
Graduate Theses, Dissertations, and Problem Reports

2022

Deep Learning Detection in the Visible and Radio Spectrums Deep Learning Detection in the Visible and Radio Spectrums

Greg Clancy Murray
West Virginia University, gcm0011@mix.wvu.edu

Follow this and additional works at: https://researchrepository.wvu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Other Astrophysics and Astronomy

Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Murray, Greg Clancy, "Deep Learning Detection in the Visible and Radio Spectrums" (2022). Graduate
Theses, Dissertations, and Problem Reports. 11186.
https://researchrepository.wvu.edu/etd/11186

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/130?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/130?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11186?utm_source=researchrepository.wvu.edu%2Fetd%2F11186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

DEEP LEARNING DETECTION
IN THE VISIBLE AND RADIO

SPECTRUMS

by

Greg Clancy Murray

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

Thirimachos Bourlai, Ph.D., Committee Chairperson
Natalia Schmid, Ph.D.

Yuxin Liu, Ph.D.
Frances Van Scoy, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2022

Keywords: CNN, Detection, Satellite, RFI

Copyright © 2022 Greg Clancy Murray

ABSTRACT

Deep Learning Detection in the Visible and Radio Spectrums

by Greg Clancy Murray

Deep learning models with convolutional neural networks are being used to solve
some of the most difficult problems in computing today. Complicating factors to
the use and development of deep learning models include lack of availability of large
volumes of data, lack of problem specific samples, and the lack variations in the spe-
cific samples available. The costs to collect this data and to compute the models for
the task of detection remains a inhibitory condition for all but the most well funded
organizations. This thesis seeks to approach deep learning from a cost reduction and
hybrid perspective — incorporating techniques of transfer learning, training augmen-
tation, synthetic data generation, morphological computations, as well as statistical
and thresholding model fusion — in the task of detection in two domains: visible spec-
trum detection of target spacecraft, and radio spectrum detection of radio frequency
interference in 2D astronomical time-frequency data. The effects of training augmen-
tation on object detection performance is studied in the visible spectrum, as well as
the effect of image degradation on detection performance. Supplementing training on
degraded images significantly improves the detection results, and in scenarios with
low factors of degradation, the baseline results are exceeded. Morphological oper-
ations on degraded data shows promise in reducing computational requirements in
some detection tasks. The proposed Mask R-CNN model is able to detect and localize
properly on spacecraft images degraded by high levels of pixel loss. Deep learning
models such as U-Net have been leveraged for the task of radio frequency interference
labeling (flagging). Model variations on U-Net architecture design such as layer size
and composition are continuing to be explored, however, the examination of deep
learning models combined with statistical tests and thresholding techniques for radio
frequency interference mitigation is in its infancy. For the radio spectrum domain, the
use of the U-Net model combined with various statistical tests and the SumThresh-
old technique in an output fusion model is tested against a baseline of SumThreshold
alone, for the detection of radio frequency interference. This thesis also contributes
an improved dataset for spacecraft detection, and a simple technique for the gener-
ation of synthetic channelized voltage data for simulating radio astronomy spectra
recordings in a 2D time-frequency plot.

I dedicate this thesis to my loved ones — my children Clancy Isaac, Nora, Elias,

Gwendolyn, and my trusted partner and truest friend Jamie — and to the God who

establishes my thoughts, and gives wisdom (Prov. 16:3, 2:6). . .

iii

Acknowledgments

With my deepest appreciation I would like to mention my committee chair and advisor

Dr. Thirimachos Bourlai for his patient support and wise guidance during these few

years on the path to completing this thesis and this Master’s degree. I have been the

beneficiary of his consistent pattern of lifting up his students to reach new heights,

and his belief in my potential has helped when I lacked such belief myself. As a mentor

and supervisor, he has developed my personal as well as my professional character. I

am sincerely grateful.

I would like to mention my committee members for their patience and guidance in

this endeavor. I am grateful to Dr. Natalia Schmid for her honesty and kindness in

sharing her wealth of knowledge. Without her, this thesis would be lacking in many

areas. I am likewise grateful for Dr. Yuxin Liu and Dr. Frances Van Scoy for their

suggestions and guidance.

I would like to thank Dr. Anthony Pyzdrowski, who gave me the encouragement

to pursue my dreams, and to make no excuses; it is possible after all (let me practice

my surprised face.)

I am thankful to my colleagues Suha, Ananya, Dylan, Jake, Matt, and Kelsey for

their cooperation and friendship in our shared journey.

iv

Contents

Abstract ii

Acknowledgments iv

List of Figures viii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.1.1 Image Degradation in Spacecraft Detection 1

1.1.2 RFI Detection in Astronomical Data 2

1.2 Problem Statement . 3

1.3 Contributions of Thesis . 4

1.4 Organization of Thesis . 6

2 Deep Learning Fundamentals 7

2.1 Training a Deep Learning Model . 7

2.1.1 Bias and Variance . 7

2.1.2 Training Augmentation . 9

2.1.3 Regularization . 10

2.1.4 Transfer Learning . 12

v

2.2 Summary . 14

3 Background and Related Work 15

3.1 Visible Band Target Spacecraft Detection 15

3.1.1 Use of The SPEED Dataset 17

3.2 Earth Based Spacecraft Observation and Detection 18

3.3 Radio Frequency Interference Detection 18

4 Overcoming Image Degradation in Satellite Detection 23

4.1 Methodology Overview . 23

4.1.1 Model Implementation . 23

4.1.2 Evaluation Metrics . 24

4.1.3 Dataset Description . 25

4.1.4 Synthesis of Degraded Images 25

4.1.5 Training Approach . 26

4.2 Effects of Image Degradation to Mask R-CNN Object Detection . . . 27

4.2.1 Pretrained Weight Comparison 27

4.2.2 Augmentation Experiments 27

4.2.3 Degradation Experiments . 30

4.2.4 Effects of AGWN on Detection 38

5 Deep Learning and Statistical Fusion Model for RFI detection 42

5.1 Methodology . 42

5.1.1 Datasets: Training, Validation, and Testing 42

5.1.2 Preprocessing . 44

5.1.3 U-Net Model Design and Training 44

5.1.4 Fusion Model Testing Protocol 46

5.2 Experiments . 47

5.2.1 Hyperparameter Search . 47

vi

5.2.2 U-Net Model Experiments . 49

5.2.3 Fusion Experiments . 49

5.2.4 Final Experimental Results 50

5.2.5 Discussion . 52

6 Summary, Conclusion, and Further Work 55

6.1 Satellite Detection . 55

6.2 RFI Detection . 56

6.3 Further Work . 56

Appendix 64

vii

List of Figures

1.1 a. Increasing levels of noise, as might be produced in the imaging device

affected by radiation. b. Levels of pixel loss increasing, as might be

experienced in damaged charge coupled device imaging hardware. . . 2

2.1 This flower classification model has been trained on only daffodil and

dandelion images. The model has associated yellow with flowers, which

leads to a production model which cannot properly identify a rose as

a flower, and incorrectly classifies a yellow ball as a flower. Photos

provided by Pexels.com. Used with permission. 9

2.2 An increase in bias will decrease variance and result in underfitting,

while an increase in variance will decrease bias and result in overfit-

ting. Balancing these two elements results in, not perfect, but optimal

performance. 10

2.3 The simplistic linear function on the left results in a model which

cannot predict future points. The right model, however, is overly con-

cerned with subtle random variations in the samples. A good fit (mid-

dle) is found by balancing bias and variance, and the less complex

model is preferred for this purpose. 11

viii

2.4 Augmenting the original image (a) of the Tufted Titmouse results in

eight new images. Simulated weather (b), (c), cropping and clipping

(d),(e), blurring (f), occlusion (g), rotation and flipping (h),(i). Photo

provided by Pexels.com. Used with permission. 11

2.5 The transfer of the backbone of the model, the learned weights, to the

second model (bottom) allows the ship detection model to train only

the head network and avoid long training times. Photos provided by

Pexels.com. Used with permission. 13

3.1 The Mask RCNN architecture is based on the Faster RCNN backbone.

The RoIAlign replaces the Faster RCNN RoIPooling, which improves

the accuracy of the localization. The head unit of the model is the pri-

mary focus of training, with transfer learning used to fill the backbone

network. 16

3.2 The U-Net model is a fully convolutional network which uses two

phases of convolutions, and downward pooling phase and an upward

unpooling phase. The layers in the first phase are concatenated with

corresponding layers in the second phase, often called ”skip” connec-

tions, providing broad features from the input image as well as detailed

features from the normal pipeline. 20

4.1 A detection example for Mask R-CNN on a complex background image

with added noise, σ = 0.03. Top: The Mask R-CNN detection output

gives a category confidence for one correct and one erroneous detection.

The bottom right antenna of the satellite has been detected incorrectly

as a separate satellite. Bottom: The ground truth of this image is

labeled with white pixels as a mask for the detector to learn. ©2021

IEEE. 26

ix

4.2 ResNet model head networks were trained on the black background

SPEED data with previous layers being frozen, for 35 epochs. RE-

CO models used weights trained on the COCO dataset, while RE-

IMG models used ImageNet trained weights. ResNet101 and ResNet50

models were used as the initial models. Results showed no significant

mAP difference between RE-CO101 and RE-CO50 models. ©2021

IEEE. 28

4.3 Comparisons of Gaussian noise degradation effects training with and

without augmentation. The increase in degradation above 20% shows

that training on augmented images significantly improves mAP com-

pared to lower levels of degradation. Although lower levels of Gaussian

noise are almost imperceptible in the images at the scaling factor of

0.09, the model performance is lowered by mAP of 0.12, and 0.05 for

non-augmented and augmented training, respectively. ©2021 IEEE. . 29

4.4 Comparisons of dropout degradation effects training with and with-

out augmentation. The trend of augmentation improving results more

significantly for higher levels of degradation continues with the pixel

dropout experiment. With pixel losses of 80%, the augmented model

only has a drop of 0.016 mAP. ©2021 IEEE. 30

x

4.5 Left panel (4.5(a)): shows images at three scales with the Gaussian

noise deviation scaling at 0.10. Right panel (4.5(b)): shows the same

images with the noise deviation scaling at 0.50. As image size in-

creases, both Gaussian filtering and opening operation result in clearer

images for the square 5x5 kernel. Significant artifacts of the morpho-

logical operation occur for medium and small images, while the large

image remains relatively undistorted. For 4.5(a), the lower level of

noise makes the opening operation a viable pre-processing technique,

however, for 4.5(b), the opening operation makes an already difficult

to distinguish image almost completely imperceptible. 32

4.6 For pixel losses of 50% (4.6(a)) and losses of 90% (4.6(b)), the de-

graded image with Gaussian filtering and closing operation is shown,

with particular interest to be found in comparing the differences in the

closing operation at different scales and pixel losses. As with the noise

degraded images, as image size increases, operations result in clearer

images for the square 5x5 kernel, however, artifacts of the closing op-

eration are clearly evident for smaller images. At both extremes of

pixel loss, the closing operation does qualitatively improve the visibil-

ity of the general shape of the spacecraft, however, for detection, the

quantitative results are more nuanced. 35

4.7 Comparisons of Gaussian noise degradation effects training with and

without augmentation, in the complex background case. Slight levels

of degradation can be compensated for through training augmentation

as in the black background experiments. Models performed unsatis-

factorily at levels of degradation σ = 0.06 and above. ©2021 IEEE. . 37

xi

4.8 Comparisons of dropout degradation effects training with and with-

out augmentation in the complex background case. Augmentation

improved results more significantly for higher levels of degradation,

however, the model failed to achieve the same high level of perfor-

mance as with the black background experiments. With 80% of the

pixels dropped from the image, the augmented model decreased in per-

formance by 0.44 mAP as compared to the black background model.

©2021 IEEE. 39

5.1 All images are 172x172 channels and time samples respectively. (a)

Synthetically generated data. (b) Real filterbank data. (c) A different

set of real filterbank data. 45

5.2 (a) synthetic data before preprocessing. (b) synthetic data after pre-

processing by rescaling pixel values from the 90th to the 99.5th per-

centile. (c) synthetic data ground truth RFI label mask. 47

5.3 The top three fusion models and the SumThreshold baseline, evaluated

on the test set of 600 images. The mean and median scores of the test

set are listed below. 54

6.1 Image 6.1(a) shows a time-frequency plot that uses 32 bit values (float-

ing point) for each pixel. Image 6.1(b) shows the other extreme, where

each pixel is represented by either an ”on” or ”off” binary value. . . 73

6.2 Model 11 14 ADD prediction on image 6026. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 74

6.3 Model 11 14 AVG prediction on image 6026. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 75

xii

6.4 Model 11 14 NOSTATS prediction on image 6026. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 76

6.5 Model 11 14 STATS prediction on image 6026. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 77

6.6 Model 11 14 ADD prediction on image 6199. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 78

6.7 Model 11 14 AVG prediction on image 6199. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 79

6.8 Model 11 14 NOSTATS prediction on image 6199. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 80

6.9 Model 11 14 STATS prediction on image 6199. Blue represents the

ground truth, green represents incorrect predictions, cyan represents

correct predictions. Input pixels (red) removed for clarity. 81

6.10 Initial series (top to bottom) of Model Exp11 training predictions.

Left: input data. Middle: ground truth. Right: prediction. 82

6.11 Final series (top to bottom) of Model Exp11 training predictions. Left:

input data. Middle: ground truth. Right: prediction. 83

6.12 A graph displaying the comparison of the effects the Anderson-Darling

and Shapiro-Wilk tests have on the Dice coefficient. 84

6.13 For image 6026, each predictive input into the fusion model. 85

6.14 For image 6026, each predictive output from fusion model variations. 85

6.15 For image 6199, each predictive input into the fusion model. 86

xiii

6.16 For image 6199, each predictive output from fusion model variations. 86

xiv

List of Tables

3.1 SumThreshold Algorithm (single iteration) 22

4.1 Gaussian Noise Degradation (Large) - mAP 33

4.2 Gaussian Noise Degradation (Medium) - mAP 33

4.3 Gaussian Noise Degradation (Small) - mAP 33

4.4 Pixel Dropout Degradation (Large) - mAP 36

4.5 Pixel Dropout Degradation (Medium) - mAP 36

4.6 Pixel Dropout Degradation (Small) - mAP 36

4.7 Detection Performance AP per IoU with Noise Scale Factor σ = 0.4.

©2021 IEEE. 38

4.8 Detection Performance AP per IoU with Pixel Drop Percentage 80%.

©2021 IEEE. 40

5.1 Fusion model testing protocol . 47

5.2 U-Net model results (validation) . 50

5.3 Average Fusion Model Comparison (validation) 51

5.4 Statistical Fusion Model Comparison (validation) 51

5.5 Non-statistical Fusion Results (Validation) 52

xv

Acronyms

NASA National Aeronautics and Space Administration

ESA European Space Administration

AGWN Additive Gaussian White Noise

IoU Intersection over Union

COCO Common Objects in Context (Standard Dataset)

AP Average Precision

mAP mean Average Precision

CNN Convolutional Neural Network

VOC Visual Object Challenge

SPEED Spacecraft PosE Estimation Dataset

xvi

Chapter 1

Introduction

1.1 Motivation

The use of deep learning models in space applications is a growing field; due to the

extensive nature of space research, travel, Earth observations, astronomy (both visible

and radiometric) and the plethora of data that come from such activities, state-of-

the-art machine learning approaches are invaluable to the solving of space related

problems.

