant change, latent codes from different images can be

inputted together to produce an image with mixed styles. Figure 2.2 shows the gen-

eral architecture of the StyleGAN2 model. The figure shows the blocks for resolutions

of 4×4 and 8×8.

The key difference between the StyleGAN [2] and StyleGAN2 [3] models is the

manner in which latent codes influence the generator at each layer. In the StyleGAN

13



Figure 2.2: StyleGAN2 architecture generated from [2, 3].
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architecture, a normalization method uses the output of the intermediate latent code

and the affine transform to scale the normalization of each feature map. This adaptive

instance normalization allows for the style to influence the feature maps at each

resolution to manipulate the final output. For StyleGAN2, the artifacts produced

by the normalization were corrected by replacing the normalization approach with

a weight modulation and demodulation operation. This new approach scales the

weights of a given convolutional layer using the inputted style vector and then scales

down the product by its L2 norm. The overall image quality improves slightly with

this replacement in addition to the removal of the artifacts present in original output

images.

2.3.2 Image Inversion

Morphing in the latent space requires a latent representation of both subjects, allow-

ing the generator to reproduce the original images. The two general strategies for

inverting from image to latent code include optimizing for each latent code separately

[4] or training an encoder to convert an image into its latent representation [31, 32].

We only focused on the optimization latent embedding methodology in this work.

In [3], the authors discuss an optimization-based approach to invert or embed

images into the StyleGAN2 latent space. A starting latent code is calculated from

10,000 random codes once mapped through the fully connected layers, resulting in an

averaged latent code, W , where W is a 1×512 vector. To optimize the latent code,

the perceptual loss [33] between the original image and the current synthesized image

is back-propagated through the network to the latent code W . Learned Perceptual

Image Patch Similarity (LPIPS) extracts features from both images to compare their
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likeness:

LLPIPS =
n∑

i=1

(E(x)− E(g(W+))2, (2.2)

where E is the LPIPS embedding representation for the down-sampled images, g is

the StyleGAN2 generator, and n represents the size of the embedding. In addition,

Gaussian noise is added to W for the first three-quarters of the optimization steps for

increased stability and to traverse more of the latent space, assisting the finding of

the global optimum [3]. The noise input to the feature maps throughout each layer of

the generator is also learned to find the optimal noise compliment to latent code W .

Training for noise can lead to the latent code containing less information of the style

of the image with the noise containing significant information on how to reconstruct

the image. To prevent this, noise regularization loss is added to restrict the noise to

the form of a normal distribution:

Lnoise =
∑
i,j

Li,j (2.3)

where i is the layer of noise, j represents the amount of down-sampling performed

on the given noise matrix. within the noise matrix, and Li,j is the regularization term

for a given layer of noise. The total loss using this technique is the sum of both terms:

LossTotal = λ1 ∗ LLPIPS + λ2 ∗ Lnoise (2.4)

where λ1 = 1 and λ2 = 105. A standard Adam optimizer is applied over 1000 steps
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to learn both the latent representation and the corresponding noise maps. Figure

2.3 shows projected examples using this technique. Example images were taken from

a random input to the StyleGAN2 architecture (a) and from the Face Recognition

Grand Challenge (FRGCv2) dataset [34]. We compare the target and reconstructed

images using FaceNet as a verifier to find an averaged distance between the target

and synthesized images. The average distance for the images in columns (a) and (b)

is 0.36; the average distance for images in columns (c) and (d) is 0.70.

Figure 2.3: Example images embedded using the technique presented by [3].

The embedding methodology in [3] works well for images the generator has seen

during training; however, the quality of the reconstructed images degrades when

applied on new images. Here, the latent code is a 1×512 vector which is applied

to each layer of the generator. This restricts the combination of styles that can be

applied to a single image to a combination that exists in the latent space. Abdal

et al. [4] expand the size of latent code to 18×512 to allow a different vector for
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each layer. The latent code W is replaced with the extend latent code W+. A

modified perceptual loss function now uses a pretrained Very Deep Convolutional

(VGG) model to extract features from both the original and synthesized image [35].

The new perceptual loss between the target and synthesized image is calculated by

comparing their features from four different layers of the VGG model. They compare

the outputs of the conv11, conv12, conv32, and conv42 layers to derive their perceptual

loss function:

LV GG =
4∑

j=1

1

Nj

||(Vj(x)− Vj(g(W+))||22, (2.5)

where x is the target image, g is the generator, W+ is the latent code, Vj is the feature

outputs of the VGG16 model for the layer specified by j, and Nj is the number of

scalars in the feature maps for layer j. Pixel-wise loss is also added to measure the

L2 distance between the target and synthesized image:

Lpixel =
n∑

i=1

|x− g(W+)| (2.6)

where x is the bona fide image. Structural and pixel level information is learned by

the latent code by combining both losses:

LossTotal = λ3 ∗ LV GG + λ4 ∗ Lpixel (2.7)

where λ3 = 1 and λ4 = 1. Only the latent code is optimized using this technique, so

there is no noise regularization loss. The quality of the reconstructed images improve

significantly for images the network has not seen during training (see Figure 2.4).
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The average FaceNet distance for the reconstructed images in columns (b) and (d)

are 0.315 and 0.262 respectively, showing a significant improvement in the inversion

method compared to [3]. Although the latent space may contain the necessary styles

to generate a new face, by expanding the dimensionality of the latent code, variabil-

ity in the combination of applied styles increases. We explore both of these image

inversion techniques to begin morphing in the latent space.

