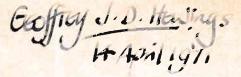


Applications


RRI Input-Output Archive

1969

International Comparisons of Interindustry Data - Industrial Planning and Programming Series No. 2

United Nations Industrial Development Organization

Follow this and additional works at: https://researchrepository.wvu.edu/rri_ioapplication

Industrial Planning and Programming Series No.2

International Comparisons of Interindustry Data

UNITED NATIONS

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION, VIENNA

Industrial Planning and Programming Series No. 2

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

Proceedings of the Meeting of the First Ad Hoc Group of Experts on Industrial Programming Data, held in New York, November, 1965

UNITED NATIONS New York, 1969 ID/SER. E/2

•

UNITED NATIONS PUBLICATION

Sales No.: E. 68. II.B. 14

Price: \$U.S. 3.50 (or equivalent in other currencies)

EXPLANATORY NOTES

Symbols of the United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document.

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country or territory or of its authorities. or concerning the delimitation of its frontiers.

The opinions in this document are those of the authors and do not necessarily reflect the views of the United Nations Industrial Development Organization.

CONTENTS

Page

•

Foreword	vii
Report and Recommendations for the Industrial Programming Data Project of the United Nations Centre for Industrial Development by the First Ad Hoc	
Group of Experts which met in New York from 9 to 12 November 1965	xi

Part I. Characteristics of national interindustry data

INPUT-OUTPUT TABLES OF JAPAN: BASIC FRAMEWORK, PRIMARY DATA AND INTERTEMPORAL COMPARISONS (Shuntaro Shishido)	3
Annex: Concepts and definitions of the 1960 interindustry table	41
STATISTICAL UNIT, CLASSIFICATION AND AGGREGATION IN FINNISH INPUT- OUTPUT STUDY (Osmo Forssell)	45
Annex I: Commodity-mixes of selected manufacturing groups	53
Annex II: A note on the 1959 Finnish input-output table	54
Factors affecting technical coefficientssome findings from the Hungarian interindustry data (<i>Vera Nyitrai</i>)	67
INPUT-OUTPUT STATISTICS AND ANALYSIS IN YUGOSLAVIA (Nikola Petrović)	93
Annex: Chronological input-output bibliography of Yugoslav publications	117
INTERSECTORAL BALANCES OF PRODUCTION AND DISTRIBUTION FOR A NATIONAL ECONOMY: KEY ASPECTS OF THE PRACTICE IN THE UNION OF SOVIET SOCIALIST REPUBLICS (<i>Ivan M. Denisenko</i>)	119
Annex: Selected elements from the 1959 intersectoral balance	127
CHARACTERISTICS OF THE USSR INPUT-OUTPUT TABLES (Vladimir G. Treml)	133
Annex: An experiment with the 1959 input-output data for the USSR	141

Part II. Approaches to international comparisons

A COMPARATIVE STUDY OF THE INPUT STRUCTURE OF THE CHEMICAL INDUSTRIES IN SEVERAL INDUSTRIALLY DEVELOPED COUNTRIES (<i>Hans Wittmeyer</i>)	157
Approaches to the problem of intercountry comparison of input- output relations: a survey and suggestions for further research (<i>Tsunehiko Watanabe</i>)	187

	Page
Note on the possibilities of utilizing the techniques and data of inter- national comparisons for industrial programming in the developing countries (<i>Henri Aujac</i>)	203
An industrial-complex approach to the compilation and analysis of interindustrial programming data (<i>Vera Cao-Pinna</i>)	219
THE HIERARCHICAL STRUCTURE OF INTERINDUSTRIAL TRANSACTIONS (<i>Ernst</i> Helmstädter)	231
Modifiable rectangular input-output matrices (T. I. Matuszewski)	245
Annex I: General scheme of computation and a numerical example	250
Annex II: A preview of the national accounts system of Quebec	259

۰.

ş

.

,

The degree of availability of appropriate data very often sets a serious limit to the practice of programming. Methodological elaborations not founded on sufficient identification of available data can be of little practical use. Indeed, the formulation and evaluation of possible alternatives in the context of planning involve many elements of conjecture. Such is especially the case with certain stages of programming where the pre-selection of industries, feasibility studies, interindustrial resource balances, and so forth play a crucial role. In many developing countries where experience of industrial development is relatively recent, and where fundamental changes in the economic structure need to be envisaged for the future, it is likely that relatively little indigenous development experience can be utilized for extrapolation purposes. Under such circumstances programming tends to have frequent recourse to data representing experience in other countries, if only for the purpose of setting limits to expected developments. Such procedures, seldom made explicit in official documentation but frequently apparent from worksheet-level information, would no doubt constitute a serious weakness in today's planning and programming machinery unless efforts were made to obtain as a basis a collection of relevant reference data from a sufficiently wide range of sources, and also to carry out a careful analysis of their applicability to various conditions.

A PROJECT FOR INDUSTRIAL PROGRAMMING DATA

With a view to filling the gap now existing in programming techniques in this respect the United Nations Centre for Industrial Development (CID) has incorporated in its work programme a series of inquiries and studies collectively referred to as the Industrial Programming Data Project. The specific terms of reference of this project describe its objective as "establishing extensive catalogue data of operational use for industrial planning and programming on the basis of the existing statistical and technical information in various countries and examining the adaptability of such catalogue data to the practical need of developing countries".

The project is of a long-term nature and at the present stage concentrates on initiating pilot work along several lines designed to bring to light certain important potentialities in this relatively unexplored area. This particular publication concerns only one of the themes being pursued under the project: the adaptability of existing interindustry data of various countries to the needs of developing economies. Even for this particular theme this volume is intended as a point of departure rather than as an end product. The articles collected in it constituted the main part of the proceedings of a meeting of an *Ad Hoc* Group of Experts convened at the United Nations Centre for Industrial Development in November 1965 to review various technical problems and experiences relevant to the issue and to formulate a concrete scheme of work to be carried out in this field by the Centre. The special studies initiated after this meeting will be published in a separate volume at a later date. The results of other lines of work being undertaken under the project, such as the intercountry interestablishment comparisons of the structural and functional characteristics of various specific manufacturing plants, will be published in subsequent issues of this series scheduled in connexion with the project.

INTERINDUSTRY RELATIONS TABLES AS A SOURCE OF PROGRAMMING DATA

Industrial planning and programming has many different facets ranging from the formulation of individual projects to consistency and optimality considerations in broader contexts involving iterative processes of mutual adjustment between microscopic and macroscopic requirements, and between short-run policy measures and longrun perspectives. Knowledge of the profile of industries or sectors constitutes an important part of programming data. One of the most important applications of more or less detailed industry-level programming data arises in connexion with the techniques of tracing the direct and indirect interdependence between input and output flows of goods and services. This interdependence governs the interindustrial balance of an economic system and influences the choice of industrial development strategies.

During the past decade there has been a pronounced increase in efforts to compile interindustry data as a tool for efficient projection and planning, or as an integral part of the system of national accounts. A quick review indicates that about 55 (and possibly more) countries have now compiled their own interindustry tables with either governmental or private resources. More than half of these countries are developing countries. The tables compiled in different countries for various years are however far from comparable. Some are more detailed than others; the quality of basic data, compilatory precision, classification of industries and commodities and other factors vary a great deal among the tables. Those of the developing countries are on the whole of a rudimentary nature; they reflect the lack of detailed and comprehensive statistics in these countries. In view of the rapid pace of structural changes in their economies the cost involved to developing countries in the compilation of complete, detailed interindustry relations hardly seems justifiable to them. Unfortunately the usefulness of such rudimentary tables for practical purposes connected with industrial programming is generally extremely limited.

To meet the pressing need for good reference data for perspective planning purposes at least three different measures may be suggested: (a) strengthen the existing statistical data, (b) borrow, wherever appropriate, technological coefficients from countries that have wellorganized, detailed interindustry data, or (c) do without the special programming methods which presuppose the availability of a full-fledged input-output table.

It is clear that any serious attempt to increase the stock and availability of reliable data necessarily involves provisions for the improvement of statistical organs within each country. The concept of catalogue or reference programming data pursued under the CID project should by no means be taken as a substitute for a programme of indigenous statistics. On the contrary, the relationship between reference data and national data is essentially complementary in the sense that the former can serve as checkpoints for the reliability and projectability of the latter, especially when national data are of only a rudimentary nature and also when insight into future potentialities is called for in order to make choices among feasible alternatives.

The second and third of the measures mentioned above are, in a way, two sides of the same coin. It is only within certain limits that we can transplant the interindustry relationships observed within one country to another. This possibility is, in most cases, limited to that part of interindustry data which can be relatively safely considered as being of "technological" origin, i.e. individual column of input coefficients indicating the composition of material inputs of each specific industry. The transplantation of these so-called technical coefficients occurs most frequently in connexion with marginal adjustments needed for projection purposes. The raw material for this "cooking recipe" does not have to relate to the productive system of a national economy as a whole, but can concern any particular aspects and branches of the system which are considered as being of strategic importance. The technique of programming applicable to these data can in itself be flexible, not being limited to the conventional application of the Leontiefian "input-output" analysis; the data used for the so-called "commoditybalance analysis" for principal industrial commodities, "physical input-output analysis" for a particular group of industries etc. are all, in this context, considered as an integral part of interindustry information.

In order to deal with the real problems relating to the dynamic aspects of interindustry relations, such as the emergence of new industries, substitution of one material for another, extension of fabrication processes through additional stages, etc., the interindustry information should be organized in a much more detailed manner than is usually the case with the published forms of input-output tables. The across-the-board adaptability of the information contained in most published tables, which is particularly important for the purpose of *ex ante* economic analysis and planning, must be considered as strictly unwarranted unless the information hidden behind those tables is carefully examined in detail.

A FORWARD STEP NEEDED FOR INTERNATIONAL COMPARISONS

A straightforward comparison of the published tables among different countries would immediately come up against difficulties arising from the diverse compilatory gaps existing among them: accounting unit in basic data. sectoring for tabulation purposes, methods of valuation of transactions, treatment of imports, treatment of dummy sectors etc. are among the most familiar factors susceptible to such variations. This highlights the significance of the work of the Conference of European Statisticians regarding the international standardization of the methods for input-output compilation.¹ The manual on a similar subject recently prepared by the United Nations Statistical Office is also an indication of the increasing need of internationally comparable data in this field.² The practical proposals for comparable interindustry data so far put forward are, however, consciously linked to the problem of integrating interindustry tables into the standard system of national accounts; they thus tend to concentrate, at least for the time being, on tables compiled for highly aggregative economic sectors, and hence many steps removed from the underlying details of industrial statistics.

At present very little is known about what the truly comparable data for different countries would look like; still less about the nature and range of elements susceptible to across-the-board adaptation which could be revealed by a comparative analysis of such data. The attempts at intercountry comparative analysis which have so far been undertaken seem to be mostly concerned with the over-all characteristics of input-output tables. Adjustments applied to existing tables for the purpose of comparison are somewhat patchy, with frequent recourse to aggregation techniques to avoid the difficulties arising from compilatory differences. In this way comparative evaluation tends to be limited to relatively small tables, with about twenty or even fewer intermediate sectors. Some of the studies indicate that the "fundamental" pattern of interdependence among productive sectors is somewhat similar among industrialized countries; the similarity is revealed, however, not with respect to the magnitude of individual coefficients but rather in such general terms as approximate decomposability and triangularity of the over-all matrix. For operational planning purposes the similarity in such a broad sense is superficial rather than fundamental. There are also other

¹ The most recent report of the working group convened under this Conference is available in "Input-Output: National Tables and International Recommendations for Development and Standardization", in United Nations, Economic Commission for Europe, *Economic Bulletin for Europe*, Vol. 16, No. 2, Nov. 1964, pp. 1-31.

² Problems of Input-Output Tables and Analysis: Studies in Methods, Series F, No. 14 (United Nations publication, Sales No. 66.XVII.8). See also Input-Output Bibliography, 1955-1960, United Nations, N.Y., 1961 (ST/STAT/7) and Input-Output Bibliography, 1960-1963 (United Nations publication, Sales No. 64.XVII.10).

studies at the comprehensive level which draw more attention to dissimilarities than similarities among countries; each country's pattern of industrial development reflects its peculiarities with respect to resource endowment and the extent and pattern of participation in international trade, as well as its stage of industrial development. As long as they are based upon highly aggregative data however, the revealed dissimilarities can be no more than indications of some crude topological features of different national economies which are essentially different from an appraisal of the intercountry adaptability of basic parameter-patterns.

For this latter purpose it is likely that an appropriate scheme of comparison will have to be established on the basis of data at the worksheet level available at the stage prior to the squaring of these data into the conventional form of input-output tables. It should also be borne in mind that before arriving at comparable elements of "technological" origin one must cut through difficulties such as the variation of product-mix of each industry, structure of relative prices and scale of production.

The purpose of the meeting of the expert group convened in November 1965 at the CID was thus to explore feasible approaches which would meet these requirements. While the primary sources of information considered at this particular meeting were those accumulated in various countries in connexion with the compilation of input-output relations, emphasis was laid on the aspects which would help to strengthen the link between aggregate planning and project-level programming.

CHARACTERISTICS OF THIS VOLUME

Most of the articles in this volume are selected from those originally prepared as discussion papers by the participants in advance of the above meeting. The original papers have been partly revised or amplified for the purpose of this publication. The three articles by Vera Nyitrai (Hungary), Nikola Petrović (Yugoslavia) and Hans Wittmeyer (Federal Republic of Germany) are based on their contributions made available later to the CID in order to enlarge the scope of discussion and material relevant to the theme of this publication.

The subject matter dealt with in the following twelve articles varies considerably, and so does the nature of their implications relative to the concept of industrial programming data. But they can be roughly divided into two parts.

Part I relates to the characteristics of interindustry data of individual countries reviewed with particular emphasis on the auxiliary tables and various supporting statistics concealed behind the published form of input-output tables, and also with emphasis upon factors influencing the stability or projectability of compiled technical coefficients. The selection of these articles is intended to provide planners with an opportunity to become acquainted with the data of some countries with relatively well-organized documentation in this field, but which are not usually available in languages that are widely used (Finland, Hungary, Japan, the Soviet Union and Yugoslavia). The recent accomplishment of the Statistical Office of the European Economic Community in recompiling the medium-sized tables of the five member countries into a comparable form is certainly of great significance. However, a full report on this work (a review of which might otherwise have been given a suitable place in this volume) is already readily accessible in the publications of the EEC Statistical Office. Certain technical aspects of those EEC tables relating to the chemical sector are examined in some detail in the chapter by Hans Wittmeyer appearing in Part II.

The six articles in Part II concern various analytical experiments made for intercountry comparisons of interindustry data, and suggestions regarding approaches to be followed for further, more serious comparative evaluation of existing data.

The approaches suggested in most of these articles, as well as the discussions which took place at the meeting of the expert group, generally seem to follow two different but mutually complementary directions. First, there is a common concern to examine the extent to which "basic" interindustry data, mostly existing in the form of worksheets for compilation rather than in the published tables, could possibly be reorganized for purposes of detailed intercountry comparisons. For that purpose some authors are concerned with comparative analyses of various national tables reconciled at relatively aggregative levels. It is indeed true that such comparisons will play an important role in locating, sizing-up and screening prospective fields in which detailed comparisons are to be undertaken. However, admitting that there is already sufficient evidence regarding the approximative decomposability of the comprehensive matrices, some authors are even more concerned to establish concrete schemes according to which detailed partial input-output relationships can be compiled for blocs or complexes of specific industries.

The formal recommendations made by the expert group are reproduced below. In relation to these recommendations it should be remembered that the articles collected in this volume are all meant for background material for the preparatory work needed to implement them.

Research conceived in line with the recommendations is now under way at the CID with the help of a special working party organized by experts from several countries. Its immediate purpose is to pin-point strategically important segments of the interindustry balance to be investigated selectively in greater detail and to distinguish areas that are typically more comparable from those that tend to be less so as among different countries. In pursuit of this objective an effort will be made to develop a technique for handling the problems of relative prices, industry-mix, product-mix, degree of integration etc. in the context of intercountry comparisons. It is hoped that a substantial part of the collection of information and its analysis and interpretation will be completed in 1967 and published in a later issue of the Industrial Planning and Programming Series.

Ĭ,

REPORT AND RECOMMENDATIONS FOR THE INDUSTRIAL PROGRAMMING DATA PROJECT OF THE UNITED NATIONS CENTRE FOR INDUSTRIAL DEVELOPMENT BY THE FIRST *AD HOC* GROUP OF EXPERTS WHICH MET IN NEW YORK FROM 9 TO 12 NOVEMBER 1965

Letter of transmittal to the Commissioner for Industrial Development

We have the honour to submit herewith the report of the First *Ad Hoc* Working Group on Industrial Programming Data. It is the outcome of our meeting held at New York during the four days commencing 9 November 1965. At the request of the Group, Dr. Anne P. Carter acted as Chairman of the whole Group. Professor Wassily Leontief and Mr. Morris Goldman acted as Chairman of Sub-committees I and II respectively, which were formed within the Group during the above meeting period.

The terms of reference given to this Group by the Commissioner for Industrial Development were:

"To examine the adaptability of existing industrial programming data of various countries to the needs of developing economies, with special reference to existing interindustry tables and related basic data from which they are compiled, and to formulate feasible lines of research to be undertaken by the Centre for this purpose."

The following report was written by the Group at the meeting and represents the consensus of all fifteen members of the Group as to the nature and scope of the research study recommended for the United Nations Centre for Industrial Development as part of its Industrial Programming Data Project.

We wish to acknowledge our gratitude to the staff members of the Policies and Programming Division of the Centre who acted as technical secretaries for the Group.

Signed by (in alphabetical order):

Aujac, Henri; Cao-Pinna, Vera; Carter, Anne P.; Denisenko, Ivan M.; Eleish, Gamal E.; Forssell, Osmo; Goldman, Morris; Helmstaedter, Ernst; Hoffenberg, Marvin; Leontief, Wassily; Matuszewski, T. I.; Sevaldson, Per; Thore, Sten; Treml, Vladimir G.; Watanabe, Tsunehiko.

New York, N.Y., 12 November 1965

I. INTRODUCTION

Most developing countries engage in some form of programming of industrial investment and industrial projects. It is obviously important that they should do so on the basis of the best possible available information and using the available data to the greatest possible extent. The Group feel that the Industrial Programming Data Project may fill a gap now existing in this field, and may thus be a positive step in aiding the developing countries in the formulation of their industrial plans and policies.

The need for such a project arises from the present state of data availability in the developing countries when considered against the demanding nature of industrial programming. It is a well-known fact that many of these countries lack the basic data necessary for industrial programming and, with only a few exceptions, there is an almost complete lack of data describing the structural characteristics of the economy. At the same time the economists are pressed to produce industrial development programmes, advise on choices of investments and technology as well as a host of other difficult economic matters. Even when consulting firms are asked to appraise industrial projects there remains the problem of evaluating the total impact of such projects, for which purpose the available data in these countries are generally inadequate.

The Group were informed of and kept in view the Centre's Studies of Manufacturing Establishments, which is a part of the Industrial Programming Data Project already under way in the Centre. This study is designed with particular emphasis on the plant-level data and consists of compiling and analysing the experiences of individual establishments in various countries relating to certain techno-economic relations which are considered as being of crucial importance for industrial programming.

The attention of the Group was drawn to the fact that the developed, as well as some developing, countries have already collected a wealth of interindustry data which, with some adaptation, could be extremely valuable in guiding the developing countries in choosing their industrial strategies and in formulating consistent industrial programmes. Because of the complexity of interindustry data which in many respects differ from a mechanical aggregation of establishment data, and also because industrial programming spans various phases ranging from the formulation and evaluation of individual industrial projects to the assessment of the consistency of general resource allocations, the Group are agreed that the proposed research project concentrating on the data compiled for interindustry analysis should be considered as an additional branch of the Industrial Programming Data Project to be carried out in conjunction with the Studies of Manufacturing Establishments mentioned above.

The effort of the Group was thus concentrated on examining the feasibility of reorganizing and analysing various forms of interindustry data as they exist in various countries, with a view to making them operational for programming purposes in developing countries. After general debates on various problems and issues involved in such a task, the Group formed two sub-committees: Sub-committee I was concerned with the reconciliation and analysis of interindustry information, particularly aiming at the derivation of some reference data which might be operationally useful for the purpose of assessing alternative nationally or regionally balanced patterns of industrial development; and Sub-committee II worked with stronger emphasis on aspects of detailed interindustry information that might be linked with the programming data required for formulation and evaluation of specific industrial projects.

The reports of the two sub-committees were prepared separately, but were discussed later by the entire Group. It was noted that the two reports involved common elements in many respects, this being indicative of the complexity of the data needed for research which makes the two approaches mutually interdependent. Differences between them are, however, suggestive as to the phasing of work, which should be carefully planned in carrying out the proposed project. For this reason the Group are agreed in presenting these two reports as they are, without attempting to merge them into a single one.

II. REPORT OF SUB-COMMITTEE 1

This report summarizes the deliberations of Subcommittee I, formed by five members of the Ad Hoc Group of Experts during its meeting period: Gamal E. Eleish, Senior Lecturer, African Institute for Economic Development and Planning, Economic Commission for Africa, Senegal; Ernst Helmstaedter, Professor, Institute for Social and Economic Sciences, University of Bonn, Federal Republic of Germany; Marvin Hoffenberg, Professor, Institute of Government and Public Affairs, University of California at Los Angeles, United States; Wassily Leontief, Professor, Harvard University, United States, and Tsunehiko Watanabe, Professor, Gakushuin University, Japan. This report is intended to formulate a feasible work plan for the treatment of existing data from various countries in the form of reference programming relations particularly suitable for the purpose of assessing comprehensive resource balances in alternative development plans.

The suggested work plan is set out in four stages: (I) reorganization of existing interindustry information, (II) operation necessary to secure intercountry comparability of coefficients, (III) construction of comparable or partially comparable tables and (IV) preparation of reference information for industrial planning and programming purposes.

Stage I: Reorganization of existing interindustry information

Before starting the collection of relevant interindustry information from various countries it is recommended to engage in preparatory work to establish a basic framework in which information from individual countries will be recollated on an analytically reconcilable basis. This preparatory work may have recourse to the interindustry data available in a few countries possessing sufficiently detailed and well-organized documents in this field.

The industry classification suitable for this framework may be of an order of two hundred or more, implying the possibility of different countries laying greater emphasis on different industries in contributing information sufficiently detailed for comparison purposes. Many countries, especially small ones, do not seem to have enough interindustry data to complete the framework. It is worth noting however that there will be many cases in which information compiled in a small table for a small economy can attain the same degree of specificity as that compiled in a larger table for a larger economy.

Interindustry information to be collected in accordance with the framework should include, wherever possible—

- (i) flow (and flow-coefficient) tables, completed with rows and columns describing value added and final demand,¹
- (ii) import tables,
- (iii) quantity tables,

¹ Flow coefficients should be those compiled on the total supply basis (i.e. including imported inputs) if a complete import table is not available. Efforts should be made to comply with the recommendations of the Conference of European Statisticians concerning the standardization of input-output tables, especially as to the definition of final demand sectors and value-added categories, and the distinction between material goods and services and nonmaterial services.

- (iv) commodity prices and price deflators (with distinction between domestic use and exports), and
- (v) capital coefficients tables as fully detailed as possible, and labour coefficients (with skill specification, if feasible).

As soon as the above preparation is under way the Centre will contact experts in various countries to organize special study groups in order to collect and collate the available interindustry information, both published and unpublished, into the framework mentioned above.

Stage II: Operation necessary to secure intercountry comparability of coefficients

This operation is not intended to secure the same degree of comparability for all coefficients but is aimed at reducing the discrepancies due to differences in the definition and statistical procedures involved in the original data. Major tasks to be envisaged in this operation are—

- (i) realignment of sectoral and commodity classification, and
- (ii) compilation of relative-price deflators appropriate for intercountry comparisons.

The first task will be guided by both the International Standard Industry Classification and the basic framework of sectoring used in the few selected most detailed national tables. Compilation of price deflators is the most important task of all and consists of the following steps:

- (i) to establish, for each country considered, average prices applicable to the product-mix of each producing industry;
- (ii) to obtain intertemporal price deflators applicable to each country's tables; and
- (iii) to estimate relative-price deflators for intercountry comparison (adjustment for any special price regulations, tariffs and indirect taxes, as well as relative (market) price indexes relating to the commodities appearing in quantity tables or similar).

In the accomplishment of the above tasks it will be helpful to analyze the product-mix of comparable sectors in different countries. A number of techniques developed for intertemporal comparisons within a country will prove to be applicable to such analysis.

Stage III: Construction of comparable or partially comparable tables

The results of the work performed at the previous stages will make it possible to reconstruct tables of various national economies which are partially, if not entirely, comparable. The size of such tables can be varied according to the type of needs. Stage IV: Preparation of reference information for industrial planning and programming purposes

Among the various conceivable aspects of this task, the following have been noted in particular:

- A. Description of structural characteristics of economies at various levels of development:
 - (i) patterns of interindustrial relations in a highlydeveloped economy (this may be called "reference table");
 - (ii) variations of the reference table reflecting:
 - (a) differences in size of economy and role of foreign trade,
 - (b) absence or presence of specific industries, and
 - (c) various stages of technological progress, etc.
- B. Analysis of input requirements of specific industries:
 - (i) indication of "strategic" coefficients by means of sensitivity tests;
 - (ii) comparison of labour and capital requirements and import contents of inputs;
 - (iii) comparison of output distribution; and
 - (iv) indication of specific areas which require detailed technological studies.
- C. Preparation of "examples" for the use of the reference table and its variations for assessment of alternative balanced patterns of industrial development.

The work at this stage, as well as at some phases of the preceding stages, requires extensive use of electronic computation facilities. It is recommended that the Centre establish a means of access to such facilities.

III. REPORT OF SUB-COMMITTEE II

Sub-committee II was formed by the remaining ten members of the First Ad Hoc Group of Experts on Industrial Programming Data during its meeting period. They were: Henri Aujac, Director, Bureau d'informations et de prévisions économiques, France; Vera Cao-Pinna, Director, Centro di Studi e Piani Economici, Italy; Anne P. Carter, Senior Research Associate, Harvard University, United States; Ivan M. Denisenko, Chief of Section, Economic Institute of the USSR, Planning Commission; Osmo Forssell, Research Fellow, Central Statistical Office of Finland; Morris Goldman, Associate Director, Office of Business Economics, Department of Commerce, United States; T. I. Matuszewski, Professeur agrégé, Université de Montréal, Canada; Per Sevaldson, Senior Statistician, Central Statistical Bureau of Norway; Sten Thore, Professor, School of Economics and Business Administration, Norway; and Vladimir G. Treml, Associate Professor, Franklin and Marshall College, Lancaster, Pa., United States.

This report is concerned with substantive aspects of the compendium of detailed interindustry information which the Centre is recommended to establish with a view to facilitating efficient and consistent linkage between the aggregative and the project-level planning and programming.

Stage I: Assembling a compendium of detailed information on industrial input patterns

Detailed input-output information covering 75 per cent or more of material inputs will be gathered for selected industries of major interest to developing countries. This material will not be limited to published input-output information, and should draw heavily on worksheets and special studies used in preparing and analysing published tables. Ex ante or "planning" input-output structures should also be considered as an additional source of information. The survey may be limited to the collection of already existing information, published or unpublished, and should be pursued in close co-operation with other United Nations agencies. Fullest use should be made of information contained in the discussion papers prepared for the present meeting of the First Ad Hoc Working Group and also of the data being gathered in the Studies of Manufacturing Establishments which are already under way in the Centre for Industrial Development.

Materials in the compendium will not necessarily be directly comparable among countries or among different industries in the same country but will include descriptive information required for interpretation. The extent of detail to be aimed at for this stage will be less than that of the establishment-level statistics but will correspond to the worksheet-level data available for interindustry compilation before the squaring of these data has been attempted. In particular, the desire to give uniformly classified inputs and outputs for different industries ought not lead to the withholding or aggregation of whatever fragmentary information may be usable for compilation purposes. While the collection of materials recommended in Stage I will be of great value in itself its value will be much enhanced by reconciliation and analysis as recommended in the Centre's proposals addressed to the members of this Working Group. Such reconciliation and analysis is envisaged as Stage II.

For any given industry, the compendium should include the following information, to be divided roughly into the following six categories:

- (i) Detailed definition and description of the industry. This should include such items as year of reference, definition of processes, number and size distribution of plants, proportion of public ownership, installed prime movers, and other characteristics of equipment.
- (ii) Characteristics of output-mix. Commodity and process mix should be specified insofar as possible in terms of quantity (in specified units), price and total value. Primary, secondary and joint products should be distinguished.

- (iii) Input requirements. These should include capitalinput requirements wherever possible, as well as current inputs of basic and auxiliary materials and services and primary factors. Where possible, materials should be subdivided into domestic and imported items, and labour requirements subdivided by types and skills. Depreciation, taxes and other value-added elements should also be collected. Wherever possible, quantity, price and value of inputs should be specified.
- (iv) Input coefficients. The basis of the coefficients should be specified; i.e. total supply base or domestic output base, gross or net of intraindustry transactions. Any provision made for non-proportionalities, especially of auxiliary inputs, should be noted. The stock of capital should be related to capacity output as well as actual output, and wherever possible the information useful for an indication of its age structure should be collected.
- (v) Major consuming industries. These should include deliveries to final demand and be subdivided, if possible, into private consumption, current government demands, gross capital formation, exports and inventory changes. The level of aggregation specified for consuming industries may be less detailed than that specified for inputs, and it is not likely that both quantity and value information will be available in all cases. However, for intra-industry transactions every possible specification of detail should be made.
- (vi) General appendix. This should cover matters such as sources of basic information, compiling agency, valuation basis and conventions for handling taxes, secondary products, transportation, trade margins and dummy industries.

In some countries, information can be collected for more than one year and in more than one region. Not all countries should be asked to contribute equally detailed information on all industries. Particular efforts should be made to include developing countries for which reliable data exist for certain sectors—particularly for newly introduced industries.

It is recommended that a task force be set up for gathering information from the statistical agencies of the various countries, or alternatively that correspondents be appointed in different areas to transmit the information to the Centre. It is also recommended that the Centre select a small study group to supervise the collection of information and to organize research activities to be conducted in Stage II.

Stage II: Analysis of intercountry differences in input patterns

This will consist of analysis and interpretation of the information compiled in Stage I and an attempt to explain intercountry variation in selected important technical coefficients. Such analysis is, of course, vital for successful application of these programming materials. It is recommended that the Centre take full advantage of various comparative studies mentioned in the papers submitted to this meeting and that it have the advice of technical consultants for particular industries being surveyed. Intercountry differences in such factors as prices, product and process-mix, degree of integration, utilization of capacity, and various characteristics of the capital stock should be considered. It should also be noted that differences among coefficients for the developing and the more developed countries often reflect special technical and organizational problems associated with the introduction of new industries in developing economies.

It would be too ambitious to attempt reconciliation of differences among all coefficients for all countries at this stage. It is recommended that Stage II begin experimentally with intercountry comparisons of principal coefficients for a few industries. Part One

CHARACTERISTICS OF NATIONAL INTERINDUSTRY DATA

the second second

•

INPUT-OUTPUT TABLES OF JAPAN: BASIC FRAMEWORK, PRIMARY DATA AND INTERTEMPORAL COMPARISONS

Shuntaro Shishido, Economic Planning Agency, Government of Japan

I. A BRIEF SURVEY OF THE JAPANESE INPUT-OUTPUT TABLES

Since about 1953 three bench-mark input-output tables have been prepared in Japan for 1951, 1955 and 1960. Although many other preliminary tables have been compiled by various organizations, our major emphasis in this article will be placed on these bench-mark tables, since they form the statistical basis for those preliminary tables.

1. The 1951 table

The 1951 table¹ was prepared by the Ministry of International Trade and Industry (MITI) for the purpose of analysing the structural changes of industries in connexion with the balance-of-payment, employment and investment problems.

Although the published table is available on a 182sector basis,² the basic table was compiled in a rectangular matrix of 527×182 . One of its distinctive features is the use of activity basis for its sectoral classification, a practice followed by the subsequent bench-mark tables. This is due mainly to its analytical advantage and also to the survey method of the Monthly Survey of Industrial Production by the MITI, in which the basic information on output and input is collected on an activity, not an establishment basis.

The original industrial classification for the table is designed for the MITI's administrative use, and is now being adjusted to the ISIC³ by the Council for Industrial Planning on a 153-sector basis of the 1960 table.

By-products and scrap are treated as part of the output of the sector in which they originate and are transferred to the using sectors. This procedure is the same as in the United States table for 1947 compiled by the Bureau of Labor Statistics. All transactions are valued at producers' market prices, that is inclusive of indirect taxes less price subsidies.

Imports are divided into competitive and noncompetitive areas, and the former are treated as a negative column in final demand. However, in the 36-sector table, which was designed specifically for analytical use, all noncompetitive imports were eliminated by regarding them as competitive to domestic products.

The 1951 table for Japan proves to be largely consistent with the data in the national income accounts of the Economic Planning Agency (EPA). The aggregates of value added and final demand (net of imports) are conceptually equal to the Gross Domestic Product (GDP) at market price (inclusive of indirect taxes less price subsidies).

Besides the input-output table with 182 sectors, a "quantity table" of 345×182 was also compiled, in which demand and supply balances for 530 selected commodity groups are indicated in both value and quantity terms. This table was of great use for the study on the physical aspect of interindustry relations.

As noted above, in the aggregative table prepared with 36 sectors all imports are treated as competitive, and byproducts and scrap are separated from the output of original industries and are grouped into dummy sectors. A similar 36-sector table, though of a very preliminary nature, was prepared for the year 1954 by the MITI, principally for the purpose of comparative analysis of production structure between 1951 and 1954.⁴

The EPA also compiled a small input-table for 1951 independent of the MITI work. This table has nine sectors and is designed for the integration of the inputoutput scheme with the existing national income statistics.

2. The 1955 table

In view of the extensive use of various types of data, the compilation of the new bench-mark table for 1955 was made through collaboration among various government agencies, such as MITI, EPA, the Ministry of Agriculture, the Ministry of Construction, the Statistics Bureau etc., for which the Statistical Standards Bureau of the Administrative Management Agency played the role of coordinator. This is the first official table worked out by the Government and it contains 122 sectors. The underlying research was undertaken, however, for about 300 sectors.

Again the statistical unit is on an activity basis, and emphasis is laid on suitability for analytical use and comparability with the 1951 table. All transactions are valued at producers' market prices (as in the case of the 1951 table) but average, instead of actual, prices are

¹ See H. B. Chenery and P. G. Clark, *Interindustry Economics* (Wiley, New York, 1959), Chap. 7, and S. Shishido, *Recent Input-Output Studies in Japan*, Memorandum C-6 of the Stanford Project for Quantitative Research in Economic Development, 1957 (mimeographed).

² The number of sectors mentioned in this paper to indicate the size of an input-output table refers to producing sectors alone and does not include final demand columns and primary input rows.

³ United Nations, International Standard Industrial Classification of All Economic Activities, Statistical Papers Series M, No. 4, Rev. 1 (New York, 1958).

⁴ Ministry of International Trade and Industry, Japan, Interindustry Analysis of the Japanese Economy, 1957 (in Japanese).

adopted in order to overcome the difficulty arising from price differentials occurring within an export column.

As to the sector classification, the second (1955) table employs a more standardized system than the 1951 table. This system is largely based on the Japanese Industrial Classification (JIC), slightly modified for interindustry analysis.

The treatment of by-products and scrap is almost the same as in the 1951 table: they are regarded as a part of the output of the sectors in which they originate and are transferred to the using sectors.

Imports are treated in a different way, so as to provide a more comprehensive relationship between domestic and imported products. Since each transaction cell is divided into imports and domestic products, there are $2n \times n$ transactions in the 1955 table. Thus one can avoid the arbitrary distinction between competitive and noncompetitive imports.⁵ This method of presentation seems to have the demerit, discussed later, of requiring too large a space for practical use.

As for linkage to the national income accounts, the table is mainly in accordance with the national income concept, except for education and health services, which are charged to the household sector whether they are produced by private or by government organizations.

As with the 1951 table, a "quantity table" is attached. It contains 178 commodity groups and 122 using sectors.

A preliminary table with 35 sectors was prepared by the MITI for 1959 and used for the analysis of industrial structure, employment and investment pattern etc.⁶

3. The 1960 table⁷

The third bench-mark table was compiled for 1960 during 1962-63 through co-operation among various government agencies and under the co-ordination of the Statistical Standards Bureau.⁸ This official input-output table marked a turning-point in the post-war history of input-output research at government level, as regards (a) comprehensiveness of the accounting system employed, (b) international comparability, (c) statistical reliability as a basis for revising the existing national income statistics, and (d) utilization for the Medium-Term Economic Plan. These four points are discussed below.

(a) *The accounting system*. The 1960 table is available with two types of valuation (producers' prices and purchasers' prices), together with three converting matrices (i.e. for freight charges, for trade margins, and for by-products and scrap) and three supporting tables (i.e. quantity table, import matrix, and employment matrix).

All these official tables are available on a 153-sector basis, while the original data are also available on IBM punchcards in the form of a 450×350 transaction matrix. As in the previous tables, each sector is defined on an activity basis.

The dual presentation of the input-output table at both producers' and purchasers' prices was motivated by the usefulness of the latter, especially for final demand analysis and comparison with the national income accounts.⁹ It should also be noted that such dual presentation is not unduly expensive, since the converting matrices for freight charges, trade margins etc. can be estimated from relevant statistical sources in parallel with the ordinary input-output estimation at producers' prices.¹⁰

The use of "negative input method" for by-products and scrap that was employed in the 1960 table is believed to be more advantageous for computing technological inter-relationships than the conventional "transfer method" employed in the 1951 and the 1955 tables. Thus the amount of output in each sector is smaller than that for the previous tables by the amount of by-products and scrap originating in it.

All imports are treated as competitive, but a special square matrix for imports on a 153-sector basis was also estimated, so that the whole table at producers' prices is now easily convertible into an input-output table on a non-competitive or semi-competitive import basis.

Unlike the 1955 table that for 1960 adopts actual prices instead of average prices, even if price differentials seem to be significant in certain sectors. This treatment is due to the need to maintain consistency with the national income accounts. However, conversion into an average-price table can easily be made by using the allocation pattern in physical terms derived from our quantity table on a 151 \times 153 basis. This type of flexibility in treating imports and in the valuation of transactions can be considered as an important feature of the 1960 tables.

Consistency with the standardized national accounts, especially with the System of National Accounts and Supporting Tables (SNA),¹¹ was also taken into account more rigorously. This is especially the case with the imputation of interests and rent. Since the imputed interest charges are distributed among the related sectors on the basis of sectoral bank deposits etc., the values of operating surplus in those sectors are reduced by these amounts. On the other hand, the rental income of the real estate sector is distributed to the original producing sectors so that the amounts of value added in those sectors are increased.

 $^{^{\}rm 5}$ For the theoretical criteria for this distinction see section II below.

⁶ Ministry of International Trade and Industry, Japan, Interindustry Analysis of the Japanese Economy by the 1955 Interindustry Table, 1962 (in Japanese).

⁷ See annex for further technical details.

⁸ Statistical Standards Bureau, Administrative Management Agency, Japan, *A Report on the Interindustry Table for 1960* (Tokyo, 1963) (in Japanese).

⁹ See S. Shishido, "Problems in the International Standardization of Interindustry Tables", in *Journal of the American Statistical Association*, March 1964.

¹⁰ In cases where there are no cost data for "cost approach", so that one must rely simply on "market approach" at producers' prices, the preparation of these converting matrices would be difficult.

¹¹ United Nations, A System of National Accounts and Supporting Tables, Department of Economic and Social Affairs, Series F, No. 2 Rev. 2 (New York, 1964).

(b) International comparability. In the 1960 table particular stress is laid on international comparability in order to facilitate analytical use of the table, in particular for comparisons of technology, import dependency, final demand, patterns etc. The International Standard Industrial Classification (ISIC) of All Economic Activities was adopted as a basis for sectoral classification, although slight adjustments were needed to modify it from an establishment to an activity basis. For instance, electricity for its own use and own-account construction are separated from their original sectors and integrated respectively into the commercial electricity and the construction sectors.

Coke produced by steel industries is however included in the output of the specialized coke-producing sector.

As for consistency with the standardized concepts of national accounts, rows for primary inputs and columns for final demand are defined in accordance with SNA. For practical use, the fourth quadrant of the table (i.e. intersections of final demand columns and value-added row) are left completely blank.

(c) A basis for revising national income series. Even after conceptual adjustments there were in fact certain statistical discrepancies observed between the national income and the input-output estimates for 1951 and 1955. However, most of such gaps will be eliminated in the 1960 table, since the national income series since 1951 are themselves to be revised substantially on the basis of the 1960 table. The new series are to be published by the end of this year, so that an integrated use of national income and input-output models will be greatly accelerated.

(d) Utilization for the Medium-Term Economic Plan. The 1960 table is the first to be officially applied for the preparation of government economic plans. The official table with 153 sectors was aggregated into 60 sectors for planning purposes, and a test was made on the stability of input-output coefficients between 1955 and 1960. For this purpose, the 1955 table with 122 sectors was adjusted for 1960 prices by the Council for Industrial Planning, as described below. The results of the test indicate that there have been significant technological changes affecting the use of certain inputs, such as changes in energy consumption and substitution from primary products to manufactured products, but that there is little change in the value-added output ratio or the degree of fabrication. The chemical and the construction industries are the only exceptions: there are indications of an increase in the value-added output ratio in the former sector and a decline in the latter. These trends in input-output coefficients were extrapolated up to 1968, the target year of the present plan, by means of Stone's RAS formula.¹² This preliminary projection was further revised to some extent by the help of experts specialized in individual industries.

Aggregative estimates of final demand are given in the Macroscopic Medium-Term Model.¹³ The breakdown of these into 60 rows was made with the use of various econometric sub-models. Details may be referred to in the report of the Committee on Econometric Models.¹⁴

4. Preliminary table for 1963

On the basis of the 1960 bench-mark table, and in co-operation with various government agencies, a preliminary table was compiled in 1963 at 1960 prices. This official table has 56 sectors, but the original data are available at the 153 sector level of classification.

II. BASIC STATISTICS FOR MANUFACTURING INPUTS

In this section, problems related to the basic statistics in manufacturing sectors are discussed, with special reference to input-output coefficient or technical coefficient matrix for international comparison. There are about four major sources of such information in Japan: the Monthly Survey of Industrial Production, the Annual Census of Manufacturers and the Annual and Quarterly Surveys of Corporate Enterprises.

1. The Monthly Survey of Industrial Production

This survey, initiated just after the Second World War, covers most of the mining and manufacturing establishments and collects monthly data on output and input in physical terms on an activity basis (see table 1). Thus, many multi-product establishments are requested to fill more than one questionnaire. The extent of coverage of this survey is high, about 80 per cent in value terms, although the cut-off points vary from industry to industry.

The results of this survey are used in physical terms in the input-output table for most of the important manufacturing activities. The data in the quantity tables are also primarily based on this survey.

The monthly data for various indices, such as those for industrial production, industrial shipment, raw material consumption etc. by industry, are also derived from this survey. This facilitates following the current movement of the selected material consumption per unit of output for important industrial sectors; and a follow-up of this nature is of essential importance for the year-to-year compilation of input-output tables on a continual basis.

2. The Annual Census of Manufacturers

This census of the MITI has a history of about 50 years. It is a complete census of private manufacturers on an establishment basis, but different questionnaires are used

¹² See University of Cambridge, Department of Applied Economics, *Input-Output Relationships*, 1954–1966: A Programme for Growth, 3 (1963).

¹³ T. Tatemoto, T. Uchida and T. Watanabe, "A Stabilization Model for the Post-war Japanese Economy, 1953–1962", Part I, 1964 (to be published in the *International Economic Review*).

¹⁴ Economic Planning Agency, Japan, *Econometric Models for Medium-Term Economic Plan* 1964–1968, Reports by the Committee on Econometric Methods, 1965.

TABLE 1: THE MONTHLY SURVEY OF INDUSTRIAL PRODUCTION

Statistical									
sector	I. Con	erage							
Mining	All establishments manufacturing designated products.								
Coal	All establishments manufacturing coal, coke and lignite.								
Textiles	All establishments manufacturing the following designated products: Chemical fibres, flax fibres, cotton spinning ("Wa-bo" or Japanese spinning excluded), cotton and rayon staple fabrics (together with spinning), hemp fabrics, dyeing and finishing, full-fashion stockings, laces, paper and pulp, and cellophane. For "Wa-bo", cotton manufacturing, cotton and rayon staple fabrics (special), silk rayon fabrics, woollen fabrics, and knitted goods, a sample of one-twentieth for establishments under a certain size, with cut-off of secondary products. Enterprises with two or more establishments of chemical fibres, spinning ("Wa-bo" excluded), and dyeing and finishing. Enterprises with two or more establishments manufacturing raw yarn together with fabrics (excluding paper and pulp).								
Chemicals	All establishments manufacturing designated products. En lishments employing 15 or more persons). Manufacturing of								
Iron and steel	All establishments manufacturing designated products.								
Machinery	Establishments employing 20 or more persons, manufactu five or more persons are included.)	ring designated products. (Some establishments employing							
Light industries	Manufacturers of designated products, mostly employing 20 as in production of pottery or lacquered ware.) or more persons, but some employing as few as 4 persons,							
Statistical	II. Principal	data collected							
sector	A. Production	B. Shipment							
Mining	Quantity.	Quantity; partly value. By sector of demand as for non- ferrous metals, etc.							
Coal	Quantity. The survey is made on coal, coke, lignite and mine districts, and on receipt and payment, value of ship- ments by industry, items of consumption and items of production for establishments of mining gas.	- portation; for lignite: also by sector of demand; for col							
Textiles	Quantity; partly value.	Quantity and value. Divided into self-consumed fabrics for piece-work, and those for markets and others (with the exception of secondary fabrics). For part of products, the value is investigated. ^a							
Chemicals	Quantity.	Quantity and value. Shipments to a distribution point and exports as for chemical fertilizers. Breakdown by dom- estic use and export for chemical fertilizers and by sector of demand for calcium carbide, sulphuric acid, soda manufacturing products, synthetic anhydride and oxygen (co-ordinated statistics ^a).							
Iron and steel	Quantity. Products produced from self-owned raw materials and from raw materials supplied; includes products consumed within the factory.	Quantity. Deliveries outside the establishment are divided into sales and others.							
Machinery	Quantity. Products produced from self-owned raw materials and from raw materials supplied; includes self-consumption in the factory.	Quantity, weight and value. Limited to shipments out of enterprise. Products of commission work done by others are included. Covers only those designated machine tools used for speculative production. Machine tools for metals							
Light industries	Quantity and value.	Quantity and value. Sales are subdivided into domestic use and export. Carbon products, optical lenses, furbish ing stones and whetstones are shown by sector of demand Pottery for domestic use: its use for electrical products is investigated. Leather: sales by sector of demand are investigated by the survey on demand and supply o leather products.							
	C. Stock	D. Raw material							
Mining	Quantity.	Quantity of stocks, consumption and shipments, pur chases, electricity consumed, by type of industry.							

٩,

INPUT-OUTPUT TABLES OF JAPAN

S. SHISHIDO 7

•

INPUT-OUTPU	T TABLES OF JAPAN	S. SHISHIDO 7					
Statistical		data collected					
sector Coal	C. Stock Quantity.	D. Raw material Quantity. Coal: stocks, purchases, consumption, delivery of materials and electricity consumed, by purpose. Lignite: consumption of materials. Coke: domestic and export, by kind of coke and by coke material.					
Textiles	Quantity.	Quantity. Stocks, purchases, consumption of all kinds of inputs.					
Chemicals	Quantity. Chemical fertilizers and caustic soda: stock- piled in the head-office. ^a	Quantity. Stocks, purchases, production, consumption and shipments for some parts of principal raw materials, fuels and motive power. Consumption: separate entries for consumption by the enterprise and by others, and for some kinds of products items of consumption are investigated.					
Iron and steel	Quantity.	Quantity. Amount of purchases, production, consumption (by section) and delivery for materials consumed for primary products and all products.					
Machinery	Quantity. Only machine tools used for speculative produc- tion included.	Raw materials actually consumed, by kind of business and by material (some exceptions). Stocks in the establish- ment at the end of a month.					
Light industries	Quantity.	Quantity. Stocks, purchases, production, and consump- tion of principal materials as for principal products. Asbestos: items of consumption also are investigated.					
	E. L	abour					
Mining	Number of persons registered at end of month and their wo wages and salaries paid to employees.	orking conditions: in some cases detailed surveys are made of					
Coal	are made of the number of work hours etc. Coke: number	mployment, and wages in detail. In addition, detailed surveys r of persons registered at end of month and total wages and end of month, total number of persons engaged, total hours					
Textiles	Number of persons in the establishment at end of month (b	by direct and indirect production, separately).					
Chemicals	Number of persons registered at end of month and month wages and salaries paid by kind of industry and by certain	ly total number of work hours per establishment and total products.					
Iron and steel	Number of persons in factory (by section of manufacturing at end of month.	g) and total number of persons in the company as a whole					
Machinery	Total number of persons in the establishment at end of more	ath.					
Light industries	Number of persons in the establishment at end of month, by total wages and salaries paid by industries.	y kind of industry and monthly total number of persons and					
	F. Equ	uipment					
Mining		ends in Japan; detailed surveys are made on mines (including quipment every year. Yearly surveys are made of petroleum					
Coal	Monthly working capacity of coke. (Yearly surveys are made of equipment for mines, coal mining, digging and coal face, equipment for lignite and production equipment for coke. ^a)						
Textiles	Equipment capacity, movable capacity, working capacity or number of movable spindles, total running hours (number of working spindles), as per establishment except those for hemp, fibres, dyeing and settling and cellophane. (Detailed surveys are made of paper and pulp every four years, and surveys of working equipment for fabrics, dyeing, woollen fabric dyeing and settling are made every year by the Bureau of Textiles. ^a)						
Chemicals	Production capacity of principal products. (A detailed sur ducted in 1961.)	vey was made in 1957 ^a and surveys of equipment were con					
Iron and steel	None. (Detailed equipment surveys are made of primary i	iron and steel products every four years. ⁸)					
Machinery	None. (Detailed surveys were made of machine tools for r	netals in 1952 and in 1958. ^a)					
Light industries	Surveys of equipment were made for metallic table-ware, for None for rubber, leather, polyvinyl chloride products, con	ountain-pens, fibreboard, fire-bricks and centrifugal concrete rrugated board and ceramic furnaces.					

 $^{\rm a}$ Statistics in conformity with the Statistical Reports Co-ordination Law.

for small and for large establishments (see table 2). For the former group, namely establishments employing from one to nine persons, a very simplified questionnaire is used, asking for data on total value of shipment, number of persons engaged etc. From larger establishments, however, the collected data cover value of shipments and its components by type of product groups, value of inventories and its components, value of total raw materials and fuel consumption, gross value added, gross fixed investment, depreciation etc.

In the preparation of the input-output table for manufacturing sectors the results of this census are used as supplementary sources for estimating the value of output of minor sectors which are not covered by the Monthly Survey. The basic data for gross value added, however, are all taken from this census, as they are not available from the Monthly Survey. Since the industrial classification of the census is based on the Japanese Industrial Classification, it was necessary to make adjustments to the I.S.I.C. basis in preparing the input-output table for 1960.

Although normally the annual census provides only information on the total value of inputs, that for 1963 also collected data on the components of raw materials and fuels in both value and in physical terms, in accordance with the World Programme for an Industrial Census proposed by the United Nations in 1963.¹⁵ The results of the tabulation of these items will be utilized for the compilation of input-output tables, especially for such industries as miscellaneous foods, sundry goods etc., where the Monthly Survey provides no data on input components, the main source of information being the trade organizations.

The 1963 annual census has another merit: it enables systematic conversion of raw material inputs from an establishment to an activity basis by the use of the product-mix matrix and input-output matrix prepared on an establishment basis. This procedure involves the following formula:

$$\bar{X}_{ij} = X_{ij} P_{jk} \tag{1}$$

$$X_{ij} = \bar{X}_{ij} [P_{jk}]^{-1}$$
 (2)

where \bar{X}_{ij} = intermediate transactions on an establishment basis, X_{ij} = similar transactions on an activity basis and P_{jk} = a square matrix of product-mix coefficients.¹⁶ The product-mix coefficients are defined here as sectoral proportions of the product-mix within each establishment group. This implies that the input-output coefficients on an activity basis can be easily derived even if available input data are on an establishment basis. Application of this formula to the 1963 census data will be made in the near future.

3. Surveys of corporate enterprises

Among many surveys on corporate enterprises in Japan those undertaken by the Ministry of Finance are most useful for cost analysis. They consist of two sample surveys on an annual basis and a quarterly basis. Both sets of data, although on an enterprise basis, serve admirably for splitting value-added, indirect costs and other miscellaneous direct costs. Obviously value-added output ratios derived from these sources are different from those derived on an activity basis, yet they have helped in estimating the components of non-material cost items by industry. Use of the data from these surveys is not limited to manufacturing sectors, but is also extended to other sectors.

The above discussion has dealt with the basic data for the inputs used by manufacturing industries. In the light of international comparison of such data the following two points need to be emphasized:

(a) Industrial classification must be specified separately for output and input items. Only the significant output and input items need be selected for cost analysis in the first stage.

(b) Presentation in physical terms would be preferable to value terms if selected commodity groups are clearly specified. The unit of measurement for the presentation in physical terms must be standardized.

III. Comparison of interindustry tables for 1955 and 1960

Because of the increasing importance of long-term and medium-term projections of the Japanese industrial structure, it was imperative for the bench-mark interindustry tables for 1955 and 1960 to be completely comparable in terms of concepts and sectoral classification.

The analytical value of these tables would be greatly increased if they were based on internationally accepted statistical standards such as those provided by the SNA and the ISIC. Since the 1960 table was already based on these, adjustments for the 1955 table on a 150-sector basis were made under the sponsorship of the Council for Industrial Planning in 1961 and 1963.¹⁷ The major aspects of these adjustments of the 1955 table are outlined below.

1. Adjustment of sector classification to the ISIC

The 1955 table is based in principle on the Japanese Industrial Classification which differs from the ISIC in (a) type of statistical unit, (b) sequential order of industries, and (c) concepts of specific industries etc.

(a) The ISIC is closer to the concept of technical unit, although both of these two classification systems are

¹⁵ International Recommendations of the 1963 World Programme of Basic Industrial Statistics (ST./STAT/SER.M./17/Rev.1/Add.I).

¹⁶ S. Shishido, *Recent Input-Output Studies in Japan*, Memorandum C-6 of the Stanford Project for Quantitative Research in Economic Development 1957 (mimeographed).

¹⁷ Since a similar attempt is also being made by the Council for the 1951 table, a full comparison of the three bench-mark tables will become possible in the near future.

TABLE 2. THE ANNUAL CENSUS OF MANUFACTURERS

I. Coverage

Schedule A: 147,000 establishments employing ten persons or more, covered by the Standard Industrial Classification for Japan: F-Manufacturing (excluding head offices where no manufacturing processes are operated).

Schedule B: 421,000 establishments with nine or fewer employees, covered by the Standard Industrial Classification for Japan: F-Manufacturing and automobile repairing service (excluding head offices engaging in no manufacturing and processing).

Schedule C: Head offices with two or more establishments.

II. Principal data collected

(Schedules A and B)

Production	No data collected.
Shipment	Value (quantity) of shipments by product (final products, excluding products of contract works for others for which materials are supplied by other establishments, and including products of contract works done by others for which materials are supplied to the establishment). Shipments by kind of product are covered only by schedule A. Transfer of products within the same enterprise is included.
Receipts for repairing and processing services, value of shipments of waste materials.	Receipts for processing and repairing services rendered to others during year (by kind of processing as to receipts from processing) and yearly value of waste materials produced in the course of production. In schedule B, shipments of waste materials are included in the shipments of products.
Value of raw materials, juels and electricity con- sumed.	Value of raw materials, fuels and electricity consumed during year. Raw materials and fuels are those purchased from others and those supplied by other establishments of the same enterprise; excluding raw materials supplied by others for contract works, including materials and fuels acquired by themselves through primary manufacturing activities. Value of electricity is divided into "purchased" and "generated for own use": only the former is surveyed. Schedule A only. Schedule B: surveys are made of the total value of raw materials, fuels and electricity and of products of contract work. In 1963 only a survey was made of the amount of yearly consumption by principal raw materials.
Expenditures for contract and commission works.	The sum expended or to be expended for contract and commission work done by others for which materials (or products of the establishment) are supplied to others (schedule A only). As to schedule B, this is included in the value of raw materials, fuels and electricity consumed.
Excise duties	Value of excise taxes is included in that of shipment of products (schedule A only).
Stocks	Value of stocks of raw materials and fuels, and value of semi-manufactured products and work-in-process at end of year. As to products: quantity and value by kind of commodity (schedule A only).
Labour	Number of regular, self-employed, and family workers by sex at end of year (schedules A and B). Regular workers by month, yearly total cash wages and salaries paid on a contract basis and (specially) for regular workers (by salaried employee and wage-workers separately), and other payments (schedule A only).
Equipment investment, ess.	Value of tangible fixed assets at beginning of year, value of tangible fixed assets acquired, value liquidated, and value of depreciation, annually (buildings, structures, machinery and equipment, vessels, vehicles and carts and tools, implements and fixtures durable for a year or more). Increase and decrease in estimated value of provisional construction accounts (schedule A).
Other	Value of capital or value of contributions (company only) and kind of business organization, management system, land and building area, and water consumption for industrial use (for enterprises with 30 or more employees).
	(Schedule C)
Principal business	Value of sales by product, receipts for processing services rendered to others, and other receipts.
Stocks	Stocks of products, raw materials and fuels at beginning and end of year excluded from schedule A.
Labour	Number of regular workers by sex, by salaried employee and worker and total cash wages and salaries paid for a year excluded from schedule A.
Equipment investment	As in schedule A but including only those excluded from it.
Other	Value of capital or value of investment, and kind of business organization.

9

•

TABLE 2. THE ANNUAL CENSUS OF MANUFACTURERS (continued)

III. Census organization

1. Respondent (interviewer)—City, town and village—Prefectoral government—Ministry.

2. Refining establishments only: Respondent-Local bureau-Ministry.

IV. Date of inquiry

31 December every year.

V. Date of return made to the office

31 March of the following year.

VI. Tabulation

Mechanical.

VII. Date of publication

Preliminary report: September of the following year. Report by industries and report by commodities: Two years later.

Source : Research and Statistics Division, Minister's Secretariat, Ministry of International Trade and Industry, Japan, 31 December 1964.

based on establishment unit. For example, some simple processing activities by farmers are included in agriculture by the JIC and in manufacturing industries by the ISIC; and "manufacturing retailers", who are engaged in manufacturing activity but also retail their own products, are classified in retail trade by the former but in their respective manufacturing industries by the latter. In the 1955 table however, both these activities were defined as manufacturing—different from that of the JIC. Thus, adjustment relating to the statistical unit was necessary only for the processing activities by farmers.

(b) An adjustment of sequential order was easily made by rearranging the original IBM punchcards of individual transactions in accordance with the order used by ISIC.

(c) The two systems show conceptual differences of certain industries. For example, the JIC includes repairs among the service industries, while the ISIC considers them to be a subsidiary activity of the relevant industries. This led to the repair activities in the 1955 table being broken down into several groups and reclassified under the relevant manufacturing industries. A similar adjustment was needed for the munition industries, which were split into several components on the ISIC basis. Conceptual adjustments were also made for some industries, among them crude salt, oils and fats, and machinery, as they had not been fully in accordance with the ISIC.

Commercial transport was broken down into five subsectors, railway, road, ocean, inland and coastal, and air and other, because of the analytical importance of these sectors and for comparability with the 1960 table. While the input data were already available, a new estimation was necessary for dividing the output row into these transport activities.

2. Adjustment to SNA concepts

In order to maintain strict comparability with the 1960 table, the concepts in the 1955 table relating to final demand and value-added had to be adjusted to the international statistical standards of the SNA.

The most important revision in this respect concerned educational and medical activities by the Government. Such activities had been treated as a part of private consumption in the original 1955 table; they now had to be transferred to the heading of government consumption.

In addition, private consumption expenditure in eating and drinking places was broken down into two parts foods and service charges—so that in the adjusted table foods are held to go directly from producers to household, without passing through eating and drinking places, whose output is reduced accordingly.

Another adjustment to SNA standards was necessary for the value-added row of the 1955 table. First, imputed interest charges were estimated for each sector on the basis of financial statistics; this slightly reduced all the value-added in the original table. A similar adjustment, but in reverse, was also needed for rental services for business use, which were allocated to each related sector in terms of its contribution. This implies that the valueadded in the related sectors was increased and that in the rental sector was reduced by the amount of this adjustment.

3. Scrap and by-product matrix

As in the case of the 1960 table, a matrix relating to the industrial origin and use of scrap and by-products

INPUT-OUTPUT TABLES OF JAPAN

was newly prepared in order to make the 1955 table fully comparable. In the original table for 1955, these scrap and by-products had been "transferred" from the originating sector to the using sectors, thus making their value of output higher. To bring this into accord with the principles of the 1960 table, the values of scrap and byproducts were first separated from the original values of output in each sector, and then further broken down into sectoral components corresponding to their competitive industries. The matrix thus obtained was deducted from the original transaction matrix so as to derive net inputs as in the case of the 1960 table.

4. Customs duties

In the original 1955 table, customs duties had been included in the concept of the value-added row and the unallocated column. It was thus necessary to divide the total amount of customs duties into the relevant commodity groups and to add them to the related imports. This adjustment was based primarily on the customs duty statistics of the Ministry of Finance.

5. Valuation

Although both bench-mark tables are valued at producer's market prices, there are significant differences in the treatment of price differentials among certain using sectors. Because of the lack of basic data however, the average-price basis adopted in the 1955 table could not be adjusted to the actual price basis. This is the only difficulty which prevents strict comparison between the two bench-mark tables but, except for exports, this inconsistency is on the whole negligible in value terms.

6. Deflation of the 1955 table in 1960 Prices

After the 1955 table with 150 sectors had been made completely comparable in current prices, price deflators were estimated in order to compare these two tables at constant prices.

Various price data on goods and services were utilized for this purpose, and research was made on a more detailed basis than at the 150-sector level. The price deflators for commodities are generally of high quality, but those for services are less reliable because of the lower representativeness of the basic data.

In deriving the 1955 table in 1960 prices, the following formulae were used:

$$p_i X_i = \Sigma_j p_i X_{ij} + p_i Y_i - p_i M_i \tag{1}$$

$$p_j X_j = \Sigma_j p_i X_{ij} + \pi_j V_j \tag{2}$$

$$(i, j = 1, \ldots, 150)$$

where X_i = output; X_{ij} = intermediate transaction; Y_i = final demand; M_i = imports; V_j = value-added; p_i or p_j = deflator for output, and π_j = deflator for value added.

 π_j , deflator for primary factors (labour, capital etc.), is obtained indirectly from equation (2) above. The validity of such estimates, however, was checked, though at a more aggregated level, by using the information on wage rate and labour productivity. The results proved to be fairly satisfactory.

The input coefficients matrices resulting from the transaction tables recompiled as above are presented in tables 3A, 3B and 3C. The underlying transaction tables are all of the type in which all imports are treated as though they were competitive (as illustrated in the annex, table 9). Table 3A is derived from the 1955 table in 1955 prices, table 3B from the 1955 table in 1960 prices, and table 3C from the 1960 table in 1960 prices. The final demand quadrants corresponding to these three tables, together with total intermediate delivery and gross production, all in value terms, are presented in tables 4A, 4B and 4C.

7. Measurement of changes in technical coefficients

After all the adjustments so far described had been made, a test was undertaken to check the consistency of the technical coefficient matrix between 1955 and 1960 at the 60-sector level, using the following formula:

$$\lambda_i = \sum_j a_{ij}^{60} X_{\ j}^{60} / \sum_j a_{ij}^{55} X_{\ j}^{60}$$

where a_{ij}^{55} = technical coefficient for 1955, a_{ij}^{60} = technical coefficient for 1960, X_j^{60} = output for 1960, and λ_i = rate of change in the technical coefficient relating to use of the *i*-th input.

As indicated in table 5, fairly high rates of technical changes can be observed for certain primary and manufacturing products during this period, even after allowance has been made for statistical errors. Generally these technical changes can be classified into three groups: (a) substitution between energy inputs; (b) substitution of fabricated products for primary products; and (c) general increase in intermediate demand for manufacturing and service inputs.

(a) Substitution of petroleum and electricity for coal is the most notable phenomenon, which was also observed in the previous test of the coefficients for 1951 and 1955.¹⁸ The magnitude of changes arising from this factor is also very similar to what was found in our previous studies.

(b) The second type of technical change is represented by the substitution of chemicals for natural raw materials such as cotton and other natural fibres and natural rubber etc. A similar tendency is also observed as to use of manufactured wooden products in place of material wood, cement products in place of cement and so on, but the degree of substitution in this area is more limited and is often cancelled out by other factors. Changes in

¹⁸ Ministry of International Trade and Industry, Japan, Interindustry Analysis of the Japanese Economy by the 1955 Interindustry Table, 1957 (in Japanese).

2

		E J	T. J	Livestock	0.1	Forestry			Τ.	0ther
		Food crops 1	Industrial crops 2	for textiles 3	Other livestock 4	Forestry and logging 5	Fisheries 6	Coal- mining 7	Iron- mining 8	Other metal- mining 9
	01 02	25,133	6,584 103	273,758	261,251	219 48	111			
	03	1,137			189					
	04 05	92,035 4,849	56,021 1,196	6,975 1,308	9,672 3,946	217 249,010	4,795	54,685	6,953	21,40
	06	4	1,170	1,500	5,740	42	5,736	54,005	0,755	23,44
	00 07 08 09 10	-			192	23	412	34,192	14,141	4,18
	11	4,317	1,902	2,616	1,992	6	559			
	12 13	549	649	141,892	35 124,021	84 6	1,265 1,667			
	13 14	549	049	141,092	124,021	158	13,328			
	15	4		27,245	32,923	828	11,047			
	16				283	716	79			
	17 18					21	83 4,484			
	19						·			
	20	7,941	4,317	2,616	2,637	4,395	51,248	1,370	528	1,35
	21 22	1,575	11	8,283	46 5,446	15 20,075	789 13,887	35 7,813	91 9,782	13,76
	$\frac{22}{23}$	1,575	11	0,203	54	20,073 43	76	7,813 98	253	23
	24	3,088	2,517	_	1,844	169	858	385	998	9
	25 26			1	882	607	8,665	2,977	8,867	5,1
	26 27	41	34		29	2 280	767	4,855	2,637	2,2
	28	61,306	88,166		8,641	530	1,876	15,617	19,415	45,3
	29 30	11,816 1,684	23,739 467	19,834	31,428	1,009	1,517	31	22	10
	30 31	1,004	407		71	7,216	64,104 914	4,929	11,989 479	4,0 7
	$\frac{31}{32}$	1,815	740		451 276	176	626	96 1,739	479 1,924	1,8
	33							3,995		
	34 35			218	227 21	1,471 4	272 771	10,940	23,964	24,5
	36	1,334	1,880	6,321	4,314	10,076	11,976	5,088	8,481	6,8
	37	4,247	6,926		21	2,669	347	12,874	23,487	7,2
	38 39	442 287			167 118	240 3,063	826 1	8,790 1,586	9,961 725	12,2 6
	40	33	570		110	5,005	37,459	1,500	479	2
	41	187	68		181	442	325	1,020	7,211	1,8
	42	1,224			583	162	2,315	197	510	4
	43 44									
	45									
	46	4,234	866	77	246	4,290	368	6,446	20,214	10,7
	47 48	1,879		654	1,745 38	904	2,574 1	60,484	28,761 2	42,4
	49				15	356	84	85	2	
	50	23,117	30,744	26,591	28,069	3,725	29,704	7,957	15,951	16,4
	51 52	1,838	3,422	1,095	1,601	955	4,095	10,426	4,341	4,6
	53	2,218	3,037	3,193	3,281	585	2,501	7,207	1,486	2,9
	54	671	1,606	71	155	1,086	6,193	1,630	2,642	1,8
	55	12 201	0.614	14 100	147	2,315	615	1,512	6,473	7,2
	56 57	13,301	9,614	14,182	12,605	7,008	15,968	12,468	8,922	19,5
	58									-
	59 60	1,220	6,219	5,231 40,977	2,661 11,197	6,630 67,462	17,902 81,070	602 93,820	1,203 62,870	3,2 83,5
ıbtotal	61	273,529	251,193	583,130	553,700	399,342	404,369	375,950	305,775	348,1
alue added		726,471	748,807	416,870	446,300	600,658	595,631	624,050	694,225	651,8
		140.711	/	TIU.0/10			JJJ.UJ1	U44.U.M	VIII. LL.	0.01.0

INPUT-OUTPUT TABLES OF JAPAN

COEFFICIENTS TABLE

A

Т

7

8

S. SHISHIDO 13

(Unit: 10-6) Oil and gas Other minerals Meat and Natural-Man-made fibre Grain-Seafoods Other dairy fibre products extraction *extraction* milling processing foods Beverages Tobac co spinning spinning Fabrics 10 11 12 13 14 15 16 17 18 19 20 111,495 235 107 936.857 37,930 4 8,320 △231 △2,354 68,846 1,361 144,185 299,453 ∆1,336 13,877 2,090 145,422 602,355 4,208 7,701 101,715 25,580 1,630 1,245 9,406 1,276 1 4,479 839 226 382 271 1 503,105 853 80 2,921 625 12,400 298 5,949 3,830 4,030 379 3,772 514 5,608 3,913 5,977 86 6,169 3,142 31 81 41,389 41 7,185 1,344 338 8 139,142 4.863 10 50,333 209 20,502 53,967 146,034 19,085 1,214 4,937 2,477 51 823 3,597 51 457,289 10,353 1,397 238 5,635 245 550 2,946 1,279 429 261 234 122,102 76 29 60 6 37 37 22 2 10 9 36 6,961 994 6,856 853 16,133 2,103 944 3,650 1,424 889 1,029 209 80 118 47 16 102 61 6 28 25 99 1,107 2,612 13,256 14,335 824 16,521 3 242 2,217 698 715 6,640 11,471 4,248 2,574 925 7,120 4,292 6,956 10,941 3,997 7,146 4,691 57 14 97 1,146 616 573 2,885 3,911 497 220 312 295 131 97 319 103 1,466 5,389 3,037 1,034 11,509 76,238 2,307 722,930 11,361 104,723 83,431 18 168 1,012 1 17,465 22,491 5,058 268 3,366 2 5,048 1,299 8,465 8,788 39 1,646 1,726 310 3,903 2,673 3,314 855 235 103 1,295 16 5 38 86 4,742 1,141 8,045 142 1,028 19,002 70,668 20 103 77 67 53 72,488 5,655 206 31 386 44 13 189 25 36 240 1,330 2,137 98 103 130 9,918 8,315 5,487 360 46,918 93 90,120 5,577 668 112 183 37,075 4,245 3,948 39 527 1,056 2,190 1,029 7,543 3,596 3,725 13,294 5,983 192 437 602 531 672 149 2,710 1,452 1,326 3,725 2,514 1,928 208 1,809 3,644 803 714 458 310 522 618 74 11,138 811 1,654 38 320 423 871 476 1,625 208 1,020 422 174 468 43 1,690 343 706 12 65 50 933 1,802 1,690 10,067 1,571 2,696 125 1,006 656 3,792 1,342 2,814 51,703 20,543 4,026 2,787 4,154 69 2,974 588 11,669 6,063 5,547 1,626 954 129 7 32 2,156 15 49 526 1 1 7 149 994 453 1,470 134 97 36 352 38,195 9,168 24,906 30,137 58,416 71,309 31,501 4,395 16,040 13,314 22,232 4,818 4,405 7,333 1,663 25,763 6,363 6,545 1,420 4,850 3,240 4,236 2,534 2,725 16,421 4,358 1,764 8,156 3,246 1,184 1,661 1,249 2,358 937 20,908 216 1,645 16,811 7,349 547 1,486 1,806 14,116 1,381 5,568 2,425 248 1,876 986 1,048 1,449 2,158 2,055 3,655 13,024 7,827 9,196 2,938 10,016 21,029 11,851 13,705 9,635 2,671 14,276 1,249 905 35,575 774 8,280 7,745 6,955 11,326 388 16,541 1,931 62,701 101,672 33,013 12,678 20,242 24,667 17,299 14,483 27,392 22,020 27,345 354,077 285,198 912,132 999,587 861,466 735,539 333,107 210,062 763,757 847,631 826,484 645,923 714,802 87,868 413 138,534 264,461 666,893 789,938 236,243 152,369 173,516 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

TABLE	3A :	1955	INPUT
INDLL	21.7	1/00	TIATOT

					TABLE 3A: 1955 INPUT					
		Apparel 21	Wood products 22	Furniture 23	Pulp and paper 24	Printing and publishing 25	Leather products 26	Rubber products 27	Basic and intermediate chemicals 28	Oils, fats and final chemicals 29
	01 02 03	4 81,523	33 266		1,613 9,493			277,089	12,141 2,928	75,306 116,877
	04 05	101 30	14 617,588	153	99,418		1,271	596	4,895	332 10,458
	06 07 08 09	616 1,076	60 329	1,400	20,503	520	4,075 3,000	8,259	5,733 26,302 ∆5,269 1,789	19,826 4,778
	10				575				349	36
	11 12 13 14		68 65 90 68		6,927		350,036	30	61,602 7,128 804	1,075 21,728 3,123
	15		973		2,444	13		10	4,295	8,428
	16 17 18	30,789	845 65 266		6	607	5,412	2,655	43 11	20
	19 20	410,913	837	8,886	8,697	7,552	27,162	149,524	9,739	2,21
	21 22 23	7,951 11,097 35	18 41,241 51	28 300,986 1,504	16 7,730 44	41 419 112	12 775 33	37 745 102	22 6,051 61	49 25,919 135
	24 25	5,036 5,330	2,792 2,581	3,936 6,666	333,359 105,506	313,201 1,164	978 4,355	1,027 5,216	54,837 2,109	18,733 2,07 5
	26 27 28 29 30	56,171 21,014 13,439 117 756	11 1,098 5,546 3,737 642	1,859 356 3,401 30,878 878	79 2,610 19,358 3,250 6,414	3,479 1,407 22,305 1,993	90,174 65 81,633 3 8,053	434 50,293 140 13,671	9 2,504 278,067 10,818 7,070	866 123,474 78,542 5,450
	31 32 33	59 1	27 404	433 5,527	122 1,040	207 523	33 1	20 6,172	21,324 2,758 215	160 13,196
	34 35	1,557 1,026	1,655 24	19,643 3,832	260 128	168 3,182	228 4,890	30	2,669 9,759	860 544
	36 37 38 39 40	5,529 1,971 246 440	2,543 791 489 810	24,141 1,731 156 1,375	2,463 2,812 3,156 543	403 9,502 1,911 33,926	21,887 2,250 605 653	48 1,212 226 283	633 6,158 4,338 660 72	8,322 1,819 1,111 2,613 20
	41 42 43 44 45	395 9,979	154 1,175	121 14,161	672 176	5,873 226	3 35,667	39 7,454	1,700 184	770 617
	46 47 48	803 2,427 17	2,533 10,116	89 7,944 51	1,760 32,948 163	1,182 7,873 3,428	934 7,271	692 13,318	4,420 43,007	1,516 6,296
	49 50	13 48,746	204 7,105	216 24,630	2,540 17,444	2,530 27,718	228 36,137	142 24,073	3,912 3,462 27,832	20 3,137 49,188
	51 52 53 54 55	3,087 2,660 560 3,339	3,481 2,459 414 2,158	12,634 15,001 1,195	6,049 7,274 1,550 1,578	5,270 5,950 367 31,784	4,954 2,059 1,408 1,989	5,689 2,044 2,009 5,079	15,209 8,023 4,431 1,634	8,950 6,517 3,008 3,563
	56 57	9 , 529	12,386	25,194	10,156	12,516	1,989	11,813	13,859	3,563 12,103
	58 59 60	21,090 27,751	1,693 47,612	1,668 35,104	1,648 27,274	22,573 69,565	6,782 68,309	12,722 70,559	5,109 56,708	48,645 95,391
Subtotal	61	787,225	778,516	555,779	749,796	599,501	785,489	673,452	732,217	787,906
<i>Value added</i>		212,775	221,484	444,221	250,204	400,499	214,511	326,548	267,783	212,094
TOTAL	63	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

٩.