1.1.1 Image Degradation in Spacecraft Detection

One such problem is the detection and localization of target spacecraft from an ob-

serving spacecraft. Many tasks can be contemplated for this situation: inspection,

craft repair, surveillance, and military action, to name just a few. This is complicated

by a few different factors, however. There are many different kinds of spacecraft, both

known and unknown. The ability to detect what is a spacecraft is partially reliant on

the proper classification of the image scene, and for the automatic detection and lo-

calization, a large database of images may be needed to determine if localized objects

are indeed the target spacecraft. Dataset contributions from Dung, et al [1] are one

1

(a)

(b)

Figure 1.1: a. Increasing levels of noise, as might be produced in the imaging device
affected by radiation. b. Levels of pixel loss increasing, as might be experienced in
damaged charge coupled device imaging hardware.

step toward a more robust detection framework for satellites in the wild. The SPEED

dataset, introduced by Kisantal, Sharma and Mate, et al [2] (which is used in this

thesis) is another important contribution to this task. Within the sphere of detection

of known spacecraft, however, there remain a few considerations. The underlying as-

sumption of this detection and localization (and in some cases pose estimation) task

is that the spacecraft in question is a non-cooperative one. Before pose estimation

can be done, or even localization, the craft must be detected. This detection may be

complicated by natural or unnatural means. Two such complications include pixel

loss due to CCD damage and radiation induced noise, emulated in Fig. 1.1 with the

image of a target satellite spacecraft.

1.1.2 RFI Detection in Astronomical Data

The second thesis topic, another similarly space oriented detection task, is focused on

the much different data of channelized voltages representing the recording of astro-

nomical signals. Frequently, these signals are disturbed with terrestrial interference

2

from cell phones, two-way radios, microwave ovens, etc. This complicates the dis-

covery of important astronomical insights, such as pulsars. Because of this pervasive

threat to the radio spectrum being surveyed by the world’s radio telescopes, it is

important to detect RFI (radio frequency interference) and remove it from the data

before further processing.

1.2 Problem Statement

The use of deep learning models in the space oriented applications of spacecraft

detection and RFI detection and mitigation is difficult for many reasons. To develop a

convolutional neural network spacecraft detection model that can continue to operate

in the face of intentional or unintentional damage to imaging sensors, and to develop

a deep learning model that can detect and label various RFI in time-frequency plots

of channelized voltages, certain challenges must be overcome. The challenges include:

1. A lack of sufficient data to robustly train and test deep learning models (which

often require tens of thousands of images or samples at a minimum).

2. The scant availability of data which simulates or has captured the difficult

problem of degraded or otherwise corrupted recording of events.

3. The extensive economic and computational costs of developing models that can

be robust enough to overcome all expected obstacles in this problem space of

detection and localization, as well as the cost to record or collect sufficient data

to develop a model that would be useful in practice.

To overcome these challenges, the cost of collecting such a large amount of data

must be mitigated, the conditions for training against degraded or corrupted samples

must not increase the cost of data collection, and cost of implementing these models

3

must provide a sufficient benefit to justify the cost in terms of training and the

computational costs of hardware, software, maintenance, and ease of use.

1.3 Contributions of Thesis

The motivation of the first thesis topic is the improvement of deep learning knowledge

in the task of detection and localization of spacecraft with the use of Mask R-CNN,

and to improve the understanding of the effects of image degradation on this detection

task, and how the combination of basic mathematical image operations can assist in

the deep learning sphere. The use of Mask R-CNN in spacecraft and satellite detection

as in the author’s previous work, Murray, Bourlai, and Spolaor [3] is included in this

thesis, with additional work related to image degradation mitigation.

The second topic of this thesis is the development of a deep learning model which

can successfully outperform a state-of-the-art algorithm by the addition of a fusion

of convolutional neural networks and statistical inputs. By using parallel process-

ing hardware and convolutional neural networks trained on labeled data, models can

consistently detect interference in a variety of time-frequency plot data, with improve-

ments resulting from fusion with statistical outputs.

Firstly, This thesis proposes a baseline comparison of Mask R-CNN performance

under conditions of image degradation, and explores degradation mitigation from both

an image processing and training augmentation perspective. This work shows how to

overcome the challenge of developing a model for spacecraft detection and localization

which is not hampered by the dearth of data, utilizing image augmentation to improve

the amount of data, and exploring the use of mathematical operations of dilation and

erosion to overcome image degradation under certain conditions. The motivation

for this study is the use of such off-the-shelf object detection architectures under

the harsh conditions that might be expected in the environment of outer space; this

4

would further improve the development of this architecture, and the use of the SPEED

spacecraft image dataset provided by [2] and encourage more exploration of spacecraft

detection and segmentation in the future. By applying this model to a dataset with

simulated radiation induced noise and pixel loss, this work shows that the model can

be made robust enough to carry out the detection of a given satellite. The use of

mathematical operations is also shown to have useful properties in certain scenarios,

which may improve the detection of satellite spacecrafts along with properly trained

models, with limited additional computational overhead.

Secondly, This thesis explores the use of the U-Net model combined with various

statistical tests and the SumThreshold technique in an output fusion model for the

detection of radio frequency interference, tested against a baseline of SumThreshold

alone. Deep learning models such as U-Net have been leveraged for the task of radio

frequency interference labeling (flagging). Model variations on U-Net architecture

design such as layer size and composition are continuing to be explored, however, the

examination of deep learning models combined with statistical tests and thresholding

techniques for radio frequency interference mitigation is in its infancy. By fusing

statistical inputs, the SumThreshold method, and two different deep learning models,

the obstacle of developing a single extremely capable deep model for RFI detection

is circumvented, allowing quicker (and more thus more economic) training of deep

models, with results exceeding those of individual approaches.

Thirdly, in the development of these two deep learning models, this thesis provides

improved datasets and synthetic data generation tools for exploring these detection

problems in the future. This work provides an improved dataset for satellite detec-

tion, with an extensive hand-labeled subset of the SPEED dataset, covering various

background conditions, relative satellite sizes, lighting conditions, and satellite poses.

This work also provides a pre-generated set of synthetic channelized voltage time-

series data for the detection of RFI, as well as software for generating such images.

5

1.4 Organization of Thesis

This thesis is organized in the following chapters and sections:

• Chapter 2 — An overview of the primary deep learning topics that are relied

on throughout this thesis as it relates to training, bias and variance, knowledge

transfer, and other key concepts.

• Chapter 3 — An overview of work related to this thesis and some descriptions

and exposition of the approaches used in similar deep learning object detection

problems, the background work on target spacecraft detection, as well as the

foundational work in radio frequency interference detection and mitigation as

it relates to deep learning.

• Chapter 4 — The development of the Mask R-CNN model used for the detec-

tion and localization of target spacecraft, including the development and use

of the SPEED spacecraft dataset, the training regiment with augmented and

unaugmented dataset comparisons, model backbone evaluation, mathematical

image processing operations, and results of training experiments.

• Chapter 5 — The development of a deep learning U-Net fusion model for the

purposes of detecting radio frequency interference in raw channelized voltages

presented as 2D time-frequency plots (similar to spectrograms), the use and

evaluation of statistics combined with U-Net model, and the training prepro-

cessing techniques used in the fusion model, along with experiment results.

• Chapter 6 — Summary of thesis contributions and direction of future work,

discussion of improvements to this work and concluding remarks.

• An appendix containing examples, code, and other supplemental material.

6

Chapter 2

Deep Learning Fundamentals

2.1 Training a Deep Learning Model

The major bottleneck of deep learning models is in the collection and labeling of data.

Deep learning models trained from scratch (that is, without the use of knowledge

transfer) spend a great deal of the training time learning basic functions to filter

the input images. If the data is not representative of the problem space, or if the

data simply lacks variation, the resulting model will not be useful. This is due to

the bias variance trade-off. Transfer learning alleviates this problem by providing

model weights which have been previously learned on a great deal of data, but this

does not remove the requirement of a large, representative corpus of data to develop

such models. Training augmentation can increase the training samples, but cannot

decrease the time needed to train a large deep learning model. Using the two together

can often solve this major bottleneck.

2.1.1 Bias and Variance

The bias-variance tradeoff is the eternal battle of deep learning, and much like the

”force” of Star Wars fame, the universe of deep learning must function within the bal-

7

ance of these two conditions, and neither extreme bias nor extreme variance produces

models which are useful. A model which is biased has not yet learned features repre-

sentative of the data, and is overly simplistic. During training, the model has usually

been exposed to a small subset of data from the true population of samples and has

not yet learned (weighted the network toward) features which excel at determining

the class we are interested in. The model may learn a feature which seems to predict

the target class, however, this illusion rests on a foundation of sand; the features are

shortcuts applicable only to the small subset of the true population, not distinguish-

ing features of the whole. Figure 2.1(a) shows a concrete example of this concept in

the classification of flowers. This flower classification model has only been trained

on daffodils and dandelions so far, and unfortunately, the model has linked flowers

inextricably with yellow. The tradeoff between bias and variance can be visualized

as a curve, as seen in Figure 2.2(a).

The result of a highly biased model is underfitting, which is when a model fails to

discover the underlying features that represent the true population. Contrasted with

the opposite condition, a high variance model results in overfitting, where often a

complex model learns many unimportant features (considered as noise) and also does

well in training, but has a difficult time generalizing to the true population due to the

many conflicting features. The optimal region of this tradeoff will result in relatively

low bias and variance, with tension between them. All other things being equal, a

less complex model is preferred, as increased complexity often leads to high variance.

In Figure 2.3(a), a good fit can be found with a simple quadratic function. The

underfitting linear function fails to capture the essence of the true function, while the

overfitting complex function fails to model the true function because it is distracted

by random sample variations.

8

DL
Model

Yellow: Yes
Flower: Yes

During Training

DL
Model

In Production

Yellow: Yes
Flower: Yes

Example of Biased Model

DL
Model

Yellow: No
Flower: No

Weight
updates

Figure 2.1: This flower classification model has been trained on only daffodil and
dandelion images. The model has associated yellow with flowers, which leads to a
production model which cannot properly identify a rose as a flower, and incorrectly
classifies a yellow ball as a flower. Photos provided by Pexels.com. Used with per-
mission.

2.1.2 Training Augmentation

To produce a model with low bias, the model needs to be exposed to a large number

of samples which are representative of the population of the target class. In many

cases, there are far too few samples to properly train a deep learning model. As

an example, consider the Tufted Titmouse, a bird which infrequently lights upon our

family’s bird feeder. If I were to train a model to detect when this bird has returned in

a live video feed, I would need to use many different images of this bird for the model

to be successful. For this example, if I only have one image of this bird, with some

simple changes to this image, I can create brand new Titmouses (not to imply that

all Tufted Titmouses look alike). Figure 2.4 shows how simple image manipulations

9

B
ia
s

Variance

Optimal
Zone

Bias-Variance Curve

Underfitting

Overfitting

Figure 2.2: An increase in bias will decrease variance and result in underfitting, while
an increase in variance will decrease bias and result in overfitting. Balancing these
two elements results in, not perfect, but optimal performance.

such as translations and rotations, blurs, and the like can result in novel images which

can improve the training corpus for the deep learning model. As a human, we can see

that these images are clearly variations on the same bird, but to the deep learning

model, each presents a new and useful view of the Tufted Titmouse.

2.1.3 Regularization

When dealing with the problem of a highly variable model, that is, a model which

overfits the training data and perhaps does not generalize as well as it could, we

must regularize or smooth the model. This can be done through various means,

each with the same goal of creating a more generalizing model. We can make the

model more sparse (by removing neural connections), or decrease the influence of

10

Underfit OverfitGood fit

Example Functions with Resulting Fit

Figure 2.3: The simplistic linear function on the left results in a model which cannot
predict future points. The right model, however, is overly concerned with subtle
random variations in the samples. A good fit (middle) is found by balancing bias and
variance, and the less complex model is preferred for this purpose.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.4: Augmenting the original image (a) of the Tufted Titmouse results in eight
new images. Simulated weather (b), (c), cropping and clipping (d),(e), blurring (f),
occlusion (g), rotation and flipping (h),(i). Photo provided by Pexels.com. Used with
permission.

features which are not as important. We can temporarily cut off random neural

pathways during training to prevent the model from relying on learned ”crutches”

or shortcuts. Ultimately regularization seeks to create a simpler model which has

learned the essence of the problem. Paradoxically, a model which is too good on the

training data is unlikely to be generalizable, and a regularized version of the same

11

model, while performing worse on the training data, will often perform better on real

world data. To prevent a deep learning model from becoming an ”expert” during

training, a simple technique of regularization is to stop the training early. Anyone

who has been told to not ”overthink it” when being taught a new task has implicitly

had this form of regularization applied to their training. The more training time

and the more samples the model is exposed to, the better generalizing the model

becomes as well, considering that the data is representative of the true population.

