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Abstract 
 

Hydrocarbon Pay zone Prediction using AI Neural Network Modeling 

 

Darren D. Guedon 

 

This paper captures the ability of AI neural network technology to analyze petrophysical datasets for pattern 

recognition and accurate prediction of the pay zone of a vertical well from the Santa Fe field in Kansas. 

During this project, data from 10 completed wells in the Santa Fe field were gathered, resulting in a dataset with 

25,580 records, ten predictors (logs data), and a single binary output (Yes or No) to identify the availability of 

Hydrocarbon over a half feet depth segment in the well. Several models composed of different predictors 

combinations were also tested to determine how impactful some logs were compared to others for the prediction 

process. 

With 32 tested models using a base set of 5 logs (X, Y GR, DEPT, and CALI) and different combinations of 5 

other logs ( RT90, RHOB, NPHI, PE, DT). All models containing RT90, NP, or DT led to a better prediction 

matching the pay zone established based on a petrophysical analysis and completion data from the well. 

Results from this project could be used as another support to help and justify decision-making for a Petro 

physicist regarding work in the field with less experience. 
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Literature Review 
 

Based on the Schlumberger oilfield glossary: “Formation Evaluation is the measurement and analysis of 

formation and fluid properties through examination of formation cuttings or using tools integrated into the 

bottomhole assembly while drilling, conveyed on wireline or drill pipe after a borehole has been drilled. It is 

performed to assess the quantity and producibility of fluids from a reservoir. It guides wellsite decisions, such 

as placement of perforations and hydraulic fracture stages, reservoir development, and production planning”. 

Since the first electrical resistivity measurement in an oil well by the Schlumberger brothers in 1927, formation 

evaluation techniques and methods have vastly improved from the use of resistivity logs for water saturation 

determination to nuclear tools such as Gamma density to estimate shale content or Neutron log for porosity 

determination (Schon,  2015). In addition, a petrophysical interpretation of the measured properties play an 

essential role in the formation evaluation process with an early sign by Archie’s famous equation (Archie 1942) 

describing a correlation between resistivity, water saturation, porosity, and some empirical parameters: 

𝑆𝑤 = (
𝑅𝑜

𝑅𝑡
)

1
𝑛
 

Nowadays, with the increase in tool logging, better and more precise petrophysical interpretations are 

effectuated. Results obtained from wells logs and petrophysical analyses are crucial over several paths of a 

petroleum engineer career. Completion engineers utilize petrophysical results to establish completion intervals; 

reserves engineers identify recoverable reserves and their value to their owners, asset review teams show 

property values for property disposal and acquisition, reservoir engineers build simulator models and depletion 

planning, production engineers develop and operate fields, and 

enhanced oil recovery engineers planning EOR operations. All these operations are on the back of log 

interpretation and petrophysical analyses. 
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Figure 1 Formation Evaluation Operations 

 

Among all the use and application of formation evaluation, one of interest is identifying producing zone 

location, also called the pay zone. In the borehole, the pay zone must be located to determine completion depth; 

even though properties of the reservoir play an essential role in the process, other factors such as economics, 

technological limitation, or restrictions can impact it. Pay zones are identified by a Petro physicist using log 

interpretation, each log having a role. In the case of a conventional reservoir, an ideal pay zone could be 

represented by a rock from a permeable and porous formation such as a sandstone with a sign of hydrocarbon. 

This requirement can be verified by first identifying the lithology of each formation to identify the cleans ones. 

This is possible using different logs, and Gamma-ray seems to be the most popular, where a low GR value 

suggests clean formation while high GR is related to shale content. Next, we have resistivity logs that detect 

permeable zones and estimate water saturation, moveable hydrocarbon, wet zone, and Hydrocarbon zone. 

Porosity is studied using a combination of sonic log Neutron-Density log. Following that methodology, we have 

a simplified interpretation of wells logs to identify pay zone.  

Formation 
Evaluation

Mechanical 
Properties

Exploration

Economics

Geophysics

Subsurface 
geology

Asset 
Review

Reserves

Simulator 
Model

Production

EOR

Source rock 
evaluation



 3 

 

Figure 2 Pay zone identification Process 

The wells logs interpretation requires significant human effort, great expertise, and experience in 

converting raw measurements into commercially valuable information. However, log interpretation has been 

made using other means via Artificial intelligence. 

