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Abstract 

Population and Migratory Ecology of Canada Warblers (Cardellina canadensis) in the Central 

Appalachian Mountains, West Virginia, USA 

Stephanie H. Augustine 

Nearctic-Neotropical migrant birds experience a wide range of environmental conditions 

throughout their annual cycle; thus, it is particularly challenging to evaluate the spatial factors 

that may influence population growth. The Canada Warbler (Cardellina canadensis) faces 

substantial range-wide population declines, but little study has been conducted regarding 

elements occurring across the entire year that drive demographic rates. The aims of this research 

are (1) determine the relationship between Canada Warbler population demographic rates and 

environmental conditions along an elevation gradient in the central Appalachian Mountains and 

(2) ascertain the nonbreeding season location and migratory routes used by the central 

Appalachian population, which is near the southern extent of the entire breeding range. Research 

occurred from 2019 – 2021 at six study sites ranging in elevation from 526 – 1282m spanning an 

approximate 130km north-south gradient within the Monongahela National Forest, West 

Virginia, USA. To determine the relationship between demographic rates and environment, I 

assessed adult annual survival and daily nest survival. I uniquely color-banded 203 adult male 

Canada Warblers in 2019 and 2020, and resighted marked birds in 2020 and 2021. I modeled 

survival in response to predictor variables including elevation, rhododendron coverage, available 

stream length, topographic position, and aspect. I implemented a spatial Cormack-Jolly-Seber 

model with Bayesian methods and compared models using DIC criteria. To determine nest 

survival, I located nests and monitored their outcomes using motion-sensitive game cameras. I 

modeled daily nest survival as a function of elevation, rhododendron coverage, other shrub 

coverage, topographic position, and aspect using Bayesian methods and compared models using 

DIC. I found that elevation was the best predictor of adult survival, which increased from 0.573 

(95% credible intervals (CI) = 0.333 – 0.820) at 555 m to 0.702 (95% CI = 0.493 – 0.871) at 

1255 m, although the slope coefficient of the elevation effect overlapped 0. I located 12 nests in 

2021, of which 9 fledged successfully. The intercept-only model was the best predictor of daily 

survival, which, exponentiated over the 19-day nesting period, resulted in a posterior mean nest 

survival of 0.604 (95% CI = 0.527 – 0.696). To elucidate the migration ecology of the 

population, I deployed 32 light-level geolocator tags on adult males in 2020 and retrieved tags in 

2021. I recovered 13 (40.1%) geolocators, of which 10 provided data on post-breeding (fall) 

migration routes and nonbreeding season sites, and nine provided data on pre-breeding (spring) 

migration routes. The nonbreeding sites were clustered nonrandomly in Colombia, indicative of 

potential population connectivity. Post-breeding migration was largely overland through Mexico 

and Central America, with potential trans-Gulf flights by some birds. Pre-breeding migration 

routes by each individual were significantly (t = -4.75, df = 8, p = 0.001) further east than the 

post-breeding route, based on the minimum (westernmost) longitude recorded during migration 

(mean difference = 232km), consistent with a pattern of anticlockwise loop migration. Overall, 

my research documented critically lacking information on region-specific relationships between 

demographic rates and environmental conditions and provides the first insight into the migratory 

ecology of a population of Canada Warblers near the southern extent of their breeding range. My 

results fill crucial ecological knowledge gaps for an imperiled species and serve as a foundation 

for full annual cycle demographic modeling. 
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Introduction 

Spatial and temporal variability of the resources which comprise a species’ habitat 

influence the demographic rates of the species, and therefore long-term persistence of a 

population (Block and Brennan 1999). Many Nearctic-Neotropical migratory songbird species 

have shown evidence of substantial population declines in recent years (Rosenberg et al. 2019) 

creating an urgent need to understand the environmental drivers of population growth. 

Fundamentally, habitat quality is defined by population demographic rates. The combination of 

environmental features which permit survival and reproduction characterize the habitat of a 

given species, and variation in the environment produces a spectrum of habitat quality (Hall et al. 

1997, Johnson 2007). While indices of the relative value of different habitats may be obtained 

from data such as species presence/absence, population density, or individual physical condition, 

defining habitat quality requires understanding how environmental features correlate with 

population growth (Johnson 2007, Boves et al. 2015).  

Despite the importance of understanding the intrinsic habitat-demography relationship, 

information about the environmental drivers of demographic rates is limited for many declining 

species. Canada Warblers (Cardellina canadensis) are a neotropical migrant songbird species 

that has exhibited range-wide average annual declines of -1.3% between 1966 – 2019 with 

higher rates of declines in the United States than Canada (Sauer et al. 2020). West Virginia, with 

an average upward trend of 2.4%, is the only state with an increase in apparent abundance over 

the survey period (Sauer et al. 2020). This species breeds in forested areas across southern boreal 

Canada and the northeastern United States, with a narrow elevation-restricted distribution along 

the Appalachian corridor south through Tennessee and into northern Georgia (Reitsma et al. 

2009). Environmental characteristics of the forests they occupy varies throughout their breeding 
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range, generally consisting of low canopies with complex understories developed under canopy 

gaps, leading to pockets of locally high abundance but regionally low densities (Hallworth et al. 

2008a, Chace et al. 2009, Reitsma et al. 2009, Grinde and Niemi 2016). An obligate single-brood 

species, nests are built on or very near the ground by the female, who typically lays 3 – 5 eggs 

and is the sole incubator for 11 – 12 days, followed by an approximately eight-day nestling 

period provisioned by both sexes (Reitsma et al. 2009, 2018). Evidence of differential habitat 

selection across their spatial distribution (Crosby et al. 2019) highlights the need for assessment 

of factors which limit Canada Warbler populations, but most research has been conducted on 

populations at high latitudes (e.g., Sodhi et al. 1995, Hallworth et al. 2008a, b, Reitsma et al. 

2008, Chace et al. 2009, Goodnow and Reitsma 2011, Ball et al. 2016, Demko et al. 2016, 

Flockhart et al. 2016, Grinde and Niemi 2016, Hunt et al. 2017, Westwood et al. 2019). 

Moreover, most do not report adult annual survival rates (but see Wilson et al. 2018), which is 

considered the most influential driver of population growth rates for many avian species (Sæther 

and Bakke 2000). Few studies have considered the southern extent of the breeding range, such as 

West Virginia, where abundance is increasing (but see Weakland et al. 2002, Becker et al. 2012,  

Dimmig et al. 2022), illustrating a considerable ecological knowledge gap which may be critical 

to inform conservation management of this declining species.  

Demographic variation measured in the breeding season may be driven by events 

occurring across the full annual cycle of a migratory species (Faaborg et al. 2010, Marra et al. 

2015a), and thus knowledge of regional nonbreeding season ecology is crucial to fully 

understand population dynamics. Full annual cycle modeling of migratory species requires 

knowledge of the movement of populations between breeding and nonbreeding distributions, and 

subsequent population responses to environmental predictors (Faaborg et al. 2010, Hostetler et 
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al. 2015, Marra et al. 2015a, Cooper et al. 2017). Neotropical migrant birds spend less than one 

third of the year on the breeding grounds, where the majority of demographic and habitat studies 

have occurred, but populations are quantifiably influenced by resources and stressors present 

during migration and the nonbreeding period (Faaborg et al. 2010, Hostetler et al. 2015, Schuster 

et al. 2019). Technology capable of tracking the movement of birds continues to be miniaturized 

for deployment on smaller species, leading to new revelations about migratory population 

connectivity, stopover ecology, and year-round influences on demography (Marra et al. 2011, 

McKinnon et al. 2013, Cooper et al. 2017). Light-level geolocators are currently the best 

available option for tracking small songbirds over large geographic ranges and have been 

deployed on several Parulid species (e.g., Hallworth et al. 2015, Wolfe and Johnson 2015, 

Cooper et al. 2017, Larkin et al. 2017, Raybuck et al. 2017), with only one known published 

study on Canada Warblers, which occurred on northern portion of their breeding range (Roberto-

Charron et al. 2020). The nonbreeding season of Canada Warblers is less studied than the 

breeding season, but populations are known to overwinter at mid- to high elevations in South 

America, primarily on the slopes of the Andes Mountains in Colombia, Ecuador, and Peru, with 

scattered records in Venezuela (Reitsma et al. 2009, González-Prieto et al. 2017). The first study 

to use geolocators to track Canada Warblers found that several populations from a vast 

longitudinal distribution across Canada and the northern United States converged on migration 

through Mexico and Central America and wintered in northern South America (Roberto-Charron 

et al. 2020). However, hypotheses regarding causes of range-wide population declines due to 

events in the wintering range remain largely untested, and this study will provide data necessary 

to begin linking population dynamics during the breeding and nonbreeding seasons.  
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In this project, I investigated the demographic rates and migration ecology of a 

population of Canada Warblers breeding in the central Appalachian Mountains of West Virginia, 

USA. To evaluate demographic rates, in Chapter 1, I quantified adult annual survival and nest 

success and evaluated how each varied across an elevation gradient and in response to other 

environmental variables. To elucidate migration ecological traits, in Chapter 2, I tracked adult 

males using light-level geolocators and mapped overwintering locations and migratory pathways. 

These complementary studies fill crucial knowledge gaps in the natural history of this declining 

species and build the foundation to model Canada Warbler population dynamics across the full 

annual cycle. 
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Chapter 1: Annual survival of Canada Warblers (Cardellina canadensis) 

increases with elevation in central Appalachia, USA 

 

INTRODUCTION 

 The abiotic and biotic attributes that constitute the resources available to a species are not 

uniformly distributed across the environment. The suite of environmental features which allow 

the species to survive and reproduce comprise the habitat of the species, therefore the available 

resources in the habitat intrinsically influence the rates of survival and reproduction (Hall et al. 

1997, Block and Brennan 1999, Johnson 2007). The spatial and temporal heterogeneity of 

environmental features engenders inequality of resource availability that is reflected in the 

variable demographic rates of the population (Block and Brennan 1999, Johnson 2007). High-

quality habitat can therefore be defined as the combination of environmental attributes which 

support positive population growth. To quantify habitat quality for a species, we must first 

understand the relationship between the environment and demographic rates. In this chapter, I 

examine how survival and reproduction of a population of Canada Warblers in West Virginia 

vary along a gradient of physical and biological features, to better understand the complex 

relationship between species and habitat.  

There are myriad documented approaches for assessing avian habitat, including 

individual-level metrics of resource use, physical condition, and reproductive success, as well as 

population-level metrics of distribution, density, and survival, as a function of environmental 

features (Block and Brennan 1999, Johnson 2007, Boves et al. 2015). Depending on the 

objective of the research, each approach has benefits and limitations. When assessing habitat 

quality from the perspective of an individual bird, researchers have used criteria such as body 

mass, fat reserves, feather growth rate, and other physical or physiological parameters (Johnson 
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2007). Two major assumptions limit the usability of the individual condition approach: that 

different body conditions are an effect of differential habitat use, rather than a cause, and that the 

measured individual conditions result in disparate rates of survival or reproductive output 

(Johnson 2007). Furthermore, dissonance between results of studies that consider data of the 

individual or the population may lead to conflicting inferences about habitat quality. In a study of 

Cerulean Warblers, the lower individual reproductive output observed in areas of heavy timber 

harvest was offset by the higher densities of breeding pairs in this habitat (Boves et al. 2015). 

Thus, heavy timber harvest supported an overall higher reproductive rate for the population, 

which was critical information for the regional Cerulean Warbler habitat management strategy 

(Boves et al. 2015). This discrepancy highlights how individual-focused studies may not 

accurately reflect population outcomes and demonstrates the utility of population-level 

assessment. 

Despite the advantage of population-level metrics, not all are equally informative of 

habitat quality. Population distribution may vary across the landscape, but greater abundance, 

occupancy probability, or density, may not solely be a result of higher quality habitat (Van 

Horne 1983, Hall et al. 1997, Johnson 2007). Correlating abundance alone with environmental 

features to establish a habitat quality gradient assumes that the individuals disperse equally into 

habitat which maximizes fitness, known as an ideal free distribution (Fretwell and Lucas 1970, 

Johnson 2007). However, individuals may occupy lower quality habitat because of numerous 

external influences, including temporal lag in response to changing habitat, incomplete 

information about available resources, or costs of dispersal to higher quality habitat (Johnson 

2007). In many small songbirds like Canada Warblers, territorial behavior leads to the highest 

quality habitat preemptively occupied by the most competitive individuals, known as an ideal 
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despotic distribution (Block and Brennan 1999, Johnson 2007, Reitsma et al. 2008). Assuming 

individuals have complete knowledge of available habitat quality, this may cause less 

competitive individuals, such as young birds, to cluster in lower quality habitat at higher 

densities but not survive or reproduce at comparable rates, which may lead to a habitat sink 

(VanHorne 1983, Johnson 2007). In addition to spatial variability of occupancy and abundance, 

habitat quality may be quantified using temporal trends. Conceptually, higher quality habitat 

would be occupied more frequently and for longer durations (Sergio and Newton 2003), but the 

efficacy of this approach is limited by the necessary time investment to study. Additionally, 

when considering environmental attributes either spatially or temporally, it is insufficient to 

solely quantify the presence of species-specific resources, such as potential nest sites and food 

availability, since usage of these resources may be limited by abiotic physical barriers or biotic 

influences of predation or competition (Cody 1981, Hall et al. 1997, Block and Brennan 1999, 

Johnson 2007). Despite these limitations, population-level measures of distribution and 

abundance across varying environmental conditions explore the relationship between 

environment and population, and direct further research effort. Building on such a foundation, 

the most robust approach to determine the biotic and abiotic attributes which contribute to 

population growth for a species is the empirical evaluation of demographic rates of reproduction 

and survival in the context of environmental features (Block and Brennan 1999, Johnson 2007, 

Boves et al. 2015, Slevin et al. 2018). 