Street and a second second

A

58

78

28 23

6

7

)

and the second second

ъ.

The second second

_	JTPUT TAB								S. SHISHID	
COEFFICIEN	TS TABLE (CON	ntinued)								(Unit: 10
Petroleum products 30	Coal products 31	Non-metal mineral products 32	Iron and steel (primary) 33	Steel rolling, casting and forging 34	Non-ferrous primary metals 35	Fabricated metal products 36	General machinery 37	Electrical machinery 38	Automobiles 39	Other transpor equipmer 40
		26 99				5	2	46		
2	25,277	17,574	955	239	767	1,183	72	73 2,863		
24	677,884	69,525	2,191 93,084	3,275	7,336	1,548	1,864	2,039	928	2,22
426,736		1,603 159	93,084 12,401	59	375,291 61		635 11	25,927 113		
1,622		79,478	3,211	725	1,278					
	14	80		33						
	55	73								
		107				5	159	4,916		e
108	226	1,469	16	18	19 5	1,590	2 2,429	1,763	2,066	6,58
34 248	15 5,159	22 12,677	3 158	5 1,212	15 2,059	77 3,338	20 7,631	22 9,715	58 1,886	43,53
95 494 5,179	42 8,583 6,991	60 29,237 4,224	10 147 111	14 96 390	42 221 2,468	215 1,571 5,392	7,408 1,588 6,006	4,635 8,675 833	465 844 1,716	66 36 77
425	987	537	741	721	199	72 2,841	1,369 6,424	24 4,462	1,017 77,281	3,42 29,13
8,695 76 34,102	∆6,414 17 9,623	17,617 585 23,273	1,788 3 11,769	2,085 56 8,430	5,051 ∆2,689 6,492	4,042 2,787 3,702	2,647 4,812 3,455	7,676 7,051 5,109	14,258 11,872	10,24 27,73
8	4,976	2,871	90,801	3,525	11,724	3,620	3,070	2,133	2,848 351	4,77 44
973	3,031 123	52,296 1,367 2,256	14,438 533,016 2	844 454,707 233,741	7,363	2,073 62 361,214	3,777 5 274,445	16,999 186 102,663	12,990 94,452	5,49 225,12
3,741	82 824	3,640 87	3,762 6	16,845 801	186,312 1,034	101,303 16,096	57,400 14,867	166,345 4,981	10,002 17,467	16,69 12,56
320 127 4,059	466 201 850	709 518 2,859	15,179 2,572 367 63	12,625 1,775 1,298 65	4,368 1,382 1,482 36	10,705 5,186 1,221	145,302 28,957 652 1,068	16,220 160,036 629 3	95,684 22,879 93,917 28,741	91,38 29,92 88 65,40
23 191	58 85	263 168	253 22	1,342 37	284 95	1,504 1,423	6,347 1,386	1,989 15,585	1,939 1,095	4,63 71
					·					
1,259 4,316	860 5,387	1,323 31,516	2,352 25,469	2,593 7,346	1,460 32,221	1,333 7,860	1,571 5,966	3,600 7,324	3,428 5,565	2,03 13,78
2 214	52,432 192	168 198	∆6,154 192	2,786 544	36 565	928 197	509 807	2,017 40	2,135 367	57
8,530	15,276	47,355	7,555	9,491	12,417	24,680	31,152	42,363	47,946	46,25
2,230 1,253	52,491 20,663	20,541 15,953	12,393 6,579	5,460 3,119	7,635 5,655	7,397 4,083	6,436 4,102	7,950 5,385	5,879 3,435	6,78 4,80
1,607 2,238	33,845 1,151	9,719 3,61 5	2,375 488	1,667 2,354	2,347 2,312	1,986 24	2,132 646	1,892 678	1,602 1,531	2,14 80
8,953	4,375	13,515	4,035	5,571	11,840	9 ,6 78	11,323	8,441	9,219	9,36
4,308	3,180	3,073	253	1,172	881	524	7,002	4,413	1,395	1,76
23,992 546,180	56,788 880,934	113,466 585,913	32,175 874,781	38,812 825,879	67,376 758,712	22,042 613,506	33,701 689,311	19,288 677,104	1,649 578,906	5,37 676,58
453,820	119,066	414,087	125,219	174,121	241,288	386,494	310,689	322,896	421,094	323,41
,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,00

TABLE	34.	1955	INPUT
TUDER	JA.	1/22	THEAT

1

· · · · ·

l Wate service 49	Municif gas 48	Electricity 47	Other construction 46	Public works 45	Non- residential construction <u>44</u>	Residential construction 43	Miscellaneous manufacturing 42	Precision instruments 41	
			206	73 514	67 182	190 55	28 4,832	59 41,447	01 02 03
		2	2,593	15,963	9,374	9,668	7,417	49 59	04 05
94	501,998	114,562	109 435	2,086	507 8	1,011	9,327 2,388	1,993	06 07 08 09
	8,932		14.050	101 707	18 220	13,617	1,695		10 11
2,4			14,253	101,707	18,220	15,017	4,008		11 12 13 14 15
							3,202	6,068	16 17 18
	372	136	13,764	2,011	4,106	14,968	10,148	13,642	19 20
5,04	118 251 327 1,289 11,303	2,350 793 120 472 3,839	477 68,479 2,571 1,355 2,691	1,591 27,552 233 917 2,415	109 173,600 27,576 939 1,660	64 283,618 56,306 3,336 1,555	23 43,320 64 31,236 36,918	3,370 16,131 481 27,183 7,788	21 22 23 24 25
						241	17,117 1,751	12,448 2,834	26 27
186,76 32 1,35	1,985 ∆37,278 28 31,544	3,408 154 10 14,334	1,586 2,182 5,510 3,214	2,419 4,080 440 17,728	368 660 7,439 1,767	241 450 9,265 786	1,731 159,451 10,465 14,122	35,172 6,398 2,561	28 29 30
6,55	∆362,732 8,271 805	1,151	10,362 111,946 118	1,203 125,126	2,273 104,195	2,140 84,909	272 6,969	1,260 19,632	31 32 33
12,29	40,128 3,567		70,049 4,874	24,114 1,229	68,989 1,461	41,458 2,462	33,111 18,831	53,377 50,905	34 35
9,87 69,28 98 4,75	121 37,097 174 8,583	103 57,367 69,340 3,905	111,838 15,322 72,181 2,940 7	31,128 5,871 4,937 12,924 26	95,134 30,283 21,169 1,062	27,936 4,509 7,508 619	3,441 2,060 596 1,049	5,006 21,906 4,802 460 10	36 37 38 39 40
2	28 6 5 9	170 241	1,459 1,735	885 949	715 3,700	669 3,128	249 31,516	97,088 1,085	41 42 43 44 45
17,44 115,52	27,333 4,640	17,959 9,338 10,332	2,331 855 48	1,116 4,060 189	581 2,080 64	432 795 45	1,129 9,233	2,430 3,069	46 47 48
21,35	215 21,493	558 7,666	172 29,075	617 34,266	840 44,192	300 45,652	468 45,700	59 43,589	49 50
2,32 1,32 1,26 2,66	76,683 29,784 47,159	19,988 7,271 10,708 1,363	13,859 12,505 3,474 3,245	21,032 24,173 8,001 6,483	16,752 17,024 3,657 1,291	15,497 18,400 2,834 969	6,503 7,050 1,345 4,130	6,057 4,738 1,195 1,114	51 52 53 54 55
2,00 9,20	15,933	10,902	9,919	12,246	9,043	8,395	14,185	12,835	56 57 58
4,92 56,85	9,388 107,048	3,461 1,697	812 20,727	2,390 37,286	234 45,453	62 42,952	14,215 95,676	11,149 42,473	59 60
160,13	597,248	373,697	619,277	539,982	716,778	706,801	655,241	561,920	ıbtotal 61
839,86	402,752	626,303	380,723	460,018	283,222	293,199	344,759	438,080	alue added
,000,00	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	OTAL 63

κ.

TA INPUT-OUTPUT TABLES OF JAPAN

PUT

COEFFICIENTS TABLE (continued)

(Unit: 10⁻⁶) Finance Public 0

										(0111.10)
Trade 50	Real estate 51	Railroads 52	Road transport 53	Other transport 54	Com- munications 55	Finance and insurance 56	Public administration and defence 57	Community sc r vices 58	Other services 59	Unallocated 60
55 340		14 93	71	25					1	4,217 874
449	18	4	11	2	2	1,568		2,417	6,434	535 1,608
252	64	52,098	539	17,645	1,138	1,687		2,615	3,773	1,832 902 2
∆7		∆14	1,298							1 9
		2,438	296					30	36	3,317 820 2,792 884
								274	1	108,388 2,980
2 (05									1,058	224 14,924 1,315
2,605		1,627	648	728	864	113		757	3,846	17,220
548 10,516 2,308		4,851 12,981 173	1,436 14,012 141	1,193 5,914 290	4,055 199 201	419 78 99		1,859 1,177 667	1,580 1,422 2,424	152 32,709 782
13,156 22,570	69	2,665 5,214 281	9,292 8,307 34	5,987 3,718	1,434 9,735	391 17,642		2,625 24,075	4,083 41,211	6,128 14,135
402			16,052	2,762	303	718		262	667	1,397 11,672
28 132 577		458 293 9,027	56 46 113,889	5 1,134 132,082	4 48 1,882	2 9 1,144		12 47,800 1,826	308 17,012 1,466	28,153 10,004 8,161
38 43 ∆53		31,908 1,675 ∆2,215	4,190 206	55 8	1,679 240	3		67 1,251	1,296 3,131	128 12,009
342		11,622	1,836	192	605			2,794	791 234	13,271 8,799
1,217 2,148		290 11,376	257	667	365	37		435	5,343	6,256
2,256		11,312	1,272 2,093	3,469 4,489	903 12,974	102 939		92 1,432	220 835	1,989 2,871
1,501		134 21,932	74,006 2,687	3,819 64,380	2,819 735	5,871		8,775	2,889	12,765 4,577
494 3,979		484 380	207 415	1,154 645	128 553	9 200		10,638 5,900	8,618 5,053	2,050 3,212
9,723	121,733	87,230	11,145	2,592	1,912	13,236		21,257	7,796	2,493
3,850 590	27 14	21,791 153	7,669 17	140 2	5,887 378	4,231 1,364		7,551 5,750	17,863 5,163	8 1,575
369 7,036	9 27	1,855 7,838	939 18,944	2,033 17,055	1,699 2,808	935 3,488		2,711 15,516	2,662 19,700	4 50,533
13,732 4,472		10,952 6,312	3,342 4,373	9,075	9,347	8,379		11,592	7,940	23,936
13,507 34,848		5,008 987	1,438 7,706	4,055 7,731 5,702	6,543 6,076 8,830	2,475 899 62,531		6,270 2,214 4,384	3,425 1,104 15,552	656 3,140
16,260	39,750	8,348	13,929	41,268	11,539	1,013		14,347	15,889	4 12,211
52,573	55	3,258	16,988	36,807	20,253	21,436		11,531 33,889	1,536 52,814	27,837
35,912 258,086	161,767	31,568 366,380	67,239 407,027	155,690 532,514	26,445	17,152		64,209	29,608	3,473
741,914	838,233	633,620	407,027 592,973	532,514 467,486	141,684 858,316	168,169 831,831		318,998 681,002	294,884 705,116	470,547 529,453
1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	529,453 1,000,000

Source: Transactions table compiled at 1955 producers' prices.

 \mathbf{C}

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

		Food crops	Industrial crops 2	Livestock for textiles 3	Other livestock 4	Forestry and logging 5	Fisheries 6	Coal- mining 7	Iron- mining 8	Other metal- mining 9
	01	24,864	7,888	358,175	270,954	178	104			
	02		58			27				
	03 04	862 86,257	63,288	9,362	151 10,241	163				
	05	6,064	1,782	2,020	4,850	253,446	5,178	70,244	8,259	30,72
	06	5				37	5,755			
	07 08 09 10				201	19	376	34,364	13,515	4,767
	11	3,751	1,953	2,226	1,403	4	331			
	12	557	778	190,004	41 132,784	75 5	1,282 1,556			
	13 14	557	110	190,004	152,704	141	13,593			
	15	4		31,848	30,813	595	8,992			
	16				272	527	66			
	17 18 19					14	72 3,670			
	20	7,610	4,877	3,366	2,694	3,386	46,031	1,358	503	1,51
	21	1 636	10	11 000	45	19 201	768	33	80 10 633	17 94
	22 23	1,535	13	11,239	5,976 54	18,301 33	12,612 66	8,986 94	10,633 231	17,84 24
	24	2,683	2,579		1,733	119	687	342	838	90
	25			1	1,036	544	8,869	3,368	9,496	6,58
	26 27	36	36		28	2 201	627	4,389	2,256	2,25
	28	52,408	88,863		7,783	372	1,624	15,891	18,568	50,74
	<i>29</i>	10,780	23,808	22,047	27,735	766	1,308	30 5 1 40	20	2
	<i>30</i>	1,728	565		77 478	5,962	60,470 845	5,140 98	11,833 463	4,75 81
	31 32	2,046	985		478 327	147	84 <i>3</i> 544	1,428	1,504	1,692
	33				0.00	1.000		3,802		
	34 35			312	260 19	1,285 3	272 664	12,093	25,116	31,542
	36	1,365	2,268	8,528	4,653	8,298	11,260	5,288	8,343	8,00
	37	4,764	9,163	0,020	24	2,410	358	14,669	25,330	9,31
	38	428			171 113	187 2,232	735 1	8,648 1,458	9,276 631	13,54 70
	39 40	260 31	693		113	2,232	31,837	1,450	470	34
	41	168	70		151	309	275	955	6,392	1,94
	42	1,150			577	123	1,999	188	461	49
	43 44									
	45									
	46									
	47 48	1,809		830	1,771 42	700	2,277 1	59,142	26,619 2	46,82
	40 49				24	443	119	133	3	
	50	25,771	38,153	36,054	30,528	2,994	26,918	7,942	15,070	18,47
	51		1 001	1 - 1 - 1 - 1	1 000	0.57	4 100	11.010	A	£ 0.3
	52 53	2,050 2,198	4,501 3,550	1,610 4,173	1,882 3,428	857 467	4,196 2,278	11,810 7,254	4,654 1,416	5,93 3,31
	54	649	1,829	91	159	885	6,261	1,616	2,450	2,08
	55				147	1,765	535	1,455	5,894	7,89
	56 57 58	12,991	11,074	18,264	12,979	5,509	14,329	12,368	8,377	21,80
	58 59			7,683	3,121	5,454	16,759	623	1,178	3,82
	60	1,191	7,164	52,770	11,528	53,027	72,753	93,067	59,030	93,37
ubtotal	61	256,015	275,938	760,603	571,253	372,023	369,253	388,276	278,911	392,40
alue added	62	743,985	724,062	239,397	428,747	627,977	630,747	611,724	721,089	607,60
OTAL	63	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,00

.3% .2: "

-

-4 .

-193

. 00

- 190 - 1 10 11 - 11 - 1100

TA INPUT-OUTPUT TABLES OF JAPAN

-

2.....

.

•

C	OEFFICIENT	S TABLE									(Unit: 10
-	Oil and gas extraction 10	Other minerals extraction 11	Meat and dairy products 12	Grain- milling 13	Seafoods processing 14	Other foods 15	Beverages 16	Tobacco 17	Natural- fibre spinning 18	Man-made fibre spinning 19	Fabrics 20
-		282	∆142 1,397	940,698	98 ∆1,473	112,583 64,044	42,114 1,282	131,676	7 319,876 170,322	10,911	9,354 10,677
	1,705	13,737	496,643 1,312	1	3,545 893	7,785 5,634	288		158,709 687	11,315 1	1,794 349
	673	14,475	2,558	292	494,330 5,326	1,005 4,107	4,380	399	5,429	1,953	96 6,142
	4,544										
		6,009	49 48,556		3,586 41 8 50,333	2,232 9,357 152,448 250	1,556 5,400	10	41		76 496
			17,352		44,695 2,038	146,289 50	18,878 822	1,242			4,821
						45			4,910	1,241	325,694
	251	6,348	210	533	2,539	1,455	1,341	436	340	287	66,653 120,778
	74 8,523 215 780 13,842	31 9,059 89 1,131 5,556	49 733 98 12,659 2,528	5 1,043 15 2,236 1,014	30 14,224 87 10,417 7,145	36 3,866 48 3,046 5,157	22 1,566 63 2,107 8,471	2 2,179 6 13,370 12,917	13 1,268 36 818 6,098	9 1,162 26 731 5,413	36 1,200 104 6,376 5,760
	2,782 1,103 19 9,414	4,087 13,281 190 10,594	390 3,959 828 2,419	50 193 1 39	250 2,389 13,061 1,522	13 283 10,899 20,194 3,670	128 68,649 5,335 1,458	92 92 2,023 274 930	1,252 392 16,698 5,014 2,560	1,823 254 658,267 2 974	566 1,439 69,832 5,356 4,417
	4,029	278 1,194	91 6,706	158	15 872	1,406 19,441	73,407	5 23	56 118	18 102	96 83
	85,257	7,306	197 198	34	377	51 134	16	53 218 2,122	37 123	19 117	43 134
	9,219 45,058 13,951 3,653 683	6,593 5,592 6,805 2,673 89	8,949 3,906 514 1,539	362 43 183 185	43,254 533 463 1,476	9,949 1,278 456 3,560	6,240 2,687 711 795	724 1,224 153 685	124 11,446 3,238 584	138 9,111 4,475 341	207 4,606 1,416 521
	11,127 429	876 192	1,323 388	30 40	249 1,431	416 348	875 726	450 12	2,065 83	1,319 69	1,020 967
	53,924 7 12 9,761	23,223 1 271 28,765	3,417 118 1,355 33,190	2,642 33 29,164	3,603 1,525 631 52,048	10,458 2,422 2,452 76,222	3,131 1,086 227 33,895	600 16 159 4,579	13,916 76 54 21,664	18,817 19 167 16,248	5,887 603 601 24,229
	8,860 2,720 991	6,309 3,171 28,744	25,334 14,350 14,602	1,827 4,253 224	6,393 1,575 7,511	7,874 8,720 1,844	5,371 3,517 586	1,678 1,244 1,854	7,546 2,270 2,799	4,815 1,625 3,704	5,207 2,576 1,478
	5,714 13,780	2,699 8,976	1,567 7,920	232 2,825	842 8,813	1,071 22,158	1,501 12,655	2,765	2,772 18,393	2,334 13,442	3,816
	1,379	1,082	31,962	777	7,601	8,516	12,617	420	9,179	12,076	2,169
	66,342 380,819	116,601 336,309	28,431 777,655	12,193 1,001,325	17,811 812,107	25,991 759,263	18,473 342,376	14,993 199,625	36,525 827,538	28,574 811,899	29,439 742,489
	619,181	663,691	222,345	∆1,325	187,893	240,737	657,624	800,375	172,462	188,101	257,511
1	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

TABLE 3B: 1955 INPUT

1

									TABLE 3B: 1	955 INPUT
		Apparel 21	Wood products 22	Furniture 23	Pulp and paper 24	Printing and publishing 25	Leather products 26	Rubber products 27	Basic and intermediate chemicals 28	Oils, fats and final chemicals 29
	01 02	4 55,654	28 167		1,822 7,455			268,232	13,091 2,376	77,442 111,938
	03 04 05	101 35	11 703,237	189	139,128		1,272	780	6,651	345 14,226
	06 07 08 09	660 1,049	59 295	1,471	22,576	464	4,763 3,192	9,224	6,458 30,459 ∆6,387 1,821	23,903 5,280
	10				682				436	43
	11 12 13 14		52 68 82 68		7,004		498,514	30	60,622 11,051 952	964 32,140 3,526
	15		807		2,398	11		10	4,434	8,482
	16 17 18	23,857	695 55 195		5	443	4,708	2,424	46 11	20
	19	·		0 702			-	,		0 275
	20 21	341,106 7,349	723 15	8,793 27	6,739 16	5,681 33	27,902 12	159,848 37	10,946 23	2,375 49
	22 23 24 25	12,139 32 4,291 5,822	42,104 43 2,228 2,590	360,600 1,504 3,663 7,847	9,161 46 341,895 130,181	396 95 253,351 1,164	881 34 910 5,191	882 108 1,005 6,528	7,502 68 59,839 2,737	30,752 142 18,112 2,569
	26	49,344	-, 9	1,760	78	- ,	86,470	-,	9	_,
	27 28 29 30	18,338 10,360 111 761	880 3,521 3,222 594	335 2,539 30,976 953	2,574 20,340 3,472 7,294	2,780 1,148 19,317 1,837	62 79,866 3 8,848	434 51,365 152 15,767	2,597 296,959 11,076 8,459	857 118,037 76,531 6,219
	31 32 33	59 1	25 356	461 6,422	139 1,299	187 444	36 1	23 7,825	24,998 3,627 245	182 14,100
	34 35	1,658 942	1,618 21	22,553 3,794	312 133	164 2,677	265 4,903	37	3,632 10,255	1,038 560
	36 37 38 39 40	5,547 2,168 234 390	2,344 797 427 1,476	26,104 2,053 160 1,316	2,792 3,494 3,386 544	371 9,569 1,662 27,577	23,970 2,701 627 633	55 1,527 246 288	755 8,051 4,897 696 85	9,466 2,393 1,196 2,630 22
	41 42 43 44 45	350 9,194	125 995	113 14,062	625 183	4,487 191	3 35,871	38 7,870	1,819 202	758 645
	46 47	2,291	8,773	8,082	35,136	6,805	7,491	1,440	48,250	6,738
	48 49 50	17 20 46,978	284 6,377	56 354 25,580	189 4,352 18,990	3,205 3,512 24,455	378 38,009	246 26,580	4,747 6,241 32,021	23 5,393 53,750
	51 52 53	3,376 2,585	3,497 2,195	14,889 15,711	7,472 7,985	5,276 5,294	5,913 2,184	7,128 2,275	19,766 9,266	11,095 7,180
	54 55	536 3,101	382 1,841	1,238	1,664 1,656	333 27,029	1,461 2,016	2,190 5,405	5,185 1,804	3,515 3,752
	56 57	9,125	10,898	26,002	10,988	10,974	2,714	12,963	15,774	13,139
	58 59 60	21,068 26,574	1,608 41,890	1,796 36,231	1,860 29,507	22,454 60,995	7,395 71,402	14,563 77,425	6,066 64,543	55,092 103,561
Subtotal		667,227	847,679	627,634	835,572	504,381	940,601	697,917	805,161	830,180
Value added		332,773	152,321	372,366	164,428	495,619	59,399	302,083	194,839	169,820
Total	. 63	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

INPUT-OUTPUT TABLES OF JAPAN ATA

COEFFICIENTS TABLE (continued) NPUT

(Unit: 10⁻⁶)

COEFFICIEN	NTS TABLE (CO	ntinued)								(Unit: 10 ⁻⁶)
Petroleum products 30	Coal products 31	Non-metal mineral products 32	Iron and steel (primary) 33	Steel rolling, casting and forging 34	Non-ferrous primary metals 35	Fabricated metal products 36	General machinery 37	Electrical machinery 38	Automobiles 39	Other transport equipment 40
		27 70				5	2	48		
3	31,628	20,958	1,147	252	980	1,348	72	71 3,450		
24	644,001	70,541	2,242	2,941	7,959	1,504	1,650	2,091	1,043	2,243
355,883		1,432 174	99,778 11,163	57	358,282 72		495 11	23,382 125		
1,375		70,024	2,849	566	1,207					
	15	94		30						
		67								
	50	80					110	4 2 2 2		c 0
100	21/1	89	16	1.6		4	113 3	4,223		59
102 30		1,433 20	16 3	16 4	210 15	1,516 69	2,082 16	1,749 21	2,158	6,032
251	5,791	14,387	173	1,072	2,336	3,284	7,473	10,557	60 2,322	22 50,066
87 420		58 26,026	9 132	12 75	43 211	199 1,338	6,249 1,233	4,528 7,846	498 833	643 326
5,620		4,813	132	393	3,005	5,869	5,963	958	2,162	877
		(00	(70)	47 0	100	63	1,093	23	1,031	3,122
368 7,750		489 16,583	679 1,755	579 1,746	193 5,456	2,471 3,608	5,097 2,168	4,100 6,535	77,799 14,896	26,396 9,761
72	15	558	3	48	△2,836	2,579	4,045	6,879	12,732	26,682
34,102 8		24,440 2,956	12,451 94,115	7,817	7,284	3,714	3,162	5,415	3,307	4,995
1,069		49,522	16,706	3,202 860	12,888 8,979	3,559 2,044	2,753 3,694	2,219 17,990	400 14,495	460 6,043
	133	1,396 2,506	535,062 3	391,491 229,221	1,311	67 383,803	4 282,858	192 119,918	118,098	254,437
	76	3,324	3,460	13,581	181,753	92,470	47,593	156,547	10,564	15,857
3,729 350		91 814	6 17,547	740 12,793	1,156 5,356	16,096 11,736	13,561 145,302	5,262 18,785	20,216 121,410	13,085 104,371
120	193	513	2,568	1,553	1,463	4,909	25,002	160,036	25,066	29,506
3,580	764	2,648	342 66	1,062 60	1,467 40	1,080	526 972	588 3	91,925 33,519	813 68,465
21	53	210	241	1,118	286	1,354	5,216	1,882	2,061	4,352
174		162	21	31	97	1,306	1,161	15,120	1,164	688
4,047 2		31,036 179	25,267 ∆6,604	6,388 2,620	33,900 41	7,394 944	5,120 472	7,279 2,169	6,0 59	13,510 610
322	295	313	306	761	956	298	1,113	64	2,514 642	47
8,165	14,903	47,605	7,651	8,425	13,336	23,703	27,290	42,981	53,295	46,277
2,423		23,432	14,243	5,500	9,305	8,061	6,398	9,152	7,416	7,703
1,209 1,734		16,172 9,613	6,719 2,370	2,792 1,461	6,125 2,483	3,954 1,885	3,624 1,842	5,509 1,898	3,851 1,759	4,845 2,118
2,065	1,082	3,502	477	2,014	2,393	22	545	663	1,641	771
8,518	4,240	13,502	4,061	4,915	12,637	9,238	9,857	8,511	10,183	9,310
4,275		3,203	265	1,078	981	522	6,359	4,642	1,608	1,829
22,825 470,723		113,357 578,339	32,382 889,801	34,240 741 514	71,913 753 283	21,038	29,340 661 529	19,448	1,822	5,345
470,723 529,277		421,661	889,801 110,199	741,514 258,436	753,283 246,717	623,054 376,946	661,529 338,471	682,859 317,141	648,549 351 451	721,668
1,000,000		1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	351,451 1,000,000	278,332 1,000,000
			.,,	1,000,000		.,,	1,000,000		1,000,000	.,,

TABLE 3B: 1955 INPUT

5

	TABLE JD. I								
Water services 49	Municipal gas 48	Electricity 47	Othe r construction 46	Public works 45	Non- residential construction 44	Residential construction 43	Miscellaneous manufacturing 42	Precision instruments 41	
			125	66 316	62 114	169 33	30 4,430	71 34,204	01 02
		3	2,797	17,813	10,487	10,281	9,202	59 80	03 04 05
600	458,163	118,289	104 377	1,831	496 7	961	10,838 2,526	2,349	06 07 08 09
1,33	9,196		10,635	76,880	13,988	10,157	1,547 3,778		10 11 12 13 14 15
							2,813	5,041	16 17 18
	348	138	11,491	1,719	3,490	12,425	10,046	48 15,573	19 20
3,46	103 235 297 1,081 12,091	2,589 803 118 428 4,442	429 67,584 2,120 1,030 2,612	1,483 27,530 195 707 2,375	96 176,452 23,399 743 1,658	52 279,190 46,423 2,605 1,509	22 50,570 64 29,365 43,761	3,950 20,544 539 28,619 10,282	21 22 23 24 25
	1 (07	a (50					16,321	13,219	26
∆102,27 20 89	1,697 △28,367 26 31,098	3,150 132 10 15,285	1,230 1,866 4,488 2,876	1,901 3,527 367 16,069	294 545 6,308 1,627	187 360 7,633 703	1,659 128,745 10,597 15,428	2,989 36,316 7,228 3,116	27 28 29 30
3,26	∆350,357 8,185 724	1,349	9,250 94,860 103	1,086 92,579	2,085 86,869	1,907 73,964	295 7,263	1,512 23,884	31 32 33
8,63	41,836 3,104		67,360 3,980	23,165 1,017	67,307 1,228	39,288 2,010	38,255 18,774	71,450 56,318	34 35
6,53 50,25 61 2,78 8	119 39,964 162 7,463	109 66,849 69,767 3,673	99,742 14,981 60,938 2,320 6	28,123 5,815 4,222 10,332 23	87,292 30,463 18,387 862	24,906 4,407 6,336 488	3,747 2,460 614 1,011	6,071 29,127 5,514 494 12	36 37 38 39 40
2	24 595	162 235	1,171 1,421	720 787	592 3,118	537 2,561	216 31,516	98,877 1,208	41 42 43 44 45
71,90	25,269 4,640	9,338 11,176	717 43	3,451 174	1,795 59	667 41	9,460	3,501	46 47 48
13,57	319 20,284	896 7,825	232 24,904	843 29,733	1,165 38,944	404 39,089	771 47,794	108 50,773	49 50
1,67 85 81 1,63	82,121 28,345 43,737	23,154 7,485 10,753 1 341	13,470 10,801 2,969 2,679	20,709 21,152 6,848 5,422	16,752 15,129 3,181	15,058 15,887 2,398	7,718 7,435 1,392	8,007 5,566 1,424	51 52 53 54
5,81	14,943	1,341 11,060	2,679 8,443	5,422 10,560	1,097 7,919	800 7,144	4,163 14,743	1,251 14,858	55 56 57
3,24 35,90	9,185 100,399	3,703 1,722	737 17,643	2,195 32,152	214 39,807	55 36,549	15,412 99,440	13,463 49,166	58 59 60
111,83	567,029	375,984	548,534	453,887	664,031	50,549 647,184	654,221	626,811	ubtotal
888,16	432,971	424,016	451,466	546,113	335,969	352,816	345,779	373,189	activitie
1,000,00	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	TOTAL 63

۰.

DATA INI

INPUT-OUTPUT TABLES OF JAPAN

a come 👼 👘

S. SHISHIDO

23

١

Input	COEFFICIENT	TS TABLE (con	ntinued)								(Unit: 10 ⁻⁶)
ater vices 19	Trade 50	Real estate 51	Railroads 52	Road transport 53	Other transport 54	Com- munications 55	Finance and insurance 56	Public administration and defence 57	Community services 58	Other services 59	Unallocated 60
	53 ∆224		13 46	73	28					1	4,046 688
	495	13	5	13	3	3	1,872		2,181	6,924	512 1,919 1,936
606	237	40	46,431 ∆11	539	19,308	1,194	1,717		2,012	3,431	917 917 3
	∆6			1,404							9
1,339			1,871	256					25	21	2,789 995 2,903 1,005
									188	1 835	105,579 2,797 216 8,917
	2,372		1,466	644	787	852	113		571	3,338	2,434 15,944
3,468	471 10,566 2,067 10,851		4,618 13,006 147 2,080	1,534 15,131 135 8,156	1,382 6,924 303 5,747	4,541 205 201 1,319	451 78 96 350		1,431 888 488 1,774	1,357 1,292 2,099 3,272	150 37,939 758 5,499
1	23,796	48	5,208 226	9,337 30	4,568	11,447	20,120		20,756	41,991	16,121 1,282
02,276 205 898	339 24 121 561		393 253 8,310	14,417 54 45 117,979	2,712 5 1,206 149,582	285 4 49 2,040	654 2 8 1,203		181 9 32,103 1,451	543 263 14,984 1,377	10,637 24,661 9,188 9,209
3,261	36 43 ∆47		28,822 1,352 ∆1,861	4,264 187	63 10	1,816 301	3		52 917	1,192 3,187	132 13,583
8,633	351		11,315	2,012	229	699			1,930	867 200	14,752 8,323
6,536 60,250 616 2,784 81	1,178 2,281 2,069 1,286		266 11,444 9,825 109 20,009	266 1,440 2,046 67,614 2,759	753 4,293 4,797 3,815 65,691	394 1,070 13,267 2,695 800	38 117 931 5,443		344 80 1,073 6,149	5,001 226 739 2,392	6,555 2,285 2,848 11,834 4,590
24	415 3,539		397 320	179 393	1,120 669	123 549	8 193		6,983 4,291	6,003 4,343	1,636 3,091
1,906	3,508 581 540	16 9 9	18,811 143 2,573	7,450 18 1,465	148 2 3,468	5,983 416 2,775	4,171 1,454 1,481		5,626 4,634 3,245	15,818 4,918 3,766	8 1,680 6
3,571	6,548	17	6,907	18,787	18,489	2,913	3,510		11,805	18,098	55,492
1,675 851 815	14,495 4,194 15,154		10,952 5,609 4,354	3,760 4,373 1,454	11,164 4,434 8,503	11,005 5,904 6,313	9,567 2,511 921		10,006 4,809 1,696	8,100 3,104 1,001	27,331 666 3,457
1,632 5,812	31,244 15,031	24,183	838 7,311	7,365 13,727	5,958 44,462	8,830 11,898	60,648 1,013		3,214 10,845	13,475 14,195	4 12,211
3,241 5,905	50,699 33,198	35	2,997 27,647	17,468 66,265	41,369 167,739	21,929 27,266	22,362 17,152		12,474 28,462 48,536	1,963 50,952 26,451	30,360 3,473
1,834	238,066	24,370	27,647	393,039	579,731	149,085	17,132		48,330 231,229	267,720	473,371
8,166	761,934	975,630	745,798	606,961	420,269	850,915	841,813	1,000,000	768,771	732,280	526,629
0,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

Source : Transactions table compiled at 1960 producers' prices.

	Food crops 1	Industrial crops 2	Livestock for textiles 3	Other livestock 4	Forestry and logging 5	Fisheries 6	Coal- mining 7	Iron- mining 8	Other metal- mining 9
01 02	43,079	31,325 1,479	275,685	161,139	△2,113 △557	79			
03 04 05	302 31,879 3,160	23,188 2,209	4,364 16,679 1,745	18,436 4,294	137 388,594	3,931	47,618	5,625	22,494
06 07	-,	-,	_,	340	17	22,389 223	15,010	1,763	2,630
08 09				510	17		10,010	1,105	2,000
10							80		107
11 12	154	124	2,182	1,189 371	2	296			
13	7,218	7,136	112,242	64,513	2	139			
14	1 900	1 771	42 204	101 206		78			
15 16 17	1,899 55	1,771 46	43,394	191,396 551		11,402			
17 18 19						1,346			
20	9,795	6,379	727	2,079	2,035	45,103	5,201	2,793	1,174
21				113	85	77	3,358	1,815	764
22	212	175	2,570	2,426	483	12,518	3,577	77	32
23	1 4 4 4	22		375 1.013	213	84	3,616	1,944	820
24 25 26	1,444	22		793	125 171 12	3,032 84	4,918 10,075	2,639 2,999	1,111 9,269
20 27	848	517	6,206	706	102				
28	64,568	89,244	0,200	8,992	935	1,662	18,564	19,565	34,375
29	16,869	28,105	12,267	9,659	1,429	2,227	191	13	6,673
30	4,355	6,401	727	1,990	8,679	73,894	5,002	8,212	6,141
31 32	1,681	2 762	485	667 968	2 129	3 1,029	11 1,046	26 64	1,011 24
32 33	1,081	2,763	465	900	129	1,029	1,040	04	24
34 35			145	204 27	202		19,352	1,776	30,378
36	1,151	960	776	2,493	2,347	7,837	5,138	4,068	4,471
37	4,012	2,021		534	2,216	15,570	16,904	29,116	11,108
38 39	2,683	513		888 44	2,119 3,896	1,371	4,672 663	4,776 759	6,695 735
40				36	889	29,140	4,367	6,204	75.
41				272	154	32	1,382	747	310
42 43	2,399	585	485	281	306	8,713	1,901	1,622	1,021
44 45	5,114	5,127	3,345	14,655	795	1,559	7,792	65,351	35,660
46			(00)	6 000	107	(0.7	72 (22)	15.050	50 01
47 48	1,852	1,340	630	6,308 165	187 72	627	72,623 358	45,258 77	58,310 81
40 49				327	8		561	219	0. 2,19
50	11,319	14,293	20,752	20,132	3,312	12,241	19,788	12,499	16,43
51						10	197	1,738	43
52	2,826	3,607	1,552	3,435	2,010	4,891	10,866	18,703	13,66
53 54	3,219	5,116	5,770	6,914 1 847	437	3,139	1,767	669 1 892	1,190
54 55	1,897	2,693	1,842	1,847 771	328 433	4,958 513	2,749 7,690	1,892 19,269	2,371 8,001
55	0.045	0.169	776	2 404	-+55 6 210	9 6 6 7	12 226	7.067	16.01

900	110	2,475	2,547	7,057	5,150	4,000	
2,021		534	2,216	15,570	16,904	29,116	11,108
513		888	2,119	1,371	4,672	4,776	6,695
		44	3,896		663	759	735
		36	889	29,140	4,367	6,204	
		272	154	32	1,382	747	310
585	5 485	281	306	8,713	1,901	1,622	1,021
5,127	3,345	14,655	795	1,559	7,792	65,351	35,660
1,340	630	6,308	187	627	72,623	45,258	58,310
,		165	72		358	77	83
		327	8		561	219	2,198
14,293	3 20,752	20,132	3,312	12,241	19,788	12,499	16,436
				10	197	1,738	437
3,607	7 1,552	3,435	2,010	4,891	10,866	18,703	13,667
5,116	5 5,770	6,914	437	3,139	1,767	669	1,196
2,693	3 1,842	1,847	328	4,958	2,749	1,892	2,371
		771	433	513	7,690	19,269	8,007
9,168	3 776	2,404	5,219	8,663	12,336	7,067	16,013
					2,080		1,343
		3,168	1,455	7,820	13,288	8,328	13,525
9,370) 136,145	13,352	4,407	23,124	24,731	59,340	70,809
255,678	651,491	550,262	431,276	309,804	349,473	337,015	381,399
		2,199	3,674	9,842	29,612	68,350	55,279
33,761	1,115	14,994	119,106	263,115	478,666	223,664	314,230
633,097		362,882	405,442	284,087	35,520	276,104	138,898
		<i></i>	20,070	100 000	00'0.00	00'000	00000

33,063

568,724

1,000,000

7,480

 $\triangle 42$

127,206

6,119

 $\triangle 173$

690,196

1,000,000

80,966

25,763

650,527

1,000,000

88,688

7,221

∆1,043

662,985

1,000,000

26,090 ∆1,924 618,601 1,000,000

86,026

1

1

1

24

56

57

58 59

60

Subtotal 61

Business consumption .. 62

Wages and salaries 63

Business surplus 64

Depreciation 65

Indirect Tax 66

(△) Subsidies 67

Total value added 68

TOTAL 69 1,000,000

9,045

1,673 234,709

23,254

649,640

73,340

19,704

765,291

 $\triangle 646$

51,114

26,883

∆533

744,322

1,000,000

39,127

22,691

∆2,230

348,509

1,000,000

52,232

17,774

∆342

449,738

1,000,000

TA INPUT-OUTPUT TABLES OF JAPAN

Contraction of the Contract of

•

COEFFICIENT Oil	Other	Meat and						Natural-	Man-made	(Unit : 10 ⁻¹
and gas extraction 10	minerals extraction 11	dairy products 12	Grain- milling 13	Seafoods processing 14	Other foods 15	Beverages 16	Tobacco 17	fibre spinning 18	fibre fibre spinning 19	Fabrics 20
	11	122 132 1,772	926,155	748 154	134,074 21,765	50,725 1,716	2 127,978	5 289,738 183,366	16 26,156 14,147	5,512 27,186
660	5,519	508,374 15		716 1,188	7,636 3,556	478	108	99,192 1	2	1,904 233
172	14,278	2,879 922	111	516,811 696	4,418 1,867	2.936	399	3,176	471	3,048
10,186	16									23
	9,896	390 131,927		6,704 3,170 7	5,440 8,560 115,327	1,545	×			
		34,685		10,063 61,071	214 211,703	37,765	1,098			4,591
				1,201	2(436	47,178	364 16,942			
			4	157				3,928	337 ∆1,850	322,030 97,946
479 325	1,020	104	42	2,967	584	529	194	1,919	919	113,622
325 9	786 1,979	77 1,503	512 1	317 12,442	∆212 4,158	70 9,664	340 2,760	816 762	752 2,466	1,298 1,032
343	660	73	26	483	196	75	11	809	577	515
470 2,413	4,066 2,738	13,963 324	3,705 70 432	17,468 458	7,319 1,454	5,899 1,000	15,151 4,605 171	2,288 3,725	4,745 3,431	3,227 3,257
4.000	34	0.000		867	21	3	125	13	43	969
4,908	11,764 1,080	2,086 19,420		7,745 3	13,655 45,716	2,919 4,012	2,193 990	20,225 7,610	649 ,763 5	97,329 7,710
11,361	18,572	5,172	183	5,005	10,695	5,065	203	3,664	862	5,899
9	440 63	10,595	99	626	469 5,337	52,528	3 26	14 26	47 19	28 17
	1,171	41		148	188 78	633	550 4,531	47	158	65
5,504	3,097	7,612	48	33,235	8,497	5,835	475	141	448	190
23,247 48,888	9,472 8,626	89	176 309	1,308 640	522 446	11	1,275 509	2,926 1,232	15,126 3,673	4,455 1,223
10,000	656		179	040	746	100	276	1,252	10	24
127 145	396 555	27 1,821	10 11	131 12,589	76 3,394	29 32	4 3,323	309 355	220 279	197 755
51,292	25,644	299	255	12,963	4,563	3,944	2,346	2,701	3,361	1,715
51,591	26,848	3,967	1,605	2,766	7,370	2,596	883	20,358	14,787	7,584
63 425	1,325 372	292 2,818	13 22	132 1,173	2,542 1,383	4 625	117 29	306 497	71 584	484 197
5,911	20,474	77,478	37,579	61,635	37,592	42,051	2,889	37,539	19,833	29,957
389	394	6 700	9	74	136	99	46	433	564	289
3,624 515	9,622 1,350	6,509 4,215	4,224 3,794	3,998 2,393	7,066 5,661	5,512 2,755	2,054 902	4,424 1,299	4,747 4,717	5,006 3,364
416	5,412	3,137	11,647	2,835	7,420	3,181	409	3,378	2,315	2,654
3,426 6,336	14,986 10,188	2,201 4,598	238 636	2,088 2,252	2,256 8,232	1,345 5,299	907 4,166	2,920 8,305	2,081 6,026	2,746 7,480
54		74	73	75	75	74	75	404	288	490
11,361 66,676	5,889 77,297	13,002 45,432	153	5,350	8,902	21,132	1,939	4,907	5,013	5,353
311,325	296,695	43,432 908,147	8,011 1,000,330	23,227 820,080	43,797 757,333	56,660 376,057	14,346 215,713	33,450 746,49 5	1,259 788,469	17,866 789,470
11,578	23,648	4,424	3,650	5,131	16,146	12,367	1,440	10,181	7,381	8,931
219,405	363,262	48,438	5,653	68,406	81,731	57,285	57,779	111,545	79,146	101,240
186,524 263,512	212,064 77,424	14,135 20,393	14,079 1,253	92,923 11,456	88,702 20,937	49,297 18,932	6,846 7,512	94,792 31,467	88,141 31,458	76,326 18,502
10,277	27,016	4,463	727	2,005	36,069	486,427	710,710	5,521	5,404	5,531
∆2,611	△108		∆25,692		∆918	∆365				
688,675	703,305	91,853	∆330	179,920	242,667	623,943	784,287	253,505	211,531	210,539
1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

TABLE	3C.	1960	INPUT
IADLE	<i>J</i> C.	1 200	INFUL

1

								TABLE 3C: 1	900 INPUT
	Apparel 21	Wood products 22	Furniture 23	Pulp and paper 24	Printing and publishing 25	Leather products 26	Rubber products 27	Basic and intermediate chemicals 28	Oils, fats and final chemicals 29
01 02 03	5 7,435 4,930	3 174		2,470 8,847	6		204,946	31 1,041	12,195 81,697
04 05	6,629	548,569	338	57,477	2	631 16,216		1,735	538 4,906
06 07 08	1,166	603	2,105	16,512		4,179	5,999	1,960 17,358 ∆4,066	7,258 3,116
09 10		67		562				1,279 5,072	
11 12 13				4,454		320,410	567	34,582	1,267 2,407 8,242
14 15 16		5		1,014	15			2,366 1,067	4,016 13,897 4,309
10 17 18	20,965	377			13	1,430	450	95	13
19 20	2,963 472,117	1,238	23,764	5,188	3,184	76,300	86 154,375	2,817	2,122
21 22 23	15,525 5,003 553	267 101,341 216	686 175,030 5,020	746 24,031 486	765 1,700 723	757 1,633 50	2,011 13 350	1,074 5,363 645	3,053 29,008 514
24 25	5,238 2,240	3,857 898	5,128 351	419,868 30,466	307,741 16,301	3,721 329	1,306 1,396	43,992 4,447	49,493 1,321
26 27 28	49,675 16,790 4,099	41 30 5,620	142 4,522 42,064	13 59 27,287	408 123 8,181	146,390 4,654 33,394	19,770 105,247	475 323,210	416 921 151,906
29 30	752 1,763	8,806 4,552	32,362 1,531	1,627 10,280	31,205 14	4,050 6,422	923 19,161	11,898 26,652	94,133 12,211
31 32 33	116 18	61 614	986 6,484	64 938	20 41	1,445	8,795	20,152 1,691 29	561 12,344
34 35	8,553 1,668	2,472 120	85,029 10,187	214	445 4,360	26 700	2,593	345 10,114	1,874 1,065
36 37 38 39	18,236 2,050 256	10,951 1,720 1,976 1,920	55,183 706 1,204	2,316 4,130	269 7,800 2,842	36,708 181 1,047	875 6,676 1,443	1,758 6,098 6,059	15,131 1,484 331
40 41 42	211 8,673	379 84 124	282 20,955	186 250	1,900 2,656	18 36,448	133 12,868	20 247 344	196 590
43 44 45	1,205	1,769	10,591	2,034	2,421	8,122	2,114	6,228	3,042
46 47	3,689	6,793	7,899	48,698	4,624	4,949	12,469	46,223	7,899
48 49 50	313 313 76,563	82 135 37,077	605 378 47,532	177 405 30,358	936 396 27,578	775 57 50,941	762 109 46,840	1,123 3,610 33,965	905 2,945 44,855
51 52	124 4,708	22 11,759	1,969 10,611	275 11,034	374 13,317	243 4,035	261 7,305	311 13,366	198 8,271
53 54 55	4,271 2,909 2,521	4,780 6,792 1,284	10,392 5,259 1,434	10,054 7,747 2,292	11,364 2,850 22,560	3,980 3,392 457	3,336 4,915 1,431	6,180 10,625 4,111	7,168 5,667 3,247
56 57	8,816	8,562	14,337	9,327	17,888	8,058	10,632	9,505	8,487
58 59 60	269 3,930 1,136	44 2,995 12,599	132 7,663 18,019	359 3,950 14,944	1,380 10,227 47,946	9 732 9,052	192 2,664 25,190	624 5,009 29,966	206 53,337 46,838
Subtotal	768,398 6,321	792,778 12,679	614,049 32,205	761,138 7,697	554,700 39,518	791,215 1,507	668,199 11,718	700,800 14,083	715,601 15,554
Wages and salaries63Business surplus64Depreciation65	144,810 68,595 7,609	111,375 60,799 14,142	204,842 122,381 17,425	99,861 89,163 36,522	226,229 152,819 20,560	111,239 78,489 13,535	144,700 148,189 21,519	99,190 98,233 78,482	93,585 135,223 20,088
Indirect tax 66 (△) Subsidies 67	4,268	9,227	9,097	5,619	6,173	4,016	5,674	9,213	20,137 ∆190
Total value added 68 TOTAL 69	231,602 1,000,000	208,222 1,000,000	385,951 1,000,000	238,862 1,000,000	445,300 1,000,000	208,785 1,000,000	331,801 1,000,000	299,200 1,000,000	284,399 1,000,000

- 限

•

ATA INPUT-OUTPUT TABLES OF JAPAN

CRASE!

S. SHISHIDO 27

٦

Petrol prodi 30	ucts	Coal products 31	Non-metal mineral products 32	Iron and steel (primary) 33	Steel rolling, casiing and forging 34	Non-ferrous primary metals 35	Fabricated metal products 36	General machinery 37	Electrical machinery 38	Automobiles 39	Other transport equipment 40
			15	1	3	6	3		2		
			340						687	∆1 ,04 9	
		30,055	2,943		218	855	1,274				
		530,009	41,135	1,165 75,781	815	2,686	1,120	175	295	126	833
361,	102		2,754 83	11,263	385	182,941 80		26	148		
	165		85,217	178 573	54 277	965		20	140		
			7 7								
			395								
			19				1	212 98	1,881	217	46
	406 262	2,408 66 0	2,988 878	253 169	444 318	378 761	2,394 824	2,298 930	3,155 1,744	1,604 822	3,339 2,034
	10	10,489	2,591	102	754	1,489	3,998	2,654	712	1,101	17,011
	282 384	713 2,226	706 31,042	173 391	296 1,186	928 3,059	836 2,009	4,146 1,597	7,424 6,734	1,291 2,332	2,320 1,786
	827	2,031	3,752	1,952	2,774	2,999	3,383	5,987	2,409	1,008	1,081
			70	110	()5	330	68	1,189	297 10,277	45 107,274	815 33,301
5,	509	△1,525	70 18,225	416 3,461	625 7,009	339 11,198	3,322 5,850	6,985 2,596	11,522	374	2,816
9, 21	518	5	2,326	1	188	771	3,542	3,646	6,173	8,464	11,735 4,082
21,	519	7,425 49,913	40,172 6,426	7,568 73,893	8,364 5,020	8,248 8,562	3,699 3,317	3,568 2,167	6,104 1,563	2,241 321	4,082 944
	9	1,868	84,667	12,932	4,401	7,481	3,780	4,504	15,301	9,907	4,370
		15,241	∆90 20,827	488,317 6	464,910 249,209	∆622 345	2,037 276,752	∆3,944 214,315	∆3,139 77,306	∆3,597 53,018	∆7,227 146,980
		555	7,465	4,202	7,442	403,901	117,517	26,823	103,440	5,793	21,719
	123 903	3,815 2,862	1,157 2,636	19 4,724	2,319 7,263	1,324 6,431	33,780 6,064	16,486 229,802	7,637 21,234	15,022 157,399	13,334 135,681
	195	1,631	3,781	4,309	4,542	2,687	4,572	24,442	259,563	40,737	42,208
		55	2,069		834 45	2,097	110	4,225 9	3,465 16	186,727 9,593	1,434 102,181
	108	272	270	66	113	354	319	6,402	8,875	1,838	3,331
	579	304	567	75	143	466	364	5,804	20,327	5,454	6,340
4,	615	1,250	8,697	1,530	1,809	2,841	6,053	2,459	2,749	2,799	3,939
1,	632	5,819	39,640	29,275	9,027	31,088	6,217	6,478	7,148	5,298	9,490
	11 138	408 152	3,733 889	184 373	205 345	69 633	992 187	571 347	2,068 407	2,197 305	1,824 850
3,	430	39,292	50,945	20,459	11,332	34,955	24,788	17,903	26,822	31,958	20,844
	288 395	48 29,650	541 21,418	61 5,066	76 3,316	280 10,001	68 7,763	390 9,649	326 8,763	157 6,004	195 6,526
	523	5,560	13,189	5,750	3,509	6,924	4,702	3,861	4,404	5,362	5,485
	798 569	41,178 3,304	24,657	8,551	4,062	5,475	3,911	2,709	2,330 4,731	2,056 3,591	3,095 3,447
	417	3,220	4,875 11,061	1,173 2,117	1,895 3,588	3,285 6,704	3,511 7,326	6,383 6,697	9,296	10,019	10,864
	578	1,533	797	110	269	470	37	653	738	407	472
	383 776	6,911 34,626	10,057 25,568	3,558 41,330	3,972 7,165	4,601 14,100	913 43,857	10,385 36,050	10,193 41,399	7,279 25,586	7,362 43,466
496,		843,963	581,567	811,528	820,520	773,359	591,259	671,678	696,527	711,082	670,353
	332	14,046	13,091	3,776	5,280	11,154	20,008	20,167	13,528	11,869	10,428
21,1 183,0		36,980 76,189	174,480 174,511	41,336 115,950	72,142 70,012	81,735 105,438	199,525 160,019	137,806 136,395	120,868 124,351	130,643 87,297	172,392 96,550
38,	755	14,324	42,174	26,069	30,710	25,312	15,265	24,853	20,091	21,934	39,647
252,	036	14,499	14,176	1,341	1,337	3,001	13,923	9,100	24,635	37,174	10,629
503,4	485	156,037	418,433	188,472	179,480	226,641	408,741	328,322	303,473	288,918	329,647
,	000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000

TABLE 3C: 1960 INPUT

	Precision instruments 41	Miscellaneous manufacturing 42	Residential construction 43	Non- residential construction 44	Public works 45	Other construction 46	Electricity 47	Municipal gas 48	Water services 49
01	10	30	231	133	204			<u>+0</u>	10
02	23,858	860	201	155	201				
03									
04 05	2	9,203	8,401	4,718	15,335	5,939			392
06	2	25,673	1,400	4,718 565	15,555	5,959			57.
07	615	23,073	1,400	28	39	64	113,319	342,791	640
08			-				,		
09						_			
10						9	31	25,013	
11 12		4,525	13,193	12,634	38,442	10,083	∆190		
12 13		3,438							
13									
15		762							
16	40								
17									
18	3,379	254							
19 20	62 15,381	5 627	12 007	10 041	1 162	720	605	1 560	21
20 21	4,233	5,637	13,987	18,041 352	1,163	732		1,569	3,19
21 22	4,233 4,839	1,835 42,888	296 259,611	352 106,590	883 23,618	529 32,837	1,252 15	1,020 151	1,66
23	1,182	850	35,873	10,246	776	472	942	1,088	33
24	19,716	43,014	4,944	7,057	1,056	642	572	1,663	3,56
25	2,006	2,870	1,170	2,028	2,438	1,858	1,761	4,392	2,20
26	15,927	7,672	1	1		10			-
27	2,778	89	485	1,131	1,749	1,205	~ .	2	2
28 29	17,132 3,481	249,373 13,815	1,179 7,987	1,937 8,558	5,141 646	4,104 420	74 3	1,283 8	13,73 3,13
30	6,332	12,172	5,655	6,326	35,006	13,302	76,243	30,292	31,08
31	672	97	988	783	1,100	12,839	, 0,210	∆336,983	9,53
32	10,671	1,821	82,251	116,517	96,143	67,095	2,002	1,696	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
33	∆5,185						1,626	4,717	
34	66,145	38,017	42,088	105,442	48,134	92,270		7	10
35	41,791	14,858	3,793	2,413	228	2,251			
36 37	3,045 36,458	4,701	56,603	106,213	54,759	91,738	612	2,625	12,22
38	2,675	2,472 670	7,901 19,508	48,456 38,021	6,864 8,411	16,151 121,957	5,401 56,150	3,090 5,206	3,68 4,65
39	<i><i>"</i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i>,<i></i></i>	0/0	6,222	7,709	29,063	20,311	20,120	677	28
40			,	,	, ,	, , , , , , , , , , , , , , , , , , ,	5		
41	149,546	324	198	2,201	296	5,928	161	12,710	3,61
42	7,197	15,027	18,538	11,107	3,109	2,998	180	467	e
43 44	3,564	2 650	701	1 074	1.067	1.022	40 514	47 409	15 54
44 45	5,504	2,650	781	1,074	1,067	1,022	40,514	47,408	15,55
45									
47	5,623	9,069	806	1,281	2,056	2,048		27,634	66,96
48	287	7	140	346	252	256	1,366	26,894	1,18
49	450	294	579	719	427	311	35	2,203	2,87
50	28,477	44,533	55,338	57,668	39,149	37,180	10,502	39,856	13,23
51	513	765	151	294	468	307	647	437	4
52 53	11,511 3,619	10,168 5,920	12,131 14,879	13,607 15,749	14,614 20,810	12,793 12,075	14,157 3,222	23,384	4,40
54 54	2,693	3,920	6,067	6,946	20,810 9,624	6,263	5,222 14,588	3,556 32,036	1,00
55	6,066	3,529	3,020	7,478	6,314	6,253	3,412	2,635	3,14
56	12,691	11,061	8,069	9,681	8,355	7,729	1,048	13,637	4,88
57	·						,	,	-,-
58	277	155	447	504	445	410	101	305	12
59	27,163	23,957	3,190	7,621	5,113	5,579	2,586	11,901	9,24
btotal 61	45,262	42,274	22,286	29,814	47,418	30,789	20,772	12,561	47,9
ubtotal	582,183	660,557	720,397	771,991	530,717	628,761	377,015	347,936	267,6
usiness consumption 62 Vages and salaries 63	22,237 185,565	18,079 123,413	8,284 124,250	11,942 104,229	15,299 223,625	14,816 162,786	20,452 147,850	18,001 197,759	7,5: 346,0
usiness surplus 64	136,614	125,415	124,230	97,327	223,623 194,989	166,000	99,250	197,759	222,7
epreciation	22,507	14,068	5,910	12,373	32,927	24,874	219,425	163,749	152,3
ndirect tax	50,895	25,029	1,660	2,139	2,443	2,764	136,008	129,089	3,70
) Subsidies 67									
otal value added 68	417,817	339,443	279,603	228,009	469,283	371,239	622,985	652,064	732,3
		1,000,000	1,000,000	-		,	,		

>

-

٩ΤΑ INPUT-OUTPUT TABLES OF JAPAN

NPUT

(Unit: 10-6)

COEFFICIENTS TABLE (continued) Finance Public ader Road Other Com-Community Other Real and ministration Total ces Trade estate 51 Railroads transport 53 transport 54 munications *insurance* and defence 57 services 58 services 59 Unallocated intermediate 50 55 56 61 5260 10 △472 433 2,404 36,494 1,295 9,531 7,246 2,734 2,860 7,176 27 1,501 3,295 12 3 3 8 19,501 392 11,516 4,162 18,778 80 949 304 391 3,105 2,112 1,750 646 7,206 2.170 2,503 411 4,928 3.331 4.076 4,189 1,962 5,066 3,602 10.496 389 837 171 5,941 11,115 891 1,096 133 2,929 11,976 2,037 3,579 7,789 4,751 4 923 2,126 1,573 3,449 786 2,437 77,794 15,171 210 3,524 197 3,765 10 3,153 3,106 4,226 3,696 2,227 1,869 24,164 1,979 5,439 15,064 20 210 468 88 20 1,845 7 5.387 .664 825 2,399 3,408 51 797 310 2,731 1,339 2,357 333 3,232 1,569 743 1,411 982 3.997 3,267 5,442 3,532 18,813 17,554 564 12,283 98 15,695 16,806 3,321 6,145 19,160 64,767 28 427 203 12,553 4,185 6,880 1,299 103 1,006 91 704 1,075 808 543 3,502 1,140 11,438 4,394 29 71 102 434 881 33,063 27,976 366 730 1,098 1,943 21 54,315 19,412 28 509 670 10,382 9,650 ,131 19,954 182 52,180 96,320 93,507 4,932 1,476 4,153 6,525 27,789 13,325 .083 1,775 ,531 101 3 12.459 161 1 327 142 3,646 ∆490 78 239 34 89 6 1,441 2,418 11,821 12,880 3 573 △2,031 35,430 38,558 108 328 41,372 903 4,109 13,845 1,239 2,878 382 4,337 17,316 12,352 4,719 1,123 145 26 .222 15,479 1,063 1,056 736 628 2.098 1,955 554 ,681 545 21,346 51 54 428 16,810 2,619 3,361 33,271 20,256 ,655 39,482 106,965 635 1,650 152 26,468 8,470 13,238 1.766 283 32 50,920 46,783 224 417 211 4,094 15,194 11,456 613 1,153 1 208 396 277 179 916 3,676 3,057 4,450 1,072 1 233 443 309 675 1,025 6,859 7,892 26,845 63 12,238 127,036 13,843 2,908 2,436 12,760 10,850 20,601 15,095 394 7,901 ,558 9,115 1,525 24,401 921 3,667 3,495 4,090 8,771 16,405 6,006 10,339 ,969 1,059 95 807 1,615 587 3,032 1,574 6,978 4,330 515 ,184 48 2,961 343 4,424 158 87 1,209 868 2,105 1,352 8,828 1,017 ,878 24,530 15,780 93 20,563 25,707 7,855 6,988 9,966 16,967 34,922 26,202 ,238 2,712 168 1.234 1.234 1.236 788 2,595 641 3,378 615 43 6,970 7,557 10,461 24,840 344 8,281 16,358 17,626 9,082 9,766 9,367 ,466 2,083 2,207 2,817 508 272 937 2,000 39,651 966 7 5,562 ,599 1,477 17 1.459 2,917 78.238 15,898 849 2,946 17,120 5,978 ,005 2,169 ,140 240 8,701 8,703 8,699 1,619 23,967 17,382 13,189 18,409 6,355 13,643 10,297 1,810 4,307 14,884 6,685 121,154 12,810 10,315 104,682 ,888, 43,095 15,112 495 495 2,475 122 569 495 3,746 499 2,025 7,848 12,152 13,470 6,143 13,585 3,614 78,572 201 10,547 22,963 ,244 ,982 8,016 23,562 67,519 97,983 59,960 38,363 15,204 19,440 2 24,783 303,989 275,558 254,851 366,019 ,667 231,751 150,388 368,577 406,253 182,236 698,031 557,482 31,048 1,862 25,522 20,672 12,897 35,001 52,243 68,543 25,377 154,347 23,890 .539 80,195 5,065 368,739 338,936 282,540 406,101 329,488 642,295 500,704 236,756 162,222 ,075 276.614 100,021 113,929 193,051 136,012 272,910 318,558 474,170 147,314 228,774 273,981 58,697 173,861 ,715 59,916 259,402 179,377 142,898 127,798 158,349 34,539 112,411 36,648 72,104 48,401 ,300 92,163 16,827 10,137 15,488 51,432 3,241 ,704 32,965 109,113 11,643 26,835 35,059 △3,238 △65 △915 301,969 768,249 849,612 696,011 631,423 593,747 817,764 724,442 1,000,000 745,149 633,981 442,518 .333 1000,000 1,000,000 ,000

Source : Transactions table compiled at 1960 producers' prices.

÷

-

TABLE 4A: 1955 TOTAL INTERMEDIATE USE, FINAL USE, IMPORTS AND GROSS VALUE OF PRODUCTION-VALUES IN 1955 PRODUCERS' PRICES

		(Thousand milli	ion yen)				
	Industry	Total intermediate use	Consumption	Gross fixed investment	Net increase in stock	Exports	(Minus) Imports	Gross production
01	Food crops	1.192.2	209.1		108.5	3.1	-134.9	1,378.0
02	Industrial crops	323.7	- 9.6	-2.2	9.0	1.8	-234.9	87.8
03	Livestock for textiles	67.1	- 4.7		0.5	0.0	-234.9 -58.3	
04	Other livestock	260.0	70.6		10.9	1.3	- 3·5	4·6 339·3
05	Forestry and logging	439.8	59·0	- 0.6	1.3	1.3		
06	Fisheries	75-9	125.1	- 0.0	1.2		-26.5	474.7
07	Coal-mining	192.2	8.9		E A	15.8	- 0.3	216.5
07		35.4	8.9		-5.4	2.4	- 20.1	178.0
	Iron-mining			a a a	-1.9	0.0	- 29.4	4.2
09 10	Other metal-mining Oil and gas extraction	89·0 57·6	- 6·6 0·2	- 39.0	0.7 0.6	0.3	- 9·0	33.9
10		570	0.2		0.0		53.5	4.9
11	Other minerals extraction	111-3	4.0	- 1.4	-1.3	0.5	- 32.3	80.8
12	Meat and dairy products	33.7	100.2		0.7	2.9	- 20.8	116.8
13	Grain milling	161.1	879-1		14.8	3.3	— 71·2	987·0
14	Seafoods processing	10.0	92.0		3.9	16.2	- 0.2	121.9
15	Other foods	245.6	536.5		8.2	21.3	- 7.1	804.5
16	Beverages	3.8	283.9		12.1	5.5	- 0.3	305.0
17	Tobacco manufacturing	0.2	204.9		0.2	0.6	- 0.0	205.9
18	Natural-fibre textiles	398.3	19.3		-5.1	37.3	- 1.1	448·6
19	Man-made-fibre textiles	9.5			0.2	0.0	* *	9.7
20	Other textiles	296.4	277.6	5.5	37.0	199-2	- 2.9	813.0
21	Wearing apparel	10.7	158.4	0.3	20.3	48·2	0.0	226.0
22	Sawmills and wood products	337.1	8.8	0.3			- 0.9	236.9
22	Furniture	38.9		10.0	0.0	23-7	-1.5	368.1
			27.8	10.0	0.1	1.9	- 0.1	78.6
24	Pulp and paper	331.6	9.5		0.5	7.7	- 6.4	342.9
25	Printing and publishing	194.9	115.0		_	1.2	- 1.7	309.5
26	Leather products	23.4	6.0		0.1	2.2	— 1·0	30.7
27	Rubber products	60.6	31.0		0.8	6.8	- 0.2	99· 0
28	Basic and intermediate chemicals	528.4	0.3		1.9	44.4	-16.5	558-3
29	Oils, fats and final chemicals	179.1	118.4		9.3	7.9	- 7.7	307.1
30	Petroleum products	154.7	13.7		4·1	7.5	- 48.0	132.0
31	Coal products	64.6	8.4		-0.5	0.4	— 0·0	73·0
32	Non-metal mineral products	230.0	-23.6		0.6	27.1	— 1·4	232.7
33	Iron and steel (primary)	511.6	-11.7	-68.8	-2.6	7.1	-23.9	411.8
34	Steel rolling, casting and forging	561.2	2.5	00.0	-3.4	86.0	-5.0	641.2
35	Non-ferrous primary metals	185.3	1.1		3.0	21.2	- 8.1	196.4
36	Fabricated metal products	160.7	19.2	5.3	0.6	$24 \cdot 2$	- 1.9	208·9
37	General machinery	205.7	19.6	191.7	19·0	37.3	-34.2	
38	Electrical machinery	166.8	30.0	114.1	5.9			439.1
39	Automobiles	94.4	12·0			17.2	- 6.3	327.7
				81.9	2.0	7.3	7.0	190.7
40	Other transport equipment	55.6	29.9	142.5	0.1	42.0	- 2.4	267.6
41	Precision instruments	42.9	30.9	21.8	0.5	10.0	- 3.7	102.4
42	Miscellaneous manufactures	41.7	36.6		0.3	28.6	- 0.5	106.8
43	Residential construction			310.7				310.7
44	Non-residential construction			247.1		5.4		252.5
45	Public works			233.6				233.6
46	Other construction	135.1	23.7	268.1		14·8	- 0.4	441.3
47	Electricity	178.1	75.3			3.7	•••	257.1
48	Municipal gas	17.7	19.6			0.0		37.3
49	Water services	15.3	9.0			0.1		24.4
50	Trade	489.0	1,019.8	45.7	5.7	95.6	- 6.4	1,649.3
£ 1	Pool estate		010 7					-
51 52	Real estate	170-2	218.7	A A	0.0	96.0	<u> </u>	218.7
	Railroad	170.2	85.9	4∙4	0.6	26.9	- 0.0	288.0
53	Road transport	101.7	176.9	<u> </u>	0.7	18.2	- 0.0	297.4
54	Other transport	69·0	42.6	0.0	0.5	11.5	75-2	198.4
55	Communications	135.6	21.9			8.2	- 3.8	162.0
56	Finance and insurance	239.3	134.8			5.3	— 4·0	375.4
57	Public administration and defence		487.3					487.3
58	Community services	8.9	633·0					641·8
59	Other services	282·0	682·7			30.9	- 10.9	984·7
60	Unallocated	672.3	101.5	- 1.0	-1.5	70.4	- 28.5	813.1
61	ΤστΔι	10,696.5	7,225.7	1,569.4	256.1	1,063.7	-863.2	19,948·2
	TOTAL	10,0700	1,540 1	1,507 4	4JU-1	1,003.7	003.2	17,740.2

ction

3.0 7.8 1.3 1.7 5.0 1.9 1.9

·9 ·1 ·6 ·9 ·5 ·7 ·0 ·3 ·1 ·0

·0 ·7 ·8 ·2 ·4 ·9 ·1 ·7 ·6

·4 ·8 ·7 ·5 ·6 ·3 ·1 ·3 ·4 ·3

·7 ·0 ·4 ·4 ·4 ·4 ·3 ·8 ·7 ·1

·2

INPUT-OUTPUT TABLES OF JAPAN

-

S. SHISHIDO

31

•

2

RICES

_____ TABLE 4B: 1955 TOTAL INTERMEDIATE USE, FINAL USE, IMPORTS AND GROSS VALUE OF PRODUCTION-VALUES IN 1960 PRODUCERS' PRICES

(Thousand million yen)

	Industry	Total intermediate use	Consumption	Gross fixed investment	Net increase in stock	Exports	(Minus) Imports	Gr. produ
01	Food crops	1,272.6	207.6		117.2	3.0	-140·2	1,460
02	Industrial crops	265.2	-6.9	- 2.0	9.6	1.3		
03	Livestock for textiles			- 20		1.2	-188.4	78
	Other livesteels	53.9	-3.7		0.4		- 46.8	
04	Other livestock	262.5	69.9		10.8	1.2	- 3.5	341
05	Forestry and logging	586·0	70.6	- 0.7	1.8	2.0	34.8	625
06	Fisheries	87.2	145.1			17.7	— 0·3	249
07	Coal-mining	199.6	9.3		- 5.4	2.4	- 20.3	185
08	Iron-mining	39·0			- 2.0		-32.3	4
09	Other metal-mining	82.3	- 6.1	-36.1	— 0 .6	0.2	- 8·2	31
10	Oil and gas extraction	52.5	0.2	50 1	00 0.5	0.2	- 48·5	2
11	Other minerals extraction	99.9	2.6	- 1.2	— 0 ·9	0.3	- 27.9	72
12	Meat and dairy products	46.5	118.2			3.7	-28.3	14
13	Grain milling	173.3	946.1		15.8	3.4	- 76.6	1,06
14	Seafoods processing	11.7	108.1		4.6			
15	Other foods					18.9	- 0.2	14
	Other foods	242.6	526.1		7.9	20.5	- 7.0	79
16	Beverages	3.6	275.1		11.7	5.2	- 0.2	29
17	Tobacco manufacturing	0.2	204·8		0.5	0.6		20
18	Natural-fibre textiles	274.6	11.1		— 4·1	27.0	- 0.7	30
19	Man-made fibre textiles	54.1				5.3	- 0.1	5
20	Other textiles	281.2	264·0	5.8	34.2	198·6	-2.3	78
21	Wearing apparel	11.2	170.3	0.2	22.0	52-9	- 0.9	25
22	Sawmills and wood products	398.0	8.9			27.6	- 1.8	43
23	Furniture	39·0	27.7	10.0		1.8	- •	7
24	Pulp and paper	318.2	8.3	100	0.4	7.2	6.3	
25	Printing and publishing				0.4		- 6.3	32
	Printing and publishing	230.1	135.7			1.4	- 1.9	36
26	Leather products	22.2	6.5			2.3	- 0.9	3
27	Rubber products	57.1	29.1		0.7	6.3	- 0.2	9
28	Basic and intermediate chemicals	478-2	0.2		1.6	42.1	- 14.6	50
29	Oils, fats and final chemicals	170.4	113-3		8.6	7.3	- 7.2	29
30	Petroleum products	168.3	14.8		4.5	8·0	-52.2	14
31	Coal products	68.9	8.9		- 0.5	0.4		7
32	Non-metal mineral products	235.7	-22.3		0.6	28.6	- 1.6	24
33	Iron and steel (primary)	521.7	11.6	-68.3	-2.6	8.0	- 23.7	42
34	Steel rolling, casting and forging	659.6	3.1	00.5	- 3.9	99.2	- 5.7	75
35	Non-ferrous primary metals	179-5	0.9					
	Febricated motel are duete				- 2.8	20.4	- 7.7	19
	Fabricated metal products	174.3	20.8	5.7	0.6	26.1	- 2.0	22
37	General machinery	244.5	23.2	227.9	22.6	44.4	- 40.6	52
38	Electrical machinery	171.2	30.7	117.1	6.0	17.5	- 6.5	33
39	Automobiles	89.8	11.4	75.1	1.8	6.7	- 6.3	17
40	Other transport equipment	57.9	31.3	149.1		42.3	-2.3	27
41	Precision instruments	38.7	27.5	19·9	0.4	8.3	- 3.5	9
42	Miscellaneous manufacturing	41.5	36.3		0.2	28.5	- 0.4	10
43	Residential construction			378·0				37
44	Non-residential construction			292.0		6.3		29
45	Public works			280.3		05		29
46	Other construction	162.6	20 5			177.0		
		162.6	28.5	328.1		17.8	- 0.4	53
	Electricity	181.7	76.7			3.7		26
48	Municipal gas	19.5	21.4					4
49	Water services	25.0	14.7			0.1		3
50	Trade	519.6	1,180.4	47.6	5.9	99.8	- 6.6	1,84
51	Real estate		372-2					37
52	Railroad	201.1	101.4	5.1	0.7	31.6		34
53	Road transport	106.7	185.7		0.7	19· 0		31
54	Other transport	77.7	38.3		0.2	11.3	62.8	19
55	Communications	136-1	21·9		V 4-	8.2		
	Finance and insurance						- 3.7	16
57	Dublic administration and 1.0	247.6	139.5			5.4	- 4.1	38
57	Public administration and defence		525.6					52
58	Community services	13.2	865.7					87
59	Other services	310.0	807.3			35.7	-12.3	1,14
60	Unallocated	695.9	104.9	- 1.0	- 1.5	72.7	-29.4	84
		11,161.2	8,101.3	1,832.6	267.9	1,110.2		

. - _ -

-

-_

-

...

... ÷

<u>...</u>...

