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Abstract

Hydrocarbon Pay zone Prediction using Al Neural Network Modeling

Darren D. Guedon

This paper captures the ability of Al neural network technology to analyze petrophysical datasets for pattern
recognition and accurate prediction of the pay zone of a vertical well from the Santa Fe field in Kansas.

During this project, data from 10 completed wells in the Santa Fe field were gathered, resulting in a dataset with
25,580 records, ten predictors (logs data), and a single binary output (Yes or No) to identify the availability of
Hydrocarbon over a half feet depth segment in the well. Several models composed of different predictors
combinations were also tested to determine how impactful some logs were compared to others for the prediction
process.

With 32 tested models using a base set of 5 logs (X, Y GR, DEPT, and CALI) and different combinations of 5
other logs ( RT90, RHOB, NPHI, PE, DT). All models containing RT90, NP, or DT led to a better prediction
matching the pay zone established based on a petrophysical analysis and completion data from the well.

Results from this project could be used as another support to help and justify decision-making for a Petro
physicist regarding work in the field with less experience.
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Literature Review

Based on the Schlumberger oilfield glossary: “Formation Evaluation is the measurement and analysis of
formation and fluid properties through examination of formation cuttings or using tools integrated into the
bottomhole assembly while drilling, conveyed on wireline or drill pipe after a borehole has been drilled. It is
performed to assess the quantity and producibility of fluids from a reservoir. It guides wellsite decisions, such
as placement of perforations and hydraulic fracture stages, reservoir development, and production planning”.
Since the first electrical resistivity measurement in an oil well by the Schlumberger brothers in 1927, formation
evaluation techniques and methods have vastly improved from the use of resistivity logs for water saturation
determination to nuclear tools such as Gamma density to estimate shale content or Neutron log for porosity
determination (Schon, 2015). In addition, a petrophysical interpretation of the measured properties play an
essential role in the formation evaluation process with an early sign by Archie’s famous equation (Archie 1942)

describing a correlation between resistivity, water saturation, porosity, and some empirical parameters:

1

sv=(z)"

t

Nowadays, with the increase in tool logging, better and more precise petrophysical interpretations are
effectuated. Results obtained from wells logs and petrophysical analyses are crucial over several paths of a
petroleum engineer career. Completion engineers utilize petrophysical results to establish completion intervals;
reserves engineers identify recoverable reserves and their value to their owners, asset review teams show
property values for property disposal and acquisition, reservoir engineers build simulator models and depletion
planning, production engineers develop and operate fields, and
enhanced oil recovery engineers planning EOR operations. All these operations are on the back of log

interpretation and petrophysical analyses.
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Among all the use and application of formation evaluation, one of interest is identifying producing zone
location, also called the pay zone. In the borehole, the pay zone must be located to determine completion depth;
even though properties of the reservoir play an essential role in the process, other factors such as economics,
technological limitation, or restrictions can impact it. Pay zones are identified by a Petro physicist using log
interpretation, each log having a role. In the case of a conventional reservoir, an ideal pay zone could be
represented by a rock from a permeable and porous formation such as a sandstone with a sign of hydrocarbon.
This requirement can be verified by first identifying the lithology of each formation to identify the cleans ones.
This is possible using different logs, and Gamma-ray seems to be the most popular, where a low GR value
suggests clean formation while high GR is related to shale content. Next, we have resistivity logs that detect
permeable zones and estimate water saturation, moveable hydrocarbon, wet zone, and Hydrocarbon zone.
Porosity is studied using a combination of sonic log Neutron-Density log. Following that methodology, we have

a simplified interpretation of wells logs to identify pay zone.
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Figure 2 Pay zone identification Process

The wells logs interpretation requires significant human effort, great expertise, and experience in
converting raw measurements into commercially valuable information. However, log interpretation has been

made using other means via Artificial intelligence.