Nest success is an important demographic process commonly studied in birds to evaluate 

the response of reproductive output to environmental predictors of habitat quality. In a striking 

example of long-term avian habitat conservation management, researchers found that more 

Seychelles Warbler young fledged and reached independence in territories with greater coverage 
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by seeded Morinda trees, which host a greater abundance of insects and are preferentially used 

by Seychelles Warblers for foraging over other available tree species (Komdeur and Pels 2005). 

Interactive effects between environment and demography may also account for differential 

reproductive output. Black-throated Blue Warbler reproductive success compared between high 

and low shrub density habitats revealed higher overall productivity in high shrub density areas 

(Holmes et al. 1996). The effect was compounded by older birds preferentially occupying the 

high shrub density areas, and frequently double-brooding successfully (Holmes et al. 1996). 

Studies of Canada Warbler reproductive success in different environmental conditions are 

limited. Using proxy estimates such as observing conspicuous male provisioning behavior or 

detecting at least one fledgling in the focal male’s territory, researchers determined that territory 

size was either positively associated with (Flockhart et al. 2016) or was not associated with 

(Hallworth et al. 2008a) apparent reproductive success. Similar to the Black-throated Blue 

Warbler, the observed correlation between high reproductive success and older male Canada 

Warblers appeared to be caused by higher pairing rates of older males; no difference was 

detected in reproductive success between age classes when only paired males were considered 

(Reitsma et al. 2008). Evaluating finer scale nesting habitat for Canada Warblers also 

demonstrated a positive relationship between nest success and higher densities of small stems 

(Goodnow and Reitsma 2011) and vegetation cover within 3-6 m of the ground  (Becker et al. 

2012).  

The relative contribution to population growth by reproductive and survival rates varies 

depending on the life history strategy of the species (Sæther and Bakke 2000). While assessing 

the factors which influence annual survival probability may be more challenging, particularly 

over broad spatial scales experienced by migratory birds, adult survival is considered the 
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stronger driver of population growth in many songbirds (Sæther and Bakke 2000). In both 

dickcissels and bobolinks, assessment of population models based on four years of data indicated 

adult survival was the most critical parameter influencing population persistence, and estimates 

were much less sensitive to changes in nest predation, parasitism, and renesting attempts 

(Fletcher et al. 2006). Canada Warblers are another example of a songbird species in which 

survival may be the primary driver of population dynamics. Recorded declines in apparent 

abundance across the breadth of their range underscore the need for insight into drivers of 

population demographic rates (Wilson et al. 2018). In the eastern portion of their breeding 

grounds, Wilson et al. (2018) estimated adult male Canada Warbler annual survival probability 

of 0.44 with no evidence for reduced breeding productivity, concluding low survival is likely 

driving population declines. Consequently, my study of Canada Warbler annual survival in 

response to environmental features will aid in filling this critical gap in ecological knowledge of 

the relationship between demography and environment.  

Studies investigating Canada Warbler habitat selection demonstrated similarities and 

differences in the environmental features occurring across the northern portion of their breeding 

range. Forest structure appears to be a stronger predictor than forest type, since populations 

occupy a spectrum of northern hardwood, mixed forest, and conifers. In contrast, strong 

association with structurally low canopies, emergent trees, light gaps, and a complex understory 

is noted in multiple studies (Hallworth et al. 2008b, Chace et al. 2009, Goodnow and Reitsma 

2011, Becker et al. 2012, Grinde and Niemi 2016). Emergent trees are used by males as song 

perches, and light gaps lead to dense undergrowth which provides concealment for nests (Chace 

et al. 2009, Goodnow and Reitsma 2011). Understory complexity also provides the mid-strata 

deemed important in Canada Warbler foraging behavior (Sodhi et al. 1995, Chace et al. 2009, 
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Céspedes and Bayly 2019). In West Virginia, Dimmig et al. (2022) observed a strong correlation 

between occupancy and stem density of rhododendron (Rhododendron maximum, a dense, 

thicket-forming shrub), as well as association with riparian areas; both features contribute to 

understory complexity. The dearth of research on this species at southern latitudes and the 

potential for range-wide variation in what defines high-quality habitat provides ample 

justification for demographic research in this region (Becker et al. 2012, Crosby et al. 2019). 

Furthermore, the fact that West Virginia is the only state where Canada Warblers have 

experienced significant population increases in the face of a range-wide downward trend (Sauer 

et al. 2020, Dimmig et al. 2022)  evidences the relevance of understanding region-specific 

relationships between demographic rates and environment characteristics.  

Variables that influence habitat quality may co-occur along gradients of environmental 

conditions at many spatial scales. Elevation is an ultimate driver of many resources, with 

changes in weather patterns altering habitat variables such as vegetation growth and food 

availability (Stevens 1992, Badyaev and Ghalambor 2001, Banko et al. 2002, Gaston 2003). 

Climatically, elevation gradients of temperate regions resemble latitudinal gradients on a 

narrower spatial scale, which may drive changes in resource availability and therefore population 

demography (Able and Noon 1976, Sanders and Rahbek 2012, Halbritter et al. 2013, Boyle et al. 

2016). Relative position within complex topography also alters microclimate and habitat 

variables and therefore distribution; for example, Cerulean Warblers specialize in steep upper 

slopes and ridgelines (Nareff et al. 2019). With a geographically narrow distribution in the 

Appalachian corridor through West Virginia, recent work indicated a peak in Canada Warbler 

occupancy probability at mid-elevations (~930 m) (Dimmig et al. 2022). If variation in habitat 

quality along the elevation gradient is the underlying cause of occupancy variation, with low 
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elevations lacking suitable habitat, it should be reflected in the demographic rates of populations 

at different elevations. Regarding topographic complexity, Canada Warblers were positively 

associated with riparian areas (Dimmig et al. 2022) which are linked to lower topographic 

positions. 

In this project, I assessed population demography of Canada Warblers breeding in the 

central Appalachian Mountains at six sites across three elevation strata in the Monongahela 

National Forest, West Virginia, USA. My novel demographic research seeks to quantify how 

survival and reproductive rates correlate with environmental features to measure habitat quality. 

The study objectives were: (1) estimate adult annual survival and nest survival rates of Canada 

Warblers across an elevation gradient in central Appalachia; and (2) investigate if variation in 

demographic rates correspond with factors associated with occupancy probability, including 

elevation, rhododendron, surface water, as well as slope position and slope aspect. My project 

quantitively approached the challenge of describing habitat quality for this declining species, in a 

region with considerable range restrictions likely driven by a narrow spectrum of favorable 

environmental conditions. 

Hypotheses and Predictions 

1. If Canada Warbler habitat quality, as measured by demography, varies along the 

elevation gradient to correspond with previously estimated occupancy probability in the 

central Appalachians of the Monongahela National Forest, WV, then I predict that 

apparent survival and reproductive success will exhibit a quadratic relationship with 

elevation, with highest demographic rates at mid-elevations. 
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2. If habitat quality is influenced by rhododendron, then I predict that survival and 

reproductive success will positively correlate with higher coverage by rhododendron 

3. If habitat quality is influenced by surface water, then I predict that survival and 

reproductive success will increase with greater amounts of available surface water.  

4. If habitat quality is influenced by topographic position, I predict survival and 

reproductive success will be higher in areas of lower topographic position, correlating to 

valleys.  

METHODS 

Study Area 

I conducted fieldwork on public lands in the Monongahela National Forest (MNF), West 

Virginia, USA. The MNF was established in 1920 and encompasses almost 371,000 hectares of 

federally protected land across the central Appalachian Mountains, with elevations ranging 300 – 

1500m (USDA 2011). My study sites are distributed across the Allegheny Highlands Section of 

the Appalachian Plateau Physiographic Province in the west of the MNF. The region is 

characterized by the complex topography resulting from mixed flats, folds, and faults (WV 

Geological & Economic Survey 2020). More than 70 tree species comprise the diverse forest 

types that vary across the elevation gradient of the MNF (USDA 2011). Below 900 m, mixed oak 

and mixed mesophytic forest types are dominant, transitioning to northern hardwood between 

900 m and 1,150 m, with remnant boreal red spruce forests predominant above 1,150 m (USDA 

2011, Dimmig et al. 2022)  
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Site Selection 

Within the MNF, I evaluated survival and reproduction along an elevation gradient. To 

stratify my sites, I used the same three elevation bands Dimmig et al. (2022) used to model 

Canada Warbler occupancy dynamics in the region: < 853 m, 853 – 1,158 m, and > 1,158 m. The 

853 m cutoff was selected based on literature suggesting this is the lower limit for Canada 

Warblers in the Appalachians (Harding et al. 2017), and the middle stratum was delineated to 

form approximately equal elevation bands (Dimmig et al. 2022). I selected two locations within 

each stratum that had relatively high detections of Canada Warblers in point counts (Dimmig et 

al. 2022). The six sites spanned an approximately 130 km north-south geographic range (Figure 

1.1), had areas of 72 – 209 ha, and encompassed elevations of 527 – 1293 m (Table 1.1). 

Dimmig et al. (2022) rarely detected Canada Warblers above 1,158 m, the lower cutoff of the 

highest elevation stratum. As such, mean elevations of each total high-elevation site search area 

were all < 1,158 m, with portions of the sites above the cutoff. Sites were generally characterized 

by lack of recent timber harvest (Dimmig et al. 2022), high density of rhododendron, and were 

typically bisected by non-ephemeral streams (Figure 1.2). Higher latitude and lower elevation 

sites consisted chiefly of mixed mesophytic forest transitioning to dry oak and oak-pine mesic 

forest upslope; southern sites contained predominantly northern hardwood and red spruce forests, 

with mixed mesophytic patches. Four of the sites were bordered or bisected by gravel roads only 

accessible with a US Forest Service key and thus subject to minimal vehicular travel, and two 

were accessed with marked hiking trails.  

Study Design: Mark-Resight 

 To estimate Canada Warbler survival rates, I used a mark-resight study conducted 2019 – 

2021. Mark-resight is a type of a mark-recapture study design, where each “capture” event does 
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not need to be a physical capture of the animal but may be an encounter with the individual 

through visual observation based on some unique identifying information (Pollock et al. 1990). 

In this case, birds were captured, marked, and released, with a unique combination of colored leg 

bands (Figure 1.3). Because I studied interannual survival, populations were assumed to be 

closed within a single breeding season, with mortality or emigration events assumed to occur 

between breeding seasons (Pollock et al. 1990).   

Field Methods: Establishing a marked population 

In 2019, the marked population was established by focusing initial capture efforts at and 

around point count locations surveyed by Dimmig et al. (2022). To initially mark individuals, I 

surveyed each study site for Canada Warblers between May and July by listening for songs of 

territorial males and using conspecific audio playback to elicit a response when no singing males 

were detected. When I located an individual, I attempted capture using an audio lure of a speaker 

broadcasting Canada Warbler song placed near two mist nets (6 m x 2.6 m; 30 mm mesh) 

deployed in an “L” formation parallel and perpendicular to understory growth as structure 

permitted. Once captured, I determined the sex (male, female, or unknown) and age (hatch-year, 

second-year, after-second year, or after-hatch year) of the bird via plumage characteristics (Pyle 

1997) (Figure 1.4). I additionally recorded individual morphometric attributes including mass 

(g), wing chord (mm), tail length (mm), tarsus length (mm), and presence of a cloacal 

protuberance or brood patch. Birds were marked with an aluminum band issued by the United 

States Geological Survey and a unique combination of three plastic color bands.  



15 

 

Field Methods: Surveying for marked birds 

In 2020 and 2021, I systematically searched each site based on the known capture 

locations of Canada Warblers from the previous year, using a modification of typical territory 

spot-mapping (Bibby et al. 2000). I generated 210 m radius buffers around recorded bird 

locations from the previous year(s) and combined them into a single boundary for each site. I 

defined the 210 m buffer based on literature reporting the largest defended area by a singing 

male as 1.5 ha, which corresponds to a circle with a radius of ~70 m (Hallworth et al. 2008a, 

Reitsma et al. 2009), and set the buffer equivalent to three times that radius. This set reasonable 

borders for re-sighting individuals and enabled me to search the entire site while allowing for 

territory shifts to occur between years. To ensure systematic searching even through challenging 

terrain and to maximize the chance of encountering a marked bird, I generated a grid of points 

that I visited at least once annually. I overlaid grid points (53 – 92 points per site) spaced 150 m 

apart at each site (Figure 1.5A). I chose 150 m spacing to account for aural detection limits of 

Canada Warblers which are estimated to range 60-200m (Matsuoka et al. 2012, Hunt et al. 

2017). Field personnel walked slowly to each grid point listening for singing males, and 

broadcast Canada Warbler song at each grid point for up to three minutes to elicit a response if 

no birds were otherwise detected. Field personnel recorded tracks with handheld GPS units 

which I used to plan walking routes through gaps in searched areas. Surveys occurred biweekly 

for a total of 6-10 days per site spaced evenly across the field season; total time spent searching 

each site varied proportional to the number of marked birds present at the site. 