::::: ::::: ___

TABLE 4C: 1960 TOTAL INTERMEDIATE USE, FINAL USE, IMPORTS AND GROSS VALUE OF PRODUCTION-VALUES IN 1960 PRODUCERS' PRICES

(Thousand million yen)

	Industry	Total intermediate use	Consumption	Gross fixed investment	Net increase in stock	Exports	(Minus) Imports	Gross production
01	Food crops	1,352.1	283.5	11.5	64·2	6.1	-145.9	1,571.4
02	Industrial crops	353-1	-17.1		- 1.6	2.7	252.4	84 ∙7
03	Livestock for textiles	101.3	0.1	- 0.3	0.2	3.5	102.7	2.1
)4	Other livestock	265.9	102.3	6.6	33.4	2.6	- 1.6	409.1
)5	Forestry and logging	722.5	61.4	- 4.1	- 2.2	3.2	- 64.9	715.8
)6		154.2	156.1	71	6.3	42.8	-4.3	355-2
	Fisheries	267·0	10.8		- 8.2	0.2	- 50.9	218·8
07	Coal-mining		10.9			0.7		
)8	Iron-mining	80.4			4.3	0.1		7.8
)9	Other metal-mining	92.7			1.5	0.1	- 53.4	41.0
0	Oil and gas extraction	182.6	0.3		2.4		-174·3	11.1
1	Other minerals extraction	151.0	3.0		-1.1	0.6	- 39.0	114.4
2	Meat and dairy products	72.7	230.6		4.2	4.0	-31.0	280.5
3	Grain milling	187.7	919.1		0.6	1.8	- 19.9	1,089.3
4	Seafoods processing	14.4	166.8		10.2	28.9	- 1.7	218.6
5	Other foods	411.8	862.9		32.3	22.3	109.4	1,2 19·9
6	Beverages	33.0	472.1		26.6	1.6	- 2.6	5 30·7
7	Tobacco manufacturing	4.9	276.8		12.1	2.4	6.4	289.8
8	Natural-fibre textiles	443·7	10.0		- 6.5	42.9	- 0.8	489· 2
9	Man-made-fibre textiles	132.6	0.4		5.3	5.7	- 0.9	143-2
Ó	Other textiles	562.1	461.8	2.6	50.9	253.7	- 6.8	1,324.2
1	Wearing apparel	73.3	203.9		17.0	61.7	- 2.3	353-6
22	Sawmills and wood products	558-1	14.4	- 1.1	3.6	33.4	- 3.4	605·0
23	Furniture	87.3	43.4	21.2	4.3	3.2	- 0.2	159.4
24	Pulp and paper	650.4	- 3.4		14.2	17.4	- 12.6	666.0
5	Printing and publishing	254.9	130.1		5.4	2.8	$-4\cdot\dot{4}$	388.7
		37.3	14.9		1.5	4.3	- 1.6	56-2
6	Leather products					31.4	-1.0	241.8
7	Rubber products	162.8	36.2		12.6			
8	Basic and intermediate chemicals	1,036.5	2.5		22.9	46.3	-78.0	1,030.2
9	Oils, fats and final chemicals	357.5	167.5		14.2	15.1	- 53.9	500.4
30	Petroleum products	493.7	36.5		17.8	12.3	- 79•4	480∙8
31	Coal products	135-1	14.1		3.7	0.2	- 0.4	152.7
32	Non-metal mineral products	477·2	- 8.4		14.4	45.8	- 5.7	523-3
33	Iron and steel (primary)	1,312.6	- 4.1	-68.6	-16.0	5.2	-112.7	1,116·4
34	Steel rolling, casting and forging	1,532.8		— 0 ·8	34.4	124.6	- 11.3	1,679•7
35	Non-ferrous primary metals	512.9	- 0.9	-42.6	12.7	11.0	- 73.7	419· 5
36	Fabricated metal products	457·6	25.3	34.5	20.3	48.3	- 3.4	582.6
37	General machinery	790.8	55.3	763-2	70.2	61.7	$-101 \cdot 1$	1,640.1
38	Electrical machinery	750.5	143-3	379.4	78.6	92.8	17.4	1,427.1
39	Automobiles	313.8	20.2	276.6	18.6	44.6	- 6.2	667.6
ю	Other transport equipment	151.7	93·6	320.5	17.2	133-2	- 21.6	694·5
41	Precision instruments	113-3	48·1	28.4	11.8	30.8	- 15.9	216.5
41 42	Miscellaneous manufacturing	164·9	91· 0	4.6	11.7	80.5	- 3.9	348.8
+2 13	Residential construction	1047	21.0	707.8		000		707.8
13 14	Non-residential construction	292.7	6.4	813.1		0.1		1,112.4
		2721	0.4	489.1		0.1		489.1
15	Public works					5.8	- 0.2	872.2
6	Other construction	202.0	100.4	866.6			0·2	
17	Electricity	383.0	120.4			3.2		506·3
18	Municipal gas	39.2	44.1			0.9	- 0.3	83.9
9	Water services	37.7	24.6			0.8	- 0.1	63·0
0	Trade	970.7	1,214.7	158-3	22.9	136-1	- 13.5	2,489·2
51	Real estate	22.8	596.3					619-1
52	Railroads	347.0	406·9	3.8	1.7	12.6	- 0.4	771.6
53	Road transport	206.1	48.9	8.2	3.6	23.1		289.9
54	*	221.5	48.4	1.3	1.7	104.8	84·2	461.8
55	Communications	235.5	42.8			5.0	2.9	280.4
56		559.9	344.2			0.9	1.4	906.3
57	Public administration and defence		825.3				/	825.3
58		18.5	1,154.2			0.7	- 0.9	1,172.5
59	Other services	390.8	998.5			3.0	- 5.7	1,386.6
		918·2	- 9.7		21.9	37.2	-23.7	943.9
50	Unallocated							
		20,654.0	10,990.1	4,779.9	677.7	1,665.7	-1,718.7	37,048.8

CES

oss iction

1.4

4·7 2·1 9·1

5·8 5·2

8.8

7·8 1·0 1·1

4·4

0∙5 9∙3

8.6

9·9 0·7

9·8 9·2

3.2

4·2

3∙6 5∙0

9.4

6.0

8.7

6·2 1·8

0·2 0·4

0∙8

2·7 3·3

6·4 9·7

9∙5 2∙6

0·1 7·1 7·6

4∙5

6.5

8·8 7·8

2·4 9·1

2.2

6·3 3·9

3.0

9∙2

9.1

1·6 3·9

1.8 0.4 5.3 5.3 2.5

5.6

3.9

3.8

INPUT-OUTPUT TABLES OF JAPAN

product-mix are also important factors in the explanation of changes in technical coefficients; they have, too, a similar trend in favour of a higher degree of fabrication in raw material consumption.

(c) The general increase in the use of manufactured and service inputs seems to be related to the above two factors; but it is not essentially connected with substitution itself. This type of technical change is represented by such things as the increased use of tires due to the progress of motorization, the increase in repair expenses for machinery due to higher mechanization and so on. As for service inputs, such as trade, banking and communication, a tendency for these items to increase is also noteorthy, although it is cancelled out to some extent by the decrease in "Other services", for which the data for the corresponding price deflators are not altogether reliable.

Even though many other types of technical changes are mplied in the table, the relatively small values of intermediate demand (for tobacco for instance) are subject to relatively high observation errors and their changes are not considered as significant, except for transport sectors, where shift from railway to other types of transport is minificant.

To sum up: the total trend of the various types of technical changes noted above, though likely to cancel each other, appears to indicate a slightly increasing isomand for total intermediate input, as shown at the bottom of table 5 (see also the right-hand columns in table 6). A similar trend was also indicated in our study in the 1951 input-output data¹⁹ and on the pre-war fista.²⁰ This may imply, however, that value-added ratios have had a tendency to decline slightly on the average.

The first two columns in table 6 summarize on a 15-sector basis the results obtained from the original 55-sector tables. As can easily be seen this table implies that the value-added ratio in manufacturing as a whole tends to increase, largely because of higher efficiency in rew material consumption, whereas in other sectors (such as construction and services) there are opposite tendencies which substantially contribute to the slight tendency to factline in the value-added ratio described above. It should also be noted that value-added (or total input) ratios are generally quite stable, in spite of substitutions between various specific inputs, except for a few sectors.

The method of *ex post* projection, used as a test of the sublity of input coefficients as in tables 5 and 6, involves the idea that changes in an input coefficient matrix can be looked upon as a combination of "substitution" and substitution" effects. The former refer to the trend of substitution between input materials such as fuels and electricity, natural and chemical fibres, wooden and

D

TABLE 5: WEIGHTED ROW-SUMS OF INPUT COEFFICIENTS,

S. SHISHIDO

1955 AND 1960

1955 AND 15	/60		
Sector	$\sum_{j} a_{ij}^{60} X_{j}^{60}$	$\sum_{j} a_{ij}^{55} X_{j}^{60}$	(1)/(2)
	(1)	(2)	(3)
1. Food crops	1,352.1	1,406.1	0.962
 Industrial crops Livestock for textiles 	353.1	446·4 85·1	0.791
4. Other livestock	101·3 265·9	377.3	1·190 0·705
5. Forestry and logging	722·5	827.3	0.873
6. Fisheries	154.2	137.6	1.121
7. Coal-mining	267·0	394.4	0.677
8. Iron-mining	80.4	173.7	0.463
9. Other metal-mining	92·7 182·6	104·8 199·5	0.885
 10. Oil and gas extraction 11. Other minerals extraction 	182·6 151·0	199.3	0·915 0·774
12. Meat and dairy products	72.7	83.6	0.870
13. Grain-milling	187.7	250.9	0.749
14. Seafoods processing	14.4	17.2	0.836
15. Other foods	411.8	338.3	1.217
16. Beverages	33.0	4.6	7.220
17. Tobacco manufacturing18. Natural-fibre spinning	4∙9 443∙7	0·3 462·8	17.978
19. Man-made fibre spinning	132.6	402°8 90·6	0·959 1·464
20. Fabrics	562-1	451.3	1.245
21. Apparel	73·3	18·2	4.032
22. Wood products	5,581.1	804.6	0.694
23. Furniture	87.3	89.5	0.976
24. Pulp and paper	650·4	529·2	1.229
25. Printing and publishing26. Leather products	254·9 37·3	372·7 39·1	0·684 0·954
27. Rubber products	162.8	129.7	1.255
28. Basic and intermediate chemicals	1,036.5	872.0	1.189
29. Oils, fats and final chemicals	357-5	272·2	1.313
30. Petroleum products	493·7	303.5	1.627
31. Coal products	135-1	166.3	0.812
32. Non-metal mineral products33. Iron and steel, primary	477·2 1,312·6	487∙9 1,255∙6	0·978 1·045
34. Steel rolling, casting and forging	1,512.0	1,749.1	0.876
35. Non-ferrous primary metals	512.9	528.8	0.970
36. Fabricated metal products	457.6	362.6	1.262
37. General machinery	790.9	640.5	1.235
38. Electrical machinery	750.5	476.9	1.574
39. Automobiles40. Other transport equipment	313·8 151·7	157·9 134·4	1·987 1·128
40. Other transport equipment	113.3	72.9	1.554
42. Miscellaneous manufacturing	164.9	84·2	1.959
43. Residential construction	0	0	
44. Non-residential construction	0	0	—
45. Public works	0	0	
46. Other construction	0	0 337·8	1.124
47. Electricity48. Municipal gas	383∙0 39∙2	29·6	1·134 1·326
49. Water services	37.7	43.1	0.874
50. Trade	970.7	918·2	1.057
51. Real estate	0	0	
52. Railroads	347.0	361.0	0.961
53. Road transport	206.1	200·3	1.670
54. Other transport	221·5 235·5	132·6 215·1	1·670 1·095
56. Finance and insurance	559·9	415·0	1.349
57. Public administration and defence	0	0	
58. Community services	18.5	17.3	1.065
59. Other services	390.8	457.1	0.855
60. Unallocated	918-2	1,240.1	0.740
T	20 229 0	10.061.7	1.101
TOTAL	20,338.9	19,961.7	1.181

Note: For reasons of comparability, intermediate demand for construction (43, 44, 45, 46) and real estate (51) is excluded from column (1).

¹⁹Ministry of International Trade and Industry, Japan, op. cit.

²⁹H. B. Chenery, S. Shishido and T. Watanabe, "The pattern of Lepanese growth, 1914-1954", in *Econometrica*, Vol. 30, No. 1, Len. 1962.

 TABLE 6 : WEIGHTED ROW-SUMS AND COLUMN-SUMS OF INPUT COEFFICIENTS, BASED ON THE 60-SECTOR INPUT-OUTPUT DATA

Sector	$\sum_{j} a_{j}^{60} X_{j}^{60}$	$\sum_{j} a^{55} X_{j}^{60}$	$\sum_{i} a_{ij}^{60} X_{j}^{60}$	$\sum_{i} a_{ij}^{55} X_{j}^{60}$
······································	(1)	(2)	(3)	(4)
1. Agriculture, forestry and fisheries	2,949.1	3,279.8	1,035.6	1,036-2
2. Coal and crude petroleum	449.6	593.9	79.9	85.9
3. Other mineral extraction	324.1	473.6	52.1	54.0
4. Foods, processed	724.5	694·7	2,709.6	2,590.0
5. Textiles and apparel	1,211.7	1,022.9	1,795-2	1,845-0
6. Wood products and furniture	645.4	894-1	576.9	542.0
7. Pulp and paper products	650-4	529-2	506-9	573·2
8. Printing and publishing	254.9	372.7	215.6	231.2
9. Leather products	37.3	39-1	44.5	52-2
0. Rubber products	162.8	129.7	161.6	167-2
1. Chemicals	1,394.0	1,144-2	1,080.0	1,300.6
2. Petroleum and coal products	628.8	469.8	367.6	243.4
3. Non-metallic mineral products	477·2	487.9	304.3	285.5
4. Metals	3,815.9	3,896-1	2,953.0	2,872.2
5. Machinery	1,541.4	1,117.4	2,095.6	2,231.6
6. Transport equipment	465.5	292.3	940-2	1,071.7
7. Instruments	113.3	72.9	126.0	150.3
8. Miscellaneous products	164.9	84-2	230.4	237.1
9. Construction	292.7	376.6	2,176-6	1,853.9
0. Electricity and gas	459-9	410.5	237.0	267.9
1. Trade	97 0·7	918·2	576.9	602.2
2. Real estate	22.8		93-1	20.3
3. Transport and communication	1,010-1	909.0	580-1	704·4
4. Services	969-2	889.4	1,056.0	808.8
5. Unallocated	918·2	1,240.1	658.9	511.7
TOTAL	20,654.3	20,338.3	20,653.6	20,338.3
4–18) Manufacturing total	12,288.0	11,247.2	14,107.4	14,393.2

Note: Totals of columns (1) and (3) are higher than the total of column (1) of table 5 because of the inclusion of the intermediate demand for construction and real estate. For the same reason, totals of columns (2) and (4) are also higher than that of columns (2) of table 3.

metal products, ferrous and non-ferrous metals etc. which can be observed in the rows. "Fabrication" relates to changes in the rate of value-added which reflect changes in capital intensity, productivity, product-mix, byproducts etc. An input coefficient at time-point 1 (a_{ij}^{1}) may thus be approximated as:

$$\hat{a}^{1}_{ij} = r_i a^{o}_{ij} s_j.$$

where $a^{o_{ij}}$ is the corresponding actual coefficient at time point $O; r_i$ is the substitution multiplier regarding the use of *i*-th input material; and s_j is the fabrication multiplier regarding *j*-th industry. However, the \hat{a}_{ij} thus obtained would not be identical with the actual coefficient a^{1}_{ij} , but should be such that the column sum and the row sum of such coefficients, weighted by the outputs at time-point 1, equal the column sum and the row sum of the underlying actual transactions matrix for time-point 1. This means that r_i and s_j ought to be obtained by solving the following simultaneous equations:

$$\begin{cases} \sum r_i a^o_{ij} s_j X_j^1 = \sum a_i^1 X_j^1 \\ \sum r_i a^o_{ij} s_j X_j^1 = \sum a^1_{ij} X_j^1 \end{cases}$$

The substitution and fabrication multipliers calculated from the 1955 and 1960 tables (both in 1960 prices) were used as a basis for the projection of input coefficients to the year 1968 in the Economic Planning Agency's *Econometric Models for Medium-Term Economic Plan*, 1964–1968.²¹ In this projection expert opinions for specific industries were also taken into account. The resulting set of multipliers, applied as such to the 1960 coefficients in order to obtain the 1968 projected coefficients, are presented in table 7.

²¹Economic Planning Agency, Japan (1965).

lated were nts to ency's *Plan*, pecific ng set nts in , are

INPUT-OUTPUT TABLES OF JAPAN

35

•

Table 7: Substitution (r) and fabrication (s) multipliers applied to the 1960 coefficients for their projections to 1968

.....

Sector	Substitution multipliers (r)	Fabrication multipliers (s)	Sector	Substitution multipliers (r)	Fabrication Multipliers (s)
E Food crops	0.720	1.071	31. Coal products	0.747	1.690
1. Industrial crops	0.654	0.931	32. Non-metal mineral products	0.800	1.113
E Livestock for textiles	1.156	1.140	33. Iron and steel (primary)	0.766	1.164
+ Other livestock	0.910	1.172	34. Steel rolling, casting and forging	0.706	1.311
5 Forestry and logging	0.741	1.306	35. Non-ferrous primary metals	0.768	1.330
f Fisheries	0.979	0.947	36. Fabricated metal products	1.020	1.276
- Coal-mining	0.453	1.111	37. General machinery	0.866	1.223
E Iron-mining	1.081	1.079	38. Electrical machinery	0.843	1.181
- Other metal-mining	0.554	1.049	39. Automobiles	1.734	0.916
. Oil and gas extraction	3.700	0.987	40. Other transport equipment	0.941	1.179
Other minerals extraction	0.746	1.063	41. Precision instruments	0 ·848	1.159
2 Meat and dairy products	0.930	1.098	42. Miscellaneous manufacturing	0.865	0.876
Grain milling	0.907	1.394	43. Residential construction		1.445
- Seafoods processing	1.024	1.059	44. Non-residential construction	0.890	1.334
5. Other foods	0.908	1.108	45. Public works		1.218
E Beverages	0.917	1.164	46. Other construction		1.276
Tobacco	0.743	1.333	47. Electricity	1.028	1.257
E Natural-fibre spinning	0.807	1.140	48. Municipal gas	1.332	1.475
A Man-made fibre spinning	1.808	0.700	49. Water services	0.946	0.965
21. Fabrics	0.942	0.960	50. Trade	0.888	1.120
11 Apparel	0.931	1.098	51. Real estate	0.881	1.143
22 Wood products	0.539	1.341	52. Railroads	0-831	0.915
13. Furniture	0.791	1.195	53. Road transport	0.926	0.767
24. Pulp and paper	1.231	0.856	54. Other transport	0.889	0 ·949
E Printing and publishing	0 ·868	0.912	55. Communications	0.905	1.272
E. Leather products	0.920	1.069	56. Finance and insurance	0.913	1.121
27. Rubber products	0.971	1.065	57. Public administration and defence .		
23. Basic and intermediate chemicals	1.586	0.692	58. Community services	0.886	1.071
3. Oils, fats and final chemicals	1.457	0.797	59. Other services	0.878	1.351
S. Petroleum products	1.619	0.296	60. Unallocated	0.923	1.012

Szarce: S. Shishido and K. Miyamoto, "An Integrated Model for Macro-economic and Interindustry Projection". 1965 (unpublished document),

(1960 = 1)

Inputs		1	nterm	nediate	e demi	and				Fi	nal de	mand							Supp	ly		
			Sec	tors			Subtotal	Non-household consumption expenditures	Private consumption expenditures	General government	Gross fixed capital formation	Changes in inventories	Exports of goods and services ^a	Subtotal	Total demand	Production	-products and scrap	mports of goods and services	Customs duties	de margins	Transport charges	Total supply
Outputs	1	2	3	4	5	6	Sul	No.	Pri	Gen	Ğ	Ch	E_{XI}	Sul	Toi	Pre	By	Im,	Cr	Ty.	ň	To
1. Agriculture 2. Industry 3. Commercial trade 4. Transport 5. Services 6. Government services Subtotal	5 0 1	$ \begin{array}{r} 20\\ 40\\ \hline 2\\ 8\\ \hline 70\\ \end{array} $	$\begin{array}{c} 0\\7\\1\\7\\15\end{array}$	$ \begin{array}{c} 0\\ 13\\ -\\ 2\\ 5\\ -\\ 20 \end{array} $	$\begin{array}{c} 0\\ 4\\ -\\ 1\\ 3\\ -\\ 8 \end{array}$		21 69 6 24 120	$\begin{vmatrix} 1\\0\\-1\\1\\3 \end{vmatrix}$	$52 \\ 28 \\ - \\ 3 \\ 16 \\ - \\ 99$	$\frac{-}{3}$ $\frac{-}{2}$ $\frac{-}{6}$ 10 21	0 25 	2 3 	0 77 7 1 85	55 136 13 24 10 238	76 205 19 48 10 358	18 100 45 44 45 10 262	0 8 	25 58 	4 6 	-45	17	76 205 19 48 10 358
 A. Non-household consumption expenditures B. Wages and salaries C. Operating surplus D. Capital consumption allowances E. Indirect taxes F. Less : subsidies GDP at market prices^b Less : Revenue from by-products and scrap Total production at producers' prices 	$ \begin{array}{r} 3 \\ 9 \\ 2 \\ 0 \\ -2 \\ 12 \\ -1 \\ \cdot \end{array} $	4 5 0 36 6	1 9 18 2 	0 4 13 7 1 0 25 -1 44	1 18 16 2 0 0 37 0 45	0 10 	$ \begin{array}{r} 3 \\ 57 \\ 69 \\ 17 \\ 6 \\ -2 \\ 150 \\ -8 \\ 262 \end{array} $				ding s value	-	-	irement.		1					<u> </u> .	

TABLE 8 : TRANSACTIONS TABLE AT PURCHASERS' PRICES

,

DATA

Inputs		1	nterm	iediate	e dema	and				F	`inal d	emanı	1			Adjustments		
Outputs	1	2	50 3	ectors	5	6	Subtotal	Non-household consumption expenditures	Private consumption expenditures	General government	Gross fixed capital formation	Change in inventories	Exports of goods and servicesa	Subtotal	Less: Imports of goods and services	Less : Customs duties (incl. tomage dues)		Total production
1. Agriculture 2. Industry 3. Commercial trade 4. Transport 5. Services 6. Government services Subtotal	4 0 0 1	12 26 9 4 8 	$\begin{array}{c} 0\\ 6\\ 1\\ 1\\ 7\\ \hline 15 \end{array}$	$ \begin{array}{r} 0 \\ 10 \\ 1 \\ 3 \\ 5 \\ \overline{19} \end{array} $	0 3 1 1 3 8		$ \begin{array}{r} 13 \\ 49 \\ 12 \\ 14 \\ 24 \\ - \\ 112 \end{array} $	$ \begin{array}{c c} 1 \\ 0 \\ -1 \\ 1 \\ 3 \end{array} $	31 22 21 9 16 99		$ \begin{array}{c} \hline 21 \\ 4 \\ 0 \\ \hline 25 \end{array} $	2 3 	$ \begin{array}{c} - \\ 66 \\ 8 \\ 10 \\ 1 \\ - \\ 85 \end{array} $	34 115 33 22 24 10 238	-25 -58 -3 -78	4 6 		18 100 45 44 45 10 262
 A. Non-household consumption expenditures B. Wages and salaries C. Operating surplus D. Capital consumption allowance E. Indirect taxes F. Less : Subsidies GDP at market prices^b 	3 9 2 0 -2 12	1 13 13 4 5 0 36	$ \begin{array}{c} 1\\ 9\\ 18\\ 2\\ \hline 30\\ \end{array} $	0 4 13 7 1 0 25	1 18 16 2 0 0 37	0 10 10	$ \begin{array}{r} 3 \\ 57 \\ 69 \\ 17 \\ 6 \\ -2 \\ 150 \end{array} $				ling sy value			urement.			I	
Total production at producers' prices	18	100	45	44	45	10	262											

.

TABLE 9 : TRANSACTIONS TABLE AT PRODUCERS' PRICES

-

Inputs			Inter	rmedi	ite de	nand				F	inal de	emand			[
			Sect	ors			otal	Non-household consumption expenditures	Private consumption expenditures	General government	Gross fixed capital formation	Change in inventories	Exports of goods and services ^a	otal	
Outputs	1	2	3	4	5	6	Subtotal	Non-	Prive	Gene	Gros	Chan	Expo	Subtotal	Total
 Agriculture Industry Commercial trade Transport Services Government services 	0 0 	-5 -4 9 	0 -1 1 	0 -1 1 	0 -1 1 				-17 -4 21 	0	0 -4 4 	0	0 8 8 	-17 -16 33 - - -	$ \begin{array}{c c} -22 \\ -23 \\ 45 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE	10	:	Trade	MARGINS
-------	----	---	-------	---------

a Including special procurement.

Inputs		Inte	rmed i	ate de	mand					F	inal de	emand			
			Sec	tors			Subiotal	Non-household consumption expenditures	Private consumption expenditures	General government	Gross fixed capital formation	Change in inventories	Exports of goods and sevences ^a	Subtotal	11
Outputs	1	2	3	4	5	6	Sub	Non	Pric	Gen	Gro	Cha	Exp	Subi	Total
 Agriculture Industry Commercial trade Transport Services Government services 	0 0 0 	-3 -4 $\overline{7}$ $\overline{-}$	0 0 0		0 0 0		-3 -5 -8 $-$		-4 -2 6 	0 0 0	0 0 0	0 0 0	$\begin{array}{c} 0\\ -3\\ \hline 3\\ \hline \\ -\end{array}$	$\begin{vmatrix} -4 \\ -5 \\ -9 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$ \begin{vmatrix} -7 \\ -10 \\ \hline 17 \\ \hline - \end{vmatrix} $
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

TABLE 11 : COSTS OF DOMESTIC GOODS TRANSPO	TABLE	COSTS OF DOMESTIC	GOODS TRANSPOR	RТ
--	-------	-------------------	----------------	----

a Including special procurement.

•

Inputs			Intermed	liate dem	and		
And the second sec			Se	ectors			Subtotal
Outputs	1	2	3	4	õ	6	
 Agriculture Industry 	0 1	0	0	0	0		0
3. Commercial trade		<u> </u>					
 4. Transport 5. Services 							
6. Government services	_		_		_		-
Revenue from by-products and scrap	1	6	0	1	0		8
TOTAL	0	0	0	0	0		0

TABLE 12 : BY-PRODUCTS AND SCRAP

TABLE 13 : IMPORTS MATRIX AT PRODUCERS' PRICES

Inputs		Intermediate demand						Fi	nal de	mand	!			
		Sei	ctors			Subtotal	Non-household cons umption expenditures	Private consumption expenditures	General government	Gross fixed capital formation	Change in inventories	Exports of goods and services ^a	Subtotal	Total
Outputs	1	2 3	3 4	5	6	Su	Ne	Å	હ	ঠ	Ch	Ex	Su	To
 Agriculture Industry Commercial trade Transport Services	0 0 	7 15 	2 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{vmatrix} -7\\ -23\\ -\\ 0\\ -\\ 0\\ - \end{vmatrix}$		$-22 \\ -21 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -$		0 20 	0 0 	0 0 	$ \begin{array}{c} -22 \\ -41 \\ -3 \\ -3 \\ -3 \end{array} $	-29 -64
Total	0	22 -	-2 -	-5-1		-30	-	-46	0 -	-20	0	0	-66	-96

a Including special procurement.

•

h

یت رئیس سر ا

-

- -

÷.,

- 7.54 - 1.571 - 77 - 7 - 7.57

یک ۲۰ بید ۲۰۶۹ بید ۲۰۹۹ بید ۲۰۹۹ بید ۲۰۹۹

Inputs		Intermediate demand		Final demand	
Outputs	Unit	1 2 3	Subtotal	Non-household consumption expenditures Private consumption expenditures General government Gross fixed capital formation Change in inventories Exports of goods and services ^a Subtotal	Less : Imports of goods and services Less : Customs duties (incl. tonnage dues) Totol
1. Agriculture (<i>a</i>) Rice	$egin{array}{c} \mathbf{Q}^{\mathrm{b}} \ \mathbf{V}^{\mathrm{b}} \ \mathbf{U}^{\mathrm{b}} \end{array}$				
(b) Wheat	Q V U				
2. Industry	Q V U				
(b) Crude petroleum	Q V U				

TABLE 14 : PHYSICAL BALANCE FOR IMPORTANT PRODUCTS AT PRODUCERS' PRICES

a Including special procurement.

 $b \ Q$ denotes physical quantity, V value and U unit value.

λ.

ANNEX

Concepts and definitions of the 1960 interindustry table

With the growing demand for interindustry or input-output analysis in recent years, numerous organizations including the central Government, local public bodies, private research organizations etc. have come to construct input-output tables for a variety of objectives. Unfortunately however, the lack of standardization in the methods of compilation of statistics has caused serious difficulties in making both time-series and international comparisons of the tables. The table constructed in 1955 by the Japanese Government as the first official attempt in interindustry taalysis has not escaped such deficiencies, particularly with regard to its relationship to national income statistics, sectoral classification, and international comparability.

Because of these defects the compilation of the 1960 tables was receded by careful studies on statistical standardization, in collaboration with academic authorities and related government 1zencies. As a result the framework of the table was revised in such a way as to be easily integrated with national income accounts; further, fundamental improvements were made in sectoral classificazions and in various other definitions, so as to facilitate long-run me-series analysis and international comparison.²² In principle ive United Nations system of national accounts and the ISIC has en adopted as the statistical frame of reference; departure from these standards has therefore been confined to the cases where the surpose of interindustry analysis has made it unavoidable. Inter--ational standardization of the tables seems highly necessary ecause of the amounting emphasis on international comparability of interindustry analyses and economic analyses pertaining to _____rernational geographical integration.

No effort has been spared to maintain continuity between the current and the previous (1955) tables as to sector classification and in other respects. The major characteristics of the 1960 table may be summarized as follows:

(a) integration with national income accounts has been attempted;

(b) sector classification has been made on the basis of the ISIC;

(c) two transaction tables, one valued at purchasers' and the ther at producers' prices, plus a supporting table on transport costs, have been prepared for publication;

(d) in the transactions table valued at producers' prices, byproducts and scrap have been treated as negative inputs;

(e) in the sectoral allocation of outputs, goods have been evaluated at actual, not average (or uniform), prices;

(f) employment coefficients have been computed for the purposes f employment analysis.

I. FORMAT OF THE TABLES

The accounting system of interindustry tables may be viewed as a detailed version of aggregate production accounts which form part of the general national economic accounts. Consequently the total of row vectors designated as "value-added" becomes, after adjustment for customs duties (including tonnage dues), equivalent to gross domestic product (GDP) at market prices; similarly, the column total of final demand is defined as expenditures on gross domestic product (GDE) at market prices. Obviously GDP is equal to GDE. Moreover the value of outputs and the intersectoral transactions appearing in the table are strictly confined to those of goods and services; that is, transfers and monetary transactions are all excluded. Similarly neither the intersectoral flow of incomes attributable to factor services nor the external balance of payments is within the scope of the table.²³

For convenience of use the tables have been prepared in two forms: the one valued at purchasers' prices and the other at producers' prices. The former is designed primarily for an analysis of the composition of final demand and of production cost; the latter for studying the relationship between sectors so as to show exactly the direct and the indirect effects of a change in one sector upon the others.

The structure of transactions valued at purchasers' prices is exhibited in table 8. Looking at the rows, each of which represents a production sector, we observe that the transactions total is obtained by adding trade margins and transport charges to the value (row-wise) of goods and services valued at producers' prices (which, in turn, is the sum of gross domestic production at producers' prices (gross of indirect taxes), by-products and scrap originated in sectors other than its own, and the value of imports (including customs duties)). The sum of intermediate demand plus final demand is designated total demand, which balances the total supply as explained just above. Take agriculture as an illustration. Looking along row 1 of the table from left to right, we see that the subtotal for intermediate demand (21) is added to the subtotal for final demand (55) to yield the total demand (valued at the prices actually paid): 76. The same figure, 76, can be obtained from the supply side by summing up domestic production (18), by-products and scrap (0), imports at c.i.f. (25), customs duties (4), trade margins (22) and transport charges (7). By-products and scrap in this row consist of agricultural products and/or their competitive substitutes.

Since all the transactions are valued at purchasers' prices the demand side of "commercial trade" (row 3) is left completely blank. For the same reason "transport" (row 4) contains, in principle, nothing but passenger fares (inclusive of those accruing to the steamships of foreign nationalities). Note however that the figure entered at the intersection of row 4 "transport" with the column "transport" contains freight charges for domestic exports and for the freight service proper rendered to third-party countries; this complication arises because exports are valued at f.o.b. prices. Consequently the total demand for the transport sector (rowwise) is composed of three factors: demand for passenger transport, freight charges for domestic exports, and charges for freight services proper. For example, take the figure 7, which is found at the intersection of the row "transport" with the column "exports"; this 7 is made up of the above three factors. Now, the following relationship holds between the domestic production of transport,

²² Work is in progress on the revision of both the 1951 and the 1955 tables by using the same method of compilation as the 1960 table. When the revision is completed the three tables will be perfectly comparable and will contain exactly the same number (150) of sectors as the 1960 table.

²³ However, row vectors showing indirect taxes and subsidies (both part of transfer incomes) are prepared in order to facilitate the conversion of data from a market-price to a factor-cost basis. Similarly row and column vectors representing non-housing consumption expenditures and a column vector of customs duties are provided in order to establish comparability with current practice in national income accounts.

44, and the total demand for transport, 19: (revenue of the domestic transport industries from passenger fares and freight charges, 44) =(expenditure on passenger fares by intermediate-demand sectors, 6)+(expenditure on passenger fares by final-demand sector, excluding exports sector, 1+3+2=6)+(revenue arising from fares of foreign tourists and from freight services rendered to foreign traders, 7) + (revenue arising from import freight services, minus passenger fares payable to foreign transport industries, 8) + (revenue arising from domestic freight services, 17).

The composition of transactions valued at producers' prices is displayed in table 9. Unlike table 8, which takes the form of a demand-and-supply balance, table 9 is appropriate for an analysis of physical inter-relationships. Valued at producers' market prices, including indirect taxes but net of transport costs, its final row "total production" balances with its final column with the same heading. The relation of the figures in this table at producers' prices with the transactions total valued at purchasers' prices, is given by the equation:

(production valued at producers' prices) + (trade margin) + (transport costs) = (production valued at purchasers' prices).

As a result the figures in row 3 ("commercial trade") represent both original costs and wholesale and retail trade margins. With regard to row 4 ("transport"), freight charges are handled in the same way as other commercial services; it should be noted however that freight charges and passenger fares are shown together in this "transport" vector.

In addition, by-products and scrap are given special treatment in table 9, which is valued at producers' prices. That is to say, a by-product or scrap is evaluated as a negative input and entered at the intersection between the sector where the by-product (or scrap) is originated and the counterpart sector. This is tantamount to adding a negative value to the input-coefficient column, thus reducing the output total of the production sector in question. For example, the output of coke as a by-product of the manufactured-gas industry has the effect of decreasing the output of the original coke manufacturer.

There is no difference between tables 8 and 9 as regards the treatment of value-added, except for the elimination from the latter of the column "by-product and scrap" (an obvious outcome of the adoption of the method discussed in the previous paragraph). Save different methods of valuation, "final demand" is also conceptually identical in both tables. Note however that the figures for transactions of imported goods between industries contain customs duties, tonnage dues, and the like; accordingly, two columns to the right of the table are added for adjustment.

Table 8, which is valued at purchasers' prices, may be converted into table 9, which is valued at producers' prices by: (a) taking from the former's supply section the figures in the two columns relating to imports and customs duties and transferring them to the two columns to the right of the latter table; (b) taking from the former table the columns for trade margins, transport charges, and by-products and scrap and, after allocating each of the three to industrial sectors and final demand sectors, subtracting the resultant values from the corresponding transactions values of table 8.

Tables 10, 11 and 12 show respectively the column allotment of trade margins, transport costs, and by-products and scrap, as mentioned in (b) above. With the help of these supporting tables the interindustry table may be easily transformed from a purchasers' price to a producers' price basis, or vice versa. In table 12 (By-products and scrap) the pertinent values are entered at the intersection of the originating industry (column) with its competitive counterpart (row). To use the same illustration as above, coke as a by-product of the manufactured-gas industry is entered, as a negative value, at the intersection of the manufactured-gas industry (column) with the original coke-producing industry (row).

Table 13 presents the imports matrix referred to earlier. It is directly subordinate to the transactions table at producers' prices, and was obtained through the same procedure as the 1955 table.

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

prices) into domestic products and imported products, and then extracted the latter portion to form table 13. This table enables us to get information on the quantity of imported products as distributed in each sector, and also to derive a matrix of domestic products by subtracting import values from the respective portions of the transactions table 9 valued at producers' prices. Imports, as has been seen, are valued at c.i.f. inclusive of customs duties; the imports matrix is expressed on the same basis.

Finally, table 14 for physical balance is again directly attached to the transactions table 9 valued at producers' prices. This table was compiled by drawing from the original input-output table (at producers' prices) the rows which are composed of two sub-categories: "value unit" and "physical unit". As in the 1955 table, the coverage of this table is limited to selected important commodities; it takes the form of a demand-and-supply balance on both physical and monetary quantities. The criterion of the selection is either that the commodity is of special importance or that its unit price is greatly differentiated among different purchasers. The 1960 table has adopted-unlike that of 1955 but in common with the 1951 tables-actual-price rather than averageprice valuation. Whenever a unit-price shows marked divergence from one sector to another the necessary adjustments may be made possible by referring to this supporting table. Needless to say it also provides a basis for computing average prices of the commodities of special importance.

II. INDUSTRIAL CLASSIFICATION (for 56 and 153 sectors)

	56–Sector		153–Sector ^a
01	Fruit and crops except for industrial use	0111 0112 0113	Rice, wheat and barley Miscellaneous crops Fruit
02	Crops for industrial use	0114 0115	Crops for industrial use (except textile) Textile crops for industrial use
03	Livestock and poultry for textile	0117	Livestock and poultry for textile
04	Other livestock and poul- try (includes agricultural services)	0116	Livestock and poultry (ex- cept textile)
	services)	0118 0120	Sericulture Agricultural services
05	Forestry and logging (in- cludes hunting)	0211	Forestry, forest products
		0212 0220 0300	Firewood and charcoal Crude wood materials Hunting
06	Fisheries	0410 0420 0430	Marine fisheries Whaling Inland water fisheries
07	Coal and lignite	1102	Coal and lignite
08	Iron ores	1210	Iron ores
09	Non-ferrous metallic ores	1220	Non-ferrous metallic ores
10	Crude petroleum and natural gas	1301 1302	Crude petroleum Natural gas
11	Other mining	1400	Stone-quarrying, clay and sand-pits
		1910 1990	Raw salt Miscellaneous non-metallic minerals

INPUT-OUTPUT TABLES OF JAPAN DATA

•

IN	PUT-OUTPUT TABLES O	DF JAF	PAN				S. SHISHIDO 43	
	56-Sector		153–Sector ^a		56–Sector		153–Sector ^a	
12	Slaughtering, meat and dairy products	2011 2012	Slaughtering Meat products	29	Raw material of chemical and synthetic fibres	3115	Raw material for chemical fibres	
13	Processed sea foods	2020 2040	Dairy products Processed sea foods			3116	Raw material for synthetic fibres	
14	Grain mills	2050	Grain mills	30	Miscellaneous chemicals	3120	Crude oil of paints and chemicals	
15	Miscellaneous processed foods	2030	Processed vegetables and fruits			3191	Paints Drugs	
	10043	2060 2070	Bakery and confectionery Sugar	31	Petroleum products	31923210	Miscellaneous chemicals Petroleum products	
		2091 2092	Miscellaneous processed foods Assorted feeds	32	Coal products	3291	Coal products	
16	Beverages	2110	Alcoholic beverages			3292	Products, asphalt- or tar- saturated	
17	Tobacco, manufactured	2140 2200	Soft drinks Tobacco, manufactured	33	Non-metallic minerals, other than products of	3310	Miscellaneous ceramic products for construction	
18	Spinning fibres, vegetable		Raw silk		petroleum and coal	3320 3330 3340	Glass products Pottery Cements	
	and animal	2302 2303 2304	Cotton-spinning Wool-spinning Hemp-spinning			3390	Miscellaneous	
19	Spinning fibres, chemical and synthetic	2304 2305 2306	Staple-fibre spinning Synthetic fibres	34	Pig-iron, ferro-alloy and steel ingot	3411 3412 3413 3414	Pig-iron Scrap-iron Ferro-alloy Steel ingot	
20	Fabrics, miscellaneous textile products	2311 2312	Silk and rayon fabrics Cotton and spun-rayon fabrics	35	Basic iron and steel products	3415 3416	Hot-rolled steel Steel pipes and tubes	
		2313 2314	Synthetic-fibre fabrics Woollen and worsted fabrics			3417 3418	Cold-finished and coated steel Steel, cast and forged	
		2316	Hemp fabrics Dyeing	36	Basic non-ferrous metal		Non-ferrous metals	
		2320 2330 2390	Knitted-fabric products Rope and fishing nets Miscellaneous textile pro- ducts		products	3422 3423 3429	Elongated copper Rolled aluminium Miscellaneous primary non- ferrous metal products	
21	Wearing apparel	2410	Footwear	37	Metal products	3501	Metal products for con-	
			Wearing apparel, other than footwear Ready-made textile pro- ducts		-		struction Miscellaneous metal pro- ducts	
22	Sawed products, veneer, plywood and wooden	2510	Sawed products, veneers and plywood	38	Machinery, except elec- trical machinery	3601 3602	Prime movers, boilers Machine tools and metal-	
	products	2520	Miscellaneous wooden products			3603	forming machines Industrial machinery	
23	Furniture	2600	Furniture			3604 3605	for general use	
24	Pulp and paper	2711 2712 2720	Paper			3606	Household machines Ball and roller-bearings and other common parts	
25	Printing and publishing	2800	Printing and publishing	39	Electrical machinery, ap- paratus, appliances and	3701	Heavy electric machinery and apparatus	
26	Leather and leather pro- ducts	2910 2930	Leather and furs Leather products		supplies		Household electric appli- ances Miscellaneous batteries and	
27	Rubber products	3000	Rubber products			5703	wiring devices	
28	Basic chemicals	3111 3112 3113 3114	Inorganic basic chemicals Organic basic chemicals Synthetic dyes Explosives	40	Transport equipment		Motor vehicles	
		3117 3118	Synthetic resins Chemical fertilizers			3850 3860	Repair of automobiles Motorcycles and bicycles Aircraft	
		3119	Miscellaneous basic chem-	1		3890	Miscellaneous transport	

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

•

	56–Sector		153–Sector ^a	}	56-Sector		153–Sector ^a
41	Precision instruments (in- cludes optical instru- ments, watches and	3910 3920 3930	Precision machines Optical instruments Watches and clocks	50	Real estate	6401 6402	Real estate House rent
	clocks)			51	Transportation (includes storage and ware-	7110 7120	National railways Tramways (passengers)
42	Miscellaneous manufac- tured goods	3990	Miscellaneous manufac- tured goods		housing)	7140 7150 7160	Road freight transport Ocean transport Coastal transport
43	Building (includes re- pairing)	4001 4002	New construction of resi- dential buildings New construction of non-	\$		7170 7190 7200	Aviation Miscellaneous transport Warehouse
			residential buildings	52	Communication	7300	Communication
44	Construction, except building	4004 4009	Public construction Miscellaneous construction	53	53 Public administration and defence		Public administration and defence
45	Electricity	5110	Electric power	54	Community services	8210 8220	Educational services Medical services
46	City gas	5120	City gas			8290	Miscellaneous public ser- vices
47	Water services (includes sewage disposal)	5220	Water services (includes sewage disposal)	55	Miscellaneous services	8300 8400	Business services Broadcasting and recrea- tion services
48	Wholesale and retail trade	6110 6120	Wholesale trade Retail trade			8501 8509	Eating and drinking services Miscellaneous personal services
49	Banking and insurance	6200 6300	Banking Insurance	56	Unallocated	9000	Unallocated

^aThese code numbers correspond to those of the ISIC.

ATA

) rt

ort

and

ser-

creavices sonal

STATISTICAL UNIT, CLASSIFICATION AND AGGREGATION IN FINNISH INPUT-OUTPUT STUDY

Osmo Forssell, Central Statistical Office of Finland

This paper examines the suitability for an input-output study of the statistical unit, classification and aggregation used in basic statistics in Finland. Attention is first given to the homogeneity assumption in the input-output model, and to the various ways to aggregate basic units and their implications for the stability of input coefficients. Next, the statistical unit and classification used in Finnish statistics are evaluated from the viewpoint of an input-output study, and the principles followed in the classification of statistical units are indicated. Since industrial statistics constitute the principal source of information for planned research on the international comparison of input coefficients, characteristics of these statistics become the principal object of analysis.

Subsequently attention is drawn to the homogeneity of sectors: the number of commodities produced in a sector is associated with the dispersion of input coefficients among establishments and sectors; dissimilarities in commodity-mix and input prices are related to the dispersion of input coefficients for some sectors. In conclusion, the prospects for an international comparison of input coefficients are presented in the light of these observations, and the suitability of the Finnish statistical material for such a comparative study will be evaluated.

I. METHODS OF AGGREGATION

The compilation of an input-output table has to rest upon the assumptions embodied in the particular inputoutput model considered. An open static input-output model rests upon the following assumptions:

1. *Homogeneity assumption:* only one method of production is used to produce each particular commodity and each method of production is used to produce one type of commodity only.

2. *Proportionality assumption:* a linear, homogeneous function relates the inputs used in each method of production to the level of output produced by that particular method.

3. Additivity assumption: the output derived through a composite method of production is assumed to equal the sum of the outcomes of the original methods of production.

Among these assumptions the first plays a pivotal role in dealing with the problems of classification and aggregation. In what follows, particular attention will be paid to it as a guide for classification and aggregation. Two notions may be distinguished in the homogeneity assumption:

(a) homogeneity of input structure or method of production, and

(b) homogeneity of output or commodity.

A method of production may be defined as a combination of inputs, denoted by a column vector $A_j = \{a_{ij}\}$ (i = 1...), where a_{ij} refers to the amount of commodity *i* used as an input in the production of one unit of commodity *j*. A commodity may also be defined in a similar way because the method of production and the commodity produced differ only in that the former refers to the process and the latter to the outcome of this process. Two methods of production (or two commodities), *r* and *s*, are identical if $A_r = A_s$ and dissimilar if $A_r \neq A_s$. In this particular case the two types of homogeneity assumptions become identical and the input-output compilation may then easily fulfil the homogeneity requirement in so far as the relevant statistical information can be secured and handled properly.

In estimating input coefficients, however, the possibility of substitution between inputs should be taken into account. For this reason the commodity must also be defined in terms of the use it serves. Two commodities are considered identical if they can replace one another in use, and different if they cannot do so. This alters the situation in the following way: one and the same commodity can be produced through several different methods, and the same method can be used to produce different commodities. This was, strictly speaking, not possible in the previous case.

The classification problem concerns how to aggregate commodities and methods of production. The matter is further complicated because information on individual commodities and methods of production cannot be obtained and handled when a model covering an entire economy is considered. Thus groups formed from these basic units have to be dealt with at the next stage. Such groups are formed with a view to constructing a model the results from which would deviate to the least possible extent from those obtained by an unaggregated model.

In the subsequent analysis the following symbols will be used:

 $X_{i j} =$ use of commodity h, which belongs to commodity group i, as an input in production method kwhich belongs to group of production methods j (h = 1, ..., r; k = 1, ..., s). X_{j_k} = amount of output produced through production method k, which belongs to group of production methods j.

$$a_{i_j} = X_{i_j} / X_{j_k}$$
 = input coefficient

When the input coefficients involved in production method k are aggregated so as to form commodity group i, the following input coefficient is obtained:

$$a_{ij} = \sum_{k=1}^{r} X_{ij} / X_{j} = \left[1 / X_{j} \right]_{k} \cdot \left[\sum_{k=1}^{r} a_{ij} \cdot X_{j} \right]_{k=1} = \sum_{k=1}^{r} a_{ij}$$
(1)

This implies that the aggregated input coefficient equals the sum of the constituent input coefficients. The constituent input coefficients may change therefore without leading to a change in the aggregated input coefficient in so far as the sum of the changes is equal to zero. A change of this sort may occur when the commodities in group *i* are mutually substitutable. When a commodity group is so formed as to represent a homogeneous use category, the resulting composite input coefficient will become stable despite changes in the constituent input coefficients. However, the same product may be obtained by several different methods; if these methods are aggregated, the heterogeneity of the input structure is likely to increase.

The aggregation of production methods $k \epsilon j$ into a group of production methods j yields the following input coefficient:

$$a_{ij} = \sum_{k=1}^{s} X_{ij} / \sum_{k=1}^{s} X_{j} = \sum_{k=1}^{s} a_{ij} / \sum_{k=1}^{s} X_{j}$$
(2)

This implies that an aggregative input coefficient can remain constant only if the share of each production method $k\epsilon j$ in the output of group j remains constant and if the individual production methods to be aggregated remain unchanged. The first condition may be satisfied, for example, when the methods of production are grouped in such a way as to represent a well integrated (vertical) production line. Demand for each product will then change in the same way within the group. But if different items are produced by the same method and if those products are aggregated, the heterogeneity of output will increase.

When aggregation is performed over both commodities and production methods, the following input coefficient is obtained:¹

$$a_{ij} = \sum_{h=1}^{r} a_{ij} = \left[1 / \sum_{k=1}^{r} X_{jk} \right] \cdot \sum_{k=1}^{s} \left[\sum_{h=1}^{r} a_{ij} \right] X_{jk}$$
(3)

Now this input coefficient has both of the properties mentioned above. Input coefficients relating to an establishment or a group of establishments constituting a firm may be said to represent such dual aggregation.

The two homogeneity requirements are in conflict with each other in one respect: the less aggregative is the production method the greater becomes the scope of substitution among commodities. By contrast, if substitutable commodities are grouped together, the input structure becomes increasingly heterogeneous. The purpose for which the input-output model is designed to serve lays differential emphasis upon the various types of homogeneity requirements. Consequently it is desirable to prepare as detailed an input-output table as possible. This would flexibly accommodate the estimation of input coefficients for various purposes. The detail achieved in the construction of an input-output table is generally dependent upon the availability of empirical data, which is in turn influenced by the type of statistical unit to be employed.

The classification adapted for an input-output table is the result of mutual interaction between theory and practice, and embodies elements from several different principles of aggregation. Consequently it is important to examine the statistical units and classification systems used in the collection of basic data and to evaluate their suitability for the preparation of input-output tables.

II. STATISTICAL UNIT AND CLASSIFICATION IN INDUSTRIAL STATISTICS

Industrial statistics constitute the principal source of information for the input-output table in Finland. These statistics are published annually, and contain production and input data for manufacturing, mining and power activity: they exclude small establishments (employing less than five persons), which account for about 5 per cent of the total manufacturing, mining and power output.

The data acquired annually from establishments for these statistics are rather detailed. They consist of information on output by commodities. Commodities are usually measured both in physical and monetary units (at producer's price). Material inputs are also recorded by commodities: they are measured in physical units and at purchaser's price. Domestic and imported inputs are separated. Among value-added items it is possible to record labour cost and man-hours separately. But service inputs are not separately recorded in the industrial statistics of Finland.

The number of establishments included as industrial establishments is rather small: about 7,000 altogether. This makes their reclassification possible. In practice it is difficult to obtain more detailed information from establishments than that described above; this is due to the characteristics of the statistical unit involved. The following observations apply to these statistics alone.

The statistical unit in industrial statistics is the establishment. This is a unit more directly associated with the location of activity than with the activity itself. There is no way to distinguish between production methods or inputs for different commodities when they are manufactured in one and the same establishment. Consequently

¹ Changes in input coefficients due to aggregation are examined by making use of this formula in Michio Hatanabe, *The Workability* of *Input-output Analysis*, Ludwigshafen am Rhein, pp. 53-55.

47

the classification of such statistical units is based on what type of principal methods of production is used or on the principal commodities produced. This gives rise to the problem of secondary methods of production and by-products.

An establishment frequently has various auxiliary departments in addition to its principal production line, among them the managerial, repair, transport, packaging, storage, loading, construction and laboratory departments. In so far as these serve only one establishment they are treated as an integral part of a single unit. This may be considered as a kind of vertical aggregation. When auxiliary departments serve more than one establishment either they are allocated among the establishments under consideration or their data are combined with those on the largest establishment operating in the commune. In this case the validity of the solution for the constancy of input coefficients depends upon the extent to which the output of the relevant establishments moves in a parallel fashion.

Alternatively, auxiliary departments such as repair shops, steam plants and electric power plants may be considered as independent establishments (since independent establishments specialized in such activities usually do exist). In so far as an input material produced inside as well as outside an establishment is not treated as a single input, the magnitude of those input coefficients also depends upon the relative importance of such materials acquired within and outside the establishment.

In industrial statistics it has generally proved possible to separate the raw material inputs required for auxiliary departments from those required for principal production lines. In the case of labour inputs this distinction has been appreciably less clear, however, because one and the same person may engage in both types of activities. Since the activity in auxiliary departments is generally labour-intensive this gives rise to difficulties in the estimation of labour input coefficients in particular. The existence of auxiliary departments within establishments creates the problem of secondary productive activities, in the same manner as the output of commodities other than those produced in the main production line creates the problem of by-products. The activity of auxiliary departments is not registered in terms of specific output and consequently the outcome of their activity is not evident in the commodity-mix of the establishment.

Thus the extent of specialization greatly affects the substantive aspects of statistical units in industrial statistics. The classification of establishments has therefore been based upon various criteria, consideration being taken of particular external conditions and historical circumstances.

The following criteria may be distinguished in the classification of establishments:

(a) similarity of commodities to be produced;

(b) similarity of methods of production, and

(c) structural cohesiveness or integratedness of establishments engaging in related activities. In practice more than one of these criteria have often to be applied simultaneously. Similarity of commodities produced is frequently accompanied by similarity of production methods used, and the integration of establishments often implies the aggregation of different stages of production for given final products.

The classification of activities in Finnish industrial statistics follows the system of classification of the International Standard Industrial Classification of All Economic Activities (ISIC), adapted to Finnish conditions. Use is made of two-, three- and four-digit classifications of activities. "Manufacturing" contains the following groups:

two-digit classification: 20 groups

three-digit classification: 86 groups

four-digit classification: 211 groups

The four-digit groups furnished the point of departure for the construction of the input-output table. In the published version they are reduced to 86 groups.

The classification of establishments in industrial statistics was designed to yield groups representing consecutive technical stages of production. The following stages are generally distinguished: processing of raw materials into basic materials of industry, production of semi-fabricated materials, and assembling of products from the outputs of the previous stages. In addition each one of these stages is generally subdivided according to the properties of the commodity produced or the difference in the methods of production. It seems that this classification has in fact almost exclusive reference to the types of productive activities. No particular attention is given to the criteria relating to the use of the commodifies produced. The latter type of classification occurs only when the activity basis coincides with the commodity basis.

The classification of establishments would pose no serious problems if various stages of production could be allocated to different establishments. When many of these stages fall within the same establishment the best that can be done is to classify the establishment on the basis of the characteristics of its principal products. This practice contradicts classification based on the activity concept but unfortunately rather frequently the conditions of the Finnish economy are such that a wide range of commodities tend to be produced by a single establishment.

III. HOMOGENEITY OF OUTPUT

There are some 1,400 commodities produced by the manufacturing industry. This number is derived from the item classification of output given in the industrial statistics. If the value of output of a given commodity fails to exceed 1 per cent of the value of output of the group concerned, that commodity is not treated separately. The principal commodities have been identified through the joint efforts of persons compiling the

with the of tutput ourto s of ble ble. put

lin

illy

ich

be

4TA

e is nd ent unt ms

```
AL
```

eir

```
of
se
on
```

```
er
1g
er
er
```

```
ts
>f
```

2S

y

0

ıl

d

s

ι.

e

I

ŧ

(Percentages)											
Value of output	Number of products										
(million marks)	1-4	5-9	10-14	15-19	20 or more	Total					
less than 30 {Number Output	31.7	24.3	8.7	1.5		66-2					
Output	3.8	4.8	1.5	0.4	—	10.5					
30–90 { Number Output	4∙8	5.3	4.7	1.0	1.0	16.8					
Output	5-2	5.3	5.3	0.6	0.7	17.1					
Number	5.7	7.3	1.5	1.5	1.0	17.0					
nore than 90 $\dots $ $\begin{cases} Number \\ Output \end{cases}$	20.8	31.8	7.5	7.3	5.0	72·4					
TOTAL Sumber	42.2	36.9	14.9	4.0	2.0	100.0					
Output	29.8	41.9	14.3	8.1	5.7	100.0					

TABLE 1 : DISTRIBUTION OF THE NUMBER OF MANUFACTURING GROUPS AND THE VALUE OF OUTPUT BY THE NUMBER OF PRODUCTS PRODUCED PER GROUP, 1959^a

⁸ A more disaggregated table is presented in O. Forssell, "Panos-tuotosmalliu perusyksiköiden luokittelun ongelmat", in Kokonaistaloudellisia ongelmia, *Kansantaloudellisia tutkimuksia XXV* (Helsinki, 1964).

statistics and those supplying the information. It should be noted that when the item classification of commodities was revised in 1964 the number of items increased to about 2,500.

The commodity classification gives information nearly seven times as detailed as the information given by classification by grouped industrial processes and about 15 times as detailed as that given by classification by manufacturing groups, employed in the input-output table. This apparently reflects the difficulties in securing information on establishments. It is possible to use an appreciably more detailed classification for output than for input and output commodities.

Table 1 illustrates the number of commodities produced by the 223 four-digit manufacturing groups. These groups are divided into three classes on the basis of value of production per group. Joint distributions of the number of groups and the value of output by the number of commodities produced per group are given for these classes.

Nearly one third of industrial production takes place in groups where the number of commodities produced is four or less, and a little over 40 per cent in groups producing five to nine commodities. The number of commodities varies markedly from one group to another. In the chemical, metal and engineering industries the average production is 10 commodities, whereas in the food, paper, clay, glass and stone industries it is only five commodities.

The above distribution clearly indicates that the output of a four-digit industry group within the manufacturing sector generally comprises a large number of commodities.

IV. HOMOGENEITY OF INPUT STRUCTURE

To investigate the homogeneity of the input structure, those of establishments in six groups were analyzed. The groups were chosen among the various manufacturing activities in such a way that each group would represent a sufficiently large share of the total output of the relevant two-digit group. For the purpose of comparative analysis the number of establishments was limited to thirty. The number of input coefficients to be considered was also restricted for the same reason. The following inputs were distinguished: (1) raw and semi-fabricated materials; (2) other commodity inputs; (3) value-added; and (4) for raw and semi-fabricated materials, "principal input material"-the largest single input item-was distinguished from the rest. The raw and semi-fabricated materials include those which are directly used as constituent parts of the commodities produced. Other

TABLE 2 : DISPERSION OF INPUT COEFFICIENTS AMONG ESTABLISHMENTS

		Raw and semi-fabricated materials (1)		Other commodity inputs (2)			e-added (3)	Principal input material (4)		
Group	Number of establishments	Range	Coefficient of variation	Range	Coefficient of variation	Range	Coeffic ie nt of variation	Range	Coefficient of variation	
Breweries	25	0.154	0.126	0.332	0.457	0.323	0.201	0.321	0.444	
Plywood mills	24	0.250	0.129	0.313	0.552	0.409	0.192	0.338	0.235	
Sulphite pulp mills	20	0.240	0.105	0.204	0.284	0.210	0.220	0.626	0.307	
Sulphate pulp mills	9	0.248	0.131	0.176	0.308	0.311	0.450	0.527	0.490	
Glass factories	12	0.268	0.639	0.188	0.167	0.338	0.176	0.091	0.673	
Nail and steel wire factories	14	0.445	0.171	0.074	0.250	0·3 98	0.554	0.513	0.239	
Average	2 17	0.268	0.217	0.215	0.336	0.332	0.299	0.403	0.398	

O. FORSSELL

49

		Raw and semi-fabricated materials (1)			nodity inputs 2)	Value added (3)	
Major group	Numbe r of groups	Range	Coeffic ient of variation	Range	Coefficient of variation	Range	Coefficient of variation
Beverage industry	7	0.342	0.305	0.203	0.472	0.320	0.323
Manufacture of wood Manufacture of paper and	16	0.520	0.316	0.175	0.700	0.540	0.326
paper products Manufacture of non- metallic mineral pro-	11	0.404	0.216	0.284	0.583	0.428	0.351
ducts Manufacture of metal	18	0.596	0.632	0.310	0.530	0.492	0.237
products	12	0.514	0.337	0.057	0-250	0.209	0.272
Average	13	0.475	0.361	0.206	0.507	0.458	0.302

TABLE 3 : DISPERSION OF INPUT COEFFICIENTS AMONG GROUPS

the nly

put

ing

m-

re,

he

ng

nt

he

ve

to

эđ

١g

٤đ

1;

al

lS

d

۱S

r

commodity inputs include containers, fuel, purchased steam and electric power, lubricants, other auxiliary materials and accessories, and contract work performed by other establishments. The principal components of value-added are labour and capital costs, although it also contains such items as office supplies, post and telephone charges, advertising expenditure etc.

Table 2 gives the variation among establishments of these four categories of coefficients. The smallest dispersion revealed was for raw and semi-fabricated materials; the dispersion of the value-added coefficients tas distinctly larger. The share of other commodity mputs varied slightly more than that of value-added. The largest variation of input coefficients between establishments was generally displayed by the largest single input them (principal input) in the commodity inputs. This is that one would expect: since the other coefficients are averages of the coefficients of individual input items, dispersion of the individual input coefficients is apparently evened out through aggregation.

Table 3 enables comparison to be made between the <u>signitudes</u> of the input coefficients of establishments and those of groups. A comparison of tables 2 and 3 now reveals quite distinctly (in 22 cases out of 30) that greater <u>dispersions</u> prevail among the coefficients of groups than <u>imong</u> those of establishments. This implies that a more <u>detailed</u> breakdown of groups tends to reduce the dispersion of input coefficients in cases where the breakdown of inputs is rather rough. Of course, the variation grows larger when individual input items are examined.

The variation in the input coefficients of establishments may be due to differences in:

the unit price of inputs; the commodity-mix produced; production methods.

The unit price of inputs, when measured in terms of buyer's price, can be influenced by transport costs, the volume of purchases, the quality of inputs etc. Differences in the quality of inputs may be associated with differences in the types of commodities produced, since commodities of different types and qualities require different inputs.

Establishments within a group may be specialized in the production of various commodity-mixes within the range of commodities applicable to the group. Differences in commodity-mix and in production methods are thus at least partly dependent on each other. Differences in production methods may also be explained by factors such as the scope of productive activity, combination of different production methods, age of establishments etc.

Analytical isolation of the factors accounting for the

TABLE 4 : DISPERSION OF AVERAGE-PRI	E INPUT COEFFICIENTS	OF	ESTABLISHMENTS	
-------------------------------------	----------------------	----	----------------	--

	Average-pr	ice input coefficients	Difference between input coefficients at actual prices an at average prices		
Group	Range	Coefficient of variation	Range	Coefficient of variation	
Breweries	0.340	0.453	-0·019	-0.009	
Plywood mills	0.414	0.292	-0.076	-0.022	
Sulphite pulp mills	0.532	0.284	0.094	0.023	
Sulphate pulp mills	0.531	0.428	-0.004	0.032	
Glass factories	0.084	0.625	0.007	0.048	
Nail and steel wire factories	0.506	0.242	0.007	-0.003	
Average	0.401	0.392	0.002	0.006	

Group	Principe	al physical inpu	Difference between coefficient of variation of input coefficients in value	
	Average	Range	Coefficient of variation	terms and in quantity terms
Breweries	0.112	0.115	0.233	0.211
Plywood mills	0.287	0.318	0.220	0.015
Sulphite pulp mills	0.414	0.659	0.319	-0.012
Sulphate pulp mills	0.259	0.426	0.456	0.034
Nail and steel wire factories	0.939	0.221	0.085	0.154
Average	0.402	0.348	0.263	0.135

TABLE 5 : DISPERSION OF PHYSICAL INPUT COEFFICIENTS OF ESTABLISHMENTS

^a The principal input coefficients are calculated in terms of the following units: breweries, kg/litre; plywood mills, 10m³; pulp mills, 10 m³/long ton; nail and steel wire factories, kg/kg.

dispersion of input coefficients is rendered difficult because such factors are often intercorrelated. The dispersion due to differences in unit prices and commoditymix can nevertheless be isolated to some extent by recalculating the coefficients with the use of uniform or average unit prices and rearranging commodity-mixes. The residual dispersion may then be attributed chiefly to differences in production methods.

To eliminate differences in unit price the coefficient for the largest input item of each establishment was recomputed by multiplying the quantity of input used by the average unit price of the input in the group. The dispersions of these input coefficients and the differences between these dispersions and those calculated at actual buyer's prices (see last column in table 2) are shown in table 4.

Differences between the dispersions of input coefficients valued at actual prices and at average prices appear to be rather small. Hence it may be concluded that in these cases the variation of unit prices of inputs among establishments is not large enough to account for the dispersion of input coefficients. This analysis however is insufficient because differences in the unit prices of commodities produced were not eliminated. On the other hand, differences in commodity prices may often be an indication of different commodity-mixes. This aspect will be explored in the next section.

V. COMMODITY-MIX AND DISPERSION OF INPUT COEFFICIENTS

Manipulation of input coefficients in physical terms is rendered difficult by the existence of a large number of commodities in the output of each establishment. These commodities have to be measured in different units, and thus their aggregation is not possible. Such a difficulty nevertheless was of a minor order for the six groups considered above, except in the case of glass factories. The results of the calculation are illustrated in table 5.

A substantial reduction in the dispersion of input coefficients was observed in two groups. A closer analysis revealed that this was due to an increase in the homogeneity of the outputs in these groups. This fact was disclosed in the process of rearranging output and input items, which was necessary because a particular input was often used for the production of only a part of the commodity-mix of an establishment. In the case of breweries, for example, the quantities of inputs had to be specifically assigned to the production of beverages; the remaining part of the commodity-mix was consequently omitted. The use of physical-unit data for the outputs and inputs of nail and steel wire factories contributed to a greater homogeneity of the output of this group in value terms.

In table 6 each group is divided into two sub-groups: the first sub-group comprises those establishments for which the "principal" commodity or commodity-mix of the group accounted for more than half of the total output of given establishments.² The second sub-group comprises all other establishments. Their input coefficients were also calculated in quantity terms save for the glass factories, where value data were employed.

It appears that a more detailed commodity classification tends to reduce the dispersion of input coefficients. Differences of the average input coefficients between subgroups I and II are in four cases significant at the 10 per cent level; in the other two cases differences were found significant. The variance ratio test also confirms the conclusion regarding these differences arising from differences in the degree of homogeneity of output.

In the cases of sulphite and sulphate pulp mills a closer inspection revealed that dispersion was due largely to the existence of substitutable inputs. When use of substitutes was allowed for, the dispersion coefficient for sub-group I of the sulphite pulp mills diminished from 0.400 to 0.140, those for sub-group I of the sulphate pulp mills from 0.500 to 0.036, and for sub-group II from 0.124 to 0.045. The relatively large dispersion coefficients for breweries, plywood mills and glass factories are still due to the heterogeneity of the commodity-mix of establishments.

From the above analysis it may be said that about two-thirds of the explained dispersion of input coefficients among establishments (about 60 per cent of the original dispersion³) can be attributed to heterogeneity in

 $^{^{\}rm 2}$ The commodity-mixes of these six manufacturing groups are presented in annex I.

³ See table 2.

TABLE 6 :	DISPERSION OF	PRINCIPAL	INPUT	COEFFICIENTS	AMONG	ESTABLISHMENTS;	BY TWO	SUB-GROUPS
	DIS	TINGUISHED	WITH 1	RESPECT TO RE	LATIVE H	OMOGENEITY OF O	UTPUT	

Group and sub-group	Number of establishments	Average input coefficient	Coefficient of variation	Significance of differences between input coefficients	Variance ratio test
Breweries I	10	0.096	0.172		
II	15	0.136	0.129	0.002	
Plywood mills I	12	0.302	0.092		
и	12	0.271	0.314	0.10	F. ₉₉₉₅
Sulphite pulp mills I	10	0.408	0.400		
II	10	0.430	0.067	0.40	F-99
Sulphate pulp mills I	6	0.203	0.200		
II	3	0.372	0.124	0.01	F. ₉₀
Glass factories I	3	0.088	0.091		
И	9	0.036	0.750	0.002	F_{25}
Nail and steel factories I	7	0.962	0.100		
11	7	0.916	0.028	0.20	F.90
Average	9	0.352	0.233		

commodity-mix, and one-third to replacement of the particular principal inputs by other inputs. Prices were found to exert practically no influence upon the variation of input coefficients among establishments.

The above analysis is of course too limited in its scope to warrant far-reaching general conclusions. It suggests, however, that the commodity-mix in the output of an industry or group bears great significance as regards the magnitude of input coefficients of that industry or group.

VI. OUTLOOK FOR INTERNATIONAL COMPARISONS

This analysis of the statistical units in the basic data for input-output compilation and of the principles to be applied in the classification of these units indicates that the basic data in some respects fall short of requirement for the construction of an input-output table. Only in an ideal situation where an establishment produces a single commodity does the statistical unit meet the full requirement. Deficiencies in the basic data result in the formation of a group of units producing diverse commoditymixes which are particularly responsible for the wide variation of input coefficients as among the establishments of which the group is composed. The constancy of input coefficients is thus made very dependent upon the constancy of the commodity composition of the output. Great importance should therefore be attached to the problem of by-products.

The basic statistical materials should therefore be regrouped and analyzed before they are transformed into input-output concepts. This could not be done for the 1959 input-output table, chiefly because of lack of resources. The group data in industrial statistics had to be accepted as the original data, and some groups had to be further combined where demands for their outputs were expected to behave in an approximately parallel manner. When an input-output table is used for international comparison, some of the problems to be faced would be quite similar to those arising when an input-output model is applied to a national economy. Among these, dependence of input structure upon commodity-mix is to be particularly noted. At the national level it may be plausible to assume an approximate constancy of the shares of different commodities in the output, at least in the short run, but at the international level production conditions frequently differ so markedly between countries that plausibility of this assumption becomes rather questionable. Scope of input substitution and variation of unit prices are likely to be greater in an intercountry comparison.

The range of commodity-mix may be narrowed down, and dispersion of input coefficients among establishments reduced, by forming smaller groups. To make the results as reliable as possible and to enable the inputs to be related to the commodities in as correct proportions as possible, it will become necessary to examine the data gathered on an establishment basis. It seems that even if rather detailed groups are used it is still necessary to define each group clearly and to indicate the proportions in which various commodities enter in its output. Only then can the data assume a homogeneous foundation for international comparisons.

In calculating input coefficients the possibility of substitution between domestic and foreign inputs should also be closely examined. This may lead to a combination of different groups, since those formed at the first stage may engage in the production of substitutes. The approach to such problems would be facilitated by a systematic study of substitutable products based on technological information. When the input structure is analyzed on a commodity basis some commodities will have to be combined in any comparison of input coefficients, so as to reduce the scope of substitution. The resulting table would contain a greater number of columns than rows.

The data tabulated at the first stage of data gathering should be as detailed as possible to ensure a degree of flexibility in their use. This is also important because such tables may have various analytical uses in the future. When establishment is the statistical unit for industry and interindustry statistics it is likely that the most detailed table will have more rows than columns. Rows may then be classified by commodities and columns by industrial processes.

The calculation of quantity coefficients is to be recommended for the most flexible solution of the pricing problem. This also calls for rather detailed classification of groups. Input coefficients based upon quantity data should be completed, together with data on relative commodity prices in the countries to be compared. This would also be a great help if value coefficients would have to be employed for international comparisons. It seems generally possible to calculate quantity coefficients or at least average price coefficients for Finland. The use of average prices makes it possible to calculate input coefficients for a mix of commodities measured in different units.

Specialization of establishments is an important factor affecting the suitability of data available for international comparison. Input structures related to specific commodities can be identified, even if only approximately, when establishments are rather highly specialized. Errors of estimation arising from heterogeneity of output can then be partly avoided. When the available Finnish data are evaluated on this criterion it seems that the data for groups such as paper, woodworking and non-metallic mineral products are the best suited for international comparison. Data for textiles, leather, apparel, foodprocessing and other miscellaneous consumer products, as well as chemicals and rubber products, provide a somewhat weaker basis for international comparison than the former groups. In the metallurgical, metalworking and machine-building, petroleum and coal industries one establishment produces many products, while in some groups there are only a small number of establishments; these industries in Finland are thus likely to fit uneasily into the scheme for international comparison of input coefficients.

ANNEX I

Commodity-mixes of selected manufacturing groups

Sulphate pulp mills

Percentage
32 33
25
6
3
1

Total 100

Plywood mills

Plywood	
birch)
birch, sheets for plywood	ĺ
common or warted birch 1	l
for aircraft 1	
for aircraft, sheets for plywood 1	Į
Batten-board	3
Hacked wood	
Fuel wood 1	
Other products	5

TOTAL 100

Sulphite pulp mills

Sulphite cellulose bleached semi-bleached	
hard	42
Sulphite waste lye Other products	1 1

TOTAL 100

Sulphate cellulose bleached semi-bleached hard	16
Sulphate waste lye	
Raw pine oil	
Other products	1

Total 100

Manufacture of glass and glass products from raw materials

Window-glass	32
Bottles	16
Glassware for households	15
Glassware for technical purposes	11
Glassware for medical purposes	7
Glassware for lighting	6
Glass wool	7
Other products	6
_	

TOTAL 100

Manufacture of nails and steel wire

Wire, nails and tacks		45
Iron or steel wire, galvanized		20
Iron or steel wire, other		15
Fittings for buildings		7
Wire for fencing		
Nettings of wire		
Axles		1
Other products		6
	AT A T	100

Total 100

٩

ANNEX II

A note on the 1959 Finnish input-output table

The first Finnish input-output table, which had 39 production sectors, was compiled for 1956. The second table relates to the year 1959 and is more detailed in several respects.

The major characteristics of the 1959 table are that-

1. the statistical unit is the establishment; as a rule adjustments were made for secondary products;

2. the industrial classification of establishments is based on the ISIC:

3. Domestic commodities are valued at producers' prices, and imports at c.i.f. prices, less customs duties and freights paid to domestic ships. All transactions are evaluated at actual, not average, prices;

4. Separate transactions tables have been prepared for domestic goods and services and for imports.

Some of these characteristics will be considered below.

The establishment is the unit of observation in the most important basic statistics of Finnish input-output tables. This is not an entirely satisfactory statistical unit for input-output tables: however, the statistical unit utilized in available data and a shortage of available personnel necessitated the use of the establishment as the basic statistical unit for the input-output tables.

The concept of establishment used in the industrial statistics of Finland, which are the main source of data for the input-output

Code

table, serves the purpose of input-output study rather well. It was considered necessary to change this concept only in one respect. The value of own-account transport services and the inputs used for that purpose were transferred to the transport sector. Other secondary activities of an establishment (such as own-account construction, laboratory work and loading) were in fact of such minor magnitude that they were left among the principal activities of the establishment.

When the secondary products of some sectors were significant these sectors were combined with those producing mainly these products. The criterion of product homogeneity was then only roughly fulfilled. In the aggregation of sectors, the criterion that the demand for products could be expected to change at least approximately in the same way was also considered.

Classification of sectors has been done on the basis of the International Standard Industrial Classification system. At the first stage of compilation about 300 production sectors were separated. It was not possible, however, to complete an inputoutput table with so detailed a classification because basic data are scarce and unreliable. Input-output tables are to be published in three different alignments: (a) a large table consisting of 124 producing sectors; (b) a medium-sized table consisting of 44 sectors; and (c) a small table consisting of only eight sectors.

Cross-classification of input-output sectors in the 124-sector table, of those in the 44-sector table, and of the ISIC code number is presented in table 1 of this annex.