Considered a paradigm shift by some experts, Artificial Intelligence (Al) is the technology that mimics
the human brain’s cognitive abilities in analysis, modeling, and decision making. A famous example of Al is
neural networks that rely on the same system used by a human brain to process information via neurons. With
an estimated 10-500 billion neurons in a brain, Al neural networks are not comparable in size by only averaging
in the hundreds of thousands based on the target value. However, the difference appears to be in the speed at
which the information is processed, with machines being 10 million times faster than the human brain
explaining why we rely more and more on them for daily tasks. This helps to introduce the sector of machine
learning, which is a branch of Al whereby the use of computer algorithms is needed to learn from data instead
of explicit programming. Finally, deep learning is a subset of machine learning used in neural networks by

having multiple layers of neurons.
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Using machine learning algorithms, models can learn from the data without prior knowledge allowing
feats like pattern recognition, classification, continuous value prediction, and forecasting of events or
performance. To this day, three main categories of machine learning are identified: supervised learning,
unsupervised learning, and reinforcement learning. The main difference between supervised and unsupervised
learning is that we already know the output during supervised learning. We are trying to teach our model to
identify the correct way to reach it. However, unsupervised learning lets the model find its pattern and output.

Reinforcement learning is mainly used for decision-making.

Even with a significant increase in interest in machine learning in the oil and gas sector, (Figure 4), this

interest is still tiny compared to other domains (Figure 5).

7000
» 6000
2
d 5000
e
o
S 4000
()
(%]
S 3000
o
o0
€ 2000
=}
P

1000

NSRRI T
2000 03
2006 5009
2012

2015
2018 2021

Figure 4 Google Scholar results for Petrophysics and Machine Learning since 2000
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Figure 5 Google Scholar results for Machine Learning '"AND' since 2000

One exciting piece of research was done regarding supervised machine learning for automated lithology
prediction from wireline log data. Over 100 wells were interpreted in five minutes during this research, yielding
over 70% lithological match to the human petrophysical interpretation. The algorithm was also claimed to
remove bias and inconsistencies. Some of the traditional methods are still implemented with, for example, the
addition of a feature as an input to replicate the ‘crossover’ of neutron porosity and bulk density used by Petro
physicists to separate lithology. A minimum log suite with GR, RES, NPHI, RHOB, and DRHO was also used
as a based input for the model, with other logs being used if available or necessary. One of the main results of
this experiment can be summarized in fig 6, illustrating three lithology predictions of the UNIVERSITY-40
well situated in the Permian Basin based on one model utilizing 4 logs as inputs: GR, neutron porosity, bulk
density, and photoelectric. The first one on the second column was trained using wells from Northwest
Australia (F1 score = 0.546), the third lithology column was predicted using data from the Permian Basin (F1

score = 0.826), and the fourth lithology column was predicted from data using both basins (F1 score = 0.836).
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Figure 6 Lithology Prediction

Such results look promising in the petroleum industry with its wealth of data. But compared to other
sectors, the oil and gas sector has been slower to integrate it as a tool for operation. Nevertheless, progress is
being made, and ways to apply machine learning algorithms are implemented as described in an article
discussing the use of Machine learning for gas and oil exploration. Several algorithms are being tested, such as
Neural Network or Gradient Tree Boosting, leading to different results depending on the demand (Nordloh et
al.). Also, machine learning model building and petrophysical projects appear to share similarities with both
being time-consuming on carrying out data collation and quality checks, as described by a poll conducted on
LinkedIn amongst Petro physicists and geoscientists, where a quality check can take between 50 to 90% of the
time of the project (McDonald, 2021). In data analytics, poor data quality can lead to a 20% reduction in labor
productivity and is the main reason for the failure of 40% of business initiatives, as Friedman and Smith (2011)
mentioned. Wireline data contain missing data or outliers, which can profoundly impact the model, so it is

necessary for the dataset to be pre-processed (McDonald, 2021).



Background and Problem definition

Hydrocarbon productions require drilling, completion, and maintenance expenses once the well produces.
Production must be optimized by recovering the maximum hydrocarbon allowable to make such investment

profitable. However, due to technological limitations, extraction is only possible at some targeted zone called pay

zone, where most of the recoverable hydrocarbons are situated.