Figure 2.4: Example images embedded using the technique presented by [4].
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Chapter 3

Morphing in StyleGAN2 Latent

Space

3.1 Dataset Descriptions

For the following experiments, we use images from the Face Recognition Grand Chal-

lenge (FRGCv2) dataset [34]. FRGC contains images of subjects across different

years and from two environments: hallway and plain backdrop. We develop pairs of

identities for morphing from a subset used in [36]. In total, we use 165 bona fide

subjects generating 305 morphing pairs of subjects with similar features. By using

published pairings, we are able to compare our results to prior work by removing any

difference caused by the pairings.
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3.2 Standard Latent Embedding

We begin our experiments using published inversion techniques [3] [4]. Although

the latter was originally designed for the original StyleGAN [2] architecture, the

loss function and intermittent latent space work in a similar manner. Using both

techniques, we morph the latent codes of two subjects simply by averaging the learned

latent codes of the bona fide subjects.

3.2.1 Pre-processing and Inversion

StyleGAN2 is designed to produce images with equal height and width, therefore,

the images used for the optimization steps are cropped down to 1024× 1024× 3. In

addition, each face must be centered within the cropped image, which is performed

using [37] as recommended by the authors of StyleGAN [2]. Without the alignment

step, features such as the eyes and mouth become corrupted when inverted as the

network was trained on images that were centered using the same alignment method.

Once aligned, we backpropagate for each image’s latent code. Both techniques use an

Adam optimizer [38] with beta values β1 at 0.9 and β2 at 0.999 which is applied over

1000 steps. In addition, we apply the same learning rate ramp-up and ramp-down

method as [3] to stabilize training. The learning rate is ramped-up linearly over the

first 50 steps from 0 to 0.1, and the ramp-down decreases the learning rate using a

cosine schedule over the last 250 steps. The total time to embed an image using either

technique is dependant on hardware configuration, so the average time varies between

150 to 450 seconds per image. After optimization, we save the final latent code (either

a 1×512 or 18×512 matrix) and the final output image produced by the learned latent
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code. Example reconstructed images using both techniques can be found in Figures

2.3 and 2.4. After learning, the morphs a generated by averaging the learned latent

codes of a pair of bona fide images and inputted into the generator. After morphing,

we evaluate the performance of the two sets of GAN generated morphs along with

landmark-based morphs using [1] against FRS. Example morphs generated using [3]

are shown in Figure 3.1; examples using [4] are shown in Figure 3.2

Figure 3.1: Example morphs generated by averaged latent codes learned using [3].

3.2.2 Morphing Results

Evaluation of the morphs using these inversion methods is performed using FaceNet

[16] verification. We create a genuine pair using the bona fide images used in our
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Figure 3.2: Example morphs generated by averaged latent codes learned using [4].

morphs and an alternate images of the same subjects. Imposter pairs are made using

the bona fide images and their respective morphed images. Doing so, we compare

every morph to both contributing bona fide images. The True Positive rate is the

rate at which the genuine pairs are correctly classified as genuine, whereas the False

Positive rate is the rate at which the imposter pairs are incorrectly classified as gen-

uine. We plot the True Positive against the the False Positive to generate the Receiver

Operating Characteristic (ROC) curve in Figure 3.3. In Table 3.1, we list the area un-

der each ROC curve (AUCs) along with the Attack Presentation Classification Rates

(APCERs). The APCERs show the percentage of morphs which fool the detector

at select rates at which the verifier incorrectly classifies the genuine pairs (Bona fide

Presentation Classification Error Rates or BPCERs). The APCER for the morphs

23



generated using [4] show an increase in the threat they pose comparatively to [3]

morphs. For our purposes, we want the AUC to be closer to 0 and the APCERs

closer to 100% showing an increased similarity between the morphs and the bona fide

images.

Table 3.1: Morph Results Using Established Inversion Methods

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

FaceMorpher [1] 0.938 3.934 20.98 29.84
StyleGAN2 [3] 0.995 1.311 1.475 1.475

Image2StyleGAN [4] 0.983 1.485 3.135 4.455

3.2.3 Summary

Our morphing results using both inversion methodologies are comparable to other

studies [12, 13]. The morphed faces are realistic, but there is a lack in identity as

shown by their FRS verification results. Without passing verification, the morphs

are not a threat to FRS. The modified Image2StyleGAN [4] image inversion method

performed best, but without the learning rate ramp-up and ramp-down from [3], the

inversion technique was unable to invert a significant percent of the dataset, resulting

in a blank image. In terms of visual quality, the faces are realistic, but hair, clothing,

and jewelry become distorted. Morph pairs where one has short hair and one long

leads to ”floating” hairs to form (see the morphs in the top row of Figure 3.2). We

then explore two additions to improve identity preservation when morphing while

removing the artifacts formed when morphing in the latent space.
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Figure 3.3: ROC curve comparing the FaceNet performance of StyleGAN2 morphing
methods using [3, 4].

3.3 Latent Embedding of Convex Hulls

There are two key issues with the previous morphs: loss of identity and unrealis-

tic border features, whereas landmark-morphing performs well in terms of identity

preservation when morphing. We take the landmark warping step from landmark-

morphing approaches to see the effect it has on the morphs generated in the latent

space. Border features in our case include the hair, clothing, and jewelry present in

the images. The hair is a finer detail of a face, which is produced by higher levels of

the network influenced by both the latent code and the noise added to that layer. By

averaging the latent codes of subjects with different higher level features, the morph
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gains a mixture of features that a real image could not naturally posses. We create

3.3.1 Pre-processing and Inversion

We begin by performing the same aligning and cropping methodology from Section

3.2.1. We then warp the landmarks of the aligned images toward an averaged set of

landmarks for each pair of subjects (see Figure 3.4). We adapt Quek’s landmark-based

morphing technique to estimate 68 landmarks for each subject, average them, and

finally warp them using Delaunay Triangulation [1]. Warping the landmarks before

inverting the images removes the morphed latent code’s effect on the landmarks, as

the latent codes now pose the same landmarks. As long as the inversion method

preserves the landmarks of the warped images, the landmarks of the morphs will be

comparable to landmark-based techniques.