Code

Finnish 44-sector table	number of the ISIC	Finnish 124-sector table	Finnish 44-sector table	number of the ISIC	Finnick 124-sector table
01 Agriculture	010	Agriculture		209	Manufacture of cooking
02 Livestock production	010	Livestock production		209	fats Coffee roasting
03 Forestry and logging	020	Forestry and logging		209	Food manufacturing not elsewhere classified
04 Hunting and fishing	030, 040) Hunting and fishing			
05 Metal mining	121 122	Iron-ore mining Non-ferrous metal mining	08 Beverage industries	211 212	Manufacture of spirits Manufacture of wines and liqueurs
06 Other mining	140 140	Stone quarrying, clay and sand pits Limestone quarrying		213, 214	Breweries and manufacture of soft drinks
	199	Mineral quarrying and pits	09 Tobacco manufactures	220	Tobacco industries
	199	not elsewhere classified Digging and preparation of	10 Textile manufactures	231	Spinning, weaving and finishing of textiles
		peat		232	Knitting mills
07 Food manufacturing industries	201	Slaughtering, preparation and preserving of meat		233	Cordage, rope and twine industries
	202 203, 204	Processing of dairy products Canning and preserving of		239	Manufacture of felt, wad- ding and their products
	209	fruits, vegetables and fish Preparation of animal feed		239	Manufacture of other tex- tiles
	205, 206 207	Grain mills and manufac- ture of bakery products Sugar refineries	11 Wearing apparel industries	241, 242	Manufacture and repair of footwear
	207	Manufacture of chocolate and sugar confectionery		243, 292	Fur-dressing and manu- facture of wearing
	209	Manufacture of starch			apparel, except footwear

ANNEX TABLE 1: CLASSIFICATION OF INDUSTRIES

٠

Finnish 44-sector table	Code number of the ISIC	Finnish 124-sector table	Finnish 44-sector table	Code number of the ISIC	Finnish 124-sector table
	244	Manufacture of other made- up textile goods		332	Manufacture of glass an glass products
2 Manufacture of wood and cork	251, 252	Sawmills, planing and wood excelsior manufacturing		333	Manufacture of pottery china and earthenware
and cork	251 251	Plywood mills Wood preservation		334 339	Manufacture of cement Manufacture of lime and chalk
	251	Manufacture of wood- particle boards		339	Manufacture of concret products and mortar
	251	Prefabrication of wooden houses Other manufacture of wood		339	Manufacture of stone pro ducts
3 Manufacture of furniture	251, 252	Manufacture of furniture		339	Manufacture of other cla and stone products
(except metal furniture) and fixtures		(except metal furniture) and fixtures	21 Basic metal industries	341	Iron and steel basic indu
4 Manufacture of paper and paper products	271 271	Wood pulp mills Pulp mills		342	tries Copper and nickel basi industries
	271 271 272	Paper and cardboard mills Wallboard mills Manufacture of articles of		342	Basic metal industries no elsewhere classified
		paper and paperboard	22 Manufacture of metal	350	Manufacture of metal pro
5 Printing and publishing	280 280 280	Printing and etching of steel and copper plates Bookbinding Publishing	products, except ma- chinery and transport equipment		ducts such as wire, nail files, springs, cutler metal furniture, plating etc.
6 Manufacture of leather	280 291	Tanneries and leather finish-		350 350	Repair of metal produc Manufacture of metal pro-
products	293	Manufacture of leather products			ducts not elsewhere class fied
7 Manufacture of rubber products	300	Manufacture of rubber products	23 Manufacture of machin- ery, except electrical	360 360	Manufacture of machiner Machinery repair shops
8 Manufacture of chemicals	300 311	Vulcanizing Manufacture of inorganic	24 Manufacture of electrical machinery, apparatus,	370	Manufacture of insulate wires and cables
and chemical products	511	chemicals, except fertil- izers	appliances and supplies	370	Manufacture of electr lamps and lighting
	311 311	Manufacture of fertilizers Manufacture of organic chemicals, except syn-		370 370	Fixtures Manufacture of accumul tors and batteries
	311	thetic fibres Manufacture of synthetic fibres		370	Manufacture of strong ar weak current apparate and supplies
	312	Manufacture of vegetable and animal oils and fats		370	Electrotechnical repair sho
	311, 313	Manufacture of paints, var- nishes and lacquers	25 Manufacture of transport equipment	381	Building and repairing ships and boats
	319	Manufacture and packing of cosmetics, toilet pre- parations, washing com-		382	Manufacture and repair railway and tramway equipment
	319	pounds and candles Manufacture of medical		383	Manufacture of mot vehicles
	319	and pharmaceutical pre- parations Manufacture of other chem-		384 385	Repair of motor vehicles Manufacture of mot cycles and bicycles
0 Manufacture of anoducto		ical products		386	Manufacture and repair aircraft
9 Manufacture of products of petroleum and coal	321 329	Petroleum refineries Manufacture of other petro- leum and coal products		389	Manufacture of other tran port equipment
	329	Manufacture of lubricating oils and greases	26 Miscellaneous industries	391, 392 395 394	and musical instrument
20 Manufacture of non- metallic mineral pro- ducts, except products of petroleum and coal		Manufacture of structural clay products		394 399	Manufacture of jewelle and related articles Manufacture of plastic pu ducts not elsewhere clas fied

ANNEX TABLE 1: CLASSIFICATION OF INDUSTRIES (continued)

·····					
Finnish 44-sector table	Code number of the ISIC	Finnish 124-sector table	Finnish 44-sector table	Code number of the ISIC	Finnish 124-sector table
	259, 399	Manufacturing industries not elsewhere classified	36 Tramway and bus trans- port		Tramway and bus transport Other road transport
27 House construction	400	House construction	38 Air transport	717	Air transport
28 Other construction	400	Other construction	39 Communications	730	Communications
29 Electricity, gas and water services	511 512	Electric light and power Gas manufacturing and dis- tribution	40 Public administration and defence	810 810	State government Local government
	513	Production and distribu- tion of steam	41 Community services	821, 823, 827	Educational services
	521	Water supply		822	Medical services Religious organizations
30 Commerce	610	Wholesale and retail trade		,	Ç Ç
31 Banking and insurance	620 630	Financial institutions Insurance	42 Business services not else- where classified	829, 830	Business services not else- where classified
32 Ownership of dwellings	640	Ownership of dwellings	43 Recreation services, hotels and restaurants		Recreation services Hotels and restaurants
33 Water transport	715, 716	Water transport	44 Other personal services	826	Associations and institu-
34 Services incidental to transport	718	Services incidental to transport		851 854 855	tions Personal domestic services Other personal services
35 Railway transport	711	Railway transport		856, 859	

ANNEX TABLE 1: CLASSIFICATION OF INDUSTRIES (continned)

Unallocated outputs and inputs are treated as an exogenous sector, in order not to mix the identified intermediate inputs with uncertain estimates. The unallocated items are due to three different causes:

(a) the production in different sectors of commodities used for the same purpose;

- (b) observed stock changes (net);
- (c) observation and compilation errors.

The first group consists of unallocated office materials, packaging materials, scrap and repairs. Stock changes could be observed only in a few cases. As a rule they are included in the observation errors, which on an average amount to about 1 per cent of the total production. In "Financial institutions' the unallocated item consists of intermediate bank services. In "Insurance" this item shows the difference between intermediate insurance payments and the value of corresponding insurance services (operating costs).

The primary inputs are (a) labour income, (b) capital income, (c) indirect taxes less subsidies, and (d) imported goods and services. Labour income includes wages and salaries, national pension premiums, family allowances and other social expenditures paid by employers, and income from unincorporated enterprises (except income from forestry and ownership of dwellings). Capital income includes the two last-mentioned items, interests, rent, corporate profits before deduction of direct taxes, and depreciation.

Imported inputs are treated in the basic table as an input of the using industry. To improve the analytical usefulness of the table a separate table for imports has been compiled. Imported goods and services are cross-classified in this table by both the using industries and the counterpart domestic industries. They are also divided into competitive and non-competitive imports, according to whether they are produced in Finland or not.

Domestic transactions are valued at producers' prices. Imported goods and services are valued at prices which were obtained by subtracting the freights paid to domestic ships from the c.i.f. prices (excluding customs duties). All the transactions are valued at their actual prices, although these may vary according to the use of the commodity.

The gross value of output in manufacturing sectors consists of the

sales value of primary and secondary products at producers' prices and of miscellaneous receipts from repairs, contract work and sales of scrap.

On the basis of worksheet information it is possible to construct tables for commercial margins, transport charges and indirect taxes. By means of these tables the transaction table valued at purchasers' prices, although not readily available, can be compiled. Worksheet tables also permit the retabulation of the freights paid to domestic ships as a supporting table for the import table. Information on principal quantity flows is also available in worksheets.

The data on the value and quantity of commodities produced at different manufacturing sectors (product-mix) as well as the value at purchasers' prices and the quantities of commodities used as inputs in these sectors are put on punchcards. These data are not entirely consistent with the final input-output table. In spite of these inconveniences they may serve as a useful source of additional information for international comparisons.

In connexion with the attempt to compile an input-output table of the Finnish economy by the RAS method⁴ for 1963, some information on the constancy of input coefficients was obtained. The trial was made by using the 124-sector input-output model for 1959. In testing the constancy of 1959 input coefficients the following formulae were used:

$$\overline{X}_{i.} = \sum_{j=1}^{124} \frac{p_i}{p_j} a_{ij}^{59} X_j^{63} \qquad \overline{X}_{.j} = \sum_{i=1}^{124} \frac{p_i}{p_j} \sum_{j=1}^{59} X_i^{63}$$

where X_j^{63} =total output for 1963; X_i =forecasted intermediate demand for 1963; \overline{X}_i =forecast intermediate inputs for 1963; a_{ij} =input coefficient for 1959; p_i or p_j =price relatives for output (period 1963 divided by period 1959).

When intermediate demand $(\overline{X_i})$ and intermediate inputs (X_i) were estimated for 1963 the forecasts could be compared with corresponding actual observations. Table 2 to this annex outlines some results of the comparisons.

⁴ See University of Cambridge Department of Applied Economics, *Input-Output Relationships*, 1954–1966: A Programme for Growth, Series 3 (1963), pp. 27–38.

	Intern	nediate deman	ıd		Intermediate	inputs
Group of industries	\overline{X}_{i} .	\overline{X}_{i} , $-X_{i}$.	Ratio percentage error to X _i .	<u> </u>	⁻ X.j−-X.j	Ratio percentage error to X
Agriculture, forestry, hunting and						
fishing	41,259	5,534	0.136	15,867	2,545	0.160
Mining and quarrying	3,902	597	0.153	508	46	0.091
Manufacture of food, beverages and	-					
tobacco	10,471	1,554	0.148	30,390	2,216	0.072
Manufacture of wood, furniture,	-			,		
paper and paper products	14,908	2,570	0.172	29,040	2,263	0.078
Manufacture of metal and metal	-	-			-	
products	26,926	2,579	0.096	19,308	1,602	0.083
Other manufacturing industries	24,519	4,589	0.187	18,255	2,173	0.119
Electricity, gas, water and sanitary						
services	7,869	648	0.082	2,626	703	0.268
Construction	3,411	207	0.061	20,748	1,413	0.068
Trade and transport	18,906	2,738	0.145	11,395	1,044	0.092
Other services	5,664	474	0.084	9,698	694	0.072
Total	157,835	21,490	0.136	157,835	14,699	0.093

ANNEX TABLE 2: FORECASTING ERRORS FOR 1963

Projection errors are not due solely to the changes of input coefficients at constant prices: in some cases the revisions in basic production statistics undertaken after 1959 account for rather great errors (for instance in agriculture). Another major cause of errors lies in the inaccuracy of price relative estimates. Even if these statistical errors are taken into consideration, however, technical changes for certain industries seem rather significant during the period 1959–63.

Owing to some conceptual and statistical divergences the 1956 and the 1959 input-output table are not directly comparable with each other. The stability of input coefficients during this period has therefore not yet been studied. In table 3, which is in producers' prices, all imports are classified by using sectors (row 400). In table 4, which is at c.i.f. prices, excluding customs duties and freight paid to domestic ships, a=noncompetitive imports, and b=competitive imports. In both tables, columns 45 to 49 read as follows:

Column 45: Exports

Column 46: Private consumption

Column 47: Government consumption

Column 48: Investment

Column 49: Unallocated, including net changes in stock.

		1	2	3	4	5	6	7	8
1	Agriculture	1,072	5,637		_	-		1,234	81
2	Livestock production	1,102	329	523				9,305	(
3	Forestry	10	207			4	0	48	(
4	Hunting and fishing		22				-	30	
5	Metal mining					46			_
6	Non-metallic mining and quarrying	49			_	0	26	9	1
7	Food manufacturing industries		1,531			_		4,223	41
8	Beverage industries		2					4	179
9	Tobacco manufactures							-1	
10	Manufacture of textiles		14					1	C
11	Manufacture of footwear, other wearing apparel and made-up textile goods.		14			0		1	Ľ
12								_	
	Manufacture of wood and cork, except furniture					3	4	3	U, U
13	Manufacture of furniture and fixtures								
14	Manufacture of paper and paper products							2	0
15	Printing, publishing and allied industries	9	14						5
16	Manufacture of leather and leather products, except footwear						1		
17	Manufacture of rubber products					3	1	1	1
18	Manufacture of chemicals and chemical products	1,065	180		5	29	1	558	21
19	Manufacture of products of petroleum and asphalt	72	6	18	3	3	1	20	2
20	Manufacture of non-metallic mineral products	24	—			6		0	
21	Basic metal industries					10	4	1	0
22	Manufacture of metal products, except machinery and transport equipment.	15	24			7	5	6	3
23	Manufacture of machinery, except electrical machinery					21	16	68	4
24	Manufacture of electrical machinery, apparatus, appliances and supplies.					2	0		Ó
25	Manufacture of transport equipment						_		
26	Miscellaneous industries							0	_
27	House construction	36	320	55		1	1	31	3
28	Other construction	18				0	0	1	0
20 29		18	137			-	18	195	18
30	Electricity, gas steam and water services	2.00			- 9	45			
	Trade	258				15		138	16
31	Banking and insurance	20	56	24	1	3	1	32	5
32	Ownership of dwellings								
33	Water transport	37	4			1	1	134	3
34	Services incidental to transport								
35	Railway transport	159	43	2	0	6	1	261	14
36	Tramway and bus transport								
37	Other road transport	138	56	2	0	14	31	949	70
38	Air transport		-					·	
39	Communications	1	1			1	2	61	1
40	Government services								
41	Education, health and related services								
42	Business services not elsewhere classified	59	26	148		1	1	118	27
43	Recreation services						_		_
44	Personal services					i			
1-44	Total, intermediate inputs	4,144	8,751	812	18	221	121	17,433	503
1-44	Labour incomes			3,431					
200				· ·			1		
	Capital incomes			5,452	1	1			
300	Indirect taxes	-159			· ·				-
400	Imports	342				14			
100–400	Total primary inputs	6,394		8,908					
000	Unallocated items	227						424 26,293	
	TOTAL PRODUCTION		1 4 4 4 4 4		665	911	1 480		1 1 10

ANNEX TABLE 3: INPUT-OUTPUT TABLE FOR FINLAND, 1959 (Each row shows the output required from the industry named at the beginning of the row

ę

(in 100,000 markka (nmk) at producers' prices)

by the industry named at the head of the column and the output delivered to final demand)

9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
	0 21	7					28	_	139 0									_	2
0	10	4 4		4	2,979	1	1	1	26 	0	24 	2	5	7	0	13	1	578 	97
1	0	0	1	_	38 18 1		0 125	5	3	0 5	5 188	536 2	3	1	 1 0	5	3	49	4 29 0
10				-					8				-						
	542 0				41	14	5	47	8	1	1	2 0	9	1	2	22 0	5	15	
1	·	15 0	1	10			2	0		2	22 0	5 0	12 2	17	0 37	53	25 5	517 505	361 1
23	0	0	1	0		931	2 0	0	_	22 0	9		1	1	19 0		2 0	362	2
	2 2 158	50	2		7	0	53 0	0 55	5	0	1 1	0	32	14 10	0 1	17	2	104	
0				1	21	2	8 1 1	3 5		12 38 2	9 21 231	9 14 15	21 7 2	29 8 8	18 3 50	11	10 1 4	372 111 1,371	144 62 475
0	1		2	23	3	9	4		14	0 4	35 25	2,989 12	470 138	302 154	422 35	143	75 7	1,371 191 489	201 108
1 0				7		16	1	3		14 0	33 1	35 1	11	454 83	26 198	177	5 1	200 425	147 377
15				3			6		4				0 1	8 7	1 4	349 5	0 17	16 116	26 0
1	0	0	5	0	8	0	0 0	1	1	0 0	3 0	3	2 0	6 0	6	1			14
3 6 1	21	11	22	6		3	8 2	24 4	51	20 11	93 39	110 19	59 14 9	97 17	31 9	20	16 3	533	30 237
- 2					$\frac{31}{-34}$		2	4		$\frac{14}{53}$	15 	11 27	9 	15 13	6 9	$\frac{32}{21}$	5	32	$\frac{12}{18}$
	· ·	23	111		332		5	10		$\frac{53}{18}$	24 	80	29			$\frac{21}{34}$	$\frac{2}{10}$		18 8 127
7	51	40	417	32	777	37	11	22	137	39	182	62	52	67	30	98	25	744	2,237
1	12	24	13	9	28	78	2	4		2		5	<u></u> 12	21	9	28	8	27	45
27	2		10	15		42	2		 197		17			10					
						42		• 				1	9	18	13	73	15		2
110 105	<i>1,035</i> 1,523	2,371 1,572		706 596	<i>12,049</i> 2,216	<i>1,793</i> 1,183	<i>271</i> 153	<i>199</i> 195	1,882 705	261 82	1,051 852	3,941 460	898 1,130	<i>1,388</i> 1,808	<i>951</i> 781	1,408 1,990	252 388	7,068 5,806	4,766 4,821
157 33	708 57	516 142	666 68	169 29	2,439 214	762 13	50 9	209 17	994 267	308 23	469 65	321 37	337 69	727 98	392 51	836 157	162 14	385 1,421	669 282
201 <i>496</i>	1,499 <i>3,787</i>	476 2,706		68 <i>862</i>	551 5,420		168 <i>380</i>	191 612		337 750	162 1,548	413 <i>1,231</i>	636 2,172	1,020 <i>3,653</i>	652 1,876	1,663 <i>4,646</i>	165 729	869 8,481	328 6,100
34 640	104 4,926	83 5,160	81 8,024	38 1,606	276 1 7,745	15 3,805	3 654	33 844	245 5,169	14 1,025	95 2,694	417 5,589	68 3,138	128 5,169	46 2,873	199 6,253	50 1,031	0 15,549	595 11,461

*

		29	30	31	32	33	34	35	36
1	Agriculture								
2	Livestock production	-							
3	Forestry	95	******		1,333	3			_
4	Hunting and fishing								-
5	Metal mining	0							
6	Non-metallic mining and quarrying								
7	Food manufacturing industries					_			
8	Beverage industries								
9	Tobacco manufactures								
10	Manufacture of textiles	1							
10	Manufacture of footwear, other wearing apparel and made-up textile goods.	1			_				
12	Manufacture of wood and cork, except furniture	227			63		_	2	
12	Manufacture of furniture and fixtures	221		10	03			$\frac{2}{1}$	
		107		10				0	
14	Manufacture of paper and paper products	137							
15	Printing, publishing and allied industries	0		58				7	
16	Manufacture of leather and leather products, except footwear			-	-	-			
17	Manufacture of rubber products	1						1	23
18	Manufacture of chemicals and chemical products	7					-	3	
19	Manufacture of products of petroleum and asphalt			-	116	8	1	15	47
20	Manufacture of non-metallic mineral products	4							
21	Basic metal industries	5							
22	Manufacture of metal products, except machinery and transport equipment.	15				1		9	
23	Manufacture of machinery, except electrical machinery	77					5	2	
24	Manufacture of electrical machinery, apparatus, appliances and supplies.	12						33	0
25	Manufacture of transport equipment			_		141		422	271
26	Miscellaneous industries		_						
27	House construction	8	135	45	624	4	6	63	1
28	Other construction					35		359	
29	Electricity, gas steam and water services		100	43	1,223	. 3	3	26	21
30	Trade	87	100	14	130		2	2	102
31	Banking and insurance	55	134	3	85	115	6		43
32	Ownership of dwellings		207	5	05	115	v		-1.5
33	Water transport	73	207	5	96	460	0	22	10
33	Services incidental to transport	13		5	90		v	22	10
34	· · · · · · · · · · · · · · · · · · ·	119		38	85	25			
	Railway transport	119	1		85				
36	Tramway and bus transport		-	36			_		
37	Other road transport		8	37	59		1	1	35
38	Air transport			15					
39	Communications		400	108	5	7	34		
40	Government services							-	
41	Education, health and related services								
42	Business services not elsewhere classified	5	534	148	20	4	9		
43	Recreation services								• •
44	Personal services								
]_44	Total, intermediate inputs		1,525	560	3,839	806	67		553
100	Labour incomes	932	7,581	1,458	335	1,162	173	1,749	656
200	Capital incomes		4,243	1,118	8,469	683	101	137	494
300	Indirect taxes			·	82		4	34	230
400	Imports			100	578			140	68
100-400	Total primary inputs	-	11.886				-	2.060	
000	Unallocated items					- 15		- 25	
	TOTAL PRODUCTION		13,586					3,003	
	TOTAL TRODUCTION	0,000	10,000	0,040	10,000	3,770	504	5,005	-,004

ANNEX TABLE 3: INPUT-OUTPUT TABLE FOR FINLAND, 1959

ŧ.

37	38	39	40	41	42	43	44	1-44	45	46	47	48	44-48	49	1-49
-	—	-				_		8,163	9 384	1,987	27 7		2,023	579	10,765
		_	_	_		_		11,317 9,177	384 1,629	4, 388 4	114		4,779 1,747	97 	16,193 9,842
					—			56	3	607			610	- 1	665
	—							636 432	270 8	5	17		270	- 3	911
	_						_	432 5,998	2,326	17,449	492]	30 20,267	- 3	459 26,293
								193	8	994			1,002	0	1,195
_		_						10 2,263	0 159	630 2,411	—	35	630 2,605	0 58	640 4,926
				_	_	_	_	2,203	30	4,930	96	33	5,059	58 14	4,920
								2,741	5,713	95		24	5,832	- 549	8,024
						_		572 5,716	41 11,144	928 172		61	1,030 11,316	4 713	1,606 17,745
		14			711			1,752	16	1,239	187	_	1,442	611	3,805
120						—		530	2	109		20	131	- 7	654
120	_						3	410 3,765	20 333	416 922	169	_	436 1,424	$- 2 \\ - 20$	844 5,169
306				 .				1,035	1	51	13		65	- 75	1,025
_					—			2,274	132	228	-	25	385	35	2,694
				_				4,900 1,377	483 144	0 543		2 656	485 1,343	204 418	5,589 3,138
		31				28	7	1,880	1,514	251	62	1,011	2,838	451	5,169
0 685	63	50 2	-			-		1,272 1,986	312 1,949	574 713		465	1,351	250 321	2,873
			_	_				236	1,949	683		1,284 79	3,946 788	521	6,253 1,031
	1	32		—	20	55	19	1,578		121	497	12,977	13,595	376	15,549
		159 37						603 5,619		28 84	1,294 291	9,443	10,765 383	93 97	11,461 6,099
715	21			_	9	25	4	2,842	70	8,998	336	1,343	10,747	- 3	13,586
144	6	8				4	1	1,046	183	1,080	36		1,299	1,000	3,345
66	2		_		110	116	25	458 1,204	1,916	12,930 194		330	12,930 2,500	- 255	13,388 3,449
	_					20		53		311			311		3,449
	2	63	-	—	9	4	3	2,088	558	523	93	62	1,236	- 321	3,003
217	16	10 7			6	4	1	46 6,772	511	1,850 1,951	55 254	70	1,905 2,786	, 50 - 39	2,001 9,519
_	0	6	—		_		2	23	92	141	40	-	273	41	337
	2	4		—		16	2	1,057		955 808	188		1,143		2,200
	_					_				3,163	4,556 5,253		5,364 8,416		5,364 8,416
	8	3				—		1,656		68			68	- 2	1,722
			—			-				1,812 1,258	-		1,812 1,258	—	1,812 1,258
2,253	121	426	_	_	865	272	67	93,823	29,994	76,604	14,137	27,890	1,238	3,093	245,541
4,219	97	1,335	5,179	7,567	799	1,168	1,053	81,619						-	81,619
871 1,322	36 18	342 15	185	448	135 - 106	310 8	101 4	41,913 6,763	- 870		217	2,073	9,429		41,913 16,285
854	21		_			_		16,735	- 870	3,831	461	5,516	9,429	378	26,921
7,266	172	1,692	5,364	8,015	828	1,486	1,158	147,030	- 870	11,840	678	7,589	19,237	471	166,738
9,519	44 337	82 2,200	5,364	401 8,41 6	29 1,722	54 1,812	33 1,258	4,688 245,541	185 29,309	-1,417 87,027	1,564 16,379	35,479	<i>332</i> 168,19 4	3,564	5,020 417,299
-,,-	557		0,004	0,710	<i>کند</i> او د	1,012	1,400	241. J41.	29,309	07,047	10,379	55,419	100,174	3,304	41/,479

(in 100,000 markka (nmk) at producers' prices) (continued)

niji.

Note: Column 45=exports; column 46=private consumption; column 47=government consumption; column 48=investment and column 49=unallocated including net changes in stock.

								1
		1	2	3	4	5	6	7
1	Agriculture	35	21					987
2	Livestock productionb	72						692
2	Forestry							9
3	b			•				
4	Hunting and fishingb							52
5	Coal-mininga	-				0	2	20
6	Metal-miningb		-			-		-
7	Non-metallic mining and quarrying	88	5	17		2		14
8	Food manufacturing industries		_	-				
	b		12					3
9	Beverage industries		13					442
10	Manufacture of textiles a		3					2
10	b							
11	Manufacture of footwear, other wearing apparel and made-up textile goods $\dots \int_{a}^{a}$							0
	jb j	-						
12	Manufacture of wood and cork, except manufacture of furniture $\ldots \qquad \begin{cases} a \\ b \end{cases}$	-			—			
13	Manufacture of paper and paper productsb							
14	Printing, publishing and allied industriesb	~~~						
15	Manufacture of leather and leather products, except footwear							
16	Manufacture of rubber products $\int a$	-						
	- Long Long Long Long Long Long Long Long							1
17	Manufacture of chemicals and chemical products $\ldots \qquad \begin{cases} a \\ b \end{cases}$	63 72	39 22			3	1	25 244
18	Manufacture of products of petroleum and asphalt $\ldots $							
10	b	12	3	9		1	0	6
19	Manufacture of non-metallic mineral products $\ldots $							
	ζo.							
20	Basic metal industries {a	_				_		
21	Manufacture of metal products, except machinery and transport equipmentb					5	3	
22	Manufacture of machinery, except electrical machinery						_	2
23	Manufacture of electrical machinery apparatus appliances and supplies $\int a$							- 1
	b 11 b 1							
24	Manufacture of transport equipment $\ldots $							
25	Misselleneous in dustries							
	Miscellaneous industries $\ldots $ $\begin{cases} a \\ b \end{cases}$							-
26	Electricity, gas steam and water servicesb			—		_		
27 28	Banking and insuranceb							
28 29	Water transportb Services incidental to transportb							
30	Railway transportb					_		
31	Communicationb							
	TOTAL	342	108	26	[14	7	2,505
					1	1		

ANNEX TABLE 4: IMPORT TABLE FOR FINLAND, 1959 (in 100,000 markka (nmk) (Each row shows the import of products characteristic to the industry named at the beginning of the row and

Note: a =non-competitive imports; b = competitive imports.

ŧ.

8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
1 14	192	348		_					30	84 					-	5		_	
0				2 36	0	_				1 4					1				
4	1					 16	2	4	1	0 	1		 		 12	5			
			1		0	 120			 20	77		0 0	1 32					_	
2	0		0	1		0			20 	0	266 —		8 2	3 0	3	1	4	$\frac{1}{4}$	9
 4 2 1 19 24 22		2	12					105		10 0	_							5	
22		14	4		 18	 0 58	 4	 4	 24	3	 0			 0	0				
		709 	347 32 —	$\frac{0}{3}$	$\frac{18}{18}$				24 	5		1 3		0	2		42	2 2	
3	0		3	8	14 0	 14	2 0	0		1		0		1			4	2 0	10 13
		1	 	0	0	1	0 2	5		0		0			4		 1 0	 0	105
1	0	5 113	2 5 3	03	1	66	0 0	32	9 9	1 428	2	0 30	2	2 11	4 5		7	10 7	105
1		270	3	$\frac{80}{3}$	$\begin{vmatrix} 4\\-\\1 \end{vmatrix}$	174		5	7	399 2		5 1	0	4	4	12	13	109	110
1 6		4		3 — 1		$\frac{21}{3}$	1	0 2	6 	12 		$\frac{6}{21}$	4	2	3		4	0	$\frac{2}{86}$
6 0		0		1		22 	2 4			13		3 2 4	36 242	310 205	253 159	270 67	380 137	3 5	50 147
0			2	4 1	1	47 8	3 1	0	0	5	1 1	3	14 2	69 12	100 427	29 21 99	117 247 56	2 4	231
				1						2			18	5	41	52	53 126	1	27
		0		 0			4								0	0 25	493 —	0 1	
) 						_	1				0	1	0	2	8	80
							_										-		
 99	201	1,498	476	145		550		 166	189	1,077	337	162	412	635	1 010		-		
	201	1,498	470	145	0/	550	41	100	189	1,077	337	162	412	635	1,019	653	1,665	167	870

at c.i.f. prices, excluding customs duties and domestic freights)

1 (R

required by the industry named at the head of the column and the imports delivered to final demand.)

~

٨

3

٩

		28	29	30	31	32	33	34
1	Agriculture	-						
2	Livestock productionb				_	_	_	
3	Forestry{h						<u> </u>	
4	Lb Hunting and fishingb		_		_	-	_	
5	Coal-mining		349		_	333	35	
6	Metal-miningb							
7	Non-metallic mining and quarrying $\ldots \qquad \begin{cases} a \\ b \end{cases}$	33	37			191	289	
8	Food manufacturing industries							
Ū	- Lb							
9	Beverage industries							-
10	Manufacture of textiles	_	_					
10							_	
11	Manufacture of footwear, other wearing apparel and made-up textile goods $\int a$		0			-		—
12	Manufacture of wood and cork, except manufacture of furniture $\ldots a$							
12	b		_					
13	Manufacture of paper and paper productsb							
14	Printing, publishing and allied industriesb		••					
15 16	Manufacture of leather and leather products, except footwearb Manufacture of rubber products							
10		_	0					
17	Manufacture of chemicals and chemical products $\ldots $		2 2					
18	b Manufacture of products of petroleum and asphalt	67 8	2					
10	b	16	18					
19	Manufacture of non-metallic mineral products $\dots \dots \dots \int a$							
20	b Basic metal industries		0					
20		1	3			_		
21	Manufacture of metal products, except machinery and transport equipmentb	10	3			—		
22	Manufacture of machinery, except electrical machineryb	150	3					
23	Manufacture of electrical machinery, apparatus, appliances and supplies \dots $\int a$	37	1					
24	Manufacture of transport equipment							
	∫ b					-	88	
25	Miscellaneous industries a					_		
26	Electricity, gas steam and water servicesb			_		55	_	_
27	Banking and insuranceb		_		100		19	
28	Water transport		—				313 52	1
29 30	Services incidental to transportb Railway transportb						52	
31	Communication	-					0	
	Total	328	418		100	579	796	1

ANNEX TABLE 4: IMPORT TABLE FOR FINLAND, 1959 (in 100,000 markka (nmk)

k

35	38	37	38	39	40	41	42	43	44	1-44	46	47	48	46-48	49	1-49
			_				_			1,703 778	384 326	27		411 326	- 29 256	2,085 1,360
		_	_	_						4	2			2	2	8
_							_			15 36					21 18	36 54
			_				_	_	_	52	7		0	7		59
32				-	-			-		979 1	53	94		147	- 53 21	1,073 22
			_					_		32	_				32	64
73	38	291	21					—		1,638	162	22		184	- 309	1,513
			_	_			_		_	7 8	0 35	14		14 35	47 - 2	68 41
		_		_						608	200	-		200	52	860
							_	-		24 27	21 31		_	21 31	- 1	45 57
			_						_	21	37			37		58
		-								1,188	404		9	413	13	1,614
			_					_	_	32 29	86	_	0	86	- 4	118 25
										46	11	_	3	14	10	70
			-						-	29 0	24 64		-	24 73	- 6 26	47 99
		_				_				61	4			4	20	72
		_					-	-		188	_				- 5	183
	23	121	_	-		_				185 879	129 2	_	16	145 2	5 53	335 934
			_			_	_		_	1,632	126	111	_	237	145	2,014
_	_								-	11		_	_			11
3	7	49	_			_		_		263 2	26	2		28	7 6	298 8
	_	_								147	22		25	47	22	216
						-				1,356 985			-		76 28	1,280 1,013
		_					_	_	_	675	67		146	213	20 	888
	-				_					897	7	8	2,865	2,880		3,777
							_			155 238	75 153		160 653	235 806	47 7	437 1,051
		_	_	_					_	126	801		69	870	_	996
	-	393	-	-				—	_	974	71		1,426	1,497 194	25 51	2,496
										31 103	173 214		21 124	194 338	21	276 441
				_				_	_	55				_		55
			-							119 313						119 313
		_						_		313 52				_		513 52
32								_	_	32	_					32
140	68	854	21				_			0 16.736	3,717	287	5,517	9,521	416	26,673

at c.i.f. prices, excluding customs duties and domestic freights) (continued)

Note: Column 45 = exports; column 46 = private consumption; column 47 = government consumption; column 48 = investment; column 49 = unallocated including net changes in stock.

•

FACTORS AFFECTING TECHNICAL COEFFICIENTS—SOME FINDINGS FROM THE HUNGARIAN INTERINDUSTRY DATA

Vera Nyitrai, Central Statistical Office, Budapest, Hungary

I. COMPILATORY FACTORS—AGGREGATION, VALUATION AND TREATMENT OF IMPORTS

The technical coefficients obtained from a conventional input-output transactions matrix are greatly influenced by the compilatory conventions involved in it. Adjustments for the effects of diverse compilatory gaps are therefore important in a comparison between countries of the structure of production as revealed by their inputoutput balances. This note considers only a few aspects of the problem. For empirical demonstrations, only the data for the Hungarian economy are used; it is hoped that an inspection of within-country data can still shed some light upon some of the questions relating to intercountry comparisons.

1. Aggregation

The level of aggregation is one of the most important factors influencing the technical coefficients of inputoutput balances. While some statisticians prefer large detailed tables, others favour small aggregated ones. A detailed table, say 100×100 or larger, is undoubtedly suitable for many purposes connected with industrial planning. It should be borne in mind however that, with detailed breakdown of sectors, many coefficients tend to be small in their apparent magnitude; detection of major coefficients as distinguished from minor ones would thus require a careful evaluation of individual coefficients with respect to their strategic weights in the over-all balance or in relation to given particular objectives of programming for which such a table can offer an expedient analytical tool. Moreover it is quite likely that the magnitude of individual coefficients in a large table may easily be affected by slight errors or gaps in sector and product classification which could be left unquestioned in the case of a smaller table. This point may prove especially important when tables of different countries are to be compared.

For the economy of Hungary in 1961, both 26×26 and 54×54 alignments are officially available. In table 1 the coefficient matrix of the 54×54 order is reproduced. The underlying transaction table is compiled at producers' prices, including turnover taxes; input coefficients are on the total supply basis—i.e. they include both domestically produced goods and imports (this is type A treatment of imports, and will be discussed below). The 26-sector classification corresponding to the 54 intermediate sectors is indicated in the first column of the table.

Disaggregation of the 26 sectors concentrates on only some half-dozen sectors, such as Mining (1-5), Basic metals (6-9), Non-metallic mineral building materials (16-19), Chemicals (20-26), Wood manufactures (28-31), Textiles (34-37), and Food manufactures (41-45). A comparison with similarly compiled data for 1959 shows that coefficients in the aggregated table tend to appear more stable than those in the large table; this is because of the law of averages. In the case of the Precision engineering sector for example, 17 coefficients defined in terms of 26-sector alignment changed by more than 10 per cent from 1959 to 1961, whereas in the 54-sector alignment only 7 coefficients changed by less than 10 per cent. Within the input from each aggregative sector the direction of changes in the coefficients of sub-items varies. For example, the coefficient of input from "basic metals" for the Precision engineering sector changed from 0.1246 in 1959 to 0.0956 in 1961. The details of these coefficients in terms of the 54-sector classification are as follows:

Confficient of interest to Description	Y_{i}	ea r	D
Coefficient of input to Precision engineering from	1959	1961	- Percentage change
(6) Iron and steel	·0560	·0421	25
(7) Alumina and light metals	·0044	·0013	-71
(8) Heavy metals	·0410	·0247	30
(9) Foundries	·0232	-0275	+19
Total Basic metals	·1246	·0956	-23

The extent of aggregation influences the magnitude of inverse coefficients. In other words, the inverse coefficients derived from an aggregated table do not equal the weighted aggregates of the inverse coefficients derived from a more detailed table, even if the same composition of final demand as in the base year is used as weights for the aggregation of the latter inverse. In table 2 inverse coefficients obtained from the 26×26 transactions table and those obtained from the 54×54 transactions table are compared. Since the selected six sectors remain single sectors in both tables, the figures in each sub-column (a) are obtained directly from the 54×54 inverse without involving weighted aggregation of its columns. However, the process of inversion itself is not free from the particular weights (reflecting the production structure of 1961) involved in the aggregation of the basic transactions table. In our particular examples aggregation errors fortunately turn out to be mostly negligible.

When total (both direct and indirect) labour requirement per unit of output is computed for each sector by

TABLE 1: INPUT-COEFFICIENT (Type A: Column total=10,000; the last eight

26-sector classifi-	Buying sector (54-sector classification)					
cation	Selling sector	1	2	3	4	5
(1)	1. Coal, peat and briquettes 2. Crude oil and natural gas	807	1 195	202	111	133
	3. Bauxite mining 4. Other metal mining		195		1	16
	5. Industrial minerals mining	1	25	4	1	535
(2)	6. Iron and steel	487	224	231	706	146
	8. Nonferrous heavy metals	8	2 4	11	32	3
(3)	9. Foundries	23	200		8	67
(4)	11. Electric machinery and appliances	164	300	202	219	336
(+)	12. Vacuum tubes and telecommunication equipment	106 6	51 6	87 11	123 3	168 3
(5)	13. Precision engineering	1	22	7	16	3
(6)	14. Other fabricated metal products	74	241	281	144	73
(7)	15. Electric energy	453	209	538	456	482
(8)	16. Bricks, roofing tiles and refractories	7 4	10 11	11 14	19 17	13 25
	 18. Lime and cement 19. Glass, ceramics and grinding wheels 	116	18	4	61 8	35 3
(9)	20. Petroleum refineries	112	120	170	170	149
()	21. Municipal gas and coal processing 22. Industrial gas and heavy chemicals	81	9	11	35	41
	23. Dyestuffs	138	11 5	43 4	123 3	130 10
	24. Pharmaceutical products 25. Household chemicals and starch	2 2	3			10
	26. Other organic chemicals	24	9	11	24	13
(10)	27. Rubber and plastic products	41	9		110	101
(11)	28. Timber and plywood 29. Joinery and wooden building materials	65 2	4 3	25 4	53 1	63 3
	30. Furniture	1	2		3	3
(12)	32. Paper	35	0 1	4	<u>49</u>	282
$\frac{(12)}{(13)}$	33. Printing	14	I	14	4	282
(13)	34. Cotton textiles		1		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(14)	35. Woollen textiles		1	4 4	_	
	36. Hard fibre and silk textiles 37. Haberdashery	1	1	4	3 1	9
(15)	38. Leather processing	2	16		4	3
(16)	39. Textile clothing and hosiery	1		69	59	57
(17)	40. Leather and fur apparel	2		47	20	19
(17)	41. Grain mills and bakery 42. Meat, poultry and dairy products	6 4	2 6	4 18	3 13	6 13
	43. Sugar, confectionery and coffee		3 2	7		3
	45. Other food manufactures	6	15	14	28	32
(18)	46. Miscellaneous manufactures	2	3		3	
	Socialist industry, total (1 to 46)	2,803	1,553	2,068	2,646	3,010
(19) (20)	47. Private craftsmen 48. Socialist building industry	29		54		13
(21)	49. Private building activities		4		150	
(22) (23)	50. Agriculture	509 285	4 614	321 79	158 134	181 656
(24) (25)	52. Domestic trade	31 21	12 23	32 14	47 32	51 13
(25)	54. Other productive activities	20	102	263	3	3
	Total intermediate inputs	3,698	2,309	2,833	3,019	3,926
(27) (28)	55. Amortization56. Wages, other incomes and accumulation	1,072 5,229	2,351 5,340	1,537 5,630	1,912 5,069	947 5,127
	Total gross production	10,000	10,000	10,000	10,000	10,000

,

matrix: Hungary 1961

columns in millons of forints at producers' prices.)

		nis ur prounce	- p. (600)						
			1						
6	7	8	9	10	11	12	13	14	15
69 63	266	27 1	8 3	65 7	44	87 1	29 1	51 1	2,941 25
1 597 11	427	124 13	54	1 2	13	15	4	2	1
·····	93	741				312	421		
2,910 31 145	2,647 55 13	1,557 2,743 40	2,235 364 542	1,498 45 113	891 309 1,094 438	45 290 70	13 247 275	2,121 229 528 597	119 3 43 11
237		·		685					
261	21	123	243 70	1,731 408	294	224 379	380	140	36
35 4	8 1			58	1,278 129	1,693	312 225	31	127 25
11	2	13			64	99	740	20	12
53	1	77	291	434	337	158	312	511	27
491	1,830	203	379	6	120	159	103	130 9	708
179 7 4	55	10 1 2 1	96 105 2 82		4	1 6	15	7	4 26 13
10		······		14 29	112	247	101	86	
157 725 31 1	141 359 328 1	85 31 8 3	23 378 92	48 37 29 75	55 31	17 27	23 27	38 85 59 79	132 171
1	328 1	8 3	92	29 75	31 61 53 1	27 81 73 7	23 27 19 68 3 4	59 79	4 2
1 8	1	5 8	3	2 12	2 111	40	4 75	1 135	1 3
5	5	13	1	180	225	106	61	43	18
3	1		36	22 3	5 1	22 2	17 1	14	
1 4	10		1	8 12	12 23	13 42	15 34	5 28	1 38
5	3	41		11	78	159	39	30	
3	7			7	6	36	23	4	3
1	1	3		23 15 18 5	28 2 18 25	14 10	15 12	8 53 17	1
1 2 3	1 2 4	2		18 5	18 25	10 1 7	15 12 4 15	17 22	2 1
3		5		15	1	6	25	10	1
18 6	5 1	31 10		16 2	12 2	25	23 1	31 3	2
	1 1				2 1		1 5	1	1
					1	1 3	1 2	1 1 7	1
3	7			2	16	13	3	2	2
2 6,101	10 6,327	<u> </u>	<u> </u>	15	35	66	65	37	5
	0,327	5,938	5,007	5,855	5,936	4,567	3,764	5,304	4,518
						87	37	52	21
2 221 120	1 134	9 247	6 114	1 105	18 44	5 43	3 30	12 117	540
84 239	86 36 324	180 119 1,351	318 43 769	66 47 11	79 59 21	64 46 183	51 34 122	64 38 139	55 33 35
6,766	6,909	7,844	6,257	6,085	6,157	4,995	4,041	5,725	5,202
648 2,586	705 2,386	276	413	396	271	404	300	290	2,047
10,000	10,000	1,880	3,329	3,519	3,572	4,601	5,659 10,000	3,986	2,750
	-,				10,000		10,000	10,000	10,000

.

TABLE 1: INPUT-COEFFICIENT MATRIX:

(Type A: Column total=10,000; the last eight columns

e-sector	Buying sector (54-sector classification)					
lassifi- cation	Selling sector	16	17	18	19	20
(1)	1. Coal, peat and briquettes	1,063 68	139	1,149	714 98	1 4,484
	4. Other metal mining	777	73	6 194	1 278	
(2)	6. Iron and steel	148 39	235	989 2	108 175	43
	8. Nonferrous heavy metals	15 100	20	44 224	14	
(3)	10. Machinery	128	480	186	91	22
(4)	 Electric machinery and appliances Vacuum tubes and telecommunication equipment 	45 26	69 20	24 8	15 5	3 1
(5)	13. Precision engineering	2	8	9	3	2
(6)	14. Other fabricated metal products	67	90	123	63	41
(7)	15. Electric energy	259	304	408	176	33
(8)	16. Bricks, roofing tiles and refractories	425 20 110 17	24 19 79 5	68 73 724 22	96 9 24 680	1 2 2
(9)	20. Petroleum refineries 21. Municipal gas and coal processing 22. Industrial gas and heavy chemicals 23. Dyestuffs 24. Pharmaceutical products	74 10 17 5	155 8 149 7	155 162 31 11	80 166 358 44 1	539 10 44
	25. Household chemicals and starch26. Other organic chemicals	23	2 51	4 7	5 97	1 21
(10)	27. Rubber and plastic products	48	144	40	26	2
(11)	28. Timber and plywood 29. Joinery and wooden building materials 30. Furniture 31. Other wood products	33 5 5 21	22 2 5 7	12 3 6 72	34 2 8 67	20 22
(12)	32. Paper	13	14	275	96	2
(13)	33. Printing		12	4	7	-
(14)	34. Cotton textiles 35. Woollen textiles 36. Hard fibre and silk textiles 37. Haberdashery	1 1 3 4	3 5 3 3	4 8 5 1	151 18 14 1	
(15)	38. Leather processing	14	2	13	4	
(16)	39. Textile clothing and hosiery 40. Leather and fur apparel	38 7	64 30	28 8	15 2	
(17)	41. Grain mills and bakery42. Meat, poultry and dairy products43. Sugar, confectionery and coffee44. Canned and frozen food45. Other food manufactures	12 18 3 13	10 17 3 5 3	6 23 3 3 20	2 17 3 7 63	1 11 1 40
(18)	46. Miscellancous manufactures	2	2	6	35	1
	Socialist industry, total (1 to 46)	3,665	2,293	5,163	3,874	5,352
(19) (20) (21) (22) (23) (24) (25)	 47. Private craftsmen 48. Socialist building industry 49. Private building activities 50. Agriculture 51. Transport and communication 52. Domestic trade 53. Foreign trade agents 	35 330 25 37	8 671 10 10	20 313 46 30	28 217 31 20	2 25 9 115
(26)	54. Other productive activities	14	2	14	27	25
	Total intermediate inputs	4,106	2,995	5,586	4,196	5,527
(27) (28)	55. Amortization 56. Wages, other incomes and accumulation	1,089 4,805	1,494 5,511	676 3,738	739 5,065	199 4,274
¥	Total gross production	10,000	10,000	10,000	10,000	10,000

HUNGARY 1961 (continued)

in millions of forints at producers' prices.)

81	22	23	24	25	26	27	28	29	30	31
7,985 140	579 62 2	36 23 5	142	111	579	64 76	79	11	25	33
1	183 748	190	2	5	7	95				
65 6	99 25 99	6 56 404	17 6 5	29 1 3	30 14 93	27 11 21	19 13	5 11 65	75 1 6	82 1 1
55 48	47 157	34	<u> </u>	36	149	17	24			
	69			5		105 30	34	372	41	70 12
1	6	<u></u>	1	2	29 9	3	18 3		12 3	
6	31	252	22	4	21	35	30			11
159 485	54	353	102	429	166	94	158	117	229	68
405	1,215		166	47	265	119	156	98	159	135
34 35	15 15 49	2 1 5 54	2 4 239	8 120	5 1 18 35	2 1 5 8	3 1 10 4	3 2 12 58	12 4 4 126	1 7 15
24 492 51 6	72 906 1,058 27	301 116 312 516	19 86 445	133 166 268	125 243 906	102 47 229	36 170	8 9 86 54	16 5 48	37 123 5 67 3 3
3	62	1 22	4 1,097 34	23 6 562	906 66 43 16	16 1 5	4	54 2	175 3	67 3 3
23	28 365	751	379	280	1,863	691	140	52	147	14
24	52	39 9		11	41	136	10	17	54	3
_	9 5 1		10 3 1	2	14	2	86	3,418 48 9 2	2,313 1 495	2,262 1 123
2	11 395	21	18	40	27 	5 24	1	· · · · · · · · · · · · · · · · · · ·	428	123 679
	21	9	78	38		8	2	20	40	30
1	13	3	11	2	7	392			164	
15	3 10	13	3	7	4	12 232	2 1	42 12 323 12	271 445 29	14 8 31 215
2	<u> </u>	1	3 2	3	5	270			29	
	38	9		5			5 21	2 14	26	2
22 9	14	<u></u>	18 7	2	14 7	30 7		14	20	1
1	9 20 2	5 1	16 66 28	89 510 1	1 69 4 8 731	1 6	5 7 1			56
11	3 109	5 918	5 185	4 939	731	65	9		54	14
2	21	13	39	24	35	21	9	37	114	61
9,713	6,726	4,327	3,542	4,093	6,161	3,023	1,041	4,925	5,527	4,194
4 243 105 185	45 301 96 113 66	10 199 95 82 1	367 104 45 58 66	424 238 64 58 1	1 135 114 133 294	864 77 61 85 8	4,616 426 123 57 31	48 105 186 102 199	89 252 88 70 13	1,474 177 52 108 46
0,250	7,348	4,714	4,182	4,878	6,839	4,118	6,294	5,563	6,039	6,052
824	1,291 1,362	188 5,097	369 5,449	152 4,969	642 2,520	203 5,678	247 3,460	172 4,264	189 3,773	132 3,817
824 -1,074	1,362	5,097	5,442	4,909	2,520	3,070	5,400	4,204	3,113	3,817

ι.

TABLE 1: INPUT-COEFFICIENT MATRIX: (Type A: Column total=10,000; the last eight columns

	Buying sector (54-sector			[
26-sector classifi- cation	classification)	32	33	34	35	36
[1]	1. Coal, peat and briquettes 2. Crude oil and natural gas 3. Bauxite mining	149	18 1	98	134	94
	 4. Other metal mining	32	1	1		
2)	6. Iron and steel	15	6	10	10	é
	 Alumina and nonferrous light metals Nonferrous heavy metals Foundries 	31 3 9	5	1 4 12	1 3 9	3 2 13
(3)	10. Machinery	27	42	83	72	97
(4)	 Electric machinery and appliances Vacuum tubes and telecommunication equipment 	7 7	8	8	8	7
(5)	13. Precision engineering	4	6	2	2	3
(6)	14. Other fabricated metal products	65	73	16	15	31
(7)	15. Electric energy	543	124	182	126	133
(8)	16. Bricks, roofing tiles and refractories	2	1	6	4	4
	 Stone and pebble quarrying Lime and cement Glass, ceramics and grinding wheels 	7 2	13	4	3 2	1 6 5
(9)	20. Petroleum refineries		10	43	22	15
	21. Municipal gas and coal processing 22. Industrial gas and heavy chemicals 23. Description	7 188	17 104	3 43	2 22	2 21
	23. Dyestuffs 24. Pharmaceutical products	54	203	30 1	23	6
	25. Household chemicals and starch26. Other organic chemicals	13 105	6 4	18 195	1 136	11 458
(0)	27. Rubber and plastic products	61	19	37	11	16
11)	28. Timber and plywood29. Joinery and wooden building materials	3	2	2	3	11
	30. Furniture 31. Other wood products	Î 4	3	14	1 13	1 15
12)	32. Paper	2,967	3,989	16	11	14
13)	33. Printing	13	51	6	6	7
14)	34. Cotton textiles	9 119	128 2	1,713 61	304 2,103	575 18
	36. Hard fibre and silk textiles 37. Haberdashery	34 23	33 11	179 2	2,103 72 2	1,593 12
15)	38. Leather processing	3	26	9	12	47
16)	39. Textile clothing and hosiery40. Leather and fur apparel	16 5	14	8	18	14
17)	41. Grain mills and bakery 42. Meat, poultry and dairy products 43. Sugar, confectionery and coffee				3	3
	44. Canned and frozen food 45. Other food manufactures	52	9	11	9	1
	46. Miscellaneous manufactures	4	12	5	8	33
	Socialist industry, total (1 to 46)	4,586	4,944	2,829	3,171	3,283
20)	 47. Private craftsmen					
22)	49. Private building activities50. Agriculture	709	14	1,323	1,409	384
(3)	51. Transport and communication	198 161	51 43	39 20	126 216	230 38
(5)	53. Foreign trade agents 54. Other productive activities	94 230	45 75 1	73 79	81 73	50 80
	Total intermediate inputs	5,978	5,127	4,362	5,075	4,064
27)	55. Amortization	444	433	364	319	382
.8)	56. Wages, other incomes and accumulation	3,579	4,439	5,274	4,606	5,554
	Total gross production	10,000	10,000	10,000	10,000	10,000

×.

HUNGARY 1961 (continued)

in millions of forints at producers' prices.)

	1							······		
37	38	39	40	41	42	43	44	43	46	47
35	172	19	7 6	65 1	45 1	190 1	120	141 1	17	2
2	8		6	13	10	2	24		. 1	
6 3	24 11	2 2 7	23 1 4	2	4 8 1	11 8 14	760 3 8	9 2 3 3	287 6 38 19	319 1 3
84	58	32	41	24	9	37	70	51	36	138
9 2	14	4 2	5 1	2 1	3	11	14	7	127 10	55 23
12	8	4	6	3	1	4	3	7	13	15
31	392	34	58	10	19	17	96	73	224	133
63	79	48	42	112	46	41	208	194	111	51
3 4 2	2 1 11 4	1 4	2 1 6 2	2 1	2 1 5	7 6 4 8	5 4 203	3 5 7 70	85 26 92 38	1 10
5 4 11 3 14 4 891	8 6 20 82 19 7 279	4 2 4 3 2 164	7 6 17 21 16 193	29 16 1 14 1	12 2 2 67 8	91 43 5 1 4 100	31 3 32 14 4 14	48 6 28 6 4 19 49	17 6 48 35 1 6 180	19 13 20 5
151	161	229	195	2	2	20	40	49	189 	6 104
2	13	1	2			3	54	2	158	330
2 11	6 11	1 8	4 40	1 3	1 1 44	2	7 322	2 18	5 24 21	1 83
51		20	104	19	46	164	188	79	75	34
24	16	8	9	13	10	44	49	53	20	3
1,098 163 794 187	53 28 84 0	2,021 1,389 589 204	137 36 165 50	2	1	3 1 9 2	3 2 2 3	5 1 10 3	1,083 327 439 102	193 690 36 131
3	797	5	2,238	1	1	1	3	1	147	171
21	39 33	45 4	158 353	7 1	8 4	9 3	34 10	15 6	36 1	
51 7	5 2,954 47	2 2	2 26 6	2,145 130 15 5 127	3 2,028 22 42 7	33 79 594 14 138	56 797 578 421 32	10 149 178 69 1,421	$\begin{array}{r}1\\382\\26\\2\\6\end{array}$	72 23 15 8
45	52	61	34	21	6		14	22	298	3
3,797	5,548	4,927	4,033	2,795	2,474	1,748	4,407	2,796	4,677	2,710
3 16 47 76 1	33 175 290 104	3 54 45 17 9	80 114 169 13 70	4,750 264 280 40 4	5,717 370 270 32 2	3,389 330 227 51 2	1,778 219 494 52	1,465 234 132 30 8	321 214 127 19 39	5 15 8 30 131 1,178 13 623
3,939	6,151	5,054	4,478	8,133	8,865	5,746	6,950	4,664	5,397	4,713
189 5,872	278 3,571	78 4,868	94 5,427	189 1,677	78 1,057	195 4,059	284 2,766	322 5,014	77 4,527	34 5,254
10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000	10,000

TABLE 1: INPUT-COEFFICIENT MATRIX (Type A: Column total=10,000; the last eight

26-sector classifi-	Buying sector (54-sector classification)					
cation	Selling sector	48	49	50	51	52
(1)	 Coal, peat and briquettes Crude oil and natural gas Bauxite mining Other motel prints 	80 4	9	7	847 2	111
	4. Other metal mining 5. Industrial minerals mining	10		1 5		8
(2)	6. Iron and steel	750	183	15	48	10
	 7. Alumina and nonferrous light metals 8. Nonferrous heavy metals 9. Foundries 	21 45 3	16	11 2	5 32 34	
(3)	10. Machinery	445	127	68	445	40
(4)	 Electric machinery and appliances Vacuum tubes and telecommunication equipment 	350 16	129 6	4 2	74 53	3
(5)	13. Precision engineering	18	40	4	29	11
(6)	14. Other fabricated metal products	243	292	74	142	33
(7)	15. Electric energy	59		31	206	94
(8)	16. Bricks, roofing tiles and refractories 17. Stone and pebble quarrying	198 110	793 62	9	20 17	25
	17. Stone and people quartying 18. Lime and cement 19. Glass, ceramics and grinding wheels	501 105	986 90	1 1 3	6	14 40
(9)	20. Petroleum refineries 21. Municipal gas and coal processing	95 46	2	155	394 26	36 27
	22. Industrial gas and heavy chemicals	40 16 58	7	174	20 7 7	2 10
	 24. Pharmaceutical products 25. Household chemicals and starch 	20	7	17	7	2 49
	26. Other organic chemicals	2		1	5	49
(10)	27. Rubber and plastic products	27	43	10	167	16
(11)	28. Timber and plywood 29. Joinery and wooden building materials	104 117	420 478	2	12 1	13 11
	30. Furniture 31. Other wood products	2 56	-170	1 17	21	40
(12)	32. Paper	15		17	29	57
(13)	33. Printing	4		1	12	62
(14)	 34. Cotton textiles	1 4		23	1 2 9	3 1 50
(15)	38. Leather processing	4		20	1	1
(16)	39. Textile clothing and hosiery40. Leather and fur apparel	34 2		3 1	129 5	32 8
(17)	41. Grain mills and bakery 42. Meat, poultry and dairy products 43. Sugar, confectionery and coffee 44. Canned and frozen food			102 20 27 1	19 4 1 2	14
	45. Other food manufactures	1		24	9	17
(18)	46. Miscellaneous manufactures	24	95	14	8	135
(10)	Socialist industry, total (1 to 46)	3,571	3,777	871	2,838	986
(19) (20) (21)	 47. Private craftsmen 48. Socialist building industry 49. Private building activities 	1 995	85	74 39 21	5 98	10 103 17
(22) (23)	50. Agriculture	84 1,038	120 706	3,609 19	94 84	7 1,558
(24) (25)	52. Domestic trade	50 12	511 14	172 11	62 14	69 2
(26)	54. Other productive activities	138	563	110	14	66
(27)	Total intermediate inputs 55. Amortization	5,890	5,775	4,927	3,209	2,819
(28)	56. Wages, other incomes and accumulation	3,787	4,218	4,721	4,088	6,701
	Total gross production	10,000	10,000	10,000	10,000	10,000

HUNGARY 1961 (continued) columns in millions of forints at producers' prices.)

	54			Ţ	Value in millions o	f forints			
53		Total intermediate	Consumption	Gross investment	Changes in stocks	Exports	Total end-use	Imports ()	Gross production
5 3	47 1	9,205 2,708 145	2,294 10	199 80 38	362 118 - 2	36 96	2,892 207 133	- 1,843 - 1,320	10,254 1,595 277
	20	1,197 746	41	36 19	30 2	485 28	551 90	-1,000 -520	748 316
1 13	17 4 10 2	17,684 2,152 3,361 3,681	52 10 43 8	799 86 19 332	1,095 145 140 73	3,128 914 112 91	5,074 1,155 313 504	4,067 43 1,451	18,691 3,264 2,223 4,185
134	65	10,100	1,749	12,861	2,604	10,658	27,872	- 7,989	29,983
6 45	24 16	4,292 1,456	695 918	1,565 367	244 528	875 2,058	3,378 3,871	- 401 - 378	7,269 4,949
23	23	829	633	984	449	1,031	3,096	- 1,008	2,917
22	66	5,127	2,090	366	857	1,180	4,492	- 2,015	7,604
13	153	6,419	1,007	145	1	18	1,172	- 286	7,304
2	10 5 40 9	1,879 506 2,681 1,359	40 58 410	147 83 81 38	- 4 5 44 234	138 41 330	321 88 224 1,011	$ \begin{array}{rrrr} - & 53 \\ - & 2 \\ - & 43 \\ - & 449 \end{array} $	2,147 592 2,862 1,921
9 3 4 2 8 2 6	125 5 55 17 25 14	3,739 2,932 2,816 875 687 365 2,269	321 557 127 35 1,561 844 72	16 61 61 26 2 14	444 41 214 92 322 1 20	1,324 38 292 162 1,605 60 80	2,105 697 694 289 3,515 908 186	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5,308 2,333 2,443 1,100 3,837 1,197 857
6	17	2,217	748	26	331	645	1,749	- 317	3,650
17 4 4 4	6 5 3	2,201 705 217 1,096	11 1,351 202	6 16 480 163	-193 12 -6 155	120 7 178 125	- 55 35 2,002 646	$ \begin{array}{rrrr} - & 1,071 \\ - & 90 \\ - & 304 \\ - & 78 \\ \end{array} $	1,075 650 1,915 1,664
3	36	2,613	359	15	141	36	551	- 857	2,308
186	20	495	805	5	81	150	1,040	- 99	1,436
52 1 20	4 3 9	5,695 3,206 2,527 635	1,573 717 796 422	120 36 52 8	163 41 223 11	2,880 439 733 104	4,736 1,234 1,804 544	$ \begin{array}{rrrr} - & 209 \\ - & 631 \\ - & 628 \\ - & 52 \end{array} $	10,222 3,809 3,704 1,127
5	4	1,750	114	40	3	223	380	- 101	2,029
15 2	7 2	871 290	7,493 2,744	26 20	769 322	2,416 1,763	10,705 4,849	$- 146 \\ - 44$	11,431 5,095
1 3 2 3	13 2 4	2,819 4,448 956 291 2,084	6,477 7,876 4,253 1,128 5,177	18 20 23 18 24	285 319 516 117 362	48 2,640 1,022 1,314 648	6,829 10,855 5,814 2,577 6,211	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9,374 13,799 6,662 2,769 7,722
20	25	1,072	2,764	732	287	998	4,781	- 66	5,787
651	913	125,397	58,585	20,273	11,998	41,270	132,126	- 35,118	222,405
3 13 1 32 6,137 117 2	35 6 9 1,351 118 28 2	583 3,418 171 44,920 12,117 4,927 1,313 3,809	3,961 1,094 600 19,271 4,994 9,809 185 2,562	22,217 6,328 2,120 987 419 237	-865 38 300 105 50	51 3,750 1,190 508 961	4,012 23,311 6,928 24,275 7,210 11,035 1,488 2,612	5,502 37 57	4,595 26,728 7,099 63,693 19,290 15,962 2,801 6,364
6,956	2,463	196,555	101,061	52,581	11,626	47,729	212,997	- 40,715	368,937
49 2,995	270 7,267	19,524 152,758							
10,000	10,000	368,937)			

TABLE 2: TOTAL INPUT (INVERSE) COEFFICIEN	ITS FOR SELECTED HUNGA	RIAN SECTORS, 1961
(Col. ((a): 54×54	Col. (b): 26×26)	

Selected sectors Inputs	Mach	inery	Prec: engine		Metal p	roducts	Electr	icity	Rubber plastic p		Pap)e r
(26-sector alignment)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)
1. Mining	4·20	4.11	2.42	2.42	4.89	4.60	34.21	33.01	3.21	3.13	5.74	5.68
2. Basic metals	33.60	33.28	14.96	14.86	43.59	43.43	6.14	5.71	2.08	2.08	2.20	2.09
3. Machinery	118.92	118.84	4.69	4.71	3.04	3.06	1.67	1.70	1.13	1.12	0.84	0.84
4. Electrical machinery	6.64	6.69	5.64	5.65	2.31	2.33	1.89	1.87	0.59	0.60	0.53	0.52
5. Precision engineering	0 ·78	0.79	105.71	105.71	0.32	0.32	0.20	0.21	0.41	0.41	0.11	0.10
6. Metal products	3.05	2.93	3.76	3.71	104.51	104-47	0.74	0.74	0.58	0.58	0.47	0.46
7. Electricity	4.33	4.58	2.57	2.70	4.90	4.91	105.70	105-57	1.96	1.99	7.78	7.57
8. Building materials	1.52	1.48	1.35	1.36	1.90	1.96	1.28	1.22	0.35	0.38	0.43	0.43
9. Chemicals	4.61	4.56	3.10	3.12	5.91	5.94	5.28	5.25	3.67	3.73	3.86	3.75
10. Rubber and plastic products	2.13	2.12	0.90	0.89	0.69	0.6 9	0.40	0.41	101.43	101-41	0.82	0.82
11. Wood products	0.72	0.74	0.97	1.00	0.75	0.78	0.37	0.37	0.19	0.50	0.27	0.27
12. Paper	0.37	0.41	0.75	0.75	0.59	0.61	0.15	0.19	0.43	0.43	121.04	121.01
13. Printing	0.16	0.17	0.30	0.31	0.11	0.12	0.12	0.12	0.14	0.14	0.24	0.24
14. Textiles	1.51	1.50	1.27	1.25	1.81	1.80	0.32	0.33	11.37	11.32	1.76	1.77
15. Leather and fur products	0.23	0.25	0.33	0.35	0.17	0.19	0.04	0.05	0.13	0.15	0 ·08	0 .09
16. Wearing apparel	0.40	0.41	0 ·39	0.39	0.56	0.55	0.19	0.22	0.46	0.46	0.37	0.37
17. Food, beverages and tobacco	0.26	0.33	0.39	0.42	0.43	0.46	0.26	0.36	1.04	1.05	0.00	1.02
18. Miscellaneous manufacturing	0.29	0.30	0.82	0.82	0.49	0 ·49	0.12	0.13	0.29	0.28	0.14	0.14
19. Private small-scale industry	0.02	0.02	0.02	0.02	0.03	0.03	0.02	0.02	0.01	0.02	0.06	0.06
20. Socialist construction	0.11	0.13	0.52	0.53	0.70	0.70	0.46	0.45	0.06	0.06	0.14	0.14
21. Private construction	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.02	0.02
22. Agriculture	1.05	1.07	1.26	1.20	1.76	1.74	1.68	1.62	1.08	1.67	5.15	5.40
23. Transport and communications	3.46	3.46	1.79	1.79	3.75	3.71	7.66	7.68	2.09	2.08	4.47	4.42
24. Domestic trade services	1.65	1.56	1.09	1.04	1.65	1.59	0.96	0 ·96	0.85	0.90	2.30	2.29
25. Foreign trade services	0.99	0.99	0.64	0.63	0.92	0.89	0.60	0.57	1.04	1.04	1.29	1.28
26. Other producing activities	1.83	1.72	2.35	2.11	3.69	3.42	0.79	0.83	0.37	0.35	3.05	3.05

Note: Figures relate to the production requirements of row sectors per 100 demand for the products of column sectors. The basic transactions tables (54×54 and 26×26) are both type B, i.e. input coefficients relate to domestically produced goods and services alone.

means of the inverse matrix, aggregation errors are reinforced. This is due to the fact that the direct labour coefficients applied to aggregated sectors are themselves derived as weighted averages of the original coefficients applicable to detailed sectors; the weights involved are values of gross production, and not the inverse coefficients, of the detailed sectors. An example of the calculation is shown in table 3. Again, fortunately, aggregation errors appear almost negligible in this particular example.

TABLE 3: TOTAL (DIRECT AND INDIRECT) LABOUR REQUIREMENTS FOR SELECTED HUNGARIAN INDUSTRIES IN 1961 (Person/million forints)

	Total labour	requirement
Selected sectors (26-sector alignment)	Based on the 26 × 26 compilation	Based on the 54 × 54 compilation
Machinery	12.09	12.18
Instruments	14.57	14.61
Metal products	12.86	12.94
Electricity	10.87	11.26
Rubber and plastic products	6.84	6.57
Paper	9.16	9.20
Leather and fur products	12.02	13.04
Socialist building industry	18.54	18.35

Note: The underlying transaction tables are type B, i.e. input coefficients relate to domestic products alone.

Such an outcome may not be expected however when one is concerned with the aggregation errors in the context of projections. Aggregation weights involved in the smaller inverse matrix, which derive from the baseyear production structure, are no longer consistent with the production structure to be revealed by the projections based on the detailed matrix.

2. Valuation of transactions

As to the prices applied to the valuation of interindustry transactions, two factors may be mentioned here: treatment of turnover taxes and of forwarding costs. As to the former, different countries employ different taxation systems: some turnover taxes may be levied on producers, others on consumers or even on wholesale trade agents. Similar variations are possible with respect to transport charges.

Hungarian practice is to draw balances at producers' prices including turnover taxes. In addition, a balance was experimentally compiled at producers' prices, excluding turnover taxes. Such prices are of a hypothetical nature, not corresponding to the prices used in actual transactions; but they are supposed to help to stabilize input coefficients, since turnover taxes are determined mainly by the central authorities and only in part by the producers, thus being subject to frequent alterations. In table 4 the input coefficients based on the

TABLE 4: INPUT COEFFICIENTS FOR S	SELECTED SECTORS, HUNGARY, 1961
(Based on the 26 $ imes$	26 matrix, type B)
((a) including net turnover taxes	(b) excluding net turnover taxes)

	Selected sectors	Mac	hinery		ecision teering	Wood	products	T	extiles		beer and acco	Soci: constru		Agr	riculture
Inputs		(a)	(b)	(a)	(b)	(a)	<i>(b)</i>	(a)	(b)	<i>(a)</i>	(b)	(a)	(b)	(a)	(b)
1. Mining		0.57	0.57	0.30	0.32	0.37	0.40	1.01	1.44	0.99	1.12	0 ·94	0 ·94	0.13	0.12
2. Basic metals		18.94	18.92	7.53	7.91	0.61	0.65	0.24	0.35	0.18	0.21	7.45	7.43	0.28	0.26
3. Machinery	.	14.82	14.72	3.12	3.27	0.79	0.84	0.58	0.82	0.25	0.28	4.31	4.42	0.67	0.6 9
 Electrical machinery 		4.49	4.33	4.14	4.20	0.13	0.14	0.09	0.12	0.07	0.07	3.66	3.67	0.06	0.06
5. Precision engineering		0.53	0.52	5.31	5.43	0.04	0.04	0.03	0.04	0.03	0.04	0.17	0.17	0.04	0.04
. Metal products		1.89	1.87	2.93	3.03	1.17	1.25	0.17	0.23	0.30	0.33	1.94	1.80	0.65	0.5
. Electricity		1.44	1.45	1.03	1.08	1.44	1.53	1.54	2.19	1.00	1.13	0.59	0.60	0.31	0.3
B. Building materials		0.43	0.37	0.68	0.71	0.70	0.75	0.13	0.18	0.30	0.30	8.97	8.80	0.13	0.12
Chemicals		1.75	1.21	1.44	1.20	2.64	2.44	1.35	2.02	1.21	1.12	2.03	1.43	2.71	3.1
. Rubber and plastic products		1.56	0.97	0.59	0.62	0.19	0.20	0.35	0.36	0.18	0.14	0.23	0.11	0.08	0.0
. Wood products		0 ·39	0.35	0.67	0.70	12.09	11.69	0.18	0.26	0.45	0.42	2.13	1.78	0.20	0.1
. Paper		0·11	0.09	0 ·39	0.41	0.20	0.22	0.16	0.23	0.55	0.57	0.15	0.12	0.17	0.1
. Printing		0.07	0.08	0.23	0.24	0.03	0.03	0.07	0.10	0.27	0.31	0.04	0.04	0.01	0.0
. Textiles		0.60	0.39	0.46	0.48	4.41	3.01	16.70	21.75	0.08	0.09	0.04	0.04	0.24	0.1
. Leather and fur products		0.15	0.12	0.25	0.27	0.02	0.02	0.10	0.14	0.01	0.01	0.04	0.04	0.21	0.2
. Wearing apparel		0.19	0.19	0.25	0.26	0.16	0.17	0.12	0.17	0.15	0.17	0.37	0.37	0.03	0.0
. Food, beverages and tobacco		0.03	0.03	0.13	0.13	0.41	0.44	0.11	0.15	15.25	16.83	0.01	0.01	1.45	1.4
. Miscellaneous manufacturing	• • • • • • • • • • • • • • • • • • • •	0.15	0.14	0.65	0.69	0.67	0.66	0.14	0.19	0.13	0.15	0.24	0.21	0.14	0.1
Socialist industry (total 1-18) .	•••••	48.11	46.32	30.10	30.95	26.07	24.48	23.07	30.74	21.40	23.29	33-31	31.98	7.51	7.61
. Private small-scale industry					Parton							0.01	0.01	0.74	0.74
. Socialist construction				0.37	0·3 9							9.95	9.98	0.39	0.39
. Private construction	• • • • • • • • • • • • • • • • •													0.21	0 ·2
. Agriculture		0.01	0.01	0.03	0.03	11.05	11.77	2.61	3.72	36.65	41.40	0.52	0.53	34.94	34.94
. Transport and communication		1.05	1.05	0.30	0.31	2.46	2.62	0.93	1.31	3.02	3.41	10.38	10.38	0.19	0.19
. Domestic trade		0.66	0.67	0.51	0.54	0.96	1.02	0.64	0.92	2.54	3.06	0.51	0.40	1.72	1.3
. Foreign trade		0.47	0.47	0·34	0.36	0.83	0.88	0.70	0.99	0.38	0.43	0.12	0.12	0.11	0.1
. Other producing activities	••••••	0.11	0.11	1.22	1.28	0.50	0.52	0.73	0.96	0.04	0.04	1.39	1.39	1.10	1.1
Turnover taxes	••••••		1.94		0.64		3.29	<u> </u>	2.15		0.69		1.58		0.2
Total intermediate inputs		50.41	50.57	32.87	34.50	41.87	44.58	28.68	40.79	64.03	72.32	56.19	56.37	46.91	46.9

-

TABLE 5: TOTAL (INVERSE) COEFFICIENTS FOR SELECTED SECTORS, HUNGARY, 1961

(Based on the 26×26 matrix, type B)

((a) including net turnover taxes (b) excluding net turnover taxes)

	Selected sectors	Machinery		ecision neering	Wood	products	Te	xtiles	Food, tol	beer and bacco		cialist ruction	Agr	iculture
Inputs	(a) (b)	(<i>a</i>)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)	(a)	(b)
1. Mining				2.61	2.62	2.86	2.65	4·16	3.32	3.95	5.69	5.65	1.68	1.99
2. Basic metals	33.2			15.70	2.80	3.02	1.26	1.94	2.01	2.31	16.81	16.83	2.02	2.02
3. Machinery				4.95	1.77	1.86	1.14	1.72	1.45	1.66	7.38	7.44	1.58	1.62
4. Electrical machinery	6.0			5.78	0.51	0.54	0.31	0.48	0.45	0.51	5.70	5.70	0.36	0.37
5. Precision engineering				105.85	0.11	0.12	0.07	0.11	0.13	0.15	0.37	0.36	0.12	0.12
6. Metal products		3 2.8	9 3.71	3.85	1.80	1.89	0.39	0.60	1.10	1.21	30.06	2.87	1.31	1.20
7. Electricity	4.5	58 4.5	9 2.70	2.89	2.59	2.78	2.36	3.62	2.22	2.61	3.21	3.21	1.13	1.22
8. Building materials	1.4	48 1.3	9 1.36	1.42	1.16	1.23	0.32	0.20	0.80	0.85	11.41	11.48	0.56	0.55
9. Chemicals		56 3.7	4 3·12	2.84	4.72	4.56	2.39	3.71	4.38	4.94	5.11	4.05	5.17	5.86
10. Rubber and plastic products		12 1.3	3 0.89	0.85	0.43	0.39	0.52	0.58	0.46	0.36	0.83	0.51	0.26	0.17
11. Wood products		74 0.6	7 1.00	1.04	113-96	113.44	0.33	0.20	0.94	0.93	3.05	2.59	0.57	0.51
12. Paper	0.4	41 0-3	7 0.75	0.79	0.48	0.50	0.34	0.51	1.16	1.24	0.63	0.56	0.45	0.41
13. Printing		l7 0·1	7 0.31	0.33	0.11	0.12	0.13	0.20	0.41	0.47	0.13	0.13	0.07	0.08
14. Textiles		50 1.1	8 1.25	1.28	6.57	4.83	120.33	128.18	0.78	0.79	0.96	0.88	0.85	0.64
15. Leather and fur products		25 0.2	2 0.35	0.38	0.12	0.14	0.16	0.25	0.21	0.26	0.16	0.17	0.39	0.39
16. Wearing apparel		41 0.4	1 0.39	0.42	0.32	0.33	0.21	0.32	0.34	0.39	0.76	0.75	0.13	0.14
17. Food, beer and tobacco		33 0.3	4 0.42	0 ·48	1.15	1.27	0.37	0.61	119.39	121.91	0.45	0.46	2.92	3.03
18. Miscellaneous manufacturing		30 0.3	0 0.82	0.86	0.89	0.89	0.22	0.32	0.37	0.42	0.43	0.39	0.32	0.29
19. Private small-scale industry		0.0 0.0	2 0.02	0.02	0.16	0.17	0.05	0.07	0.51	0.59	0.05	0.05	1.17	1.17
20. Socialist construction	0 ·1	13 0.1	3 0.53	0.55	0.19	0.50	0.08	0.12	0.43	0.20	111.29	111.32	0.75	0.75
21. Private construction		01 0.0	1 0.01	0.01	0.02	0.05	0.01	0.02	0.15	0.18	0.01	0.01	0.34	0.34
22. Agriculture		07 1.0	9 1.20	1.37	20.79	22.18	5.50	8.43	68.00	78 ·46	2.79	2.79	156-11	156.46
23. Transport and communication		46 3·4	9 1.79	1.94	4.45	4.76	2.23	3.43	5.43	6.34	13.62	13.63	1.54	1.56
24. Domestic trade		56 1.5	5 1.04	1.10	1.75	1.78	1.01	1.51	4.50	5.12	1.27	1.12	3.09	2.52
25. Foreign trade		9 0.9	9 0.63	0.68	1.15	1.23	0.93	1.42	0.66	0.78	0.52	0.53	0.30	0.33
26. Other producing activities		1.6	$2 \cdot 11$	2.17	1.08	1.14	1.06	1.50	1.06	1.22	2.52	2.46	2.01	2.01

æ

valuation of transactions at producers' prices including turnover taxes are compared with those obtained when turnover taxes are excluded.