Using a Petro physicist’s point of view, the pay zone can be identified using geological and log
interpretation knowledge. Data collected from pilot wells or surrounding producing well give an overall
understanding of the lithology of the area of interest. In addition, petrophysical interpretation allows identifying
the presence of hydrocarbon. Finally, based on the analysis and interpretation made by the Petro physicist and the
criteria to consider a producing zone, the pay zone is determined. Overall, this process requires the recognition of

some patterns due to the nature of the reservoir and the difference in rock properties with and without

hydrocarbons.
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Figure 7 Pay zone identification petrophysical method

This process requires the expertise of a Petro physicist, which can be prawn to human errors. In addition,

there is a degree of sensibility, such as the performance of the Petro physicist, which is impacted by different




fields. This is where our study comes into interest with machine learning to complement the weakness of human
interpretations. An effort has also been made to identify the minimum required logs for precise pay zone

identification, which, if successful, can impact the traditional number of logs needed and expenses for formation

evaluation.



Dataset Development

Despite its vast data pool, machine learning projects in the oil and gas sector are less popular due to its
limitation of access. Most of the data are not public, and the ones available can be suggested to be missing
information or inaccuracies. Due to the heterogeneity of the rock, it can be challenging for the model to identify
the desired patterns. Spatial constraints were expected to reduce the number of wells by picking close enough
ones to have similarities in their rock properties. In addition, all the wells do not follow the same set of logging,
requiring the chosen wells to have enough standard logs. The listed prerequisite and limitations led to the
selection of 10 verticals wells from the Santa Fe field in Kansas. Dataset development consisted first of data
gathering followed by data partitioning to result in a clean dataset ready for training with precise inputs and

output and means to verify the model’s accuracy.

Data Gathering

The first step in the dataset development was to gather all the data and information necessary around the
well of interest. Most of the wells’ data were obtained from the Kansas geological survey website. Wells logs
data were retrieved in the form of LAS files. The primary tool for data manipulation was the Spyder software
using the Python language to build our codes. From the LAS file, all the log data at different depths were
extracted and put into a comprehensive database containing the data of every well. Additional information such

as top formations, completion depths, and others was also gathered.
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Figure 8 Wells location from Santa Fe field in Kansas

Petrophysical pay zone interpretation

During the data gathering process, completion depth was also collected. This allows us to have an idea of the
existing pay zone depth that the engineering team chose to produce. However, it does not reflect all the possible
pay zones. Legal restrictions, technology limitations, and budget impact the team’s judgment in selecting a pay
zone. Since this project focus on the capability of an Al model to identify a pay zone base on the rock
properties, the depth of the petrophysical pay zone will be more fitted as the main objective to predict rather
than the depth established by the completed pay zone. Petrophysical pay zone can be identified using the
software PETRA, and the log data gathered.

The first step for pay zone interpretation using PETRA is implementing logs into tracks for better
visualization. This also allows the logs to be grouped with respect to the rock characteristics we are looking for.
Figure 9 is a snippet of the log track format we chose for our interpretation. Five main tracks were used. In the
first one, we grouped Mud resistivity, Caliper, SP, and Gamma-ray mainly to identify clean rocks (Sandstone,
limestone) from non-cleaned rock (Shale). SP can be seen as a deflection from the shale line, with a higher

deflection representing more permeability. In addition, deflection in the caliper line is suggested to mud cake, a

10



sign of a permeable zone. Finally, a lower gamma-ray value than the average shale line is a sign of clean rock.
We put all the Resistivity logs on the second track to correlate shallow and deep resistivity. Permeable zones are
characterized by higher resistivity deeper in the formation than shallower zones. The opposite is seen in a non-
permeable zone. The third track is composed of neutron-density logs for identifying the porous area. It also
helps in the rock lithology identification and the nature of the fluid in it. The fourth and fifth tracks were used
for density correction and sonic log, respectively, serving as confirmative tools from previous interpretations
made using other logs. Not all the logs used for track visualization were used as input for model prediction

showing the ability of machine learning to achieve a similar result with fewer data.
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Figure 9 PETRA log track format

Once the track model is completed, we can add a limitation to differentiate the possible hydrocarbon-bearing
zone from to pay zone. This is where the experience of the Petro physicist in the field can be used. To
distinguish the clean zone from the dirty zone, we proceed to calculate the shale volume of the entire log depth

and then consider as clean a shale volume of less than 20% using the following formula:

Vo =] = GRValue - GRmin
o GRmax - GRmin

* 100

Among the clean zone we identified the permeable area by using a cut-off with average porosity above

7% and by looking at the separation between Deep resistivity and Shallow resistivity:

®N + @D
2
Once we identify a clean water-bearing zone, we proceed to find Rw by recording the Sp from the area of

g =

choice. Assuming that Rw was constant the whole log, we were able to use Rt data and the average porosity to

find the water saturation and the bulk volume of water (BVW), such as:

BVW = @ * Sw
11



Using the cut-off value of Sw=50%, porosity>=7%, BVW<0.09, Thickness at 2 ft and a=0.80, m=n=2, we

determined the petrophysical pay zone.
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Figure 15 Petrophysical interpretation (KANSAS CITY - MARMATON top formation).
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Figure 16 Petrophysical interpretation (MARMATON - PAWNEE top formation).
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Figure 17 Petrophysical interpretation (PAWNEE - CHEROKEE top formation).
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Figure 18 Petrophysical interpretation (CHEROKEE - ATOKA top formation).
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Figure 19 Petrophysical interpretation (ATOKA - MORROW top formation).
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Figure 20 Petrophysical interpretation (MORROW - CHESTER top formation).
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Figure 21 Petrophysical interpretation (CHESTER - ST GENEVIEVE top formation).
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Figure 22 Petrophysical interpretation (ST GENEVIEVE - ST LOUIS top formation).
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Data Pre-processing

Once the database was obtained, more pre-processing was required before getting a dataset ready for training.
This step is like the data pre-processing effectuated by Petro physicist before interpretation consisted of
removing all the logs that were not shared between all the wells. With 42 available logs, only five were
considered essential for our base model. Highlighted in green in Table 1, it consisted of the X and Y location of
each well, Depth (DEPT), caliper (CALI), and Gamma-Ray (GR) noted that these are consistent logs that are
always effectuated. Next, the logs highlighted in yellow were used in different combinations to understand their
impact and improve the model’s performance. Finally, in red and grey are the logs that either were not available
in every well (Gray) or were just a representation of the same property of the rock, such as the different

resistivity or did not have a tangible impact on the model toward the identification of a pay zone.
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| 22018 | 22021 | 21981 | 22055 | 22048 | 22013 | 22006 | 22010 | 22005 | 22056 |

DELTAT  DELTAT  DELTAT DT DELTAT  DELTAT DT

NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPH

RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB

RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90

Table 1 LOG representation in each well

Next, depths with missing logs values were also removed. This resulted in the creation of a clean dataset

with 28,152 records.




Model Development

With the current dataset, 32 models were developed using inputs based on 5 logs (X, Y GR, DEPT, and

CALI) and a different combination of 5 other logs ( RT90, RHOB, NPHI, PE, and DT).

The first step consisted of identifying each log's minimum and maximum values to include them in the

training data. Models tend to have a higher rate of misprediction while trying to forecast value outside the range

of training. This step also allowed us to find a blind well in which the data will not be used in training but to
verify the accuracy of our model. Table 2 resumes the previous step leading to well 22055 being chosen as a

blind well with 2572 records leaving 25,580 records for training.

- Min Min - Min Min
2005 23006 23006

W_L”m 11981 219E])  23pd5 2010 10l 2013 2018 1021 22048 2055 22055 2MDS6  2A0GE
DEPT 56585  4069) 56585 40605 SESES  40G0S SESES 4100y SESES 40605 56585 40605 5382  40GD5| 5516 40605
RHOB 17415 1144 27484 24511 27168 1BERS 27539 19599 17361 21206 27M5 15858 27385 10227 27408 1TTR2