Figure 3.4: Example shows the shifted landmarks from the bona fide images to the
average landmarks of the subject A and subject B.
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The next change resolves the problem of the higher level features becoming dis-

torted and unrealistic when morphing. We again modify the methods from [1] to

isolate the face from the image, cropping out a mask as seen in Figure 3.5. In the

original FaceMorpher methodology, the faces are cropped, warped, a convex hull is

then removed from each warped image, they blend the pixel values, and finally paste

the morphed convex hull onto the background of the bona fide subjects. By keeping

the bona fide backgrounds, features such as hair, clothing, and jewelry would be pre-

served. Adapting this technique, we warp the landmarks and then save a mask of the

warped faces of each subject. These masks or convex hulls will serve as the input to

the latent code optimization method.

Figure 3.5: Example shows the warped convex hulls of the subject A and subject B.

The Image2StyleGAN method was superior in the quality of both the inverted

and morphed images; however, we found inverting the convex hulls occasionally fell

into a local minimum where the image becomes a solid black image. We found that

the perceptual loss using layers from a pre-trained VGG16 model lead to the issue,
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so we replaced their perceptual loss with [33], which was used in [3] (Equation 2.2).

We also use pixel-wise loss (Equation 2.6) at a weight of 0.5 to avoid smoothing

over the image. Noise regularization (Equation 2.3) is added, and finally a new loss

term to regularize the latent code. Latent regularization was introduced in Robert

Luxemburg’s StyleGAN2Encoder [14]. To prevent the latent code of each layer from

going beyond the scope of the latent space, ultimately effecting the morph-ability of

two subjects’ latent codes, an L1 penalty is applied to the latent codes. We weight the

latent magnitude regularization penalty by a factor of 10−1, allowing for an accurate,

but editable, latent representation to be found:

Lreg =
√

1/N(W+)2 (3.1)

where N is the total number of latent values (18×512 = 9216). Our total loss function

for embedding convex hulls is:

LossTotal = λ1 ∗ LLPIPS + λ2 ∗ Lnoise + λ4 ∗ Lpixel + λ5 ∗ Lreg (3.2)

where λ1 = 1, λ2 = 105, λ4 = 0.5, and λ5 = 0.1. This loss function allows each

convex hull to be inverted into its latent representation. Once we calculate the latent

representations of a pair of warped convex hulls, we average the latent codes to

generate the morphed convex hull of the two subjects. The convex hull is pasted onto

the both bona fide subjects, following the same steps as FaceMorpher [1]. We display

new morph examples in Figure 3.6.
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Figure 3.6: Example morphs generated by averaged latent codes learned using warped
convex hulls.

3.3.2 Morphing Results

We again utilize FaceNet [16] to compare every morph image to each contributing

bona fide image, plotting. Although the new morphs perform better than morphs

generated by averaging the latent codes using [3], our AUC is higher than morphs

using the latent codes from the Image2StyleGAN method [4] as shown in Table 3.2

and Figure 3.7, showing a greater difference in the similarity between the new morphs

and the bona fide images. The drop in performance is due in part by the pasting step

we perform after averaging the latent codes. The morph is pasted onto each of the

contributing bona fide subjects and the colors are changed to seamlessly blend the

mask with the background. This improves the quality of the morph compared to the

bona fide subject whose background was applied; however, the performance compared

to the other contributing bona fide subject degrades. When running verification, we

compare each pasted morph to the contributing bona fide subjects. If we only compare
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the morphs with the bona fide who’s background is applied, the AUC decreases from

0.9878 to 0.9827. The APCER rates also improve with the APCER @ BPCER=5%

increasing from 3.2787 to 7.5409.

Table 3.2: Morph Results Using Landmark Warping

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

StyleGAN2 [3] 0.9952 1.3114 1.4754 1.4754
Image2StyleGAN [4] 0.9836 1.4851 3.1353 4.4554
Warped StyleGAN2 0.9878 1.4754 2.4590 3.2787

3.3.3 Summary

By applying landmark warping before inverting the bona fide images into their latent

representations, we are able to generate morph images with a comparable threat

level than when using [4] to invert the images. Although the FaceNet verification

performance degrades slightly, the resultant morphed images are less likely to be

flagged by a human inspector due to the lack of artifacts in the hair, clothing, and

jewelry in the images. The most significant change in our methodology to previous

methods is the convex hull. StyleGAN2 was not trained to reconstruct a convex

hull of a face but the entire head. Using the same methods for embedding a full head

cannot be applied for the convex hulls. To overcome the inherit problem of the convex

hulls, we explore the StyleGAN2 model to augment the embedding methodology to

improve the latent representations for the convex hulls.
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Figure 3.7: FaceNet ROC curve comparing standard StyleGAN morphing methods
to our Warped Landmark Morphs.
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3.4 Image Projection Experiments

Improving the latent representations of the convex hulls is the first step to improve the

performance of GAN-based morphs using landmark warping. We first examine the

influence of the noise input on the reconstructed images. We then explore methods for

optimizing the noise as a means to improve the identity in the reconstructed images.

Finally, the loss function for latent optimization is modified as a result of the noise

experiments to improve the quality of the latent codes and the performance of the

morphs. During exploration, we use the subset of images from the FRGC dataset

used in Section 3.2 [34].