In the column headed "Machinery" for example, there are four coefficients which differ significantly between the two treatments. These are the inputs of chemicals, rubber and synthetic materials, textiles, and building materials. Other input coefficients show only negligible variations. In the case of the column headed "Textiles" a greater number of input coefficients are influenced. These variations reflect the actual turnover tax system adopted in Hungary.

The effects of different treatments of turnover taxes on total input (inverse) coefficients and on total labour requirements respectively are illustrated in tables 5 and 6. Although in some cases the differences are considerable, the over-all effect resulting from the inversion is one of moderation as compared with the case of direct coefficients

TABLE 6: INFLUENCE OF THE TREATMENT OF TURNOVER TAXES UPON THE COMPUTED VALUES OF TOTAL (DIRECT AND INDIRECT) LABOUR COEFFICIENTS

(Based on the inverse coefficients shown in table 5) ((a) including net turnover taxes (b) excluding net turnover taxes)

	Total labour (person/milli	coefficients on forints)	$\left(\frac{b-a}{a}\right)^{(\%)}$
Selected sectors	(a)	(b)	$\left(\frac{-}{a}\right)$
Machinery	12.09	12.39	2.5
Precision engineering	14.57	15.49	6.3
Metal products	12.86	13.74	6.8
Electricity	10.87	10.92	0.2
Chemicals	8.52	10.76	26.3
Paper	9.16	10.97	19.7
Leather and fur products	12.02	14.93	24.2
Socialist construction	18.54	18.45	-0.2

3. Treatment of imports

The value of input coefficients obtained from inputoutput balances naturally varies a great deal according to the way imports are treated. This is particularly true for such a small country as Hungary, which has to import various raw and semi-finished materials.

There are at least four different ways to treat imports. In the first, which has been referred to above as type A, intersectoral transactions include both domestically produced and imported materials and services; all imports are treated as competitive with domestic products. Input coefficients derived from this type of balance may be more closely associated with the term "technological" coefficients than those derived from type B and type D balances, explained below. Under type A treatment each row sum represents the total supply of goods and services, exceeding the value of gross production of the counterpart industry by the amount equal to imports. Imports, classified according to counterpart domestic industries and not to using industries, are thus entered either as negative elements in an additional column in the final demand quadrant or as positive elements in an additional row below the row for gross production (so as to let each column total equal the corresponding row total).

Type B distinguishes imported materials from those domestically produced; the former are classified according to using industries and presented in an additional row above the value-added quadrant. Intersectoral transactions under this type of treatment relate only to domestic products.

In type C every row in the intersectoral transaction quadrant is divided into two: one relates to domestically produced materials and the other to imported materials. The intermediate transactions are thus presented in a $2n \times n$ matrix, where n is the number of producing sectors.

Finally, in type D distinction is made between competitive and non-competitive imports. The former are treated in the same manner as in type A, i.e. incorporated in the deliveries of domestic competitive industries; the latter are classified according to using industries and presented in an additional row, as in the case of type B. The competitive imports are entered as such either as negative elements in the final-demand quadrant or as positive elements in an additional row below the row for gross production, as in the case of type A.

For Hungary type C treatment of imports is available, and consequently types A and B are also available. No distinction is made between competitive and noncompetitive imports. In table 7 differences between the input coefficients resulting from type A and from type B treatments are illustrated for several selected sectors. Take for example the textile sector. Use of imported materials in this sector decisively affects the input coefficients relating to three categories in particular: chemical inputs, agricultural inputs, and textile inputs. Out of 3.79 forints worth of chemicals needed to produce 100 forints worth of textiles, 2.44 forints or 64 per cent was imported in 1961.

The industrial structure of Hungary is greatly influenced by the fact that many producing sectors use significant amounts of imports coming from some two to five sectors. While imports are not dispersed over so very many types of materials, the share of total imports in material inputs is certainly significant. In the case of textile production about one-third of the total intermediate inputs (15.5 out of 44.2) is imported.

The structure of imports is indeed an important factor affecting the inter-industry patterns of industrially less developed economies. To the extent that the bulk of imports consists of semi-manufactured and manufactured goods the production of which involves relatively strong backward linkages, the over-all inter-industrial chain effects may generally be expected to be weaker in developing than in developed countries.

Where however the initial scale of industrial activities is small relative to the whole economy, the rate of changes in the industrial structure to be envisaged in the course of future development would appear all the greater because of the small starting base. An analysis of the

Import coefficient		Machiner	y	Elec	trical mac	hinery	Precis	tion engined	ring	Me	tal produc	ts		er and pla products	astic		Textiles	
	Type A	Type B L	Difference	Type A	l Type B I	Difference	Туре А	Type B L)i∬erence	Type A	Type B D	hifference	Type A	Type B I	Difference	Туре А	Type B 1	Difference
1. Mining	0.74	0.57	0.17	0.77	0.62	0.15	0∙34	0.30	0.04	0.57	0.56	0.01	2.35	1.44	0·91	1.01	1.01	
2. Basic metals	23.40	18.94	4.46	19.15	13.19	5 ·96	9.56	7.53	2.03	34.75	29.53	5.22	0.76	0.74	0.02	0.24	0.24	
3. Machinery	17.31	14.82	2.49	2.65	2.04	0.61	3.80	3.12	0.68	1.40	1.18	0.22	1.06	0 .60	0.46	0.83	0.28	0 ∙25
4. Electrical machinery	4.66	4.49	0.17	16.77	14.76	2.01	5.37	4.14	1.23	1.57	1.41	0.16	0.33	0.31	0.02	0.09	0.09	0.00
5. Precision engineering	0.59	0.53	0.06	0.78	0.55	0.23	7.40	5-31	2.09	0.20	0.19	0.01	0.35	0.35	0.00	0.03	0.03	
6. Metal products	4.34	1.89	2.45	2.65	2.01	0.64	3.12	2.93	0.19	5.11	3.66	1.45	0.94	0.35	0.29	0.50	0.17	0.03
7. Electricity	1.44	1.44		1.36	1.36		1.03	1.03	_	1.30	1.30		1.19	1.19	<u> </u>	1.54	1.54	
8. Building materials	0 ·49	0.43	0.06	1.77	1.12	0.65	1.19	0.68	0.21	1.03	0.72	0.31	0.16	0.16		0.13	0.13	
9. Chemicals	2.02	1.75	0.27	2.85	2.07	0.78	2.19	1.44	0.75	3.97	2.89	1.08	10.91	2.75	8.16	3.79	1.35	2.44
10. Rubber and plastic products	1.80	1.56	0.24	1.77	1.32	0.45	0.61	0.59	0.02	0.43	0.42	0.01	1.36	1.24	0.12	0.35	0.35	0.00
11. Wood products	0 ·46	0.39	0.07	0.56	0.56		0.67	0.67	-	0.46	0.46		0.08	0.08	0.00	0.18	0.18	<u> </u>
12. Paper	0.11	0.11		1.11	0.71	0·40	0.39	0.39		0.30	0.30		0.24	0.24	0.00	0.17	0.16	0.01
13. Printing	0.07	0.07	—	0.18	0.18		0.23	0.23		0.04	0.04	•	0.08	0.08		0.07	0.07	
14. Textiles	0.60	0.60	0.00	0.57	0.57	0.00	0.46	0.46		0 ·99	0.99		9· 0 5	9.04	0.01	21.26	16.70	4.56
15. Leather and fur products	0.15	0.15	0.00	0.03	0.03		0.22	0.25		0.10	0.10		0.08	0.08		0.17	0.10	0.07
16. Wearing apparel	0 ·19	0·19		0.19	0 ·19		0.22	0.25		0.34	0.34		0.37	0.37		0.12	0.12	
17. Food, beverage and tobacco	0.03	0.03		0.18	0.18	—	0.13	0.13	—	0.11	0.11		0.71	0.71	0.00	0.13	0.11	0.02
18. Miscellaneous manufacturing	0 ·15	0.15		0.47	0 ∙47		0.65	0.65	—	0.37	0.36	0.01	0.21	0.21		0.14	0 ∙14	
Socialist industry (total 1-18)	58.55	48.11	10.44	53.81	41.93	11.88	37.64	30 ·10	7.54	53.04	44 ·56	8.48	30.23	19-94	10.29	30.45	23.07	7.38
19. Private small-scale industry	_		10007-0 1															_
20. Socialist construction				0.35	0.35		0.37	0.37		0.52	0.52							
21. Private construction											\rightarrow		—				<u> </u>	
22. Agriculture	0.01	0.01	0.00	0.13	0.13	*******	0.03	0.03		0.11	0-11		8.64	0.18	8.46	10.77	2.61	8.16
23. Transport and communications	1.05	1.05	<u> </u>	0.43	0.43	—	0.30	0.30	—	1.17	1.17	—	0.77	0.77		0.93	0.93	
24. Domestic trade	0 ∙66	0.66	<u> </u>	0.73	0.73		0.51	0.51	aa	0.64	0.64		0.61	0.61		0.64	0.64	
25. Foreign trade	0.47	0.47	_	0.54	0.54		0.34	0.34		0.38	0.38		0.82	0.85		0.70	0 ·70	
26. Other producing activities	0.11	0.11		0.87	0.87		1.22	1.22		1.39	1.39		0·0 8	0.08		0.73	0.73	—
Total intermediate inputs	60.85	50·41	10.44	56.86	44·98	11.88	40.41	32.87	7.54	57·25	48·77	8.48	41.18	22.43	18.75	44·22	28.68	15.54
Imports		10.44			11.88			7.54		\rightarrow	8∙48			18.75			15.54	
Amortization	3.96	3.96		3.25	3.25		3.00	3.00		2.89	2.89	2.03	2.03			3.48	3.48	—
accumulation	35.19	35.19		39-89	39.89	1.00 M	56.59	56-59		39.86	39.86	56 ·79	56.79			52.30	52.30	
Gross production	100.0	100-0		100-0	100.0	—	100 ∙0	100.0	—	100.0	100.0	-	100.0	100.0		100-0	100.0	

TABLE 7: INPUT COEFFICIENTS AND IMPORT COEFFICIENTS OF SELECTED HUNGARIAN INDUSTRIES, 1961

+

impact of the establishment of new industries and the consequent changes in the import pattern would thus require a rather large table, with enough detailed industry classification to permit working links with the information regarding individual development projects. As for the treatment of imports, type C is obviously the most recommendable for the conditions of the developing economies, as well as for the purpose of intercountry comparisons.

II. INPUT-OUTPUT BALANCES OF THE HUNGARIAN NATIONAL ECONOMY FOR THE YEARS 1959–64

The Hungarian Central Statistical Office has compiled and published the aggregated input-output balances of the Hungarian national economy for the years 1959–64. These balances are compiled for 13 producing branches of the national economy, seven sectors of which represent industry. The seven industrial branches comprise the following groups:

- 1. Basic materials and energy industry: Mining Electric energy Metallurgy Construction materials
- 2. Machine-building industry:

Production of machines and machinery equipment Production of vehicles Production of electric machines and apparatus Telecommunication and vacuum techniques Precision industry Mass metal products

- 3. Chemical industry: Branches of the chemical and rubber industries
- 4. Light industries:

Wood processing Paper Printing Textile Leather, fur and shoes Textile clothing Others Handicraft and domestic

5. Food industry:

Food, beverages and tobacco production

6. Other industry:

This branch contains the value of industrial activity in enterprises not included elsewhere.

7. Private small-scale industries:

This branch contains data on private craftsmen.

The delimitation of the branches above was carried out according to the principle of activity. Each of the balances contains comparable data. Between 1962 and 1964 a significant reorganization took place in Hungary and a number of enterprises were united to form large centralized industrial enterprises and trusts. To ensure inter-temporal comparability of the data the state of organization of industry on 1 January 1964 was taken as base and the data on earlier years were made comparable.

The balances were compiled at 1964 prices. This was done by correcting, with the help of relevant price indexes, balances that had been drawn up primarily at current prices.

1. Changes in technical (flow) coefficients

On the basis of the coefficient tables for the six years presented in tables 8A to 8F, it is possible to examine in relatively great detail the changes in technical coefficients and the problem of their stability. Since the balances for the six years are rather contracted, the statements below are valid only in respect of balances at an equally high order of aggregation and no categorical conclusions can be drawn from them as to more detailed balances. However it is possible to compare the changes in technical coefficients of the type A balances with those of the type B balances. Investigations show that the technical coefficients of the type A balances are more stable than those of the type B balances, the technical coefficients of which are largely dependent on the size and structure of foreign trade. Thus from the point of view of the stability of technical coefficients the analysis of the type A balances is of primary importance.

Factors causing changes of technical coefficients of different branches of industry and of those of the national economy may be divided into four groups.

(a) different rates of development of different branches: different rates of increase in their output (and in the case of type A balance, rates of increase in the volume of imported products entering the profile of individual branches);

(b) changes in the structure of the national economy with regard to the 13 contracted branches;

(c) changes in the inner structure of individual branches;

(d) changes in the structure of final demand and its reaction upon the changing structure of production and imports.

These four factors will now be examined in more detail.

(a) During the six years the joint output of the producing branches increased by almost 40 per cent (gross social product at producers' prices of 1964). Of this, the increase in the output of socialist industry was almost 58 per cent, of the building industry 33 per cent, of agriculture about 8 per cent, and of transport 45 per cent. This non-proportional pattern of sectoral growth brought about considerable changes in the structure of material inputs.

(b) The differential increase in sectoral output resulted naturally in a change in the over-all structure of the national economy. A greater share was given to industry, especially the machine-building and the chemical industry.

Numbe	r Branch	1 Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing activities
		0.2204	0.0706	0.2245	0.0215	0.0205	0.1555	0.0575	0.2057	0.0050	1 1000	0.0((1	0.0047	0.0500
	Basic materials industry	0.3384	0.2725	0.3245	0.0315	0.0205		0.0575	0.2056	0.0056	1.1080	0.0661	0.0047	0.0590
	Machine-building industry .	0.0275	0.2028	0.0173	0.0115	0.0062	0.1147	0.0387	0.1087	0.0104	0.0749	0.0138	0.0242	0.0338
3. (Chemical industry	0.0567	0·0 395	0.1357	0.0400	0.0090	0.0573	0.0190	0.0178	0.0221	0.0545	0.0213	0.0043	0.0165
4. 1	Light industry	0.0130	0.0263	0.0350	0.2692	0.0166	0.0999	0.2406	0.0348	0.0082	0.0312	0.0632	0.0385	0.2124
	Food industry	0.0012	0.0011	0.0383	0.0206	0.1241	0.0072	0.0130	0.0021	0.0134	0.0029	0.0015	0.0008	0.0000
6. 0	Other industry	0.0340	0.0036	0.0000	0.0000	0.0048	0.0000	0.0000	0.0637	0-0099	0.0387	0.0000	0.0000	0.0000
	Private small-scale industries	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0019	0.0061	0.0004	0.0013	0.0004	0.0000
	Building industry	0.0184	0.0172	0.0342	0.0096	0.0147	0.0000	0.0022	0.0161	0.0065	0.0097	0.0173	0.0013	0.0000
	Agriculture	0.0117	0.0024	0.0224	0.0801	0.4712	0.1336	0.0034	0.0135	0.3346	0.0130	0.0091	0.0034	0.0621
	Transport	0.0261	0.0087	0.0121	0.0105	0.0172	0.0631	0.0109	0.0823	0.0004	0.0102	0.1340	0.5869	0.0139
	Home trade	0.0130	0.0057	0.0052	0.0086	0.0296	0.0197	0.1013	0.0137	0.0126	0.0062	0.0087	0.0121	0.0065
	Foreign trade	0.0058	0.0049	0.0040	0.0056	0.0019	0.0000	0.0032	0.0028	0.0007	0.0008	0.0000	0.0008	0.0047
13. (Other producing activities	0.0071	0.0012	0.0021	0.0020	0.0003	0.0000	0.0000	0.0057	0.0004	0.0013	0.0007	0.0004	0.0000

(Gross production = 1,000)

TABLE 8B: TECHNOLOGICAL COEFFICIENT MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1960

(Gross production = 1,000)

Numl	er Branch	l Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing activities
1.	Basic materials industry	0.3369	0.2534	0.2996	0.0302	0.0197	0.1470	0.0457	0·1892	0.0060	0.1059	0.0423	0.0047	0.0527
2.	Machine-building industry	0.0312	0.2171	0 ∙0198	0.0137	0.0074	0.1040	0.0422	0.0937	0.0128	0.0723	0.0091	0.0246	0.0382
3.	Chemical industry	0.0630	0.0407	0.1418	0.0439	0.0118	0.0574	0.0224	0.0169	0.0305	0.0544	0.0177	0.0039	0.0179
	Light industry	0.0088	0.0209	0 ·0279	0.2618	0.0161	0.0993	0.2215	0.0307	0.0104	0.0281	0.0574	0.0374	0.2242
5.	Food industry	0.0012	0.0011	0.0345	0.0188	0.1297	0.0072	0.0122	0.0025	0.0161	0.0031	0.0025	0.0007	0.0000
	Other industry	0.0350	0.0023	0.0000	0.0000	0.0044	0.0000	0.0000	0.0649	0.0117	0.0278	0.0000	0.0000	0.0000
7.	Private small-scale industries	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0022	0.0064	0.0004	0.0012	0.0003	0.0000
8.	Building industry	0.0172	0.0144	0.0263	0.0168	0.0122	0.0000	0.0023	0.0144	0.0068	0.0086	0.0147	0.0015	0.0000
9.	Agriculture	0.0108	0.0012	0.0260	0.0702	0.4451	0.1279	0.0031	0.0090	0.3366	0.0126	0.0044	0.0035	0.0535
	Transport	0.0215	0.0066	0.0103	0.0122	0.0249	0.0619	0.0096	0.0869	0.0014	0.0720	0.1353	0.6170	0.0234
11.	Home trade	0.0078	0.0052	0.0080	0.0095	0.0278	0.0195	0.1178	0.0164	0.0179	0.0079	0.0081	0.0151	0.0074
	Foreign trade	0.0054	0.0040	0.0110	0.0054	0.0031	0.0000	0.0009	0.0010	0.0005	0.0012	0.0010	0.0000	0.0000
13.	Other producing activities	0.0042	0.0011	0.0020	0.0018	0.0003	0.0000	0.0000	0.0060	0.0004	0.0012	0.0007	0.0003	0.0000

.

		1	2	3	4	5	6	7 Private	8	9	10	11	12	13 Other
Numb er	r Branch	Basic materials industry	Machine- building industry	Chemical industry	Light industry	Food industry	Othe r industry	small-scale industries	Building industry	Agriculture	Transport	Home trade	Foreign trade	producing activities
<u>т</u>	Basic materials industry	0.3473	0.2442	0.2865	0.0292	0.0245	0.1269	0.0639	0.1983	0.0069	0.1160	0.0387	0.0054	0.0624
	Machine-building industry	0.0340	0.2262	0.0244	0.0172	0.0069	0.0961	0.0435	0.1148	0.1270	0.0681	0.0115	0.0285	0.0408
	Chemical industry	0.0642	0.0415	0.1376	0.0391	0.0112	0.0463	0.0187	0.0191	0.3250	0.0539	0.0202	0.0045	0.0191
	•	0.0112	0.0229	0.0399	0.2726	0.0182	0.0793	0.2121	0.0293	0.0098	0.0229	0.0542	0.0421	0.2218
	Light industry	0.0015	0.0008	0.0300	0.0186	0.1306	0.0093	0.0119	0.0017	0.0183	0.0037	0.0034	0.0009	0.0000
	Food industry	0.0130	0.0021	0.0000	0.0000	0.0044	0.0000	0.0000	0.0695	0.0140	0.0245	0.0000	0.0000	0.0000
	Other industry	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0023	0.0069	0.0005	0.0010	0.0004	0.0000
	Private small-scale industries	0.0000	0.0149	0.0255	0.0168	0.0114	0.0000	0.0021	0.0164	0.0060	0.0113	0.0186	0.0018	0.0000
	Building industry	0.0173	0.0005	0.0250	0.0685	0.4459	0.1675	0.0032	0.0080	0.3499	0.0110	0.0007	0.0040	0.0547
	Agriculture		0.0003	0.0230	0.0107	0.0212	0.0490	0.0108	0.0784	0.0029	0.0073	0.1409	0.7804	0.0209
	Fransport	0.0238		0.00123	0.0075	0.0212	0.0450	0.1033	0.0123	0.0142	0.0060	0.0064	0.0131	0.0066
	Home trade	0.0076	0.0051				0.0000	0.0008	0.0009	0.0008	0.0012	0.0001	0.0000	0.0006
12. I	Foreign trade	0.0042	0.0037	0 ∙0086	0.0041	0.0029	0.0000	0.0008	0.0003	0 0008	0 0012	0 0001	0.0000	2 3000
13. (Other producing activities	0.0051	0.0009	0.0020	0.0014	0.0003	0.0000	0.0000	0.0062	0.0004	0.0011	0.0006	0.0004	0.0000

(Gross production=1,000)

TABLE 8D: TECHNOLOGICAL COEFFICIENT MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1962

(Gross production = 1,000)

			0		4	5	6	7	8	9	10	11	12	13
Number	Branch	Basic materials industry	Machine- building industry	5 Chemical industry	≠ Light indust r y	Food industry	Other industry	Private small-scale industries	Building industry	Agriculture	Transport	Home trade	Foreign trade	Other producing activities
1 D	Basic materials industry	0.3417	0.2269	0.2637	0.0280	0.0242	0.1318	0.0507	0.1905	0.0062	0 ·1095	0.0387	0.0052	0.0657
	Aachine-building industry	0.0356	0.2307	0.0124	0.0157	0.0082	0.0945	0.0386	0.1157	0.0114	0.0726	0.0105	0.0 268	0.0261
	Themical industry	0.0624	0.0455	0.1696	0.0409	0.0138	0.0508	0.0178	0.0207	0.0339	0.0543	0.0175	0.0048	0.0208
	ight industry	0.0112	0.0203	0.0360	0.2656	0.0181	0.0839	0.2164	0.0267	0.0084	0.0284	0 ∙0519	0.0407	0.2363
	Food industry	0.0015	0.0088	0.0277	0.0184	0.1587	0.0096	0.0120	0.0018	0.0167	0.0031	0.0025	0.0008	0.0000
	Other industry	0.0223	0.0021	0.0000	0.0000	0.0051	0.0000	0.0000	0.0744	0.0148	0.0262	0.0000	0.0000	0.0000
	Private small-scale industries	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0023	0.0028	0.0004	0.0011	0.0004	0.0000
	Building industry	0.0157	0.0126	0.0226	0.0170	0.0114	0.0000	0.0024	0.0161	0.0063	0.0120	0.0193	0.0016	0.0000
	Agriculture	0.0104	0.0005	0.0234	0.0776	0.4313	0 ·1698	0.0033	0.0058	0 ·3469	0.0123	0.0047	0.0040	0.0525
	ransport	0.0230	0.0074	0.0119	0.0097	0.0263	0.0523	0.0144	0.0818	0.0016	0.0079	0.1438	0.7813	0.0245
	Home trade	0.0082	0.0053	0.0049	0.0082	0.0209	0.0173	0.1142	0.0117	0.0142	0.0057	0.0049	0.0122	0.0069
	Foreign trade	0·0040	0.0031	0.0076	0.0035	0.0028	0.0018	0.0014	0.0007	0.0012	0.0005	0.0003	0.0000	0.0069
3. O	Other producing activities	0.0042	0-0008	0.0018	0.0011	0.0003	0.0000	0.0000	0.0032	0.0004	0.0010	0.0006	0.0004	0.0000

.

		1 Basic materials	2 Machine- building	3 Chemical	4 Light	5 Food	6 Other	7 Private small-scale	8 Building	9	10	11 11	12 Formion	13 Other producing
Number	Branch	industry	industry	industry	industry	industry	industry	industries	industry	Agriculture	Transport	Home trade	Foreign trade	activities
1. B	Basic materials industry	0.3377	0.2227	0.2525	0.0248	0.0221	0.1169	0.0505	0.1906	0.0077	0.1011	0.0516	0.0035	0.0699
2. N	Aachine-building industry	0.0324	0.2287	0.0206	0.0173	0.0069	0.0888	0.0360	0.1144	0.0151	0.0665	0.0120	0.0188	0.0371
3. C	Chemical industry	0.0624	0.0487	0.1766	0.0429	0.0110	0.0493	0.0101	0.0239	0.0352	0.0502	0.0369	0.0035	0.0227
4. L	light industry	0.0120	0.0211	0.0297	0.2742	0.0130	0.0774	0.2127	0.0287	0.0078	0.0220	0.0566	0.0293	0.2344
5. F	Food industry	0.0012	0.0008	0.0256	0.0237	0.1753	0.0127	0.0119	0.0019	0.0201	0.0029	0.0027	0.0005	0.0000
6. C	Other industry	0.0241	0.0019	0.0000	0.0000	0.0054	0.0000	0.0000	0.0763	0.0267	0.0247	0.0000	0.0000	0.0000
7. P	rivate small-scale industries	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0018	0.0056	0.0004	0.0012	0.0002	0.0000
8. B	Suilding industry	0.0153	0.0113	0.0208	0.0147	0.0091	0.0000	0.0025	0.0159	0.0076	0.0101	0.0112	0.0010	0.0000
9. A	griculture	0.0133	0.0004	0.0216	0.0629	0.4084	0.2020	0.0031	0.0067	0.3246	0.0114	0.0052	0.0030	0.0519
10. T	ransport	0.0302	0.0071	0.0113	0.0095	0.0198	0.0504	0.0155	0.0287	0.0016	0.0076	0.0032	0.5669	0.0234
n. E	lome trade	0.0083	0.0051	0.0045	0.0080	0.0191	0.0171	0.1258	0.0115	0.0137	0.0055	0.0058	0.0082	0.0066
12. F	Foreign trade	0.0052	0.0040	0.0089	0.0045	0.0038	0.0007	0.0015	0.0013	0.0014	0.0016	0.0002	0.0000	0.0107
13. C	Other producing activities	0.0041	0.0009	0.0020	0.0011	0.0003	0.0000	0.0000	0.0038	0.0004	0.0010	0.0005	0.0002	0.0000

(Gross production=1,000)

TABLE 8F: TECHNOLOGICAL COEFFICIENT MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1964

(Gross production=1,000)

		1 Basic	2 Machine-	3	4	5	6	7 Private	8	9	10	11	12	13 Other
Numb	er Branch	materials industry	building industry	Chemical industry	Light industry	Food industry	Other industry	small-scale industries	Building industry	Agriculture	Transport	Home trade	Foreign trade	producing activities
1.	Basic materials industry	0.3427	0.2130	0.2295	0.0267	0.0220	0.0005	0.0434	0.2035	0.0083	0.1044	0.0392	0.0036	0.0680
2.	Machine-building industry	0.0307	0.2202	0.0190	0.0169	0.0064	0.0812	0.0463	0.1161	0.0181	0.0690	0.0096	0.0193	0.0332
3.	Chemical industry	0.0 59 0	0.0570	0.1894	0.0486	0.0148	0.0487	0.0160	0.0326	0.0353	0.0540	0.0174	0.0036	0.0237
4.	Light industry	0.0120	0.0235	0.0309	0.2726	0.0157	0.0744	0.2021	0.0200	0.0080	0.0240	0.0422	0.0310	0.2609
5.	Food industry	0.0014	0.0007	0.0224	0.0183	0.1861	0.0112	0.0123	0.0018	0.0389	0.0030	0.0026	0.0005	0.0000
6.	Other industry	0.0277	0.0021	0.0000	0.0000	0.0060	0.0000	0.0000	0.0697	0.0274	0.0267	0.0000	0.0000	0.0000
7.	Private small-scale industries	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0014	0.0047	0.0004	0.0012	0.0002	0.0000
8.	Building industry	0.0154	0.0167	0.0203	0.0153	0.0150	0.0000	0.0024	0.0173	0.0079	0.0102	0.0187	0.0010	0.0000
9.	Agriculture	0.0090	0.0004	0.0174	0.0612	0.3828	0.1807	0.0032	0.0083	0.3055	0.0162	0.0103	0.0031	0.0474
10.	Transport	0.0276	0.0072	0.0111	0.0117	0.0245	0.0482	0.0160	0.0743	0.0017	0.0079	0.1504	0.6132	0.0253
11.	Home trade	0.0081	0.0064	0.0040	0.0078	0.0186	0.0166	0.1394	0.0117	0.0126	0.0051	0.0055	0.0078	0.0063
12.	Foreign trade	0.0055	0.0033	0.0088	0.0041	0.0033	0.0009	0.0018	0.0016	0.0011	0.0031	0.0001	0.0000	0.0142
13.	Other producing activities	0.0040	0.0010	0.0020	0.0011	0.0003	0.0000	0.0000	0.0012	0.0003	0.0006	0.0171	0.0002	0.0000

⁸4

On the other hand, there was a decrease in the relative shares of the basic materials and the energy-producing branches.

(c) The inner structure of industry has undergone considerable changes. These changes are illustrated in table 9.

 TABLE 9: CHANGES IN THE BRANCH STRUCTURE OF SOCIALIST

 INDUSTRY; PERCENTAGE COMPOSITION OF TOTAL PRODUCTION

 1959 and 1964

Industrial group/branch	1959	1964
Mining	7.9	6.7
Of which: Coal mining	5.7	4·2
Electrical energy industry	4.5	4.4
Metallurgy	13.5	12.1
Production of machines and machinery equip-		
ment	5.8	6.1
Production of vehicles	8.3	8.7
Production of electrical machines	3.1	3.6
Vacuum and telecommunication techniques	1.9	3.2
Precision industry	1.4	1.8
Metal mass products	3.5	3.9
Production of construction materials	3.6	3.3
Chemical and rubber industry	6.8	8.6
Of which: Pharmaceuticals	0.7	1.6
Rubber and synthetic materials		
processing	0.9	1.2
Wood-processing industry	2.4	2.8
Paper industry	0.8	0.8
Printing industry	0.7	0.7
Textile industry	7.5	6.8
Leather, fur and shoe industry	2.6	2.3
Textile clothing industry	3.5	3.1
Food industry	20.0	18.7
Of which: Canning	1.1	1.5
Poultry and egg processing	0.9	1.2
Other handicraft and domestic industries	2.2	2.4
Industry, total	100.0	100.0

(d) Changes in the structure of end-use are illustrated in tables 10A to 10F. As can be seen from these there was a considerable modification in the composition of exports, that of machine-industry products obtaining an increasing share in the total. There was a change also, although to a lesser degree, in the structure of non-productive consumption. The proportions moved in favour of industrial products, especially those of the chemical and light industries.

As a result the technical coefficients appear to have changed to a more or less appreciable extent during this period. The difference is less significant in the case of branches whose output increases but slowly. Significant differences are observed however in those branches whose output shows relatively rapid development, and are accompanied by changes in their inner structure. In this respect the branches which have undergone the most dynamic transformation are the machine industry and the chemical industry.

Between 1959 and 1964 the output of the chemical industry almost doubled, and that of the machine industry increased by 80 per cent: the development of these two branches surpassed that of the others. There was a significant change in the inner structure of both the machine and the chemical industry. Within the former a larger role has been given to the branches with more up-to-date techniques, such as the precision industry and telecommunication techniques. The output of the precision industry in 1964 was more than double that in 1959 and that of telecommunication techniques 2.6 times greater. The structural changes in the chemical industry were such that during these six years the output of the pharmaceutical industry increased 3.7 times, and that of rubber and synthetic materials processing by 2.2 times; within the latter the increase in the production of synthetic products was even more pronounced. These changes also influenced the input structure of the two branches.

Specific consumption of basic materials and energy in the machine industry steadily decreased between 1959 and 1964, although only to a small extent. The consumption of these items necessary for one million forints value of gross output gradually dropped from 272,500 forints in 1955 to 213,000 forints in 1964. The transformation of the input structure of the machine industry is not very clear-cut because of the fluctuations from year to year during the period investigated. A considerable increase in the use of chemical materials in the machine industry indicates again an increase in the share of the production of more up-to-date and technically more developed products and the use of more up-to-date materials and technologies. Other material consumption of the machine industry shows less fluctuation and the coefficients of this type can be regarded as relatively more stable.

A deeper and more clear-cut change can be seen in the input structure of the chemical industry. The consumption of basic materials and energy in this industry depends to a great extent on the changes in its inner structure: while in 1959 one million forints of gross output of the chemical industry required 324,500 forints of basic materials and energy, this latter figure had decreased gradually to only 229,500 forints by 1964. This change was due primarily to the fact that those branches which require a relatively large amount of basic materials and energy expanded faster than the other branches of this industry. The chemical industry needed more significant internal co-operation during the two last years of the period mainly as a result of an increase in the share of the products arising from vertically integrated processes. Various medicaments (principally packed medicaments), finished products of synthetic materials and some refined chemicals belong to this category; as a result the technical coefficients relating to the internal transactions of the chemical industry showed a fairly considerable increase from one year to another. Other technical coefficients of the chemical industry are relatively more stable.

The direct input structure of less dynamically developing branches of the Hungarian national economy shows even less fluctuation than these two branches. There are a few exceptions however. For example, during the six years there was a considerable increase in the consumption of chemical materials in agriculture, which reflects

Jumber	Branch	1 Non- producing consumption	2 Investments and renovations	3 Changes in stocks	4 Exports	5 End-use, total
1.	Basic materials and energy industry	0.037	0.040	0.089	0.121	0.056
2.	Machine-building industry	0.023	0.318	0.257	0.296	0.173
3.	Chemical industry	0.034	0.002	0.020	0.069	0.033
4.	Light industry	0.166	0.011	0.028	0.217	0.133
5.	Food industry	0.242	0.001	0.044	0.160	0.160
6.	Other industry	0.016	0.010			0.011
7.	Socialist industry (1-6) subtotal	0.548	0.382	0.468	0.864	0.566
8.	Private small-scale industries	0.059			0.001	0.031
9.	Building industry	0.013	0.565			0.147
10.	Agriculture		0.025	0.508	0.095	0.156
11.	Transport		0.013	0.010	0.016	0.031
12.	Home trade		0.008	0.012		0.052
13.	Foreign trade		0.007	0.002	0.023	0.007
14.	Other producing activities	0.018			0.001	0.010
15.	Domestic use of materials, total		1.000	1.000	1.000	1.000

TABLE 10A: THE STRUCTURE OF END-USE ON THE BASIS OF THE A-TYPE BALANCE, 1959

TABLE 10B: THE STRUCTURE OF END-USE ON THE BASIS OF THE A-TYPE BALANCE, 1960

		1 Non-	2 Investments and	3	4	5 Tu 1
Number	Branch	producing consumption	renovations	Changes in stocks	Exports	End-use, total
1.	Basic materials and energy industry	0.044	0.044	0.338	0.119	0.070
2.	Machine-building industry	0.044	0.369	0.268	0.311	0.190
3.	Chemical industry	0.035	0.003	0.020	0.076	0.036
4.	Light industry	0.180	0.011	0.245	0.220	0.147
5.	Food industry	0.237	0.001	0.102	0.150	0.153
6.	Other industry	0.012	0.006	_		0.009
7.	Socialist industry (1-6) subtotal	0.555	0.434	1.003	0.876	0.605
8.	Private small-scale industries	0.045			0.001	0.023
9.	Building industry	0.014	0.518			0.141
10.	Agriculture		0.015	-0.038	0.081	0.134
11.	Transport	0.044	0.018	0.007	0.021	0.031
12.	Home trade	0.091	0.007	0.024		0.049
13.	Foreign trade	0.002	0.006	0.004	0.020	0.007
14.	Other producing activities				0.001	0.010
15.	Domestic use of materials, total	1.000	1.000	1.000	1.000	1.000

TABLE 10C: THE STRUCTURE OF END-USE ON THE BASIS OF THE A-TYPE BALANCE, 1961

		1 Non-	2	3	4	5
Numbe r	Branch	producing consumption	Investments and renovations	Changes in stocks	Exports	End-use, total
1.	Basic materials and energy industry	0.042	0.035	0.189	0.115	0.066
2.	Machine-building industry	0.055	0.306	0.342	0.331	0.192
3.	Chemical industry	0.037	0.002	0.122	0.080	0.043
4.	Light industry	0 ·188	0.010	0.196	0.217	0.152
5.	Food industry	0·249	0.001	0.181	0.142	0.162
6.	Other industry	0.015	0.006			0.009
7.	Socialist industry (1–6) subtotal	0.586	0.360	1.030	0.885	0.624
8.	Private small-scale industries	0.039			0.001	0.019
9.	Building industry	0.015	0.563			0.142
10.	Agriculture	0.195	0.046	-0.072	0.072	0.116
11.	Transport	0.048	0.019	0.004	0.025	0.034
12.	Home trade	0.095	0.008	0.032		0.049
13.	Foreign trade	0.001	0.004	0.006	0.016	0.006
14.	Other producing activities	0.021			0.001	0.010
15.	Domestic use of materials, total	1.000	1.000	1.000	1.000	1.000

Number	Branch	1 Non- producing consumption	2 Investments and renovations	3 Changes in stocks	4 Exports	5 End-use, total
1.	Basic materials and energy industry	0.049	0.043	0.159	0.122	0.071
2.	Machine-building industry	0.061	0.330	0.437	0.322	0.209
3.	Chemical industry	0.040	0.002	0.094	0.092	0.046
4.	Light industry	0.182	0.010	0.135	0.223	0.146
5.	Food industry	0.242	0.001	0.203	0.140	0.156
6.	Other industry	0.018	0.007			0.010
7.	Socialist industry (1-6) subtotal	0.592	0.393	1.028	0 .899	0.639
8.	Private small-scale industries	0.034	_		0.001	0.016
9.	Building industry	0.016	0.534			0.139
10.	Agriculture	0.185	0.044	0.020	0.066	0.109
11.	Transport	0.049	0.018	0.004	0.015	0.031
12.	Home trade	0.102	0.007	0.011		0.050
13.	Foreign trade	0.002	0.004	0.007	0.018	0.006
14.	Other producing activities	0.020			0.001	0.010
15.	Domestic use of materials, total	1.000	1.000	1.000	1.000	1.000

TABLE 10E: THE STRUCTURE OF END-USE ON THE BASIS OF THE A-TYPE BALANCE, 1963

		1 Non- producing	2 Investments and	3 Changes	4	5 End-use,	
Number	Branch	consumption	renovations	in stocks	Exports	total	
1.	Basic materials and energy industry	0.040	0.040	0.251	0.124	0.071	
2.	Machine-building industry	0.065	0.373	0.336	0.298	0.213	
3.	Chemical industry	0.045	0.003	0.097	0.090	0.048	
4.	Light industry	0.171	0.011	0.224	0.213	0.143	
5.	Food industry	0.257	0.001	0.112	0.147	0.158	
6.	Other industry	0.024	0.006			0.012	
7.	Socialist industry (1-6) subtotal	0.602	0.434	1.020	0.872	0.645	
8.	Private small-scale industries	0.029			0.001	0.013	
9.	Building industry	0.013	0.504			0.135	
10.	Agriculture	0.183	0.033	0.045	0.084	0.109	
11.	Transport	0.047	0.017	0.004	0.016	0.030	
12.	Home trade	0.103	0.006	0.013		0.050	
13.	Foreign trade	0.002	0.006	0.008	0.026	0.009	
14.	Other producing activities	0.021	_		0.001	0.009	
15.	Domestic use of materials, total	1.000	1.000	1.000	1.000	1.000	

TABLE 10F: THE STRUCTURE OF END-USE ON THE BASIS OF THE A-TYPE BALANCE, 1964

		1 Non- producinz	2 Investments and	3 Chanzes	4	5 End-use,
Number	Branch	consumption	renovations	in stocks	Exports	total
1.	Basic materials and energy industry	0.046	0.039	0.238	0.122	0.074
2.	Machine-building industry	0.062	0.379	0.319	0.322	0.219
3.	Chemical industry	0.048	0.004	0.101	0.082	0.048
4.	Light industry	0.178	0.009	0.183	0.217	0.146
5.	Food industry	0.248	0.002	0.084	0.145	0.152
6.	Other industry	0.024	0.006			0.013
7.	Socialist industry (1–6) subtotal	0.606	0.439	0.925	0.888	0.652
8.	Private small-scale industries	0.026			0.001	0.012
9.	Building industry	0.017	0.491			0.129
10.	Agriculture	0.183	0.038	0.021	0.072	0.113
11.	Transport	0.045	0.018	0.004	0.015	0.029
12.	Home trade	0.103	0.007	0.013		0.049
13.	Foreign trade	0.002	0.007	0.007	0.023	0.008
14.	Other producing activities	0.018			0.001	0.008
15.	Domestic use of materials, total	1.000	1.000	1.000	1.000	1.000

.

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

the big leap forward between 1959 and 1964 in the use of artificial fertilizers. The technical coefficient correspondingly increased by nearly 60 per cent.

 TABLE 11: DIRECT AND INDIRECT PRODUCTION REQUIREMENTS PER

 100 UNITS OF FINAL DEMAND; CHEMICAL INDUSTRY, 1959 AND 1964

	19	59	19	64
Producing sectors	Type A	Туре В	Type A	Type B
Basic materials and energy industry	67·2	31.6	50-3	20.4
Machine industry	7.1	4∙0	6.8	3.4
Chemical industry	121-9	109.7	129.0	109.5
Light industries	9·0	6.0	7.5	4.7
Food industry	5.9	4.5	4·2	2.5
Other industry	3.0	1.6	2.0	1.0
Private small-scale industries	0.1	0.0	0.0	0.0
Building industry	6.0	4·7	3.9	2.8
Agriculture		5.6	7.7	4.5
Transport	5-1	3.4	4·7	3.1
Home trade	2.2	1.4	1.3	0 ·9
Foreign trade	1.0	0.7	1.5	1.1
Other producing activities	0.8	0∙4	0.2	0.3

The inverse of the A-type coefficient matrices for the six years is shown in tables 12A to 12F. Attention is first drawn to the fact that the coefficients of relatively great magnitudes show changes in the same direction: that is true, for example, of the coefficient series indicating the direct and the indirect requirements of products of agriculture for the food industry. Whereas in 1959 it was necessary to employ 83.8 forints worth of agricultural products for the production of 100 forints of food industry products, this figure decreased steadily to the value of 71.8 forints in 1964. This indicates that, as a result of technological development and internal structural changes, the Hungarian food industry relies more and more on the products of branches other than agriculture; for example, the canning industry requires the use of more metallurgical materials, and an increase in packed food leads to an increasing need for the products of the paper industry and synthetic materials. The direct and indirect need for basic materials and energy by the machine industry clearly altered. A similar tendency could be seen, though less sharply, in the corresponding direct input coefficient.

2. Changes in inverse coefficients

The changes in the direct input structure of different branches naturally influence the pattern of indirect relations. In connexion with this, first taking the case of the A-type balance, our investigation showed that the elements of the inverse matrix are affected primarily by the coefficients of great values in the direct coefficient matrix: in other words, the tendencies noted in a comparison of direct technical coefficients would be more clearly revealed in terms of their inverse coefficients. Less significant changes in the coefficients of relatively small magnitudes are partly eliminated in the case of the inverse matrix.

By comparing the changes in the inverse coefficients of the A- and B-type balances it can be seen that inverse coefficients of the B-type show greater year-to-year fluctuations than those of the A-type. Table 11 examines the inverse coefficients of the chemical industry by A- and B-type balances for the first and the last year of the period.

As a result of rapid expansion and structural change the input structure of the chemical industry with regard to total input coefficients shows a significant difference between 1959 and 1964. As regards the direction of the changes, both A and B coefficients behave in the same way. In respect to the relative size of differences however the B-type balance generally indicates more intensive changes. For example, the total basic materials and energy requirement for the chemical industry decreased in the six years from 67.2 to 50.3 by some 25 per cent. When only domestic basic materials and energy-carriers are taken into consideration the decrease is more significant (about 36 per cent). The use of imported basic materials and energy carriers in the chemical industry underwent considerable changes during the period. Differences of a similar type can be found also in respect of other important coefficients, for example those relating to the requirements of the food industry and light industries.

Num	er Branch	1 Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing activities
						· · · · · · · · · · · · · · · · · · ·						,		
1.	Basic materials industry	1.653	0.622	0.672	0.144	0.112	0.416	0.193	0.489	0.067	0.293	0.192	0.207	0.171
2.	Machine-building industry	0.084	1.295	0.071	0.038	0.038	0.183	0.073	0.187	0.031	0.122	0.048	0.107	0.063
3.	Chemical industry	0.127	0.111	1.219	0.085	0.051	0.125	0.063	0.083	0.020	0.099	0.057	0.071	0.055
4.	Light industry	0.060	0.076	0.090	1.387	0.055	0.173	0.355	0.094	0.032	0.071	0.108	0.099	0.306
5.	Food industry	0.011	0.011	0.059	0.040	1.159	0.023	0.028	0.012	0.027	0.011	0.009	0.010	0.012
6.	Other industry	0.062	0.031	0.030	0.010	0.021	1.022	0.010	0.089	0.019	0.053	0.015	0.033	0.010
	Private small-scale industries	0.001	0.000	0.001	0.001	0.002	0.002	1.001	0.003	0.009	0.001	0.002	0.001	0.001
8.	Building industry	0.039	0.040	0.060	0.023	0.029	0.021	0.016	1.035	0.015	0.023	0.027	0.017	0.011
9.	Agriculture	0.065	0.045	0.115	0.205	0.838	0.258	0.079	0.074	1.534	0.057	0.045	0.020	0.147
10.	Transport	0.065	0.045	0.051	0.032	0.038	0.091	0.043	0.117	0.011	1.031	0.150	0.610	0.032
11.	Home trade	0.027	0.019	0.022	0.019	0.049	0.034	0.111	0.027	0.024	0.015	1.016	0.023	0.015
12.	Foreign trade	0.011	0.011	0.010	0.010	0.004	0.005	0.007	0.008	0.002	0.004	0.002	1.004	0.008
13.	Other producing activities	0.013	0.007	0.008	0.004	0.002	0.004	0.003	0.010	0.001	0.004	0.003	0.003	1.002

TABLE 12A: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1959

TABLE 12B: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1960

Number	Branch	1 Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing activities
1. Ba	asic materials industry	1.643	0.582	0.620	0.144	0.114	0.382	0.168	0.440	0.078	0.274	0.140	0.202	0.164
	Iachine-building industry	0.090	1.317	0.075	0.045	0.043	0.172	0.078	0.169	0.039	0.119	0.039	0.109	0.072
3. Cl	hemical industry	0.139	0.115	1.229	0.094	0.064	0.129	0.068	0.081	0.069	0.099	0.020	0.074	0.061
4. Li	ight industry	0.045	0.059	0 ∙071	1.372	0.054	0.164	0.323	0.079	0.038	0.059	0.094	0.092	0·318
	ood industry	0.011	0.010	0.054	0.038	1.169	0.023	0.026	0.011	0.033	0.011	0.009	0.010	0.012
	ther industry	0.062	0.027	0.028	0.010	0.022	1.020	0.009	0.087	0.023	0.040	0.011	0.027	0.009
	rivate small-scale industries	0.001	0.000	0.001	0.001	0.005	0.002	1.001	0.003	0.010	0.001	0.002	0.001	0.001
8. Bi	uilding industry	0.036	0.034	0.048	0.031	0.027	0.019	0.017	1.030	0.016	0.020	0.023	0.017	0.013
	griculture	0.059	0.036	0 ·110	0.180	0.801	0.244	0.066	0.061	1.543	0.050	0.032	0.046	0.131
	ransport	0.055	0.037	0.049	0.035	0.049	0.087	0.042	0.116	0.015	1.026	0.148	0.638	0.039
	lome trade	0.019	0.016	0.022	0.021	0.02	0.033	0.127	0.027	0.033	0.015	1.014	0.026	0.016
12. Fe	oreign trade	0.011	0.010	0 ·018	0.010	0.006	0.002	0.005	0.006	0.003	0-005	0.003	1.004	0.004
13. O	ther producing activities	0.008	0.005	0.006	0.004	0.002	0.003	0.002	0.009	0.001	0.003	0.002	0.003	1.002

.

V. NYITRAI

		\mathbf{p}^{1} .	2	3	4	5	6	7 Private	8	9	10	11	12	13 Other
Num	ber Branch	Basic materials indust r y	Machine- building industry	Chemical industry	Light industry	Food industry	Other industry	small-scale industries	Building industry	Agriculture	Transport	Home trade	Foreign trade	producing activities
1.	Basic materials industry	1.663	0.577	0.605	0.143	0.125	0.338	0.194	0.470	0.084	0.287	0.142	0.262	0.182
2	Machine-building industry	0.096	1.335	0.084	0.053	0.045	0.162	0.084	0-201	0.042	0.116	0 ·045	0.133	0.079
3	Chemical industry	0.140	0.116	1.223	0.088	0.066	0.111	0.063	0.086	0.074	0.098	0.053	0.091	0.063
4	Light industry	0.050	0.066	0.092	1.393	0.028	0.139	0.315	0.080	0.039	0.024	0.091	0.105	0.321
5	Food industry	0.011	0.009	0.048	0.037	1.172	0.025	0.025	0.011	0.038	0.011	0 ·809	0.012	0.013
6.	Other industry	0.035	0.017	0.017	0.008	0.022	1.014	0.007	0.084	0.025	0.033	0.009	0.027	0.007
7	Private small-scale industries	0.001	0.000	0.001	0.001	0.006	0.002	0.001	0.003	0.011	0.001	0.001	0.001	0.001
8.	Building industry	0.037	0.036	0.048	0.032	0.026	0.017	0.017	1.034	0.016	0.023	0.027	0.023	0.013
9.	Agriculture	0.058	0.035	0.107	0.182	0.822	0.305	0.064	0.065	1.580	0.049	0.027	0.055	0.135
10.	Transport	0.058	0.039	0.051	0.033	0.046	0.072	0.042	0.108	0.018	1.026	0.153	0.806	0.037
11.	Home trade	0.017	0.014	0.018	0.017	0.043	0.027	0.111	0.022	0.027	0.012	1.011	0.024	0.014
12.	Foreign trade	0.009	0.009	0.010	0.008	0.006	0.004	0.004	0.005	0.003	0.004	0.002	1.004	0.004
13.	Other producing activities	0.009	0.005	0.006	0.003	0.002	0.003	0.002	0.010	0.002	0.003	0.002	0.003	1.002

TABLE 12C: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1961

TABLE 12D: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1962

Number	Branch	1 Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing activities
1 Bas	ic materials industry	1.641	0.534	0.561	0.134	0.125	0.338	0.166	0.448	0.077	0·272	0.136	0.247	0 ·184
	chine-building industry	0.097	1.340	0.064	0.049	0.046	0.161	0.077	0.203	0.037	0.121	0.044	0.135	0·0 74
	emical industry	0.141	0.125	1.265	0.093	0.075	0.123	0.064	0.091	0.078	0.103	0.051	0.092	0.020
	ht industry	0.048	0.059	0.084	1.379	0.057	0.143	0.317	0.075	0.034	0.060	0.087	0.107	0.338
	od industry	0.011	0.009	0 ∙047	0.038	1.210	0.026	0.026	0.011	0.032	0.011	0.008	0.012	0.013
	er industry	0.042	0.019	0 ·019	0.009	0.025	0.016	0.007	0.091	0.027	0.036	0.010	0.030	0.009
	vate small-scale industries	0.000	0.000	0.001	0.001	0.005	0.002	1.001	0.003	0.009	0.001	0.002	0.001	0.001
	Iding industry	0.033	0.031	0.043	0.031	0.026	0.017	0.017	1.032	0.015	0.023	0.027	0.022	0.013
	riculture	0.057	0.033	0.102	0.198	0 ·819	0.311	0.069	0.062	1.571	0.052	0.033	0.028	0.138
	insport	0.056	0.037	0.048	0.031	0.052	0.077	0.047	0.111	0.016	1.026	0.156	0.806	0.046
	me trade	0.018	0.014	0.016	0.018	0.041	0.029	0.122	0.022	0.027	0.012	1.010	0.023	0.015
	reign trade	0.009	0.008	0.013	0.007	0.006	0.006	0.004	0.005	0.003	0.003	0.002	1.003	0.010
13. Oth	her producing activities	0.008	0.004	0.005	0.003	0.002	0.002	0.001	0.006	0.001	0.003	0.002	0.003	1.002

12	13
Foreign	Other producing
trade	activities
0.165	0.189
0.165	0 10/
0.091	0.076
0.072	0.075
0.072	0.339
0.009	0.016
0.021	0.010
0.001	0.001
0.014	0.012
0.039	0.129
0.505	0.046
0.016	0.015
1.003	0.012
0.002	1.002

TABLE 12E: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1963

6

Other

industry

0.308

0.154

0.123

0.135

0.033

1.021

0.002

0.016

0.354

0.075

0.029

0.006

0.002

7

Private

small-scale

industries

0.161

0.073

0.059

0.316

0.028

0.008

1.001

0.015

0.061

0.048

0.133

0.005

0.001

 $\boldsymbol{5}$

Food

industry

0.118

0.046

0.071

0.048

1.236

0.033

0.004

0.023

0.768

0.044

0.038

0.008

0.002

1

Basic

materials

industry

0.091

0.012

0.045

0.000

0.066

0.018

0.011

Number

Ł

2.

3.

6.

7.

Branch

Machine-building industry ...

5. Food industry

10. Transport

11. Home trade

12. Foreign trade

Other industry

Private small-scale industries

Basic materials industry 1.628

Chemical industry 0.144

4. Light industry 0.049

8. Building industry 0.032

9. Agriculture 0.064

13. Other producing activities .. 0.007

2 Machine-

building

0.520

1.334

0.129

0.061

0.009

0.019

0.000

0.028

0.034

0.039

0.014

0.010

0.004

industry

3

Chemical

industry

0.541

0.074

1.275

0.074

0.046

0.020

0.001

0.039

0.094

0.049

0.015

0.015

0.005

4

Light

industry

0.127

0.052

0.098

1.394

0.048

0.011

0.001

0.028

0.169

0.030

0.017

0.009

0.003

8

Building

industry

0.441

0.199

0.097

0.077

0.012

0.094

0.002

1.031

0.068

0.110

0.022

0.006

0.006

9

Agriculture

0.087

0.047

0.083

0.035

0.042

0.045

0.009

0.017

1.528

0.017

0.026

0.004

0.001

10

Transport

0.250

0.111

0.106

0.050

0.011

0.034

0.001

0.019

0.048

1.026

0.011

0.005

0.003

11

Home

trade

0.162

0.046

0.079

0.095

0.011

0.011 0.002

0.027

0.035

0.149

1.011

0.003

0.002

TABLE 12F: INVERSE MATRIX OF VARIANT A OF THE INPUT-OUTPUT BALANCE, 1964

Number	Branch	1 Basic materials industry	2 Machine- building industry	3 Chemical industry	4 Light industry	5 Food industry	6 Other industry	7 Private small-scale industries	8 Building industry	9 Agriculture	10 Transport	11 Home trade	12 Foreign trade	13 Other producing aetivites
1. Basic	materials industry	1.632	0.502	0.503	0.132	0.124	0.289	0.155	0.460	0.088	0.253	0.135	0.179	0.188
2. Machi	ne-building industry .	0.087	1.319	0.068	0.051	0.049	0 ·140	0.086	0 ·197	0.02	0.113	0.043	0·0 98	0.072
3. Chemi	ical industry	0.140	0.141	1.290	0.109	0.078	0.120	0.066	0.109	0.085	0.104	0.055	0.076	0 ·081
4. Light i	industry	0.049	0.065	0.075	1.392	0.053	0 ·129	0.301	0.064	0.035	0.023	0.080	0.079	0.375
	industry	0.012	0.009	0.042	0.042	1.268	0.036	0.028	0.012	0.076	0.012	0.010	0.010	0.017
	industry	0.051	0.021	0.020	0.011	0.035	1.020	0.009	0.090	0.046	0.038	0.011	0.024	0.011
	e small-scale industries	0.000	0.000	0.000	0.001	0.004	0.002	1.001	0.002	0.007	0.001	0.002	0.001	0.001
8. Buildin	ng industry	0.032	0.035	0.039	0.029	0.032	0.016	0.017	1.034	0.019	0.020	0.027	0.016	0.014
	lture	0.052	0.029	0.077	0.155	0 ·718	0.306	0.056	0.060	1.502	0.052	0.039	0.043	0.120
	oort	0.063	0.038	0.047	0.034	0.052	0.072	0.054	0.106	0.018	1.027	0.164	0.633	0.052
	trade	0.018	0.015	0.013	0.016	0.037	0.027	0.147	0.022	0.024	0.011	1.010	0.016	0.014
	n trade	0.011	0.009	0.015	0.008	0.007	0.005	0.002	0.007	0.004	0.006	0 ·003	1.005	0.018
13. Other	producing activities	0.007	0.004	0.005	0.003	0.002	0.002	0.004	0.004	0.002	0.002	0.018	0.002	1.002

91

<

NYITRAI

Finally it may be noted that the total requirements of within-branch origin in different branches show changes in varying directions. It should be remembered that the data had already been adjusted for the organizational changes of enterprises, and consequently these changes should reflect some factors other than the forms of organization of the accounting units. The inverse coefficient series of own origin of some industries are shown in table 13.

 TABLE 13: INVERSE COEFFICIENTS OF OWN-BRANCH ORIGIN (ON THE BASIS OF A-TYPE BALANCE)

Branch	1959	1960	1961	1962	1963	1964
Basic materials and energy						
industry	65.3	64·3	66.3	64·1	62.8	63·2
Machine industry	29.5	31.7	33.5	33.9	33.4	31.9
Chemical industry	21.9	22.9	22.3	26.5	27.5	29.0
Light industry	38.7	37.2	39.3	37.9	39.4	39.1
Food industry	15.9	16.8	17.2	21.0	23.6	26.8
Agriculture	53.4	54.3	58.6	57.1	52.8	50.2

The greatest internal co-operation is required in the basic materials and energy industry and the next greatest in agriculture. In both branches the inverse coefficient of own-branch origin shows relatively less fluctuation during the period, some decrease being evident during the last two years of the period. The real nature of this apparent trend however is not very clear. There is no doubt that the internal requirements of the chemical industry had a strong upward trend during the period and the same applied also to the food industry.

In view of the fact that this investigation has so far relied on data of the A-type balance it is appropriate to examine the increase in use of imported materials during the period considered. Table 14 shows direct and indirect import requirements involved per 100 forints of production in various branches.

As can be seen from this table the direct use of direct imported materials has changed considerably and, by branches, in different proportions. The same is true of the indicator of accumulated imports content. This is

TABLE 14: DIRECT AND INDIRECT IMPORT REQUIREMENTS PER 100 FORINTS OF PRODUCTION

	imports	t use of 5 per 100 of output	Accumulated imports content pe 100 forints of outp		
Branch	1959	1964	1959	1964	
Basic materials and energy					
industry	11.01	14.38	18.31	22.31	
Machine industry	7.92	10.47	16.85	19.86	
Chemical industry	22.83	23.30	29.99	33.03	
Light industry	11.38	11.54	17.35	18.02	
Food industry	4·78	9.23	8.58	15.96	
Other industry	0.00	2.41	9.38	11.05	
Private small-scale industries .	1.43	4.72	8.38	11.00	
Building industry	1.78	3.71	9.90	13.17	
Agriculture	0.83	3.30	3.23	8.08	
Transport	3.49	5.13	8.88	10.50	
Home trade	0.03	0.66	5.67	5.02	
Foreign trade	0.61	0.00	7.16	7.67	
Other industrial activities	0.96	3.29	6.94	11.03	

why data of the A-type balance are preferred to those of the B-type balance for the purpose of analysis of the technological structure of the economy; the influence of the changes in import patterns shown in table 14 would be strongly reflected in the direct and inverse coefficients of the B-type balance.

To sum up: it can be stated that in the case of fairly strongly aggregated balances the structure of technical coefficients changed relatively little during the six years. The change is more significant in very rapidly developing branches. The structure of input coefficients of the A-type balance expressing direct technological relations was more stable than that of the B-type balance. Changes in the coefficients of more significant value indicate less obscure tendencies.

The inverse coefficients, for both the A- and the B-type balances, give a more expressive picture of the underlying structural changes than do direct input coefficients; the influence of the factors causing the structural changes of the national economy appears to be inflated. The inverse coefficients of the A-type balance are also more stable than those of the B-type balance.

INPUT-OUTPUT STATISTICS AND ANALYSIS IN YUGOSLAVIA

Nikola Petrović, Federal Institute for Statistics, Belgrade, Yugoslavia

Input-output statistics and analysis in Yugoslavia began to develop rapidly after the compilation and publishing of the first input-output tables for 1955. Direct work on these tables commenced at the end of 1955 in the Federal Institute for Statistics, and the first results were published in mid-1957 under the title Interindustry relations of the Yugoslav economy in 1955. The relative shortness of the period required for the compilation of these tables can be explained by the use made of the experience of countries that already had their own national tables, and also of Yugoslavia's own experience of many years in the compilation of "material balances" for economic plans. The experience acquired in the compilation of these balances, and particularly the influence which it had on the structure and nature of the data system in the field of economic statistics, greatly facilitated the appraisal and solution of certain methodological and practical problems regarding the construction of the tables, especially the establishment of a compilatory framework best suited to the requirements and specific characteristics of the Yugoslav economic system.

In compiling the first input-output tables the Federal Institute for Statistics found it practically impossible, because of its own insufficient experience and the limited sources of data and of money resources, to produce a detailed table with a great number of sectors. For a practical application of the input-output technique, longer experience would have been needed as well as corresponding adaptations in other fields of economic statistics. The input-output tables for 1955 were therefore constructed for only 28 productive industries. The compilation was itself considered as a pilot work, intended mainly to study methodological and practical problems connected with input-output compilation and to establish the conditions for further development of empirical inquiries and application of the input-output method in Yugoslavia.

Further work on input-output statistics was directed towards a gradual elaboration of more developed tables with a greater number of sectors and a gradual adaptation of the existing system of economic statistics to the requirements for such an elaboration. It was considered that no attempt should be made to introduce expensive statistical inquiries primarily intended to serve the compilation of the input-output tables without undertaking a corresponding development of their practical application.

The input-output tables compiled subsequently for 1958 were also based only on readily available data.

Besides the basic table which comprised 76 productive industries and five final demand sectors, tables at higher levels of aggregation were also compiled, with a view to complying with the International Standard Industrial Classification of All Economic Activities (ISIC). In the course of the compilation of the 1958 tables at the Federal Institute for Statistics a centre for electronic data processing was established, which made it possible for the first time to draw up the inverse matrices of technical coefficients. These were computed for all levels of aggregation and published with the basic tables in mid-1962.

During 1963 the input-output tables for 1960 were compiled: they contained 29 productive industries. Being drawn up in the form of an internal document for the Federal Institute for Economic Planning they were not published.

At the end of 1965 the input-output tables for 1962 were finished and partly published. The number of productive sectors in the basic table was increased to 98 together with five final demand sectors. In addition to total transactions the flow of imports by activities of origin as well as of destination, was also drawn up in a separate table; to the detailed elaboration and final definition of productive sectors of the table was added also an improvement in the compilation machinery, which was reflected in a shortening of the time spent on compilation and in the fact that the primary data, originally based on the regular statistical inquiries alone, were now supplemented by a considerable amount of data specially collected for the purpose of input-output compilation.

In view of the present possibilities and requirements the Federal Institute for Statistics is planning to compile input-output tables for every second year beginning with 1962 (table 1). Between these tables, drawn up on the basis of complete statistical documentation, up-dated tables will also be compiled, based on those for the previous year but with additional information on the most important sectors for the current year.

I. CHARACTERISTICS OF THE INPUT-OUTPUT TABLES

Yugoslav experience in the compilation and use of input-output tables has shown that they can be widely used not only for the type of economic analysis that is based on econometric techniques but also for other types of analyses where the starting point is detailed presentation of the structure of the national economy. Furthermore, in carrying out these analyses it often becomes necessary to change certain solutions adopted at the time of compilation and adapt them to a specific need arising in each context of analysis. In most cases this is a consequence of the presentation of complex economic transactions within one relatively simple scheme, or various simplifications used for practical compilation purposes (dummy industries, treatment of secondary products, negative items and so on). The input-output table is a part of the system of information derived from economic statistics which comprises all the most important indicators of economic structure and links partial statistical inquiries and estimates into one consistent system; it can therefore not be drawn up without taking into account the methodological and practical solutions involved in other fields of economic statistics, since the latter are used in most analyses as either supplementary or primary information. For this reason it is important for the compilation of tables to be designed to meet more than one purpose: it must provide a tool for the general economic balance which contains in one place all the basic indicators of production, distribution, intermediate and final demand, imports, exports and investment and which, at the same time, has to be easily adaptable to the requirements of the models of inputoutput analysis.

In Yugoslavia it was held that the compilation of tables should start therefore from uniform definitions and methodological solutions which were also applied to other domains of the system of economic balances, and in particular to the basic conception of material production in the system. The use of these definitions and method-

ological solutions caused the basic scheme of the Yugoslav input-output tables to show a certain difference from the schemes of some other countries. First of all, the field of productive sectors is limited to only those economic activities which produce material goods and "productive" services. Other service-rendering activities, such as financial organizations and institutions, health institutions, organizations for residential management, and for personal and other services, have been covered by the autonomous sectors of the table. For the same reasons the final demand sectors do not comprise expenditures of corresponding categories of "non-productive" services. Thus "personal consumption" excludes expenditures for rent, health and other personal services, as well as for other service activities not comprised in the productive segment of the table. Apart from the purely theoretical attitudes reflected in this procedure there also exist definite practical reasons for it: for the majority of these services actual prices do not exist and some, such as rent and health services paid by persons, have far lower market prices than their corresponding real economic prices. Moreover, a great part of these services are not paid for from the personal incomes of individuals but are financed out of special funds.

The basic scheme of the Yugoslav tables is otherwise fairly similar to the schemes of other countries. Final demand comprises the following five sectors: increase of stocks, gross investment, exports, personal consumption and general consumption (see columns 10–14 of table 1).

Primary input categories are set out as follows:

TABLE 1: AGGREGATED INPUT-OUTPUT

(In millions

Industry consuming	Manufacturing, mining and quarrying	Ag ri culture	Forestry	Construction	Transport and communications	Trade and catering	Servicing arts and crafts
Industry producing	1	2	3	4	5	6	7
1. Manufacturing, mining and quarrying	1,848,873	81,378	4,584	253,527	118,369	37,904	43,704
2. Agriculture		523,069	3,566		78	3,897	44
3. Forestry		466	550	6,656	220	1,299	370
4. Construction		1,322	1.235	137,391	26,189	3,113	408
5. Transport and communications	106,351	11,314	2,453	39,900	32,946	12,299	1,253
6. Trade and catering	71,643	14,292	746	20,508	6,407	5,579	10,714
7. Servicing arts and crafts		9,028	958	8,939	8,561	7,069	1,613
8. Other	39,256	237	130	2,100	1,063	2,849	378
9. Total	2,423,135	641,106	14,222	469,021	193,833	74,009	58,484
10. Depreciation	149,666	42,677	11,458	21,300	54,785	16,112	2,096
11. Personal incomes	· · · · · · · · · · · · · · · · · · ·	525,599	60,257	173,067	94,313	120,266	38,621
12. Accumulation and funds		203,281	30,673	202,960	134,187	340,735	34,764
13. Production	4,036,258	1,412,663	116,610	866,348	477,118	551,122	133,965
14. Decrease of stocks	11,983	37,598	2,090				
15. Imports	e	146,133	1,122		20,247		
16. Available resources	4,716,412	1,596,394	119,822	866,348	497,365	551,122	133,965

From the Federal Institute for Statistics, Interindustry Relations of the Yugoslav Economy in 1962, Studies, Analyses and Reviews, 26 (Belgrade, 1966).

	Row No.
Depreciation	(100)
Personal incomes	(101)
Accumulation and funds	(102)

To these, "Decrease of stocks" and "Imports" are added in the table for available resources and uses.

The basic table for 1962 comprises 98 productive sectors and is the most elaborate in the series of tables drawn up for various years. In view of the degree of elaboration of the existing nomenclature of activities which is used in the system of economic statistics as well as in other available statistics, the 98-sector input-output table is considered to be the most detailed that can be drawn up under present conditions. The same number of sectors will be contained in the tables for 1964 which are now in process of being drawn up.

The full table of input-coefficients for 98 productive sectors is reproduced in table 2, together with the corresponding value-added quadrant of the flow table. Columns 99 to 108 of the table are shown in millions of dinars (at producers' prices): column 107 relates to "total available resources" and column 108 to "gross production of domestic industry".

Gross production of each sector, which is the denominator of the input coefficients, is less than total available resources for that sector by the amount equal to "decrease in stock" plus imports (classified according to competitive or counterpart domestic industry).

The productive sectors in the input-output table are specified as groups of definite products and services, and not as groups of organizational, technical or other statistical units. In other words, product is used as the basic unit of classification for the purpose of defining sectors, in accordance with the nomenclature determined in advance. Statistical computation, however, has been worked out with the data for groups of products, of enterprises or of plants. This procedure helps to secure an acceptable precision of computation in a shorter time and with smaller resources than would be required otherwise.

The choice of computation procedure depends upon the homogeneity of a given organizational unit, i.e. the extent to which each unit can safely be treated as though it were producing only the products and services which belong to one single sector of the table. Experience has shown that only the precise, detailed definition of sectors would ensure comparability between the data from economic statistics and those in the input-output table; the chief reason for this is the fact that the volume and structure of the value of the social product are greatly influenced by particular units of classification involved. It is known that the structure as well as the volume of social gross product (by categories of its primary distribution, depreciation, personal incomes and accumulation and funds) turns out rather differently according to whether the unit of classification involved in computation is product, plant or enterprise.

In fact, the official classification of activities had to be modified, not only where it did not yield an acceptable homogeneity of sectors but also where it was not in accordance with the basic assumptions of the input-

TABLE OF THE YUGOSLAV ECONOMY, 1962

of dinars)

Other	Total	Increase of stocks	Gross investment	Exports	Personal	General	Total	Total (10, 11, 12 and 15)	Distributed resources (9 and 16)
8	9	10	11	12	13	14	15	16	17
9,326	2,397,665	178,952	463,623	552,553	960,817	162,802	1,123,619	2,318,747	4,716,412
	760,834	6,918		72,637	731,979	24,026	756,005	835,560	1,596,394
76	88,759		681	8,835	20,423	1,124	21,547	31,063	119,822
703	186,447		655,773	380	20,125	23,748	23,748	679,901	866,348
859	207,375	3,501	6,733	109,758	150,851	19,147	169,998	289,990	497,365
894	130,783	6,106	39,485	51,571	306,870	16,307	323,177	420,339	551,122
614	68,406	1,204	2,645	51,571	50,684	11,026	61,710	65,559	133,965
277	46,290	264		1,008	10,190	20,651	30,841	32,113	78,403
12,749	3,886,559	196,945	1,168,940	796,742	2,231,814	278,831	2,510,645	4,673,272	8,559,831
2,106	300,200	<u> </u>							
16,090	1,430,961								
37,870	2,045,179								
68,815	7,662,899								
	51,671								
9,588	845,261								
78,403	8,559,831								

														
Buying sector				Crude petroleum	Crude				Alumina	Other	Rolling mills of			
₩> →>	Electricity	Coal	Coke and gas	and natural gas	petroleum products	Iron ore	Ferrous metallurgy	Non-ferrous metal ores	aluminium	non-ferrous metals	non-ferrous metals	Non-metallic minerals	Glass	Refractory material
Selling sector	1	2	3	4	5	6	7	. 8	9	10	11	12	13	14
1		·04298	·00880	·00421	·01126	·02479	·02874	·05449	·10984	·03364	·02003	·02035	·01786	·01213
2	·17572	·00971	·51196	·00089	·00028	·00666	·01168	·00117	·01578	·01559	·00178	·02011	·06325	·03039
3	·00148	·00073	·01436	·00003		·00009	·07220	·00066	·03710	·02514	·00014	·00061	.00080	·00490
4			.	·00963	·40761								·01377	
5	·01693	· 01 079	·01408	·01121	·01307	·01209	· 0 0758	·01471	·00301	·00899	·00593	·01280	-00888	·03949
6							·04602							
7	· 0074 0	·01211	·01298	·01827	·00118	·01121	·47902	·01918	·00612	·00412	·00012	·00755	·00423	·01072
8							·00069	·39538	·04725	·41867				·03206
9	·00059	·00056	·00016		·00012		-00021	·00007	·21662	·00021	·19412	·00118	·00019	·00005
10	·00206	·00095	·00107		·00006	·00140	·01467	·00263	·02355	·13902	·29487	·00099	·00122	·00046
11	·00528	·00519	·00148	·00047	·00025	·00219	·00174	·00140	·00141	·00029		·00264	·00301	·00268
12	·00019	·00007	·00013		·00045	·00018	·00076	·00003	·00345	·00004	·00047	·06143	·03304	·21873
13	·00029	·00016	·00003	·00003	·00002	·00009	·00012	·00013	·00015	·00013	·00033	·00061	·01480	·00030
14	·00060	·00007	·00167	· 0 0199	·00006	·00026	·02099	·00001	·00121	·00730	·00356	·00760	·03125	·05309
15 16	·00175 ·00042	·00004 ·00050	·00003 ·00013	·00028		·00035	·00004 ·00228	·00006 ·00010	·00005 ·06531	·00001 ·00443	·00159	·00005	·00042	·00005
10	·00042	·00030	·00013	·00028		·00033	·00228 ·00445	·00010 ·00220	·000331 ·00044	·00443 ·00153		·00014 ·00080	·00216	·00051
18	·00024	·00129	·00019	·00031		·00009	·00445 ·00006	·00220	·00044		·00071		·01227	·00035
18 19	·00040	·00078	·00009	·00041 ·00158		·00009	·00008	·00013	·00173	·00023 ·00022	·00002	·00094 ·00165	·00014	·00035
20	.00035	·00210	·00003	·00138		-00070	·00023	·00021	·00238	·00022	·00002	·00183	·00019 ·00127	·00025
20	·00861	·01471	·00468	·01197	·01024	·00928	·02593	·02139	·00039	.00289	·00002	·00321	·00127 ·01071	·00005 ·00905
22	00001	01471		01157	01024	00928	02595	02139	00099	00209	-00902	01124	.010/1	.00903
23	·00180	·02637	-00006	·00462	·00418	·01349	.00368	·01265	·00422	·01032	·00408	·00387	·00014	·00501
23	·00117	-00110	.00009	.00595	·00101	01347	·00014	·00015	·00422	·00018	·00162	·00019	·00042	·00025
25	·00017	·00420	·00484		·00001	·00026	·00127	·00517	·00228	·00009	·00002	-00005	·00042	·00015
26	·00051	·00181	.00009		·00001	·00166	.00022	·00268	.00005	·00075	·00048	·00307	.00009	·00152
27	·00108	·00060	·00028	·00009	·00001	·00009	-00030	·00111	·00049	·00033	·00107	·00127	·00019	·000152
28	·00004			_		_								
29	·01597	·00407	·00044	·00215	·00060	·00018	·00039	·00326	·00282	·00049	·00323	·00080	·00094	·00101
30	<u></u>					_								
31	·01004	· 0 0539	·00066	·00063	·00020	·00736	·00098	·00170	·00558	·00065	·00078	·00113	·00066	·00152
32	·00038	·00003		_			·00002	·00006		.00001	·00012	·00009	·00023	
33	·01673	· 0 0488	·00044	·00098	·00031	·00201	·00166	·00206	·00646	·00174	·00092	.00137	·00169	00177
34	·00143	·00098	·00597	·00320	·03038	·00026	·00228	·01380	·03137	·00670	·00118	·00874	·06922	·00197
35	·00008	·00004	_					·00003	_ 	·00001	·00005	·00812		00020
36		+												
37	·00008	·00009	·00003	·00009	·00001		·00007	·00004	·00010	·00004	·00002	·00005	·00009	·00005
38	·00002	·00009			·00036	·00079	·00021	·00011		·00022	·00007	·00774	·00089	· 0 0025
39	·00076	·02502	·00006	·00253	·00033	·01498	00069	·01616	·00107	·00132	·00126	-00751	·00273	·00040
40	·00094	·00089	·00009	·00032	·00025	·00114	·00013	·00028	00151	·00011	·00306	·00548	·01222	·00015
41	·00060	·00031	·00006		·00056	·00123	·00047	·00011	·00185	·00024	·00026	·00576	·01015	·00420
42	·00239	·00806	·00028	·00253		·00359	·00125	·00473	·00083	·00068	·00282	·00623	·00324	·00455
43	·00052	·00136	·00009		·00005	·00114	·00067	·00025	·00019	·00100	· 0 0710	·00165	·00249	·00404
44	·00027	·00007	00000			·00009	·00002		·00005	·00510	<u> </u>	·00033	·00103	
45	·00004	·00004	·00003	00057	00001	·00018		·00004		·00001		·00061	·00005	
46 47	·00010	·00021		·00057	·00001		·00023	· 00 046		·00035	·00009	· 00 009	·00089	·00025
47 19	·00002 ·00012	·00004 ·00015	·00003	.00010	.00021	·00009	00006		00024	·00138	00020		·00014	
48 49			.00003	·00019	·00021		·00006	·00013	·00034	·00009	·00038	· 00 189	· 00 056	·00025
47				_										

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

 $\frac{M}{M} = \frac{M}{M}$

(ннн)-[

CRHEICE

THREE ST

110001

CODE !