When a singing male was detected, it was visually identified to determine current mark 

status. If unmarked, I attempted to capture and mark the bird using the above protocol. If 

marked, I recorded the color band combination, along with date, time, and GPS location, then 
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continued surveying. If the complete combination was unable to be accurately determined in the 

encounter, I visited the location repeatedly until identity could be confirmed. If the bird lost a 

colored band or I was otherwise unable to confirm identity, the bird was recaptured using the 

capture protocol above to obtain the unique band ID number, replace missing color bands if 

applicable, then released. I prioritized resighting as many marked birds as possible, rather than 

collecting multiple locations of the same individual at each encounter. Some birds were only 

observed once during the entire field season, and others were present and recorded at several 

different site visits.  

Study Design and Field Methods: Nest Survival  

 To estimate Canada Warbler apparent nest survival rates and subsequent reproductive 

output, I located and tracked nesting attempts during the 2021 field season. Nests were located 

opportunistically in each elevation strata using behavioral cues from adults. These cues included 

brooding females which frequently visited the same location in the territory, defensive chipping 

by either sex as a response to intrusion, or food carrying. Once I located the nest, I determined 

the nest stage as incubating or nestlings.  

To determine nest fates, I used game cameras to continuously observe the nest until 

fledging or failure. Game cameras were optimal for nest observations for three reasons: 

minimized personnel time necessary for nest checks, increased accuracy of fail/fledge dates, and 

identified specific causes of nest failure, such as identity of the predator (Richardson et al. 2009, 

Cox et al. 2012a, 2012b). The impact of cameras at nests on predation patterns is not yet well-

studied, as few studies compare predation rates between camera-monitoring and traditional 

monitoring with mixed results (Richardson et al. 2009). However, cameras have demonstrated 

increased reliability of identifying predators, and documented similar nest survival rates by nests 



17 

 

with and without cameras (Williams and Wood 2002) and are a promising field technique to 

study nesting ecology of many avian taxa (Uhe et al. 2020, Surmacki and Podkowa 2022). I 

mounted Bushnell Trophy Cam HD cameras on sturdy vegetation (e.g., rhododendron stem) < 1 

m from the nest, or onto a dead branch planted upright at the same distance if no suitable 

vegetation was available (Figure 1.6). Cameras were triggered to take a sequence of three photos 

when motion was detected by the infrared sensor (Figure 1.7). To minimize human disturbance 

to the site, I only visited each nest a maximum of two times during the active nesting period. I 

then visited the nest site after failure or fledging to retrieve cameras and collect data on fine-scale 

environmental variables. 

Environmental Variables  

SURVIVAL 

To summarize the environmental variables for each bird as a potential predictor of 

survival probability, I approximated the space use of the bird as a circular buffer around the 

median coordinates of an individual’s recorded locations for each year (Reidy et al. 2018) 

(Figure 1.8). I elected to use the median, rather than mean, x- and y-coordinates, because the 

median is less affected by a single outlier location and thus likely a more accurate representation 

of where the bird most frequently occurred (Reidy et al. 2018). Because some birds were only 

observed once in a year, kernel density or minimum convex polygons were not a viable option to 

estimate space use. The size of the territory a Canada Warbler defends has been reported with 

high variability and may depend on many factors, including bird age, habitat conditions, and 

geographical area. Home range size has been reported between 0.2 – 1.5 ha (Table 1.2) 

(Hallworth et al. 2008a, 2008b, Reitsma et al. 2008, 2009, Flockhart et al. 2016, Hunt et al. 

2017). Based on these published estimates of home range and core use area, I summarized 
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environmental variables within a circle of radius 50 m, approximately 0.8 ha, to approximate the 

habitat used by the individual bird and resources available to contribute to survival. I selected the 

50 m radius to ensure adequate possible habitat and occurrence points were included without 

excessive overlap of buffers between birds. Within the circular buffer, I calculated the mean 

elevation, total linear length of streams, mean cosine of aspect, mean topographic position index 

(TPI), and area of the buffer with coverage categorized as rhododendron  

I used a combination of available spatial data, derived data, and manually processed 

imagery to quantify environmental variables (Table 1.3). To obtain elevation values, I used a 

1:4800 3 m digital elevation model (DEM) (USGS 2021) (Figure 1.5C). I derived aspect values 

from the 3 m DEM, using a cosine transformation to account for the circular nature of the 

parameter (Smith et al. 2019). To create a map of TPI, I  used the same DEM and subtracted 

from each focal cell (Zfocal) the mean elevation (Zmean) of neighboring cells within a circular 

moving window, with a radius of 25 cells (~75m) (Weiss and The Nature Conservancy 2001, 

Alemayehu et al. 2018). 

TPI = Zfocal - Zmean 

Thus, negative TPI values indicate valleys, positive TPI indicates ridges, and values near 

0 represent flat areas or areas with constant slope (Figure 1.5D). I selected the moving window 

radius based on trial and error to capture the complex topography of the site, as well as the scale 

expected to affect an individual bird based on the territory sizes previously discussed. To map 

streams present within the sites, I used the 1:4800 National Hydrography Dataset which includes 

perennial, intermittent, and ephemeral streams (USGS 2016). 
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I manually mapped site coverage by rhododendron (Rhododendron maximum) by 

digitizing polygons from leaf-off satellite imagery (WVGISTC 2018). Rhododendron is an 

evergreen species that can be differentiated by color and texture from conifers and was well 

suited for this mapping technique. In some sites at higher elevations, mountain laurel (Kalmia 

latifolia) grew concurrently with or replaced rhododendron. While rhododendron is often 

associated with protected, mesic soil and mountain laurel with exposed upslope areas, both 

evergreen species grow in dense thickets and are mostly visually indistinguishable in leaf-off 

imagery (Chastain and Townsend 2007), so mountain laurel was included and hereafter referred 

to as “rhododendron” in environmental data analyses. I evaluated the accuracy of this map by 

recording presence / absence of rhododendron at the same grid points used to guide bird survey 

effort. 

NEST SUCCESS 

 The environmental covariates for the nest success model included elevation, aspect and 

TPI, calculated as described above. In addition, I collected fine-scale vegetation coverage data at 

the nest site. I visually estimated rhododendron and total shrub (rhododendron + other species < 

1.5 m tall) percent cover of the ground within four 1m x 3m belt transects extending from the 

nest site in each cardinal direction (Figure 1.9) (Goodnow and Reitsma 2011). The resulting 

rhododendron and total shrub cover values used as the nest success covariate were the mean 

values of the four transects.  

Statistical Analysis 

ANNUAL SURVIVAL 

 I estimated the annual survival probability of Canada Warblers using a spatial 

generalization of a Cormack-Jolly-Seber (CJS) model. I fit nine different models of 
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environmental covariates (Table 1.4) and ranked models according to DIC. The following draws 

heavily from the model description in Schaub and Royle (2014).  The spatial CJS model 

implicitly assumes the population is open between years but reduces potential negative bias of 

survival rates reported from traditional CJS models in which survival and permanent emigration 

from the study area are confounded. Model variables include the encounter histories of marked 

individuals, their respective locations in Euclidean space, associated environmental covariates, 

and study area boundaries. By including the locations of the bird each year, small-scale dispersal 

events are captured by the modeled dispersal kernel. This accounts for birds that may have 

locally dispersed outside of the study area and are not available for detection but are still alive. 

For example, in the framework of the model, a bird marked in year one and never detected again 

could have moved outside of the study area and was unavailable for detection in year two and 

moved back within the study area but remain undetected during year three.  

 Implementing the model requires several key assumptions. If a bird was detected one 

time during the field season, I assumed it was alive during the entirety of that respective field 

season – subtraction from the population could only occur between annual encounters. Hence, 

each bird needed only a single encounter within the field season. If I detected a bird multiple 

times, I used the median coordinates to provide a single location representative of space use. I 

assumed that survival was not a function of whether the individual was inside or outside of the 

study area, and that an individual’s survival was independent from all other individuals. 

Furthermore, I assumed an encounter was equally possible anywhere within the boundaries of 

the study area. 

 The hierarchical model followed a state-space formulation consisting of the state 

processes of survival and dispersal, and an observation process, in which only birds alive and 
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within the study area are available for detection. Within the model, the latent state variable zi,t 

denotes whether individual i is alive at time t (if alive, zi,t = 1, if dead, zi,t = 0). I assume survival 

is a Bernoulli random variable where si,t is the survival probability between year t and year t+1: 

𝑧𝑖,𝑡+1|𝑧𝑖,𝑡 ~ Bernoulli(𝑧𝑖,𝑡𝑠𝑖,𝑡). 

 The second state process describes the coordinates of the individual in space. I modeled 

movement as a random walk, assuming its x and y coordinate are normal random variables 

centered on the previous year’s x and y coordinate:   

𝑥𝑖,𝑡+1~Normal(𝑥𝑖,𝑡, 𝜎𝑥
2), 

𝑦𝑖,𝑡+1~Normal(𝑦𝑖,𝑡, 𝜎𝑦
2). 

Linear dispersal distance is not directly modeled, rather, it is a derived variable calculated 

from the variance of known dispersal movements. Expected dispersal distance D is thus: 

𝐷 =  √2(𝜎𝑥
2 + 𝜎𝑦

2)/𝜋. 

Lastly, the observation model is described as a Bernoulli random variable, conditional on 

the individual both being alive and located in the study area. The observation process 

incorporates a test ri,t of whether individual i is inside the state-space of the study area A at time 

t, where ri,t = 1 if location xi,t , yi,t falls inside study area A, and ri,t = 0 if it does not. To determine 

whether the x, y coordinate pair was inside the study area A, the polygon boundary of each site 

was divided into 50 m x 50 m grid cells (Figure 1.5B) and if the coordinate fell within any cell, it 

was within the study area. Therefore, assuming pi,t are constant across all individuals and over 

time, the observation model O is: 

𝑂𝑖,𝑡|𝑧𝑖,𝑡, 𝑟𝑖,𝑡~ Bernoulli(𝑧𝑖,𝑡𝑟𝑖,𝑡𝑝𝑖,𝑡). 



22 

 

 I modeled survival probability as a logit-linear function of environmental covariates:  

𝑙𝑜𝑔𝑖𝑡(𝑠𝑖,𝑡) = 𝛷𝑠 + 𝛽𝑋 ∗ 𝑋𝑖,𝑡. 

When a bird was observed at time t, the environmental covariates associated with the 

location were known. However, in the years a bird was not observed, environmental variables 

were missing values. I therefore imputed model covariate values Xj,i of bird i using the mean µ 

and variance τ of the values observed at site j: 

𝑋𝑗,𝑖 ~ Normal(𝜇𝑋,𝑗, 𝜏𝑋,𝑗). 

Because I assumed only small-scale dispersal by individuals, variables imputed from the 

distribution of observed variables in this way reasonably estimated local conditions. 

The models were fit using Bayesian methods, implemented using JAGS 4.3.0 (Plummer 

2017) with the jagsUI package (Kellner 2021) in R 4.1.2 (R Core Team 2021). I specified a 

uniform (0, 1) prior for p; a logistic (0, 1) prior for Φ; a logistic (0, 1) prior for all slope 

coefficients β; and a uniform (0, 600) prior for σx and σy. I ran three Markov chains, discarding 

the first 500 samples as burn-in and then continuing to draw posterior samples until convergence 

was achieved, drawing 1,500 to 12,500 samples from the posterior distribution depending on the 

model. Models were considered converged using the Brooks-Gelman-Rubin diagnostic (R̂ < 1.1) 

(Brooks and Gelman 1998).  

NEST SUCCESS 

 I estimated daily nest survival as a function of environmental variables using the nest 

survival model described by Dinsmore et al (2002). I fit six different models (Table 1.5) and 

ranked models according to DIC. I assumed that nest fates were accurately determined and were 

independent, daily nest survival remained constant through the nest cycle, and nest discovery and 
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camera presence did not alter daily survival probabilities. Because cameras enabled constant 

effort surveillance, fledging or failure events were recorded and dates were known. I assume 

whether the nest survives a day is a Bernoulli random variable y with parameter pi,t, the 

probability of the nest i alive on day t, conditional on being alive the previous day, t – 1:  

𝑦𝑖,𝑡~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑡 ∗ 𝑦𝑖,𝑡−1). 

I modeled daily nest survival probability as a logit-linear function of environmental 

covariates X: 

𝑙𝑜𝑔𝑖𝑡(𝑦𝑖,𝑡) = 𝜇𝑝 + 𝛽𝑋 ∗ 𝑋𝑖,𝑡 

The models were fit using Bayesian methods, implemented using JAGS 4.3.0 (Plummer 

2017) with the jagsUI package (Kellner 2021) in R 4.1.2 (R Core Team 2021). I specified athe 

uniform (-20, 20) prior for µy, and logistic (0, 1) priors for all βX. I ran three Markov chains for 

2000 iterations, discarding the first 1000 iterations as burn-in, and keeping every 5th sample 

thereafter. Models were considered converged using the Brooks-Gelman-Rubin diagnostic (R̂ < 

1.1) (Brooks and Gelman 1998).  