3.4.1 Train-ability of Noise

3.4.1.1 Training Noise before Morphing

Each layer of the StyleGAN2 architecture has a noise input, which adds finer details to

the image at each resolution [3]. The noise is applied to the feature maps outputted

by the convolutional layers, and the noise is generated from a random Gaussian

distribution. By setting the noise to zero, we remove all texture from the faces ((a)

in Figure 3.8). Adding noise with high values distorts the images by adding too

much texture ((d) Figure 3.8). As a means to explore the significance of each layers’

noise input, we remove the noise for all layers expect for one. Figure 3.9 shows a

noise being applied to a single layer. Starting from the top left, Figure 3.9 shows

noise being applied to the 4x4 resolution only and continues left to right for the next

resolution. Noise in the early layers has little visual impact, whereas the higher layers
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Figure 3.8: Example showing noise applied at increasing factors from 0 (a) to 1.5 (d).

(particularly the 128×128 layers) present a significant change in the texture. From

this, we can say the noise is essential in the reconstruction of an image, but the

question of how best to apply it needs addressed.

We then explore the train-ability of the noise inputs for a particular image. After

training for the latent representation, we freeze the values of the latent code and

train for a list of noise inputs. Perceptual loss is removed, so we only have pixel-wise

loss being applied as the latent representation is responsible for the structure of the

image. The learning rate is ramp-ed up similar to [3] and ramp-ed down starting

at step 400 as finding the noise requires smaller adjustments earlier in training than

with the latent codes. To reduce the time to optimize the noise, we add a verification

check based on FaceNet to stop the optimization if the L2 distance between the

bona fide image’s and the reconstructed image’s embeddings fall below 0.04. After

training for the noise, we take the final reconstructed images and paste them onto the

warped bona fide images. We evaluate the performance of the new inverted images to

the images generated using [3, 4] to compare the inversion methodologies. We then

explore blending the noise values in addition to the latent codes by averaging the

noise values of each subject and applying it when reconstructing the average latent

codes.
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Figure 3.9: Example showing noise applied to each resolution block of the network
separately.
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3.4.1.2 Results

We first compare the performance of the inverted images we generate in Sections 3.2

and 3.3 using FaceNet [16] verification and the same genuine pairs previously used (see

Table 3.4 and Figure 3.10 for complete results). An inversion method’s performance

is effective when the AUC is below 0.5 meaning the inverted images before similarly

to the alternative images used in the genuine pair. The inversion method from [3]

preforms poorly with an AUC of 0.99, whereas the Image2StyleGAN [4] method

produces images with results better than the inversion of the warped convex hulls.

However, the convex hulls come from the warped bona fide images after the first step

toward morphing (as their landmarks have been shifted toward the average landmarks

of two bona fide subjects). Therefore, the performance of the warped images serves as

the maximum potential for the inversion methods using the warped convex hulls. As

the Image2StyleGAN images’ performance is far from the alternate bona fide images,

we see the inversion method is not perfect. Although they are from warped convex

hulls, the inverted images generated in Section 3.3 (named Inverted Warped Images)

do not perform as well as the warped images, showing a loss in the identity during

the embedding process.

The trained noise, however, significantly improves the performance of the inverted

convex hulls. Various aspects of the images improve including texture, detail around

the eyes, hair, and mouth. Figure 3.11 shows the improvement in the reconstructed

images when we shift from no noise (center left) to random noise (center right) and

the trained noise (right). In addition, due to the improved detail around the edges

of the face, the artifacts produced by pasting the reconstructed mask onto the back-

ground of the bona fide image have been corrected as the images are near identical.
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The performance of these images show results near identical to the warped images,

removing any loss in the image quality after embedding and the optimization of the

noise.

However, the noise values, when blended, distort the morph, and do not represent a

blended texture of the bona fide subjects. This conclusion is similar to an observation

made in [3] when the noise regularization loss is removed when training for noise. By

training for noise using pixel-wise loss only, the noise may be learning coarser details

and not just finer details such as texture. In addition, each trained set of noises

is only usable with the latent code inputted during its optimization. We conclude

that training for the optimal noise value before morphing is not a viable option for

latent-based morphing.

Table 3.3: Inversion Results on FaceNet

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

StyleGAN2 [3] 0.9900 1.2121 2.4242 4.8484
Image2StyleGAN [4] 0.6721 44.1718 76.0736 87.1165

Warped Images 0.7341 35.7377 65.2459 83.9344
Inverted Warped Images 0.9115 10.3279 21.4754 39.8361

Inverted Warped Images Trained Noise 0.7213 35.7377 69.8360 87.2131

3.4.1.3 Training Noise after Morphing

Although training for the optimal noise values for a given latent code does not im-

prove the quality of the morph, noise values have a significant impact on StyleGAN2

generated images’ verification performance. Instead of training for the optimal noise

values for each subjects’ latent codes, we train for the optimal noise values after av-

eraging the latent codes. We blend the pixels of the bona fide images and use the
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Figure 3.10: ROC curve showing the quality of the image inversion methods.

blended face to serve as the comparison for the pixel-wise loss, allowing for the opti-

mal noise values for the morph to be learned. We keep the same hyper-parameters

as the experiment in the previous section.

We note that training for the averaged pixel values combined with the landmark

warping would result in training for noise values to make the morph appear near

identical with the landmark-based approaches. To avoid this, a mask is generated

using the landmarks surrounding the eyes, nose, and mouth and applied to the average

of the bona fide images, removing those features from the average of the two bona

fide images. The inverse of the mask is then applied to the reconstructed image from

the averaged latent codes before noise optimization. By doing so, we keep the artifact
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Figure 3.11: Example shows the warped convex hulls (left) after being embedded and
reconstructed with different noise values being applied.

free eyes, nose, and mouth from the latent-based morph while training for the optimal

morphed texture.