100000

.........

.

75 76 77 78 79 80 81 82 83 84 85 83 84 85 86 87 88	·00121 		·00129	·00152 	·00024	·00412	·00087 	·00692	·00044 	·00082 	·00031 	-00567 	·00174	·00228
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88				·00155 ·00013 	·00025 ·00322	·00149 ·00009	·00001 ·00008 ·000063 ·00004 ·00004 ·00022 ·000240	·00044 ·00014 ·00004 ·000587	·00053 	·000507	·00002		·00047 ·00047 ·000291 ·00014	·00177
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	·00191 ·00008 ·00382 ·000802 ·00088 ·00186		·00091 ·00009 	·00013 	·00010 ·00024 	·00149 ·00009 ·000210	·00008 	·00044 ·00014 ·00004 ·00004	-00053 -00078 	·00055 ·00010 ·000507	·00002 		·00047 	·00177
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00191 ·00008 ·00082 ·000802 ·00088 ·00186	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 ·00024 	·00149 ·00009 ·000210	·00008 	·00044 ·00014 ·00004 ·00004	-00053 -00078 	·00055 ·00010 ·000507	·00002 	-00137 -00005 -00005 -00057 	·00047 ·00047 ·00291 ·00014 ·00014	·00192 ·00015 ·000177
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 85 86 87 88	·00191 ·00008 ·00382 ·00382 ·000802 ·00088 ·00186	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 ·00024 	·00149 ·00009 ·000210	·00008 	·00044 ·00014 ·00004 ·00004	-00053 -00078 	·000555 ·00010 	·00002	-00137 -00005 -00005 -00057 	·00047 	·00192 ·00015 ·000177
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 88 85 88 87 88	·00191 ·00008 ·······························	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 ·000210	·00008 	·00044 ·00014 ·00004 ·00004 ············	·00053 ·00078 ·00005 	·00055 ·00010 ·000507	·00002		·00047 	·00192 ·00015 ·000177
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 84 85 86 87 88	·00191 ·00008 ·······························	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 ·00009 ·······················	·00008 	·00044 ·00014 ·00004 ·00004 ············	·00053 ·00078 ·00005 	·00055 ·00010 ·00010 ·00507	·00002 	-00137 -00005 -00057 	·00047 ·00291 ·00014 ·00014 ·	·00192 ·00015 ·00015 ·000177
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 84 85 86 87 88	·00191 ·00008 ·······························	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 ·00009 ·······················	·00008 	·00044 ·00014 ·00004 ···················	·00053 ·00078 ·00005 	·00055 ·00010 	·00116 ·00007 ·00007 ························	-00137 -00005 -00057 	·00047 ·00291 ·00014 	·00192 ·00015 ·00015 ·00177
64 65 66 67 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 84 85 86 87 88	·00191 ·00008 ·······························	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 ······························		·00044 ·00014 ·00004 	·00078	·00055 ·00010 	·00116 ·00007 	-00137 -00005 -00057 	·00291 ·00014 	·00192 ·00015
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00191 ·00008 ·······························	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 	·00063 ·00004 	·00044 ·00014 ·00004 	·00078	·00055 ·00010 	·00116 ·00007 	-00137 -00005 -00057 	·00291 	·00192 ·00015 — — ·00177
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00191 ·00008 ·0008 ·00382 ·00382 ·000802 ·00008 ·00186	-00148 -00021 -00026 	·00091 ·00009 	·00155 ·00013 -	·00010 	·00149 ·00009 	-00063 -00004 	·00044 ·00014 ·00004 ···················	·00078 — — — — — — • 00005 —	·00055 -00010 	·00116 ·00007 	-00137 -00005 -00057 	·00291 	·00192 ·00015
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 88 85 88 87 88	·00008 	·00021 ·00026 	·00009	·00013	·00024	·00009	·00004	·00014 ·00004 		·00010	·00007	-00005 -00057 	·00014	·00015
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 88 85 88 87 88	·00008 	·00021 ·00026 	·00009 	·00013 		·00009	·00004	·00014 ·00004 ·00587	·00005	·00010	·00007	-00005 -00057 	·00014 	·00015
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00382 ·00802 ·00008 ·00186	·00026 ·04841 ·00024 ·01045 ·00059				·00210	·00022	·00004 ·00587 	·00005	·00507	 	·00057 		·00177
71 72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00382 ·00802 ·00008 ·00186	·04841 ·00024 ·01045 ·00059		·00003 ·00687	•00025 •00322	·00210	·00022	·00587	·00005	 -00507	 •00346 	 •00449 		·00177
72 73 74 75 76 77 78 79 80 81 82 83 84 83 84 85 86 87 88	·00382 ·00802 ·00008 ·00186	·04841 ·00024 ·01045 ·00059		·00003 ·00687	•00025 •00322	·00210	·00022	·00587	·00005	-00507	·00346	·00449		·00177
73 74 75 76 77 78 79 80 81 82 83 84 85 86 85 86 87 88	·00382 ·00802 ·00008 ·00186	·04841 ·00024 ·01045 ·00059	·00286 ·00022 ·00138	·00003 ·00687	·00025 ·00322	·00210	·00022 ·00240	·00587 	·00005		·00346	·00449 		·00177
75 76 77 78 79 80 81 82 83 84 85 85 85 86 87 88	·00802 ·00008 ·00186	·00024 ·01045 ·00059	·00286 ·00022 ·00138	·00003 ·00687	·00025 ·00322		·00240						·00047	
76 77 78 79 80 81 82 83 84 85 83 84 85 86 87 88	·00802 ·00008 ·00186	·00024 ·01045 ·00059	·00286 ·00022 ·00138	·00003 ·00687	·00025 ·00322		·00240							
77 78 79 80 81 82 83 84 85 86 85 86 87 88	·00008 ·00186	·01045 ·00059	·00022 ·00138	·00687	·00322			.00000			.00171	.00142	·00080	.00025
78 79 80 81 82 83 84 85 86 85 86 87 88	·00186	·00059	·00138			·()()////2	.00071	·00340	.00038	·00155 ·00012	·00171	·00142	-00080	-00025
79 80 81 82 83 84 85 86 87 88					+1 X K H S Z	.00990	·00071 ·00122	·000340	·00039	·000012	·00019	·00038	·00056	·00030
80 81 82 83 84 85 86 87 88	02110	00011	·11698	·00393	·02601	·00359	·03562	·01023	·04652	·03085	·00781	·01582	·03980	·06588
81 82 83 84 85 86 87 88	·00016	·00015			·00068		·00071	·00004	·00005	.00295	·00016	·00033		·00010
83 84 85 86 87 88	·00025	·00023	·00057		.00359		·00063	·00024						
84 85 86 87 88	·00004													
85 86 87 88	·00227	· 0 0618	-00129	·00041	·00212	· 0 0079	·00465	·00496	·01797	·00226	·00752	·00519	·01212	·00091
86 87 88	·00480	·00175	·00091	·00196	·00051	·00140	·00055	·00101	·00092	·00037	·00126	·00236	·00216	·00142
87 88	·00081	·00037	·00264	·00025	·00093	·00070	·00061	·00010	·00034 ·00049	·00067 ·00134	·00097 ·00093	·00042 ·00264	·00061 ·00150	·00076 ·00106
88	·00028 ·00646	·00235 ·00612	·00104 ·00506	·00180 ·00427	·00007 ·00121	·00219 ·00648	·00018 ·00332	·00309 ·00100	·00049 ·00189	·00134	·00093	·00204	·00743	·00100
	·00040	·00012	·02414	·00019	·00871		.00429	·00044	·00214	·00471	.00539	·00019	·00216	·00217
	·00113	·00052	·00374	.00035	·00131	·00096	·00085	·00014	.00044	·00095	·00138	·00057	·00085	·00101
90		_				—					_			
<i>91</i> ·	·00836	·00832	·00629	· 0 3499	·00480	· 0 0464	· 0 0462	·00768	·02501	·00201	· 0 0308	-00675	· 0 0479	· 0 0298
	·01298	·00271	·00047	· 0 0076	·00023		·00058	·00117	·00165	·00038	·00017	·00066	·00089	·00020
	·00071	·00030	·00013	·00006	·00004	-00079	-00028	·00006	·00024	·00002	·00048	· 0 0038	·00047	·00071
94 05	••								—	_				
95 96 ·	·00052	·00022	·00009	.00003	·00003	·00018	·00006	·00001	·00005	·00001	·00010			·00005
	·00032	·00022	·00066	·00709	·00039	-00333	·00073	·00034	·00024	·00067	·00045	·00127	·00301	·00182
	·00230	·00112	·00009	.00009	.00009	.00009	·04250	·00114	·00170	·00087	·01870	·00194	·01471	·00521
99 ·	·36333	·29794	·75724	·15294	·53824	·16211	•83859	·62853	·70841	•75448	•62480	·27966	·42563	·54409
	·27161	·15010	·04648	·23119	·01409	·10116	·02148	·10139	·03355	·03564	·02605	·07347	·03966	·03317
	10100	·24760	·04916	·05921	·01980	·17542	·03934	·09880	·04865	·05311	·05721	·20619	•17590	·07680
102 ·	·13199	·30435	·14712	·55665	·42786	·56131	·10058	·17128	·20938	·15677	·29193	·44067	·35880	·34594
103 1.	·13199 ·23308			1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

*

_

Buying sector	Porcelain and	Other	G4	Bricks and		Othe r building	Metal	Agricultural	Other machines and	Precision	Railroad	Road	Metal products not elsewhere	
	ceramics	processing of non-metals	Stone, sand and lime	tiles	Cement	material	semi-products	machines	equipment	instruments	vehicles	vehicles	classified	Shipbuilding
Selling sector	15	16	17	18	19	20	21	22	23	24	25	26	27	28
1	·02483	-03735	·01954	·03749	·07863	·01034	·01399	·00855	·00877	·00900	·01298	-00788	·01114	·00586
2	·05519	·01450	·04264	·08859	·11598	·01040	00587	-00255	00268	· 0 0796	·00431	·00289	-00385	-00041
3	·00220	·08674	·02349	·00113	·00513	·00064	·01145	·00430	· 0 0114		·00237	·00043	·00221	·00020
4 5	·01066	·02955	·02064	·01271	·00399	·08801	·01048	·00442	·00594	·01018	·00603	·00783	00593	·00449
6										070(0	16160	·08715	-13892	·13945
7 8	·03061	·00670	·01857	·00963	-03437 -00088	·07068	·24135	·13594	·15628	·07869	·15159	•08/15		_
9	·00537	<u> </u>	·00016	·00004	·00003		·01428	·00174	·00172	·00777	·00208	·00122	·00538	·00193
10	· 0 0554	·00876	·00063	·00095	·00070	·00071	·03547	·00880	·00722	·01480	·00985	·00568	·02136	·00253
11	·01140	·00711	·00078	·00291	·00155	·01663	· 0 0884	·02135	·02263	·03077	·02279	·01034	·04789	·01477
12	·07457	·06307	·00152	·00030	·08231	·00539	· 0 0201	·00038	·00112	·00146	·00004	·00023	·00086	·00020
13	·00033	·02832	·00020	·00043	-00018	·00039	·00043	·00017	·00057	·00999	·00193	·00098	-00121	·00077
14	·02442	·06677	·00422	·00043	-00655	·00116	·00465	·00060	·00145	·00254	·00094	·00026	·00324 ·00054	·00046 ·00033
15	·00993	·00096	·00004	·00061	·00010	·00019	·00054	·00013	·00007	·00028	00033	·00026	·00034 ·00207	·00033
16	·00399	·03927	·00106	·00052	·00031	·00167	·00587	·00128	·00360	·00123	·00213 ·00019	·00210 ·00026	·00207	000241
17	·00757	·00356	·03354	-00616		·03916	·00184	·00064	·00021	·00085	·00019 ·00011	·00028	·00044	·00024
18 10	·00081	·00068	·00129	·00447	·00093	·00225	·00026	·00004 ·00026	·00017 ·00053	·00005	·00011	·00001	·00042	·00035
19 20	·00220	·00274	·00754	·00430	·01057	·10752	·00042 ·00011	·00028 ·00004	·00033	-00003	·00023	·00002	·00031	·00006
20 21	·00016 ·01685	·01601	·00121	·00022	·00005 ·00624	·01117 ·02298	·05416	08282	·12184	·08981	·10478	·09763	·07281	·06178
21 22	.01085	.01001	·01274	·00885	-00024	.02296	-05410	·07758			10470	-		
22	·00407	·00137	·00688	·00382	·00420	·00289	·00806	·05564	·09206	·00160	·02903	·00290	·00754	·23734
23	.00033	·00041	·00035	·00035	·00016	·00045	·00113	·00196	·00317	·02733	·00062	·00062	·00113	·00808
25	00016	000-11	.00102	·00148	·00016		·00182		·00540		·11310	·00052	·00023	_
26	·00277	·00027	-00238	·00152	·00041	·00154	.00068	·00825	·00863	·00005	·00189	·26531	·00840	·00286
27	·00130	·00137	·00063	·00273	-00500	·00193	·00172	.00162	·00141	·01159	·00624	·00092	·03190	·01171
28			·00066	·00022	·00013				·00001					·02950
29		·00246	·00125	·00286	·00207	·00225	·00295	·00468	·03340	·00957	·00921	·00135	·00323	·01868
30	<u> </u>													·00222
31	·00065	·00383	·00145	·00100	·00259	·00193	·00123	·00187	·00541	·00660	·00421	·00205	·00250	-01450
32			·00012		·00003	-00006	·00004	·00017	·00005	·00523	—	·00051	-00324	·00443
33	·00261	·00205	·00266	·00204	·00166	·00205	·00350	·00587	·01181	·02158	· 00 947	·01209	·00722	·02768
34	·01539	·00534	·00082	·00043	·00207	·00783	·00936	• 00 459	·00375	·01169	·00468	·00539	-01065	·00605
35 36	·00033	·01396	•00004			·00257	•00139	·00038	·00035	·00193	·00093	·00165	·00150	·00060
37	·00016	·00014	.00008	·00004	.00008	·00013	·00019	·00034	.00009	·00019	·00015	·00013	·00018	·00004
38	·00008	.00096	·00004	·00004	·00023		·00075	·00094	·00058	·00170	·00005	· 0 0046	·00077	·00021
39	·00431	·00643	·01176	·00074	·00231	· 001 16	·00730	·00736	·00529	·00452	·01090	·00771	·03689	·01399
40	·00195	·00315	·00102	·00165	.00023	· 04 198	·00326	·00051	·00143	·00104	·00100	·00205	·00260	·00110
41	·00668	·00424	·00367	·00035	·08024	·00250	·00394	·00034	·00119	·00198	·00008	·00170	·00656	·00011
42	·00269	-00287	·00422	·00525	·00350	·00931	·00363	·00442	·00337	·00730	·03530	·00326	·01125	·02169
43	·01400	.00547	·00035	·00113	·00093	·00315	·00699	·00162	·00219	·00499	·00037	·00054	·00972	·00241
44		·00041	.00008	·00022	·00036	·00058	·00003	·00004	·00004		·00003	·00001	·00035	·00003
45	· 0 0057	·00068	.00008	·00017	·00008	·00032	·00005	·00009	·00007		·00021	·00004	·00077	·00015
46	·00008	·0 0 124	·00008	·00009	·00005		·00043	·00009	·00043	·00038	·00070	·00182	·00609	·00080
47	·00073	·00123	·00004	·00004	·00225		·00010		·00001		·00036	·00051	·00082	·00009
48	·00057	·00150	·00008	·00043	·00039	·00815	·00021	·00021	·00034	·00009	· 0010 9	·00082	·00137	-00152
49				_			—							

48 49	·00073	-00123	·00004 ·00008	·0004 ·00043	·00225 ·00039	·00815	·00021	·00021	·00034	·00009	·00109	·00082	•00137	·00152	,
5.1															
50 51 52	·00016 ·00016	·00027 ·00027	·00004 ·00012	-00013 -00039	·00186 ·00031	·00006 ·00019	·00011 ·00029	·00004 ·00021	·00016 ·00031	·00033 ·00024	·00030 ·00137	·00055 ·00061	·00067 ·00021	·00072	, I
53		_											-00021	·00039	INPUT-OUTPUT
54															ID
55 56	·00252	·00246	·00492	·00334	·00337	·00180	·00217	·01595	·00462	·00264	·00655	·03604	-00333	· 0 0226	6
57									_						UT
58										_					PU
59						—									
60 61														_	STATISTICS
62															AT
63	·00016					_									TSI
64	• 00 016					·00013				<u> </u>			_		IC
65		_				—								_	
66 67	·00456	·00410	·00145	·00221	·00114	·00308	·00223				00204				AND
68						-00308	-00223	·00944	·00388	·00867	·00324	·00244	·00334	· 0 0108	
69	·00033	·00014	·00012	·00091	·00003	·00019	·00028	00009	·00020	.00009	·00015	.00007	·00017	·00049	ANALYSIS
70			·00051			<u> </u>		_			-				A
71 72			<u> </u>										<u> </u>		LY.
73										_			_		SIS
74	·00602	·00109	·00266	·00469	00026	·02337	·00060	.00085	·00043	·00028	·00073	·00008	·00045	·00209	Z
75							·								
76 77	·00765	· 0 1614	·00281	·00555	· 0 0251	·00507	·00207	·00157	·00142	·00146	·01320	·00164	·00115	·00138	YUGOSLAVIA
78	·00090	·00068	·00149	·00013 ·00143	·00003	.00430	·00005 ·00145	000001	·00002					·00037	မြ
79	·03631	·02764	·01634	·02634	·05815	·00430	·00143	·00021 ·00846	·00118 ·00786	·00137 ·01070	·00034 ·01532	·00071 ·00530	·00200 ·01035	·01064 ·00807	SL
80		·00068	·00027	.00013	·00028	·00122	·00012	·00004	·00022	·00005	·00003	.00007	01055 —	·00153	AV
81			·00008	· 0 0030		·00238	·00021		·00011			·00014	·00008	-00003	IA
82 83	·00676	• 004 79	·01087	· 0 0972			·00004		·00006						
84	·00277	·00315	·00258	·00972	·00155 ·00176	·01650 ·00263	·00609 ·00233	·00328 ·00183	·00360 ·00230	·00165 ·00254	·00230 ·00105	·00452 ·00111	·00435 ·00211	·00247 ·00131	
85	·00073	·00137	·00027	· 0 0048	·00052	·00096	·00104	·00195	·00109	·00132	·00103	·00145	·00211	·00131	
86	·00220	· 0 0096	·00348	·00234	·00155	· 0 0058	·00182	·00179	-00267	00118	·00192	00110	.00233	·00132	
87 88	·00912 ·00236	·01519	·00473	·00777	·00373	·01342	·01363	·02527	·01380	·01456	·01111	·01096	·01597	·00611	
89 89	·00236	·00561 ·00192	·00035	·00030 ·00065	·00306 ·00070	·00212 ·00135	•00286 ∙00146	·00566 ·00281	·00332 ·00154	•00509 •00184	•00416 •00145	·00848	·00523	·01397	
90								-00201	-00154	-00184	-00145	·00203	•00197	·00241	
<i>91</i>	·00969	·01751	·01739	·01623	· 00 448	·00892	·00658	·00664	·00970	·00792	·00509	·00603	·00580	·00440	
<i>92</i>	·00309	.00219	·00106	·00121	·00104	.00122	·00098	·00081	·00114	·00038	·00073	·00054	· 00 034	.00007	
93 94	·00024	·00055	·00059	·00100	·00008	·00122	·00048	·00013	·00081	·00057	·00205	·00016	·00041	·00139	
95			_				_	_			_				
96			·00004	·00009		·00013	·00050	00013	·00084	·00061	·00215	·00017	·00043	·01286	7
<i>97</i>	·00244	·00342	·00133	·00169	·00096	·00289	• 00 195	·00140	·00173	·00146	-00181	·00168	·00140	·00186	Z
98	·00033	· 0 0164	·00082	·00130	00241	·00148	·04536							·00074	PE
99	·44578	·58626	·30385	·29780	·54741	·59456	·58094	·54113	·57964	•44967	·62852	·62344	·53745	·72171	PETROVIĆ
100	·03973	·01792	·06129	·08104	·07977	·02221	·02424	·02590	·02583	·02276	·02112	·02728	·02224	·01594	- Ić
101	·16509	·07908	·27618	·26335	·08607	·10887	·11749	·13501	·12536	·15093	·11996	·09287	·12453	·08108	(`
102	·34940	·31673	·35869	·35780	• 2 8675	·27436	·27733	·29796	·26918	·37664	·23040	·25642	·31578	·18127	1
103	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.0000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	- 99

Buying sector ≫>→	Electrical machinery nd apparatus	Electrical home appliances	Cables and conductors	Radio and telecommunica- tions equipment	Other electrical products	Basic chemicals	Plastic materials and fibres	Pharmaceutical products	Soap and cosmetics	Made-up plastic goods	Othe r chemicals	Paper and cellulose	Paper products	Timbe r and boards
Selling sector	29	30	31	32	33	34	35	36	37	38	39	40	41	42
1	·00877	·01049	·01411	·00464	·00862	.04433	·02473	·00563	·00392	·01129	·00657	·05366	·01838	·01355
2	·00177	·00382	·00042	·00157	·00364	·02023	·00214	.00332	·01088	·00276	-00945	·01010	·00187	·00241
3	·00045	·00038		·00002	·00377	·03349		·00025	·00004	·00045	·00043	·00004	·00009	·00002
4		<u> </u>									02520	·00332	·00171	·00327
5	·00537	·00292	·00977	·00165	·00441	·00909	·00338	·00116	·01393	· 00 288	·02520	.00332	-00171	-00321
6								·00118	·00131	·00570	·00281	·00459	·00202	·00310
7	·09652	·11451	·01524	·04213	·04776	·00747 ·00931	·00287	.00110	-00151	-00570		·00418		
8			021 50		·00667 ·00533	·00931		·00003		.00056	·00210	.00044	-00009	-00014
9	·00309	·00545	·03159 ·20361	·00190	·00333	·00332	·00003	·00050	00004	·00203	.00706	-00105	·00034	·00049
10	·03065 ·06047	·00715 ·07055	•20301	·04076	·05476	·00404	·00394	·00091	·00044	·00502	-00288	·00247	·00112	·00154
11 12	·06047 ·00246	·07033	·00052	-00002	·00214	06921	·00197	·00023	·00440		·00219	·00522	·00003	·00004
12 13	·00246	·00135	00032	·01555	·02519	-00088	·00027	·04434	·01606	·00372	·00514	·00106	·00003	·00062
13 14	·01467	·00448	·00022	·00007	·00115	·00379	·00003	·00008		.00045	·00030	·00027		·00020
15	·01582	·00267	·00072	00130	·01191	00085	·00003	·00008		·00073	·00010	·00006	·00009	-00001
15	·00753	·00733	·00081	·00025	·00412	·00706	·00007	·00020	·00044	·00011	00062	·00039	·00053	·00072
17	-00008	·00003	·00004	·00002	·00010	·02376	·00007	·00008	·00004	·00006	·00034	·00174	·00003	·00024
18	·00004	·00003	·00003		·00013	·00018	·00070	·00010		·00011	·00012	·00003		·00063
19	·00067	·00014	·00007	·00015	·00013	.00033	·00007	·00015		·00006	·00019	.00030	·00016	·00085
20	·00004	·00003	·00004	·00012	·00029	.00012	·00057			·00006	.00006	·00022	·00009	·00002
21	·06662	·07197	·00761	·05823	·05035	·02028	·01898	·01009	·01284	·01495	·03787	·00711	· 00 966	-00819
22							<u> </u>					00000	00050	·00242
23	·01650	·02035	·00007	·00090	·00393	·00300	·00007	·00070	·00013	·00034	·00077	·00206	·00059	·00242 ·00016
24	·00515	·00073	· 0 0016	·00165	·00147	·00297	·00017	·00131	·00004	·00006	·00137	·00028	·00140	-00018
25	·00037	—		·00005		·00020	·00077				·00007	-00013	.00006	·00101
26	·00089	·00035	·00003	·00015	·00006	·00014	·00003	·00030	·00017		·00031	·00028	·00062	·00069
27	·00482	·03840	·00004	· 0 0973	·00514	·00500	·00040	·00375	·00100	· 0 1964	·00143	.00028	-00002	-00009
28							00017	00129	·00017	·00164	·00031	·00135	·00137	·00115
29	·07081	·06895	·00013	·02768	·00907	·00056	·00017	·00128	.00017	-00104	-00051	00155		
30					01/25	· 0 0161	·00070	·00023	·00009	·00068	·00390	·00144	·00019	·00085
31	·04544	·01962	·28240	·09335	·01635 ·00655	·00101	·00070	·00023		-00068	00570			·00001
32	·00151	02545	00107	·12388	·00655 ·02442	·00009	·00307	·00116	·00044	·00135	·00143	·00157	·00100	·00155
33	·01576	·03545	·00197 ·00381	·01368 ·01622	·02442	·20178	·15765	-03730	·13722	·02680	·18992	·02461	·00863	·00313
34 25	·00348	·01549 ·00382	·00381 ·05674	-00489	·02146	·00005	·12179	·00050	.00065	·31938	·03922	.00005	·00383	·00334
35 26	·00140	.00382	-05074	-00403	-02140			·18751	·00287					_
36 37	·00008	·00007	·00003	·00005	·00006	·00023	.00003	·00043	·10049	·00023	· 0 0185	·00003	·00003	·00003
37 38	·00008	·01430	·00003	·01270	·00405	·00151	·00074	·00848	·00788	00649	· 0 0418	·00003	·00031	·00003
30 39	·01060	·01781	·00717	·00612	·00677	·01733	·00117	·00204	·00274	·00434	·04715	·00281	·00850	·01213
39 40	-00783	-00604	-01007	·00155	·01638	·00112	·11594	·00292	·00218	·00660	·02020	·18075	·53082	·00071
40 41	·00783	·01434	·00010	·00914	·01089	-02155	·00772	·03245	·07577	·00801	· 0 0966	·00120	·01561	·00046
42	·00856	·00292	·00320	·00305	·00169	·00226	·00074	·00108	·00087	·00333	·00114	·00142	·00106	·02256
43	·00423	.00698	·02275	·02621	·00431	·00386	·00241	·01824	·01301	·00355	·00812	·00170	00178	·00244
44	·00012	·00149	·00052	 	·00485	·00391	·00087	·00015	·00426	·00017	·01199	·00794	·00209	·00013
45		·00014		·00002	·00003	·00006	·00100	·00003	·00013	<u> </u>	·00013	·00513	·00025	·00010
46	·00037	-00031	-00833	·00055	· 0 0169	·00068	·02243	·00204	·00022	·00700	·00229	·00040	·00305	·00004
47		·00007	·00006	_	·00006	·00021		·00008		·00564		·00066	·00028	·00002
48	·00008	.00038	·01490	.00002	·00029	·00383	·00468	·00040	· 0 0039	·00525	·00300	·00028	·00053	·00038
49				.00007										

5057

-00010 000173 COMPACE.

AMMAL.

47															
30															
51	·00010	.00073	.00004		·00013	.00005	.00003	·00013	.00009	·00023	.00018	·00624	-00072	·00005	
52	·00039	·00007		·00005	·00026	·00021		·00003	—	·00632	·00012	· 0 0110	·00109	·00031	Z
53						<u> </u>	—								INPUT-OUTPUT
54		·00358	·00039	·00145	·01044	-00105	·00064	·00096	·00135	·00085	·00192	·00071	·00072	·00193	1.
55 56	·00488	-00558	-00039	-00143	-01044	-00105	-00004	-00090	-00155						ЦЦ
57			<u> </u>		_										TP
58	_								·00392						LD
59										_	00012				
60 61						·00129		·00641			·00013				TA
62			·00006	_	·00013	·00015	·00154	·00126	-08378	·00034	·02014	<u> </u>			STATISTICS
63					·00211	·00576	_	·00634	·00487		·00226	·00003	·00022		E
64	·00002				·00003	·00008	·00110	·00214	·00013		·00010	·00041	·00243		S
65	_					<u> </u>					_				
66			00245	·00587	·00425	·00264	·00478	·00948	·01523	.00559	·00416	·00124	·00277	·00140	AND
67 68	·01153	·00378	·00245	-00387	-00425	-00204	-00478	-00948	-01525						
69	·00049	·00003	·00004	·00070	·00010	·00020		·00025	·00035	·00023	·00015	·00004	·00009	.00020	ANALYSIS
70								·00043	·00387		·00013	·00021		<u> </u>	AL
71								·00088							X
72								·00978	·07990		·00223				SIS
73 74	·00014	-00028	·00001		·00019	·00265	_	·00003	·00030	.00056	·00174	·12788	·00012	-42591	ĪZ
75	-00014	-00028													
76	·00970	·00108	·00020	·00327	·00118	·00224	·00160	·00312	·00152	·00130	·00143	·00303	·00069	·00353	YUGOSLAVIA
77												·00006	·00009	·00031	GO
78	·00472	·00035	·00007	·00112	·00073	·00061	·00177	·00060	·00087	·00085	·00102	·00074 ·03517	·00009 ·00956	-00073 -03602	Ĩ
79	·00919	·00840	·00519 ·00007	·00517 ·00012	·00849 ·00003	·04162 ·00098	·02988 ·00023	·00558 ·00025	·01706 ·00030	·00711 ·00023	·02396 ·00024	.03317	-00930	·00002	Â
80 81	·00010 ·00010	·00017	-00007	·00012	·00029	·00563	-00023	-00023			·00046	·00004	—	·00054	/IA
82			_ 									<u> </u>			
83	·00348	·00545	·00209	·00157	·00303	· 0 0306	·00381	·00161	·01293	·00497	·00884	·01655	·00495	·04183	
84	·00283	·00219	·00052	·00310	·00233	·00159	·00144	·00244	·00231	·00468	·00192	·00106 ·00066	·00171 ·00040	·00161 ·00038	l l
85	·00205	·00083	·00075 ·00142	·00160 ·00055	·00112 ·00208	·00114 ·00100	·00087 ·00057	·00123 ·00050	·00170 ·00200	·00079 ·00056	·00173 ·00092	·00066	·00040	.00038	
86 87	·00148 ·02117	·00094 ·00854	·00142	·00033	·01488	·00616	.00307	·00030	·00200	·00265	·00731	.00715	·00720	·00613	
88	·00881	·00375	·00493	·00764	.00278	-00801	·00702	.00996	·01184	·00649	·01344	00269	·00006	.00039	
89	.00289	-00118	-00106	·00225	·00153	·00161	·00120	·00174	·00235	·00107	·00244	·00093	·00056	·00053	
90														00(14	
91	-00600	·00434	·00074	·00255	·00536	·00884	·00702	·00445	·00400	·00525 ·00051	·00472 ·00021	·00471 ·00155	·00212 ·00137	·00644 ·00081	
92 93	·00244 ·00041	·00073 ·00045	·00012 ·00004	·00045 ·00015	·00051 ·00035	·00047 ·00017	·00030	·00136 ·00030	·00013 ·00017	·00062	·00021	·000155	·00012	·00028	
93 94	-00041														
95				_										<u> </u>	
96	·00043	·00049	·00004	·00015	·00035	·00011	.00020	·00020	·00009	·00039	·00024	·00010	·00006	·00019	Z
97 97	·00075	·00115	·00033	·00137	·00086	·00100	·00043	·00370	·00148	·00220 ·00085	·00254 ·00942	·00123 ·02524	·00062 ·00053	·00078 ·00347	PE
98	·00114	·00312	·00174	-00007	·00121	·02535	·00007	•00008	·00017	-00083	-00942	-02324		-00347	
99	·61699	·62871	·72578	·57451	·48134	·67045	·57003	·45053	·67713	·52675	·56628	·56977	·65696	·62440	PETROVIĆ
100	·01936	·01962	·01511	·01528	·01475	·07898	·07620	·01124	·01266	·01794	·01787	·04450	·01296	·02314	0
100	·11549	·09711	·02752	-11689	·12056	·06400	·07928	·06464	·06741	·14073	-08356	·05782	·10087	·12613	
102	·24817	·25457	·23159	·29333	·38335	·18656	·27449	·47359	·24280	·31458	·33230	·32790	·22921	·22633	
103	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	101

_

49 _____

-

•00007

TABLE 2: INPUT COEFFICIENT TABLE, Y	YUGOSLAVIA 1962	(continued)
-------------------------------------	-----------------	-------------

Buying sector >>>>> ↓ Selling sector	Final wood products 43	Wood chemicals 44	Hemp and flax fibre 45	Cotton yarn and fabrics 46	Woollen yarn and fabrics 47	Other yarn and fabrics 48	Knitted goods 49	Made-up clothing 50	Other textile products 51	Leather and fur 52	Leather footwear 53	Made-u p leather goods 54	Rubber 55	Grain milling 56
*												·00312	·01415	·07258
1	·01321	·01336	·01232	·02296	·01316	-00848	·00594	·00314	·00661	·00785	.00401 .00120	·00123	·00603	-01000
2	·00092	·00924	·00376	·00752	·00760	·01237	·00630	·00090	·00604	·01130	.00120	·00007	·00020	·00019
3	·00011	·01771	_	·00038	.00002	·00016	·00005	·00027		·00013		<u> </u>		_
4							<u> </u>				.00161	·00073	·02834	·01290
5	·00341	·02481	·00710	·00197	·00143	00340	·00138	-00107	·00277	·00228	.001			
6					—						.00054	·00203	·00625	·00234
7	·00723	·01878	· 0 0188	·00273	· 00 166	·00228	·00102	·00048	·00208	·00086				
8								<u> </u>	00000	00003			·00033	·00005
9	·00063	·00237		·00009	·00005	·00031	·00011	·00001	·00006 ·00013	·00002 ·00019	.00002	·00058	·00046 ·00122	-00028 -00215
10	·00047	·00298	·00031	·00066	·00012	·00036	·00006 ·00041	·00001	·00013	·00019	.00051	·00038 ·00007	·00122	·00213
11	·00085	·00664	·00083	·00097	·00063 ·00033	·00060 ·00016	·00041	-00010	·000120	·00030	.00002	·00007 ·00094	·00028	·00042
12 13	·00005	·00328	·00031	·00025 ·00011	·00033	·00010	·00003	·00001	·00019	·00033	.00002		·00023	
13 14	·00466 ·00013	·00328	·00031	-000011	·00019	·000051	·00003		·00013	·00015			.00002	
14 15	·00013	.00013	-00021	·00005	-00006	·00005	-00005			·00002		.00015	·00007	.00009
15	·00299	·00046	·00010	·00019	·00021	·00010	-00005	-00006	·00025	·00036	.00047	·00007	.00009	.00070
10	·00055	·00076	·00063	-00007	·00010	·00010	·00005	·00003	.00006	·00033	.00002	·00007	·00004	.00033
18	·00042	·00008	·00063	.00004	·00008	·00018	·00003	·00001	·00006	·00006	.00002 .00002		·00013	·00047
19	·00159	·00038	·00021	.00023	·00020	·00018	·00012	·00002	·00013	·00029	.00002		.00002	·00009
20	·00034	·00031	·00010	·00002	·00015	.00042	·00003				.00002	·01334	·00938	·01257
21	·03441	·01427	·00981	·00765	·00417	·00654	·00732	·00136	·00661	·00387	.01.504			
22											.00457	·00058	·00658	·00290
23	·00169	·00122	.00219	·00383	·00370	·00070	·00269	·00088	·00126	·00073	.00006	·00007	·00004	·00019
24	·00027	·00015		·00021	·00021	·00023	·00032	·00026	·00006	·00010				
25	·00007	·00107			·00001						.00006		·00002	·00107
26	·00071	·00115	·00104	·00013	·00072	·00005	·00008	·00001		·00004	.00294	·02755	·00148	·00215
27	· 0 0689	·00008	·00083	· 00 199	·00216	·00125	· 00 188	-00078	·00088	·00088				·00262
28							00042	00047	.00028	·00029	.00009		·00002	.00202
<i>29</i>	·00124	·00046	·00010	·00005	·00011	·00003	·00042	·00047	·00038	.00029		.00015	·00024	·00065
30 31			·00021	.00053	·00060	·00039	·00108	·00011	· 0 0069	·00021	.00022	-00015	100024	-00005
31	·00079 ·00001	·00038	-00021	·00053	·00060 ·00017	·00039	·00003	-00011	-00009	-00021		·00189	·00095	-00280
32 33	·00001	·00183	·00167	·00146	·00128	·00130	·00171	.00078	.00094	.00100	.00082	·00638	.03049	·00056
34	·00281	·05412	·00720	-02815	·02149	·01351	·00806	·00023	·00988	·02838	.00126	·02081	·24622	
35	·00198	·00122	·00021	·02386	·04399	-05271	·06499	·01333	·00321	.00008	.00403			
36											.00024	-00015	·00037	·00009
37	·00008	.00008		·00024	·00099	·00054	·00006	·00003	·00013	·00021	.00024	·00131	·00067	-00005
38	·00181	·00237		·00014	·00066	·00018	·00674	·00403	·00289	·00002	.01323	·00297	·01016	·00122
39	·04258	·01786	·00021	.00938	·00716	-00451	·00269	·00009	-00082	·06231	.00680	·01646	·00145	·00126
40	·00505	·01794	·00031	·00294	· 0 0111	·00150	·00143	·00278	· 00 957	·00036	.01211	·00109	· 00 684	·00566
41	·00248	·00565	·00010	·00618	· 0 0167	·00215	· 00 988	·00433	·00384	·00038	.00112	·00479	·00048	-00145
42	·33034		·00125	·00112	·00095	·00099	·00053	·00016	00088	·00086	.01203	·00638	-00059	·00182
43		·00450	·00021	·00700	·00223	00158	· 00 196	-00078	00214	·00073	.00073	·00015	·00156	·00009
44	·00032	·00084		·00008	·00020	·00016		·00001		·04864	.00021	·00073	•00059	·00042
45	·00332			·00095	·00020	·10310			·00321	·00006	.03059	·04438	·07030	·00014
46	·01057	·00023	·03100	·24492	·01035	·02194	·14585	·24126	·09969	·00033	.00360	·00305	·00332	·00019
47	·00831		·00094	·00284	·31123	·00316	·21192	·23813	·11561	.00023	.00420	·02364	·00260	·01584
48 48	·01120	·00168	· 000 94	·00086	·00157	·20452	·04000	·05369	·06671	·00033	.00122	·00218	·00764	
49				-00008	·00025	·00109	·02127	·05189	· 0 0113					

97 000000000000000000000000000000000000																
33 00002 00002 00002 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 000013 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 00002 000003 000003 000003 000003 000003 000007 000001 000007 000014 000007 000014 000007 000014 000016 000016 000016 000016 000014 000016 000013 00013 00013 00013 00013 00013 00013 00017 00013 00016 000014 00013 00013 00013 00013 00013 00013 00013 00013 00013 00013 00013 00013 <td></td> <td></td> <td></td> <td></td> <td>001.60</td> <td>00028</td> <td>00021</td> <td>.00169</td> <td>.00520</td> <td>.02308</td> <td>.00084</td> <td>.00094</td> <td>.00348</td> <td>.00022</td> <td>00023</td> <td></td>					001.60	00028	00021	.00169	.00520	.02308	.00084	.00094	.00348	.00022	00023	
65		·00296								-02370						
65	52	.00220	·00008	·00042	·00129	.00137	.00088									A A
65	53	_														q
65	54															뉟
65	55	·00357	·00092	.00209	·00068	·00075	·00145	·00359	·00105	·00107	-00069					12
65								_			_					L L
65																P
65										_						19
65													<u> </u>			
65			.00023	_							·00015					I T
65			00023													P,
65											.00285					
65												.00002		·00002		F
65		·00011				00000	00140									IC
000000000000000000000000000000000000		—	·00031			.00009				.00037						
68 00075 00021 00044 00113 00017 00013 00006 00011 000082 1 77 000213 000038 40340 20541 00040 07182 - - 01743 - - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00071 00071 00071 00071 00071 00071 00071 00071 00071 00071 00072 000072 000072 000071 000210 00072 000010 00072 000072 000072 000214 000217 00024 000071 000224 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00016 000074 000016 000074 000016 00	65															
68 00075 00021 00044 00113 00017 00013 00006 00011 000082 1 77 000213 000038 40340 20541 00040 07182 - - 01743 - - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00082 - - 00071 00071 00071 00071 00071 00071 00071 00071 00071 00071 00072 000072 000072 000071 000210 00072 000010 00072 000072 000072 000214 000217 00024 000071 000224 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00073 00016 000074 000016 000074 000016 00	66															Z
669 -00079 -00023 -00010 -00041 -00022 -000113 -000113 -00006 -00021 -000082 -	67	-00228	·00183	·00125	·00151	·00169	·00176	·00393	·00379	.00321						
73 -00004 -00115 -00005 -00018 -00019 -00120 -00010 -00030 -00022 -00004 -00145 Z 75 -00217 -00168 -00165 -000359 -00099 -00223 -00026 -00112 -00247 -00224 -00547 76 -00226 -00252 -00015 -00038 -00028 -00038 -00012 -00247 -00224 -00547 77 +00026 -00230 -00250 -00036 -00028 -00038 -00038 -00038 -00043 -00145 78 +00004 -00036 -00036 -00022 -00038 -00038 -00038 -00038 -00038 -00043 -00043 -00148 - 80 +00017 - - - -000026 -00071 -	68				<u> </u>		-									Ð
73 -00004 -00115 -00005 -00018 -00019 -00120 -00010 -00030 -00022 -00004 -00145 Z 75 -00217 -00168 -00165 -000359 -00099 -00223 -00026 -00112 -00247 -00224 -00547 76 -00226 -00252 -00015 -00038 -00028 -00038 -00012 -00247 -00224 -00547 77 +00026 -00230 -00250 -00036 -00028 -00038 -00038 -00038 -00043 -00145 78 +00004 -00036 -00036 -00022 -00038 -00038 -00038 -00038 -00038 -00043 -00043 -00148 - 80 +00017 - - - -000026 -00071 -		·00079		·00010	·00041	·00022	· 0 0044	·00113	·00017		·00006					Į Z
73 -00004 -00115 -00005 -00018 -00019 -00120 -00010 -00030 -00022 -00004 -00145 Z 75 -00217 -00168 -00165 -000359 -00099 -00223 -00026 -00112 -00247 -00224 -00547 76 -00226 -00252 -00015 -00038 -00028 -00038 -00012 -00247 -00224 -00547 77 +00026 -00230 -00250 -00036 -00028 -00038 -00038 -00038 -00043 -00145 78 +00004 -00036 -00036 -00022 -00038 -00038 -00038 -00038 -00038 -00043 -00043 -00148 - 80 +00017 - - - -000026 -00071 -				·40340	·20541	-00440	·07182			·01743						F
73 -00004 -00115 -00005 -00018 -00019 -00120 -00010 -00030 -00022 -00004 -00145 Z 75 -00217 -00168 -00165 -000359 -00099 -00223 -00026 -00112 -00247 -00224 -00547 76 -00226 -00252 -00015 -00038 -00028 -00038 -00012 -00247 -00224 -00547 77 +00026 -00230 -00250 -00036 -00028 -00038 -00038 -00038 -00043 -00145 78 +00004 -00036 -00036 -00022 -00038 -00038 -00038 -00038 -00038 -00043 -00043 -00148 - 80 +00017 - - - -000026 -00071 -										<u> </u>						K
73 -00004 -00115 -00005 -00018 -00019 -00120 -00010 -00030 -00022 -00004 -00145 Z 75 -00217 -00168 -00165 -000359 -00099 -00223 -00026 -00112 -00247 -00224 -00547 76 -00226 -00252 -00015 -00038 -00028 -00038 -00012 -00247 -00224 -00547 77 +00026 -00230 -00250 -00036 -00028 -00038 -00038 -00038 -00043 -00145 78 +00004 -00036 -00036 -00022 -00038 -00038 -00038 -00038 -00038 -00043 -00043 -00148 - 80 +00017 - - - -000026 -00071 -					-00013	·18464	.00952			·02914	·49679	·00071	·02045	·00278		H.
25 -00025 -00189 -00025 -00189 -00254 -0012 -00247 -00224 -002547 77 -00026 -00025 -00039 -00037 -00025 -00189 -000354 -00112 -00247 -00224 -00254 78 -00090 -00008 -00039 -00037 -00025 -00038 -00046 -00066 -00449 79 -0136 -03336 -00220 -00017 -00016 -00038 -00038 -00048 - - -00048 80 -00017 -00055 -00189 -00189 -00137 -00239 -00779 -00334 -0028 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
25 -00025 -00189 -00025 -00189 -00254 -0012 -00247 -00224 -002547 77 -00026 -00025 -00039 -00037 -00025 -00189 -000354 -00112 -00247 -00224 -00254 78 -00090 -00008 -00039 -00037 -00025 -00038 -00046 -00066 -00449 79 -0136 -03336 -00220 -00017 -00016 -00038 -00038 -00048 - - -00048 80 -00017 -00055 -00189 -00189 -00137 -00239 -00779 -00334 -0028 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>.00008</td><td>+00018</td><td>.00026</td><td>00019</td><td>·00120</td><td>·00010</td><td>·00030</td><td>·00022</td><td>.00004</td><td>·00145</td><td></td></t<>						.00008	+00018	.00026	00019	·00120	·00010	·00030	·00022	.00004	·00145	
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td></td><td></td><td></td><td></td><td>00005</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					00005											
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td></td><td></td><td></td><td></td><td>.00250</td><td></td><td>.00283</td><td>.00200</td><td>.00025</td><td>-00189</td><td>.00354</td><td>.00112</td><td>·00247</td><td>·00224</td><td>·00547</td><td>ld.</td></td<>					.00250		.00283	.00200	.00025	-00189	.00354	.00112	·00247	·00224	·00547	ld.
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-00285</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Q</td></td<>							-00285									Q
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>00057</td><td></td><td></td><td></td><td>.00046</td><td></td><td></td><td></td><td>·00168</td><td>00</td></td<>							00057				.00046				·00168	00
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-00030</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1Ë</td></td<>								-00030								1Ë
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td>79</td><td></td><td>·03336</td><td>·00230</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	79		·03336	·00230												
01 00005 00005 00006 00006 00006 000078 000334 00283 00569 00065 83 00758 02489 00533 00136 00009 000135 000223 001779 00334 00283 000569 000472 84 00259 00176 00036 000136 00157 00006 00016 000128 00028 00028 00028 00028 00028 00028 00028 00028 00024 001128 00016 000138 000124 00139 00018 00016 00014 000126 00034 00028 00028 00028 00028 00029 00034 00103 00107 00230 00187 00029 00345 01126 00124 00131 00029 00243 01261 01261 01261 01261 01261 01261 01261 01261 01261 00159 00224 00159 00224 00159 00262 00150 00029 00220 00150 00029 00220 00150 00020 00150 00029 <td< td=""><td>80</td><td></td><td></td><td></td><td>·00002</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>11</td></td<>	80				·00002											11
00035 000758 00196 00267 000469 00189 00159 00239 00779 00334 00283 000569 00065 84 00259 00176 00136 00098 00090 00135 00223 00187 00214 00214 00268 00123 000472 85 00080 00076 000374 00146 00051 00077 00093 00086 00026 00026 00023 000138 00050 00243 00138 00050 00243 00196 00034 00138 00050 00243 00192 00210 000367 000290 00344 00138 00050 00243 00192 00216 00177 00283 00175 001718 01113 000367 000290 00343 00138 00039 000290 00245 00167 00285 01141 00067 00285 01183 00037 00290 00343 00132 00192 00221 00175 00285 01413 00037 000290 00242 000365 00029 00122 00202	81	·00004	·00008											-00040		
83 -00758 -00249 -00136 -00207 -00137 -00214 -00214 -00268 -00128 -00472 85 -000259 -00136 -00136 -00136 -00137 -00096 -000245 -000245 -00022 -00143 -00017 85 -00080 -00076 -00245 -00028 -00024 -00135 -00026 -00243 -00126 -00245 -00024 -00126 -00245 -00026 -00026 -00243 -00126 -00245 -00126 -00245 -00126 -00244 -00135 -00026 -00243 -00127 -00268 -00123 -00127 -00268 -00124 -00135 -00268 -00123 -00135 -00277 -00875 -01118 -01913 -000367 -00290 -00345 -01261	82	·00005												005(0		
84 -00259 -00176 -00136 -00098 -00096 -00135 -00223 -00187 -00214 -00138 -00214 -00138 -00214 -00128 -00128 -00122 -00128	83	·00758	·02489	·00553	·00196	·00267	·00469								00472	
85 -00080 -00076 -00230 -00136 -00157 -00096 -00076 -00126 -00024 -00028 -00022 -00143 -00021 -00024 -00024 -00024 -00126 -00024 -00024 -00024 -00126 -00024 -00024 -00024 -00126 -00024 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00026 -00027 -00345 -01126 -01126 -00290 -00345 -01126 -01126 -00290 -00345 -01126 -0126 -00066 -00027 -00036 -00027 -00034 -000157 -00287 -00164 -00037 -00170 -00170 -00134 -000157 -00028 -001122 -00026 -000150 -000152 -000150 -00122 -00026 -000152 -000152 -000152 -000122 -00026 -000122 -00026 -000122 -00016 -00029 -00122 -00026 -000126 -0001			·00176	·00136	·00098	·00090	-00135									
86 -00116 -00374 -00146 -00051 -00077 -00093 -00086 -00026 -00063 -00034 -00138 -000290 -00345 -01926 87 -01291 -00702 -02277 -00546 -00660 -00275 -00275 -00289 -01118 -01138 -00083 -00029 -00345 -01926 88 -00083 -00391 -00290 -00324 -00192 -00211 -00135 -00123 -00170 -00343 -00039 -00029 -00202 -00150 90 -00114 -00099 -00324 -00192 -00221 -00113 -00170 -00343 -00039 -00029 -00202 -00110 90 -00074 -00031 -00084 -00371 -00044 -00184 -00018 -00050 -00042 -00056 -00029 -00122 -00206 91 -00074 -00031 -00020 -0014 -00018 -00050 -00042 -00036 -00034 -00036 -00022 -00020 -00122 -00206 -00022 -000030<					·00136	·00157	·00096	·00087	·00076							
87 -01291 -00702 -02797 -00287 -00546 -00690 -00277 -00875 -01718 -01913 -000367 -00290 -00345 -01926 88 -00083 -00331 -00793 -01225 -01288 -00735 -00275 -00289 -01413 -00084 -00065 -01261 - 89 -00114 -00999 -00324 -00129 -00221 -00135 -00170 -00343 -00084 -00065 -01261 - 90 -0				·00146	-00051		·00093	·00086	·00026	·00063						
88 -00083 -00351 -00793 -01225 -01288 -00735 -00275 -00289 -01413 -00084 -00065 -01261 -00261 89 -00114 -00099 -00324 -00192 -00221 -00135 -00123 -00170 -00343 -00039 -00029 -00220 -00150 90							·00690	·00277	·00875	·01718	·01913	·00367				
89 .00114 .00099 .00324 .00192 .00221 .00135 .00123 .00107 .00170 .00343 .00039 .00029 .00202 .00150 90 .00506 .00557 .00981 .00804 .00387 .00464 .00313 .00179 .00365 .00490 .00184 .00152 .00412 .00202 .00205 92 .00074 .00031 .00083 .00032 .00048 .00021 .00018 .00050 .00042 .00034 .00036 .00029 .00122 .00206 93 .00047 .00015 .000015 .00014 .00018 .00053 .00027 .00038 .00034 .00036 .00022 .00008 .00022 .00009 .00022 .00009 .00022 .00015 .00015 .00022 .00009 .00022 .00015 .00015 .00015 .00022 .00009 .00022 .00010 .00008 .00024 .00015 .00015 .00015 .00012 .00015 .00012 .00050 .00313 .00017 .00144 .00082 .00102									·00275	·00289	·01413	·00084	·00065	·01261		
90 -00114 -00031 -00121 -00114 -00114 -00119 -00164 -00119 -00164 -00152 -00412 -02085 91 -00506 -00031 -00083 -00032 -00014 -00014 -00018 -00050 -00042 -00056 -00029 -001122 -00206 92 -00074 -00015 -00031 -00020 -00014 -00018 -00018 -00036 -00034 -00036 -00036 -00034 -00036 -000122 -00206 94 -										·00170	·00343	·00039	·00029	·00202	·00150	
90 -0056 .00557 .00981 .00804 .00387 .00464 .00313 .00179 .00365 .00490 .00184 .00152 .00412 .02085 92 .00074 .00031 .00083 .00032 .00048 .00014 .00018 .00050 .00042 .00056 .00029 .00122 .00206 93 .00047 .00015 .00031 .00020 .00014 .00053 .00027 .00038 .00048 .00036 .00048 .00036 .00048 .00036 .00048 .00036 .00048 .00089 .00015 .00048 .00036 .00048 .00036 .00048 .00036 .00015 .00022 .00009 .00009 .00007 .00008 .00026 .00013 .00019 .00023 .00015 .00015 .00015 .00015 .00012 .000090 .00070 .00083 .00188 .00047 .00151 .00144 .00082 .00102 .00013 .00070 .00015 .00012 .00050 .00313 .00070 .00143 .00015 .00015 .00022 .00113 <td></td>																
97 -00074 -00031 -00031 -00032 -00032 -00014 -00011 -00011 -00012 -00029 -00122 -00206 93 -00047 -00015 -00031 -00020 -00014 -00018 -00018 -00030 -00034 -00036 -00029 -00122 -00206 94 -									.00179		·00490	·00184	·00152	·00412	·02085	
92 .00074 .00033 .00033 .00033 .00033 .00033 .00033 .00034 .00036 .00036 .00048 .00036 .00048 .00036 .00036 .00048 .00036 .00015 .00036 .00036 .00036 .00016 .00036 .00036 .00015 .00015 .00015 .00016 .000313 .00016 .00016 .000313 .00017 .00144 .00082 .00102 .00050 .00313 .00070 97 .00104 .00046 .00240 .00348 .01550 .00039 .00063 .00227 .07086 .00048 .00015																
94																
93 -00030 -00008 -00010 -00009 -00007 -00008 -00026 -00013 -00019 -00023 -00015 -00015 -00022 -00009 -00009 -00009 -00019 -00015 -00015 -00015 -00015 -00015 -00015 -00012 -000102 -000102 -000102 -000102 -000102 -000113 -000113 -000113 -00012 -000102 -000102 -000102 -000113 -000113 -000113 -000113 -00012 -000102 -000102 -000113 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -000113 -000113 -000113 -00012 -000113 -000113 -000113 -00012 -000113 -000113 -00012 -000113 -000113 -000113 -00012 -000113 -000113 -000113 -000113 -000113 -00012 -00013 -00113 -000113 -00013 -00113																
93 -00030 -00008 -00010 -00009 -00007 -00008 -00026 -00013 -00019 -00023 -00015 -00015 -00022 -00009 -00009 -00009 -00019 -00015 -00015 -00015 -00015 -00015 -00015 -00012 -000102 -000102 -000102 -000102 -000102 -000113 -000113 -000113 -00012 -000102 -000102 -000102 -000113 -000113 -000113 -000113 -00012 -000102 -000102 -000113 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -000113 -00012 -00012 -000113 -000113 -000113 -000113 -000113 -00012 -000113 -000113 -000113 -000113 -00012 -000113 -000113 -00012 -000113 -000113 -000113 -00012 -000113 -000113 -000113 -000113 -000113 -00012 -000113 -000113 -000113 -000113 -00113 <td></td> <td>_</td> <td></td>															_	
96 00030 00030 00061 00061 00061 00061 00061 00010 000051 00010 00011 000083 00018 00017 00151 00144 00082 00102 00050 000313 00070 97 00100 00046 00240 00348 01550 000039 00063 00027 07086 00048 00015 00012 00050 00313 00070 99 60069 52908 56654 64246 69016 57693 58815 66148 54342 74868 667565 66522 52076 23789 100 01525 03092 01837 02646 01638 02117 01597 00555 01617 01473 01263 00587 01441 065533 101 16405 10069 15176 08118 07151 10007 11419 09542 14481 06794 11440 11333 07145 21630 102 22001 33931 26333 24990 22195 30184 28169 23754 <															•00009	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.00212	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	·00100														PH
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	98	·00155	·00046	·00240	·00348	·01550	·00039	·00063	·00227	·0/086	.00048	.00012	.00022	.00113	-00070	H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					·····			·····						52076	22700	- R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99	·60069	·52908	·56654	·64246	·69016	·57693	·58815	·66148	·54342	·74868	·67565	·66522	·52076	·23789	VO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						·····										- 17
101 .16405 .10069 .15176 .08118 .07151 .10007 .11419 .09542 .14481 .06794 .11440 .11333 .07145 .21630 102 .22001 .33931 .26333 .24990 .22195 .30184 .28169 .23754 .29559 .16865 .19732 .21558 .39338 .48028	100	.01525	·03092	·01837	·02646	·01638	·02117	·01597	·00555	·01617			·00587			
$\frac{101}{102} \cdot 22001 \cdot 33931 \cdot 26333 \cdot 24990 \cdot 22195 \cdot 30184 \cdot 28169 \cdot 23754 \cdot 29559 \cdot 16865 \cdot 19732 \cdot 21558 \cdot 39338 \cdot 48028$								·11419	·09542	·14481						
				-26333		·22195						·19732	·21558	·39338	·48028	
103 1·000000 1·00000000	102	22001		20000						<u> </u>					<u> </u>	-
	102	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	10
	105	1.00000	1.00000	100000	1 00000	1 00000	1 00000									. 'ũ

Buying sector ₩→	Bread and pastry	Livestock slaughter and meat processing	Fruit and vegetable processing	Suga r	Sweets and cocoa products	Vegetable oils and fats	Alcohol and beverage	Other foodstuffs	Fermented tobacco	Tobacco manufacture	Printing and publishing	Motion picture production	Miscellaneous manufacturing	Farming
Selling sector	57	58	59	60	61	62	63	64	65	66	67	68	69	70
1	·01185	·00663	·00802	· 0 1918	·00776	·00783	·01270	·02089	·00129	·00112	·00646	·00538	·00732	·00065
2	·02069	·00681	·01299	·02588	·00598	·00710	·01287	·00904	·00142	·00059	·00196	·00316	·00300	·00021
3	·00111	·00024	·00004	·00364	·00196	·00135	·00005	<u> </u>		·00001	·00020		·00039	·00004
4 5														
6	·00774	· 0 0601	· 0 0934	· 00 468	·00201	·00725	·00714	·01219	·00111	·00070	·00258	·00479	·00388	·01271
7	·00079	·00038	·00092	-01231	·00082	·00492	·00344	·00426	·00015	·00248	·00061	·00140	·01587	·00076
8		00038	-00092	-01251	-00082	-00492	-00344	-00420	-00015	*00248	.00001	-00140	.01387	.000/0
ğ		00002	·00016	·00005	·00123	·00037	·00031	·00071		·00005	·00104		·00300	·00001
10	·00006	·00028	·00020	·00168	·00096	·00070	·00192	·00095		·00004	·00259	·00012	·02103	·00007
\vec{n}	·00076	·00120	·00108	·00433	·00164	·00275	·00447	·00192	·00026	·00037	-00096	·00175	·00721	·00026
12	·00306	·00214	·00229	·00005	·00005	.00089	·00022	·00179			·00007		·00017	
13	·00032	·00030	·04763	·00018	.00009	·00541	·02312	·00512	·00004	·00003	.00007	·00070	·00777	_
14	·00013	·00002	·00008	·00090	·00005	·00055	·00089	·00053	<u> </u>	·00001	·00001		·00011	
15	·00006	·00005	·00012	·00138	·00005	·00015	·00002	·00013	·00002	·00001	·00004	<u> </u>	·00006	
16	·00003	·00002	.00008	·00035	.00005	·00125	-00022	·00016	·00002	·00009	·00043	·00023	·02924	
17	·00035	·00013	·00012	·00396	·00214	·00119	·00029	·00213	·00011	·00001	·00005	00070	·00017	·00023
18	·00022	·00013	·00012	·00016	·00005	·00055	·00012	·00079	·00007	·00001	·00003		·00011	·00016
19	·00022	·00017	·00032	·00032	·00014	· 0 0076	·00034	·00494	·00009	·00001	·00003	·00152	·00011	·00026
20	·00003	·00010	·00377	·00014		·00034	-00055	·00024	.00002		·00003	·00012		·00008
21 22	·00265	·04570	·08087	· 00 791	·00374	·01395	·00897	·01934	·00227	·00120	· 00 496	· 0 0585	·01348	·00349
22	·00073	·00069	·00020	·00191	·00041	·00110	-00065	·00173	.00013	·00029	·00096		·00089	• 0 0179
23 24	·00016	·00033	·00020	·00191	·00041	·000110	·00017	·000173	-00015	·00029	·00096 ·00016	·00023	·00089	
25	00010	00055	00000	·00018		·00006	00017	00008		-00001	-00010	-0002.5	-00028	
26	·00038	·00114	.00044	·00097	·00018	·00058	·00149	·00134	·00039	·00005	·00008	_	·00039	·00185
27	·00098	·00128	·00682	·00069	·00027	·00098	.00308	·00095	·00059	·00018	·00047	·00164	·01559	·00034
28		·00029				·00003			.00009					
29	·00120	·00060	·00036	·00023	·00009	·00064	·00038	·00047	·00013	·00005	·00077	·00035	·00178	·00008
30			_											
31	·00022	·00029	.00028	·00037	·00068	·00064	·00029	·00032	·00009	·00020	·00011	·00292	·00078	·00007
32	·00003	·00002								·00001	·00016	·00023		·
33	·00111	·00069	·00076	·00145	·00119	·00263	·00123	·00121	·00017	·00032	·00093	·00444	·00305	·00033
34				· 0 0468					·00825	·00030		·00538	·01581	·03370
35	·00038	·00128	·00088	·00002	·00059	·00070	·00096	-00055	· 0 0408	·00045	·00273		·03828	
36														
37	·00025	·00037	·00024	·00002	·00046	·00040	·00041	·00087	·00002	·00001	·00019	·00012	·00022	
38	·00474	·00081	·00188	·00005	·00187	·01064	·00192	·00092	·00024	·00003	·00350		·00444	
39 10	·00199	·00277	·00746	·00085	·00283	·01162	·01770	·01608	·00055	·00020	·02978	·08408	· 01598	·00805
40 41	·00300	·00450	·00417	·00369	·00908	·00128	-00378	·00552	·00041	·02094	·25771	·00503	·02641	·00017
41 42	·02136 ·00057	·00300 ·00111	·02598 ·00096	·00975 ·00281	·08943 ·00068	·00434 ·00052	·00861 ·00178	·01729 ·00100	·00100	·05301	·00597	·00187	·00977	·00011
42 43	·00037	·00800	·00096 ·02678	·00281 ·00551	·00068 ·00639	·00052 ·00156	·00178 ·01626	·00100 ·00518	·00068 ·00087	·00100	·00029	·02093	·03018	·00029
43 44	·00322	·00800	·02678 ·00052	·00551 ·00005	·00639 ·00009	·00156	·01626 ·00036	·00518 ·00003	·00087 ·00026	·00143	·00041 ·00013	·00047 ·00035	·00655	·00053
45 45	·00003	·00002	·00032 ·00008	·00003	·00009	·00003	·00038	·00003	·00026 ·00037	-00008	·00013	·00035 ·00094	·00028 ·00055	
46	·00016	·00008	·00028	·00120	.00003	·00003	·00010	·00013	-000037	·00011	·00038	·00094 ·00094	·00055 ·02142	·00004
47	·00006	.00003	·00028		-00009	·00024	·000012	-00139	-00007		·00301 ·00001	-00094	·02142 ·00383	·00004 ·00003
	·00085	·00095	+00088	·00180	·00064	·00229	·00002	·00302	·00668	.00037	·00225	·00327		·00003
48	388000			10000	*1 K B K\4		-18819		411066×	•188147	4101775		·02181	

 \mathbf{u}

00 '81

50												·00281		-	
51	·00006	·00003		·00002	·00005						·00015	_	·00216		
52		·00009	·00012	·00007	·00009	·00009	.00007	·00045			·00221	·00012	·01393	.00002	1
53					-							·00023			
54												·00117		<u> </u>	
55	·00161	·00190	·00172	·00214	·00050	·00086	·00274	·00405	·00031	00028	·00064	·00187	.00499	·00229	
56	·02932							00405						-00229	
57		·00066	.00008		·00032			·00024							
58	·03554	·02226													
59			·00473		·00671			-02657							
	·00019		·01844		·00666		·00647	·00197			—				
60	·04230		·0 6889		·18565	·00061	·06805	·02728				<u> </u>			
61			—				·			—					
62	· 0 2979	·01120	·00349	·00025	·01711	·18750	.00024	·10622							
63	·00013		·00333	·00002	·00675		·07719	·00247			·00005				
64	·02720		·02201	·00360	·09125	·00012	·00690	·01267		·00048	·00019				
65										·26692					
66	_												_	—	
67	·00164	·00286	·00277	·00207	·00757	.00100	.00225	.00592	001(4		01 174	00.401	00505		
68						·00190	·00325	·00583	·00164	·00172	·01476	·00421	·00527	·00058	
	.00152	00052		000.00						—		·22044			,
69 70	·00152	·00053	·00128	·00065	·00023	-00009	·00043	·00158	·00017	·00003	·00065	·00234	·00255		
70	·12824	·00576	·11592	·35106	·02838	·43081	·09451	·12635	·31480	·		·00187	·01509	·09709	
71	·00199	·00426	·19916	<u> </u>	·10289	·00021	·03954	·01267							
72	·01238	·48521	·01127		·00256	·00214	·00046	·20702				·00152	·04555		
73		·03801						•							
74	·00739	·00140	·00108	·00018	·00050	·00049	·00077	·00074	·00033	·00003	·00041	·00538	·01115	·00035	
75							00017								
76	·00164	·00196	·00221	·00095	·00356	·00125	·00305	·00160	·00070	.00015		00059	00100		
77				00095						·00015	·00122	·00058	·00166	·00040	
78	·00152		00048	00010	000.41									·00018	
		·00059	·00048	·00018	·00041	·00040	·00087	·00068	·00017	-00001	·00080	·00070	·00139	·00016	
79	·00809	·01166	· 0 0998	·02056	·00379	·01266	• 0 0998	·01424	·00111	·00127	·00950	·00936	·00749	·00680	1
80	·00025	·00045	·00008			·00073	·00010	·00003			·00019		·00006	·00003	1
81	_	·00006		·00219	·00005	·00018			·00002		·00001	·00023	·00011	·00022	
82		·00007									.00009			·00023	!
83	·00101	·01022	·01051	·01669	·00210	·00471	·00423	·00426	·00070	·00244	·00581	·01275	·00455	·00126	- 1
84	-00288	·00306	·00261	·00101	·00192	·00113	·00229	.00237	·00059	·00042	·01745	·00819	00399	·00058	1
85	·00133	·00451	·00152	·00258	·00137	-00303	·00067	·00068	·00011	·00051		·000819			
86	·00155	·00138	·00172	·00111	·00055	·00132	·00154				·00076		·00100	·00044	
87	·02401	·04915	·02735	·04269				·00263	·00026	·00015	·00061	·00117	·00166	·00513	
88	.00003				·01455	·02529	·01099	·01188	·00179	· 0 0495	·01045	·00713	·01470	·00506	
		·00302		·00205	·00552	·01642	·00060	·00029	-00017	·00250	· 00 184	·00433	·00189	· 00 164	1
89 00	·00190	·00632	·00217	·00364	·00187	·00428	·00094	·00095	·00015	·00073	·00106	·00117	· 0013 9	·00063	
90			—							<u> </u>					
91	·00787	·00401	·00834	·00440	·00443	·00232	·00758	·00544	·00133	·00223	·00537	·00339	·00527	·00942	
92	·00079	·00038	·00040	·00007	·00014	·00018	·00024	·00039	·00007	·00004	·00088	·00047	·00050	·00008	1
93	·00076	·00059	·00080	·00007	·00032	·00083	·00043	·00047	·00044	.00009	·00089	·00187	·00061	·00019	
94															
95					_										
96	·00009	·00007	·00012		·00005	·00009	-00005		.00004			.00012	00000	00016	
97	·00272	·00265	·0012					·00005	·00004	·00001	·00008	·00012	·00006	·00015	
98	·00272			·00214	·00119	·00138	·00503	-00399	·00074	·00044	·00189	-00105	·00244	·00015	
20	00044	·00031	·00064	·00023	·00639	·00064	·00029	·00239	—	·00003	· 0 0269	· 0 0316	·00571		
	4/771						·								- [
99 	·46771	·77391	·77245	·58411	·64927	·79960	·48666	·73162	·35762	·37121	·41273	·45737	·48638	·20269	-
100	·02022	·01749	·02101	-05281	·01565	·01009	·03505	·02249	·00891	·00532	·02612	·02503	·01393		-
101	·24207	·08916	.09379	·06096	·09791	·03914	·09109	·08956	05668	·02116	·20322	·28301	·17417	•••	
102	·27000	·11944	·11275	·30213	·23717	·15117	·38720	·15633						•••	
		**/77	\$1217	50415	23/17	13117	-36/20	-12022	·57680	·60231	·35792	·23459	32553	•••	
103	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	

	ruit-growing and viticulture	Livestock raising	Fishin g	Forestry	Geological survey	Building	Civil and hydraulic engineering	Building arts and crafts	Railway transport	Sea-borne transport	River and lake transport	Air transport	Road transport	Com- munications
Selling sector	71	72	73	74	75	76	77	78	79	80	81	82	83	84
1	·00054	·00109	·00291	· 000 46	·00283	· 0 0192	·00684	·00254	·00268	•00007	·00341	·00325	·00693	·00391
2	·00022	·00014	·00018	·00037	·00167	·00113	·00182	·00078	·08844	·00681	·00845		·00043	·00338
3	.00002	·00006	·00018	·00006	·00005	·00009	· 000 68	·00027	·00012		·00007		· 00 004	·00029
4									00(5(11774	·10823	·14794	·10336	·00386
5	·00237	-00226	·04261	· 00 715	·00147	·00561	· 0 2577	·00522	·02656	·11774	.10825	-14/94	-10330	-00380
6 7	·00038	.00012	·00564	·00187	·00025	·03433	·06779	·02689	·00376	·00185	·00307		·00419	·00265
8											000.41		00067	·00002
9	·00001		·00018	.00002					·00027	·00001	·00041		·00057 ·00075	·00002 ·00044
10	·00001		·00091	·00017	·00020	·00036	·00208	·00415	·00096	·00026	·00164 ·00361		·00181	·00280
11	·00020	·00010	·00473	·00053	·00020	·00234	·00636	·01993	·00203	· 0 0364	.00301		·00181	-00280
12		·00274		·00001	00005	·00109	·00131	·00858	·00003 ·00026	·00101	·00014	-00018	·00034	·00004
13	·00022			·00010	·00005	·00109	·00062	·00305	·00023	·00022			-00002	
14				·00003 ·00009	·00005	-00133	·00161	·03216	·000023	·00032			·00001	·00044
15				·00009 ·00008	·00003	·00024	·00024	·00200	·00013	00029		to comme	·00018	.00006
16		·00044	·00328	·00008	·00013	·01870	·03307	·00655	·00054	.00019			·00069	·00002
17	·00006	·00044 ·00037	·00328 ·00036	·00073	·00015	·04107	·00550	·00529	00008		-00007		·00005	·00008
18	·00003 ·00005	·00037	·00038	·00072	+00015	·04311	·02907	·01093	.00009	·00065	·00007		·00033	·00004
19 20	·00003	·00021	00075	-00008	·00005	·01471	·01714	·00799	·00010					·00006
20	·00086	·00007	·01111	·00467	·00334	.00389	·01184	·05388	00588	·00223	·00307	·00018	·01497	·00355
21 22	·00080	·00084	·00382	·00043										_
22 23	-00001	-00084	00502	·00128	-00132	·00257	·02204	·00727	·00064	·00657	·02004	·06521		·00040
23 24				·00014	·00081	.00014	·00189	·00059	·00005	·00043	·00007		·00043	·00054
24 25				·00122		·00006	·00077	·00004	·14012				·00985	·00420
25	·00040	00032	.00291	·00188	·00010	·00138	·00471	·00038	·00001	·00001	·00007		·05625	·00157
20	·00011	·00018	·00200	·00108	-00035	·00110	·00331	·01160	·00049	·00048	·00279	·13945	· 0 0074	-00023
28			·03733	·00006	·00010	·00001	·00052	·00002		·06295	·19471		·00029	
29	·00003	·00003	·00291	·00036	·00035	·00064	·00757	·01704	·00065	·00156	·00034		·00060	-00278
30						·00017		·00376						
31	·00003	·00008	·00255	·00010	·00005	·00204	·01190	·04658	·00046	·00204	·00116		·00096	-00800
32				·00001		·00003	·00015	· 0 0123	·00003		·00007		·00001	·00537
33	·00017	·00021	·00401	·00045	·00020	·00256	·00995	·03744	·00078	·00134	·00082	·00036	·00432	·00278
34	·00820			·00137	·00025	·00050	·00153	·00299	·00095	·00173	·00007	·00036	·00022	-00008
35				·00001	·00010	·00020	·00009	$\cdot 00402$	·00003				· 0 0006	·00002
36		·00413										-	·00007	-00008
37				·00016	·00015	-00002	·00009	·00007	·00010	·00051	·00007			·00008 ·00004
38				·00011	·00015	·00003	·00012	·00105	00057	·00001	.00075		·00008 ·00121	·00004 ·00042
39				·00098	·00096	·00105	·00676	·01427	·00057	·01591	·00075	·00018	·00121 ·00083	·00042
40	·00009	·00010	·00036	·00071	·01963	·00076	•00099	·00210	·00077	·00025	·00136 ·00041	.00018	·00083	·00134
41	·00011	·00006	·00127	·00039	·00577	0.4205	·00001	.01010	·00016 ·00113	·00006 ·00274	·00041 ·00252		·00183	·00073
42	·00036	-00034	·00328	·00324	·00020	·04295	·01057	·01019 ·00873	·00113 ·00021	·00274 ·00003	·00232 ·00027		·000141	·00042
43	·00094	·00034	· 00 419	·00074	·00035	·03794	·00214 ·01541	·00873 ·00014	·00021	·00003	0002.1		·000022	.00002
44				·00038		·00003	·01541 ·00006	·00014 ·00014	·00003	·00010	·00007		·00011	·00015
45				·00002		·00002	·00008	·00014 ·00018	·00009	·00037	·00184		·00047	-00025
46	·00001	·00001	·00819	·00013		·00002 ·00001	·00025 ·00003	·00018	·00022 ·00044	·000197	·00048		·00122	·00044
47	·00001	·00001	·00200	·00009	·00010	·00001	·00003	·00004 ·00080	·00044	·00000	·00048		·000122	00033
48	·00008	·00147	·00655	·00022		.00013	100024	00000						
49														