 

 Considered a paradigm shift by some experts, Artificial Intelligence (AI) is the technology that mimics 

the human brain’s cognitive abilities in analysis, modeling, and decision making. A famous example of AI is 

neural networks that rely on the same system used by a human brain to process information via neurons. With 

an estimated 10-500 billion neurons in a brain, AI neural networks are not comparable in size by only averaging 

in the hundreds of thousands based on the target value. However, the difference appears to be in the speed at 

which the information is processed, with machines being 10 million times faster than the human brain 

explaining why we rely more and more on them for daily tasks. This helps to introduce the sector of machine 

learning, which is a branch of AI whereby the use of computer algorithms is needed to learn from data instead 

of explicit programming. Finally, deep learning is a subset of machine learning used in neural networks by 

having multiple layers of neurons. 

Clean 
formation 

identification 
(GR)

Permeability 
of the Rock 

(RT)

Porosity of 
The Rock 

(Sonic, 
NPHI,DT)

Hydrocarbon 
presence (RT, 
NPHI, RHOB)

Correlation
Pay zone 

identification



 4 

 
Figure 3 AI and Machine Learning relationship 

Using machine learning algorithms, models can learn from the data without prior knowledge allowing 

feats like pattern recognition, classification, continuous value prediction, and forecasting of events or 

performance. To this day, three main categories of machine learning are identified: supervised learning, 

unsupervised learning, and reinforcement learning. The main difference between supervised and unsupervised 

learning is that we already know the output during supervised learning. We are trying to teach our model to 

identify the correct way to reach it. However, unsupervised learning lets the model find its pattern and output. 

Reinforcement learning is mainly used for decision-making. 

Even with a significant increase in interest in machine learning in the oil and gas sector, (Figure 4), this 

interest is still tiny compared to other domains (Figure 5). 

 

Figure 4 Google Scholar results for Petrophysics and Machine Learning since 2000 
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Figure 5 Google Scholar results for Machine Learning 'AND' since 2000 

 

One exciting piece of research was done regarding supervised machine learning for automated lithology 

prediction from wireline log data. Over 100 wells were interpreted in five minutes during this research, yielding 

over 70% lithological match to the human petrophysical interpretation. The algorithm was also claimed to 

remove bias and inconsistencies. Some of the traditional methods are still implemented with, for example, the 

addition of a feature as an input to replicate the ‘crossover’ of neutron porosity and bulk density used by Petro 

physicists to separate lithology. A minimum log suite with GR, RES, NPHI, RHOB, and DRHO was also used 

as a based input for the model, with other logs being used if available or necessary. One of the main results of 

this experiment can be summarized in fig 6, illustrating three lithology predictions of the UNIVERSITY-40 

well situated in the Permian Basin based on one model utilizing 4 logs as inputs: GR, neutron porosity, bulk 

density, and photoelectric. The first one on the second column was trained using wells from Northwest 

Australia (F1 score = 0.546), the third lithology column was predicted using data from the Permian Basin (F1 

score = 0.826), and the fourth lithology column was predicted from data using both basins (F1 score = 0.836). 
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Figure 6 Lithology Prediction 

 Such results look promising in the petroleum industry with its wealth of data. But compared to other 

sectors, the oil and gas sector has been slower to integrate it as a tool for operation. Nevertheless, progress is 

being made, and ways to apply machine learning algorithms are implemented as described in an article 

discussing the use of Machine learning for gas and oil exploration. Several algorithms are being tested, such as 

Neural Network or Gradient Tree Boosting, leading to different results depending on the demand (Nordloh et 

al.). Also, machine learning model building and petrophysical projects appear to share similarities with both 

being time-consuming on carrying out data collation and quality checks, as described by a poll conducted on 

LinkedIn amongst Petro physicists and geoscientists, where a quality check can take between 50 to 90% of the 

time of the project (McDonald, 2021). In data analytics, poor data quality can lead to a 20% reduction in labor 

productivity and is the main reason for the failure of 40% of business initiatives, as Friedman and Smith (2011) 

mentioned. Wireline data contain missing data or outliers, which can profoundly impact the model, so it is 

necessary for the dataset to be pre-processed (McDonald, 2021). 
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Background and Problem definition 
 

Hydrocarbon productions require drilling, completion, and maintenance expenses once the well produces. 