Theoretically, if all possible samples were used to train a model, then any test sample

would have been trained on, and there would be no need to regularize the model,

as the training performance would be equivalent to the test performance. This is

possible only for the simplest of problems, and so a model confined by time and space

will require valuable ”rules of thumb” to be useful in real world scenarios. We can

ensure our deep learning model remains in the optimal zone of the bias-variance curve

by using one (or many) forms of regularization.

2.1.4 Transfer Learning

Training deep learning models currently requires a large repository of labeled data,

on the order of tens of thousands to millions of samples. The manual labor involved

in labeling the data alone costs many man-hours, and the collection of this data also

requires a great deal of time and money. Once this data is collected, the computa-

tionally intensive process of training a deep model on the data is started, and this

process may not be complete for weeks or months — if the computational resources

are of a sufficient caliber in terms of speed and memory. The final result of these

endeavors is a model which has been trained on a wide variety of samples and is the-

oretically capable of performing well across the problem space. Although this model

may have been trained to detect cars or boats, stars or starships, in fact a great

deal of the computational resources for this model were invested in learning how to

12

Cars

Ships

Backbone

Backbone

Head

Head

Transferred
Knowledge

Model trained end-to-end

Frozen
 (Not Changed
During Training)

Transfer Learning

Figure 2.5: The transfer of the backbone of the model, the learned weights, to the
second model (bottom) allows the ship detection model to train only the head network
and avoid long training times. Photos provided by Pexels.com. Used with permission.

detect generic shapes and edges. Whether the model was trained on ships or on cars,

with a reasonable amount of resources, this model could be adapted to detect any

number of other objects. For this reason, a model that was trained on a large variety

of common objects, such as the Common Objects in Context dataset (COCO), can

have its weights transferred to another model to be used in a different context.

In Fig. 2.5(a) the model that was trained on cars from end to end learned how

to distinguish a great many number of shapes, edges, colors and the like. The back-

bone of this model is composed of weighted values for the neural connections of the

model which were learned through many iterations of training on car images. For a

Convolutional Neural Network, the weights are connected to feature mappings from

each layer of convolutional operations, determining the kernel for this operation used

over the input image. Earlier layers detect broader features such as size, general

shape, color, or brightness. Layers further into the model detect finer features, such

as doors, windows, mufflers, or side-view mirrors. By removing the very end of this

13

model which is focused on very car specific features, and training on top of the layers

which detect the broad features, we can reuse the learning from the car model for our

ship model.

2.2 Summary

Training a deep learning model from scratch is an important part of the ecosystem

in the modern machine learning paradigm, but it is not necessary to always do so.

Using the weights from previously trained models by transferring them to new models

and adjusting them to fit the current problem can reduce training in terms of time

and CPU cycles, ultimately reducing costs. By also increasing the usable corpus of

training and testing data using data augmentation techniques, we can improve the

model’s ability to generalize and avoid biasing our models.

14

Chapter 3

Background and Related Work

3.1 Visible Band Target Spacecraft Detection

Various detection tasks have been approached using the Mask R-CNN architecture

in the years since He et al. [4]. Built upon earlier work including Faster R-CNN [5],

Mask R-CNN has been used in the detection and segmentation of gas plumes [6], road

damage [7], hands [8], cellular nuclei [9], ships [10], and many others [11],[12],[13], [14].

The Mask R-CNN network is composed of a Faster R-CNN network with two head

networks, as shown in Fig. 3.1 the latter is composed of a fully connected network

for bounding box regression and instance classification, and a convolutional network

for instance segmentation. An important deviation from the Faster R-CNN network

is the use of an alignment focused region of interest during the pooling operation,

referred to as RoI Align. This operation improves mask segmentation over the Faster

R-CNN RoI max pooling operation by keeping fractional offsets and not performing

quantization. This is illustrated in [[4], Fig. 3].

Mask R-CNN usage for terrestrial-oriented tasks is well established. The perfor-

mance of CNN architectures with image degradation factors has been explored by

[15]. Particular attention was paid to Gaussian noise and minimal required noise for

15

CNN Feature
Map

RPN

Dense

Mask
FCN

Classification BBox Regression

Fixed size
feature map

HeadFaster RCNN

Mask RCNN Architecture

RoI
Align

(a)

Figure 3.1: The Mask RCNN architecture is based on the Faster RCNN backbone.
The RoIAlign replaces the Faster RCNN RoIPooling, which improves the accuracy
of the localization. The head unit of the model is the primary focus of training, with
transfer learning used to fill the backbone network.

images to be incorrectly classified. Also [15] has explored how training with aug-

mented images improved the performance of the models. The conclusion was that

while augmentation improved classification tasks, noise is still able to confuse the

model, even at lower, imperceptible levels. The effects of image degradation on CNN

classification are examined by [16] for a wide range of degradation factors, as well

as many approaches to degradation removal and the associated improvements and

regressions. Section 4 follows the general approach of [16], in examining increasingly

degraded images. While training augmentation is one method explored, the appli-

cations of mathematical morphology operations (closing and opening) [17], [18], and

the use of Gaussian smoothing [19] to the performance of object detection are addi-

tional approaches investigated in this thesis. As explained by [20], the use of classical

algorithms can still provide valuable contributions to computer vision; the use of di-

lation operations on the depth completion task shows that image processing alone

16

can provide computationally inexpensive ways to improve results. Bench-marking for

classification tasks introduced by [21] are valuable contributions for general evaluation

of neural network robustness in cases of common image degradation, although what

can be considered common degradation or corruption is often different depending on

the context of the detection or classification, such as with exploration in the harsh

conditions of space.

Morphological Operations: Opening and Closing

The morphological operations Opening and Closing are compound operations of ero-

sion and dilation, and are the duals of each other. Given a kernel K of a given size

and shape, (also referred to as a structuring element), the erosion function E, and

the dilation function D, the compound operation Opening definition is as follows:

(f ◦K) = (D ◦ E) ◦K, (3.1)

and the compound operation Closing definition,

(f ◦K) = (E ◦D) ◦K. (3.2)

These operations are so named for the effect they have on gaps and edges of a

binary image. The Opening operation will tend to create gaps where thin edges of

pixels connect between larger groups of pixels, and the Closing operation will tend to

fill in the holes where there small gaps. The choosing of the kernel for this operation

is an important factor in the effectiveness of the removal of gaps or stray pixels.

3.1.1 Use of The SPEED Dataset

Pose estimation, the task of determining an object’s orientation and distance from

a point of reference (e.g. a camera), has been restricted in deep learning due to

17

the limited availability of quality data. For research on spacecraft pose estimation

to advance, more deep learning datasets for spacecraft pose estimation would need

to be developed. To that end, the detection, tracking, and pose estimation of non-

cooperative spacecraft was the focus of the July 2019 Kelvins challenge [2]. The

challenge asked competitors to improve upon some baseline results in the pose esti-

mation task. The dataset used was compiled using synthetic and real images derived

by a 3D model of the Tango spacecraft and a camera model accurately representing

the camera aboard the Mango spacecraft. Because of this challenge, other researchers

have used this dataset, as seen in [22], and [23]. Additionally, work on pose estimation

using segmentation driven point detection is discussed by [24].

3.2 Earth Based Spacecraft Observation and De-

tection

3.3 Radio Frequency Interference Detection

The approaches to RFI detection and mitigation have changed since the recent fea-

sibility of applying neural network and deep learning models to this problem. The

contributions of classical statistics, however, cannot be overlooked; their simplicity

of implementation and speed have enabled detection of astronomical signals from

fast spinning radio pulsars, to the compositions of galaxies, while avoiding serious

contamination of the signals. Descriptions of traditional methods for RFI removal

and comparisons of statistical methods of weak RFI removal has been compared by

[25] giving a good understanding of the discriminatory power of each method, and

the limitations. The most simplistic of these methods is time domain and frequency

domain blanking. The advantage of these methods is in limiting the computational

overhead by focusing on amplitude thresholds, that is, power levels that exceed a pre-

18

defined variance. This is often executed online during data collection during the time

integration of the signal. This leads to the disadvantage of this method; when the

RFI power is integrated over time, or when the frequency resolution is quantized into

larger bins, short bursts of signals and narrow signals can be missed. Spectrogram

methods are also available, which use image processing techniques (edge detection,

histogram information, etc.) to detect RFI in images which represent the frequency

window over a time interval (the images are derived from Fourier transform of the

signal data.) This thesis relies on interpretation of the data as channelized voltages

presented in a 2D time-frequency plot, a form similar to a spectrogram, for the pur-

poses of processing using deep learning models originally designed for image inputs as

in the original U-Net model [26]. The statistical focus of [25] is on deriving a combi-

nation of statistics to deal with RFI in radiometric signal reception. The key concept

and assumption of the received data is that ”RFI- free radiometric signal should be a

zero-mean random Gaussian variable.” [25]. They conclude that the kurtosis statis-

tic, followed by the Anderson-Darling test perform the best in regard to normality

tests on radiometric data. [25] also reports that the Shapiro-Wilk test has degraded

performance for larger sample sizes, and various skew measures are not recommended

due to poor performance. As the kurtosis statistic has difficulty with certain signals

(for example, pulsed signals of duty cycle 50%) combining these two tests are rec-

ommended. Evaluation of kurtosis in sinusoidal RFI detection was examined by [27]

confirming this observation by describing the conditions in which the resultant metric

would fail to detect RFI, using the first four statistical moments; [27] shows that in

the absence of RFI (a correct result) and when the RFI signal duty cycle is 50%, the

kurtosis statistic is 3, indicating the possibility of a false negative.

Spectrogram methods include smoothing operations (low-pass filtering) combined

with thresholding, and other filtering techniques such as Wiener filtering as shown

by [28]. Attention is also on the transformation of the signal into spectrogram form,

19

Pooling Operation

Unpooling Operation

U-Net Architecture

Layer Concatenation

1024x1024

64

128

256 features

5102

2532

9842

4942

10242

128

64

2492

984x984

Crop and concatenate

Crop and concatenate

Figure 3.2: The U-Net model is a fully convolutional network which uses two phases
of convolutions, and downward pooling phase and an upward unpooling phase. The
layers in the first phase are concatenated with corresponding layers in the second
phase, often called ”skip” connections, providing broad features from the input image
as well as detailed features from the normal pipeline.

selecting proper windows for application of filters, and selecting the correct thresh-

old value which [28] determines manually through variations of RFI power. [28]

states that this threshold selection is important to the smoothing algorithm; indeed

throughout [28] proper selection of windows, thresholds, and estimations of thermal

noise play a critical role in using these methods. SumThreshold was introduced as a

competitive post-correlation RFI mitigation method by [29] which compares to other

spectrogram techniques to advance the art of automated RFI flagging. This algo-

rithm performed better than other manual thresholding techniques in some cases,

but most significantly improved workload costs of manual labeling. This algorithm

is used in this thesis both for comparison of performance and included in the fusion

models. In the deep learning field, U-Net has been utilized for problems as diverse as

medical imaging, introduced by [26], as well as RFI detection as in [30], from which

this thesis begins the exploration of RFI detection. A diagram of the basic U-Net

model is shown in Figure 3.2. Advances in the use of U-Net in RFI detection include

20

[31] with the AC-UNet model, which incorporates atrous (or dilated) convolutions as

[32] into the model, which increases view of the input without increasing the output

of the operation, which increases the receptive field. For this thesis, however, this

more advanced model is not explored.

SumThreshold

The SumThreshold algorithm was introduced by Offringa, et al [29]. This method

uses windows across time and frequency domains to calculate average power levels

compared to a calculated threshold. The inputs into the algorithm are independent

frequency channels and time bins; for each given channel or bin, a subsequence M

(which is a power of two) is evaluated with a moving window of size M , and if the

average power calculated for that window exceeds the threshold function, XM, then

all samples in this window are flagged. Additionally, the samples which are flagged for

a smaller window are not included in the calculation for subsequent windows. In order

to limit the computational requirements for this algorithm, windows were limited to

powers of two, up to a maximum of 1024 samples per window, which decreases the

time complexity from O(NlogN) to O(N), requiring up to only 11 iterations of the

algorithm. Offringa [33] gives the algorithm in Table 3.1 for a single iteration of

SumThreshold.

21

Table 3.1: SumThreshold Algorithm (single iteration)

• Slide a window over the data, with size equal to the sub-sequence size M to be
tested in this iteration.

• Maintain the sum and the number of unflagged samples in the window. In
particular, when moving the window one sample to the right:

– If the sample to the right was not flagged in previous iterations, add it to
the sum and increase the counter.

– If the sample to the left was not flagged in previous iterations, subtracted
it from the sum and decrease the counter.

• For each window position, the average can be calculated by dividing the sum
with the counter. If this average exceeds the threshold X, flag all samples in
the window.

22

Chapter 4

Overcoming Image Degradation in

Satellite Detection

4.1 Methodology Overview

This section, outlines the differences in implementation between [4] and the approach

taken in this thesis based on the work by [34]. Also explained is the method for

applying image degradation for evaluation of all experiments using degraded images,

the evaluation metrics used in interpreting the results of the experiments, and the

methods for training the models used in these experiments.

4.1.1 Model Implementation

The off-the-shelf implementation of Mask R-CNN is adapted from [34]; the model

differs from [4] in various ways. Images are resized into square dimensions (from

1920x1200 pixels to 1920x1920 pixels with the SPEED dataset) with zero-padding, as

opposed to rescaling the shorter edge of the image to 800 pixels as in [4]. Bounding

boxes are generated from the mask data rather than predetermined; the smallest

bounding box that fits the masks are used for the bounding boxes. [34] states this

23

method is accurate to the COCO dataset bounding boxes. The learning rate for the

implementation is decreased to 0.001 from 0.02, which [34] states caused an exploding

gradient problem. The model code has been changed to allow the application of image

processing during training, for the purpose of applying online degradation. The region

proposal network anchor scales have been left to the default values, anchors including

[32, 64, 128, 256, 512], with ratio values including [0.5, 1, 2], which for the larger images

used in this paper, may be detrimental to optimal localization. (see section 4.2.3).