онно С5

(нян)

106

тиния сниза,

000.10

нют

сякнят

000000

+1

 ϕ

50												_		
51				·00009		-00003	·00008	• 00 008	·00020	·00043	<u> </u>		·00015	·00002
52		·00001		·00014		·00001	.00012	·00003	· 0 0004	_			·00020	·00002
53												—		•
54											-			<u></u>
55	·00054	·00048	·00328	·00392	·00030	·00212	·00669	·00104	·00041	·00032	$\cdot 00082$	·00199	·05220	·00171
56	_			_		-	·							<u> </u>
57					.		.00001							
58		·00100										·00018		
59							_							
60		·00258	_		B									
61												·01553		
62		·00368										01555		
63		00500										·00054		
64		·02093												
										-	_	·00018		
65	_						-					-		
66														
67	·00018	· 000 39	·00164	·00150	·00678	·00077	·00158	·00219	·00136	·00323	·00157	·00921	·00237	∙004 47
68														
69				·00014	·00046	·00008	·00020	·00054	·00019		·00014	·00036	·00024	·00027
70	-	·92329	· 0 9632	· 0 0858							·00014		-00038	
71	·28425													
72				·02200						—		·00036		_
73														
74	·00042	·00024	·00146	·00472	·00025	·00837	·01132	·00249	·00019	00001	·00109		·00022	·00267
75														
76	.00020	·00124	·00055	·00164	·00076			·00143	_	·00022	·00041		·00164	
77	·00001	00004	·00073	·00798				·000143	·11275				000104	·00794
					00248	25(77	04057			00002	·00150			
78	·00015	·00026	·00109	·00097	·00248	·25677	·04057	·00836	·00290	·00003	·00020	·00018	·00032	·02367
79	·00052	· 005 94	·00510	·00322	·00501	·01879	·04372	·01221	·03036	·00455	·00866	·00885	·00539	·04951
80	·00001	·00003	·00018	·00010	·00046	·00029	·00125	·00038	·00014	·00003			·00045	·00211
81		·00004	·00018	·00002		· 00 407	·00741	·00005	·00035			·00325	·00152	
32		·00001		· 0 0004	·00025	·00003	·00005	·00010		—		·17178	·00006	·00152
33	·00076	·00106	·00455	·01526	·00481	·01321	·03342	·00937	·00008	·00148	·00109	·00199	·00391	·01483
84	·00038	·00042	·00346	·00214	·00885	·00133	·00245	·00268	·00102	·00860	·00743	·01752	·00488	
35	_	·00028	·00036	·00025	·00020	·00042	·00026	·00165	·00018	·26328	·03380	·00145	·00085	·00029
86	·00043	-00505	·00674	·00177	·00035	·01100	·00498	·02363	·00012	·00026	·00020	.00018	·02264	·00104
37		·00372	·00637	·00401	·00359	·00721	·00430	·02871	·00295	·00719	·00634	·00470	·01509	·00526
88	.00001	·00072		·00027		·00023	·00025	·00051	·00016			·01120	·00008	
89		·00039	·00055	·00034	·00025	·00023	·00023	·00232	·00010	·00056	·00048	·00181	·00120	·00040
,,, 90				-00054										
	.00174		.01002		.00200	.00500	.02260	.00224	.00224	.00066	.002.41	.00225	.05722	.00495
27	·00174	·00151	·01092	·00677	·00288	·00588	·02269	·00334	·00324	·00066	·00341	·00235	·05733	·00485
22	·00002	·00004	-00055	·00010	·00015	·00042	·00107	·00107	·00044	•00006			·00039	·00292
)3	·00009	·00013	·00109	·00075	·00121	·00035	· 00 097	·00042	·00053	·00001	·00014		·00041	·00119
94														
95											<u> </u>			
6	·00008	·00010	·00073	·00058	·00066	· 00 019	·00053	·00023	·00025	·00001	·00007	<u> </u>	00018	·00054
97	·00030	·00014	·00073	·00088	·00121	·00124	·00154	·00113	·00203	·00081	·00048	·00054	·00157	• 0 0196
8		<u> </u>	—	.00023	·00010	·00031	·00348	·00120	·00083	·00001	·00041		·00028	·00081
		···· ······ ·····												
9	·30623	·99 07 1	·30135	·12196	·08283	· 5 9867	·50213	·46601	•44125	·52830	·42895	·61127	·39008	·18047
0	• •		·07320	·09826	·01538	·01904	·05270	·01156	·09620	·14160	·09221	·14379	·16346	·06741
\tilde{n}	••		·36999	·51674	·34173	·18251	·19645	·23863	·20061	.13537	·18585	·12897	·20604	·22684
92			·25546	·26304	·56006	·19978	·24872	·28379	·26194	·19474	·29299	·11597	·24041	·52528
· · ·	<u>-</u>					·····				T				
03	1-00000	£-00000	1-00000	1.00000	1.00000	1.00000	1.00000	1.00000	1-00000	1-00000	1-00000	1.00000	1.00000	1.00000

Buying sector	Trans- shipment and other services	Retail trade	Wholesale trade	External trade	Storage and other services	Catering and tourism	Metal- processing services and repairs	Electro- technical services and repairs	Wood- processing services and repairs	Tailors' services	Shoemakers' services	Other handicraft services	Public utilities 97	Scrap and waste 98
¥ Selling	85	86	87	88	89	90	91	92	93	94	95	96	37	30
sector	60		01								00007	00617	02402	
		00702	·00519	.00210	.00806	·02251	·00653	·00415	·00477	·00387	·00287	·00517 ·00497	·03492 ·00753	
1	·01066	·00723		·00210	.00201	·01427	·00165	·00054	-00021	·00076	·00074		·00/33	
2	·00183	·00298	·00196	-00005	.00008	-00161	·00068	·00013	·00021			·00058	-00103	
3	·00501	·00023	·00023	-00005				002(1	00190	00012	·00074	·00624	·01734	
4		00((0	·01256	.00344	.00890	· 0 0499	·01585	· 0 0361	·00189	·00013		-00024	-01754	
5	·01048	·00660	-01250				05150	02560	00408			·02398	·01664	
6	00277	·00030	·00080	-00022	-00491	·00037	·05150	·03560	·00498			02578	0100-1	
7	·00377	-00030	00000				.00745	·00174			_	·00039	·00014	
8 9	·00006	·00002	·00002		.00038	·00004	·00245 ·00534	·00174	.00007			·00478	.00179	
-	·00003	·00002	-00005		.00021	·00004	·00334	-01004	·00168			·01872	-01112	
10	·00047	·00019	·00036	·00013	.00210	·00019	-00004	-01004	-00108			.00039	.00019	
11	.00212	·00011	·00135	.00005	.00042	·00037	·00123	·00013	·00126			·02018	.00048	_
12 13	·00012	·00122	·00142	·00107	·00147	·00529	·00123	·00013	-00120				-00057	
13	00012	·00002	00001	·00001		·00011	·00048	·00509				·00088	.00488	
14		·00018	·00017	.00002	·00004	·00309	·00132	·00054	·00021			·00068	·00041	
15	·00012	·00001	-00003	-00002	.00004	·00003	·000122	·00094	·00014			·00156	·01935	
10	·00100	·00025	·00033	.00001	.00063	·00019	·00012	00013	·00021			·00068	-00368	
18	·000100	00025	-00035		.00076	·00012	·00012	·00040	·00042			·00214	·01849	
19	·00012	.00057	.00033	·00002	.00025	·00024 ·00005	·00067	00040	00042			.00039	·00787	
20	·00112	·00011	-00007	·00001	.00004	·00003 ·00137	·03849	·01205	·01768	·00013	·00287	·00409	-03209	
20	·00660	·00237	·00560	-00058	-00504	.00137	.03842	01205	01700				·00007	
22						·00017	·02262	·00402		·00013		·00058	·00067	
23	·00342	·00043	.00078	-00018	.00138	·00017	·01268	·01526				·01950	·00172	_
24	·00029	·00014	·00021	-00004	.00008	.00005	·00020	·00027					.00007	
25	00012		·00014	·00004	-00008	-00025	·07053	·00134				·00088	·00344	
26	·00642	·00101	·00378	·00049	.00315	·00025	·01568	·00669	·01263	·00031	·00111	·00409	·00624	
27	-00347	·00101	·00086	·00032	·00134	·00008	·00026						·00014	
28	.00589	.00003	·00021	-00006	-00013	·00008	·00413	·02958	·00042	·00013	·00111	-00058	·00232	
29	·00241	·00016	-00021	·00001	·00147	·00029		·00602						
30						·00025	·00406	·07991	·00021			·00088	·00100	
31	·00212	·00016	·00017	00004	.00076	-00008	·00030	·02195		_			·00005	_
32				·00005		·00156	·01121	·09262	·00021	.00031		·00107	·00244	
33	·00206	·00084	·00078	·00027	·00239	·00048	·00383	·00174	·00042	·00058	·00352	·00809	-00213	
34	·00059			·00042	-00143	·00007	·00068	·00040	·00021	·00058	-00074	·02037	·00022	
35	·00006	·00012	·00015	·00005	-00042									
36					00017	.00221	·00015	·00013	_		·00009	·00039	·00019	
37	·00012	·00041		00024	·00017	·00067	·00017	·00013	·00126	·00031	·00074	·00253	·00019	
38	.00006	·00047	·00039	·00008	·00134	.00069	·00468	·00080	·01017		·00287	·02057	·00163	
39	·00077	·00060	·00074	-00010	-00558	·00215	·00058	·00040	·00147	·00031	·00074	·01238	-00093	
40	·00094	·00451	·00328	·00314	·01188 ·00411	·00189	·00041	·00040	·00021	·00031	·00111	·00663	·00093	
41	·00177	·00601	·00505	·00403	.00411	.00069	·00497	·00187	·15994			·01462	·00737	
42	·00165	·00058	·00180	·00272	·00993 ·00432	.00399	·00110	·00107		·00013	·00315	·00877	·00299	
43	·00071	·00464	·00733	·00726	·00432 ·00004		·00003		·00021				·00005	
44		·00008			.00004	.00009	.00023		·00372	·00180	·00037	·00234	·00033	
45	·00018			-00001	.00130	·00118	·00025	·00013	·00084	·06804	·00389	·00819	·00010	
46	·00018	·00035	·00007	·00002	.00130	·00031	·00003		·00351	·18283		·00068	-00012	
47				.00002	·00021	·00031	·00091	·00013	·00561	·01764	·00176	·00712	·00084	
48	·00047	·00055	·00347	·00337	·00144	·00023	<u> </u>							
49														

TABLE 2: INPUT COEFFICIENT TABLE, YUGOSLAVIA 1962 (continued)

1011-11

1.1

h

60						·00420						—	_	
50				00012	.00017	000420	·00020		_	·00567		·00195	·00022	
51	·00018		·00009	·00012		.000029	·00020		·00021	·00045	·25726	.00429	·00019	
52	•00006	·00018	·00004	·00002	·00021									<u></u>
53														_
54							005(3			·00013	·00713	·02915	·00428	
55	·00506	·00208	-00455	·00107	·00361	·00093	· 00 563	·00120	·00189		.00/15	02/15		
56														_
57														
58		·00269	·00093											
59		·00143	·00007	·00006										
60		.00080	.00055	·00004					<u> </u>					
61		.00030	·00015											
62		·00034	·00026								_			
63		·00022	·00023	·00015										
		·00022	·00016	·00001										
64											<u></u>		-	
65														<u> </u>
66			00749	01062	.02210	·00604	·00190	·00187	·00274	·00085	·00102	·00166	·00218	—
67	·00253	·00461	·00748	·01063	03219	-00004	00190	00107						
68					00201	00010	.00012	.00012	·01887	·00013	·00037	·02934	· 0 0086	
69	·00106	·00091	-00087	·00061	·00201	·00218	·00012	·00013				·00390		
70	·00183	· 0 0631	·00119	·00068	_									
71		·00537	·00067	· 0 0078								·00039		
72		· 0 0359	·00133	· 0 0066								.00033		
73		·00013	·00001	·00002										
74	·00053	·00127	·00266	·00036	·00021	·00757	·00067	·00174	· 0 1887	·00031	-00139	· 0 0195	·00182	
75					<u> </u>									
76	·00236	·00252	·00281	• 0 0079	·00332	.00511	·00292	·00134	·00063			·00107		
77	002.50						·00004						·01222	
78	.00119	·00246	·00206	.00076	·00894	·00644	·00103	·00361	·00330	·00031		·00214	· 0 0459	
	·00118			-00458	00588	·00682	·00429	·00736	·00295	·00036	·00065	·00331	·00536	
<i>79</i>	· 0 0194	·00294	·00483			·00019	.00009		·00014			·00010	·00045	
80		·00017	·00035	·00050	·00050	-00019							·00033	
81		·00012	·00023											
82		·00010	·00019	·00027	·00029	·00009			.00210	·00031	.00037	·00224	·00983	
83	·00194	·00118	·00229	· 0 0329	·00340	-00124	·00258	·00388	·00210			·00244	·00364	
84	·00512	·01005	·01645	·02576	·03567	·00737	·00270	·00402	·00063	·00054	·00065		·00093	_
85	·00041	• 0 0039	$\cdot 00052$	·00021	·00067	00044	· 0 0219	·00201	·00161	·00162	·00167	·00185		
86	·00318	·00159	·00313	• 0 0085	·00243	·00185	·04737	·04618	·03416	·03424	·03535	·04133	·00332	
87	·00736	·00702	·00932	·00379	·01167	·00785	·03843	·03681	·02876	· 0 2871	·02971	·03363	·01674	
88						·00008	·00049	·00013	·00021	·00009		·00019		
89	·00059	·00054	·00072	·00029	·00092	·00061	·00307	· 0 0294	·00224	·00225	·00231	·00263	·00132	
90						·	_							
91	·01278	·00537	·01176	·00245	·00562	· 0 0348	·01659	·00602	·00084	·00013	• 000 19	·00214	·01150	
91 92	·00218	·00037	·00043	-00018	·00055	-00081	·00152	·00321	.00007	·00004		·00010	·00045	
		·00037 ·00248	·00228	-00110	·00227	·00432	-00065	·00134	·00014	·00009	·00009	·00487		
93 04	·00713					-00432								
<i>94</i>														
95					00211	.00505	.00146	· 0 0294	·00028	·00018	.00019	·00097	·00273	
96	·00330	·00341	·00314	·00152	·00311	·00595	·00146			·00018	·00019	·00097	·00581	
97	·00259	·00338	·00290	·00161	·00609	-01258	·00160	·00120	·00014			·01248	·00081	
98	·00012	·00082	· 0 0143	·00005	·00055	·00045	·00133	-00080	·00042	·00013	·00037	01240	00001	
											2(720	40100	20490	· · · · · · · · · · · · · · · · · · ·
99	·14117	·12026	·14636	· 0 9510	·21844	·16339	-48792	•47945	·35602	•35517	•36739	•42123	•30489	
100	·05671	·02338	·03125	·01165	·05103	·05346	·02510	· 0 1687	·00168	·00319	· 0 0287	·01102	·05036	
101	·30571	·23073	·20201	·13331	·22322	·30994	·22687	·22621	·40863	·37452	·37988	·29587	·22336	-25000
102	·49641	·62564	·62037	·75994	·50730	•47321	·26011	·27747	·23367	·26711	·24986	·27189	·42138	•75000
103	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000

TABLE 2: INPUT COEFFICIENT TABLE, YUGOSLAVIA 1962 (continued)

Buying sector	Total	Increase	Gross	Exports	Personal consumption	Gene r al consumption	Total consumption	Total final use	Total available resources	Value of gross production, 1962, millions of dinars at producers' price
Selling sector	(1-98) 99	in stocks 100	investment 101	102	103	104	105	106	107	108
1	81,003		_	1,269	Million dinars at produ 15,002	6,954	21,956	23,225	104,228	104,228
- 1	91,524			717	12,344	5,620	17,964	18,681	110,205	93,881
2	35,414	595		7	607		607	1,209	36,623	31,817
3	39,298			4,489	354	25	379	4,868	44,166	31,580
4				8,674	10,593	11,371	21,964	33,660	119,434	94,946
5	85,774	3,022		448	10,575		21,704	651	15,755	11,418
6	15,104	203		27,239	a Notae	1,010	1,010	37,234	387,109	328,210
7	349,875	8,985				1,010	1,010	8,056	73,481	71,238
8	65,425	512		7,544				1,172	24,934	20,594
9	23,762			1,172		1 0 4 7	1 0 4 7	21,963	90,126	81,789
10	68,163			20,116		1,847	1,847		59,457	57,852
11	39,312	1,189		18,956				20,145	28,407	21,179
12	20,129	323		3,800	4,094	61	4,155	8,278		
13	13,304	1,508		3,729	4,060	427	4,487	9,724	23,028	21,279
14	15,015	1,403		5,052				6,455	21,470	19,778
15	9,190	960		644	3,422	58	3,480	5,084	14,274	12,284
16	9,029	995		134		14	14	1,143	10,172	7,309
17	24,958			632				632	25,590	25,585
18	24,080			39		6		39	24,119	23,049
19	34,411	267		4,058	_			4,325	38,736	38,609
20	13,231	785		1,568				2,353	15,584	15,578
21	150,103	10,278		20,894		2,277	2,277	33,449	183,552	165,877
22	6,444		20,504	4,025		·		24,529	30,973	23,510
23	68,725	17,644	223,860	35,049		1,294	1,294	277,847	346,572	163,813
1	6,350	2,434	20,849	1,071	5,805	2,692	8,497	32,851	39,201	21,222
24	42,362	2,757	22,678	16,009			.,	38,687	81,049	73,094
25	63,890	8,653	77,403	18,241	28,284	6,608	34,892	139,189	203,079	162,562
26	19,853	3,659	11,776	2,028	25,424	34,135	59,559	77,022	96,875	93,105
27				65,703	103	1,346	1,449	104,512	115,414	106,860
28	10,902	1 700	37,360	9,778		1,540	1,412	40,381	66,918	50,837
29	26,537	1,789	28,814	9,778 780	27,309		27,309	31,266	32,277	28,802
30	1,011	3,177			21,509	41	41	23,769	70,782	69,013
31	47,013	3,809		19,919	24.20			49,992	57,101	40,064
32	7,109	2,131	17,889	1,340	24,368	4,264	28,632	49,992 5,112	36,773	31,321
33	31,661	241		1,045	3,165	661	3,826	11,307	109,413	66,027
34	98,106	274		11,033						29,921
35	49,807			4,642	603	116	719	5,361	55,168	
36	9,279	4,603		2,122	8,953	23,637	32,590	39,315	48,594	39,758
37	3,479	2,043		675	17,544	727	18,271	20,989	24,468	22,978
38	6,374	1,721		110	10,359	278	10,637	12,468	18,842	17,722
39	54,729	2,602		3,701	9,232	7,707	16,939	23,242	77,971	67,725
40	71,545	844		7,925	<u> </u>	2,446	2,446	11,215	82,760	77,206
41	30,877	12		13	1,080	966	2,046	2,071	32,948	32,101
42	91,327	5,292		31,338	-			36,630	127,957	127,720
43	41,180	8,753	2,223	29,584	48,325	2,544	50,869	91,429	132,609	132,100
44	8,231		·	2,380	3,296	73	3,369	5,749	13,980	13,000
45	5,742	673		3,719		.	—	4,392	10,134	9,581
46	94,982	20,489		19,258	39,141	2,922	42,063	81,810	176,792	170,131
47	80,874	6,162		492	33,727	700	34,427	41,081	121,955	101,353
	29,999	4,015		3,546	6,701	122	6,823	14,384	44,383	38,554
48			267	4,705	48,589	929	49,518	61,385	69,054	66,492
49	7,669	6,895	207	4,703 9,716	90,406	2,882	93,288	112,343	112,683	109,634
50	340	9,339			13,625	110	13,735	16,709	20,033	15,890
51	3,324	1,339		1,635		302	302	11,459	48,117	47,779
52	36,658	6,616 3,821		4,541 13,053	36,104	302 449	36,553	53,427	53,464	53,356

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

110

 $\label{eq:static_stat$

54	10	796		1,500	11,504		11,504	13,800	13,810	13,791 46,077
55	30,869	2,011		846	16,774	2,280	19,054	21,911	52,780 21,396	21,396
56	928	436			19,314	718	20,032	20,468	21,390	31,652
57	96	1,095		48	29,402	1,015	30,417	31,560	31,656	51,052
58	6,208	2,382		38,460	70,494	2,282	72,776	113,618	119,826	116.062
59	1,271	1,688	_	6,527	16,025	710	16,735	24,950	26,221	24,940
60	12,728			1,733	38,841	1,588	40,429	42,162	54,890	43,386
61	173	717		66	20,963		20,963	21,746	21,919	21,917
62	18,126			1,210	24,958	951	25,909	27,119	45,245	32,699
63	4,638	645		298	37,320		37,320	38,263	42,901	41,573
64	14,213	1,294		4,623	20,362	498	20,860	26,777	40,990	38,054
65	20,216			31,366	<u> </u>			31,366	51,582	45,803
66		527		3	75,226		75,226	75,756	75,756	75,739
67	19,058	5,097		279	31,723	20,571	52,294	57,670	76,728	75,184
68	1,885	655		2,249	3,629	453	4,082	6,986	8,871	8,551
69	2,726	1,554		2,988	11,663	4,121	15,784	20,326	23,052	18,023
70	577,057	, <u> </u>		9,456	295,143	11,269	306,412	315,868	892,925	797,214
71	63,740	6,918		11,719	121,540	2,006	123,546	142,183	205,923	184,703
72	115,589			50,382	312,162	10,751	322,913	373,295	488,884	425,254
73	4,448			1,080	3,134		3,134	4,214	8,662	5,492
74	88,759		681	8,835	20,423	1,124	21,547	31,063	119,822	116,610
75	00,707		19,214	273	20,423	277	21,547	19,764	19,764	19,764
75 76	12,665		482,575			4,601	4,601	487,176	499,841	499,841
77	27,949		142,654			10,978	10,978	153,632	181,581	181,581
78			142,034	107		7,892	7,892	19,329	165,162	165,162
	145,833	2 2 2 2 2	11,330	107		1,692	71,092	104,008	211,613	210,391
79 80	107,605	2,288	2,853	27,099	65,381	6,387	71,768	104,008	68,149	68,149
80	2,113	-	76	61,132	4,398	430	4,828	66,036	00,149	14,673
81	5,3.8			8,376	791	188	979	9,355	14,673	14,075
82	1,404			2,422	2,125	204	2,329	4,751	6,155	5,536
83	45,083	879	1,519	6,718	54,041	5,279	59,320	68,436	113,519	113,519
84	21,203		h	222	20,222	6,223	26,445	26,667	47,870	47,870
85	24,649	334	2,285	3,789	3,893	436	4,329	10,737	35,386	16,980
86	31,107	_	5,048		163,252	8,592	171,844	176,892	207,999	207,999
87	68,215	5,162	18,411	2,769	61,228	5,952	67,180	93,522	161,737	161,737
88	22,700	475	12,820	37,315	7,917	1,151	9,068	59,678	82,378	82,378
89	8,761	469	3,206	5,317	5,463	612	6,075	15,067	23,828	23,828
90				6,170	69,010		69,010	75,180	75,180	75,180
91	53,770	749	939	, <u> </u>	7,769	5,725	13,494	15,182	68,952	68,952
92	5,348	29	430		1,356	308	1,664	2,123	7,471	7,471
93	4,265	162	1,183		7,763	882	8,645	9,990	14,255	14,255
94	.,200	201			21,489	533	22,022	22,223	22,223	22,223
95		52			10,632	122	10,754	10,806	10,806	10,806
96	5,023	11	93		1,675	3,456	5,131	5,235	10,258	10,258
97	10,974		<u> </u>		10,190	20,651	30,841	30,841	41,815	41,815
98	35,316	264		1,008				1,272	36,588	27,000
99	3,886,559	196,945	1,168,940	796,742	2,231,814	278,831	2,510,645	4,673,272	8,559,831	7,662,899
100	300,200		<u>an an a</u>		18-14					
101	1,430,961									
102	2,045,179									
102	2,0.5,175									
103	7,662,899									
	51,671 845,261	Total decrease i Total imports	in stocks							
		-								
	8,559,831	Total available	resources							
,		-								

INPUT-OUTPUT STATISTICS AND ANALYSIS IN YUGOSLAVIA

N. PETROVIĆ

output analysis. The most significant adaptations in the official classification of activities were those needed for the sector of arts and crafts, which was isolated from industrial and building activities and shown separately. The Yugoslav official nomenclature of activities considers arts and crafts as production-a production of all products processed in arts and crafts organizations as a separate activity. In the regular statistical inquiries which are being used for the compilation of the tables therefore a considerable volume of production of certain manufacturing activities and construction, together with other arts and crafts production, has been presented in one common sector "arts and crafts" regardless of the fact that the destinations of these products, as well as the kinds of raw materials from which they are processed, differ widely. In order to secure a better homogeneity of sectors in the compilation of the input-output tables the production of arts and crafts organizations was treated in the same way as the production of counterpart industrial organizations. This treatment brought about a certain incomparability between the data in the inputoutput table and those of other statistical inquiries for which the official classification was used without any change. Since this definition of sectors was used only for the compilation of the 1962 table, that table is not fully comparable with those for previous years.

The tables do not show a dummy sector "unallocated" although every time in the course of compilation, and particularly in its first phases, there appeared a considerable amount of insufficiently defined or totally unidentified resources which could not be broken down directly by producing industries or by using sectors. Such insufficiently defined categories are found in almost all the fields of economic statistics. In regular statistical inquiries these discrepancies are not considered as being of essential importance, but when all these resources are assembled into a system of methodological and classificatory reconciliation, such as an input-output table, they lead to a further increase in the amount of undefined values. The sector "unallocated" has been completely eliminated from input-output tables so that the users of the tables and the relevant inverse matrices of technical coefficients may feel more at ease. Various procedures, often relying on indirect assessments, have been used for the elimination of these insufficiently defined amounts, which decrease yearly as computation methods improve and the system of statistics is modified.

The tables define the value of production as the sum of the values of products and productive services according to the specified nomenclature of goods, and show it at producers' selling prices. This value therefore comprises depreciation, personal incomes, accumulation and funds, and the value of material (reproduction material consumed for the production purposes as defined).

The flow of distribution of production in input-output tables, such as the flow table underlying the 98-sector coefficient table shown in table 2, involves both domestic and imported products consumed as reproduction material by industries and as final products, by categories of distribution. The value of these products is shown at producers' prices for the consumption of domestic products and at domestic prices at the Yugoslav border for the consumption of imported products. The consumption of domestic agricultural products is also shown at producers' prices which, for the private sector of the economy, have been equal to the purchase prices of agricultural products.

The producers' prices which have been used in the compilation of tables cover the turnover tax and thus depart from the concept more often used in the field of input-output statistics. The consumption of imported products is shown in prices inclusive of customs duties.

Subsidies have been treated as a part of the price realized by producer (unless they are used for the remittance of losses): this means that the value of the subsidy is included in the value of the production of the industry receiving the subsidy. In the case of industries which purchase and consume the products of such an industry the consumption of these products is not computed at actual market prices, which are lower by the amount of subsidy, but at prices inclusive of subsidy. If the consumers of such products are productive industries their "accumulation" is diminished by the amount of subsidy.

The way in which intermediate consumption is presented in input-output tables is itself determined by the definitions of the basic categories of production and distribution involved in the scheme of the input-output tables: the table's definition of the production field determines the industries whose products will be shown in the quadrant of intermediate transactions. The services of all other industries not considered as productive are treated in the autonomous sectors of the inputoutput table. The field of intermediate consumption consequently excludes such items as insurance costs, interest rates, financial operations costs, per diem allowances for business travel, and distributors' commissions, which are otherwise covered by the costs of economic organizations. The differentiation of current and capital transactions in the input-output tables is in full accord with accounting practice. All the purchases which appear on the debit side of the cost account of economic organizations have been considered as current transactions and all those of the investment account as capital ones. In the tables, imports are treated as a part of available resources (rows) and exports as a part of distributed resources (columns). Under exports and imports are shown only transactions with foreign countries relating to material goods and the payments or receipts of productive services rendered or consumed. Other items in the balance of payment which relate to non-productive services or to financial transactions are excluded.

Imports are shown in the tables by counterpart industries which turn out products of the same kind, and not by the industries to which the imported products are destined. This procedure has been used in all the Yugoslav input-output tables so far published, although the compilation of the 1962 tables involved experimental tables showing imports both by counterpart domestic industries and by consuming industries. In those experimental tables the number of the productive sectors is 98, but each row is subdivided into three sections (table 1).

Gross investment is shown as a separate sector of final demand. It is defined so as to cover only material goods and productive services (transportation costs of equipment and the margins of external trade and trade organizations) which are intended as replacements and as increase in fixed assets, as well as investment in noneconomic activities. The value of residential construction comes in this sector and not in that of personal or public consumption. Gross investment does not cover investment for the maintenance of fixed assets because practice treats the latter as part of the current costs of economic organizations. Neither does it cover those expenditures which debit investment funds relating to non-productive services, payment for purchases and repayments, personal and other outlays for training of personnel, outlays for purchase of used fixed assets, etc.

Decrease in stocks is shown as a part of available resources and increase as a part of distributed resources. The stocks cover finished and semi-finished products of all producers (manufacturing, agricultural, forestry, and arts and crafts enterprises), products in wholesale and retail trade organizations, and raw materials with the producing organizations or on material reserves. Stocks in households, state administration organs or other social services are excluded, since with these consumers the purchase of goods is identified with their consumption. The exception to this is the stocks of agricultural products in peasant holdings, which may be considerable in amount and change markedly from year to year. Unfinished production in shipyards and building enterprises is not treated as changes in stocks, because the total value of the work of a given year is the sum of the payments made for work to be completed during that year. The value of unfinished production in these enterprises is covered by the corresponding item of gross investment.

Final consumption, as a part of final distribution of social product, is divided into personal and general consumption. Personal consumption consists of domestic and imported material goods and productive services consumed to meet the personal requirements of the population. It also covers the at-home consumption by rural households. Resources for personal consumption are derived from personal incomes, salaries from the budget for economic activities, receipts from social security etc. General consumption consists of material goods and productive services consumed in order to meet the requirements of administration, of national defence, of health, and of educational and other social services which are financed from the budget or from funds. General consumption in the input-output tables, as distinct from the national accounts, excludes subsidies. The structure of general consumption, as well as of other sectors in the table, is shown at producers' prices and covers only material goods and productive services. Budget outlays for subsidies are already comprised in the producers' prices of subsidized products and services in the relevant consuming sectors.

II. SOURCES OF STATISTICAL DATA AND METHODS OF ESTIMATION

N. PETROVIĆ

As has been seen, the compilation of the input-output tables for 1955, 1958 and 1960 was based primarily on available statistical materials which originated from regular statistical inquiries. For the first time the 1962 table utilized additional data collected especially for its own purposes. This collection was carried out through special questionnaires covering all economic organizations in the social sector of the economy, which made a "Report on reproductive consumption, stocks, purchases and sales in 1962". This report made it possible to decrease considerably the area of input-output flows which have not been covered by regular statistics. All the data problems could not be completely solved with this report however and further extensions and improvements in the system of economic statistics are considered necessary.

The basic characteristic of this report is that it contains only value indicators (excluding natural) and that groups of raw materials, products and industries are defined so as to conform with the sectors of the input-output tables. Although the use of these questionnaires permitted a considerable decrease in processing costs and in the time taken for the construction of the table, further supplementary information is needed for any detailed elaboration of the tables.

The report contains basic information on various items:

(a) consumption of raw materials, materials and small inventory and stocks of materials and trade goods purchased from other enterprises;

(b) services rendered to the reporting enterprise by other enterprises, specifically: services for repair and maintenance of machines, transport means, construction projects; transportation costs by branches of transport (railway, sea-borne, river and road) shown separately for raw materials and materials spent by enterprises and for finished products and goods sold by enterprises; costs of business travel, communication, forwarding, loading and unloading, and public utility services (water, garbage disposal, rent) etc.;

(c) stocks of own products, broken down by finished and unfinished products at the beginning and the end of the year and by industries (statistical units);

(d) consumption of own semi-finished products and services by industries (statistical units) in which such products were either used or produced.

Each enterprise filled in separate data for every unit defined in accordance with the classification of industrial activities. Which units were to be separately presented depended upon whether they were considered as primary, secondary or auxiliary in the given enterprise.

Secondary activity units are those which have developed alongside a primary unit in the enterprise but which do not carry out the industry for which the enterprise was founded. They include plants which use the waste and by-products of primary units, or which produce electric energy, packing material or some other product that can be used in the primary units of the enterprise. Auxiliary units work almost exclusively for the needs of the enterprise in which they are incorporated. Commodity production and sales to other enterprises appear in them only occasionally.

All units which by definition fell within primary or secondary activities were considered as separate statistical units and for each of them the enterprise was asked to give all information as if they had been operating as independent enterprises. Units which were considered as auxiliary were included in the primary activity of the enterprise if it had only one primary activity, but in the activity which they predominantly served if it had more than one primary unit (i.e. industries).

To secure adequate uniformity in the presentation of the data for the most important activities, which usually occur within a majority of enterprises, separate units were prepared. Among them, the following should be noted in particular:

(a) own-account construction of economic organizations not specialized in construction, except for construction maintenance works of smaller volume;

(b) own-account big workshops of economic organizations for repairs and maintenance and production of machines and accessories;

(c) units producing packaging material of a higher degree of processing;

(d) plants for the internal supply of electric energy; and

(e) retail shops and territorially separated warehouses for wholesale purposes, which belong to industrial, agricultural and other producing organizations.

This report provided the principal source of information on intermediate consumption for all economic activities. But not all the necessary information could be obtained for activities in which the share of the private sector in the total production is significant; therefore, other sources from economic statistics had to be used as supplementary information.

The computation of the value of agricultural production, the productive consumption in agriculture and the distribution of agricultural products was based throughout the compilation stages on estimates or normative calculations.

For trade margins and transportation costs, by types of trade and transport and by sectors for which direct data could not be obtained from the enterprises consuming these services, the computation was based on the average figures for individual kinds of commodities from relevant trade and transport enterprises.

The basic data on the value of production and its structure (items of primary inputs by sectors) are obtained for all the sectors by processing the regular annual reports of all economic organizations in the social sector which present an extract of their annual accounts of settlement. These results are also the principal source of data for the computation of national income and social product in Yugoslavia. In the collection and compilation of data from these reports by activities (units) use is made of the above definitions of basic, secondary and auxiliary units as well as of the procedure of separation and special presentation of data for non-primary units of enterprises.

The existing data from the regular statistical inquiries have been used as the basic source of information for the majority of final demand sectors. These, however, are not suitable to the input-output framework as regards the classifications used and particularly as regards prices. The estimation of the composition of gross investment, and personal and public consumption has therefore been based also on data on production, imports, exports and stocks, by groups of products and services.

For each sector of the basic table the form shown below is used to obtain details of domestic consumption:

Production	•		
mports			
Exports			

This procedure has established the control totals of consumption for the basic consumption categories (investment, reproduction material, personal and public consumption) and secured their reconciliation with the total amounts of production, exports, imports and stocks, as shown in other parts of the table. For the sectors producing articles destined mainly or only for one consumption category (such as crude petroleum, fermented tobacco, tobacco preparations or leather footwear) the figures thus obtained are used as final data on consumption. For other sectors the data obtained in this way have been used as the control total according to which the estimates of consumption by various using sectors are made consistent with the system of inputoutput compilation.

III. Use of input-output tables

The whole of the work on the compilation and publication of input-output tables has so far been only in the Federal Institute for Statistics, where the most important work on the Yugoslav economic statistics has been concentrated. The influence of input-output statistics on the existing system of data increased so considerably with the passing of time that today it can be said that in Yugoslavia the input-output statistics, together with the system of national accounts, represent one of the most significant factors determining the nature and extent of data collection for general purposes. The relative slowness of the adaptation of existing data to the requirements of input-output statistics and national accounts is the result of the real difficulties encountered in

N. PETROVIĆ 115

changing the routine methods of work while maintaining the continuity of existing statistical series.

In addition to the use of input-output statistics for these essentially internal statistical purposes, the tables have also been used in the Federal Institute for Statistics as the source data for separate computations and statistical analyses. Under its programme of work the Institute limited the analytical use of the tables mainly to the standard computations and analyses which permit and simplify the practical application of input-output technique to the computation of various aggregate indexes and "real" values, as well as to the construction of special economic balances which are compiled directly from the data of input-output tables.

Computation of inverse matrices of technical coefficients and other coefficients and structural parameters has been carried out in the Institute for all the inputoutput tables compiled so far, with the exception of those for 1955. In this connexion a series of standard programmes have been prepared in the electronic centre of the Institute for the inversion at various levels of aggregation, the multiplying of matrices, the automatic aggregation of tables etc.

The weighting systems for aggregate indexes in the fields where price indexes cannot be directly computed (construction, shipbuilding, machine construction) as well as the "real" values of final demand categories (personal and general consumption and investment) and other value aggregates were worked out directly on the basis of the data from the input-output tables and the corresponding individual indexes.

Among the various special economic balances, partial balances for individual economic fields (similar to the production account from the system of national accounts) may be of particular interest. These were worked out in the Institute and were made consistent with the results shown in the system of national accounts of Yugoslavia. It also compiled a separate economic balance, "Computation of the basic structure of production", in which the over-all production was broken down into three categories of basic destination: work instruments, reproduction material, and consumer goods. This balance, worked out for the requirements of economic planning, relied only on the data from input-output tables and used no other additional information.

Outside the Federal Institute for Statistics the inputoutput tables were used in various fields. In the period directly following the publication of the first input-output tables they were used mostly as means of demonstrating the practical possibilities of the input-output technique, and also as a complex source of information on the structure of the Yugoslav economy for the purpose of various economic analyses not directly connected with the input-output technique. With the development of input-output statistics and by detailed elaboration of the tables with an increased number of sectors, the field of application also has been extended. The subjects of some of the empirical research and analyses using input-output data went indeed beyond the classical partial and aggregate analyses—it might be said that they are an indication of qualitative changes in the approach to the professional problems of economic planning and policy in Yugoslavia. The kinds of analysis which have been worked out on the basis of the data from input-output tables and techniques cannot all be covered in such an article as this, but their systematic review has not yet been undertaken. The present article can deal only with those analyses that will permit the appraisal of the practical significance of input-output statistics and techniques in solving some of the most important problems.

In recent years the Federal Institute for Economic Planning, in collaboration with other economic institutions, has prepared a series of methodological and empirical studies to improve and guide the work of drawing up economic development plans. These studies dealt with various problems relating to the balancing of structural proportions. Among these a special emphasis is given on various methods and models of practical use for the structural balancing of production, consumption and foreign trade as well as for solving the problems of prices which arise in this connexion. The common characteristic of these methods and models is that they use the input-output technique as a basic approach, and the data of the input-output table as a basic source of information for the purpose both of controlling their practical applicability and statistical documentation and of drafting economic development plans. At various phases of these studies a series of parameters and characteristics of the economic structure of Yugoslavia has been computed. Many of them correspond to the results of standard input-output models, such as the import content of individual categories of final demand, cumulative costs of production by activities, or direct and indirect production requirements of individual sectors for given specific final demand. At certain phases of the draft plan the input-output models were employed in many tasks, including the empirical application of a dynamic model as a means of checking the consistency of projections for individual branches of the national economy established by other procedures and also as a separate model used for establishing the total import requirements involved in various alternative draft economic plans.

In connexion with the preparation of the economic reform measures which are being carried out in Yugoslavia, a special position is given to the analyses establishing the plausibility of the new rate of the dinar. The complexity of this problem, particularly under the peculiar conditions of the Yugoslav economic system, demands a serious study of the impact of the new rate upon individual activities. Within this framework the National Bank in 1964 completed a very complex analysis, in which the input-output method was used as the basic approach, of the influence of changes in the existing price parity upon the distribution of accumulation (profit) by individual economic activities. Concrete results were calculated on the basis of the 98-sector input-output table for 1962, where the total transactions were broken down into domestic production and imports.

At the end of 1962 the Institute for the Economics of Industry in Belgrade completed a study entitled "The examination of the structure of industry in Yugoslavia, with methods of linear programming", in which also input-output tables were used as the basic source of information. The objective of this study was to work out a greater number of optimal alternative solutions for the structure of industry as well as optimal trends of industrial development to be effected by particular policy measures and instruments. This was the first study that attempted to apply the linear programming method to the national economy. Though essentially experimental, it provided certain solutions of practical significance.

The study of "production price", which is being

conducted in the Yugoslav Institute of Social Sciences in Belgrade, seeks to establish the extent to which the existing system of prices diverges from the system that would be formed on the basis of a uniform accumulation rate (profit) on invested capital. This study also is based on the input-output model. The attempt may turn out to be of particular interest because it is expected that, in addition to the matrices of current transactions, a matrix of capital transactions and depreciation will be compiled for the first time, to establish a statistical basis for analytical computations. The experimental matrix to be drawn up for the requirements of the study itself will be used later as a guide-post for the construction of an official matrix of capital transactions for the Yugoslav economy.

ANNEX

Chronological input-output bibliography of Yugoslav publications

- 1. A. Orthaber: The question of use of the input-output system of tables in Yugoslavia (Pitanje primene sistema tabela "ulazaizlaza" kod nas), *Economist*, 2; Belgrade, 1956.
- N. Petrović: Interindustry relations of the Yugoslav economy in 1955 (Medjusobni odnosi privrednih delatnosti Jugoslavije u 1955), Federal Institute for Statistics, *Studies and Analysis*, 8; Belgrade, 1957.
- B. Kitaljević: Compilation of the first input-output tables within our economic balances (Izrada prvih tabela "ulaza-izlaza" u okviru naših privrednih bilansa), *Finance*, 9; Belgrade, 1957.
- G. Grdjić: Construction of our system of social accounts (Na pitu izgradnje našeg sistema društvenih računa), *Economist*, 3-4; Belgrade, 1957.
- 5. V. Živadinović: Italian experience with the input-output methods (Italijansko iskustvo sa input-output metodama), *Statistical Review*, 3; Belgrade, 1957.
- I. Friščić: Input-output analysis and Marxian analysis of reproduction (Input-output analiza i Marksova analiza reprodukcije), *Economic Review*, 10; Zagreb, 1958.
- J. Sirotković: Input-output analysis and economic planning (Input-output analiza i privredno planiranje), Yugoslav Statistical Society (material from the Conference on Statistical Problems of National-Economic Balances and Accounts held in Belgrade, 18 and 19 June, 1959), Belgrade, 1959.
- 8. B. Horvat: Some problems of the use of input-output analysis in economic planning (Neki problemi primene medjusektorske analize u privrednom planiranju), *Economist*, 2; Belgrade, 1961.
- 9. B. Horvat: Labour value of production of Yugoslav agriculture and industry (Radna vrednost proizvodnje jugoslovenske poljoprivrede i indjustrije), *Economist*, Belgrade, 1961.
- A. Novak: Treatment of public services in the input-output tables (Tretman javnih službi u input-output tabelama), *Statistical Review*, 2-3; Belgrade, 1961.
- 11. N. Petrović: International conference on input-output methods (Internacionalna konferencija o input-output metodama), *Statistical Review*, 4, Belgrade, 1961.
- 12. N. Petrović: Interindustry relations of the Yugoslav economy in 1958 (Medjusobni odnosi privrednih delatnosti Jugoslavije u 1958 godini), Federal Institute for Statistics, *Studies*, *Analyses and Reviews*, 15; Belgrade, 1962.
- G. Grdjić: Economic balances and their econometric models (Privredni bilansi i njihovi ekonometrijski modeli), Faculty of Economics, Belgrade, 1962.
- 14. B. Horvat: Economic models ("Ekonomski modeli"), Institute of Economics, Zagreb, 1962.
- 15. B. Horvat: Analysis of some effects of price changes (Analiza nekih efekata promena cena), Federal Institute for Economic Planning; *Documentation and analytical material*, 5, Belgrade, 1962.
- B. Horvat: A textbook on interindustry analysis (Medjusektorska analiza), Institute of Economics, Economic monographs series, No. 1, Zagreb, 1962.
- 17. M. Sekulić: Introduction to analytical application of the input-

output model (Uvod u analitičku primenu medjusektorskog modela), Institute of Economics, Zagreb, 1963.

- M. Sekulić: Application of input-output model to planning and structural economic analysis (Primjena medjusektorskog modela u planiranju i strukturnoj ekonomskoj analizi), *Economic Review*, 10-12, Zagreb, 1963.
- M. Sekulić: Application of input-output analysis in the planned balancing of economy (Primena medjusektorske analize u planskom bilansiranju privrede), Federal Institute for Economic Planning; *Documentation and analytical material*, 10, Belgrade, 1963.
- B. Kitaljević: Economic balances (Privredni bilansi), (material from the Seminar for the Consumers of Statistics, held from 1 April to 10 June, 1963, in Belgrade); Federal Institute for Statistics, Belgrade, 1963.
- 21. B. Kitaljević: Methodological elaboration of the application of the input-output table of flows in the study of parity problem (Metodološka razrada primene tabele medjusektorskih tokova u proučavanju problema pariteta), The National Bank of the Socialist Federal Republic of Yugoslavia, Belgrade, 1964.
- 22. B. Kitaljević: Some results of the analysis of interindustry relations (Neki rezultati analize medjusektorskih odnosa), Federal Institute for Economic Planning; *Communication material*, 29, series C, Belgrade, 1964.
- M. Sekulić: Multiplicative effects of investment consumption in the Yugoslav economy (Multiplikativni efekti investicione potrošnje u jugoslovenskoj privredi), *Economic Review*, 9-10, Zagreb, 1964.
- 24. M. Sekulić: Application of the input-output model in planning (Primena medjusektorskog modela u planiranju), Federal Institute for Economic Planning and Institute of Economics in Zagreb, *Studies*, 11, Belgrade, 1964.
- N. Petrović: Interindustry relations of the Yugoslav Economy in 1962 (Medjusobni odnosi privrednih delatnosti Jugoslavije u 1962. godini), Federal Institute for Statistics, *Studies, Analyses and Reviews*, 26, Belgrade, 1966.
- 26. N. Petrović: Balancing methods of structural proportions in economic development plan (Metodi bilansiranja strukturnih proporcija u planu privrednog razvoja), Federal Institute for Economic Planning and Institute of Economics in Zagreb, *Studies*, 22, Belgrade, 1965.
- 27. M. Sekulić: Possibilities and problems of the application of input-output model in planning (Mogućnosti i problemi primjene medjusektorskog modela u planiranju), Economic Seminar, Yugoslav Institute for Economic Research, Belgrade, 1965.
- B. Horvat and L. Vukojević: Analysis of foreign trade effects with the help of general matrix of technical coefficients (Analiza vanjskotrgovinskih efekata pomoću opće matrice tehničkih koeficijenata), *Statistical Review*, 2–3 and 4, Belgrade, 1965.
- 29. M. Sekulić: Analysis and planning of foreign trade effects using the input-output model (Analiza i planiranje vanjskotrgovinskih efekata pomoću medjusektorskog modela), *Statistical Review*, 4, Belgrade, 1965.

INTERSECTORAL BALANCES OF PRODUCTION AND DISTRIBUTION FOR A NATIONAL ECONOMY: KEY ASPECTS OF THE PRACTICE IN THE UNION OF SOVIET SOCIALIST REPUBLICS

Ivan M. Denisenko, Economic Institute of the USSR Planning Commission, Moscow, Union of Soviet Socialist Republics

This study addresses itself to the general methodological problems of the normative base of intersectoral balances of production and distribution in a national economy. This normative base is provided by a set of direct input coefficients which are calculated on the basis of technological coefficients or norms of requirements of certain materials for the production of others. As illustration, some direct and total input coefficients for the Soviet *ex-ante* intersectoral balance are shown in the annexes.

In order to place the normative base in a proper perspective this study first of all focuses on the general position of the intersectoral balances in the planning of the national economy, on the layout and the model of the balance, and on the calculations of its basic data. Some of this general information is commonly known, but in the author's opinion a summary of this type will be instructive, as it bears directly on the methodological assumptions on the normative base, which are discussed later in the study.

The three annexes to this paper show, respectively, (1) a diagram of the intersectoral balance in kind, (2) direct and total requirements of non-ferrous metals, basic chemicals, electric power and thermal energy and coal for the production of industrial goods, and (3) direct and total expenditures of rolled stock of non-ferrous metals, electric power and coal for the production of industrial goods.

I. GENERAL DESCRIPTION OF THE INTERSECTORAL BALANCE OF PRODUCTION AND DISTRIBUTION OF THE NATIONAL ECONOMY

In a planned economy an intersectoral balance plays an important role in improving the methods of planning the national economy. This balance serves in some sense as an intermediate link between the over-all balance of the national economy and the material balances relating to given specific products.

The over-all balance of the national economy is a set of mutually consistent indexes related to the basic relations and proportions of socialist reproduction. Its main elements are:

(a) balance of production, distribution and utilization of social product;

(b) balance of production, distribution, and final consumption of national income;

- (c) balance of labour resources;
- (d) composite balance of the national economy.

The balance of the national economy shows the relations between material production and final product, and the relations among basic branches of the national economy, as well as the proportions in the distribution of labour resources. The balance does not however show the multiplicity of interrelations within large branches such as industry, agriculture, construction and transportation.

Material balances, on the other hand, describe the available sources and distribution of specific products. These balances are employed in planning to ensure proper proportions in the national economy and adequate supply levels of production or construction. They are particular balances and do not describe fully the interrelations of different branches.

Intersectoral balance makes up the deficiency of the national economy balance and specific material balances. On the one hand it makes specific the data relating to the balance of the national economy and on the other it generalizes and puts into a system the specific material balances.

In 1925 for the first time in the USSR, the balance of production and distribution of output of 20 most important sectors was prepared; this was for the 1923-24 period. This was the first experiment at preparation, reflecting the real processes of reproduction in the economy as a whole and in its sectors. It played an important role in the later development of the method. The work on intersectoral balances was discontinued after 1926 and Soviet economists resumed it once again only at the end of the 1950s. By that time the mathematical model and computing technique had been so developed as to make it possible practically to solve the system of equations of the production and distribution of products in the national economy. The first intersectoral balances for the production and distribution of products in the national economy for 1959, in value terms and in physical units, were prepared in terms of 83 branches, while the balance in physical units was for 157 most important products. The methods of building regional intersectoral balances were also worked out, and several ex-post regional balances have been completed.

The work of the Research Institute of Economy and the main computing centre of the USSR State Planning Committee marked a further important advance on the way to working out experimental intersectoral balance tables for the plan period of 1962 in value and physical terms. The value balance has been prepared for 83 industrial branches, and the balance in kind for 346 types of products. In the working out of these balances the proportions of the economy as a whole and its sectors in the 1962 National Economic Development Plan were analysed, and the basic methodological questions regarding the data processing on computers were solved. Since then the intersectoral balance table in value terms for the plan period up to 1970 has been completed and so have the intersectoral balances in physical units for 1963, 1964, 1965 and 1970. The 1970 value balance incorporates 124 sectors of material production, including 112 industrial branches. The balance in physical units now embraces 438 products, and in the near future the list will be increased to between 800 and 1,000. This work has already proved to be of practical value in preparation of the long-term plan for the development of the national economy of the USSR.

Production planning utilizing an intersectoral balance starts with determination of social product, i.e. a determination of the aggregate of material goods to be produced during the planning period. This aggregate can be defined as the sum of the gross outputs of all branches of material production—industry, agriculture, construction, freight transportation, material supply and distribution, procurement and trade—in so far as it directly contributes to the process of material production. The major share of social product consists of gross industrial product.

The gross social product is divided into two parts, which play different roles in the processes of expanded reproduction. One part is directed into the replacement of labour instruments consumed in the sphere of material production, i.e. is used as inputs in current production. The other part represents the final product which is used for personal consumption and for expenditures in nonproductive activities: culture, education, public health, communal services and dwellings, science, administration etc. The final product also includes productive and nonproductive accumulations.

The calculation of intersectoral balance in USSR practice begins with determining the volume of final product and its separate elements. Among the things to be determined for the plan period are the over-all rate of growth of the final product and its structure, and the relationship among various funds in the final product, such as the replacement fund for fixed assets, the consumption fund and the accumulation fund. The relationship among the basic elements of these funds is also determined: personal and public consumption; accumulation of fixed and circulating productive capital, of basic non-productive funds and of consumers' stocks and reserves; volume of exports and imports; replacement of basic productive and non-productive funds etc.

The determination of the general rate of growth of the final product is based on calculations regarding the dynamics of labour productivity and the prospects of drawing labour resources into the sphere of material production, calculations of possible production accumulation quota and changes in the efficiency and terms of repayment of production accumulation. Also to be determined are the scale of renewal of production apparatus, tasks for the development of the nonproductive sphere of the economy, and requirements for the country's defence capacity. These calculations determine the share of all the remaining elements of final product.

An important element of final product is the consumption fund, the size and structure of which determine the people's living standards. The planning of this fund is the basis for the elaboration of the whole national development plan. In the planning of the consumption fund the *per capita* level of income, the relative prices of products, and changes in the population structure of the country are determined.

The volume and structure of final product, and particularly of the consumption fund, determine the volume and structure of industrial output in those branches of material production whose output is used for final consumption; with the aid of certain parameters the production requirements of all branches of material production are determined. Thus the satisfaction of the material and spiritual requirements of the country's population constitutes the basis of the whole production system.

The determination of the volume of final product and its elements, from which the elaboration of the intersectoral balance actually starts, is an important task; but the determination of the sectoral structure of final product and its separate elements is still more important and complicated. Different sections of the intersectoral balance play different roles in shaping the final product. For instance, the output of the iron and steel industry and other raw material branches, being used mostly as intermediate products, affects the final product to a lesser degree than the output of such branches of industry as food and light engineering, which is generally used for personal and non-productive consumption, and plays an important role in shaping the final product.

The intersectoral flows for all sectors shown in the balance are calculated, with the use of mathematical equations, on the basis of the determined sector structure of the final product and direct input coefficients. The mathematical model of the intersectoral balance is based on a set of equations which reflect the complex system of interrelations of social production. The outputs during the planning period of various sectors of industry, agriculture, construction and transportation are determined on the basis of these equations.

The system of equations includes the following elements: volume of output by each sector in the balance, number of balance sectors, plan coefficient of direct expenditures in the output of one branch for production of one unit of output of other branch, and volume of output of each branch which is used for production of final product. With reference to a value balance, the following notations are employed:

Ø

- X_i = volume of the output of the supplier where *i* signifies the number of the supplier's branch;
- X_j = volume of the output of the user's branch where j signifies the number of user's branch;
- n = number of branches of intersectoral balances;
- a_{ij} = plan coefficient of direct expenditures in the output of branch *i* for production of one unit of output of branch *j*;
- Y_i = volume of output of branch *i*, being used for final product.

The volume of output of each of the balance sectors may be expressed in the form of the following simple equation employing these notations:

$$X_i = \sum_{j=1}^n a_{ij} X_j + Y_i$$

Since the economic-mathematical model of intersectoral balance is expressed by this system of linear equations the conventional methods of linear algebra provide the basis for simulation of intersectoral contacts. Total input coefficients are thus calculated on the basis of direct input coefficients (coefficients of direct expenditures). To obtain the needed volume of output of each sector of the balance, the table of total input coefficients is multiplied by the vector of final product.

The balance assumes that a certain proportionality in the interrelations of different branches is present. This proportionality refers both to the production of specific products and to the value or output of specific branches. In intersectoral balances the value proportions are shown in value terms, and the product proportions in physical units.

II. THE STRUCTURE OF INTERSECTORAL BALANCES IN VALUE TERMS AND PHYSICAL UNITS

An intersectoral balance is divided into four quadrants. The first quadrant shows the circulation of instruments of labour and material services in the process of production, i.e. it reflects the intersectoral relations in the production of social product. This quadrant is in the form of a square table which has the same list of branches both vertically and horizontally. The list embraces all the branches of industry, agriculture, transport, trade, and public eating facilities, procurements, material and technical supply, and other branches of material production.

The second quadrant shows the final product, the material structure of national income, and its distribution into accumulation and consumption, replacement and capital repairs of fixed assets, and the exports-imports balance by branches.

The national income as a summary of value newly created in the plan period—a value which is obtained by summing up elements of net output of all branches of material production—is shown in the third quadrant. This includes wages, profit, turnover tax, and net income of collective farms and co-operatives, as well as depreciation. The share of each branch in the creation of national income is here demonstrated.

The fourth quadrant reflects the final money incomes of the State, enterprises and the population, and the allocation of these incomes.

An important feature of the balance is the balancing of flows: the sum of the totals of quadrants II and IV (north-east and south-east) is equal to the sum quadrant III (south-west). Thus the value and the in-kind flows of national income are equal. This equality is ensured by the equality of total value of output in each row and column, i.e. equality of produced and of distributed output.

The intersectoral balance in physical units is a system of interrelated specific material balances showing resources and distribution of various products. The layout of this balance differs in many respects from that of the value balance. It reflects proportions and interrelations not in the aggregate social product but in that part which is represented by the items included in the balance. Although this balance is a synthesis of material balances it differs substantially from the latter both in its content and in its form of tabulation.

Each of the various material balances shows the balance relationships only for one type of product and without the needed ties with the production and consumption of other products that are expended in its production. These balances do not reveal the interdependence among the indices of reproduction of all the branches of material production or the majority of the most important types of products, which is very important in these days of a high level of division of social labour, specialization and co-operation in production. This shortcoming of material balances is corrected in intersectoral balances of production and distribution for the national economy.

The table of intersectoral balance in physical units consists of three sections. The first shows the supply of each specific product; the second deals with the consumption of one type of product for the production of other types, i.e. intermediate uses; and the third shows the distribution of products for replenishing fixed and circulating assets, for consumption and for exports.

There is a present need for a balance which could combine both monetary flows and flows in physical units. However, the unification of commodity classifications for such a balance will require a substantial disaggregation of sectors in value terms and also the inclusion of products not at present covered in the physical balances.

An intersectoral balance in physical units makes it possible to analyse intersectoral ties in the production of most important products, and to determine progressive structural shifts in production. In addition to value balances those in physical terms make it possible to trace the movement of the social product in kind and to analyse the basic proportions of expanded commodity reproduction (not by branches, as is the case with value balance).

The commodity classification is of great importance in

the elaboration of intersectoral balances and in the establishment of more efficient intersectoral and intrasectoral production ties. The national economic importance of certain types of products, and their proportion in both material expenditures for production and the aggregate social product, is taken into account in the preparation of the classification. Because it is impossible to cover the entire range of products an aggregation is necessary of some products according to their designation in the material production, the homogeneity of the structure of expenditures for their production and the technology of their production. The criteria for the selection of branches for the value balance and of products for the physical balance are essentially the same.

The mathematical model of the balance in physical terms consists of a system of equations equal to the number of products included in the balance. The equation for the first product can be written as follows:

$$x_1 = x_{11} + x_{12} + x_{13} + \dots + x_{1n} + y_1,$$

where

- $_{1}$ = production requirement of the first product included in the balance;
- x_{11} = expenditure in the first product for production of this same product;
- x_{12} = expenditure in the first product for production of the second product;
- x_{1n} = expenditure on the first product for production of the *n*th product;
- y_1 = summary requirement of the first product for nonproductive consumption, exports, stock, reserves, etc.

Similarly, for the *i*th product the equation is:

$$x_i = x_{i1} + x_{i2} + x_{i3} + \dots + x_{in} + y_i.$$

After the transformations of the system of equations of separate products the following very simple mathematical model of the intersectoral balance in physical units is obtained:

$$X_i = \sum_{j=1}^n a_{ij} X_j + Y_i.$$

A matrix of direct input coefficients and the volume of final consumption provide initial economic information in constructing intersectoral balances in physical units.

Today, however, the number of products in the balance is limited by computer capacities. With further perfection of computing techniques, the coverage will be expanded. The extension of coverage also becomes possible after dividing intersectoral balance into separate blocs encompassing closely interrelated branches. In such blocs it is possible to thoroughly reveal the intrasectoral and intercommodity ties. Such balances may be called intrasectoral (commodity) balances.

III. METHODS OF FORMATION OF DIRECT INPUT COEFFICIENTS IN PHYSICAL UNITS

Unlike the conventional input coefficients ("normatives"), the direct input coefficients in physical units show requirement of specific resources not only in direct productive processes but indirect and auxiliary requirements as well. For instance, the direct input coefficient of electrical power in production of rolled metal shows not only the use of power in heating, rolling, and finishing of the stock but in illuminating buildings, in repairs of equipment, heating of productive premises etc.

On the other hand, these coefficients do not include the use of energy resources in production of other products shown separately in the balance. For instance, the electrical power coefficient referred to above covers only the expenditure in rolling and does not extend to the expenditure in production of pig iron and steel as these products are shown separately in the balance. Input requirements for transportation and capital repair are also excluded.

To deal with joint expenditures in production of several types of products, the distribution of total expenditures into separate coefficients is done according to the methods of distribution employed in the given sector. It is also possible to use another method, based on the mathematical properties of intersectoral balance. If several items are jointly produced from a given raw material the "main" product is singled out and all expenditures are imputed to it. The production of secondary products is regarded as being a result of the production of the main product with a minus sign.

Basic and auxiliary materials, fuel, electrical power, semi-finished subcontracted parts, simple tools, and packaging and crating materials are used up in the production of industrial output. The main computer centre of Gosplan developed a technique of determining the input coefficients depending on the role played by these materials in production. This technique starts on the assumption that the largest share of material and energy resources consists of basic materials. The input coefficients for these materials are related to the unit of output. In cases however where the input norm is expressed in terms of the quantity of finished product per unit of the given raw material the necessary input coefficient must be converted to the input-per-output form.

In some industrial branches the input coefficients are related to separate stages of the production process: if these stages correspond to the commodity classification for intersectoral balance they may be regarded as individual coefficients of intersectoral balance.

Subsidiary materials include those used in maintenance connected with the main production process or those added to basic materials to change their outward form and some of its properties. The method of rationing subsidiary materials is related to their ultimate use.

Subsidiary materials may be divided into three groups: (a) Materials used directly in production; the use of these is rationed per unit of finished product;

(b) Materials expended in maintenance and operation of equipment: the use of such materials is usually rationed per machine-hour operation of equipment. From process maps showing the requirement in machine hours for the production of a product, one may obtain the normative of expenditures on similar subsidiary materials. Expenditures connected with current repairs of equipment are treated in a similar way.

(c) Materials used to repair production premises and structures: usually these are rationed per conventional repair unit or per concrete repair volume. It is possible to find the normative of expenditures on these materials from the summary needs of the enterprise in current repairs and from output data.

Tools are rationed either by the cost of the products to be produced or by machine hours of operation of equipment. In the latter case the normative of tool expenditure may be calculated on the basis of process maps or of the machine hours of equipment operation needed for production purposes.

Technological fuel is consumed in a similar manner to basic materials, and is so rationed. The fuel expenditure for heating buildings and structures is rationed per cubic metre of floor space.

Technological electric power is rationed per unit of output, but when it is expended to operate equipment the ration depends on the capacity of the electric motors and their hours of operation per day. Electricity for lighting is also rationed according to the capacity of lighting facilities and their operation hours per day.

When one enterprise manufactures several types of goods, for which there are corresponding items in the intersectoral balance list, the general productive expenditures are distributed according to the same methods as those adopted to calculate the production costs of an individual industrial branch. Such distribution is possible proportionally to the value of output of each component product, material expenditures, wages (without additional payments for progressive piece-work and premiums), main production workers etc. It is necessary to bear in mind, however, that subsidiary materials, fuel, electric power and so on include those expenditures that are not proportional to the value of output, such as electric power for lighting and fuel for heating. In this connexion, the normatives of such expenditures must be calculated on the basis of current data, due attention being paid to changes in production volume. An individual normative is a summary of analogous material expenditures effected directly both in the process of production (process expenditures) and in the operations of enterprises (productive expenditures as a whole).

The preparation of individual normatives for a plan period should be guided by the techniques of rationing: these are themselves a complex of various calculations and investigations, being based on detailed analysis of primary documentation on construction and technologies, analysis of losses occurring in production processes, and elaboration of corresponding technical and organizational measures for the saving of material and power resources as well as for the introduction of new machines, technology and advanced methods of the organization of production.

If the normatives for the use of material resources in

the manufactures of new products have to be calculated the design data must be considered; in their absence the normatives of material expenditures on similar projects may be used, with the necessary adaptations of coefficients.

So far as the products listed in intersectoral balance consist of aggregated items, branch normatives of material expenditures per unit of output have to be calculated as the weighted means of individual normatives relating to individual components of the aggregative product.

In the process of preparing the initial data for intersectoral balance the averaging of individual primary normatives first derives material normatives for the production of a group of similar items included in each branch item of intersectoral balance and then obtains the average normatives of material expenditures for the production of the whole branch.

As has been indicated above, direct input coefficients depend upon the level of engineering, technology and organization of production. The contents and magnitudes of direct input coefficients change with technical progress in industry. To determine the coefficient for the plan period it is therefore necessary to assess the types of change likely to take place in the structure, technology and organization of production and their influence on patterns of expenditures.

Individual technological normatives (coefficients) relating to raw material expenditures, fuel and electric power are used in preparing direct input coefficients in physical units. The calculation of direct input coefficients in physical units can be made in the following schematic form:

$$a_{kl} = \sum_{p=1}^{m} \sum_{q=1}^{n} a_{pq} d_{q} + \sum_{p=1}^{m} S_{pl}$$

where

- a_{kl} = ratio of direct expenditures in kind; for instance, ratio of direct expenditures on all kinds of refractory materials for the production of all kinds of steel;
- m = number of products (p) in position (k); for instance, number of certain specific types of refractory materials expended for production of steel, which are included in the item "all kinds of refractory materials";
- n = number of products (q) in position (l); for instance, quantity of certain types of steel making up the item "steel";
- a_{pq} = individual coefficients of outlays on product (p) for the product (q); for instance, the coefficient of a given type of refractory material for a given type of steel/ton/ton;
- d_q = proportion of product (q) in the whole product (l);
- S_{pl} = additional requirement of product (p) for the whole production of (l).

TABLE	1: APPROXIMATE	CALCULATION (OF DIRECT	INPUT	REQUIREMENTS	OF	REFRACTORY	MATERIALS	PER	TON
			OF STE	EL PRO	DUCTION					

	a_{pl}	d_q	$a_{pq}^{}d_q^{}$
Outlays on first type of refractory material			
for first type of steel	0.019	0.84	0.01596
for second type of steel	0.006	0.07	0.00042
for third type of steel	0.012	0.09	0.00108
Total outlays on first type of refractory material for three types of steel			0 ·01746
Outlays on second type of refractory material			
for first type of steel	0.003	0.84	0.00252
for second type of steel	0.005	0.07	0.00035
for third type of steel	0.008	0.09	0.00072
Total outlays on second type of refractory material for three types of steel			0.00359
Additional outlays on refractory material of both types for production of steel as a whole	$\left(\sum_{p=1}^{2} S_{pl}\right)$		0.001
Total direct outlays on refractory material for all types of steel	(a_{kl})		0.02205

An example of the calculation is shown in table 1, which relates to quotas of outlays on two types of refractory materials for three types of steel smelting (open-hearth furnace, converter, electric furnace).

Individual quotas of outlays on material resources are worked out in accordance with the operating instructions concerning the rationing of material expenditures for the main types of products of the iron and steel industry. The a: ditional material outlays for the production as a whole, S, are calculated taking into account the relations existing between basic and subsidiary material outlays. The comparative level of these outlays may be determined by sampling the records of a country's leading enterprises.

Preparation of direct input coefficients per unit of output is thus based on planning normatives of outlays on raw materials, fuel, energy, and other material resources. When planning normatives are not available the preparation of direct input coefficients is done in the following sequence:

(a) the actual input coefficient in physical units is determined for the current year from initial statistical data;

(b) factors which could influence the magnitude of coefficients are identified;

(c) possible changes in the most important factors in the plan period are determined;

(d) assessment is made of the influence of changing factors on the size of direct input coefficients in physical units.

Direct input coefficients from an ex-post intersectoral balance or a planning balance for a different period may be employed as the basis for the preparation of current planning coefficients: for instance, the coefficients in the previous planning balances were used in the preparation of the 1970 planning balance coefficients. Statistical records of the consumption of raw materials, fuels and energy, as well as reports on available normatives and production cost records, are employed in the preparation of *ex-post* input coefficients. In some cases it is advisable to sample representative enterprises producing a given commodity.

The size of direct input coefficients is greatly affected by structural shifts in the production of certain types of products: for example, the shifts in the share of steel smelted in oxygen converters and electric and openhearth furnaces in the total steel output are of great importance to steel outlays for rolling. In order to take into account structural shifts it is expedient to disaggregate these products into various sub-items and then to calculate the aggregate coefficient, taking due account of changes in their share in the total output of the given product. It is also sometimes desirable to divide given material into various types. For instance, in the calculation of the coefficient for steel outlays per ton of rolled stock production, rolled stock is classified by size assortment, and steel by types of smelting. The individual coefficients thus obtained are then aggregated into a single coefficient according to the shares of different types of rolled stock and steel, respectively, in the total production and in the total outlays.

In a number of cases it is useful to investigate the detailed functional relationships between inputs and outputs. In the iron and steel industry, for instance, the outlays on coke are dependent on the amount of oxygen which is used simultaneously in pig-iron smelting. The establishment of such relationships greatly facilitates the calculations of coefficients for the branches of physical intersectoral balances, especially those of the multivariant type.

IV. METHODS OF PREPARING DIRECT INPUT COEFFICIENTS IN VALUE TERMS

In contrast with input coefficients in physical units the value input coefficients incorporate outlays on material resources connected not only directly with the production of given branch but also indirectly through the production of secondary products produced and consumed within the given branch (and consequently not included in the gross output of this branch). For instance, if an iron and steel plant incorporates coke and chemical works in its shop capacity, the value input coefficient includes only that part of the coal outlays in the coke and chemical shop which corresponds to the share of the output of the coke and chemical shop utilized in that plant. Consequently: before the calculation of value coefficients on the basis of coefficients in physical units is begun, it is necessary to add to the latter the material outlays effected through other types of items produced locally. Mathematically this function is expressed in the following form:

$$a_{kl} = a_{kl}^{1} + a_{kv}a_{vl}(1 - W_{v}),$$

where

 a_{kl} = ratio of outlays on item k to the output of item l;

- $a_{kl}^{l} =$ direct input coefficient for item k used for the production of item l;
- a_{kv} = ratio of direct expenditures on item k to the output of item v;
- a_{vl} = direct input coefficient for item v used for the production of item l;
- W_v = proportion of item v received from outside for the production of item l.

In the calculation of direct input coefficients in value terms on the basis of coefficients in physical units, the Scientific Research Institute of Economics utilizes the following formula:

$$a_{ij} = \frac{k_i}{k_j} \sum_{k=1}^m \sum_{l=1}^n \bar{a}_{kl} \frac{p_k}{p_l} W_k d_l,$$

where

- a_{ij} = direct input coefficient for the output of branch *i* used for the production of branch *j*;
- \bar{a}_{kl} = direct physical input coefficient for item k used for production of item l, adjusted for the use of item k effected through secondary products as explained above;
- $p_k = \text{unit cost of item } k;$
- $p_l = \text{unit cost of item } l;$
- W_k = proportion of item k received from outside in the total outlays on item k for the production of item l;
- d_l = relative share of item l in the gross output of branch j;

- m = number of items included in the material expenditures of branch *i*;
- n = number of items included in the output of branch j;
- k_i = ratio of the wholesale cost of the output of branch *i* to the corresponding final consumption prices;
- k_j = ratio of the wholesale cost of the output of branch *j* to the corresponding final consumption prices.

As this formula shows, the level of direct input coefficients in value terms depends on the size of direct input coefficients in physical units, the relation between the prices of materials and of products, the commodity structure of gross output, and the extent of combination between the branches under discussion.

Under the existing method of preparing intersectoral balances, value input coefficients are derived by the use of average wholesale prices of the branches $(p_k \text{ and } p_l)$. The average branch prices for the expended items $k(p_k)$ are determined as a weighted average based on the assortment of consumption of items k and the price list for the consumed products.

The average branch prices (p_l) of produced items l are determined similarly as weighted averages based on the planned assortment of various items and the price list for certain types of products included in a given assortment.

Direct input coefficients in value terms are calculated in final consumption prices. In accordance with the formula, therefore, the direct value coefficient at wholesale prices is multiplied by the ratio of wholesale prices to final consumption prices obtained for the supplier branch, and is divided by an analogous ratio obtained for the consumer branch.

The proportion of item k received from outside in the total use of that item for the production of branch j is equal to unity when that whole item is received from outside, i.e. from other enterprises. In a case where whole product k is manufactured at the enterprise where it is consumed, W_k is equal to zero, and consequently the outlays on this product are not included in direct input coefficients in value terms. As for the products which, departing from the factory method, are included in the gross output as "primary" products of the branch, no matter whether they are all consumed within the enterprise or are partly shipped out, W_k is always equal to one.

As to ratio d_l , the numerator—value of the gross output of item *l*—includes the goods produced and consumed within the same enterprise and hence not included in the gross output. The denominator is the gross output of branch *j*. When calculating d_l it is necessary to take into account the composition of the gross output of each branch in both base and plan years, adjusted according to current and prospective data.

When direct input coefficients in value terms cannot be obtained directly from appropriate physical coefficients, they are calculated on the basis of statistical data with appropriate amendments for the plan period, following the same sequence of procedure as indicated for the preparation of physical coefficients. Changes in value coefficients depend in fact upon:

(a) changes in input coefficients in physical units;

(b) changes in average prices in connexion with the changes in the commodity-mix of the output of the branch;

(c) changes in ratio W_k ;

(d) shifts in the commodity-mix of the gross output of branches.

To determine value coefficients for a plan period a considerable amount of basic planning data is therefore necessary. Such data may be available at various stages in the preparation of current plans; they may also be available from the final preparations for long-term plans. In long-term planning however there is an important stage at which an initial preparation of basic economic indices of national economic development and an initial estimation of intersectoral proportions are called for. This stage may still lack many of the basic data which should underlie the estimation of planning coefficients. Different methods of calculating coefficients should be employed at this stage. Calculations of direct input coefficients can be based on ex-post balance data at thi nitial stages of preparation of the long-range nationale economic plan. The 1970 intersectoral balance, constructed at the initial stage of preparation of the 1966-70 Five Year Plan, indicated an acceptable level of accuracy of input coefficients based on an *ex-post* balance.

The open static model of intersectoral balance for the national economy is one of the most widely practised of today's planning techniques. This model helps to determine, in the final analysis, the amount of output to be produced by each branch and the level and structure of material expenditures that will ensure the attainment of a scientifically set goal of the people's living standards, expressed in the form of final products. The methods of calculating the final product and creating the basis for normatives, which in turn are the basis of the balance, have been worked out for some years. The static model, however, has some shortcomings. The main one is that industrial capital investments necessary for the expansion of production are determined autonomously and outside the balance model itself. This shortcoming will be corrected by a dynamic model of intersectoral balance now being developed, which embraces, in addition to current material expenditures, capital and labour expenditures in the endogenous system.

In addition to the input coefficients of the instruments of labour for each balance sector, the coefficients must be worked out for stock capacity, investment requirement and labour intensity. These coefficients have, in fact, been calculated for all the branches in the balances for the economy of the USSR in 1963, 1965 and 1970. The system of such coefficients makes it possible to calculate with the aid of computers an intersectoral balance which will ensure the equilibrium of capital and labour resources as well as raw materials, fuel and electric energy.