Production must be optimized by recovering the maximum hydrocarbon allowable to make such investment 

profitable. However, due to technological limitations, extraction is only possible at some targeted zone called pay 

zone, where most of the recoverable hydrocarbons are situated.  

Using a Petro physicist’s point of view, the pay zone can be identified using geological and log 

interpretation knowledge. Data collected from pilot wells or surrounding producing well give an overall 

understanding of the lithology of the area of interest. In addition, petrophysical interpretation allows identifying 

the presence of hydrocarbon. Finally, based on the analysis and interpretation made by the Petro physicist and the 

criteria to consider a producing zone, the pay zone is determined. Overall, this process requires the recognition of 

some patterns due to the nature of the reservoir and the difference in rock properties with and without 

hydrocarbons. 

 

Figure 7  Pay zone identification petrophysical method 

This process requires the expertise of a Petro physicist, which can be prawn to human errors. In addition, 

there is a degree of sensibility, such as the performance of the Petro physicist, which is impacted by different 



 8 

fields. This is where our study comes into interest with machine learning to complement the weakness of human 

interpretations. An effort has also been made to identify the minimum required logs for precise pay zone 

identification, which, if successful, can impact the traditional number of logs needed and expenses for formation 

evaluation. 
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Dataset Development 
 

Despite its vast data pool, machine learning projects in the oil and gas sector are less popular due to its 

limitation of access. Most of the data are not public, and the ones available can be suggested to be missing 

information or inaccuracies. Due to the heterogeneity of the rock, it can be challenging for the model to identify 

the desired patterns. Spatial constraints were expected to reduce the number of wells by picking close enough 

ones to have similarities in their rock properties. In addition, all the wells do not follow the same set of logging, 

requiring the chosen wells to have enough standard logs. The listed prerequisite and limitations led to the 

selection of 10 verticals wells from the Santa Fe field in Kansas. Dataset development consisted first of data 

gathering followed by data partitioning to result in a clean dataset ready for training with precise inputs and 

output and means to verify the model’s accuracy. 

 

Data Gathering 
 

 The first step in the dataset development was to gather all the data and information necessary around the 

well of interest.  Most of the wells’ data were obtained from the Kansas geological survey website. Wells logs 

data were retrieved in the form of LAS files. The primary tool for data manipulation was the Spyder software 

using the Python language to build our codes. From the LAS file, all the log data at different depths were 

extracted and put into a comprehensive database containing the data of every well. Additional information such 

as top formations, completion depths, and others was also gathered. 
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Figure 8 Wells location from Santa Fe field in Kansas 

Petrophysical pay zone interpretation 
 

During the data gathering process, completion depth was also collected. This allows us to have an idea of the 

existing pay zone depth that the engineering team chose to produce. However, it does not reflect all the possible 

pay zones. Legal restrictions, technology limitations, and budget impact the team’s judgment in selecting a pay 

zone. Since this project focus on the capability of an AI model to identify a pay zone base on the rock 

properties, the depth of the petrophysical pay zone will be more fitted as the main objective to predict rather 

than the depth established by the completed pay zone. Petrophysical pay zone can be identified using the 

software PETRA, and the log data gathered. 

 The first step for pay zone interpretation using PETRA is implementing logs into tracks for better 

visualization. This also allows the logs to be grouped with respect to the rock characteristics we are looking for. 

Figure 9 is a snippet of the log track format we chose for our interpretation. Five main tracks were used. In the 

first one, we grouped Mud resistivity, Caliper, SP, and Gamma-ray mainly to identify clean rocks (Sandstone, 

limestone) from non-cleaned rock (Shale). SP can be seen as a deflection from the shale line, with a higher 

deflection representing more permeability. In addition, deflection in the caliper line is suggested to mud cake, a 
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sign of a permeable zone. Finally, a lower gamma-ray value than the average shale line is a sign of clean rock. 

We put all the Resistivity logs on the second track to correlate shallow and deep resistivity. Permeable zones are 

characterized by higher resistivity deeper in the formation than shallower zones. The opposite is seen in a non-

permeable zone. The third track is composed of neutron-density logs for identifying the porous area. It also 

helps in the rock lithology identification and the nature of the fluid in it. The fourth and fifth tracks were used 

for density correction and sonic log, respectively, serving as confirmative tools from previous interpretations 

made using other logs. Not all the logs used for track visualization were used as input for model prediction 

showing the ability of machine learning to achieve a similar result with fewer data. 