RESULTS 

Mark-Resight 

 During May to July of 2019 and 2020, a total of 211 unique Canada Warblers were 

captured and marked. Of these 211, six were AHY females and two were HY of unknown sex 

and were discarded from further analysis, leaving a final sample of 203 adult male birds 

distributed across the six study sites. At their first capture, 57 birds were aged as SY, 46 as ASY, 

and the remaining 100 as AHY. Field personnel in 2019 were unable to age birds as SY or ASY, 
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thus the high number of AHY birds. Birds were separated into SY and ASY in 2020, but one-

year return rates in 2021 did not differ between age classes (χ2 = 2.1257, p = 0.1449). For all 

male birds, the one-year return rate was 0.33 in 2020 and 0.47 in 2021, with 14% of birds 

observed all three years, and 60% of banded birds not observed after the year of their capture 

(Table 1.6). The mean number of locations recorded per bird increased each year as I 

intentionally dedicated more time to resights, and was 1.2 (SD: 0.62, range: 1-5) when focusing 

on captures to establish marked population in 2019, 1.9 (SD: 1.33, range 1-7) when time was 

spent both resighting and capturing additional birds in 2020, and 3.0 (SD 1.56, range 1-7) when 

only resighting in 2021 (Figure 1.10). Despite increasing time dedicated to resights, there were 

no birds from year 1 detected in year 3 that were not detected in year 2, suggesting detection 

probability remained consistent. 

Interannual Movement 

 The shift in median coordinates of all birds observed in more than one year was a mean 

of 166 m and a median of 69 m. The distances moved varied among birds; 50% of movements 

were < 70 m, and 80% of movements were < 140 m (Figure 1.11). There were some larger shifts; 

8.4% of interannual movements were > 500 m from their previous coordinates. The largest 

movement recorded was 2.3 km, a distance shifted twice by the same bird from 2019 to 2020, 

and 2020 to 2021, with the 2019 and 2021 positions less than 200 m apart. The bird was only 

seen once in 2020, despite extensive searches. 

Adult Annual Survival 

Canada Warbler annual survival probability exhibited a positive linear relationship with 

elevation. The top model, which included only elevation as a predictor of survival, was 98.8 DIC 
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units ahead of the next candidate model (Table 1.4). Annual survival probability ranged from 

0.573 (95% credible intervals (CI) = 0.333 – 0.820) at 555 m to 0.702 (95% CI = 0.493 – 0.871) 

at 1255 m (Figure 1.12). However, although the elevation model had a lower DIC value than the 

intercept-only model (ΔDIC = 127.6), the 95% credible intervals of the slope coefficients for 

elevation overlapped 0 (mean log-odds ratio = 0.150, 95% CI -0.335 – 0.602, proportion of 

posterior mean > 0 = 0.746). Although the model incorporating elevation had a greater predictive 

power than a model assuming constant survival, there is substantial uncertainty in the effect of 

elevation. After accounting for undetected birds that may have established territories outside 

study area boundaries, the mean interannual location shift was estimated by the dispersal model 

to be 391 m (SD = 31.5 m) (Figure 1.13). The probability of detecting a live Canada Warbler that 

was present within the site was estimated as 0.955 (95% CI = 0.841 – 0.999). 

Nest Survival 

 I located 12 nests during 2021 which contained an average of 4.33 (range 4 – 5) eggs or 

nestlings, and 9 nests successfully fledged. Fledge dates ranged from 14 June – 24 June 2021. 

One nest failed during incubation to suspected predation by a large animal (camera was knocked 

over) and the other two nests failed due to predation by a Broad-winged Hawk (Buteo 

platypterus) and squirrel (Sciurus sp.) (Figure 1.14). The intercept-only model was the top model 

indicated by DIC values (Table 1.5). Slope coefficients of environmental predictors for all 

models overlapped 0 indicating no clear effect of any of the variables measured. In the intercept-

only model, daily nest survival was estimated as 0.957 (95% CI = 0.890 – 0.990), for an overall 

nest success probability over 19 days of 0.604 (95% CI = 0.527 - 0.696).  
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DISCUSSION 

Knowledge of region-specific environmental correlates of population demographic rates 

of Canada Warblers is critical for understanding the potential drivers of range-wide population 

declines (Wilson et al. 2011). The relationship between Canada Warbler adult survival and 

elevation suggests an underlying variability of habitat quality. Survival positively correlated with 

elevation, consistent with findings by Dimmig et al. (2022) which indicated a peak in occupancy 

probability at 930 m and an overall quadratic effect. While I did not find evidence of a quadratic 

effect of elevation on survival, it is likely due to the low occupancy probability at the highest 

elevations of the MNF by Canada Warbler populations of sufficient size to study survival. 

Despite the statistical uncertainty present in my work and in Dimmig et al. (2022), the consistent 

direction of the correlation substantiates elevation as an indicator of habitat quality in West 

Virginia. Elevation ultimately drives habitat variables through interconnected physical processes 

which impact biotic communities through distribution of resources (Able and Noon 1976, 

Chastain and Townsend 2008, Sanders and Rahbek 2012, Boyle et al. 2016). Canada Warblers 

have been shown to select moist areas with complex leafy understory within variable forest types 

(Mitchell 1999, Gross 2010, Harding et al. 2017). Temperature generally decreases with 

increasing elevation, resulting in vegetation community occupancy of a climatological niche 

(Breshears et al. 2008, Freeman et al. 2018). Additionally, at higher elevations in central 

Appalachia, structural understory growth is promoted by disturbance, and Canada Warblers are 

positively associated with gap creation through harvest (Weakland et al. 2002, Becker et al. 

2012). Higher elevations, cooler temperatures, water availability, and disturbance dynamics may 

combine to produce amenable habitat characteristics for Canada Warblers at mid and high 

elevations of central Appalachia.  
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Elevation as an influence on Canada Warbler population growth may have long-term 

conservation implications. Montane habitats face unique risks under climate change, where 

available space upslope decreases to a finite limit, presenting a higher risk of extinction for 

elevation-dependent species under warming climate (Breshears et al. 2008, Dirnböck et al. 2011, 

Elsen and Tingley 2015, Freeman et al. 2018). In central Appalachia, Canada Warblers are 

currently less likely to occupy the highest available elevations (Dimmig et al. 2022), but with the 

positive correlation between survival and elevation, potential upslope emigration may occur into 

currently unoccupied habitat. Such a shift may result in local extirpation of low-elevation 

populations under predicted warmer and drier conditions (Breshears et al. 2008, Elsen and 

Tingley 2015) but these threats to the persistence of central Appalachian populations may be 

mitigated by the availability of unoccupied space upslope.  

Since specific habitat characteristics differ throughout the Canada Warbler's geographic 

range (Becker et al. 2012, Ball et al. 2016, Grinde and Niemi 2016, Hunt et al. 2017, Crosby et 

al. 2019), region-specific demographic assessments are crucial to understanding how 

environmental conditions impact survival. Estimated annual survival probabilities for adult male 

Canada Warblers in West Virginia were higher than estimates obtained across the species’ 

eastern breeding region (0.44 [90% CI 0.30 – 0.58]) (Wilson et al. 2011) or measured over the 

nonbreeding seasons in the Colombian Andes in native forest (0.48 [SE = 0.12]) and coffee 

plantations (0.53 [SE = 0.11]) (González-Prieto et al. 2017). Inference regarding the higher 

survival in West Virginia should be drawn with caution, due to different statistical 

methodologies; Wilson et al. (2011) used mark-recapture data from 16 Monitoring Avian 

Productivity and Survival stations between 1993 and 2016, and González-Prieto et al. (2017) 

used a multistate mark-recapture model on three consecutive years of passive mist-net captures. 
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Incorporating spatial information in my mark-resight study reduces negative bias in apparent 

survival by de-confounding local movements and survival, which produces higher survival rates 

believed to better approximate “true” survival (Schaub and Royle 2014). My study also focuses 

on a narrower geographic area of the breeding season – as opposed to the eastern breeding region 

defined by Wilson et al. (2011) – which included just south of Lake Superior, east to Maine and 

south through the Appalachian Mountains – a vast area across which abundance trends are not 

uniform (Sauer et al. 2020). However, the concomitant trend of increased apparent population 

growth and estimated higher survival probabilities in West Virginia is indicative of an 

underlying difference in population demography. Further investigation into full annual cycle 

population dynamics could incorporate environmental drivers of migratory and nonbreeding 

season survival to better assess threats to populations of this declining species  (Hostetler et al. 

2015, Marra et al. 2015a). 

Models which included rhododendron coverage, stream length, and topographic position 

index (TPI) chosen a priori as predictors of annual survival due to previous work, may have 

lacked support because my data represented an insufficient gradient of the variable within the 

Monongahela National Forest. While Dimmig et al. (2022) found Canada Warbler occupancy 

probability increased with higher rhododendron stem density and shorter distance to riparian 

areas, the sampling gradient included many point count locations where the species was absent. 

However, measuring survival requires individuals to be present. All my study sites included 

rhododendron, streams, and were centered in valleys of low TPI, resulting in a narrow gradient 

of these conditions; minimum habitat requirements in West Virginia may be fundamentally 

defined by these features. Other subtle changes correlated with elevation may therefore be 

driving the spectrum of habitat quality. Alternatively, the circular buffer used to summarize 
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environmental conditions (Reidy et al. 2018) may not have captured the scale at which Canada 

Warblers respond to variation in rhododendron, streams, or TPI.  

Incorporating the locations of observed individuals not only de-confounded small-scale 

movement and survival, but also provided insight into local dispersal dynamics. The observed 

mean interannual shift of 166 m, and the estimated mean shift of 391 m (after correcting for 

imperfect detection) was much higher than the observed 25-35 m reported in New Hampshire 

(Hallworth et al. 2008b). This lesser interannual dispersal in New Hampshire could be attributed 

to multiple factors: use of a different methodology, not accounting for imperfect detection, or 

smaller average interannual movements due to relatively high-quality habitat. In New 

Hampshire, 25% of banded male Canada Warblers were recorded in three consecutive years 

(Hallworth et al. 2008b), in contrast to only 14% in my study; this may be driven by higher 

dispersal rates outside of my study area boundaries relative to Hallworth et al (2008b). Some 

large movements may result in the bird resettling elsewhere in the study area, while others lead 

to permanent or temporary emigration out of the search area, dependent on dispersal direction. In 

contrast to Reitsma et al.( 2008) which documented a higher proportion of SY males as transient, 

the 60% of birds not observed in years after capture did not appear drive by age, suggesting other 

factors may be driving dispersal probabilities. Further study of these larger dispersal movements 

would be necessary to parse the interaction between dispersal distance and habitat quality.   

Canada Warbler nest survival in the MNF did not appear to be influenced by the chosen 

environmental predictors, but the small sample of 12 nests limits the strength of model inference. 

My nest success results are consistent with the range of previous raw nest success data (in the 

absence of published daily survival rates), from 0.55 in eastern West Virginia to 0.77 in New 

Hampshire (Goodnow and Reitsma 2011, Becker et al. 2012). My hypothesis that Canada 
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Warbler apparent positive population growth in West Virginia is driven by higher survival rates 

is supported by the fact that reproductive rates fall within the range of previous studies, but 

survival rates are higher. The ostensibly greater influence of survival, rather than reproduction, 

on population growth is consistent with many other songbirds (Sæther and Bakke 2000), and 

focusing on identifying the drivers of survival will be critical to improve population growth rates 

across the Canada Warbler range.  

If high quality habitat available in West Virginia is driving positive population growth of 

Canada Warblers, the state may become crucial to Canada Warbler conservation. With a history 

of timber harvest, forest management may also promote habitat creation in West Virginia; 

Canada Warblers had increased abundance in light partial post-harvest stands, and comparable 

nest success post-harvest (Weakland et al. 2002, Becker et al. 2012) relative to my findings in 

unmanaged habitat. Forest management including partial timber harvest is therefore a possible 

method to create high quality Canada Warbler habitat in West Virginia, although further study 

comparing adult survival between managed and unmanaged plots would be necessary to account 

for the full demographic picture. Demographic study across environmental gradients to identify 

key habitat components allows conservation managers to prioritize the preservation of existing 

high-quality habitat for declining species (Buehler et al. 2008, Zitske et al. 2011, Reidy et al. 