4.1.2 Evaluation Metrics

Commonly used metrics in object detection include precision and recall, average pre-

cision (across various configurations), mean average precision (with a variety of inter-

pretations), and intersection over union (IoU). The post-2010 Pascal VOC AP metric

is used, by using the maximum precision for each unique recall value to interpolate

the values, averaged over 10 IoU thresholds as in the COCO metrics. Also the perfor-

mance of the model at three different scales is explored, much like the COCO scales

metric. However, this thesis differs in the definition of the three scales: images are

considered large for objects with greater than about 300K pixels, medium for objects

about 100K-200K pixels, and small for images below about 50K pixels. For IoU, a

bitmap comparison of the predicted masks and the ground truth mask is used instead

of bounding box IoU. Fig. 4.1 gives an example of the detection output, showing the

boundary of a detected satellite, and the corresponding ground truth. Considering

that this thesis topic explores the performance of this architecture on a single dataset

with a single object class, any comparison that would require a more standardized

metric, notwithstanding [35], would ultimately be a dissimilar comparison, there-

fore, these metrics are adequate to evaluate architecture performance under various

degradation and training specifications for this specific dataset.

24

4.1.3 Dataset Description

The data is derived from the SPEED dataset used for the ESA Kelvins Pose Estima-

tion Challenge [2]. The synthetic images, to simulate a captured image, have emulated

shot noise and depth of field added by [2]. The full dataset contains 12,000 training

images with approximately half of the images having black backgrounds simulating

the starfield of space, with the other half having Earth backgrounds, either partially

filled or full. Of these black background images, 600 images were selected randomly

(evenly for all three scales) for training the models, and 300 were selected for use

as testing images for the degradation experiments. On these images, thresholding

is used with an empirically determined level to segment the satellite from the black

background, creating bitmap masks for each image. The imperfect mask images were

then further edited to remove any occlusions or stray pixels. For the complex images,

300 of each the partial and full background images were selected randomly. For each

of these images a bitmap mask was created. These masks are 8-bit monochrome

images converted to binary masks when the mask image is loaded into memory. The

spacecraft images are 8-bit monochrome and are 1920 x 1200 pixels, made square

during training with padding to 1920 pixels. Although the spacecraft images in this

dataset are grayscale images, the images were converted to RGB values to simplify

input into the network.

4.1.4 Synthesis of Degraded Images

For image degradation, the Imgaug library [36] was used for online augmentation

during training, and OpenCV [37] was used for image processing experiments. For all

the noise factors added to experiments, white Gaussian noise is used to generate the

images in accord with [38], with the standard deviation being scaled according to a

σ factor, which is multiplied with the maximal value of the value range for the 8-bit

monochrome image. For the pixel dropout experiments, a set probability of pixels

25

Figure 4.1: A detection example for Mask R-CNN on a complex background image
with added noise, σ = 0.03. Top: The Mask R-CNN detection output gives a category
confidence for one correct and one erroneous detection. The bottom right antenna
of the satellite has been detected incorrectly as a separate satellite. Bottom: The
ground truth of this image is labeled with white pixels as a mask for the detector to
learn. ©2021 IEEE.

were dropped from the image for all channels (setting the pixel to black to simulate

the loss of that picture element) depending on the experiment. In some experiments,

the probability that a pixel will be dropped is drawn from a range of probabilities

per image (see 4.2.2.)

4.1.5 Training Approach

The training regimen consists of loading pre-trained weights for the initial setup, and

training the head networks for 35 epochs while freezing the backbone layers. Step

size was set to 500, the number of training images, with 100 images held out for

validation. When training on augmented images, degradation was applied 50% of the

time to an image to supplement the training of the model. When image processing

was used, it was only applied to images which were degraded. Both the pre-trained

weight comparisons and the augmentation experiments used six fold cross-validation,

with results being averaged across folds as well as IoU. Degradation experiments

were similarly trained without cross-validation, and tested on a set of 100 images

x 3 size scales. Due to memory constraints, the batch size for training was set to

a single image. Training was done on an NVIDIA Xp Titan GPU. Training took

26

approximately 16 hours for six fold validation, or about 3 hours for a single model.

All training was balanced and stratified across the three size scales (see 4.1.2).

4.2 Effects of Image Degradation to Mask R-CNN

Object Detection

In this section, the data and the experimental setup is described. Also the results

of the ResNet model comparison, augmentation comparison experiments, and the

image degradation experiments are presented. For all augmentation and degradation

experiments, RE-CO101 was used as the baseline model.

4.2.1 Pretrained Weight Comparison

In order to compare backbone architectures for later experiments, four combina-

tions of pre-trained weights and ResNets were compared: between ResNet101 and

ResNet50, and between COCO pre-trained weights and ImageNet weights. For

this experiment, the model combinations were averaged over six folds across IOU

∈ [0.5 : 0.05 : 0.95]. This is reported as mAP@[0.5:0.95] for this single class. In the

results presented in Fig. 4.2, ResNet101 using ImageNet weights from Keras [39] show

poor performance, while the three other combinations are comparable. For further

experimentation, the RE-CO101 model was explored to take advantage of the deeper

architecture and the pre-trained COCO weights.

4.2.2 Augmentation Experiments

For the augmentation experiments, the images were disturbed with two kinds of

degradation: Gaussian noise, and pixel dropout. For the Gaussian noise augmentation

experiments, noise was applied in five settings, with the standard deviation scaling

27

Figure 4.2: ResNet model head networks were trained on the black background
SPEED data with previous layers being frozen, for 35 epochs. RE-CO models used
weights trained on the COCO dataset, while RE-IMG models used ImageNet trained
weights. ResNet101 and ResNet50 models were used as the initial models. Results
showed no significant mAP difference between RE-CO101 and RE-CO50 models.
©2021 IEEE.

factor σ ∈ {0.03, 0.06, 0.09, 0.2, 0.4} where the scaling is multiplied by 255. For the

pixel dropout augmentation experiments, again five levels of degradation were applied,

with the pixels-dropped percent parameter ∈ {(5, 10), (15, 20), (25, 30), 60, 80}; the

first three levels of pixel dropout are ranges of probabilities, drawn from for each

image for that experiment, so that in the first experiment, an image might have a

pixel loss of 5%, while the next image might have 8%, for example. These models

were evaluated using stratified six-fold cross validation using the 600 training images,

averaged across 10 IoU (mAP@[0.5:0.95]). The comparisons between three lower

levels of degradation and two higher levels of degradation given in Figs. 4.3 and 4.4

show that augmenting model training with degraded images provides a more profound

improvement as image degradation increases.

For the Gaussian noise experiment, the critical point for reducing performance

occurs as early as σ = 0.06. At this point, even with augmentation, the mAP has

dropped by 0.02. For the pixel dropout, mAP remains steady into pixel losses of

about 15-20%, with augmented models even improving results through pixel losses

of 60%. The augmented experiment for pixel loss maintained a mAP difference from

28

(a)

Figure 4.3: Comparisons of Gaussian noise degradation effects training with and with-
out augmentation. The increase in degradation above 20% shows that training on
augmented images significantly improves mAP compared to lower levels of degrada-
tion. Although lower levels of Gaussian noise are almost imperceptible in the images
at the scaling factor of 0.09, the model performance is lowered by mAP of 0.12, and
0.05 for non-augmented and augmented training, respectively. ©2021 IEEE.

baseline of about 0.01 even after a pixel loss of 80%.

In the Gaussian noise experiment, augmentation improves results as compared

to the baseline; furthermore, the difference in mAP improvement increases by about

0.01-0.02 for each σ factor, or a gap growth rate of 13%. For the pixel dropout

experiment, the augmentation improves results as well, with the difference in mAP

improvement increasing as more pixels are dropped, by a gap growth rate of about

7%.

29

(a)

Figure 4.4: Comparisons of dropout degradation effects training with and without
augmentation. The trend of augmentation improving results more significantly for
higher levels of degradation continues with the pixel dropout experiment. With pixel
losses of 80%, the augmented model only has a drop of 0.016 mAP. ©2021 IEEE.

4.2.3 Degradation Experiments

In order to explore the ability of the model to overcome image degradation in the

object detection task, thirteen experiments for each size stratification were performed,

including various image processing and training augmentation settings. Due to the

size of the images and the use of the default anchor scales (the largest of which is 512

pixels), it is possible that the large scale images do not have the optimal localization

and therefore lower mAP. However, as results are evaluated within scaling categories,

the comparisons made amongst the thirteen experimental regimens and through each

level of degradation should not be affected.

30

Gaussian Noise

For the Gaussian noise experiments, six levels of degradation were selected for per-

formance comparison. These levels are multiples of the standard deviation of pixel

value, which range from 0 to 255, and result in Gaussian white noise which affects

the pixels of the image by standard deviation scale factor (the σ factor on the left

of the tables) times the maximum value range. The six scaling factors range from

zero (or no added noise) to 0.5 (or Gaussian noise with a deviation of 127) in in-

crements of 0.1, examples of which can be seen in Fig. 4.5 for scaling at 0.10 and

0.50. The various settings for the experiments include whether or not training used

augmented images, what level of degradation were used for those training images,

whether no image processing (NP) was used after training, whether Gaussian filter-

ing (GP) or opening operation (OP) were used after training during detection, and

whether Gaussian filtering or opening operation were performed prior to training to

further augment the images and during detection (GA and OA, respectively.) For the

Gaussian filtering, the kernel size used was square 5x5, and the kernel for the opening

operation was also square 5x5. In Tables 4.1, 4.2, and 4.3, the experiments with no

image processing only perform well when there is no added noise, which is expected.

In Table 4.1, Gaussian filter pre-processing and a similar experiment without image

processing performed better than the baseline for testing without added noise. In

all cases, opening operation performed worse than the other experiments. For most

other experiments, the best results were for models trained with images augmented

with noise at σ = 0.30 or σ = 0.40, which were then pre-processed with a Gaussian

filter prior to training. Training on noisy images with σ = 0.40 seemed to be more

broadly applicable for training improvement compared to σ = 0.30.

31

(a) (b)

Figure 4.5: Left panel (4.5(a)): shows images at three scales with the Gaussian
noise deviation scaling at 0.10. Right panel (4.5(b)): shows the same images with
the noise deviation scaling at 0.50. As image size increases, both Gaussian filtering
and opening operation result in clearer images for the square 5x5 kernel. Significant
artifacts of the morphological operation occur for medium and small images, while the
large image remains relatively undistorted. For 4.5(a), the lower level of noise makes
the opening operation a viable pre-processing technique, however, for 4.5(b), the
opening operation makes an already difficult to distinguish image almost completely
imperceptible.

32

Table 4.1: Gaussian Noise Degradation (Large) - mAP
No Augmentation Augment: σ = 0.30 Augment: σ = 0.40 Augment: σ = 0.30 Augment: σ = 0.40
NP GP OP NP GP OP NP GP OP Aug: Gs. Aug: Op. Aug: Gs. Aug: Op.

0σ 0.870 0.866 0.803 0.871 0.871 0.851 0.834 0.813 0.776 0.870 0.860 0.867 0.859
0.1σ 0.567 0.626 0.449 0.707 0.731 0.479 0.617 0.637 0.380 0.763 0.683 0.791 0.721
0.2σ 0.326 0.493 0.244 0.568 0.611 0.273 0.463 0.511 0.181 0.692 0.555 0.686 0.583
0.3σ 0.124 0.355 0.109 0.548 0.473 0.133 0.365 0.403 0.055 0.619 0.399 0.599 0.451
0.4σ 0.022 0.211 0.058 0.055 0.324 0.062 0.361 0.286 0.018 0.535 0.301 0.537 0.341
0.5σ 0.001 0.089 0.022 0.000 0.232 0.024 0.125 0.167 0.006 0.408 0.233 0.437 0.264

Table 4.2: Gaussian Noise Degradation (Medium) - mAP
No Augmentation Augment: σ = 0.30 Augment: σ = 0.40 Augment: σ = 0.30 Augment: σ = 0.40
NP GP OP NP GP OP NP GP OP Aug: Gs. Aug: Op. Aug: Gs. Aug: Op.

0σ 0.877 0.874 0.816 0.857 0.861 0.834 0.844 0.833 0.806 0.872 0.836 0.874 0.841
0.1σ 0.717 0.752 0.568 0.801 0.789 0.602 0.734 0.734 0.555 0.833 0.793 0.835 0.788
0.2σ 0.589 0.675 0.382 0.732 0.708 0.426 0.683 0.666 0.324 0.788 0.690 0.804 0.719
0.3σ 0.317 0.532 0.183 0.688 0.635 0.249 0.597 0.594 0.144 0.748 0.623 0.740 0.626
0.4σ 0.080 0.415 0.063 0.241 0.547 0.115 0.532 0.490 0.048 0.664 0.493 0.674 0.540
0.5σ 0.010 0.279 0.008 0.003 0.415 0.027 0.177 0.435 0.008 0.539 0.374 0.560 0.453

Table 4.3: Gaussian Noise Degradation (Small) - mAP
No Augmentation Augment: σ = 0.30 Augment: σ = 0.40 Augment: σ = 0.30 Augment: σ = 0.40
NP GP OP NP GP OP NP GP OP Aug: Gs. Aug: Op. Aug: Gs. Aug: Op.