 

Figure 9 PETRA log track format 

 

Once the track model is completed, we can add a limitation to differentiate the possible hydrocarbon-bearing 

zone from to pay zone. This is where the experience of the Petro physicist in the field can be used. To 

distinguish the clean zone from the dirty zone, we proceed to calculate the shale volume of the entire log depth 

and then consider as clean a shale volume of less than 20% using the following formula: 

𝑉𝑠ℎ = 𝐼 =
𝐺𝑅𝑉𝑎𝑙𝑢𝑒 − 𝐺𝑅𝑚𝑖𝑛  

𝐺𝑅𝑚𝑎𝑥 − 𝐺𝑅𝑚𝑖𝑛
∗ 100 

Among the clean zone we identified the permeable area by using a cut-off with average porosity above 

7% and by looking at the separation between Deep resistivity and Shallow resistivity: 

Ø =
∅𝑁 + ∅𝐷

2
 

Once we identify a clean water-bearing zone, we proceed to find Rw by recording the Sp from the area of 

choice. Assuming that Rw was constant the whole log, we were able to use Rt data and the average porosity to 

find the water saturation and the bulk volume of water (BVW), such as: 

 

𝐵𝑉𝑊 = ∅ ∗ 𝑆𝑤 
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Using the cut-off value of Sw=50%, porosity>=7%, BVW<0.09, Thickness at 2 ft and a=0.80, m=n=2, we 

determined the petrophysical pay zone. 

 

Figure 10 Petrophysical vs. completion pay zone 
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Figure 11 Petrophysical interpretation on blind WELL 
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Figure 12 Petrophysical interpretation (HEEBNER - TORONTO top formation). 

 
Figure 13 Petrophysical interpretation (TORONTO- LANSING top formation). 

 
Figure 14 Petrophysical interpretation (LANSING - KANSAS CITY top formation). 
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Figure 15 Petrophysical interpretation (KANSAS CITY - MARMATON top formation). 

 
Figure 16 Petrophysical interpretation (MARMATON - PAWNEE top formation). 

 
Figure 17 Petrophysical interpretation (PAWNEE - CHEROKEE top formation). 
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Figure 18 Petrophysical interpretation (CHEROKEE - ATOKA top formation). 

 
Figure 19 Petrophysical interpretation (ATOKA - MORROW top formation). 

 
Figure 20 Petrophysical interpretation (MORROW - CHESTER top formation). 
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Figure 21 Petrophysical interpretation (CHESTER - ST GENEVIEVE top formation). 

 
Figure 22 Petrophysical interpretation (ST GENEVIEVE - ST LOUIS top formation). 
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Data Pre-processing  
 

Once the database was obtained, more pre-processing was required before getting a dataset ready for training. 

This step is like the data pre-processing effectuated by Petro physicist before interpretation consisted of 

removing all the logs that were not shared between all the wells. With 42 available logs, only five were 

considered essential for our base model. Highlighted in green in Table 1, it consisted of the X and Y location of 

each well, Depth (DEPT), caliper (CALI), and Gamma-Ray (GR) noted that these are consistent logs that are 

always effectuated. Next, the logs highlighted in yellow were used in different combinations to understand their 

impact and improve the model’s performance. Finally, in red and grey are the logs that either were not available 

in every well (Gray) or were just a representation of the same property of the rock, such as the different 

resistivity or did not have a tangible impact on the model toward the identification of a pay zone.  
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22018 22021 21981 22055 22048 22013 22006 22010 22005 22056 