3.4.1.4 Results

Morphs using the trained textures perform better than the random noise-based ap-

proach. Visually, however, have more artifacts than when random noise was applied.

In addition to the artifacts caused by pasting, boundaries around the eyes, nose, and

mouth are pronounced in some examples. Further testing in learning texture may

lead to an improved latent-based morph generation technique; however, we leave this

problem for another project to try to different approach to improve the embeddings.
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3.4.2 Noise Regularization Revisited

3.4.2.1 Experiment

Training for the optimal noise values for the latent code of a bona fide image improved

the quality of the reconstructed image. However, when used with a different latent

code, the noise distorted the output. We concluded the cause to be image specific

information being added to the noise. Although noise regularization is applied dur-

ing optimization of the latent codes, the applied noise still contains information to

reconstruct the bona fide image. Latent-based morphing relies on the quality and

amount of information represented by the latent codes. To remove any information

from being stored in the noise instead of the latent code, we modify the latent code

optimization technique by setting the noise to zero after the first 400 steps of the

optimization.

Removing the noise too early causes the optimization to generate a corrupted

image, but when removed after the first 400 steps, the latent code has learned enough

information to prevent the corruption. The latent code then continues to optimize for

the remaining 600 steps. Although the latent code cannot learn texture, by removing

the noise, we aim to gain any information that was being capture by the noise instead

to improve the quality of the latent representation of the bona fide images. In addition

to the change in the noise values, we also reduce the pixel-wise loss weight to 0.05.

This results in a total loss function:

LossTotal = λ1 ∗ LLPIPS + λ2 ∗ Lnoise + λ4 ∗ Lpixel + λ5 ∗ Lreg (3.3)
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Figure 3.12: Results from the Image2StyleGAN [4] and the proposed method.

where λ1 = 1, λ2 = 105, λ4 = 0.05, and λ5 = 0.1. Figure 3.12 compares the

contributing subjects (a) and (e) to the morphs generated using [4] and our proposed

method. We show the morphed mask pasted onto contributing subject (a) in column

(b) and the mask pasted onto contributing subject (e) in column (d).

3.4.2.2 Results

We see in Figure 3.13 a plot for the FaceNet [16] scores using L2 distance for the

warped images (a), inverted images from Section 3.3 (b), the new inverted images with

the removal of noise (c), and the inverted images after noise optimization from Section

3.4.2 (d). The further to the left each distribution falls represents a greater similarity

between the bona fide images and the imposter images. From these plots, we can see

that the new embedding methodology does improve the latent representation’s ability

to reconstruct the warped bona fide subjects compared to our original performance.

We repeat the same verification test from Section 3.4.2 to compare the performance

of our updated inverted images against their bona fide image (Figure 3.14). The
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Figure 3.13: Histograms of FaceNet scores to evaluate the loss function described in
Section 3.4.2

performance improves upon Section 3.3 with a decrease in AUC of around 0.1 and

doubling APCER @ BPCER of 30% and 10% (Table 3.4).

Without noise, the reconstructed images do not posses any texture or finer details;

however, regardless of the lack of texture, their performance on FaceNet [16] improves.

We then take the new latent representations, average them, apply a random noise

value as done previously, and compare the performance of the morphs (see Table 3.5

and Figure 3.15). The performance of both the average of latent code morphs using

the improved embeddings for the warped convex hulls improves the AUC from 0.987

to 0.981 and improves APCER @ BPCER=5% from 3.27 to 7.54, showing a significant
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Table 3.4: Updated Inversion Results on FaceNet

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

Warped Images 0.7341 35.7377 65.2459 83.9344
Inverted Warped Images 0.9115 10.3279 21.4754 39.8361

Inverted Warped Images Updated 0.8327 19.6721 41.1475 62.7868
Inverted Warped Images Trained Noise 0.7213 35.7377 69.8360 87.2131

improvement int he similarity between morphs and their contributing subjects. The

morphs with the averaged noise pose a more significant threat to FaceNet, but due to

the increased number of potential artifacts caused by the mask, reduces their threat

against human inspectors.

Table 3.5: Morph Results using Landmark Warping with Improved Inversion

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

StyleGAN2 [3] 0.9952 1.3114 1.4754 1.4754
Image2StyleGAN [4] 0.9836 1.4851 3.1353 4.4554
Warped StyleGAN2 0.9814 1.4754 3.1147 7.5409

Warped StyleGAN2
with Averaged Noise

0.9659 2.4590 10.3607 18.3607

3.4.3 Summary

The combination of both perceptual and pixel-wise losses results in an improved latent

representation of the bona fide images [4]. We also see an improvement in GAN-based

morphs when the landmarks of the bona fide subjects are warped and cropped before

being inverting the latent space. Without a good latent representation, the resultant

morphs cannot fool FRS or a human inspector with any success. The performance,

however, compared to the baseline inversion and averaging methods is minimal. Al-

though the loss caused by pasting problem is still apparent, we recognize the biggest
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Figure 3.14: ROC curve showing the quality of the warped, inverted images.

drop in performance after warping occurs when the latent codes are averaged (see Ta-

bles 3.4 and 3.5). Our next experiment explores alternatives to averaging to further

improve our GAN-based morphing results.
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Figure 3.15: ROC curve comparing improved performance of landmark warped
morphs and morphs with optimized noise values.
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Chapter 4

Morphing through Latent Space

Manipulation

Averaging latent codes assumes the latent space can be traversed linearly. After eval-

uation of the verification scores discussed in Chapter 3, the morphs generated from

the average latent codes of two subjects are bias toward a single subject. Quality

morphs must balance the identity of both subjects. We explore alternatives to av-

eraging using Principal Component Analysis (PCA). After morphing, we finalize our

morphing results using FaceNet verification, single morph detection, and MMPMR

[29].
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4.1 Datsets

For the following experiments, we again use images from the Face Recognition Grand

Challenge (FRGCv2) dataset [34] used in prior experiments. We increase the number

of bona fide subjects to 374 to generate 747 morphing pairs. The increased subset

size does impact the final results shown in this chapter compared to the results shown

in Chapter 3.