PE 54555 20017 5679 1BIeG 55226 10996 58125 19604 61163 LG968  R5TT7 1E35 55430 15313 53336  19aM

KPHI 0423 00003 03929 00056 03779 00047 0427 00053 04237 -DO0RY 04629 00011 0447
BBES) 72365 100142 77MY 88436 TS74Y 133086 73E B5I05 71539 R3S 70687 120753 738 936 70466 9BRA3 74511
2000 05405 2000 DJMET| 7d4.6048 L0603 LMEEST 09539 000 0J765Y 697951 QB3GR 2000 06077 1005.141  0.ER1Z) 4116687 08702
RTED 2000 05357 2000 LDOEY 6300741 11069 1127347 1026 000 0803 A7E41TE  0QRS07) 2000 00419 G1S59R  0.639] 9459241 0931) 4078517 09251
RT3D 000 05646 2000 10446 6112881 L1602 RILITML  110M 000 08547 301852 08574 2000 09774 FRZAN3T  O6714| BGRARY1 05402 4208004 09997
2000 05383 2000 1127)) 5050869 1278 6251349 1133 000 0A71Y IBSE3N2 11235 2000 1073 5EE.1027  0.75E9( 7730401 104ES| 3E9GEIE  L1EED
000 06359 2000 11753 742352  127R3 4588001 1129 000 09%5H 1725736 1038 2000 Q9746 7200075  00A15 7023134 10%4) 4622809 15876
4267371 14343) 4166765 0.7079) 3384BS1  GO2NS 4130443 153361 359206  RO00Y) 3675644 111379 4169745 93396 393719 136467| 405533 115412 3550775 97ER7

O [1204580 431208 12396 425064 1219187 434917 1143310 430902 1390623 417624] 1340872 43.2917] 1285747 426145 1202638 44.0512) 114.0056 43.7805) 1300059 41.229

-00028) 04103 00034 D422 00004

Table 2 Min and Max of log value per well

Since it is a supervised learning experiment, the pay zone location must be fed to the model to be able to correct

itself in cases of mispredictions. This was possible by gathering data from the well’s completion, looking at

traditional petrophysical interpretation, and using other established software such as PETRA from which depth

of potential pay zone can be retrieved.
With the input data defined and the output being a depth at which a pay zone could be located, the model was
based on the scikit learn library using its classifier algorithm. The following table gives an idea of the

hyperparameters used.
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Hidden Layer size
Activation Function
Initial Learning Rate

iteration with no
changes
Random State

Solver

(100,)
Relu
0.001

100

42

Adam

Batch size
Max iteration
Tolerance

Validation Fraction

Early Stopping

Table 3 Model Hyper Parameters

50

10000

le-8

0.1

True

21



Results

4200

4600 1

5000 1

5200 1

5400

PetroPhysical Pay zone

B Classifier Prediction
B PetroPhysical Pay_zone

_RH_RT_ _DT_PE_ _NP_RH_DT_RT_ _NP_ _NP_RH_RT_PE__NP_DT_RT_ _NP_RH_PE_ _ALL
EEEEEE
=, =, =,

L

e e ML RGP L

E

Ty

—+

0

100 2000

100 2000 100 2000 100 2000 100 2000 100 2000 100 2000 100 200

Figure 23 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI) Part 1
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Figure 24 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI) Part 2
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Figure 25 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI) Part 3
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Figure 26 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI) Part 4

O 00 00 N O UL A WN P

Model’s name list
17 RH_DT
18 RH_RT
NP_DT_RT_PE 19 RH_PE
-
NP_RH_DT_PE 21
22 NP_DT
NP_RH_PE 23 NP_RH
NP_RH_DT 24 NP_PE
25 DT _PE
NP_DT_PE 26 RT_PE
27 RT
28 DT
RH_DT_PE 29 RH
30 PE
31 q
32 BASE
Table 4 List of models
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m RT+NP or RT+DT = RT+PE+RH = No success

Figure 27 Model accuracy repartition
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Figure 28 Pay zone prediction Good models basic log included (X, Y GR, DEPT and CALI) part 1
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Figure 32 Pay zone prediction Bad models basic log included (X, Y GR, DEPT, and CALI) part 3
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Figure 33 Impact of input log on Petrophysical Pay zone using KPI.
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The base model contains all the logs considered ‘basic’ for our model to function (X, Y GR, DEPT, and
CALLI), while the ‘ALL’ model includes all the possible logs from our database. Next, the naming of the
combination of additional logs was created by using their annotation, such as NP for NPHI or RT for resistivity.
A model named _NP_RT contains all the five base logs in addition to NPHI and Resistivity. Using
petrophysical analysis, we identified a possible pay zone within our blind well figure 10. Five main pay zone
spaces were located as represented by the blue shading on the figures. According to that result, a model
considered with good prediction was able to identify these five zones (figures 16 and 17).