Loc X Loc X Loc X Loc X Loc X Loc X Loc X Loc X Loc X Loc X 

Loc Y Loc Y Loc Y Loc Y Loc Y Loc Y Loc Y Loc Y Loc Y Loc Y 

CALI CALI CALI CALI CALI CALI CALI CALI CALI CALI 

CT90 CT90 CT90 CT90 CT90 CT90 CT90 CT90 CT90 NA 

DELTAT DELTAT DELTAT DT DT DT DT DELTAT DELTAT DT 

DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT DEPT 

DLIM DLIM DLIM DLIM DLIM DLIM DLIM DLIM DLIM DLIM 

DPHD DPHD DPHD DPHD DPHD DPHD DPHD DPHD DPHD DPHD 

DPHI DPHI DPHI DPHI DPHI DPHI DPHI DPHI DPHI DPHI 

DPHS DPHS DPHS DPHS DPHS DPHS DPHS DPHS DPHS DPHS 

DRHO DRHO DRHO DRHO DRHO DRHO DRHO DRHO DRHO DRHO 

GR GR GR GR GR GR GR GR GR GR 

ITTT ITTT ITTT ITTT ITTT ITTT ITTT ITTT ITTT ITTT 

MINV MINV MINV MINV MINV NPHD MINV MINV MINV MINV 

MNOR MNOR MNOR MNOR MNOR   MNOR MNOR MNOR MNOR 

NPHD NPHD NPHD NPHD NPHD   NPHD NPHD NPHD NPHD 

NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPHI NPHI 

NPHL NPHL NPHL NPHL NPHL NPHL NPHL NPHL NPHL NPHL 

NPHS NPHS NPHS NPHS NPHS NPHS NPHS NPHS NPHS NPHS 

PE PE PE PE PE PE PE PE PE PE 

QF QF QF QF QF QF QF QF QF QF 

QN QN QN QN QN QN QN QN QN QN 

RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB RHOB 

RMUD RMUD RMUD RMUD RMUD RMUD RMUD RMUD RMUD RMUD 

RT RT RT RT RT RT RT RT RT RT 

RT10 RT10 RT10 RT10 RT10 RT10 RT10 RT10 RT10 RT10 

RT20 RT20 RT20 RT20 RT20 RT20 RT20 RT20 RT20 RT20 

RT30 RT30 RT30 RT30 RT30 RT30 RT30 RT30 RT30 RT30 

RT60 RT60 RT60 RT60 RT60 RT60 RT60 RT60 RT60 RT60 

RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90 RT90 

RXO RXO RXO RXO RXO RXO RXO RXO RXO RXO 

RXRT RXRT RXRT RXRT RXRT RXRT RXRT RXRT RXRT RXRT 

SP SP SP SP SP SP SP SP SP SP 

SPHI SPHI SPHI SPHI SPHI SPHI SPHI SPHI SPHI SPHI 

TENS TENS TENS TENS TENS TENS TENS TENS TENS TENS 

NA NA NA NA NA NA NA NA NA SPHD 

NA NA NA NA NA NA NA NA NA SPHL 

NA NA NA NA NA NA NA NA NA SPHS 

NA NA NA NA NA NA NA NA NA AHVT 

NA NA NA NA NA NA NA NA NA BHVT 

NA NA NA NA NA NA NA NA NA CORM 

NA NA NA NA NA NA NA NA NA CORP 
Table 1 LOG representation in each well 

Next, depths with missing logs values were also removed. This resulted in the creation of a clean dataset 

with 28,152 records.  
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Model Development 
 

 With the current dataset, 32 models were developed using inputs based on 5 logs (X, Y GR, DEPT, and 

CALI) and a different combination of 5 other logs ( RT90, RHOB, NPHI, PE, and DT). 

 The first step consisted of identifying each log's minimum and maximum values to include them in the 

training data. Models tend to have a higher rate of misprediction while trying to forecast value outside the range 

of training. This step also allowed us to find a blind well in which the data will not be used in training but to 

verify the accuracy of our model. Table 2 resumes the previous step leading to well 22055 being chosen as a 

blind well with 2572 records leaving 25,580 records for training. 

  

 

Table 2 Min and Max of log value per well 

Since it is a supervised learning experiment, the pay zone location must be fed to the model to be able to correct 

itself in cases of mispredictions. This was possible by gathering data from the well’s completion, looking at 

traditional petrophysical interpretation, and using other established software such as PETRA from which depth 

of potential pay zone can be retrieved.  