4.2 Latent-based Morphing via Principal

Component Analysis

We first explore the effect of PCA when applied on the latent codes of the convex hulls

from our previous experiments discussed in chapter 3. The latent codes have dimen-

sions 18×512, so the of the data would be covariance matrix would be 9216×9216.

However, we assume each latent code vector represents an independent style of the

image, so we perform PCA on each layer/vector of the latent code separately. We

will then have 18 covariance matrices of size 512×512.

4.2.1 Exploring Variance

The PCA models are first trained using a large dataset of latent codes from warped

convex hulls generated from a dataset of twin images. We utilize the SciPy [39] library

to train our model and generate our eigenvectors. Before projecting another dataset

onto the model, we first explore the explained variance of the eigenvectors for each
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Figure 4.1: Explained variance of the principal component from three latent vectors
(top row) and three style vectors (bottom row).

layer of the latent codes. The top row in Figure 4.1 shows the amount of variance

the eigenvectors for three different latent code vectors. The values do not converge

quickly; nearly 90% of the eigenvectors are required to reconstruct the original latent

codes without significant loss of information. These eigenvectors are not ideal for the

purposes of there is very little correlation between the latent codes. We go back to

the StyleGAN2 network to find an alternative space in which to perform PCA [3].

Latent codes are not directly inputted into the convolutional layers of the Style-

GAN2 [3] model. Before weight modulation, a learned affine transform converts the

latent vector into the true style vector that will influence the weights of the convolu-

tional layer. This linear transformation changes the values and the dimensionality of

the latent code to match the dimensionality of the current layer. The style input for

the resolution blocks up to the 64×64 resolution are 1×512 and are reduced by half
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for each remaining resolution. Unlike the latent codes of which we have 18, there are

a total of 26 style vectors. This is due to the layers of the network used to convert

the feature maps into an image. The latent vector applied to the previous layer is put

through the affine transform of this conversion layer, which generates another style

vector we must morph. We convert all of the latent representations we’ve previously

generated and repeat the steps to train our PCA models. The styles converge rapidly

as shown in the bottom row of Figure 4.1. With the improved eigenvectors, we ex-

plore ways to morph the new style representations by only averaging projections on

the first eigenvectors and varying the blending of the remaining projections.

4.2.2 Maxing vs L2 Norm

The first morphing technique is influenced by [40]. Wavelet decomposition breaks two

bona fide images into a series of sub-bands representing different frequency content.

The sub-bands containing the lowest frequency content of two bona fide subjects are

fused by averaging, while the remaining sub-bands fuse by selecting the maximum

values from the two. We apply the same methodology but on the reconstructed styles

after projecting them back onto the eigenvectors. First, we select the amount of

eigenvectors to use for averaging. The total number of eigenvectors is dependent on

the current style vector we are projecting, so in place of a fixed number, we use a

percentage. We evaluate the results for averaging thresholds of 60%, 50%, 30%, 20%,

and 10% while using the remaining percentage using an alternative blending method.

For each style vector, we project them into our pre-trained PCA space, calculate the

number of eigenvectors using the current threshold, projects the styles onto the first

eigenvectors up to the calculated amount, and projects them again on the remaining

48



eigenvectors. We then average the first projection results for a given morph pair. For

the projections from the remaining eigenvectors is blended using either maxing or L2

norm selection.

For maxing, we go element by element through the remaining projected values of a

given pair to generate a new vector containing the values with the greatest magnitude

of the projected style vectors. By doing so, we select the information with the greatest

value between the two styles, which we assume is the more significant information

for reconstruction. The averaged and maxed vectors are added together, making the

new morphed style for the given pair. We repeat this process for each style vector.

The morphed style is inputted into the network to reconstruct the morphed image

followed by the pasting step to blend the morphed mask onto each bona fide subject

[1]. Figure 4.2 shows the bona fide images (a) and our Warped StyleGAN2 morphs

(b) against morphs generated using element-wise maxing.

Our second approach uses a vector-wise selection technique as opposed to the

element-wise selection when maxing. After computing the projection of the remaining

eigenvectors, we compute the L2 norm of the projected vectors. The norms are

compared, and whichever has the greatest value, we select the entirety of that style

vector’s projection to combine with the averaged projection vector. This is done under

the sumption that the style vector farthest away from the origin is more significant

than the other. This approach, however, can result in bias within the morph toward

one subject if their latent codes has a larger L2 norm for the majority of their style

vectors. We show example morphs using norm selection in Figure 4.3.
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Figure 4.2: Example morphs using PCA and element-wise maxing. Compares the
bona fide images (a) and Warped StyleGAN2 morphs (b) to the PCA morphs using
thresholds of 60%/40% (c), 40%/60% (d), and 10%/90% (e).