0σ 0.883 0.892 0.844 0.888 0.894 0.865 0.875 0.890 0.859 0.899 0.866 0.896 0.877
0.1σ 0.820 0.856 0.604 0.869 0.875 0.664 0.859 0.862 0.554 0.879 0.833 0.867 0.842
0.2σ 0.715 0.799 0.251 0.851 0.833 0.357 0.815 0.834 0.237 0.817 0.762 0.853 0.729
0.3σ 0.391 0.649 0.049 0.779 0.797 0.095 0.777 0.754 0.030 0.783 0.579 0.803 0.603
0.4σ 0.030 0.459 0.002 0.231 0.709 0.009 0.719 0.670 0.002 0.644 0.377 0.721 0.397
0.5σ 0.000 0.277 0.000 0.004 0.548 0.000 0.419 0.580 0.000 0.395 0.098 0.568 0.191

33

Pixel Dropout

For the pixel dropout experiments, six levels of degradation were utilized for evalu-

ation, with pixel losses of 0% as the initial experiment without pixel loss, and pixel

losses of 50%-90% in 10% increments for the remaining experiments. Fig. 4.6 shows

examples of pixel losses of 50% and 90% comparing the three scales show the effect of

pre-processing on the images. Gaussian filter and closing operation both use square

5x5 kernels for all scales. For the tables of results, CP refers to closing operation,

while other image processing labels retain the meaning from previous tables. For

large images, Table 4.4 shows that the best mAP for the approaches to detection

with pixel loss from 0% to 70% occur in the case supplementing training with im-

ages with pixel losses of 80%, and no pre-processing of the images. Training with

pixel losses of 80% that then have the closing operation applied edged out training

without the closing operation for pixel losses of 80%-90% by 0.001 and 0.023 mAP,

respectively. For medium sized images, no training approach has a clear superior-

ity, however, augmented models continue to edge out the baseline performance by

0.001-0.002 mAP. For the smaller images, the dominant training approach for the

assembled experiments is supplementing training with degraded images without pre-

processing, with training on degraded images processed with a Gaussian filter also a

strong approach (Table 4.6.)

34

(a) (b)

Figure 4.6: For pixel losses of 50% (4.6(a)) and losses of 90% (4.6(b)), the degraded
image with Gaussian filtering and closing operation is shown, with particular interest
to be found in comparing the differences in the closing operation at different scales and
pixel losses. As with the noise degraded images, as image size increases, operations
result in clearer images for the square 5x5 kernel, however, artifacts of the closing
operation are clearly evident for smaller images. At both extremes of pixel loss, the
closing operation does qualitatively improve the visibility of the general shape of the
spacecraft, however, for detection, the quantitative results are more nuanced.

35

Table 4.4: Pixel Dropout Degradation (Large) - mAP
No Augmentation Aug: loss = 70% Aug: loss = 80% Aug: loss = 70% Aug: loss = 80%
NP GP CP NP GP CP NP GP CP Aug: Gs. Aug: Cl. Aug: Gs. Aug: Cl.

0% 0.870 0.866 0.746 0.872 0.860 0.839 0.882 0.861 0.826 0.879 0.872 0.881 0.867
50% 0.680 0.686 0.709 0.884 0.862 0.835 0.893 0.878 0.830 0.867 0.865 0.869 0.866
60% 0.599 0.607 0.682 0.873 0.860 0.825 0.887 0.878 0.824 0.851 0.856 0.869 0.864
70% 0.475 0.542 0.662 0.859 0.819 0.819 0.887 0.876 0.833 0.811 0.869 0.854 0.864
80% 0.323 0.450 0.571 0.795 0.768 0.844 0.870 0.829 0.844 0.723 0.862 0.789 0.871
90% 0.045 0.247 0.337 0.591 0.616 0.728 0.769 0.768 0.750 0.555 0.725 0.614 0.792

Table 4.5: Pixel Dropout Degradation (Medium) - mAP
No Augmentation Aug: loss = 70% Aug: loss = 80% Aug: loss = 70% Aug: loss = 80%
NP GP CP NP GP CP NP GP CP Aug: Gs. Aug: Cl. Aug: Gs. Aug: Cl.

0% 0.877 0.874 0.818 0.874 0.870 0.827 0.866 0.867 0.840 0.878 0.846 0.875 0.845
50% 0.752 0.785 0.813 0.859 0.848 0.838 0.878 0.856 0.830 0.859 0.851 0.868 0.855
60% 0.718 0.738 0.784 0.842 0.831 0.827 0.863 0.842 0.831 0.865 0.855 0.856 0.861
70% 0.642 0.670 0.736 0.832 0.812 0.831 0.831 0.842 0.811 0.841 0.847 0.861 0.849
80% 0.539 0.563 0.693 0.796 0.790 0.808 0.835 0.824 0.830 0.782 0.835 0.816 0.835
90% 0.296 0.409 0.469 0.704 0.725 0.741 0.799 0.780 0.779 0.724 0.756 0.750 0.791

Table 4.6: Pixel Dropout Degradation (Small) - mAP
No Augmentation Aug: loss = 70% Aug: loss = 80% Aug: loss = 70% Aug: loss = 80%
NP GP CP NP GP CP NP GP CP Aug: Gs. Aug: Cl. Aug: Gs. Aug: Cl.

0% 0.883 0.892 0.862 0.891 0.908 0.871 0.889 0.899 0.864 0.888 0.883 0.907 0.886
50% 0.771 0.843 0.808 0.913 0.890 0.864 0.907 0.885 0.862 0.882 0.882 0.905 0.874
60% 0.733 0.802 0.812 0.899 0.891 0.869 0.910 0.875 0.858 0.888 0.873 0.899 0.880
70% 0.648 0.765 0.788 0.889 0.868 0.843 0.895 0.867 0.850 0.859 0.866 0.878 0.873
80% 0.489 0.661 0.737 0.865 0.855 0.821 0.867 0.849 0.810 0.834 0.852 0.865 0.863
90% 0.141 0.454 0.412 0.757 0.757 0.705 0.803 0.784 0.752 0.736 0.710 0.817 0.758

36

None 0.03 0.06 0.09 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.83 0.80

0.72

0.57

0.20

0.000.00

0.83
0.79

0.69

0.54

0.28

No Augmentation

Augmentation

σ Scale Factor

m
A

P

(a)

Figure 4.7: Comparisons of Gaussian noise degradation effects training with and
without augmentation, in the complex background case. Slight levels of degradation
can be compensated for through training augmentation as in the black background
experiments. Models performed unsatisfactorily at levels of degradation σ = 0.06 and
above. ©2021 IEEE.

Complex Background Experiments

For the complex background experiments, pixel dropout hampered performance more

than Gaussian noise in some lower degradation scenarios, but Gaussian noise proved

to be the more pernicious threat. For the Gaussian noise experiments (Fig. 4.7),

again a σ scale factor of 0.06 shows an early performance deterioration as in the

black background experiments, with a decrease in mAP of 0.04 with the augmented

model. A deeper look at the Gaussian model shows that performance across all IoU

thresholds with extreme noise degradation (σ = 0.4) is completely ineffectual, but

37

Table 4.7: Detection Performance AP per IoU with Noise Scale Factor σ = 0.4.
©2021 IEEE.

IoU AP w/o Augmentation AP w/ Augmentation
0.5 0.0 0.65
0.55 0.0 0.58
0.6 0.0 0.52
0.65 0.0 0.43
0.7 0.0 0.33
0.75 0.0 0.20
0.8 0.0 0.09
0.85 0.0 0.01
0.9 0.0 0.0
0.95 0.0 0.0

that augmenting training with degraded images improves performance considerably,

as shown in Table 4.7. Pixel losses of 5 - 10% were enough to decrease the pixel loss

model performance, even with augmentation (Fig. 4.8). This unaugmented model

showed no robustness whatsoever to pixel loss, compared to the black background

experiments (Fig. 4.4). At higher levels of pixel loss, this model performed better

than the Gaussian noise model, but only marginally. Looking at the average precision

results across all IoU thresholds for the model tested with extreme pixel loss (80%),

shown in Table 4.8, it can be concluded that with relaxed standards for IoU, pixel

loss is a recoverable scenario for space satellite detection even in some extreme cases.

Although the noise affected model performed better than the pixel loss model at lower

degradation factors, all complex background experiment models performed worse than

the black background models.

4.2.4 Effects of AGWN on Detection

Evaluating the results of both the black background and complex background ex-

periments, our expectations of decreasing performance in the face of greater image

degradation was confirmed, but a more detailed explanation is necessary, particularly

38

0% 5 – 10% 15 – 20% 25 – 30% 60% 80%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.83

0.69

0.46

0.32

0.11

0.020.00

0.78
0.72 0.70

0.54

0.42

No Augmentation

Augmentation

% Pixels Dropped

m
A

P

(a)

Figure 4.8: Comparisons of dropout degradation effects training with and without
augmentation in the complex background case. Augmentation improved results more
significantly for higher levels of degradation, however, the model failed to achieve the
same high level of performance as with the black background experiments. With 80%
of the pixels dropped from the image, the augmented model decreased in performance
by 0.44 mAP as compared to the black background model. ©2021 IEEE.

as it relates to the Additive Gaussian white noise, AGWN. The augmentation library

[36] was used to degrade training images with additive Gaussian white noise. The

AGWN degradation was performed by scaling the monochrome pixel range of the

image (255 possible values of gray) to be between 0 and 255 by a fractional σ factor,

0 ≤ σ ≤ 1, and setting this as the deviation of the (zero mean) normal distribution

that the noise was generated from. Then each pixel in the image had noise added

to it, drawn from the described distribution. The effect is, as the σ factor increases,

the overall noise energy of the image increases as more added noise is drawn from

higher gray values. To understand the effect of the increased deviation range (in-

39

Table 4.8: Detection Performance AP per IoU with Pixel Drop Percentage 80%.
©2021 IEEE.

IoU AP w/o Augmentation AP w/ Augmentation
0.5 0.05 0.77
0.55 0.05 0.76
0.6 0.03 0.67
0.65 0.02 0.63
0.7 0.02 0.55
0.75 0.0 0.44
0.8 0.0 0.27
0.85 0.0 0.11
0.9 0.0 0.0
0.95 0.0 0.0

creased value range of added noise) on detection and localization, we must recognize

the noise inherent in the image, as well as the added noise, and how these conceptu-

ally contribute to difficulty in these tasks. In all images, noise is present due to the

circumstances of the image creation, for example, emulated shot noise. The complex

background images have confounding extraneous pixels, namely the Earth image,

which we can call background noise. As convolutional networks are designed to learn

edge detection filtering, detectable edges are paramount in successful detection and

localization. As can be expected, the Earth background can disturb or conceal the

edges of the spacecraft. But as AGWN increases in energy across the image (as the σ

factor increases and higher value pixels are added randomly to the image), contrast

of the image decreases, making edges harder to detect. This seems to have a multi-

plicative effect when combined with background noise, but augmenting training with

degraded samples tampers this effect, even as noise increases. Contrasting the com-

plex background noise experiments with the black background noise experiments, the

effect of AGWN on detection and localization in the augmented models has a nearly

linear effect. In Fig. 4.3, the augmented model (AGWN affected images included in

training) seems to show a drop of about 0.4 mAP for σ factor difference of 0.03, 0.8

mAP across an increased σ factor of about 0.10, and a drop of about 0.12 mAP across

40

an increased σ factor of 0.2. In Fig 4.7, a σ factor difference of 0.03 results in a mAP

decrease of 0.1, an increase of σ by about 0.1 results in a mAP decrease of 0.15, and

an increase of σ by 0.2 results in a mAP decrease of 0.26. Between the two augmented

experiments, increases in noise scaled by σ result in nearly linear decreases in mAP,

up to our limited view of σ = 0.4.

41

Chapter 5

Deep Learning and Statistical

Fusion Model for RFI detection

5.1 Methodology

5.1.1 Datasets: Training, Validation, and Testing

The detection of RFI through the combined use of time-frequency plot analysis and

image oriented deep learning algorithm required a robust and test-friendly dataset

for evaluating performance improvements. To that end, a simple method for gener-

ating synthetic data was developed, based on a qualitative examination of real world

filterbank data. This synthetic data was used in training the models, validating their

performance, and for the final model testing. By creating a synthetic set of data,

the ground truth labeling is controlled for better accuracy in performance evaluation.

The simulated channelized voltage plots generated were based on 8-bit filterbank data

– each pixel may have one of 255 different values – and the data was partitioned into

plots of 1024 channels by 1024 time samples. These synthetic images are created

by filling the selected channel and time samples with Gaussian noise, which is then

randomly perturbed by anywhere from one to thirty channelwise (narrowband) fake

42

RFI signals. These signals can have the following features: total channel or limited

time samples, periodic or random, bleeding to nearby channels or single channel only.

Also, a small number of broadband signals (up to three) were possible, which may or

may not cross all channels. Using this method, 5,000 training images were generated,

as well as 200 validation images, and 600 testing images. Two models were trained

on real data, and in those cases the data was labeled using SumThreshold.

Real data

For two of the U-Net models, real data was used for training. Figure 5.1 gives a

comparison of the synthetic and real data, which prominently displays channelwise

RFI. Data from the Greenbank Telescope as recorded by the Spigot system [40], was

used for two sources of real data. The first dataset, composed of 1024 8-bit channels

(covering approximately 50 MHz), was split into groups of 1024 time samples, each

time sample representing 81.92 µs, and converted into 50 time-frequency plot images.

These images were inspected to ensure RFI was present for useful training. The

second dataset was similar, except images were 512 x 512 channels and time samples,

respectively. These two datasets were used to train the models FB1024 and FB512

referenced in table 5.2, 5.3, 5.4, and 5.5.

The differences between our data and that of [30] should be mentioned; the Bleien

Observatory data is time-ordered data (TOD) over the span of a 24 hour period,

while the Greenbank Telescope data (GBT) is TOD over the span of 84 milliseconds

(per image). Due to this difference in sample data length, The characterization of the

data from [30] is over multiple hours (with conditions changing from hour to hour, but

similar RFI profiles from day to day), specifically for the detection of hydrogen in the

21cm band. This is contrasted with the GBT data, which is focused on the detection

of pulsars, at such short time lengths unlikely to contain observable astronomical

signals (with the exception of extremely short pulsar signals), and total recorded

43

data representing at most a few minutes. Furthermore, the GBT data can essentially

be represented as channelized voltages of a Gaussian noise signal perturbed with

transient bursts of RFI, whereas the Bleien Observatory data is drift-scan spectrogram

data which is affected by atmosphere and instrument noise, along with elevation

dependent signal effects. These are emulated in the synthetic data, as well. The

U-Net models, however, make no distinction between the two datatypes in flagging

RFI (as the U-Net architecture is only concerned with separating foreground pixels

from background pixels, regardless of time span representation, time-series frequency

representation, channel frequency, or any other astronomical variable.)