Table 3 highlight green models with good prediction. This result identified that all the excellent models required
resistivity as an input. Another observation was that all the good models have at least a combination of
resistivity and NPHI or resistivity and Delta, except one which is a combination of resistivity, PE, and RHOB,
which are the remaining logs to be tested. In addition, a KPI (Key Performance Indicator) was done on the input
logs with the petrophysical pay zone as output. Based on figure 15, it was found that RT90 has the most
negligible affinity with the pay zone and RHOB the least. This confirmed our model result since KPI only
accounts for a one-on-one comparison between an input and an output. In figure 22, we tried to recreate the KPI
study with the base log as input and added one of the logs to be tested. It does not lead to a one-on-one
comparison with the log of interest and the output as seen with the KPI; however, a similar behavior was
observed with the model with only RT added to the base model resulting in a poor prediction and the model

with RHOB added giving a better prognosis.

Conclusion

We could closely predict the petrophysical pay zone using Al and machine learning. During this project,
a traditional approach to pay zone identification was taken. This required using other software such as PETRA,
a minimum of 14 logs used in tracks for visual representation and some petrophysical interpretation. Our result

was matched with the pay zone from completion data. Next, the same result was achieved using Atrtificial
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Intelligence with models giving matching predictions with the petrophysical pay zone by only using 7 logs. This
shows Al and machine learning ability and accuracy in pay zone identification using fewer resources than
traditional methods. A petrophysical background is still required for the data gathering or pre-processing to
have an accurate model. However, it might help reduce the expertise gap needed when working in a field with

more complex lithology and enable engineers with less experience to predict accurately.

33



Cited literature

https://glossary.oilfield.slb.com/en/terms/f/formation evaluation

Archie, G.E., 1942: The electrical resistivity log as an aid in determining some reservoir characteristics.-Trans.

AIME, 145, S.54 — 62 (Also in: Trans. Spe, 1941, 146)

Friedman, T. and Smith, M., 2011. the Business Value of Data Quality. (G00218962).

McDonald, A., 2021. When working on petrophysical project a large portion of our time can be taken up getting
the data ready for interpretation. URL.: https://www.linkedin. com/posts/andymcdonaldgeo_data-
datascience- petrophysics-activity-6765699282860306433-x16W. Posted: [LinkedIn] 2021-2-14.

McDonald, Andrew. "Data Quality Considerations for Petrophysical Machine Learning Models." Paper
presented at the SPWLA 62nd Annual Logging Symposium, Virtual Event, May 2021. DOI:

https://doi.org/10.30632/SPWLA-2021-0036

Nordloh, Vito Alexander, et al. “Machine Learning for Gas and Oil Exploration.” 9th International Conference
on Prestigious Applications of Intelligent Systems, 2020, ecai2020.eu/papers/pais/40_paper.pdf.

Popescu, Marian, Head, Rebecca, Ferriday, Tim, Evans, Kate, Montero, Jose, Zhang, Jiazuo, Jones, Gwynfor,
and Geovani Christopher Kaeng. "Using Supervised Machine Learning Algorithms for Automated

Lithology Prediction from Wireline Log Data.” Paper presented at the SPE Eastern Europe Subsurface

Conference, Kyiv, Ukraine, November 2021. DOI: https://doi.org/10.2118/208559-MS

Schon , Jurgen. “Introduction.” Basic Well Logging and Formation Evaluation, Bookboon.com, 2015, pp. 8-

10.

34


https://glossary.oilfield.slb.com/en/terms/f/formation_evaluation
https://doi.org/10.30632/SPWLA-2021-0036
https://doi.org/10.2118/208559-MS

35



	Hydrocarbon Pay zone Prediction using AI Neural Network Modeling.
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Literature Review
	Background and Problem definition
	Dataset Development
	Data Gathering
	Petrophysical pay zone interpretation
	Data Pre-processing

	Model Development
	Results
	Discussion:
	Conclusion
	Cited literature