2018, Westwood et al. 2020, Brambilla et al. 2020). As Canada Warblers decline across most of 

their breeding range (Sauer et al. 2020), understanding regional variation in environmental 

influences on population dynamics may be critical for conservation. Moreover, the increasing 

abundance of the Canada Warbler through the range trailing edge in central Appalachia 

contrasting with broader population declines emphasizes the need for further study of the 
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demography-environment relationship to better predict population responses to environmental 

change. 
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CHAPTER 1: FIGURES AND TABLES 

 

Figure 1.1 Map of study area with six study sites in eastern West Virginia, with the boundary of 

the Monongahela National Forest in green (inset). Low, mid, and high elevation sites were 

defined as < 853 m, 853 – 1,158 m, and > 1,158 m, respectively.  
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Figure 1.2 Photographs of Canada Warbler habitat from three of six study sites in the 

Monongahela National Forest, WV, USA. (A) Unnamed stream tributary of the Cheat River 

running through low-elevation site Losh, (B) Mature Rhododendron (Rhododendron maximum) 

growing at high-elevation site Glade, and (C) ~1m tall Rhododendron covering the forest floor of 

mid-elevation site Falls.  
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Figure 1.3 Adult male Canada Warbler (Cardellina canadensis) marked in 2019 in the 

Monongahela National Forest, WV, USA and resighted in 2020 with a unique combination of 

three plastic color bands and one numbered aluminum USGS band. 
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Figure 1.4 Plumage variation in Canada Warblers (Cardellina canadensis) captured in the 

Monongahela National Forest, WV, USA in 2020. Differences in ‘necklace’ plumage evident 

across ages and sexes, where (A) is an after-second-year male, (B) is a second-year male, and 

(C) is an after-second-year female. Molt limits in primary coverts (not pictured) also distinguish 

between age classes in either sex.  
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Figure 1.5 Low elevation site boundary of Red Run in the Monongahela National Forest, WV, 

USA in 2021 exemplifying (A) search grid points spaced 150 m apart within site boundary, (B) 

50 m grid cells for testing if random walk coordinates were inside or outside the site boundary, 

(C) 3 m Digital Elevation Model overlay of site, and (D) Topographic Position Index overlay 

generated with a moving window radius of 25 cells or ~75 m.  
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Figure 1.6 Bushnell Trophy Cam HD mounted on branch implanted into soil set < 1 m from 

Canada Warbler (Cardellina canadensis) nest (circled) at high-elevation site Glade in the 

Monongahela National Forest, WV, USA in 2021. Cameras recorded 3 pictures each time the 

motion sensor was triggered (Figure 1.6).  
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Figure 1.7 Two different Canada Warbler (Cardellina canadensis) nests at low elevation site 

Red Run in the Monongahela National Forest, WV, USA, in June 2021. Photos of (A) both 

parents at the nest and (B) fledgling departing the nest captured by Bushnell Trophy Cam HD 

triggered by infrared motion sensor.  
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Figure 1.8 Distribution of coordinates from 2020 observations of one adult male Canada 

Warbler (Cardellina canadensis; Band ID 2870-67124) in the Monongahela National Forest, 

WV, USA. All observation locations are marked with yellow circles, median location 

represented with the yellow star, and 50 m circular buffer to summarize environmental variables 

in grey.  
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Figure 1.9 Schematic of 1m x 3 m belt transects (Goodnow and Reitsma 2011) used to calculate 

rhododendron (Rhododendron maximum) and other shrub cover around Canada Warbler 

(Cardellina canadensis) nests in the Monongahela National Forest, WV, USA. Percent coverage 

within each belt was visually estimated and then averaged for the nest to generate a single value 

each for both rhododendron and other shrub cover. 
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Figure 1.10 Distribution of annual number of observations of marked Canada Warblers 

(Cardellina canadensis) throughout the full three years of the mark-resight study in the 

Monongahela National Forest, WV, USA. Most birds were only recorded once within a given 

year.  
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Figure 1.11 Observed interannual dispersal distances by all Canada Warblers (Cardellina 

canadensis) in the Monongahela National Forest, WV, USA detected in at least two different 

years of the mark-resight study. Dashed red lines mark 80% of movements were < 140 m, and 

8.4% were > 500 m.  
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Figure 1.12 Expected annual survival probability of male Canada Warblers (Cardellina 

canadensis) in the Monongahela National Forest, WV, USA, with 95% credible intervals in the 

grey ribbon, resulting from the spatial Cormack-Jolly-Seber model which incorporated a linear 

effect of elevation on survival. 
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Figure 1.13 Posterior distribution of expected interannual dispersal distance by male Canada 

Warblers (Cardellina canadensis) in the Monongahela National Forest, WV, USA, generated by 

the random walk submodel of the spatially explicit survival model. The dashed red line marks 

the mean expected interannual dispersal distance of 391 m.  
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Figure 1.14 Images of Canada Warbler (Cardellina canadensis) nest predation events in the 

Monongahela National Forest, WV, USA by: (A) Broad-winged Hawk (Buteo platypterus) at a 

nest in site Dogway and a squirrel (Sciurus sp.) at a nest in site Glade. Nests are just out of frame 

due to the camera shifting, and the actual image date of B is 06-14-2021. 
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Table 1.1 Summary of six study sites with boundaries defined by 210 m buffer around all bird 

locations in 2020 within the Monongahela National Forest, WV, USA, in order of mean 

elevation of all DEM grid cells within site boundaries (standard deviation in parentheses). Grid 

points spaced 150 m apart within study site boundaries were visited at least once each year; the 

number of grid points per site in the 2021 field season is shown in the table since the sites 

incorporated locations from both 2019 and 2020. Marked birds is the total number of males 

color-banded in 2019 and 2020.  

Site Name Mean elevation 

(m) 

Elevation range 

(m) 

Site area 

(ha) 

Grid 

points 

Marked 

birds 

Losh 629 (38) 

 

527-724 71.8 53 13 

Red Run 729 (68) 

 

546-870 160.8 71 48 

Kennison 971 (53) 

 

905-1143 174.6 77 28 

Falls 

 

1087 (61) 1006-1235 180.3 76 49 

Dogway 

 

1132 (56) 1027-1293 208.9 92 38 

Glade 1153 (28) 1100-1247 177.1 76 35 
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Table 1.2 Published mean size of territory core area defended by male Canada Warblers 

(Cardellina canadensis) based on 50% kernel density estimate where n is the sample size of 

birds mapped and included in analysis.  

*In red maple swamp habitat **in second growth forest habitat 

 

 

 

  

Core area (ha) n Study Area Source 

0.468 ± 0.251 30 

 

Alberta, Canada 2012-2013 (Flockhart et al. 2016) 

0.15 ± 0.02*  

0.29 ± 0.03**  

32 

37 

 

Canaan, NH 2005-2006 (Hallworth et al. 2008a) 

0.169 ± 0.021 92 Canaan, NH 2003-2006 (Hallworth et al. 2008b) 
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Table 1.3 Summary statistics of environmental covariates within known Canada Warbler 

(Cardellina canadensis) location buffer areas incorporated as predictors of survival across all 

study sites. Elevation and Topographic Position Index (TPI – unitless) are the mean values 

calculated within 50-m buffer used to summarize environmental variables for each bird. Aspect 

is calculated as the mean of the cosine of the aspect value within the buffer. Rhododendron is the 

area of mapped polygons within the buffer. Streams is the total length of streams within the 

buffer. 

Variable Mean Median Min Max 

Elevation (m) 957 1037 555 1255 

Streams (m) 56 61 0 233 

Rhododendron (m2) 3049 2999 0 7854 

TPI -2.24 -2.00 -10.66 4.38 

Aspect -0.53 -0.73 -1.00 0.88 
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Table 1.4 Spatial Cormack-Jolly-Seber model selection DIC values for each of nine 

combinations of environmental predictors of Canada Warbler (Cardellina canadensis) annual 

survival in the Monongahela National Forest, WV, USA indicate elevation as a linear predictor 

was the most explanatory variable. The parameters for detection probability p, and X- and Y-

variance of dispersal kernel (σ2) were held constant. 

Model K DIC Δ DIC 

Elevation 5 2966.300 0.000 

Elevation + Elevation2  6 3065.117 98.817 

Intercept-only 4 3093.897 127.597 

Rhododendron 5 3484.409 518.109 

Elevation + Aspect 3 3566.419 600.119 

TPI 5 3635.252 668.952 

Aspect 5 3663.747 697.447 

Stream 5 3734.297 767.997 

Elevation + TPI + Aspect 7 4120.254 1153.954 
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Table 1.5 Model selection DIC values for each of six environmental predictors of daily nest 

survival by Canada Warbler (Cardellina canadensis) nests observed in the Monongahela 

National Forest, WV, USA, indicated no measured variables were a strong predictor of nest 

survival.  

Model K DIC Δ DIC 

Intercept-only 1 25.64974 0.000 

TPI 2 26.91873 1.268985 

Elevation 2 27.23961 1.589867 

Shrub 2 27.27751 1.627764 

Rhododendron 2 27.32291 1.673163 

Aspect 2 27.35488 1.705138 
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Table 1.6 Encounter history summary of adult (AHY) male Canada Warbler (Cardellina 

canadensis) over three years of mark-resight study conducted in the Monongahela National 

Forest, WV, USA. Encounters with three digits were first marked in 2019, and those with a dash 

preceding two digits were first marked in 2020. A 1 denotes that the bird was seen in that year, 

whereas a 0 denotes the bird was not observed. Of 101 birds captured in the first year, 14% were 

seen in all three years. All histories begin with 1 to mark their first encounter, when they were 

captured and marked. 

Encounters # Birds 

111 14 

110 19 

101 0 

100 68 

-11 48 

-10 54 
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Chapter 2: Potential population connectivity and loop migration by Canada 

Warblers (Cardellina canadensis) revealed by light-level geolocators 

INTRODUCTION 

  Populations are influenced by events occurring throughout the annual cycle of a species, 

and conclusions drawn from only one period may be confounded by carryover effects from 

previous periods (Sherry and Holmes 1996, Sillett and Holmes 2002, Norris et al. 2006, Faaborg 

et al. 2010, Marra et al. 2015a). The annual cycle of a migratory bird consists of a breeding 

season, nonbreeding season, and two migration periods; events in one stage of the cycle may 

impact the population in subsequent stages (Faaborg et al. 2010, Rushing et al. 2017, Schuster et 

al. 2019). For example, changes in parameters measured in breeding populations such as 

abundance, density, and individual fitness may be caused by environmental conditions 

experienced during the nonbreeding season rather than on the breeding grounds (Wilson et al. 

2011, Marra et al. 2015b, Briedis and Bauer 2018). Determining population-specific migratory 

routes and nonbreeding season distribution is crucial to comprehensively model factors that may 

limit population growth occurring across the full annual cycle.  

 Although the temporal duration of transit between breeding and nonbreeding habitat is 

typically shorter than the residency period in either locale for neotropical migrant passerines, 

migration is a high-risk event that subjects individuals to multiple stressors (Sillett and Holmes 

2002, Newton 2006, Klaassen et al. 2014, Rushing et al. 2017). Crossing large bodies of water, 

resource competition in stopover habitat, predation risk in novel surroundings, and 

anthropogenic influences such as light pollution, building collisions, and stopover habitat loss are 

just a few of the hazards a migratory songbird must survive (Sillett and Holmes 2002, Newton 

2006, Horton et al. 2019). Mortality rates have been estimated in some species to be 6 – 15 times 

higher during migration than during stationary periods and may account for more than half of 
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annual mortality (Sillett and Holmes 2002, Klaassen et al. 2014). Nonfatal consequences of 

migration stressors such as reduced body condition upon arrival to breeding territories may also 

impact demographic rates (Newton 2006). Post-breeding and pre-breeding migration routes are 

not always identical, which may be driven by underlying weather patterns, seasonal differences 

in resources, or other factors which subsequently influence birds on their breeding or 

nonbreeding grounds (McKinnon et al. 2013). Avian migration is challenging to study but can 

elucidate the carryover effects from exposure to stressors encountered en route through a key 

portion of the full annual cycle. 

 Migratory connectivity describes the extent of cohesion between groups of individuals 

throughout the full annual cycle (Webster et al. 2002, Marra et al. 2011, McKinnon et al. 2015, 

Kramer et al. 2017, Cohen et al. 2019). Strong population connectivity between the breeding and 

nonbreeding season causes the individuals of a population to be exposed to similar 

environmental conditions year-round (Webster et al. 2002, Norris et al. 2006, Marra et al. 2011, 

McKinnon et al. 2013).  Connectivity strength influences the degree in which seasonal carryover 

effects are evident between breeding and nonbreeding populations and may exacerbate or 

mediate the effect of stochastic events. For instance, if a hurricane destroys a portion of 

nonbreeding season habitat in a population with strong connectivity, the demographic rates of the 

linked breeding population may be severely adversely affected. In the case of weak connectivity, 

the carryover effects are diffused across some individuals of multiple breeding populations 

(Webster et al. 2002, Briedis and Bauer 2018). In the long-term, species with weaker population 

connectivity would also have higher genetic variation to evolve beneficial traits that respond to 

changing selective pressures, such as climate change or anthropogenic impacts (Webster et al. 

2002). Conservation action for declining species can be informed by assessment of population 
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connectivity. In Golden-winged Warblers, identifying strongly linked breeding and nonbreeding 

populations improved the allocation of conservation funding to sites of greatest need, prioritizing 

protection of wintering habitat used by the most steeply declining breeding populations (Kramer 

et al. 2017, Larkin et al. 2017).  

Determining migration routes and population connectivity of small (< 20 g) songbirds 

has become possible over the past decade with the miniaturization of light-level geolocator tags 

(McKinnon et al. 2013, McKinnon and Love 2018). Tracking individual birds with geolocators 

has offered unprecedented insight into the migratory ecology of many passerine species (e.g., 

Heckscher et al. 2011, Ryder et al. 2011, Beason et al. 2012, Cormier et al. 2013, McKinnon et 

al. 2013, Hallworth et al. 2015, Wolfe and Johnson 2015, Cooper et al. 2017, Kramer et al. 2017, 

Larkin et al. 2017). While the accuracy and precision of location estimates from light-level 

geolocation are affected by the time of year, bird behavior, and environmental factors (Lisovski 

et al. 2012), these data are more robust than previously used alternatives such as band recovery 

or stable isotope analysis and enable inference at the scale of populations rather than vast regions 

(Norris et al. 2006, McKinnon et al. 2013, Kramer et al. 2017). The capability of tracking 

individual birds across seasons is a fundamental step toward incorporating full annual cycle 

effects into demographic research (Hostetler et al. 2015, Marra et al. 2015a). As numerous 

neotropical migrant species decline (Rosenberg et al. 2019), there is an urgent need to understand 

all factors that ultimately influence population dynamics.  