With the input data defined and the output being a depth at which a pay zone could be located, the model was 

based on the scikit learn library using its classifier algorithm. The following table gives an idea of the 

hyperparameters used.  
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Hidden Layer size (100,) Batch size 50 

Activation Function Relu Max iteration 10000 

Initial Learning Rate 0.001 Tolerance 1e-8 

iteration with no 

changes 

100 Validation Fraction 0.1 

Random State 42 Early Stopping True 

Solver Adam   

Table 3 Model Hyper Parameters 
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Results 
 

 
Figure 23  Pay zone prediction basic log included (X, Y GR, DEPT, and CALI)  Part 1 
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Figure 24 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI)  Part 2 

 

Figure 25 Pay zone prediction basic log included (X, Y  GR, DEPT, and CALI) Part 3 
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Figure 26 Pay zone prediction basic log included (X, Y GR, DEPT, and CALI) Part 4  

 

 

Table 4 List of models 

 

Model’s name  list
1 NP_DT_RT_PE 17 RH_DT

2 NP_RH_DT_RT 18 RH_RT

3 NP_DT_RT_PE 19 RH_PE

4 NP_RH_RT_PE 20 NP_RT

5 NP_RH_DT_PE 21 DT_RT

6 RH_DT_RT_PE 22 NP_DT

7 NP_RH_PE 23 NP_RH

8 NP_RH_DT 24 NP_PE

8 NP_RH_RT 25 DT_PE

9 NP_DT_PE 26 RT_PE

10 NP_RT_PE 27 RT

11 RH_RT_PE 28 DT

12 RH_DT_PE 29 RH

13 RH_DT_RT 30 PE

14 DT_RT_PE 31 ALL

16 NP_DT_RT 32 BASE
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Figure 27 Model accuracy repartition 
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Figure 28 Pay zone prediction Good models basic log included (X, Y GR, DEPT and CALI) part 1 
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Figure 29  Pay zone prediction Good models basic log included (X, Y GR, DEPT and CALI) part 2 

 



 28 

 
Figure 30  Pay zone prediction Bad models basic log included (X, Y GR, DEPT, and CALI) part 1 
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Figure 31 Pay zone prediction Bad models basic log included (X, Y GR, DEPT, and CALI) part 2 
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Figure 32 Pay zone prediction Bad models basic log included (X, Y GR, DEPT, and CALI) part 3 
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Figure 33 Impact of input log on Petrophysical Pay zone using KPI. 

 

 
Figure 34 Pay zone prediction single log model basic log included (X, Y GR, DEPT, and CALI) 

Discussion: 
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 The base model contains all the logs considered ‘basic’ for our model to function (X, Y GR, DEPT, and 

CALI), while the ‘ALL’ model includes all the possible logs from our database. Next, the naming of the 

combination of additional logs was created by using their annotation, such as NP for NPHI or RT for resistivity. 

A model named _NP_RT contains all the five base logs in addition to NPHI and Resistivity. Using 

petrophysical analysis, we identified a possible pay zone within our blind well figure 10. Five main pay zone 

spaces were located as represented by the blue shading on the figures. According to that result, a model 

considered with good prediction was able to identify these five zones (figures 16 and 17). 

Table 3 highlight green models with good prediction. This result identified that all the excellent models required 

resistivity as an input. Another observation was that all the good models have at least a combination of 

resistivity and NPHI or resistivity and Delta, except one which is a combination of resistivity, PE, and RHOB, 

which are the remaining logs to be tested. In addition, a KPI (Key Performance Indicator) was done on the input 

logs with the petrophysical pay zone as output. Based on figure 15, it was found that RT90 has the most 

negligible affinity with the pay zone and RHOB the least. This confirmed our model result since KPI only 

accounts for a one-on-one comparison between an input and an output. In figure 22, we tried to recreate the KPI 

study with the base log as input and added one of the logs to be tested. It does not lead to a one-on-one 

comparison with the log of interest and the output as seen with the KPI; however, a similar behavior was 

observed with the model with only RT added to the base model resulting in a poor prediction and the model 

with RHOB added giving a better prognosis. 

 

Conclusion 

 
 We could closely predict the petrophysical pay zone using AI and machine learning. During this project, 

a traditional approach to pay zone identification was taken. This required using other software such as PETRA, 

a minimum of 14 logs used in tracks for visual representation and some petrophysical interpretation. Our result 

was matched with the pay zone from completion data. Next, the same result was achieved using Artificial 
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Intelligence with models giving matching predictions with the petrophysical pay zone by only using 7 logs. This 

shows AI and machine learning ability and accuracy in pay zone identification using fewer resources than 

traditional methods. A petrophysical background is still required for the data gathering or pre-processing to 

have an accurate model. However, it might help reduce the expertise gap needed when working in a field with 

more complex lithology and enable engineers with less experience to predict accurately.  
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