4.2.3 Results

We first evaluate the new morphs using the same FaceNet verification method used

previously to compare against our standard averaging method. To compare against

alternative methods, we use morphs generated using a landmark-based approach [1],

the StyleGAN2 approach [3], the Image2StyleGAN approach [4], and morphs gener-

ated using MIPGAN [36]. Our genuine pairs consist of the bona fide images used

to morph and alternative images of the bona fide subjects, while the imposter pairs

are the bona fide images and the morphs. Again, lower AUCs and higher APCERs

corespond to a greater threat posed by the evaluated morphs. We list the AUCs

and the APCER values at BPCER rates of 30%, 10%, and 5% in Table 4.1 where

Warped StyleGAN2 are the morphs using our improved method and latent averaging

to morph.
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Figure 4.3: Example morphs using PCA and norm selection. Compares the bona fide
images (a) and Warped StyleGAN2 morphs (b) to the PCA morphs using thresholds
of 60%/40% (c), 40%/60% (d), and 10%/90% (e).

Table 4.1: Morph Results using Landmark Warping with Improved Inversion

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

FaceMorpher [1] 0.893 12.05 33.00 48.06
StyleGAN2 [3] 0.995 0.0669 0.6024 2.744

Image2StyleGAN [4] 0.967 1.218 11.77 18.94
MIPGAN [36] 0.979 0.8032 6.292 13.12

Warped StyleGAN2 0.955 2.744 16.00 24.63

Our Warped StyleGAN2 verification performance is superior to the other GAN-

based approaches; however, the results fall short of the landmark-based morphs. One

important note is the performance of the MIPGAN morphs [36]. The results shown

in their work are not reflected in our testing results. We note that the images we used

were generated using a distribution of their program, leading to potential misuse of

their software. This difference in performance is addressed in [13] which explores ad-

ditional explanations for performance difference. After establishing a baseline for the
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above methods on FaceNet, we perform the same test on the morphs using element-

wise maxing and norm selection with PCA. The AUC and APCER values are listed in

Table 4.2, where Maxing 60/40 identifies the method in which the first 60% of eigen-

vectors were used for averaging and the remaining 40% were used in the element-wise

maxing. We also plot the ROCs for the element-wise maxing in Figure 4.4 and norm

selection in Figure 4.5, showing the performance of the morphs compared to both

contributing bona fide images.

Table 4.2: FaceNet Performance on PCA Morphs

Method AUC
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

Maxing 60/40 0.955 2.744 16.00 24.43
Maxing 50/50 0.957 2.744 16.00 23.76
Maxing 40/30 0.957 2.343 15.66 23.76
Maxing 30/70 0.961 1.205 14.12 22.62
Maxing 20/80 0.966 0.803 11.78 21.29
Maxing 10/90 0.973 0.803 10.04 17.80
Norm 60/40 0.954 2.744 16.93 26.24
Norm 50/50 0.957 2.343 16.00 24.43
Norm 40/60 0.956 2.343 16.73 24.97
Norm 30/70 0.958 1.205 16.73 24.97
Norm 20/80 0.953 1.205 17.80 28.98
Norm 10/90 0.942 2.343 22.22 37.22

Comparing the results from the PCA morphs and the averaged morphs, we see no

improvement with the element-wise maxing approach. One explanation is element-

wise maxing mixes the values in a style vector into a vector which may or may not

exist naturally in the latent space. The norm selection method does improve upon

the performance of our original morphing technique. The 60%/40% combination

improves the APCER @ BPCER=5% by 2% showing only a slight improvement in

performance, but the 10%/90% combination improves the APCER @ BPCER=5%

by 12% and the AUC by 0.003. The FaceNet [16] performance improves by a small
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Figure 4.4: ROC Curve for morphs generated using PCA with element-wise maxing.

Figure 4.5: ROC Curve for morphs generated using PCA with norm selection.
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amount, but this is using one evaluation method. Plotting the ROC curve only shows

the performance of the morphs relative to the performance of the alternative images.

To further analyze the performance of our morphs, we calculate the MMPMRs at a

False Acceptance Rate of 0.1% as set by [41] using FaceNet as the target FRS. We

first examine the performance of our Warped StyleGAN2 approach and the morphs

generated using MIPGAN [36]. Results are shown in Tables 4.3 and 4.4 for the

MMPMRs.

Table 4.3: MMPMRs @ FAR = 0.1% for Baseline Morphs (%)
Method Score

MIPGAN [36] 78.00
Warped StyleGAN2 76.04

Table 4.4: MMPMRs @ FAR = 0.1% for Morphs using PCA (%)
Method 60/40 50/50 40/60 30/70 20/80 10/90

Element-wise Maxing 76.23 75.76 73.36 70.95 67.46 55.62
Norm Selection 76.77 75.84 75.17 73.63 70.48 67.07

From the MMPMRs, we see improved performances from both the element-wise

maxing and norm selection with the 60%/40% combination. The scores decrease as

the percentage that is blended using either technique increases. MMPMR takes into

account both subjects used to generate the morph. As the percentages increase, so

does the risk of the morph being biased toward one of the subjects. In the norm selec-

tion technique, we select which style vector to add to the average, which may result in

selecting the same subject’s style vector for each layer. These results show the PCA

blending methods have some improvement in the morphs’ performance compared to

the complete averaging of the latent codes.