The Canada Warbler (Cardellina canadensis) is a neotropical migrant songbird 

exhibiting substantial population declines in recent decades (Sauer et al. 2020). Breeding 

populations are distributed across Canada and through the northeast US, with a trailing edge 

south through the Appalachian corridor to northern Georgia. The nonbreeding season distribution 
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includes Panama through northern South America and central Peru. While distributions are 

known, the population-specific migratory ecology of this species is not well understood (Reitsma 

et al. 2009). Within the breeding range, West Virginia, USA, is one of few regions with a trend 

of increased abundance at 2.4% (95% confidence interval: -0.4% – 5.9%) annually (Sauer et al. 

2020), but the southern populations of the Canada Warbler breeding distribution are largely 

unstudied (but see Weakland et al. 2002, Becker et al. 2012, Dimmig et al. 2022). Modeling 

population dynamics through the full annual cycle necessitates filling the knowledge gap of this 

southern population’s migratory routes, nonbreeding season distribution, and connectivity 

strength.  

The migratory ecology of Canada Warblers has predominately been described at a broad 

regional scale, with limited population-level assessment. During the post-breeding migration 

route in autumn, birds appear to travel west from the Appalachian corridor and continue overland 

through Central America, with a few records in Florida and the Yucatán Peninsula that may be 

vagrants or trans-Caribbean movements (Reitsma et al. 2009, Cárdenas-Ortiz et al. 2017). The 

only other published study, to my knowledge, to use geolocators, reported that the post-breeding 

routes of multiple populations breeding throughout Canada crossed part of the western Gulf of 

Mexico and continued overland through Central America. During the nonbreeding season, all 

birds wintered in Colombia or western Venezuela and appeared to exhibit crosswise connectivity 

(birds from the west wintered in the east and vice versa) but limited samples from each of the 

widely distributed breeding populations precluded conclusive evidence of migratory connectivity 

strength or pattern (Roberto-Charron et al. 2020). Pre-breeding migration in the spring was only 

described by one functional geolocator but followed a similar route to the post-breeding 

migration (Roberto-Charron et al. 2020). Previously, stable isotope analyses suggested the 
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presence of regional parallel connectivity, with eastern and western breeding populations 

segregated across the Colombian Andes (González-Prieto et al. 2017). Connectivity assessment 

may also be hampered by the comparatively smaller nonbreeding distribution relative to the 

breeding range; it is estimated that > 50% of the nonbreeding distribution is within the 

Colombian Andes, where Canada Warblers occupy a narrow elevation band (Céspedes and 

Bayly 2019). With such limited and sometimes conflicting data, further efforts to understand 

Canada Warbler migratory ecology will be critical to inform full annual cycle models and 

determine the sensitivity of populations to environmental changes and management efforts 

(Hallworth et al. 2015, Larkin et al. 2017, Briedis and Bauer 2018). 

 In this project, I used light-level geolocators to track adult male Canada Warblers 

breeding in the Monongahela National Forest, West Virginia, USA, through their annual cycle. 

The study objectives were: (1) estimate the post-breeding and pre-breeding migratory routes, (2) 

determine the nonbreeding season sites of the population of Canada Warblers breeding in central 

Appalachia and (3) assess the potential for migratory connectivity by quantifying the probability 

of nonrandom geographic clustering. My novel assessment of the migration ecology of this 

largely unstudied population elucidates the post-breeding and pre-breeding migratory routes, 

nonbreeding season distribution, and describes the potential for population connectivity. 

Hypotheses and Predictions 

1. If Canada Warblers that breed in the central Appalachian Mountains of West Virginia use 

similar migratory routes as birds that breed in Canada, then I predict migratory routes 

will proceed south through Central America, with the possibility of trans-Gulf of Mexico 

movements. 
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2. If Canada Warblers that breed in the central Appalachian Mountains of West Virginia 

spend the nonbreeding season where highest abundances have been documented, I predict 

this population will winter in the eastern Colombian Andes. 

3. If Canada Warblers that breed in the central Appalachian Mountains of West Virginia 

exhibit population migratory connectivity, then I predict the geolocator-tagged birds will 

winter in a distinct geographic cluster relative to potential nonbreeding sites.  

METHODS 

Study Area 

I conducted fieldwork on public lands in the Monongahela National Forest (MNF), West 

Virginia, USA. The MNF was established in 1920 and encompasses almost 371,000 hectares of 

federally protected land across the central Appalachian Mountains, with elevations ranging 300 – 

1500m (USDA 2011). My study sites are distributed across the Allegheny Highlands Section of 

the Appalachian Plateau Physiographic Province in the west of the MNF. The region is 

characterized by the complex topography resulting from mixed flats, folds, and faults (WV 

Geological & Economic Survey 2020). More than 70 tree species comprise the diverse forest 

types that vary across the elevation gradient of the MNF (USDA 2011). Below 900 m, mixed oak 

and mixed mesophytic forest types are dominant, transitioning to northern hardwood between 

900 m and 1,150 m, with remnant boreal red spruce forests predominant above 1,150 m (USDA 

2011, Dimmig et al. 2022).    

Site Selection 

I studied the migratory ecology of a population of Canada Warblers within the MNF, 

West Virginia, USA. I established six study sites throughout the MNF as part of my concurrent 

demography research on the same population. Sites were selected from data collected previously 
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that indicated locations of high relative occurrences of Canada Warblers across a range of 

elevations (Dimmig et al. 2022). The six sites spanned an approximately 130 km north-south 

geographic range (Figure 1.1), had areas of 72 – 209 ha, and encompassed elevations of 527 – 

1293 m (Table 1.1). Dimmig et al. (2022) rarely detected Canada Warblers above 1,158 m, the 

lower cutoff of the highest elevation stratum. As such, mean elevations of each total high-

elevation site search area were all < 1,158 m, with portions of the sites above the cutoff. Sites 

were generally characterized by lack of recent timber harvest (Dimmig et al. 2022), high density 

of rhododendron, and were typically bisected by non-ephemeral streams (Figure 1.2). Higher 

latitude and lower elevation sites consisted chiefly of mixed mesophytic forest transitioning to 

dry oak and oak-pine mesic forest upslope; southern sites contained predominantly northern 

hardwood and red spruce forests, with mixed mesophytic patches. Four of the sites were 

bordered or bisected by gravel roads only accessible with a US Forest Service key and thus 

subject to minimal vehicular travel, and two were accessed with marked hiking trails.  

Study Design: Geolocators 

To investigate the migratory patterns of Canada Warblers, I deployed archival light-level 

geolocator dataloggers (hereafter geolocators) on birds across the six study sites. Geolocators 

record light intensity at predetermined intervals and must be retrieved from the bird to access the 

data. Transitions between light and dark periods mark sunrise and sunset, used to calculate day 

length and the timing of solar noon, which subsequently allow estimation of longitude and 

latitude (Sumner et al. 2009, Lisovski et al. 2012). Shading of the light sensor as a result of 

weather, vegetation, topography or other factors can reduce the precision of the estimate, 

potentially leading to imprecise or erroneous location estimates. Latitudinal estimates are prone 

to increased error around the spring and fall equinox, due to the global similarity of day length 
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(Lisovski et al. 2012). Despite these limitations, light-level geolocation offers the most robust 

global positional data to date for small songbirds due to their compact size and light weight.  

I deployed FL6057 fLight Lotek Wireless geolocators on adult (after-hatch-year) male 

Canada Warblers. The geolocators recorded light intensity at four-minute intervals, with an 

expected battery life of 12 months. This model was stemless to minimize size and mass (17 x 6.3 

x 3 mm; 0.30 g), but contour feathers may have shaded the light sensor. Geolocators were 

mounted with superglue onto figure-eight leg loop harnesses made from 0.5 mm Stretch Magic 

elastic cord (Figure 2.1) (Rappole and Tipton 1991, Streby et al. 2015). Guidelines indicate that 

attachments to banded birds must be ≤ 3% of the individual’s total body mass (Patuxent Wildlife 

Research Center 2020), thus the bird had to weigh at least 10.7 g at the time of capture to carry a 

geolocator, harness, and bands. 

Capture Protocol 

 I attached geolocators to 32 Canada Warblers between May and July of 2020. To locate 

male birds to capture, I first surveyed each study site by listening for territorial songs. When I 

located a bird, I attempted capture using an audio lure of a speaker broadcasting Canada Warbler 

song placed near two mist nets (6m x 2.6 m; 30 mm mesh) deployed in an “L” formation parallel 

and perpendicular to understory growth as structure permitted. Once captured, I first weighed the 

bird to ensure it met the minimum threshold to carry the geolocator. I then attached the tag using 

a figure-eight harness following Rapple and Tipton (1991) and Streby et al. (2015) and released 

the bird with a USGS-issued aluminum band and a unique combination of plastic color bands. 

Eight birds were second-year (SY), 21 were after-second-year (ASY) and three were 

undetermined and aged as after-hatch-year (AHY).  
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 In 2021, I systematically searched each study site for marked birds. At each site, I created 

a 210 m buffer around all locations of marked birds recorded in the previous years (see Chapter 1 

for details of mark-resight study) to form a search area boundary, and overlaid grid points spaced 

150 m apart within the search area boundary to guide search effort (53 – 92 per site) (Figure 

1.4A). I selected the 210 m buffer to define the search area boundary by approximating the 

radius of three home ranges, based on literature reporting the largest defended area by a singing 

male as 1.5 h which corresponds to a circle with a radius of ~70 m (Hallworth et al. 2008a, 

Reitsma et al. 2009). This set reasonable borders for re-sighting individuals and enabled me to 

search the entire site while allowing for territory shifts to occur between years. The 150 m grid 

point spacing allowed me to account for aural detection limits of Canada Warblers which are 

estimated to range 60-200m (Matsuoka et al. 2012, Hunt et al. 2017). Furthermore, visiting each 

grid point at least once ensured search coverage even in challenging terrain. Field personnel 

walked slowly between grid points listening for singing males, and broadcasting Canada Warbler 

song at each grid point for up to three minutes to elicit a response if no birds were otherwise 

detected. If a marked bird was located that had been deployed with a geolocator, I recaptured the 

bird using the previously described capture protocols and retrieved the geolocator tag.  

Data Analysis 

I estimated geographic coordinates using guidelines published by Lisovski et al. (2020) 

and I draw heavily from their methodology in the description below. Analysis consisted of four 

fundamental steps: (1) determining the threshold value which identified twilight events based on 

light transitional periods; (2) editing or excluding outlying and likely erroneous twilight events 

following replicable criteria; (3) generating initial estimates of longitude and latitude from day 

length and timing of solar noon indicated by the twilight threshold timing; and (4) refining the 
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estimates through a Bayesian statistical model with semi-informative priors. I performed all 

analyses in R 4.1.2 (R Core Team 2021) using packages TwGeos, Geolight and SGAT (Sumner et 

al. 2009, Lisovski and Hahn 2012, Lisovski et al. 2016). 

ANNOTATING TWILIGHTS 

The timing of sunrise and sunset is integral to estimating coordinates from the recordings 

of light intensity, or light level. To estimate twilight transition times, I defined a light-level 

threshold; I assumed values below the threshold constituted night readings, and values above 

constituted daytime readings. I determined the threshold for each tag by first summarizing which 

low light levels were most frequently repeated sequentially as would be expected in consistent 

overnight darkness. I then used the most frequently repeated low light value to identify twilights 

using the preprocessLight function in package TwGeos (Lisovski et al. 2016). The function 

determines the timing of twilight by identifying pairs of times surrounding a period when light-

levels are consistently below the threshold, which is assumed to be night. In some cases, the 

initially selected threshold value could not define twilights, potentially due to overnight noise 

from moonlight or anthropogenic light sources creating > 2 twilight events within a 24hr period. 

When this occurred,  I increased the threshold incrementally by 0.5 lux (metric of light intensity) 

until twilights were identified throughout the entire year (Figure 2.2). The twilight output was a 

sequence of dates and times, two readings per date, and whether the time was a sunrise (dark to 

light) or sunset (light to dark) transition. 

The resulting twilights were then filtered to edit and exclude erroneous values following 

a replicable set of rules. Each focal twilight was contextualized by the surrounding four twilights, 

two before and two after, in a moving window. If the focal twilight was 45 min earlier or later 

than the surrounding twilights, and the four surrounding twilights were within 25 min of each 
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other (which is defined as likely stationary behavior), then the focal twilight time was adjusted to 

the median of the four surrounding twilight times. If the focal twilight was 45 min different from 

the surrounding twilights but the surrounding twilights were more variable than within 25 min of 

each other, the focal twilight was deleted (Lisovski et al. 2020).  

TWILIGHT CALIBRATION 

 I used the stationary period on the breeding grounds between geolocator deployment and 

onset of migration as the calibration period to account for two error sources: individual device 

accuracy and shading effects while the bird is in its normal habitat. Canada Warblers are 

documented departing the breeding grounds in mid- to late August (Reitsma et al. 2009) so I 

conservatively estimated the calibration period to include capture dates through 1 August 2020 

(Figure 2.2).  

The time of twilight events during the calibration period allow calculation of the zenith 

angle at apparent twilight because the bird’s location is known. The zenith is the point directly 

above the observer at any point on the planet and thus the zenith angle is the angular distance 

from that central point. Sunrise and sunset occur when the zenith angle is approximately 90º, or 

parallel with the horizon. Twilight, the first or last detection of light, occurs when the zenith 

angle is > 90º because of the refraction of light through the atmosphere. Comparing the estimated 

time of twilight with known time of twilight for the calibration site, I generated two zenith 

angles: the zero angle is the lowest zenith angle at which twilight could be detected at the 

calibration site; and the median angle is the zenith angle at the median of the error distribution 

between estimated and actual twilight. The errors are fit to a gamma distribution, of which the 

shape and scale inform the Bayesian model (Figure 2.3). 