5.1.2 Preprocessing

In developing our models, the question of how to best process the time-frequency

plots for input into the U-Net models was explored. The intuition being that increas-

ing the contrast between the background and RFI class would lead to better labeling,

our efforts focused on choosing the best method for increasing this contrast before

input. Early experiments without preprocessing beyond normalization showed that

the model spent much of the early training cycles learning how to increase contrast.

By exploring this preprocessing space, the model can focus on performance improve-

ments beyond the image processing level. Comparisons of performance using image

rescaling, histogram equalization, sigmoid contrast adjustment, and combinations of

sigmoid contrast adjustment and histogram equalization were examined.

5.1.3 U-Net Model Design and Training

The initial U-Net model is based on the default architecture provided in [30], with

three layers and 64 root features; the cost function is cross-entropy (using a pixel-wise

softmax function), with L2 regularization (0.001). The performance of the model was

44

(a) (b) (c)

Figure 5.1: All images are 172x172 channels and time samples respectively. (a)
Synthetically generated data. (b) Real filterbank data. (c) A different set of real
filterbank data.

judged based on the Dice coefficient score, where the distance metric, d defined as:

d = 1− 2|P ∩M |
|P +M |

, (5.1)

where P are the predicted pixels and M is the labeled RFI mask. Although using

the Dice coefficient as a cost function was possible, early investigation found model

learning was very difficult and ultimately too erratic to use directly.

Thresholding

In order to maintain a consistent performance metric, a proper threshold for RFI

labeling needed to be applied to the U-Net model output. Since the optimal threshold

level was highly dependent on the qualities of each image, Otsu’s method [41] was

used to automatically select the threshold level. Although this method was used for

U-Net performance evaluation, it was not used during the fusion experiments in order

to take advantage of the pixelwise softmax values as inputs to the fusion model.

Hyperparameter Search

Our experiments were composed of only the background class and the RFI class,

which allowed for some experimentation with various weights and ratios of weights

45

between the classes for improving detection performance. Examined were the default

equal weighted models and also giving greater weight to the RFI class by two methods

— decreasing the background class by half to 0.5, and doubling the RFI class weight

to two. The U-Net models were trained for 20 epochs with 100 iterations per epoch.

It was determined empirically that after 20 epochs, model improvements were minor

and so further tuning of this hyperparameter was unnecessary. Included in the hy-

perparameter search was selecting the momentum optimizing rate. Briefly examined

was the Adam optimizer but it was found to be difficult to train with, and so the

early success with momentum guided the rest of the experiments. The learning rates

and decay rates were left at default (0.2 and 0.95 respectively), while the momentum

rate was altered for the experiments. Training was done on an NVIDIA Titan Xp

GPU, with 12 GB of video memory. For fusion model testing, two GPU with shared

memory were used to account for two U-Net models being used in parallel. In the

appendix can be found examples of training predictions of model Exp11 : the initial

model before training 6.10, and after 20 epochs of training, 6.11.

5.1.4 Fusion Model Testing Protocol

Models were developed based on combining two separate U-Nets and fusing the results

in various combinations with statistical tests and the SumThreshold technique for RFI

flagging. To determine the best method for fusing these inputs, six U-Net models were

selected to incorporate into the fusion model: two were selected based on best score,

two were selected based on differing preprocessing techniques, and the two models

trained on real data were selected. These were combined pairwise into fifteen U-Net

inputs for the fusion experiments. During test time, statistics and SumThreshold were

also run and the predictions combined with the U-Net models in four combinations

defined as in table 5.1. The pixel classification threshold is 0.5 in all cases of the fusion

models. For the AVG and STATS models, a comparison has been made between using

46

Table 5.1: Fusion model testing protocol
Model Fusion method

AVG (U1 + U2 + ST +K + (SW ∨ AD))/5
ADD (U1 + U2) > 1 =⇒ 1; otherwise(U1 + U2)

NOSTATS (U1 + U2 + ST)/3
STATS (U1 + U2 +K + (SW ∨ AD))/5

(a) (b) (c)

Figure 5.2: (a) synthetic data before preprocessing. (b) synthetic data after prepro-
cessing by rescaling pixel values from the 90th to the 99.5th percentile. (c) synthetic
data ground truth RFI label mask.

the Shapiro-Wilk test and the Anderson-Darling test, but only one of these tests is

used in a given fusion model, combined with the kurtosis test. Also for the STATS

model, each input is weighted due to the division by 5. This was done since the

statistic tests are hard labels while the U-Net models are soft labels; by limiting

each input to 0.2 maximum voting power, statistics alone (which flag entire channels)

cannot label pixels as RFI, preventing the data from being over flagged.

5.2 Experiments

5.2.1 Hyperparameter Search

Our initial experiments were focused on improving the training of the U-Net model

and tuning for the best hyperparameter selections for the data. The application of

RFI mitigation in [30] proved that the U-Net model was well suited to this problem

as applied to the Bleien Observatory 21cm band data as well as the synthetic HIDE

47

& SEEK data (a useful suite of astronomical applications provided by [42]), and so

applying this model to the Greenbank Telescope Observatory data would be a natural

approach.

The experiment results are measured against the SumThreshold results, which is

shown in tables 5.2, 5.3, 5.4, and 5.5 as the baseline. The hyperparameters which were

explored include the momentum rate, class weight settings, and the preprocessing

strategy.

The initial hyperparameter explored was the method of input preprocessing. Using

total variation minimization (Chambolle) would not converge, and wavelet denoising

resulted in a unacceptable loss of information, which ultimately did not converge,

either. This initial approach of denoising was abandoned in exchange for a focus on

contrast enhancement. This proved to be much more successful, and it seems intuitive

in retrospect, to allow the model to determine what is noise. The candidate models

for the fusion experiments were all trained using some contrast enhancing prepro-

cessing technique, with the exception of FB512 which varied greatly in brightness

in both background and RFI. The labeling of this data with SumThreshold led to a

great deal of poor labeling of lower level broadband RFI, making it difficult for the

model to converge. An effective normalization method was not found, and solo model

performance was very poor, although in the fusion experiments this did not seem to

affect the final score significantly, showing that the fusion model is robust to a single

model failure (analogous to recessive gene expression in biology).

The default setting for the momentum rate of 0.2 did not seem to produce the best

training scenario; training was slower, and produced only modest scores. Increasing

the momentum beyond 0.99 often lead to the model not converging, and by decreasing

the momentum to between 0.5 and 0.7 tended to converge with better results. The

exception was with FB1024 and FB512, which did not converge at higher momentum

rate.

48

Weighting the RFI class produced the best results when combined with the higher

momentum rate. Although a limited number of experiments were done on this hy-

perparameter, the results seem to suggest that weighting the RFI twice that of the

background class gives the proper level of emphasis on flagging for RFI and is more

useful to the model than halving the background class weight.

5.2.2 U-Net Model Experiments

In table 5.2 the results of the candidate U-Net model experiments give two models

that surpassed the SumThreshold baseline Dice score. Two models did not converge

and resulted in a score of zero; Exp7 combined the highest momentum with the

class weight halving strategy, and Exp15 performed histogram equalization followed

by sigmoid contrast adjustment. The worst performing model that did have some

positive result was the FB512 model, which was hampered by poor ground truth

flagging, difficulty with preprocessing, and poor carryover to the validation dataset.

5.2.3 Fusion Experiments

Four different fusion approaches were examined in the fusion experiments. Of these,

two are non-statistical methods, ADD and NOSTATS computed as described in

table 5.1. The ADD method is a simple addition of the two U-Net models, clipped

to unity. The NOSTATS method combines the two U-Net model outputs along with

the SumThreshold output, and averages them. Overall, the NOSTATS model is the

poorest performing of the fusion models. The results of the non-statistical fusion

experiments are listed in table 5.5, with model 11 12 performing the best in the

ADD model, and 09 11 performing the best in the NOSTATS model.

Improved fusion results came from combining statistical information, along with

U-Net and SumThreshold. The best results were had by combining all 5 outputs and

taking the average result, listed in tables 5.1 and 5.3 as AVG. To examine the effect

49

Table 5.2: U-Net model results (validation)
Model Mom. Rate Weights Preprocess Dice Score
Exp4 0.20 {1,1} rescale 0.6111
Exp5 0.20 {0.5,1} rescale 0.5911
Exp6 0.99 {1,1} rescale 0.5822
Exp7 0.99 {0.5,1} rescale 0
Exp8 0.50 {1,1} rescale 0.5992
Exp9 0.50 {1,2} rescale 0.6997
Exp10 0.70 {1,1} rescale 0.5860
Exp11 0.70 {1,2} rescale 0.7471
Exp12 0.70 {1,2} eq hist. 0.5876
Exp13 0.70 {1,2} sigmoid cor. 0.3691
Exp14 0.70 {1,2} sig./hist. 0.6262
Exp15 0.70 {1,2} hist./sig. 0
FB512 0.20 {1,2} norm 0.0206
FB1024 0.20 {1,2} rescale 0.4941

ST (baseline) - - - 0.6949

of combining the Anderson-Darling test with the kurtosis test (over Shapiro-Wilk

combined with kurtosis), two sets of fusion models were tested with these setups, as

described in table 5.1. The results of these experiments show that these two statistical

combinations give similar results, with a slight edge given to the Anderson-Darling

test combined with kurtosis. Listed in table 5.4 are the results of the STATS models;

this set of experiments was the second best approach with a Dice score of 0.7782 for

the Anderson-Darling model, and 0.7716 for the Shapiro-Wilk model, as evaluated

by the validation dataset.

5.2.4 Final Experimental Results

The U-Net model pairs were combined with the SumThreshold, Anderson-Darling

test, and kurtosis test (AVG model) and run on the 600 image test set. Figure

5.3 shows a boxplot of the top three fusion models and the baseline. All three fu-

sion models outperformed the baseline; of all the experiments, only one performed

worse than the baseline, the FB512 FB1024 model, with a median score of 0.6611

50

Table 5.3: Average Fusion Model Comparison (validation)
U-Net Pair AVG (AD+K) AVG (SW+K)
14 FB1024 0.7954 0.7903
12 14 0.7968 0.7884
14 FB512 0.7895 0.7867
12 FB1024 0.7599 0.7660
12 FB512 0.7478 0.7556
11 FB1024 0.8072 0.8026
11 14 0.8283 0.8155
11 12 0.8223 0.8179
11 FB512 0.8074 0.8053
09 FB1024 0.7780 0.7796
09 14 0.8141 0.8075
09 12 0.8002 0.8028
09 11 0.8133 0.8090
09 FB512 0.7730 0.7784
FB512 FB1024 0.6442 0.6557
ST (baseline) 0.6949

Table 5.4: Statistical Fusion Model Comparison (validation)
U-Net Pair STATS (AD+K) STATS (SW+K)
14 FB1024 0.7158 0.7123
12 14 0.7191 0.7100
14 FB512 0.7005 0.6958
12 FB1024 0.6345 0.6364
12 FB512 0.5951 0.5962
11 FB1024 0.7466 0.7457
11 14 0.7782 0.7716
11 12 0.7690 0.7689
11 FB512 0.7465 0.7476
09 FB1024 0.6956 0.6962
09 14 0.7602 0.7532
09 12 0.7383 0.7370
09 11 0.7699 0.7674
09 FB512 0.6904 0.6897
FB512 FB1024 0.0044 0.0044
ST (baseline) 0.6949

51

Table 5.5: Non-statistical Fusion Results (Validation)
U-Net Pair ADD NOSTATS
14 FB1024 0.6759 0.6040

12 14 0.6396 0.6000
14 FB512 0.6600 0.5850
12 FB1024 0.6537 0.5381
12 FB512 0.6141 0.5019
11 FB1024 0.7364 0.6298

11 14 0.7062 0.6503
11 12 0.7569 0.6403

11 FB512 0.7456 0.6275
09 FB1024 0.7026 0.5947

09 14 0.7024 0.6325
09 12 0.7408 0.6150
09 11 0.7274 0.7347

09 FB512 0.7016 0.5862
FB512 FB1024 0.0045 0.0043
ST (baseline) 0.6949

and mean of 0.6332 (baseline 0.7041 and 0.6969, respectively). Our proposed and

best performing model from experiment U-Net pair 11 14 fused with SumThreshold,

Anderson-Darling test, and kurtosis test, surpasses the baseline with a mean Dice

score of 0.8103 and median Dice score of 0.8395. Examples of the RFI detection

using this model can be found in the Appendix, along ADD, NOSTATS, and STATS

versions of this fusion model.

5.2.5 Discussion

Although the fusion models across nearly all AVG experiments outperformed the

baseline SumThreshold method, the top three models in the final results have traits

in common that seem to promote the best RFI flagging. Weighting the RFI class

higher than the background class is found in each U-Net model, which tends to

increase rates of RFI flagging overall. Each model uses a contrast enhancing prepro-

cessing technique, which eases the model training and relieves the model of having to

52

learn such functions to perform the more important task of RFI flagging. But along

with this, it is interesting that the top performing model pairs combine two separate

methods for contrast enhancement. It is possible that the alternative preprocessing

methods help the U-Net model ”see” a different perspective, thereby contributing

more useful information to the final fusion output. The strength of the AVG fusion

model is in the array of different views voting and contributing to the final outcome,

which improves the RFI flagging beyond SumThreshold alone.

Normality Test Comparison

Although [25] suggested the use of Anderson-Darling combined with kurtosis to flag

RFI, the Shapiro-Wilk test in this case seemed to work combined with kurtosis nearly

as well as Anderson-Darling. Considerations of sample sizes and signal source given

in [25] had less impact in our experiments. The sample size for most experiments

were 210, much lower than the sample size limit for Shapiro-Wilk of at most 2000 (the

threshold at which the Shapiro-Wilk test needs to be performed in separate sample

blocks.) The signals generated for our synthetic data were designed with random

elements of periodization, which would seem to make it unlikely that the blind spot

of Kurtosis described in [25] for various duty cycles for different signals would impact

overall detection results. It is also worth considering that the sample size overall is

low, compared to the large sample sizes in [25] of 216, however, performance of the

tests relative to each other remained consistent for all sample sizes.