We compare our morphs with established morphing techniques using StyleGAN2

against FRS using a verification test and MMPMR [16, 29]. To further evaluate
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Table 4.5: Results of Single-Morph Detector on FRGC Dataset

Method
APCER @
BPCER30

APCER @
BPCER10

APCER @
BPCER5

FaceMorpher [1] 2.43 12.16 18.92
Image2StyleGAN [4] 0.00 0.51 5.12

MIPGAN [36] 11.11 27.77 41.67
Warped StyleGAN2 44.67 73.81 90.86

Max 60/40 42.56 70.77 84.36
Max 50/50 38.20 71.91 82.30
Max 40/60 41.51 73.89 83.29
Max 30/70 36.10 67.53 79.22
Max 20/80 29.38 61.86 74.74
Max 10/90 29.97 53.94 68.14
Norm 60/40 51.28 81.73 91.10
Norm 50/50 46.17 73.47 85.20
Norm 40/60 44.12 76.72 91.18
Norm 30/70 43.86 81.45 95.49
Norm 20/80 45.89 83.85 93.20
Norm 10/90 54.17 80.06 94.94

the performance of our morphs, we need to evaluate them using a morph detector.

We take a pre-trained FaceNet model and append a fully connected layer to serve

as our morph detector model. The detector is trained on morph images generated

using a landmark-based technique [1] and the StyleGAN2 warping technique used in

Section 3.3 applied on the same twins dataset used to train our PCA model. These

pairings allow the detector to learn what have been identified as the most challenging

morphing pairs to detect [42]. The detector produces a single score to determine

whether the input image is a morph or bona fide image. As the detector successfully

identifies the morph images, the AUC increases while the APCERs decrease, so we

aim to decrease the AUC and increase the APCERs. Performance of the morphs on

the single morph detector are shown in Table 4.5 and the ROC curve in Figure 4.6.
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Figure 4.6: ROC curve comparing the performance of the single-morph detector on
our morph techniques and previous morphing techniques.

The performance of our new Warped StyleGAN2 morphs against the single morph

detector are superior to three baseline methods [1, 4, 36]. Although the model was

trained on an earlier version of our landmark-warped StyleGAN2 morphs, the changes

we’ve made have made the morphs harder to detect. The detector’s performance

drops as the amount of eigenvectors used in norm selection increases. Although the

10%/90% norm selection morphs perform the best on the single morph detector, we

must take into consideration their reduced MMPMR and FaceNet performance, as

well as visual quality.
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4.3 Summary

Applying PCA to modify the blending of the styles does improve our original results

in both FaceNet verification, single morph detection, and MMPMR compared to other

GAN-based morphing techniques [3, 4, 36]. The variation on the performance across

the three tests shows how different blending techniques can be a threat to one type

of detection but a lesser threat to others. Our norm selection technique using the

60%/40% combination on our warped convex hulls performed best on average across

all GAN-based morphs, improving upon the baseline results [4, 12].
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Chapter 5

Conclusion

5.1 Summary of Work

GAN-based morphing poses a unique threat to FRS compared to landmark-based

morphing methods due to their limited number of facial artifacts. Due to the limited

number of artifacts, GAN-based morphing poses a greater threat to single-morph

detectors if not trained to detect that variation of morphing. However, GAN-based

morphing struggles to retain identity in the morph images, reducing their threat to

FRS authentication compared to landmark-based methods. We introduced a new em-

bedding technique, added landmark warping to GAN-based morphing, and explored

alternatives to the averaging the latent codes to morph in the latent space to improve

identity preservation in the GAN-based morph images. Although our GAN-based

morphs do not pose the same threat to FRS as landmark-based methods, our morphs

do pose a greater threat than other GAN-based morphing methods. In addition,

58



our morphs are unique compared to other methodologies making them ideal for deep

morph detector training as they perform different than standard GAN-based morphs

on single-morph detectors.

We show that landmarks do have an impact on the performance of morph images,

but there is a still a loss in identity when morphing in the latent domain. Exploration

into the noise input showed how embedded images can become indistinguishable from

the input if allowed to learn information about the input. By limiting the noise during

training, the latent representations for warped convex hulls improve their ability to

learn the identity of the bona fide image. Finally, we introduced a new method

of morphing in the latent domain using PCA by going deeper into the StyleGAN2

model, uncovering the similarities of style vectors across a dataset. This work is

done for the pursuit of discovering limitations of GAN-based morphs as well as to

develop improved and unique ways to blend latent representations in order to better

understand the threat posed by GAN-based morphs to FRS and our security.

5.2 Future Recommendations

An alternative approach to blending latent representations we explored was applying

one dimensional wavelets. Similar to work done by [40], we decompose two latent

representations using a one-dimensional wavelet transform on each layer. The low

sub-bands are then averaged while we apply element-wise maxing to the remaining

sub-bands. Early test results were comparable to averaging, but this methodology

lead to another potential improvement to the image inversion method. As wavelets

have been proven to be effective in image morphing applications, pixel-wise loss can
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be replaced with a comparison of sub-bands of the original image. We applied this

method in both the image inversion and noise optimization steps with improved

results. Further exploration into this could lead to an inversion method that can

prioritize different frequency content of the bona fide images.

The results from training for noise after inverting an image allowed for a near

perfect reconstruction of the bona fide image. The noise values, however, were not able

to be blended with others to generate a morph. This could be corrected by studying

further how the noise applies texture to the reconstructed image. In addition, an

encoder could be added to existing image inversion methods which use an encoder to

embed images [31, 32] to estimate the noise values to achieve the same texture as the

input to the latent generating encoder. Although encoder-based inversion methods

are not yet up to the same performance level as optimization, the performance has

steadily increased within the last 2 years.

Since the beginning of this work, numerous advancements and variations have been

made to the StyleGAN [2] architecture as well as new inversion methods [43, 44]. As

the image generation quality improves, so will the inverted image quality. As new

face generating GANs are developed, there will be a need to evaluate their morphing

threat. Fine tuning the StyleGAN model with the dataset you are morphing with

may also improve results as discussed by [13]. These improvements could lead to

GAN-based, artifact free morphs proving a greater threat to FRS and our security.
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