INITIAL GEOGRAPHIC COORDINATES 
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After calibration, I generated two initial location estimates per day (sunrise and sunset) as 

initial values for the Bayesian model. I used the National Oceanic and Atmospheric 

Administration (NOAA) Solar Position Calculators (National Oceanic & Atmospheric 

Administration [NOAA] 2022) implemented through the thresholdPath function in SGAT 

(Sumner et al. 2009, Lisovski and Hahn 2012) to convert twilight times into initial location 

estimates for each twilight event (Figure 2.4). Given two sequential twilight times, a sunrise and 

sunset, the function computes the apparent time of solar noon (halfway between the twilights). 

The time of solar noon determines the longitude. The length of the day, or the amount of time 

between the sunrise and sunset twilights, determines the latitude. 

Longitude is reliably estimated throughout the year, but latitude is prone to increased 

error under certain conditions, when solar declination approaches 0. The solar declination is the 

angle between the sun and the plane of the equator, and equals 0 at the autumn and spring 

equinox, where the length of day and night are similar across the planet. Because latitude is 

determined from day length, latitudinal estimates are unreliable with increased error around the 

equinox. The thresholdPath function allows a user-defined tolerance on the solar declination, 

where it will replace latitude values estimated when the sine of the solar declination was ≤ the 

specified tolerance with the previous acceptable latitude value (when the sine of the solar 

declination was > the specified tolerance). Too low of a tolerance value results in numerous large 

latitudinal shifts due to equinox error as solar declination approaches 0; too high, and the 

location estimates around the equinox are constrained to longitudinal movements only, resulting 

in unrealistic horizontal paths. I specified the tolerance as 0.075 based on trial runs.  

MODELING LOCATIONS 
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 I estimated geographic locations with the Estelle model in package SGAT 

(Sumner et al. 2009, Lisovski and Hahn 2012) using Bayesian methods, implemented in R 4.1.2 

(R Core Team 2021). The model proposes a location estimate xi and calculates the error between 

the actual twilight at that location and the twilight time the geolocator light levels estimate. I 

denote ti as the difference between twilight at proposed location xi and geolocator-observed 

twilight. I assume ti, conditional on location xi, is a gamma random variable: 

𝑡𝑖|𝑥𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) 

with parameters shape α and scale β as determined during the twilight calibration step. 

I assumed xi was uniformly distributed over geographic space with the following prior 

constraints to incorporate known spatial information. Because Canada Warblers are largely 

known to be overland migrants, and their nonbreeding season grounds are in northern South 

America (González-Prieto et al. 2017, Céspedes and Bayly 2019, Roberto-Charron et al. 2020), I 

expected no location estimates would be within the Pacific Ocean. Therefore, I set the prior 

probability of a point occurring within the Pacific Ocean to 0. Canada Warblers breed throughout 

Canada, with occurrences up to the Northwest Territories, below 60 degrees latitude. 

Nonbreeding distribution extends through southern Peru, to north of -19 degrees latitude. I set 

the prior probability of a point occurring outside of these latitudinal constraints to 0. To limit 

points occurring over the Gulf of Mexico and the Atlantic Ocean, points in these bodies of water 

were assigned a prior weight of log(0.05). To constrain points to within the documented 

geographical distribution of the species (Figure 2.5), points on land that were within the Canada 

Warbler range were assigned a prior weight of log(5). The weights were selected based on 

preliminary trials to ensure the prior did not wholly drive the final modeled location estimates. 

Locations within the known range had the highest prior weight, followed by terrestrial locations 
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outside the known range, with the lowest prior weight over the Gulf of Mexico or Atlantic 

Ocean.  

To incorporate biologically reasonable distances between successive locations, I defined 

a prior for flight speed. Canada Warblers spend most of the breeding and nonbreeding season 

stationary, excepting migration periods, so most expected movements should be extremely small. 

I assumed the orthodromic distances between location estimates xi and xi+1 was a gamma random 

variable with a shape parameter of 0.7 and a scale parameter of 0.08. This set a maximum speed 

of ~50 km/hr with the most common speed <1km/hr, following parameters used for Kirtland’s 

Warblers (Cooper et al. 2017). 

I sampled from posterior distributions of location estimates xi using three independent 

chains. The Bayesian models were fit using Metropolis-Hastings Markov Chain Monte Carlo, 

which required tuning before the final posterior draw. Initially, I drew 1000 samples for each of 

three tuning runs. After tuning was complete, I continued to draw samples, keeping every 20th 

sample, until the Brooks-Gelman-Rubin convergence diagnostic (Brooks and Gelman 1998) 

indicated all chains converged (i.e., Rhat < 1.1).   

DETERMINING MIGRATORY ROUTES 

I estimated the post-breeding (fall) migratory routes for each tag using the posterior 

median of each location and linking successive points. Latitude estimates around the autumn 

equinox, which I defined as the period ± 20 days from 22 September 2020 (2 September 2020 – 

12 October 2020) (Wolfe and Johnson 2015), were unreliable and often exhibited erratic 

successive long distance north-south movements. In this case, I manually adjusted the latitude of 

a point by visually estimating between the preceding and following locations, keeping the model 

posterior longitude unchanged because it is unaffected by the equinox, and ensuring the new 
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latitude value fell within the 95% credible intervals. For example, in several birds, sequential 

points would alternate between the Gulf Coast of the US and the Yucatán Peninsula of southern 

Mexico, as if the bird had completed multiple trans-Gulf flights. To infer a more reasonable 

route estimate, I linked the locations before and after the erratic jumps. Pre-breeding (spring) 

migration consisted of fewer location estimates, and large latitudinal shifts were not clearly 

preceded and followed by points demarcating the migration route. Therefore, I could not plot the 

pre-breeding route without introducing considerable subjectivity into what constituted a reliable 

location estimate. So, to determine if post-breeding and pre-breeding migration routes differed, I 

compared the minimum (most negative, or westernmost) longitude reached during post-breeding 

and pre-breeding migration for each bird with a paired t-test.  

ASSESSING POPULATION CONNECTIVITY 

I defined the nonbreeding season location for each bird as the median coordinates of all 

points between 16 November 2020 – 28 Feb 2021. This date range was defined based on the 

eBird definition of the nonbreeding season (Fink et al. 2021) with dates within the spring 

equinox period, ± 20 days from 20 March 2021 (Wolfe and Johnson 2015), subtracted. To 

determine the probability that nonbreeding season locations were randomly distributed within the 

nonbreeding season range of Canada Warblers, I first used kernel density estimation, 

implemented in R package ks (Tarn Duong 2021), to define the boundaries of the winter 

distribution of the tagged birds using the 99% contour. Next, I drew ten random points (equal to 

the number of tagged birds), assuming a uniform distribution within the eBird polygon boundary 

(Fink et al. 2021) of the non-breeding distribution I used to define prior distributions for xi. I 

counted the number of random points located within the winter distribution of the tagged birds 
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and iterated the test 1000 times, estimating the probability all 10 random locations would fall 

within the estimated winter distribution of tagged birds. 

Finally, I compared the size of the 99% contour of the kernel density estimate between 

the breeding and nonbreeding season. As with the non-breeding season, I defined the breeding 

season locations from the model posterior, using the median coordinates of all points from 

deployment until 1 August 2020, which was the duration of the geolocator calibration period. 

Following the same methods as for the nonbreeding season, I generated a polygon around the 

99% contour of the kernel density estimate.  

RESULTS 

Geolocator Retrieval 

 I recovered 13 geolocators (40.1%) from Canada Warblers that returned in 2021 (Table 

2.1); return rate by age was not significantly different (SY = 0.37, ASY = 0.48; Fisher’s Exact 

Test: odds ratio= 0.669, p =0.697). All marked individuals carrying geolocators that were 

detected were successfully recaptured. Of the 13 retrieved geolocators, 11 recorded usable light-

level data to generate location estimates; one geolocator battery failed during the breeding 

season, and one light sensor malfunctioned throughout the year, resulting in indeterminable 

twilights. A third tag was excluded from analyses because modeled location estimates were 

consistently skewed east, including during the breeding season when the modeled estimates were 

contradicted by observed locations in the field (Appendix I). One tag battery failed 3 April 2021, 

while the rest recorded data until retrieval. In total, 10 geolocators provided data on post-

breeding migration routes and overwintering sites, and nine geolocators provided data on pre-

breeding migration.  
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Population Connectivity 

 All 10 birds appeared to winter in north-central Colombia, based on the median 

coordinates from within the nonbreeding season stationary period (Figure 2.6). The 99% kernel 

density estimate around the breeding season points was 33,339 km2, while the nonbreeding 

season points distribution covered an area of 80,528 km2. While the locations appeared to be 

more dispersed during the nonbreeding season than the breeding season, they occupied an area < 

10% of the potential nonbreeding season range (nonbreeding season range defined as 931, 235 

km2 per data from Fink et al. 2021). The 10 overwintering locations of Canada Warblers from 

West Virginia were clustered nonrandomly (p < 0.001) within the possible nonbreeding season 

distribution.  

Post-breeding Migration 

Post-breeding migration routes from geolocator location estimates indicated initial travel 

west-southwest through the US to Mexico, circumventing the majority of the Gulf of Mexico 

(Figure 2.7). While latitude estimates were unreliable during most of migration movements due 

to the equinox, longitude estimates suggested some overwater flights were possible (Figure 2.8 

and Appendix I: A.2 – A.9). Not all birds departed the breeding grounds at the same time; three 

birds appear to have entered Mexico or Central America before the equinox period began (2 

September 2020), where several other birds had only traveled a few hundred kilometers from the 

breeding grounds by the same date (Figure 2.7). 

Pre-breeding Migration 

 The nine geolocators which continued recording data through pre-breeding (spring) 

migration indicated that the pre-breeding migration route was further east than the post-breeding 
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migration route. On average, the minimum (furthest west) longitude during spring was 232 km 

further east than the minimum fall longitude, following a pattern of anticlockwise loop migration 

(Figure 2.9). A post-hoc two-sample t-test revealed the difference in minimum longitude 

between the two seasons was significant (t = -4.75, df = 8, p = 0.001) and suggests a higher 

probability of pre-breeding migration routes crossing the Gulf of Mexico than post-breeding 

migration routes. 

DISCUSSION 

This is the second known study to track Canada Warblers throughout the annual cycle, 

the first from the southern portion of the breeding range, and provides novel insight into the 

migration ecology of this declining species. I found that male Canada Warblers breeding in West 

Virginia, USA, spent the nonbreeding season in the Colombian Andes. The relatively small area 

within which birds were observed wintering is consistent with a pattern of strong population 

migratory connectivity. The location of the cluster is not consistent with a pattern of chain 

connectivity (in which the southern breeding populations would spend the winter at the southern 

end of the nonbreeding range), which Roberto-Charron et al. (2020) had hypothesized as an 

explanation for the preponderance of birds tracked from Canada spending the nonbreeding 

season in the northern portion of the nonbreeding range, and lack of migration further south.  

Evidence defining the spatial pattern of connectivity in Canada Warblers is inconsistent. 

Stable isotope analyses suggested parallel connectivity where eastern and western breeding 

populations segregated on corresponding sides of the Andean cordillera, whereas the geolocators 

deployed across Canada exhibited low levels of crosswise connectivity, where western breeding 

populations wintered to the east of the eastern breeding populations (González-Prieto et al. 2017, 

Roberto-Charron et al. 2020). The cluster of nonbreeding season locations may also be due to 
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multiple breeding populations converging at high densities into a small spatial area. An estimated 

50% of the nonbreeding season distribution is within the Colombian Andes, where Canada 

Warblers are most likely to occupy a narrow elevation band of 1,000 – 2,200 m in humid native 

forest (Céspedes and Bayly 2019), and Roberto-Charron et al. (2020) observed Canada Warblers 

wintering in this region. Tracking birds from multiple geographically distinct populations would 

provide better insight into the extent of population connectivity.  

 The post-breeding (fall) routes used by the West Virginia population of Canada Warblers 

appear to exhibit strong westward movement preceding any notable southward movements, but 

the uncertainty associated with the equinox limits the power of inference of the latitudes during 

this time, however, longitude is unaffected (Lisovski et al. 2018). The estimated flight paths 

along the Gulf Coast of Mexico with potential evidence of partial trans-Gulf flights were 

consistent with findings reported by Roberto-Charron et al. (2020), wherein 61.1% of 

geolocator-tagged Canada Warblers partially or fully crossed the Gulf. I did not find evidence of 

trans-Caribbean movements through islands south of Florida, as the longitudinal estimates were 

likely too far west to support this hypothesis. This result is also consistent with previous 

geolocator and mist-netting data, suggesting Canada Warbler records in the Caribbean are likely 

vagrants (Cárdenas-Ortiz et al. 2017, Roberto-Charron et al. 2020).  

My results are the first to report multiple pre-breeding (spring) migration routes used by 

Canada Warblers. In contrast to the single bird with sufficient battery life through spring 

migration reported by Roberto-Charron et al. (2020) to use the same general path as the post-

breeding migration, I observed pre-breeding routes were > 200 km further east than the post-

breeding route used by each bird. The longitudinal difference suggests this population exhibits 

anticlockwise loop migration. There are several hypothesized drivers of a loop migration pattern, 
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such as seasonal wind patterns and stopover habit resource availability (McKinnon et al. 2013, 

Bradley et al. 2014, Briedis et al. 2018). However, many neotropical species appear to follow a 

clockwise loop, with pre-breeding routes further west than post-breeding routes (Callo et al. 