53

baseline

x=(0.6969)

M=(0.7041) 11_12

x=(0.8036)

M=(0.8321) 11_14

x=(0.8103)

M=(0.8395) 9_14

x=(0.7980)

M=(0.8278)

test experiments (mean, median)

0.0

0.2

0.4

0.6

0.8

1.0

Di
ce

 sc
or

e

Top 3 Final Results (Test-600)

Figure 5.3: The top three fusion models and the SumThreshold baseline, evaluated
on the test set of 600 images. The mean and median scores of the test set are listed
below.

54

Chapter 6

Summary, Conclusion, and Further

Work

6.1 Satellite Detection

The first thesis topic explored the evaluation of an off-the-shelf implementation of the

Mask R-CNN architecture under Gaussian noise and pixel loss degradation using the

SPEED dataset. Also explored was the use of alternative ResNet backbone architec-

tures, and the use of training augmentation to improve the robustness of the model

to noise and pixel loss degradation factors. While there are some aspects of image

processing that can be combined with training augmentation to improve results, these

few simple techniques explored are useful only in very niché circumstances such as

the use of the closing operation on images with pixel loss and an appropriately se-

lected kernel size. In all cases, supplementing training on degraded images improved

results significantly, in some cases improving better than the baseline results. Also,

the model was able to detect and localize properly on images degraded by pixel loss;

the model continued to perform close to baseline in conditions even up to 80% pixel

loss for the black background experiments. Gaussian noise proved to be a significant

55

problem for even lower levels of degradation, although training augmentation does

seem to improve performance slightly averaged across all IoU thresholds. Models

trained on complex images performed worse than those trained on black background

images, with models trained on images degraded by pixel loss lacking robustness

at higher IoU thresholds, even with training augmentation. An off-the-shelf Mask

R-CNN implementation would have difficulty continuing the mission in the face of

possible radiation noise, but with model augmentation and a relaxed IoU threshold,

it may be able to recover and sustain the mission in the face of significant pixel loss.

6.2 RFI Detection

The use of the U-Net model was examined for the application of RFI detection and

flagging in combination with statistical tests and thresholding techniques as a fusion

model. Through hyperparameter search and variations on output fusion methods,

it has been determined that averaging the outputs of the Kurtosis and Anderson-

Darling statistical tests with the SumThreshold thresholding technique and the time-

frequency plot flagging from a pair of U-Net models with alternate image preprocess-

ing methods produces a fusion model which surpasses the use of SumThreshold alone.

This fusion model would be most applicable to the flagging of offline data, but with

increased computational resources and hardware designed for this method, real time

flagging using this model is feasible. Future research into the hardware implemen-

tation of combined methods of deep learning and statistical tests for the flagging of

RFI are certainly warranted.

6.3 Further Work

In the satellite detection chapters, Mask R-CNN was the focus of the experiments,

with variations on the backbone architectures; this can be expanded to other modern

56

model architectures also oriented toward instance segmentation. Improvements to the

experiments in image degradation can also be explored, including increased dissection

of the pixel loss and Gaussian white noise factors for a closer look at the limits of

the models, as well as learned variations in the kernel sizes for the application of

traditional morphological operations. For the RFI detection chapters, the next stage

to this work is the application of recent models which use a modified U-Net, some

examples including the AC-UNet [31] and the inclusion of squeeze-excitation layers

[43] into the model for an attention based approach to RFI detection.

57

Bibliography

[1] Dung, H. A., Chen, B., and Chin, T.-J., “A spacecraft dataset for detection,

segmentation and parts recognition,” Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2021, pp. 2012–2019.

[2] Kisantal, M., Sharma, S., Park, T. H., Izzo, D., Märtens, M., and D’Amico, S.,

“Satellite pose estimation challenge: Dataset, competition design, and results,”

IEEE Transactions on Aerospace and Electronic Systems , Vol. 56, No. 5, 2020,

pp. 4083–4098.

[3] Murray, G., Bourlai, T., and Spolaor, M., “Mask R-CNN: Detection Performance

on SPEED Spacecraft With Image Degradation,” 2021 IEEE International Con-

ference on Big Data (Big Data), IEEE, 2021, pp. 4183–4190.

[4] He, K., Gkioxari, G., Dollar, P., and Girshick, R., “Mask R-CNN,” 2017 IEEE

International Conference on Computer Vision (ICCV), IEEE, oct 2017.

[5] Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” Advances in Neural Infor-

mation Processing Systems 28 , edited by C. Cortes, N. D. Lawrence, D. D. Lee,

M. Sugiyama, and R. Garnett, Curran Associates, Inc., 2015, pp. 91–99.

[6] Peng, X., QIN, H., HU, Z., CAI, B., LIANG, J., and OU, H., “Gas plume

detection in infrared image using mask R-CNN with attention mechanism,”

58

AOPC 2019: AI in Optics and Photonics , edited by J. Tanida, Y. Jiang, D. Liu,

J. Greivenkamp, H. Gong, and J. Lu, SPIE, dec 2019.

[7] Singh, J. and Shekhar, S., “Road Damage Detection And Classification In Smart-

phone Captured Images Using Mask R-CNN,” 2018.

[8] Nguyen, D., Le, T., Tran, T., Vu, H., Le, T., and Doan, H., “Hand segmentation

under different viewpoints by combination of Mask R-CNN with tracking,” 2018

5th Asian Conference on Defense Technology (ACDT), Oct 2018, pp. 14–20.

[9] Johnson, J. W., “Automatic Nucleus Segmentation with Mask-RCNN,” Ad-

vances in Intelligent Systems and Computing , Springer International Publishing,

apr 2019, pp. 399–407.

[10] Nie, S., Jiang, Z., Zhang, H., Cai, B., and Yao, Y., “Inshore Ship Detection

Based on Mask R-CNN,” IGARSS 2018 - 2018 IEEE International Geoscience

and Remote Sensing Symposium, IEEE, jul 2018.

[11] Gamage, H. V. L. C., Wijesinghe, W. O. K. I. S., and Perera, I., “Instance-

Based Segmentation for Boundary Detection of Neuropathic Ulcers Through

Mask-RCNN,” Artificial Neural Networks and Machine Learning – ICANN 2019:

Workshop and Special Sessions , Springer International Publishing, 2019, pp.

511–522.

[12] Couteaux, V., Si-Mohamed, S., Nempont, O., Lefevre, T., Popoff, A., Pizaine,

G., Villain, N., Bloch, I., Cotten, A., and Boussel, L., “Automatic knee meniscus

tear detection and orientation classification with Mask-RCNN,” Diagnostic and

Interventional Imaging , Vol. 100, No. 4, apr 2019, pp. 235–242.

[13] Jaiswal, A. K., Tiwari, P., Kumar, S., Gupta, D., Khanna, A., and Rodrigues,

J. J., “Identifying pneumonia in chest X-rays: A deep learning approach,” Mea-

surement , Vol. 145, oct 2019, pp. 511–518.

59

[14] Paste, A. S. and Chickerur, S., “Analysis of Instance Segmentation using Mask-

RCNN,” 2019 2nd International Conference on Intelligent Computing, Instru-

mentation and Control Technologies (ICICICT), Vol. 1, July 2019, pp. 191–196.

[15] Aghdam, H. H., Heravi, E. J., and Puig, D., “Analyzing the Stability of Convo-

lutional Neural Networks against Image Degradation,” Proceedings of the 11th

Joint Conference on Computer Vision, Imaging and Computer Graphics Theory

and Applications , SCITEPRESS - Science and and Technology Publications,

2016.

[16] Pei, Y., Huang, Y., Zou, Q., Zhang, X., and Wang, S., “Effects of Image Degra-

dation and Degradation Removal to CNN-based Image Classification,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2019, pp. 1–1.

[17] Tang, J. and Li, L., “An Image Filtering Method Based on Morphological Gra-

dient Operator,” Revista de la Facultad de Ingenieŕıa U.C.V., Vol. 32, No. 10,

2017, pp. 71–77.

[18] Raid, A., Khedr, W., El-Dosuky, M., and Aoud, M., “Image restoration based

on morphological operations,” International Journal of Computer Science, En-

gineering and Information Technology (IJCSEIT), Vol. 4, No. 3, 2014, pp. 9–21.

[19] Agustina, I., Nasir, F., and Setiawan, A., “The Implementation of Image Smooth-

ing to Reduce Noise using Gaussian Filter,” International Journal of Computer

Applications , Vol. 177, No. 5, nov 2017, pp. 15–19.

[20] Ku, J., Harakeh, A., and Waslander, S. L., “In Defense of Classical Image Pro-

cessing: Fast Depth Completion on the CPU,” 2018 15th Conference on Com-

puter and Robot Vision (CRV), IEEE, may 2018.

[21] Benchmarking Neural Network Robustness to Common Corruptions and Pertur-

bations , 2019.

60

[22] Chen, B., Cao, J., Parra, A., and Chin, T.-J., “Satellite Pose Estimation with

Deep Landmark Regression and Nonlinear Pose Refinement,” 2019 IEEE/CVF

International Conference on Computer Vision Workshop (ICCVW), IEEE, oct

2019.

[23] Hussain, S., Bhanu, C., Ravichandran, A., and Kondur, S., “Satellite Pose Esti-

mation using Convolutional Neural Networks,” .

[24] Gerard, K., “Segmentation-driven Satellite Pose Estimation,” .

[25] Forte, G. F., Taronǵı Bauza, J. M., dePau, V., Vall·llossera, M., and Camps, A.,

“Experimental Study on the Performance of RFI Detection Algorithms in Mi-

crowave Radiometry: Toward an Optimum Combined Test,” IEEE Transactions

on Geoscience and Remote Sensing , Vol. 51, No. 10, Oct. 2013, pp. 4936–4944.

[26] Ronneberger, O., Fischer, P., and Brox, T., “U-Net: Convolutional Networks for

Biomedical Image Segmentation - 1505.04597,” .

[27] De Roo, R., Misra, S., and Ruf, C., “Sensitivity of the Kurtosis Statistic as

a Detector of Pulsed Sinusoidal RFI,” IEEE Transactions on Geoscience and

Remote Sensing , Vol. 45, No. 7, 2007.

[28] Jose Miguel Tarongi and Adriano Camps, “Radio Frequency Interference Detec-

tion and Mitigation Algorithms Based on Spectrogram Analysis,” Algorithms ,

Vol. 4, No. 4, 1999, pp. 239–261.

[29] Offringa, A. R., de Bruyn, A. G., Biehl, M., Zaroubi, S., Bernardi, G., and

Pandey, V. N., “Post-correlation radio frequency interference classification meth-

ods,” Monthly Notices of the Royal Astronomical Society , Vol. 405, No. 1, June

2010, pp. 155–167.

61

[30] Akeret, J., Chang, C., Lucchi, A., and Refregier, A., “Radio frequency inter-

ference mitigation using deep convolutional neural networks,” Astronomy and

Computing , Vol. 18, Jan. 2017, pp. 35–39.

[31] Yan, R.-Q., Dai, C., Liu, W., Li, J.-X., Chen, S.-Y., Yu, X.-C., Zuo, S.-F.,

and Chen, X.-L., “Radio frequency interference detection based on the AC-UNet

model,” Research in Astronomy and Astrophysics , Vol. 21, No. 5, June 2021,

pp. 119.

[32] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L., “Se-

mantic Image Segmentation with Deep Convolutional Nets and Fully Connected

CRFs,” ICLR, 2016.

[33] Offringa, A. et al., “The SumThreshold method: technical details,” Tech. Rep.,

2012.

[34] Abdulla, W., “Mask R-CNN for object detection and instance segmentation on

Keras and TensorFlow,” 2017.

[35] Stanford, S. A., “Apples and Oranges – A Comparison,” Internet, 1995.

[36] Jung, A. B., Wada, K., Crall, J., Tanaka, S., Graving, J., Reinders, C., Yadav, S.,

Banerjee, J., Vecsei, G., Kraft, A., Rui, Z., Borovec, J., Vallentin, C., Zhydenko,

S., Pfeiffer, K., Cook, B., Fernández, I., De Rainville, F.-M., Weng, C.-H., Ayala-

Acevedo, A., Meudec, R., Laporte, M., et al., “imgaug,” https://github.com/

aleju/imgaug, 2020, Online; accessed 01-Feb-2020.

[37] Bradski, G., “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools ,

2000.

62

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

[38] Lefkimmiatis, S., “Universal Denoising Networks : A Novel CNN Architecture

for Image Denoising,” 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, IEEE, jun 2018.

[39] Chollet, F. et al., “Keras,” https://keras.io, 2015.

[40] Kaplan, D., Escoffier, R., Lacasse, R., O’Neil, K., Ford, J., Ransom, S., An-

derson, S., Cordes, J., Lazio, T., and Kulkarni, S., “The Green Bank Telescope

Pulsar Spigot,” Publications of the Astronomical Society of the Pacific, Vol. 117,

No. 832, 2005, pp. 643–653.

[41] Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE

Transactions on Systems, Man, and Cybernetics , Vol. 9, No. 1, 1979, pp. 62–66.

[42] Akeret, J., Seehars, S., Chang, C., Monstein, C., Amara, A., and Refregier,

A., “HIDE & SEEK: End-to-end packages to simulate and process radio survey

data,” Astronomy and Computing , Vol. 18, Jan. 2017, pp. 8–17.

[43] Hu, J., Shen, L., and Sun, G., “Squeeze-and-excitation networks,” Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018, pp.

7132–7141.