2013, Jahn et al. 2013, McKinnon et al. 2013), suggesting the evolutionary drivers of the 

differing routes may be species-specific. The anticlockwise loop traveled by Canada Warblers 

from West Virginia may reflect a strategy which minimizes flight distance and time. While 

migration timing and duration were not explicitly tested here, pre-breeding migration is typically 

shorter than the post-breeding migration for many species (McKinnon et al. 2013) including 

Canada Warblers (Reitsma et al. 2009, Roberto-Charron et al. 2020). Furthermore, the 2020 

hurricane season (1 June – 30 November) consisted of a record-breaking number of storms and 

increased rainfall (Reed et al. 2022), which may have induced fall migration routes to proceed 

nearer the coast; however, multiple years of data would be necessary to assess a causative 

relationship.  

As Canada Warbler abundance continues to decline (Sauer et al. 2020), a better 

understanding of the factors limiting populations throughout the full annual cycle is critical to 

their conservation. The nonbreeding season locations estimated here and from previous 

geolocator data (Roberto-Charron et al. 2020) is indicative of the conservation importance of the 

Colombian Andes, which has been estimated to contain > 50% of the nonbreeding distribution of 

Canada Warblers (Céspedes and Bayly 2019). A global biodiversity hotspot, the region provides 

habitat for > 1,500 bird species (Franco et al. 2007). An estimated 90% loss of the montane 

forest used by overwintering Canada Warblers has resulted from deforestation for both crops and 

livestock (Etter et al. 2006, Céspedes and Bayly 2019, Clerici et al. 2019). While overwinter 

survival by Canada Warblers in shade-grown coffee was comparable to native forest, only 10% 
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of Colombian coffee was grown in agroforest systems in 2013, down from 23% in 1997 

(González et al. 2020). Approximately 3.5 million ha of Colombian native montane forest falls 

within protected areas, but the value to Canada Warblers is uncertain, with different protected 

areas of various sizes hosting a wide range of 3%-72% of overwintering migratory species found 

in the region (Franco et al. 2007). Even in protected areas, insufficient resources are available to 

adequately monitor these biodiversity reserves which are encroached by illegal cropping of high-

value coca and opium, a situation further complicated by the often-extreme political climate and 

decades of social unrest (Etter et al. 2006, Clerici et al. 2019). The Colombian Andes serve as 

nonbreeding season habitat for Canada Warblers from several distinct populations, but this does 

not preclude the existence of strong population connectivity, with potentially major conservation 

implications. In the long-term, strongly connected populations of Canada Warblers will be more 

vulnerable to anthropogenic effects and stochastic events, such as the documented losses of 

montane forest; in weakly connected populations, negative effects on individuals such as reduced 

survival, body condition, and subsequent reproductive success will be diffused across multiple 

breeding populations (Webster et al. 2002).  

Given that Canada Warblers across the breeding distribution seem to converge within the 

Colombian Andes, it raises the question of where Canada Warblers wintering elsewhere in the 

nonbreeding distribution spend the breeding season. Migratory birds, including warblers, have 

been known to segregate during the nonbreeding season, with females often found in lower 

quality habitat or even migrating further than males (Cristol et al. 1999, Catry et al. 2005, 2006, 

Briedis and Bauer 2018). In Colombia, a greater proportion of Canada Warblers in native forest 

tended to be male, and the inverse was true in shade-grown coffee, with some statistical 

uncertainty (González et al. 2020). It is also possible the southern latitudes of the Canada 
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Warbler nonbreeding distribution are occupied by a preponderance of female birds, but to my 

knowledge this is unstudied. Failing to account for segregation by sex may bias models of 

population dynamics with conservation implications; Golden-winged Warbler female-preferred 

habitat has incurred greater losses than male-preferred habitat (Briedis and Bauer 2018, Bennett 

et al. 2019). Tracking female Canada Warblers may provide more conclusive insight into factors 

in the nonbreeding season influencing breeding populations. 

Factors outside of the breeding season affecting population growth may also occur during 

migration. The trend of increased abundance in West Virginia (Sauer et al. 2020) could be 

explained by the geographically shorter migration route from the southern extent of the breeding 

range to the nonbreeding grounds. Migration is a high-risk period in the annual cycle, and longer 

distances increase the opportunities for mortality events (Sillett and Holmes 2002, Newton 2006, 

Klaassen et al. 2014). Building full annual cycle demographic models across the breeding range 

for Canada Warblers will help elucidate the drivers of population dynamics. 

My study is the first to track the migration of Canada Warblers from the southern portion 

of their breeding range and my findings reinforce published data emphasizing the importance of 

the Colombian Andes as nonbreeding season habitat for this species. Whether the clustering of 

nonbreeding locations is due to strong population connectivity, multiple breeding populations 

converging due to higher habitat quality, or latitudinal segregation by sex, continued habitat loss 

and degradation in the region could have negative consequences on multiple breeding 

populations (González-Prieto et al. 2017, Céspedes and Bayly 2019, González et al. 2020, 

Roberto-Charron et al. 2020). As the species continue to decline across most of their breeding 

range (Sauer et al. 2020), this project will provide essential baseline data to construct full annual 

cycle population models. Incorporating environmental conditions associated with the stationary 
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nonbreeding season and migratory stopover locations in addition to breeding season dynamics 

will be critical to inform habitat management to aid in the conservation of the Canada Warbler. 
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CHAPTER 2: FIGURES AND TABLES 

 

Figure 2.1 Leg-loop harness method used to deploy 32 FL6057 fLight Lotek Wireless 

geolocator tags to on adult male Canada Warblers (Cardellina canadensis) in the Monongahela 

National Forest, WV, USA. Main photo shows Geo ID 475 attached to an adult male Canada 

Warbler at initial capture in June 2020, and the inset shows a closeup of Geo ID 473 with the 

harness made from made of 0.5 mm Stretch Magic elastic cord. 

 

 



76 

 

 

Figure 2.2 Light-level data recorded by Geo ID 452 deployed on an adult male Canada Warbler 

(Cardellina canadensis) in the Monongahela National Forest, WV, USA on 15 June 2020 and 

retrieved 13 May 2021. In (A) light levels recorded across 6 days with the threshold value used 

to define night as a horizontal red line, shown on the log scale. In (B) – (D), pixels represent a 

single light level reading with darker pixels representing lower light levels, and Hour in GMT, 

with night period at the center of each figure. (B) is a close-up of the first 2000 light readings 

(the white bar beginning at hour 8 on the last day is no data at the end of the 2000 readings); (C)  

shows the twilight annotated with sunrise times in red and sunset in blue; and (D) shows the end 

of the calibration period as an orange dashed line and actual twilight time for the known location 

indicated with blue horizontal lines. 
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Figure 2.3 Error distribution of twilight times fit to a gamma curve (red dashed line) recorded by 

Geo ID 452 deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA. Calibration period was from deployment on 15 June 

2020 to 1 August 2020. The twilight error is the number of minutes between actual twilight for 

the known coordinates (zenith angle 0) and the time of twilight estimated by the device from the 

light level data in the twilight annotation step (Figure 2.2A). The zenith angle (median) notes the 

angle of the sun at the median deviation of device annotated twilight from true twilight and is 

used to generate initial location estimates. The final two parameters are the shape and scale of 

the gamma distribution which are used as a prior distribution in the Bayesian model. 
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Figure 2.4 Initial location estimates calculated from twilight times of Geo ID 452 deployed on 

an adult male Canada Warbler (Cardellina canadensis) in the Monongahela National Forest, 

WV, USA on 15 June 2020 and retrieved 13 May 2021. Locations are estimated using twilight 

times (Figure 2.2A) and median twilight error (Figure 2.3) using thresholdPath function in 

package GeoLight (Lisovski and Hahn 2012).  
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Figure 2.5 Range map of Canada Warbler (Cardellina canadensis) created with the ‘low-

resolution’ data from eBird (Fink et al. 2021). Range data were used as a spatial prior for the 

Bayesian model of geolocator location estimates where occurrence anywhere within any 

season’s range was more likely than terrestrial locations outside of the range. 
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Figure 2.6 Median nonbreeding season (16 November 2020 – 1 March 2021) location estimates, 

(white circles) of Canada Warblers breeding in the Monongahela National Forest, WV, USA 

based on geolocator tag data. The 99% kernel density estimate, in red, for the ten individual 

locations encompasses 80,528 km2, while the dark grey represents the documented nonbreeding 

range of Canada Warblers, an area of 931,235 km2 (Fink et al. 2021). Median nonbreeding 

season locations were clustered nonrandomly (p = 0.001) relative to the total available 

nonbreeding distribution.  
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Figure 2.7 Estimated post-breeding migration routes used by adult male Canada Warblers 

(Cardellina canadensis) in fall 2020 from their breeding sites in the Monongahela National 

Forest, WV, USA, obtained from light-level geolocators. Routes were inferred by linking 

successive location estimates. Each color is a different bird with unique geolocator identifier, and 

the routes are dashed when point estimates fell during the defined equinox period of ±20 days 

from the autumnal equinox (22 September 2020). Erratic north-south movements during the 

equinox period were discarded and therefore equinox routes are interpolated from longitude and 

latitudes recorded before or after the equinox period. 
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Figure 2.8 Latitude and longitude estimates throughout the year from light-level geolocator (Geo 

ID 452) deployed on an adult male Canada Warbler (Cardellina canadensis) in the Monongahela 

National Forest, WV, USA on 15 June 2020. Posterior median is the solid black line, with 95% 

credible intervals defined by the grey ribbon. Spring and fall equinox dates are indicated by the 

solid red lines, with the equinox period of ±20 days indicated by the dashed red lines. Latitude 

estimates are particularly unreliable during the equinox, while longitude is unaffected.  
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Figure 2.9 Posterior median of westernmost longitude reached by Canada Warblers (Cardellina 

canadensis) during post-breeding (fall; blue) and pre-breeding (spring; red) migration between 

breeding sites in the Monongahela National Forest, WV, USA, and nonbreeding season sites in 

Colombia. Post-breeding routes are further east than pre-breeding routes, resulting in apparent 

anticlockwise loop migration, and indicating most birds likely took trans-Gulf flights during the 

pre-breeding migration. 
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Table 2.1 Summary of 13 recovered light-level geolocators from 32 deployed on male Canada 

Warblers during the breeding season in the Monongahela National Forest, WV, USA in 2020 and 

successfully retrieved in 2021, in order of deployment date. Geo ID is the unique identifier for 

the geolocator, age indicates bird age at geolocator deployment determined from plumage 

characteristics, with dates the geolocator was deployed and then retrieved the following year, and 

study site indicates which of the six sites within the study area the bird was captured (more study 

site details in Figure 1.1 and Table 1.1). Of the 13 retrieved tags, 10 provided usable data to mark 

the fall migration and nonbreeding season locations, and 9 continued recording data through 

spring migration as well. 

aBattery failure 30 July 2020; discarded from analyses 
bLight sensor malfunctioned throughout entire year; no usable data recorded 
cLocation estimates biased east during known location periods; discarded from analyses 
dBattery failure 1 April 2021; used in fall migration and nonbreeding season analyses 

 

  

Geo ID Age Deployed 2020 Retrieved 2021 Study Site  

476 ASY 29 May 16 May Dogway 

478 ASY 31 May 20 May Kennison 

482a SY 3 June 26 May Red Run 

457 ASY 4 June 12 May Red Run 

458b ASY 9 June 25 May Losh 

459c SY 9 June 9 June Losh 

461 ASY 10 June 15 May Falls 

463d ASY 11 June 6 May Falls 

465 ASY 12 June 17 May Dogway 

466 SY 12 June 30 May Dogway 

452 ASY 15 June 13 May Glade 

469 ASY 25 June 9 June Red Run 

471 ASY 27 June 15 May Falls 
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Appendix I: Supplemental Figures 

 

Figure A.1 Bayesian model posterior median location estimates for Canada Warbler (Cardellina 

canadensis) deployed with light-level geolocator Geo ID 459 in the Monongahela National 

Forest, WV, USA on 9 June 2020. Data were discarded from analyses due to erroneous 

northeastward movement while the bird was confirmed to be still on the breeding grounds that 

indicate a strong eastward bias in the locations, in addition to movement well outside the 

recorded nonbreeding distribution of the species.  
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Figure A.2 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 457) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 4 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 

 



97 

 

 

Figure A.3 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 461) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 10 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 
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Figure A.3 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 463) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 11 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. Geolocator battery failed 1 April 2021.  
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Figure A.4 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 465) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 12 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 
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Figure A.5 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 466) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 12 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected.  
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Figure A.6 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 469) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongahela National Forest, WV, USA on 25 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 
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Figure A.7 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 471) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongehela National Forest, WV, USA on 27 June 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 

 



103 

 

 

Figure A.8 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 476) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongehela National Forest, WV, USA on 29 May 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 
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Figure A.9 Latitude and longitude estimates throughout the year from light-level geolocator 

(Geo ID 478) deployed on an adult male Canada Warbler (Cardellina canadensis) in the 

Monongehela National Forest, WV, USA on 31 May 2020. Posterior median is the solid black 

line, with 95% credible intervals defined by the grey ribbon. Spring and fall equinox dates are 

indicated by the solid red lines, with the equinox period of ±20 days indicated by the dashed red 

lines. Latitude estimates are particularly unreliable during the equinox, while longitude is 

unaffected. 
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