63

https://keras.io

Appendix

1 ## rfi generator script copyright 2020 Greg Murray

2

3 import matplotlib.pyplot as plt

4 import numpy

5 import sys

6 from skimage import data , io , filters

7 import random

8 import math

9

10 class transmitter:

11 def __init__(self , cosine=True , pi_start=0, pi_inc =0.25 ,

strength =[1.0 ,6.0] , periodic=False , kind=’narrow ’):

12 self.cosine = cosine

13 self.pi_start = pi_start

14 self.pi_inc = pi_inc

15 self.strength = strength

16 self.periodic = periodic

17 self.kind = kind

18

19 def emit(self , values , nchan , ntimes , mask=None , schan=None ,

stime=None , full=False , bleed=False , prevpival =0):

20 start_channel = 0

21 start_time = 0

22 #start at some random channel

64

23 if schan:

24 start_channel = schan

25 if start_channel >= nchan:

26 start_channel = 0

27 if start_channel < 0:

28 start_channel = nchan -1

29 else:

30 start_channel = random.randint(0, nchan -1)

31

32 #start somewhere random in the channel

33 if stime:

34 start_time = stime

35 if start_time > ntimes:

36 start_time = 0

37 if start_time < 0:

38 start_time = ntimes -1

39 else:

40 start_time = random.randint(0, ntimes -1)

41

42 #if using cosine , track the current pi value

43 if prevpival:

44 pival = prevpival

45 else:

46 pival = self.pi_start

47

48 #from start , perform a transmission

49 strength = random.uniform(self.strength [0],self.strength [1])

50

51 if self.kind == ’narrow ’:

52 if full:

53 rng = ntimes

54 start_time = 0

55 else:

65

56 rng = ntimes - start_time

57 #cut the emission short

58 rng = rng - random.randint(0, rng)

59

60 #do an emission

61 for timebin in range(rng):

62 values[start_channel , start_time + timebin] = values

[start_channel , start_time + timebin] + (math.cos(pival) if self.

cosine else 1) * strength

63 if mask is not None:

64 mask[start_channel , start_time + timebin] = mask

[start_channel , start_time + timebin] + 1

65 if self.periodic:

66 pival = pival + self.pi_inc

67 else:

68 pival = pival + self.pi_inc * random.uniform

(1.0 ,4.0)

69

70 #if bleed , do another emission , with possible emission

again , etc , right next to channel

71 if bleed:

72 values , mask = self.emit(values , nchan , ntimes ,mask=

mask , schan=start_channel +1, full=full ,bleed=random.choice ([True ,

False]))

73

74 if self.kind == "broad":

75 if full:

76 rng = nchan

77 start_channel = 0

78 else:

79 rng = nchan - start_channel

80 #cut it short

81 rng = rng - random.randint(0, rng)

66

82

83 #do an emission

84 for channel in range(rng):

85 values[int(start_channel + channel), int(start_time)

] = values[int(start_channel + channel), int(start_time)] + (math

.cos(pival) if self.cosine else 1) * strength

86 if mask is not None:

87 mask[int(start_channel + channel), int(

start_time)] = mask[int(start_channel + channel), int(start_time)

] + 1

88 if self.periodic and not full:

89 pival = pival + self.pi_inc

90 #chance to turn off periodic

91 self.periodic = random.choice ([True ,False])

92 values , mask = self.emit(values , nchan , ntimes ,

mask=mask , stime=start_time+pival , full=False , bleed=bleed ,

prevpival=pival)

93

94 return values , mask

95

96 def main():

97 import argparse

98 import os

99 import skimage

100 from skimage import io

101

102 # Parse command line arguments

103 parser = argparse.ArgumentParser(

104 description=’create synthetic RFI images with masks ’)

105 parser.add_argument("-d", "--directory", required=True ,

106 metavar="{directory}",

107 help="where to store the generated images")

108 parser.add_argument(’-o’,’--outfile ’, required=True ,

67

109 metavar="{base filename}",

110 help="file base name for output; will be

appended by image index")

111 parser.add_argument(’-c’, ’--channels ’, required=True , type=int ,

112 metavar="{integer}",

113 help="the number of channels in this fake

data.")

114 parser.add_argument(’-t’, ’--timebins ’, required=True , type=int ,

115 metavar="{integer}",

116 help="the number of samples in this fake

data.")

117 parser.add_argument(’-n’, ’--num’, required=True , type=int ,

118 metavar="{integer}",

119 help="the number of images to generate")

120 parser.add_argument(’--example ’, default=False , action="

store_true",

121 help="whether we just want to show a quick

example.")

122 parser.add_argument(’--masks’, default=False , action="store_true

",

123 help="whether we want to create and store

masks.")

124 parser.add_argument(’-a’,’--addcount ’, required=False , default

=0, type=int , metavar="{integer}",

125 help="the number to start counting from when

making files.")

126 args = parser.parse_args ()

127

128 #setup

129 nch = args.channels

130 ntimes = args.timebins

131 mask=None

132

68

133 if args.example:

134 example(nch=args.channels ,ntimes=args.timebins , masks=args.

masks)

135 exit (0)

136

137 #generate as many images as requested

138 print("the number of images to generate is {}.\n".format(args.

num))

139 for i in range(args.num):

140 #create a new image

141 values = numpy.random.normal(0, 1, [nch , ntimes])

142 if args.masks:

143 mask = numpy.zeros((nch ,ntimes))

144

145 #setup random number of transmissions

146 narrow_count = random.randint (1,30)

147 broad_count = random.randint (0,3)

148

149 #emit randomly that number of times in random places in the

data

150 for j in range(narrow_count):

151 xmtr = transmitter(pi_start=random.randint (0,10), pi_inc

=random.uniform (0.2 ,4.0),periodic=random.choice ([True ,False]))

152 values , mask = xmtr.emit(values , nch , ntimes , mask=mask ,

full=random.choice ([True ,False]),bleed=random.choice ([True ,False

]))

153

154 for j in range(broad_count):

155 xmtr = transmitter(pi_start=random.randint (0,10), pi_inc

=random.uniform (0.1 ,0.6),strength =[1.0 ,6.0] , periodic=random.

choice ([False ,False ,True]),kind="broad")

156 values , mask = xmtr.emit(values , nch , ntimes , mask=mask ,

full=random.choice ([False , False , False , True]),bleed=False)

69

157

158 #make the mask a boolean mask or range limited to 0 and 1

159 if args.masks:

160 mask = numpy.ma.make_mask(mask , shrink=False)

161

162 ###### save the images #####

163 #setup the names

164 image_name = "{}_{}.png".format(args.outfile , i + args.

addcount)

165 mask_name = "{}_{}_mask.png".format(args.outfile , i + args.

addcount)

166 image_path = os.path.join(args.directory , image_name)

167 mask_path = os.path.join(args.directory , mask_name)

168

169 #numpy clip

170 #numpy.clip(values ,-1,1,out=values)

171

172 #save the images

173 io.imsave(image_path , values , check_contrast=False)

174 if args.masks:

175 io.imsave(mask_path , skimage.img_as_ubyte(mask),

check_contrast=False)

176

177

178 def example(nch =1024 , ntimes =1024 , masks=False):

179 #from skimage.exposure import equalize_adapthist , adjust_log ,

rescale_intensity

180 #from skimage.filters import apply_hysteresis_threshold , median

181 from skimage.restoration import denoise_tv_chambolle ,

denoise_wavelet

182 #from skimage import img_as_ubyte , img_as_float

183 #from scipy import ndimage

184 import cv2

70

185

186 mask=None

187 # Initialize data with random numbers

188 values = numpy.random.normal(0, 1, [nch , ntimes])

189 if masks:

190 mask = numpy.zeros ((nch ,ntimes))

191

192 #setup random number of transmissions

193 narrow_count = random.randint (1,30)

194 broad_count = random.randint (0,3)

195

196 #emit randomly that number of times in random places in the data

197 for i in range(narrow_count):

198 xmtr = transmitter(pi_start=random.randint (0,10), pi_inc=

random.uniform (0.2 ,4.0),periodic=random.choice ([True ,False]))

199 values , mask = xmtr.emit(values , nch , ntimes , mask=mask ,

full=random.choice ([True ,False]),bleed=random.choice ([True ,False

]))

200

201 for i in range(broad_count):

202 xmtr = transmitter(pi_start=random.randint (0,10), pi_inc=

random.uniform (0.1 ,0.6), periodic=False ,kind="broad")

203 values , mask = xmtr.emit(values , nch , ntimes , mask=mask ,

full=random.choice ([False , False , False , True]),bleed=False)

204

205 #get percentile based info

206 values_alt = cv2.normalize(values , None , alpha = 0, beta = 1,

norm_type = cv2.NORM_MINMAX , dtype = cv2.CV_32F)

207 #values_alt = denoise_tv_chambolle(values_alt , weight =0.1,

multichannel=False)

208 values_alt = denoise_wavelet(values_alt , multichannel=False ,

rescale_sigma=True)

209 #p_low , p_high = numpy.percentile(values_norm , (90, 99.5))

71

210 #values_rescale = rescale_intensity(values_norm , in_range =(p_low

, p_high))

211 #values_gauss = ndimage.gaussian_filter(values_rescale , sigma =2)

212 #values_rescale = cv2.normalize(values_gauss , None , alpha = 0,

beta = 1, norm_type = cv2.NORM_MINMAX , dtype = cv2.CV_32F)

213 #values_convert = values_rescale.astype(numpy.float)

214 #values_filter = denoise_bilateral(values_convert)

215 #values_median = median(values_rescale)

216 #values_norm_8u = cv2.normalize(values_median , None , alpha = 0,

beta = 255, norm_type = cv2.NORM_MINMAX , dtype = cv2.CV_8U)

217 #values_hyster = apply_hysteresis_threshold(values_rescale ,

p_high , p_low)

218

219

220 #make the mask a boolean mask or range limited to 0 and 1

221 if masks:

222 mask = numpy.ma.make_mask(mask , shrink=False)

223

224 #plot the fake spectrogram and the mask

225 fig = plt.figure(figsize =(15 ,5))

226 fig.add_subplot (1,3,1)

227 plt.imshow(values , cmap=’gray’)

228 fig.add_subplot (1,3,2)

229 plt.imshow(values_alt , cmap=’gray’)

230 if masks:

231 fig.add_subplot (1,3,3)

232 plt.imshow(mask , cmap=’gray’)

233 plt.show()

234

235 if __name__ == "__main__":

236 main()

72

(a) (b)

Figure 6.1: Image 6.1(a) shows a time-frequency plot that uses 32 bit values (floating
point) for each pixel. Image 6.1(b) shows the other extreme, where each pixel is
represented by either an ”on” or ”off” binary value.

73

Figure 6.2: Model 11 14 ADD prediction on image 6026. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

74

Figure 6.3: Model 11 14 AVG prediction on image 6026. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

75

Figure 6.4: Model 11 14 NOSTATS prediction on image 6026. Blue represents the
ground truth, green represents incorrect predictions, cyan represents correct predic-
tions. Input pixels (red) removed for clarity.

76

Figure 6.5: Model 11 14 STATS prediction on image 6026. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

77

Figure 6.6: Model 11 14 ADD prediction on image 6199. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

78

Figure 6.7: Model 11 14 AVG prediction on image 6199. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

79

Figure 6.8: Model 11 14 NOSTATS prediction on image 6199. Blue represents the
ground truth, green represents incorrect predictions, cyan represents correct predic-
tions. Input pixels (red) removed for clarity.

80

Figure 6.9: Model 11 14 STATS prediction on image 6199. Blue represents the ground
truth, green represents incorrect predictions, cyan represents correct predictions. In-
put pixels (red) removed for clarity.

81

Figure 6.10: Initial series (top to bottom) of Model Exp11 training predictions. Left:
input data. Middle: ground truth. Right: prediction.

82

Figure 6.11: Final series (top to bottom) of Model Exp11 training predictions. Left:
input data. Middle: ground truth. Right: prediction.

83

14_FB1024

12_14

14_FB512

12_FB1024

12_FB512

11_FB1024

11_14

11_12

11_FB512

9_FB1024

9_14

9_12

9_11

9_FB512

FB512_FB1024

0.0 0.2 0.4 0.6 0.8 1.0

Comparison of AVG and STATS fusion models

Effect of statistical test selection

AVG w/ SW+K

AVG w/ AD+K

STATS SW+K

STATS AD+K

Dice Score

E
x
p
e
ri

m
e
n

t
M

o
d

e
ls

Figure 6.12: A graph displaying the comparison of the effects the Anderson-Darling
and Shapiro-Wilk tests have on the Dice coefficient.

84

Figure 6.13: For image 6026, each predictive input into the fusion model.

Figure 6.14: For image 6026, each predictive output from fusion model variations.

85

Figure 6.15: For image 6199, each predictive input into the fusion model.

Figure 6.16: For image 6199, each predictive output from fusion model variations.

86

	Deep Learning Detection in the Visible and Radio Spectrums
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Image Degradation in Spacecraft Detection
	RFI Detection in Astronomical Data

	Problem Statement
	Contributions of Thesis
	Organization of Thesis

	Deep Learning Fundamentals
	Training a Deep Learning Model
	Bias and Variance
	Training Augmentation
	Regularization
	Transfer Learning

	Summary

	Background and Related Work
	Visible Band Target Spacecraft Detection
	Use of The SPEED Dataset

	Earth Based Spacecraft Observation and Detection
	Radio Frequency Interference Detection

	Overcoming Image Degradation in Satellite Detection
	Methodology Overview
	Model Implementation
	Evaluation Metrics
	Dataset Description
	Synthesis of Degraded Images
	Training Approach

	Effects of Image Degradation to Mask R-CNN Object Detection
	Pretrained Weight Comparison
	Augmentation Experiments
	Degradation Experiments
	Effects of AGWN on Detection

	Deep Learning and Statistical Fusion Model for RFI detection
	Methodology
	Datasets: Training, Validation, and Testing
	Preprocessing
	U-Net Model Design and Training
	Fusion Model Testing Protocol

	Experiments
	Hyperparameter Search
	U-Net Model Experiments
	Fusion Experiments
	Final Experimental Results
	Discussion

	Summary, Conclusion, and Further Work
	Satellite Detection
	RFI Detection
	Further Work

	Appendix