ANNEX

Selected elements from the 1959 intersectoral balance

(Annex table 1 follows overleaf)

ANNEX TABLE 1: DIAGRAM OF INTERSECTORAL BALANCE IN KIND

	Resources		
		Output of items (compensation of expenditures)	End product
Tist of items (according to accepted nomenclature) Production Imports Other entries	Production Imports Other entries Resources (total)	e all ty ace fern cots incled s cots incled s ing (exc. ing (exc.	Fixed assets To replenish the fixed and crutating assets Circulating assets Total Consumption Private consumption fincluded Exports Total distribution
 Part Iron ore Manganese ore Limestone Chromite ore Pig-iron of all types (included furnace ferro-alloys) Steel Non-ferrous rolled stock (forged ingots included; higher processing excluded; Tin-plate Cold-drawn structural stee Steel piping Pig-iron piping (excluding pipes) Electro ferro-alloys Wire nails Wire, conventional Steel cable Cold-rolled steel strip Code-rolled steel strip Cower transformers, etc. 	ling blast- pipes and items of ed) 1 sewerage	Part 11	Part III

AND MARTIN CONTRACTOR

INTERNATIONAL COMPARISONS OF INTERINDUSTRY DATA

128

129

Annex table 2: Direct and total requirements of non-perrous metals, basic chemicals, electric power and thermal energy and coal for the production of industrial goods

(Calculated according to the 1959 intersectoral balance for 1959 in value terms)

	ber 1.00	re in roubles 00 roubles roduct	Ratio of		per 1,00	re in roubles 00 roubles product	Ratio of
(1)	Direct (2)	Total (3)	(3) to (2) (4)	(1)	Direct (2)	Total (3)	• (3) to (2) (4)
Expenditures on non-ferrous metals for:				Non-ferrous metal ores	44·6	59·4	1.3
Metalware for industrial uses	543.4	672.7	1.2	Synthetic rubber	44·3	69-3	1.6
Metal structures	539·7	645.4	1.2	Bearings	39.7	5 9·1	1.5
Instruments		353-2	1.2	Paper industry	33.7	47·7	1.4
Sanitary engineering equipment	279.8	354.2	1.3	Metalware for industrial uses	31.4	65.4	2.1
Equipment for building materials				Refractory materials	30.8	51.3	1.7
industry	256.7	353.0	1.4	Building materials	30.6	52.9	1.7
Power machine-building industry	235.5	306.6	1.3	Peat	29.5	38.0	1.3
Bearings		306.4	1.3	Power-machine building industry	28.6	50.7	1.8
Foundry equipment		362.4	1.8	Equipment for building materials			
Process equipment for food industry	153-9	216.7	1.4	industry	28.6	59-3	2.1
Hoisting and transport equipment	148·0	223.2	1.5	Forging and pressing equipment	25.9	48·2	1.9
Metal-cutting and woodworking				Coke chemistry	26.0	59.8	2.3
machine tools		20 4·8	1.5	Oil refinery products	22.3	37.9	1.7
Process equipment for timber and paper				Coal	21.8	35.4	1.6
industries Equipment for civil engineering and		196.5	1.6	Pumping and compressor equipment and refrigerators; equipment and			
road building works	120.9	217.6	1.8	apparatus for chemical industry	21.1	51.5	2.4
Electrical engineering industry		175.5	1.5	Metal-cutting and woodworking			
Tractors, farm machines and spare				machine tools	20.2	39.7	2.0
parts for them		176.7	1.5	Sanitary-engineering equipment	17.2	42·5	2.5
Forging and pressing equipment		181.7	1.6	Repairs to all kinds of equipment	15.8	35.4	2.2
Other metalware		138.3	1.4	Instruments		35.4	2.3
Output of transport engineering		168.4	1.8	Aniline-dye industry	16.4	46.7	2.8
Repairs of all kinds of equipment		152.3	1.7	Civil engineering and road-building			
Process equipment for printing industry	73.0	103.4	1.4	equipment	16.7	44·1	2.6
Automobiles and spare parts		113.8	1.6	Tractors, farm machines and spare			- •
Process equipment for light industry		97.5	1.6	parts	16.7	33.9	2.0
Instruments for production purposes .	42·0	73.8	1.8	Process equipment for printing industry		30.3	1.9
Cables		39.5	9.0	Glass, porcelain and earthenware	150	50 5	17
Instruments for cultural and public		595	90	industry	15.3	27.8	1.8
service purposes		12.9	3.6	Electrical engineering industry Process equipment for timber and paper	14.7	44.7	3·1
				industry	14.0	35.3	2.5
Expenditures on basic chemistry products				Process equipment for light industry	12.1	26.0	2.1
for:				Metal structures	11.1	39·1	3.5
Artificial fibres	127.2	140.3	1.1	Transport engineering	11.1	33.6	3.0
Aniline-dye industry	83.9	135-3	1.6	Instruments for production purposes	10.8	25·7	2.4
Synthetic, organic and other chemical				Automobiles and spare parts	6.5	26.8	2·4 4·1
products	71.4	92.3	1.3	Synthetic resins and plastics		37.6	5.9
Synthetic rubber	54.8	75·0	1.4		12.8	35.0	2.7
Basic chemistry	50.0	60.7	1.2	Hoisting and transport equipment	12·8 9·2	71.1	7.7
Products of timber chemistry and wood hydrolysis	31.6	36.7	1·2	Cables Coal expenditure for :	9.2	/1.1	1.1
Abrasive, micaceous and graphitic				Coke and chemistry products	716.6	936-1	1.3
carbon goods	29·8	38.2	1.3	Electric power and thermal energy		275.2	1.2
Synthetic resins and plastics	16.4	56.6	3.4	Non-ferrous metals	81.2	270.1	3.3
Mining and chemical goods industry	15.9	19-9	1.3	Transportation of goods		103.9	3-3 1·4
Goods of paint and varnish industry	15.4	42·5	2.8	Mining and chemical goods industry .	57.6	115.6	2.0
Coke chemistry	11.5	16.2	1.4	Goods of gas industry	39.4	56.3	2.0 1.4
Paper industry	10.2	14.6	1.4			82·5	2.2
Electrical engineering industry	7.6	17.8	2.4	Paper industry Building materials	37·2 34·4	82·5 111·6	2·2 3·2
Power machine-building industry	1.2	5.9	4.8	Refractory materials	30.1	146.9	4·9
Expenditures on electric power and	r			industry		64.9	2.3
thermal energy for:				Timber chemistry and wood hydrolysis		58.5	2·1
Oil shale	91·9	107.6	1.2	Non-ferrous metal ores		93·0	3.8
		101.0	1'4	Abrasive, micaceous and graphitic		22.0	2.0
Abrasive, micaceous and graphitic		05.6	1.2			8 8·1	3.5
carbon goods		95·6	1.3	carbon goods			
Artificial fibre		71.1	1.4	Foundry equipment		161.1	6·7
Fundamental chemistry goods	50.5	76.5	1.5	Sanitary engineering equipment		175.9	11.8
Foundry equipment		92·9	1.9	Metalware for industrial purposes		192.1	12.9
Petroleum output goods	47.7	59•1	1.2	Basic chemical goods	14.9	130-4	8.8

Annex table 3: Direct and total expenditures of rolled stock of non-ferrous metals, electric power and coal for the production of industrial goods

(Calculated according to the 1959 current year intersectoral balance in physical units)

	t Tuit of meaning	Direct	Total	Ratio of
(1)	Unit of measurement (2)	coefficient (3)	coefficient (4)	(4) to (3) (5)
Use of non-ferrous rolled stock for:		440 8		
Trunk-line electric locomotives Trunk-line diesel locomotives	tons/piece tons/piece	119·7 95·8	156·5 122·5	1.3
Trunk-line passenger cars	tons/piece	36.8	45.3	1·3 1·2
Drilling units	• •	30.0 31.2	45°3 85°2	2.7
Trunk-line freight coaches	,	17.2	20.5	1.2
Excavators		12.1	16.4	1.4
Cutter-loaders	tons/piece	7.4	9.6	1.3
Trolley-buses	tons/piece	5.2	7.6	1.5
Steam boilers (excluding heating)		4.8	9.8	2.0
Automatic loaders	tons/piece	4.5	5.9	1.3
Grain harvesting combines Scrapers		4·0 4·0	6·3 9·4	1·6 2·4
Forging and pressing machines (excluding hand		40	24	2.4
machines and hand shears)		3.5	4.5	1.3
Buses	tons/piece	2.8	3.8	1.3
Tractors	tons/piece	2.6	3.8	1.5
Lorries	tons/piece	2.3	3.6	1.5
Power transformers	tons/1,000 kW	2.2	3.2	1.5
Bulldozers	tons/piece	1.9	5.9	3.1
Compressors	tons/piece	1.2	2.2	1.8
All kinds of steel piping Wire nails	tons/ton tons/ton	1·1 1·0	1·3 1·2	1.2
Conventional wire	tons/ton	1·0 1·0	1·2 1·2	1·2 1·2
Steel line	tons/ton	1.0	1.2	1.2
Cars	tons/piece	1.0	1.7	1.7
Process equipment and spare parts for cement				
industry	tons/ton	1.0	1.2	1.2
Oil equipment	tons/ton	1.0	1.3	1.4
Diesels	tons/piece	0.9	1.5	1.8
Metal-cutting machine tools	tons/piece	0.9	2.0	2.3
Metal-cutting instruments	tons/1,000 roubles tons/1,000 roubles	0·8 0·7	1·1 1·4	1.4
Roller bearings (new) High- and low-voltage electrical apparatus	tons/1,000 roubles	0.7	1·4 0·9	1·9 1·7
Crushing and grinding equipment	tons/1,000 roubles	0.3	0.5	1.2
Textile looms	tons/piece	0.4	0.8	2.3
Woodworking machine tools	tons/piece	0.4	0.6	1.6
Refrigerating units	tons/set	0.2	0.6	2.5
Instrument and means of automation	tons/1,000 roubles	0.2	0.3	1.6
Use of electric power for:				
Electrolytic ferro-alloys	kilowatt hours/ton	4,374	6,259	1.4
Lorries		1,750	5,309	3.0
Cars	kilowatt hours/piece	1,679	3,898	2.3
Refractory materials	kilowatt hours/ton	626	681	1.1
Steel	kilowatts/ton	50	283	5.7
Window-panes	kilowatt hours/1,000m ²	438	980	2.2
Coal	kilowatt hours/ton	19.8	23.1	1.2
Trunk-line electric locomotives	1,000 kWh/piece	286.5	552.5	1.9
Trunk-line diesel locomotives	1,000 kWh/piece	103.9	235.9	2.3
Drilling units	1,000 kWh/set	11.2	183.8	16.4
Excavators	1,000 kWh/piece	10.4	26.9	2.6
Diesels	1,000 kWh/piece	8.5	12.8	1.5
Building faience and semi-china1	,000 kWh/1,000 pieces	7.9	10.0	1.3
Frunk-line freight coaches	1,000 kWh/piece	7.4	18.1	2.4
Foundry equipment	1,000 kWh/piece	3.8	6.3	1.7
Metal-cutting lathes	1,000 kWh/piece	3.3	6.8	2.0
Compressors	1,000 kWh/piece	2.1	5.0	2.4
Fextiles looms	1,000 kWh/piece	2.0	3.4	1.7
Scrapers	1,000 kWh/piece	1.9	14.7	7.9
Ethyl alcohol, rectified		1.6	2.7	1.7
Metal-cutting instruments1,	000 kWh/1,000 roubles	1.3	2.2	1.7

INTERSECTORAL BALANCES: KEY ASPECTS IN THE USSR

195

The second second

	Unit of measurement	Direct coefficient	Total coefficient	Ratio 05 (4) to (3
(1)	(2)	(3)	(4)	(5)
Use of coal for:				
Coke	kilograms/ton	1,434	1,526	1.1
Electric power	kilograms/1,000 kWh	526	587	1.1
Refractory material		86	514	6.0
Cement	kilograms/ton	135	147	1.1
Window-panes	kilograms/1,000 m ²	5,244	6,206	1.2
Pig-iron	kilograms/ton	29	1,412	48.7
Steel	kilograms/ton	42	1,018	24.5
Rolled stock of non-ferrous metals	kilograms/ton	48	1,464	30.7
Electrolytic ferro-alloys	kilograms/ton	69	3,760	54.7
Powdered sugar	kilograms/ton	739	955	1.3
Synthetic fibre	tons/ton	18-1	24.7	1.4
Ethyl alcohol, rectified	tons/1,000 dk1	13.9	16.4	1.2
Building faience and semi-china	tons/1,000 pieces	7.3	13.8	1.9
Foundry equipment	tons/piece	4∙8	14-1	2.9
Artificial fibre	tons/ton	4.7	10.2	2.2
Woollen fabrics (ready)	tons/1,000 m ²	1.5	3.2	2.1
Lorries	tons/piece	1.4	10.1	7.2
Rolling equipment		0.2	3.0	5.9

ANNEX TABLE 3 (continued)

CHARACTERISTICS OF THE USSR INPUT-OUTPUT TABLES

Vladimir G. Treml, Franklin and Marshall College, Lancaster, Pa., United States of America

I. INPUT-OUTPUT TABLES FOR 1959

The first large-scale operational input-output tables for the entire USSR economy for 1959 were completed in 1961. Two other tables, one in current 1959 purchasers' prices and the other in physical units, were prepared at the same time. Both presented flow tables, tables of direct input coefficients, and tables of direct and indirect coefficients (i.e. $(I-A)^{-1}$ type inverse of the technology matrix).¹

The table in value terms was prepared in the form of four quadrants. The interindustry transaction matrix shows the production and distribution of output of 83 endogenous sectors, 73 of which are industrial; the matrix has no unallocated flows. The table follows the definition of productive activity in the material product system and the sectors shown are only those engaged in "material production", i.e. industry, agriculture, construction, freight transportation, communications serving production, and all trade and distribution activities. All other services-such as financial, medical, passenger transportation, or communications serving population and other non-productive spheres-are excluded from the interindustry transaction matrix and shown as consumers in the final demand quadrant.² Construction (represented by one sector, and thus covering maintenance and new construction) is shown only as the purchaser of inputs (columns) with the entire output allocated to final demand; this leaves the construction row of the transaction matrix blank. The flow table was completely integrated with Soviet national income accounts, both in the final demand quadrant (income by use) and in the value added quadrant (income by source). Both competing and non-competing imports are shown in terms of a single row of entries in the value-added quadrant, with imports classified with sectors producing similar or identical products domestically.

The flow table in physical units was prepared for industrial products only (the definition of industry includes mining as well as manufacturing enterprises). It shows the production and distribution of 157 products with flows expressed in appropriate physical units (tons, kilowatt hours, units) except for twelve aggregated groups of products such as small electrical appliances, or spare parts for machinery, which were measured in constant prices. Even with the Soviet definition of gross industrial product, the coverage was far from complete. An entire industry branch, designated in the USSR statistical classification as miscellaneous (printing and publishing, toys, jewellery, plastic products, and some mining of non-metallic minerals), was omitted. Furthermore, according to one source, some 20 per cent of the gross output of ferrous metallurgy, 40 per cent of the gross output of chemicals, and 40 per cent of machinebuilding and metal-working products have not been included in the table.³

The layout of the table in physical units is somewhat different from its counterpart in value terms. It is rectangular, with three quadrants: the first, consisting of two columns and 157 rows, shows stocks at the beginning of the period, and imports; the second, a square 157×157 table, shows the interindustry production and distribution of 157 products; and the last is a demand quadrant, consisting of four columns and 157 rows, which divides final demand into general market fund, other uses, exports, and stocks at the end of the period. The format of the table was later criticized for not separately identifying final consumption and investment components of final demand.⁴

The flow and coefficient data necessary for the construction of both 1959 tables could not have been obtained from census or other statistical and planning data, and a specially designed sampling survey was conducted between April and June 1960. The survey covered 11,000 industrial enterprises and construction projects and was of a stratified-random type.⁵

Industry as a whole was divided into groups according to the standard industrial statistical classification (for example, ferrous ores, textiles and petroleum extraction) and selected groups were then further divided into subgroups of small-, medium- and large-scale enterprises (by value of output). Sampling within groups and subgroups was random. On the average, 20 per cent of all the enterprises included in the group or subgroup were sampled; but the coverage was greater for groups of

¹ M. R. Eidelman, Vestnik statistiki, No. 1, 1960, pp. 55–60, and No. 7, 1961, pp. 9–29; Voprosy ekonomiki, No. 10, 1961, pp. 61–74. L. Berri, F. Klotsvog and S. Shatalin, Planovoe khoziaistvo, No. 2, 1962, pp. 51–62. For an English summary of earlier Soviet experiments with input-output techniques see V. G. Treml, "Economic Interrelations in the Soviet Union", Joint Economic Committee, 88th Congress, Annual Economic Indicators for the USSR (Washington, D.C., 1964), pp. 183–213.

² Since the table was prepared in terms of purchasers' prices, which include trade and transportation costs, the allocations of these sectors to final demand are, by definition, zero.

⁸ L. Berri, F. Klotsvog and S. Shatalin, *Planovoe khoziaistvo*, No. 2, 1962, p. 58.

⁴E. L. Vairadian in *Voprosy statisticheskoi metodologii*, edited by I. G. Malyi (Moscow, 1964), pp. 237–238.

⁵ Flow data for agriculture and other non-industrial sectors of the table in value terms were taken directly from census statistics.

multi-product enterprises (such as chemicals) and smaller for groups of enterprises producing homogeneous products such as natural gas. The enterprises being sampled were directed to report in detail the cost structure of each product produced, including secondary and auxiliary products. One questionnaire was provided for the data in value terms, and another for the data in physical units.⁶

The input-output tables are constructed in terms of "pure" sectors or homogeneous products; that is, the secondary, auxiliary, and other non-sectoral products are removed in the process of preparing the table. The method of adjustment employed in the USSR tables is very similar to that used in Japanese input-output studies: products are removed from sectors for which they are secondary and added to sectors for which they are primary. In tables in value terms the input structure (column) is adjusted in proportion to the value of output removed or added. In tables in physical units the enterprises being sampled were asked to identify all costs as related to production of primary and secondary products. These latter tables, following the practice of planning and statistical agencies, show gross turnover of output, including all fabricates and semi-fabricates produced and used up within the same enterprise. Thus for a position in the table designated "sugar" the total output will include granulated sugar produced and subsequently used in the production of lump sugar. If, on the other hand, the semi-fabricate (such as granulated sugar) is shown by a separate position, the necessary adjustments will be made in the cost structure of the sector.

Unfortunately it is difficult to see from the literature how extensive the adjustments for homogeneity of output were in the preparation of the table in physical units. In the table in value terms the adjustments were rather significant, especially for manufacturing enterprises, as can be seen from table 1. One study showed that 88.3 per cent of the gross output of ferrous and non-ferrous metallurgy (as currently reported in statistics on the establishment basis) consist of metallurgy products proper; the remaining 11.7 per cent cover secondary, auxiliary and other products which had to be removed from the sector as non-sectoral. At the same time metallurgy products proper (produced in establishments not classified as metallurgical) were added to the gross output of ferrous and non-ferrous metallurgy, with a resulting net change of +4.8 per cent. Further, as can be seen from the table, the "pure" output of machinery and metalworking turned out to be lower than the gross output reported on the establishment basis, and the pure output of chemicals, after adjustments, to be substantially higher.

After the sample data had been collected and collated

TABLE 1: SHARES OF PRIMARY AND SECONDARY OUTPUT IN SELECTED SECTORS AND INDUSTRIES, USSR, 1959

	Percentage	of total
Sector or branch	Share of primary output in unadjusted gross output	Net changes ir gross output ^a after adjustments
Metal-ore mining (all kinds)		n.a.
Metal-ore mining (ferrous)		9 6 .6
Coking coal products	. n.a.	141.8
Ferrous metals	. 85.0	n.a.
Ferrous and non-ferrous metals	. 88.3	104.8
Coal mining	. 99•6	n.a.
Petroleum extraction	. n.a.	88.9
Oil shales	. n.a.	175.4
Electrical power	. 98·2	n.a.
Fuels (all) and electrical power	. n.a.	106.8
Transporting and hoisting machinery	. 64.9	n.a.
Forging-pressing equipment	. 65.9	91.9
Transportation machinery	. 72·2	n.a.
Energy and power machinery	. 79•8	n.a.
Machine tools	92.3	n.a.
Tools and instruments	n.a.	114.3
Machine building (all)	n.a.	92.0
Chemical industry	n.a.	111.6
Woodworking and paper	. n.a.	95.6
Construction materials	91.6	n.a.
Textiles and apparel	n.a.	100.5
Food industry	n.a.	100.5

Sources: M. R. Eidelman, Vestnik statistiki, No. 7, 1961, p. 15, and in the same journal, No. 5, 1963, p. 17; A. Efimov and L. Berri (eds.), Metody planirovaniia methotraslevykh proportsii (Moscow, 1965), p. 81; and Iu. M. Shvyrkov, Klassifikatsiia otraslei v narodnokhoziaistvennom plane (Moscow, 1965), p. 32 and p. 40.

n.a. = not available.

^a Gross output in wholesale prices net of turnover tax.

and the necessary adjustments for product homogeneity made, the sample flow matrix was recalculated into a matrix of direct material coefficients showing input requirements per unit or per rouble of gross output. Finally, using control national economy totals for the gross output of various sectors and products shown, the interindustry transaction flow table was prepared, and final demand, value-added, and foreign trade data were added from census data.

Product coverage used in the 1959 *ex-post* table and in subsequent planning tables is shown in table 2. With the exception of some sample coefficients (both direct, and direct and indirect) the 1959 input-output table in physical units has not been published. A somewhat truncated version of the interindustry transaction matrix in value terms was published in the 1960 *Statistical Yearbook*.⁷

The 1959 input-output table in value terms was subsequently complemented by the addition of labour

⁶ R. Eidelman, Vestnik statistiki, No. 7, 1961, pp. 9-10. A. N Efimov, Ekonomicheskaia gazeta, 4 Sept. 1961, pp. 3-4. The instructions issued by the Central Statistical Administration of the USSR and the two questionnaires are available in translation by the U.S. Dept. of Commerce, Joint Publication Research Service, Forms and Instructions for 1959 Input-Output, USSR (Washington, D.C., 1962). JPRS 14132.

⁷ Ts. S. U. Narodnoe khoziaistvo SSSR v 1960 godu (Moscow, 1961), pp. 103–143.

TABLE 2: PRODUCT CLASSIFICATION AND INDUSTRY BREAKDOWN EMPLOYED IN SOVIET INPUT-OUTPUT TABLES

Product or branch	1959 ^a	1959	1962	1963	1964-65	1970 ^a
Ferrous metallurgy	5	15	17	18	20	6
Non-ferrous metallurgy	2	14	25	25	27	1
Fuel-energy	9	9	10	10	14	8
Chemicals	10	21	30	40	39	11
Paper and woodworking	6	9	13	15	16	5
Construction materials	1	6	15	16	21	13
Machine building	27	60	176	184	213	38
Textiles and apparel	3	13	20	20	24	12
Food products	7	10	13	12	32	14
Miscellaneous industrial products	3		4	4	13	4
Total industry	73	157	323	344	408	112
Agriculture	2		14	19	20	2
Construction	1		1	1	1	5
Transportation and communications	2		7	7	7	2
Trade and distribution	3		1	1	2	2
Other	2		-			1
Total	83	157	346	376	438	124

Sources: N. I. Kovalev, Vychislitelnaia tekhnika v planirovanii (Moscow, 1964), p. 199; and A. Efimov and L. Berri (eds.), Metody planirovaniia mezhotraslevykh proportsii (Moscow, 1965), p. 92. ⁸ Tables available in value terms.

data, i.e. by total employment in each of the 83 sectors in man-years, and by a capital capacity vector.⁸

Before an examination of *ex-ante* or planning national input-output tables, and other problems concerning the manipulation of input-output data, at least a brief reference must be made to the extensive exploration of regional and interregional input-output tables in the USSR. Recognizing early the regional differentials in production techniques, prices, transportation costs, and other factors, and the difficulties and distortions introduced by the aggregation of regional data, several groups of scholars devoted their attention to the problems of preparing regional input-output tables. So far 19 such regional tables have been constructed, ranging from a small 14-sector table for the Mordovskaia region to a 500-sector table for the Byelorussian SSR. Several more are in preparation. Both *ex-post* and planning types of input-output tables are being constructed but, with the exception of the 500-sector one for the Byelorussian SSR, all regional tables are in value terms. The first interregional table was recently completed for 1961; it covered 239 products in three Baltic republics and was based on separate tables. This pilot interregional table shows flows measured in producers' prices, in contrast to all other regional tables in value terms, which have been prepared in purchasers' prices. With the exception of the import

vector, which is much more detailed, the regional inputoutput tables are similar to national counterparts in format and in structural and algebraic characteristics.⁹

II. Some features of the 1959 tables in value terms

A comparison of the two 1959 ex-post input-output tables shows that the smaller, 83×83 table in value terms is closer to the traditional input-output form and is a versatile analytical tool, mainly because of its labour and capital vectors. The larger, 157-product table in physical units is more akin to traditional material balances, except that the individual balances (rows) are completely integrated in a fully balanced table. The table can be used to analyse and, in a planning sense, to ensure the consistency of given gross output levels with individual industry requirements. This is in itself a major step forward in the practice of planning with material balances. However the incomplete coverage, the format of the final demand quadrant, and the absence of any primary resource constraints make it impossible to use the table for a consideration of the feasibility of alternative final demand mixes and for other traditional exercises with input-output models.

Unfortunately the 1959 *ex-post* table in physical units and the subsequent planning tables have never been published in the USSR; nor does the literature seem to offer any significant discussion of the structure of production, or even of the main parameters, as revealed by these studies. We may, however, consider some of the structural data revealed in the 1959 *ex-post* table in value

⁸ Labour data, apparently obtained by the same sampling survey, were adjusted to agree with the adjusted homogeneous-product sectors. The entire flow table in value terms was recalculated in labour terms by multiplying each row of the interindustry transaction matrix and the final demand quadrant by a corresponding labour input coefficient defined as man-years of labour per rouble of gross output. See M. R. Eidelman, Vestnik statistiki, No. 10, 1962, pp. 3–17, Sotsialisticheskii trud, No. 2, 1963, pp. 12–13; and A. Efimov and L. Berri (eds.), Metody planirovaniia methotraslevykh proportsii (Moscow, 1965), pp. 190–203. The interindustry transaction matrix in man-years was published in an abridged format in Ts. S. U. Narodnoe khoziaistvo SSSR v 1961 godu (Moscow, 1962), pp. 77–117.

⁹ V. V. Kossov (ed.), Mezhotraslevoi balans proizvodstva i raspredeleniia produktsii ekonomicheskogo raiona (Moscow, 1964). Iu. R. Leibkind, Vestnik Akademii Nauk SSSR, No. 10, 1963, pp. 15–17. V. Kossov and L. Mints, Vestnik statistiki, No. 6, 1964, pp. 16–25.

terms, since presumably some basic parameters are similar for tables both in value terms and in physical units.¹⁰

Two aspects of the structure of production revealed by the 1959 *ex-post* table in value terms are of particular interest: the high concentration of flows and the bloctriangular structure.

The 83×83 interindustry transaction matrix shows 4,260 non-zero entries, thus having the density of approximately 62 per cent. Subsequent studies have revealed however that most direct material input coefficients are small and that some 500 (or 12 per cent of all non-zero entries) account for about 95 per cent of all interindustry transactions, including 97–98 per cent of all purchases of construction and agriculture; about 95 per cent of purchases of the metallurgical, fuel, electrical power, textile, apparel and food industries; and some 80 per cent of purchases of the machine-building, transportation, woodworking and paper industries.¹¹ The high degree of concentration of flows among a relatively small number of positions in the interindustry transaction matrix is further illustrated in table 3.

TABLE 3: CONCENTRATION OF FLOWS IN SOVIET 1959 INTERINDUSTRY TRANSACTION MATRIX (1959 DATA)

Purchasing sector	Numbe r of majo r suppliers	Relative share of major suppliers in total purchases (percentage) ^a
Coal mining	5	87.5
Oil extraction	3	74.7
Electrical power	7	96.2
Electrical appliances	11	82.5
Instruments	5	66.5
Machine tools	6	73.9
Automobiles	8	84.8
Basic chemicals	6	65.8
Resins and plastics	5	89.8
Woodworking	9	85.6
Construction materials	13	89.4
Textiles	8	97.6
Apparel	1	98.5
Sugar	4	94.9
Construction	23	97.4
Agriculture	7	94.9
Animal husbandry	7	97.9

Sources: L. Berri, F. Klotsvog and S. Shatalin, *Planovoe khoziaistvo*, No. 9, 1962, p. 102. ^aTotal cost of material purchases only; i.e. column sum of the interindustry transaction matrix, less costs of transportation, communications, trade and distribution.

It is interesting to note that the concentration of flows revealed and the importance played by a small number of coefficients was deemed sufficient for the preparation of the technology matrix (direct input coefficients) for the 1962 planning tables by the adjustment of only some 500 coefficients, the remaining 3,760 being left as in the 1959 table. The selected key 500 coefficients were adjusted for technological changes, and price and output-mix changes.¹²

Another interesting feature of the 1959 *ex-post* table in value terms is its triangular and bloc-triangular (blocdiagonal) inner structure which, in all probability, repeats itself in the table in physical units.

The triangularity can be described as follows: the order of the 83 sectors of the interindustry transaction matrix was rearranged in such a way that, as far as possible, each sector would be purchasing less from the preceding sector than it was selling to it; that is, a_{i-1} , $i < a_i$, i-1. This rearrangement of the order in which the 83 sectors are shown in the 1959 table resulted in an almost triangular table in which 92.2 per cent of all interindustry transactions are found on or below the main diagonal of the matrix.¹³ The new sector order is very similar to the triangular sector order of other developed economies. At the apex of the matrix are the processed foods, apparel, textile and footwear industries followed by machinery, chemicals, metals, mining, fuels and services.¹⁴

A further step could be to rearrange the order in which the sectors are listed so as to produce a bloc-triangular interindustry transaction matrix, i.e. a matrix with several distinct blocs (three in the case of the 1959 matrix, omitting the services) having a high degree of inter-

¹³ Iu. R. Leibkind in *Narodnokhoziaistvennye modeli*, edited by A. L. Vainshtein (Moscow, 1963), pp. 162–179.

¹⁴ The structural similarity of the Soviet and other economies can also be seen in the following test. In a study of international comparisons based on input-output data, Chenery and Watanabe classify all commodities into four groups in accordance with two ratios: U, or the ratio of total intermediate purchases of the given industry to gross outlays; and W, or the ratio of total interindustry deliveries of the given industry to gross output. The four groups are identified as final manufacture ($W \le 0.45$; $U \ge 0.45$), final primary production ($W \le 0.45$; $U \ge 0.45$), intermediate manufacture ($W \ge 0.45$; $U \ge 0.45$), and intermediate primary production ($W \ge 0.45$; $U \ge 0.45$). Working with aggregated input-output tables for four countries—Italy, Japan, Norway and the United States the authors show that all commodities, irrespective of country, fall in the same group. The present author repeated this exercise with a reconstructed 66-product Soviet table for 1959 (Vladimir G. Treml, The 1959 Soviet Intersectoral Flow Table, Volumes I and II, RAC Technical Paper 137, Washington, D.C., 1964). With the exception of services and other small discrepancies, all Soviet commodities (when classified in accordance with the value of U and W ratios) fall into one or other of the four appropriate groups.

¹⁰ We must however bear in mind the basic differences of the two tables. In the first place, the technology matrix of the table in physical terms is larger (157 \times 157) than the matrix in value terms (83×83). Secondly, in contrast with the table in value terms, which offers a complete coverage of all interindustry flows, the table in physical units appears to cover, at best, between 65 and 70 per cent of the interindustry flows.

¹¹L. Berri, F. Klotsvog and S. Shatalin, *Planovoe khoziaistvo*, No. 2, 1962, p. 55. A. Efimov and L. Berri (eds.), *Metody planiro*vaniia mezhotraslevykh proportsii (Moscow, 1965), pp. 102-103.

¹² L. Berri, F. Klotsvog and S. Shatalin, *Planovoe khoziaistvo*, No. 9, 1962, pp. 34–43. The importance of this group of key input coefficients is further illustrated by the results of the following sensitivity test. Each coefficient was separately tested to determine the maximum relative change it could undergo before this change would result in a 1-per cent change in the gross output of the given sector chosen as the arbitrary upper limit of tolerance. The test showed that 384 (or 9 per cent) of the total of 4,260 non-zero input coefficients could be varied by 50 per cent before the limit of tolerance would be reached; another group of 199 coefficients (4.7 per cent) could undergo increases up to 100 per cent before inducing a 1-per cent change in gross output. A. Efimov and L. Berri (eds.), *Metody planirovaniia mezhotraslevykh proportsii* (Moscow, 1965), pp. 156-157.

dependence and rather weak ties: 79.3 per cent of all interindustry transactions being found within the three blocs, and only 20.7 per cent constituting inter-bloc flows. The triangular inner structure would be retained within the blocs, with some 95 to 99 per cent of all intrabloc transactions lying on or below the main diagonal of the table.

It is interesting to note that the bloc-triangular inner structure of the matrix closely supports a hypothesis recently advanced by Simpson and Tsukui of the Harvard Economic Research Project. Working with five inputoutput tables for Italy, Japan, Norway, Spain and the United States they showed that each table lends itself to a rearrangement into a bloc-triangular format with a strong intra-bloc interdependence and weak inter-bloc relations. Transactions within blocs are nearly triangular.¹⁵ A comparison of these blocs and those of the Soviet tables reveals a close correspondence between them.

	Simpson-Tsukui blocs	Soviet blocs
Bloc A:	Final metal products	Final metal products
	Intermediate metal	Intermediate metal
	products	products
	Basic metals and ores	Basic metals and ores
Bloc B:	Apparel and processed foods	Apparel and processed foods
	Other non-metal products Agriculture	Agriculture
Bloc C:	•	Other non-metal products
	Electrical power	Electrical power
	Fuels	Fuels

Generally it appears that (in spite of specific features of the 1959 input-output tables for the USSR, such as the treatment of services, the use of purchasers' prices, and the important discrepancies in the commodity classification systems employed) the basic parameters revealed by these tables are similar to comparable structural data derived from input-output tables of other countries, e.g. the 1947 table for the United States.¹⁶

III. Ex-ante INPUT-OUTPUT TABLES

V. G. TREML

Almost immediately after the completion of the two 1959 *ex-post* tables, attention was turned to the construction of planning input-output tables. As has been seen in table 2 above, the USSR planning and research agencies have completed six tables and are working on the seventh planning input-output table (five of them in physical units). This impressive statistical and computational effort does not however indicate a full incorporation of input-output techniques with the other tools of the planning mechanism. Contrary to the expectations expressed earlier by some proponents of input-output analysis the planning models have not been integrated with the other tools of planning, and input-output techniques have remained in an experimental stage.¹⁷

Needless to say the introduction of the input-output techniques would greatly increase the flexibility and accuracy of planning. As both home and foreign analysts of the USSR system point out, the planners today (as in the past) begin with gross-output targets extrapolated from previously achieved levels, the consistency of various gross-output levels not being ensured beyond a few key industries and industrial interrelations. National income, and particularly its consumption component, is being determined essentially as a residual, after interindustry demand, export and investment requirements have been satisfied.¹⁸

Current experiments with planning input-output models (especially those in physical units) have not yet been extended to incorporate primary resource constraints, and the exercises conducted until now seem to have one overriding purpose: the development of a method of constructing a balanced interindustry transaction table with gross output levels and individual allocations that is consistent with a given set of final demand targets.¹⁹

¹⁸ One Soviet writer has described the present methods used as follows: "The planning rates of growth and proportions are determined essentially by gross output level projections, without giving due consideration to the needs of final consumption of the society. Gross output levels of steel, fuels and electrical power have been used as the starting point in preparation of the State Plan, and these levels were not balanced with the planning of levels of final consumption, national income, or standards of living. Plans for expansion of various branches are often based on achievements of previous periods without reference to the real requirements." S. Shatalin, *Voprosy ekonomiki*, No. 1, 1965, p. 23. Another authority states that "gross output levels are determined first by calculations of intermediate material requirements, and only then follows the calculation of final product. Consumption by the population is determined as a residual after subtracting capital investment from the final product". V. S. Nemchinov, *Voprosy ekonomiki*, No. 7, 1964, p. 82.

¹⁹ V. S. Nemchinov, *Planovoe khoziaistvo*, No. 6, 1963, pp. 1–9. G. I. Grebtsov et al., *Osnovy sostavleniia mezhotraslevogo balansa* (Moscow, 1962), pp. 187–277.

¹⁵ David Simpson and Jinkichi Tsukui, "The fundamental structure of input-output tables, an international comparison", in *The Review of Economics and Statistics*, Vol. XLVII, Nov. 1965, pp. 434-446.

¹⁶ The structural similarity of the USSR and the United States economies can be seen in the results of a study recently completed by the author under the auspices of the Research Analysis Corporation, McLean, Va. which is available in mimeographed form under the title "Structural similarities of the US and the Soviet economies, based on comparisons of input-output data" (V. Treml, 1965). The study covered 43 industries comparable in terms of commodity classifications listed in the 1959 USSR and the 1947 United States input-output tables. The rank correlation coefficient for direct labour input coefficients (employment in man-years per one million roubles or dollars of gross output) was calculated as +0.78; and that for ratios of final demand to gross output (Chenery and Watanabe's W ratio) was calculated as +0.79. The second group of rank correlation tests was applied to the structure of material purchases of the 43 comparable industries. Relative shares for purchases of metals, fuels and chemicals in total interindustry purchases were calculated and ranked with the following results: purchases of metal ± 0.90 , of fuels ± 0.85 , and of chemicals ± 0.70 . Similarly significant, although somewhat low rank, correlation coefficients were obtained from a comparison of the input-

output tables of the USSR for 1959 and those completed in the United States for 1958. For a Soviet study of international comparisons see L. Berri and Iu. Shvyrkov, *Voprosy ekonomiki*, No. 1, 1963, pp. 133–144. The fact that these authors operate with large aggregates somewhat reduces the value of their results.

¹⁷ A. Modin, Voprosy ekonomiki, No. 1, 1964, p. 112. V. Belkin, Voprosy ekonomiki, No. 6, 1964, p. 112. M. Z. Bor, Voprosy ekonomiki, No. 3, 1963, p. 5. Iu. I. Cherniak in *Planirovanie i* ekonomiko-matematicheskie metody, edited by N. P. Fedorenko (Moscow, 1964), pp. 190–191.

TABLE 4: NATIONAL INPUT-OUTPUT TABLES FOR THE USSR ECONOMY ALREADY CONSTRUCTED OR IN PREPARATION

	Number of	products/sectors			Percentage	Density
Year	Total	Industrial	Туре	Unit of measurement	coverage of GSP ^a	of matrix ^b
1959	83	73	Ex-post	Purchasers' prices	100	61
1959	157	157	Ex-post	Physical units	65–70°	n.a. d
1962	83	73	Planning	Purchasers' prices	100	61
1962	346	323	Planning	Physical units	n.a.	8∙4
1963	372	344	Planning	Physical units	80	n.a.
1963	435	407	Planning	Physical units	80	6.9
196465	438	408	Planning	Physical units	85	n.a.
1966°	n.a.	n.a.	Ex-post	Purchasers' prices	n.a.	n.a.
l97 0	124	112	Planning	Physical units	100	42.6
1970 ^e	600	n.a.	Planning	Physical units	n.a.	n.a.

^a Percentage coverage of Gross Social Product is the total value of material goods and productive services produced in the given year measured in producers' prices, but including turnover tax. ^b Percentage of non-zero entries in the interindustry transaction matrix. ^c Gross industrial product only (author's estimate).

Not available.

e In preparation.

The planning input-output tables described are thus static, and the capital investment allocations shown are simply categories of final demand and are not related to next-period productive capacities.20 The available literature on the subject does not offer a detailed description and analysis of planning input-output models, or a comprehensive description of problems encountered in their construction. The following discussion will therefore be limited to a few selected technical problems.

As can be seen from table 4 the number of products included in input-output in physical units was increased from 157 in the 1959 table to 346 in the first such planning table for 1962, and thence continuously to the projected 600 products to be shown in the 1970 table being currently prepared. This trend is dictated by a reluctance to use the common denominator of prices for groups of heterogeneous products on the one hand, and the desire to obtain the maximum possible coverage of Gross Social Product (GSP) on the other. The increased size of the matrix did make it possible to improve the coverage of the GSP-the 1963 table accounts for about 80 per cent (almost the entire agricultural output, and 70 per cent of new and maintenance construction) and the 1964 table shows approximately 85 per cent. This is to be compared with the coverage of some 65-70 per cent in the 1959 ex-post table in physical units.²¹ It must be added that the expanded product coverage is explained not only by the increase in the number of positions in the table but also by the addition of a row of unallocated inputs measured in value terms. As could be expected the increase in the number of products shown by separate positions led to a decrease in the density of the matrix.

The 1962 ex-ante 346 \times 346 matrix has 8.4 per cent nonzero entries, and this percentage is decreased to 6.9 in the 1963 ex-ante 435-product matrix.²²

The work on a planning input-output table thus starts with the preparation of a matrix of direct material input coefficients. Planning, statistical, and research agencies and organizations in the USSR have had a long experience of collecting, estimating and collating input coefficients (input norms in Soviet terminology) which constitute the basic frame of reference for subsequent allocation, distribution, or target-assigning in economic planning. In addition to elaborating methods of determining these norms the various agencies have also amassed a substantial quantity of empirical data. According to Soviet specialists in this area however the organization and methodology employed in norm-setting leaves much to be desired. At the outset of their explorations of inputoutput techniques researchers in the USSR reluctantly came to the conclusion that almost no coefficient (or flow) data which are available in the form of census statistics of the Central Statistical Administration of the USSR or in planning documents processed by various planning agencies, are directly usable in the preparation of input-output tables.²³ The framers of input-output tables had therefore to resort to sampling surveys for the construction of the first large-scale 1959 ex-post tables, and to an independent estimation of required input coefficients in the subsequent planning of input-output tables.

The available input coefficients (norms) could not be employed because of their general shortcomings: inconsistencies in product and branch classifications, differences in the product definitions used by various agencies, and varying levels of aggregation. But even apart from these general shortcomings the norms

²⁰ Some work in dynamic input-output analysis can be found in A. D. Smirnov, Dinamicheskaia model mezhotraslevogo balansa (Moscow, 1964) and in A. A. Konüs in Metody planirovaniia mezhotraslevykh proportsii, edited by A. Efimov and L. Berri (Moscow, 1965), pp. 54-75.

²¹ N. Kovalev, Voprosy ekonomiki, No. 5, 1963, pp. 76-87. N. Kovalev, Vychislitelnaia tekhnika v planirovanii (Moscow, 1964), p. 198.

²² N. Kovalev, Voprosy ekonomiki, No. 5, 1963, p. 80.

²³ M. R. Eidelman, Vestnik statistiki, No. 1, 1960, p. 66. Iu. R. Leibkind, Vestnik Akademii Nauk SSSR, No. 10, 1963, p. 17. A. Modin, Voprosy ekonomiki, No. 1, 1964, p. 112.

employed by planning agencies were found to be not directly usable within the frame of reference of inputoutput analysis. All USSR statistical and planning information is related to establishment or administrative divisions and not to the product basis-thus the use of available data would have entailed costly and timeconsuming recalculations to remove secondary and auxiliary inputs and outputs.²⁴ Moreover, the input coefficients employed in input-output tables show input requirements per unit of output based on the entire technological process within the given manufacturing enterprise: to give but one example, fuel requirements include not only fuels used up in direct productive processes such as heat treatment or machining, but also fuels used up in intra-plant transportation, heating of auxiliary quarters, etc. The input coefficients (norms) used by planning agencies, on the other hand, as a rule show only direct input requirements generated in main productive processes, and would not reflect the indirect or secondary requirements of the whole enterprise. In some industrial sectors the use of direct productive process input requirements would understate the total enterprise requirements by as much as 10-15 per cent.²⁵

Another thorny problem in the preparation of the matrix of direct input coefficients is posed by aggregation. Even in input-output tables in physical units (which show a large number of fairly narrowly defined products) aggregation is unavoidable. In the 1959 ex-post table in physical units such products as rolled ferrous metals, refractory materials, coal, diesels, metal-cutting machine tools, sea and river passenger-cargo ships (to cite but a few examples) are each shown by a single position: while in operational planning and control data these products have a much more detailed breakdown. The crucial problem is the choice of weights to be employed in the aggregation of a given group of coefficients. Until now, the gross outputs of the previous or the current planning period have been used as weights. This of course presupposes an unchanged output mix for the given aggregate position of the table and, furthermore, that the product definitions employed in the input-output table are dictated by considerations of close similarity of input structure. Neither is quite true. This invites substantial aggregation errors.²⁶ Even if these errors can be dismissed as minor, gross output levels as weights can be employed only as long as a set of gross output levels has been projected by the plan. But, as has been pointed out, the planning input-output models theoretically start off with a matrix of input coefficients lacking a set of gross output levels, and the latter are generated only at the end of the exercise. A recent paper discusses an iterative procedure by which final demand targets could be used in the absence of gross output levels as weights in aggregation.²⁷

While this method would constitute an improvement it still does not fully resolve the problem of aggregation, since it presupposes a unique, exogeneously determined set of final demand targets. Ideally the proponents for the application of input-output techniques in planning envisage planning models incorporating resource constraints which would generate alternative feasible sets of final demand, among which the optimal set would then be chosen. Thus the proposed method of using a unique set of final demand targets could not be employed in aggregation either.

Because of these and other difficulties the framers of input-output tables had to resort to an independent estimation of all direct material coefficients needed in the preparation of planning matrices. According to the director of the main computer centre of Gosplan (the agency responsible for the construction of planning inputoutput tables in physical units)²⁸ this process has been very involved and time-consuming. In the preparation of the 435 \times 435 matrix of input coefficients for 1963 the staff had to draw up 18,000 separate material balance sheets. For the estimation of input requirements in agriculture, fuels and lubricants, the staff was working with specially prepared maps for 32 agricultural crops and 42 products.²⁹

A brief scanning of the literature on the subject reveals important gaps in analytical techniques and methodology for the estimation of *ex-ante* direct input coefficients.³⁰ For instance, it seems that much still remains to be explored regarding the problem of substitutability of inputs and what constitutes technological progress in the production of a given commodity.

Relative changes in input requirements appear to be significant. Although the literature available on the subject is not very illuminating, some judgement regarding the order of the magnitude of these changes can be made on the basis of a sample of selected coefficients for different years, as shown in table 5. It must be noted however that all the data presented are from input-output tables in value terms which as a rule are more aggregated than tables in physical units. Since we are dealing with value coefficients the dynamics of the changes are explained not only by changing technology and possible changes in the output mix but also by changes in trade

²⁹ N. I. Kovalev, Voprosy ekonomiki, No. 5, 1963, p. 78 and p. 81. Vychislitelnaia tekhnika v planirovanii (Moscow, 1964), pp. 198–206.

²⁴ G. I. Kiperman, *Klassifikatsila otraslei narodnogo khozialstva* (Moscow, 1964), p. 33. Iu. Shvyrkov, *Planovoe khozialstvo*, No. 5, 1965, p. 17. V. S. Nemchinov, *Planovoe khozialstvo*, No. 6, 1963, p. 4.

²⁵ N. Kovalev, Vychislitel'naia tekhnika v planirovanii (Moscow, 1964), p. 199. R. Busunov, Vestnik statistiki, No. 3, 1964, pp. 26–27.

²⁶ V. S. Nemchinov, Ekonomiko-matematicheskie metody i modeli (Moscow, 1962), p. 276. Iu. Shvyrkov, Klassifikatsiia otraslei v narodnokhoziaistvennom plane (Moscow, 1965), pp. 87–111.

²⁷ L. Dudkin and E. Ershov, *Planovoe khoziaistvo*, No. 5, 1965, pp. 60-64.

²⁸ Soviet specialists appear to be resigned to the necessity of simultaneously preparing input-output tables in physical units and in value terms. The expressed recommendations of making the two variants at least comparable were not followed and at present even the task of preparing the tables is divided—the main computer centre of Gosplan prepares those in physical units, while the Economic Research Institute does those in value terms.

³⁰ A. Efimov and L. Berri (eds.), *Metody planirovaniia mezhotraslevyh proportsii* (Moscow, 1965), pp. 238–349, contains detailed description of methods of estimation and projection of *ex-ante* coefficients.

TABLE 5: RELATIVE CHANGES IN INPUT COEFFICIENTS FOR SELECTED PRODUCTS

		Percenta	ge/change
Input	Output	1959-62	1959-70
	- Ferrous metals	+9.4	+74.0
[Chemicals	+18.6	+260.0
Electrical power	Textiles and apparel	+3.6	
Electrical power	Processed foods		+60.0
l	Machinery		+8.2
(- Agriculture	+349.0	
Coal	Machinery	20.0	
Petroleum	Machinery	+5.0	_
	Machinery	·	
Fuels	Electrical power		
Fuels	Apparel and food		
	Ferrous metals		9.0
E-mail f	Machinery		
Ferrous metals {	Ferrous metals		7.2
Non Granden and I.	Machinery		+18.8
Non-ferrous metals {	Ferrous metals	_	+ 30.0
	Machinery		+20.4
Chambrel	Construction		+41.0
Chemicals	Agriculture		+440.0
	Food		+370.0
m	Industry	+2.2	
Transportation	Agriculture	-3.3	

Sources: L. Berri, F. Klotsvog and S. Shatalin, Plonovoe khoziaistvo, No. 9, 1962, pp. 38-39. A. Efimov, Planovoe khoziaistvo, No. 5, 1964, pp. 16-20. A. Efimov and L. Berri, (eds.), Metody planirovaniia mezhotraslevykh proportsii (Noscow, 1965).

This discussion has dealt with only a few selected problems encountered in the construction and manipulation of ex-post and ex-ante input-output tables in the USSR: all the problems are not exhausted. For example, no definite solutions seem to have been reached as to what should be the optimal number of commodities or sectors to be shown in planning tables, or as to the related problems of aggregation and disaggregation of data. Before input-output tables in physical units will become a versatile tool of planning, fully integrated with other planning instruments, the problem of the inclusion of primary resource constraints (such as labour and capital capacity) must be resolved. The operationability of input-output tables also depends on the resolution of the problem of collating and co-ordinating detailed statistical and planning documents covering (let us say) some 20,000 products, and input-output tables which would at best show 1,000-2,000 aggregated positions. This again calls for flexible aggregation-disaggregation techniques, and the consolidation and unification of the various statistical commodity classification systems employed in the USSR. A separate but important question now under intensive study in the USSR is the collation of regional and national input-output tables.

Last, but not least, we should refer to some basic theoretical assumptions of input-output analysis, such as linearity and constant returns to scale, or the nonsubstitutability assumptions. These assumptions would have to be tested in the setting of actual economic planning.

ANNEX

An experiment with the 1959 input-output data for the USSR

The 1960 Statistical Yearbook carried a truncated version of the interindustry transaction matrix, with some sectors completely omitted and others aggregated in various ways.³¹ With the exception of some relatives and indexes, no data on the value-added or final-demand quadrants were released.

The author of this note found it possible however to reconstruct the entire table: that is, to estimate the omitted flows and various entries in the two quadrants by the use of various input-output and other data scattered through the economic and statistical publications of the USSR and from other sources. The procedure and the results of the reconstructions have already been reported in detail elsewhere,32 but the reconstructed input-output table of the order of 30×38 , lately completed, is reproduced here as annex tables 1 and 2. This may serve the purpose not of a reestimation but essentially of a theoretical experiment serving the interests of comparative analysis. It is hoped that an exhibit of this nature will illustrate the common theme of the papers collected in this publication.

In the reconstructed transaction matrix the flows of production and of distribution are measured in 1959 purchasers' prices (in roubles). The final demand quadrant shows the estimated allocations to private and public consumption, gross investment and losses, and exports. The value-added quadrant shows depreciation, labour income and other elements of net income (accumulation funds, taxes and the like), and imports. The transaction flows relate to domestically produced goods and services; imports are therefore shown as an element of the production costs of column sectors and as such are classified according to their using sectors. The last row shows labour employment measured in thousands of man-years.

Direct input coefficients and those from full input coefficients can easily be calculated from this transaction matrix. To save space only the full input coefficients are reproduced in this annex. The full input coefficient matrix (inverse coefficient matrix) indicates the total (direct and indirect) requirements of product i for production of one rouble of final output of project j. Labour input coefficients, however, are computed in terms of man-years per 1,000 roubles of final output.

The sector classification employed in this reconstructed table of 38 sectors is shown in annex table 3, the last column of which refers to the sector numbers in the original 73-sector table published in the 1960 Statistical Yearbook of the USSR.

³¹ Ts. S. U. Narodnoe Khoziaistvo SSSR v 1960 godu (Moscow,

^{1961),} pp. 103–151. ³² For a detailed description of the Soviet table and of the methods of reconstruction see Vladimir G. Trenl, The 1959 Soviet Intersectoral Flow Table (two volumes), RAC Technical Paper 137, McLean, Virginia, 1964, and Vladimir G. Treml, "Value-added and final-demand quadrants in the 1959 Soviet input-output table", in John P. Hardt, editor, *Selected Studies in Soviet Economic Trends, Structure, and Institutions,* Research Analysis Corporation, McLean, Virginia, 1966.

ANNEX TABLE 1: RECONSTRUCTED (Interindustry (Product in millions of current roubles;

Using sector	Ferrous	Ferrous	Non-ferrous	Non-ferrous	Coking	Metal		
Producing	ores	metals	ores	metals	coal	products	Coal	Oil
sector	1	2	3	4	5	6	7	8
1. Ferrous ores	0.9	291.5	0.0	47.3	0.0	28· 0	0.0	0.0
2. Ferrous metals	8.6	854-2	15.9	0.0	1.6	406.5	28.8	9.9
3. Non-ferrous ores	0.0	0.0	0.8	798·4	0.0	0.0	0.0	0.0
4. Non-ferrous metals	0.0	552.7	0.0	551.5	0.0	5.8	2.8	1.2
5. Coking coal	6.0	735· 0	0.0	154.1	91.3	16.7	0.3	6.8
6. Metal products	3.8	89.8	3.2	22.8	0.8	31.3	13.2	2.5
7. Coal	13.9	525.6	10.8	34.1	968.6	18· 0	841.2	0.1
8. Oil	3.1	101.6	22.6	71.7	1.6	14.2	7.9	1,066.5
9. Gas	0.1	2.4	0.5	1.7	0.9	1.4	0.1	1.4
10. Other fuels	0.0	0.2	0.1	0.1	18.2	0.1	0.1	0.2
11. Electrical power	25.1	92.9	12.3	201.5	35-2	30.5	138-8	173.8
12. Electrical and power M&E ^a	1.5	7.0	2.1	2.3	0.6	0.7	6.1	1.1
13. Tools and instruments	3.3	15.5	4.7	5.1	0.5	7.7	27.2	3.2
14. General machinery	9.4	43.9	13.3	14.6	0.5	4.3	57.1	22.3
15. Transportation M&E	0.3	1.6	0.5	0.5	0.0	0.2	0.6	0.0
16. Automobiles	0.8	3.8	1.1	1.3	0.0	1.0	0.5	1.1
17. Agricultural M&E	0.3	1.3	0.4	0.5	0.0	0.1	0.7	1.7
18. Machinery n.e.c. ^b	0.0	0.0	0.0	0.0	0.0	0.0	88.3	28.0
19. Metalworking	1.3	5.8	1.8	1.9	0.2	1.5	10.1	0.7
20. Repair of machinery	21.9	101.7	30.8	33.9	3.3	4.9	2.1	32.3
21. Abrasives	1.2	3.2	1.7	1.1	0.0	1.3	0.3	0.1
22. Mineral and basic chemicals	6·4	39.0	9.1	13.0	15.5	3.3	4.2	41.2
	2.5	14·7	3.4	4.9	0.5	2.3	1.7	16.1
23. Synthetics, paints	2.5	15.3	3.5	5-1	0.7	1.7	26.9	1.2
24. Rubber products	14.3	38.6	20.0	12.9	0.9	15.3	396.5	5.1
25. Lumber and woodworking	0.6	1.6	20 0 0·9	0.5	0·1	9.8	0.5	0·8
26. Paper	2.3	6.3	3.3	2·1	0.1 0.2	1.6	11.9	4·4
27. Construction materials	2·5 0·5	1.2	0·6	0·4	0·2 0·1	0.2	0.5	0.3
28. Glass	1.4	1·2 8·7	1.9	2.9	0.3	22.8	1.9	1.0
29. Textiles				17.2	3.6	15.9	132.3	9· 0
30. Apparel and footwear	8·0	51.5	11.3			0.4		9.0 1.9
31. Food	1.0	6.2	1.3	2.1	0.6	0.4 0.0	1·7 0·0	0.0
32. Industry n.e.c.	0.0	0.0	0.0	0.0	0·0 0·0	0.0	0.0	0.0
33. Construction	0.0	0.0	0.0	0.0				
34. Agriculture	0.0	0.6	0.0	0.8	0.0	0.3	2.6	0.1
35. Froestry	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36. Transportation and communication	80.0	400·0	35.2	140.9	44.3	57.3	1,528-2	1,184.1
37. Trade and distribution	19· 0	219.4	27.3	129.6	0.0	30.7	146.2	68 0 ·8
38. Products n.e.c.	0.0	88·7	0.0	88.6	0.0	0.0	0.0	0.0
39. Total purchases	240.0	4,321.5	240.4	2,365.4	1,19 0·1	735-8	3,481.3	3,298.9
40. Depreciation	57.8	296.0	73.0	167.6	45.8	32.4	307-2	300.0
41. Labour income	188.3	1,073.6	238.4	754·2	103.1	200.8	3,035.6	287.7
42. Other net income	76· 0	522·1	-44.9	378-3	12.7	7.2	-526-2	2,675.4
43. National income	264.3	1,595.7	193.5	1,132.5	115.8	208.0	2,509.4	2,963.1
44. Imports	0.0	256.8	320.6	164.5	0.0	0.0	83•1	141.0
45. Total outlays	562·1	6 , 470·0	827.5	3,830.0	1,351.7	976-2	6,381· 0	6,703∙ 0
46. Employment	147.7	697.9	130.7	328.9	43.9	100.5	1,253.6	176.5

1959 SOVIET INPUT-OUTPUT TABLE transactions matrix) employment in thousands of man-years)

Gas	Other fuels	Electrical power	Electrical and power MSE	Tools and instruments	General machinery	Tra nspor tation M&E	Automobiles	Ag ric ultural MSE	Machinery n.e.c.	Meta worki
9	10	11	12	13	14	15	16	17	18	19
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.6	3.0	3.6	374.0	176.6	650-6	192.8			0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	220.4	292.6	50.0	564.4
0.0	0.5	0.9	183-2	484.6			0.0	0.0	0.0	0.0
0.1	0.0	0.0	3.0		145.8	48.1	146.6	31.6	50.0	83.7
0.1				0.8	21.5	2.5	6.6	9.3	1.9	30.5
	1.6	2.2	19.7	31.7	58.5	14.2	37.3	26.0	13.9	39.4
10.5	6.8	796.9	19.0	7.8	28.6	17.8	14.9	9.0	9.1	14.2
4.1	11.7	245.5	24.3	11.9	46.5	16.0	25.4	14.6	13.0	10.9
0.1	0.3	68.4	0.4	0.2	0.7	0.2	0.6	0.7	0.3	0.4
10.6	20.8	231.7	1.0	0.3	15.0	2.8	0.2	0.4	1.9	2.8
2.0	22.3	4.4	45.5	31.3	76-1	22.4	20.1	40.6	34.3	26.3
0.5	2.0	8∙0	191·2	29.6	210.3	228.4	18.0	19.5	278.8	16.3
0.3	4.7	3.2	127.1	129.5	111.0	33.6	37.5	49.8	197.8	12.7
0·4	7.8	0.3	2.3	1.9	198.6	11.9	1.1	3.6	11.6	2.0
0.0	1.5	0.0	0.0	0.4	12.5	91.2	0.0	0.0	7.1	0.0
0.1	0.7	0.5	3.1	8.2	126.2	8.6	315.1	11.4	86.7	3.7
0.0	4.6	0.1	18.5	0.0	87.8	3.6	0.1	217.5	60·4	2.2
1.0	20.4	21.0	25.3	6.6	91.5	47.7	9.5	14.0		
0.0	0.5	1.1	20.7	2.9	33.8	42.1	9·3 14·7		136.3	0.0
2.0	1.3	59.6	6.5	2 9 7·0	12.6			3.7	0.0	46.6
0.0	0.1	0.1	47.3	8.4	5.3	6·1	6.4	2.4	0.0	3.1
0.4	2.3	3.9	15.5			3.9	3.2	3.4	0.0	2.2
1.2	0.7			6.1	10.3	5.9	6.4	3.1	7.9	6.4
		1.4	72.4	95.0	41.1	25.8	36-2	17-9	<u>48∙6</u>	35-2
0.1	3.0	0.8	21.4	15.3	85.8	16.4	375-8	92.2	38-9	5.(
0.5	13.6	2.9	28.2	32.9	59.1	56.7	26.9	33.7	35.4	15-0
0.0	0.1	0.2	11.5	9.6	3.7	1.0	3.7	1.6	4.6	2.0
0.2	0.8	1.8	5.6	2.4	7.5	14.7	2.6	2.0	0.0	5.0
0.0	0.1	0.4	13.5	12.6	1.8	3.5	13.8	0.7	0.0	4.6
0.1	0.6	1.0	30.5	34.2	9.8	16.0	18.0	14.1	35.0	6.4
0.8	15.3	9.5	13.8	19.4	39.8	16.5	35.2	18.1	0.0	20.0
0.1	0.3	1.5	4.7	3.2	3.8	2.2	2.1	1.1	0.0	1.8
0.0	0.0	0.0	22.8	20.7	38.0	15.1	25.3	18.1	17.6	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.2	0.0	0.2	0.1	0.3	0.5	0.0	0.0	0.0	0.1
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
0.2	66.5	4.8	58.7	44.0	195-2	17.6	116.6			0.0
14.4	1.5	8.3	36.7	63.5	18.8	0.0		131.8	23.0	238.1
0.0	0.0	0.0	4.3	3.9	17.1		51.7	49·2	77.1	102.9
						8.5	2.8	16.2	8.0	18.6
50.1	215.6	1,484.0	1,452.4	1,302.9	2,465.0	994.6	1,595.1	1,149.9	1,249·2	1,322.5
17.4	44.5	500-1	95.0	83.7	157.6	68.4	57.1	67.8	166.7	68·7
16.3	260.9	426.6	759-9	669.4	1,260.6	547.1	442.3	426.3	1,436.8	5 49·6
182-2	29.0	1,165-3	99.7	1,863.4	- 115.5	-75.6	939.6	775.5	2,234.9	948.9
198.5	289.9	1,591.9	859.6	2,532.8	1,145.1	471.5	1,381.9	1,201.8	3,671.7	1,498.5
0.0	0.0	0.0	95.1	133.6	5 96·9	475.5	49.9	10.5	23.7	5.3
266.0	550·0	3,576.0	2,502.1	4,053.0	4,364.6	2,010.0	3,084.0	2,430.0	5,111.3	2,895.0
14.2	245.3	405.4	473.0	588.3	860.1	353.0	347.0	425.0	1,240.8	677.3

143

ANNEX TABLE 1: RECONSTRUCTED (Interindustry (Product in millions of current roubles;

Using sector	Repair of machinery	Abrasives	Mineral and basic chemicals	Synthetics, paints	Rubber products	Lumber and wood- working	Paper	Construction materials
Producing sector	20	21	22	23	24	25	26	27
1. Ferrous ores	0.0	2.0	1.7	0.0	0.0	0.0	0.0	4.7
2. Ferrous metals	343·3	1.7	7.0	18.0	3.7	18.1	5.4	199.6
3. Non-ferrous ores	0.0	2.5	3.0	0.0	0.0	0.0	0.0	22.8
4. Non-ferrous metals	118.7	2.5	10· 0	124.7	3.9	3.0	1.9	47.3
5. Coking coal	12.6	1.2	43.2	49.1	0.2	4 5·2	0.1	13.2
6. Metal products	50.4	0.5	5.5	3.2	7.4	55.4	1.9	42.8
7. Coal	50.3	3.1	25.6	46.4	4∙8	28.7	47.1	251.1
8. Oil	59.7	4.4	15.1	124.2	14.4	281.1	13.0	148.5
9. Gas	0.9	0.1	0.6	16.9	0.2	0.4	0.1	12.7
10. Other fuels	1.4	0.0	0.4	1.6	0.2	27.5	9.6	27.8
11. Electrical power	59.2	8.9	66.7	100.3	26.8	47.8	42.7	223.8
12. Electrical and power M&E	58.0	0.2	1.9	3.9	0.5	6.8	1.0	4.9
13. Tools and instruments	88·2	0.6	3.5	3.7	2.8	21.7	2.4	23.5
14. General machinery	20.7	0.1	7.0	6.0	1.7	21.2	6.3	36.4
15. Transportation M&E	65·2	0.0	0.1	0.1	0.0	2.6	0.0	0.1
16. Automobiles	252·0	0.1	1.9	0·7	1.6	67.7	0.5	20.9
	204·2	0.0	0.3	0.1	0.0	57.4	0.1	7.2
17. Agricultural M&E	50·0	0.0	10.8	10.6	4.8	0.0	0.0	92.7
18. Machinery n.e.c.	43.7	0.0	3.1	11.7	3.9	92·1	3.0	15.6
19. Metalworking	43·7	2.8	10.6	33.3	3.2	47.1	3.4	89.5
20. Repair of machinery			0.1	1.1	0.1	5.1	0.1	1.0
21. Abrasives	3·1	8·6 3·7	151.6	206.1	4.4	15.0	18.4	4.7
22. Mineral and basic chemicals	10.1			200-1 975-2	619.0	79·6	3.4	10.9
23. Synthetics, paints	64·4	0.3	36.5			61·4		20.5
24. Rubber products	23.8	0.2	2.2	12.9	209.7		1.3	122.2
25. Lumber and woodworking	107.3	0.5	14.9	80.8	17.1	2,710.3	324.6	
26. Paper	3.9	0.4	7.8	45.7	1.1	5.3	80.1	26.2
27. Construction materials	30.0	0.5	3.5	3.6	0.9	11.3	6.8	1,273.4
28. Glass	6.3	0.1	1.2	27.5	0.2	39.6	0.4	0.9
29. Textiles	27.6	11.8	7.8	57.9	395.1	203.1	8.4	9.8
30. Apparel and footwear	27.4	1.1	20.2	22.5	5.1	154.1	6.1	42.6
31. Food	3.3	2.7	20.2	405.6	7.0	31.0	1.3	7.8
32. Industry n.e.c	0.0	0.0	5.3	13.4	7.5	0.0	0.0	92.8
33. Construction	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34. Agriculture	0.2	0.0	0.3	11.5	0.0	32.6	1.1	0.6
35. Forestry	0.0	0.0	0.0	0.0	0.0	142.8	0.0	0.0
36. Transportation and communication	17.0	4.5	514·0	35.1	55.8	1,626.1	72.9	1,726.1
37. Trade and distribution	0.0	0.0	21.7	49.1	17.3	404·4	89.5	338.7
38. Products n.e.c	7.4	0.0	0.0	55-3	10.7	0.0	78.1	51.5
39. Total purchases	1,810.3	65.5	1,025.3	2,557.8	1,431.1	6,345.5	831·0	5 ,0 14·8
40. Depreciation	125.5	3.1	44.1	148.4	13.6	302.0	40·1	316.6
41. Labour income	1,004·2	32.1	195.8	593.7	176.5	3,020.5	200.6	1,794.3
42. Other net income	81 0 ·0	22.3	65.8	1,151.6	361.3	1,236.4	181 ·2	141.2
43. National income	1,814.2	54.4	261.6	1,745-3	537.8	4,256.9	381.8	1,935.5
44. Imports	0.0	1.6	26.0	261.5	17.5	128.6	14.1	37.1
	3,750.0	124.6	1,357.0	4,713.0	2,000.0	11,033.0	1,267.0	7,304.0
45. Total outlays	0,1000			.,	-,		,	

18

1959 SOVIET INPUT-OUTPUT TABLE (continued) transactions matrix) employment in thousands of man-years)

Glass	Textiles	Apparel and footwear	Food	Industry n.e.c.	Construction	Agriculture	Forestry	Transportation and communication	Trade and distribution	Product: n.e.c.
28	29	30	31	32	33	34	35	36	37	38
6.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5.0	7.8	2.7	69.1	70.0	1,365.0	5.5	0.0	63.7	57.5	1.8
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.0	2.5	2.7	18.4	30.0	21.7	0.3	0.0	23.1	16.2	0.2
0.1	0.5	0.1	0.9	0.0	0.0	0.0	0.0	0.2	0.0	0.0
10.7	9.5	12.9	12.4	0.0	232·6	12.1	0.5	38.0	21.0	2.5
24.5	53.0	17.1	182-5	20.8	49.5	11.7	0.0	803.0	68.6	2.9
20.4	20.4	12.4	194.7	20.9	366.5	1,051.7	5.1	961.6	32.6	3.5
0.9	1.2	0.3	4.4	0.5	9.7	0.0	0.0	0.0	0.0	0.0
13.9	21.3	8.0	15-1	1.9	8.5	0.3	0.0	0.0	0.0	0.0
13.4	112.5	48.6	111.5	60.7	200.6	88.3	0.0	150-2	42.1	2.6
0.9	3.9	2.4	5.6	34.4	127.3	38.8	0.0	4.6	14.8	
1.6	5.9	3.3	10.3	45.5	551.1	11.8	0.0	29.0		1.1
1.1	40.8	9·6	24·0	23.7	84.0	0.0	0.0	29.0	9.6	0.1
0.0	0.0	0.0	0.4	11.5	6.4	3.5	0.0		49.1	0.0
0·4	1.5	0.6	4.1	38.4	70.6	19·0		152.2	0.0	0.0
0.4	0.4	0.0	4·1 0·6	27·7			0.0	206-8	0.0	0.7
0.0					45.4	159.0	3.5	1.5	0.0	0.0
	0.0	0.0	82·0	61.0	228.8	414.9	0.0	69.0	136.7	0.0
11.2	20.8	28.3	57.3	62.8	1,208.9	156.6	3.1	0.0	3.7	0.0
24.5	14.4	5.5	229-2	64·7	0.0	1,028.1	0.0	86.3	0.0	0.0
1.5	0.5	1.5	0.2	0.0	9.5	5.2	0.0	0.0	1.5	0.0
2.1	0.5	11.3	27.7	80.3	17.7	355.6	2.7	9.2	7.5	0.1
11.1	334.7	208-0	43-3	239.7	203.8	55.4	0.0	51.7	12-0	11.8
0.9	28.9	28.0	7.3	121.4	69·3	12.6	0.0	359.9	54-4	2.9
31.4	45.5	74·0	289·3	64.6	2,982.3	113.5	1.1	171.1	205.0	2.0
4.3	6.9	17.3	73.8	95.4	32.6	0.1	0.4	3.1	582.0	163-5
7.0	6.8	3.7	25.3	0.0	5,360.9	16.2	0.9	60.5	0.2	0.1
13.0	0.7	0.9	49.4	0.0	319.3	5.1	0.0	5.9	0.0	0.0
5.8	6,206.7	6,981.9	85.6	9.4	29.9	46.2	0.0	74.1	398.6	23.2
9.1	25.2	2,154.3	108.8	0.0	535.5	99.8	0.2	70.8	89.1	1.1
0.8	20.5	599.6	13,365.8	819.7	85·2	1,582.4	0.0	0.0	11.3	0.0
0.0	25.0	25.0	0.0	0.0	0.0	128.3	0.0	0.0	0.0	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
0.3	3,980.3	490.5	16,467.3	207.8	11.2	12,436.5	4.5		0.0	0.0
0.0	0.0	0.0	0.0	2078	66·5			19.0	0.0	0.0
86.0	284.7	159·6	1,212.3	43.8		0.0	6.2	0.0	0.0	15.8
88.5	700·3				38.9	762-2	5.0	49.2	116.5	80.0
10.7	0.0	703.7	3,681.6	722.7	0.0	2,857.6	0.0	0.0	0.0	11.7
10.1	0.0	97.9	80.7	292.0	270.7	6.0	0.0	0.0	0.0	0.0
411.4	11,983.0	11,711.7	36,540.9	3,271.3	14,609.9	21,484.3	32.9	3,466-2	1,930.0	327.6
21.3	110.0	110.0	443-1	125-2	579·0	2,100.0	0.0	1,195-0	434·0	266 ·0
232.2	923.8	1,410-3	2,531.7	701.3	7,021.9	23,800.0	275-1	4,853.0	3,827.6	1,563.7
204.5	11,454-1	1,987.7	16,893.7	1,383.5	6,989-2	4,815.7	0.0	1,742.0	5,172.3	842.7
436.7	12,377-9	3,398.0	19,425.4	2,084.8	14,011.1	28,615.7	275-1	6,595.0	8,999.9	2,406 4
8.0	1,229.1	2,280.3	1,390.6	49.1	0.0	1,300.0	0.0	0.0	0.0	0.0
877·4	25,700.0	17,500.0	57,800·0	5,530.4	29,200.0	53,500.0	308·0	11,256.2	11,363-9	3,000 0
214.3	1,820.0	1,920.0	2,530.0	600.0	6,208.0	33,100.0	352.0	5,300.0	5,171.0	1,709.0

V. G. TREML

145

Using	Total]				Total	Total
sector	interindustry	Private	Public	Gross investment	Exports	final demand	gross
Producing sector	use 39	consumption 40	consumption 41	42	43	44	output 45
	00				10	1	-
1. Ferrous ores	382.3	0.0	0.0	-21.1	200.9	179.8	562·1
2. Ferrous metals	6,099·0	2.1	20.0	-183·4	532.3	371.0	6,470.0
3. Non-ferrous ores	827.5	0.0	0.0	-15.2	15-2	0.0	827.5
4. Non-ferrous metals	2,720.1	2.1	292.3	619.8	195.7	1,109.9	3,830.0
5. Coking coal	1,253.0	0.0	0.0	68·3	30.4	98.7	1,351.7
6. Metal products	931·0	12.8	40.4	-18.0	10.0	45.2	976-2
7. Coal	5,037.6	146.3	542.2	426.1	228.8	1,343.4	6,381.0
8. Oil	5,063.3	103.2	360.7	609·4	566.4	1,639.7	6,703.0
9. Gas	130.3	49.8	36.0	48·2	1·7 0·0	135.7	266.0
10. Other fuels	444.3	0·0 635·5	60·2 397·3	45·5 101·1	0.0	105.7	550·0 3,576·0
11. Electrical power	2,442.1	329.3	57·0	727.6	53.5	1,153.9	2,502.1
12. Electrical and power M&E	1,334·7 1,589·0	605.1	56.9	1,377.9	424.1	2,464.0	4.053.0
13. Tools and instruments	741.1	234.0	0.2	3,012.8	376.5	3,623.5	4,053.0
14. General machinery	358.5	0.0	35.8	1,525.5	90·2	1,651.5	2,010.0
15. Transportation M&E	1.261.4	555-7	74·9	1,030.3	161.7	1,822.6	3,084.0
16. Automobiles	907.3	0.0	0.0	1,421.3	101.4	1,522.7	2,430.0
17. Agricultural M&E	1,650.9	578-3	166-5	2,700.9	14.7	3,460.4	5,111.3
18. Machinery n.e.c.19. Metalworking	1,915.6	859-1	188-4	-68.1	0.0	979.4	2,895.0
20. Repair of machinery	1,980.5	0.0	19.8	1,749.7	0.0	1,769.5	3,750.0
21. Abrasives	121.6	0.0	0.0	2.5	0.5	3.0	124.6
22. Mineral and basic chemicals	1.128.3	42.4	43.4	31.5	111.4	228.7	1,357.0
23. Synthetics, paints	3,382.4	357.1	402.1	518.5	52.9	1,330.6	4,713.0
24. Rubber products	1.729.2	34.5	132.0	92.7	11.6	270.8	2,000.0
25. Lumber and woodworking	8,166.0	1,271.6	424.9	920.9	249.6	2,867.0	11,033.0
26. Paper	1,202.7	0.0	81.2	-33.2	16.3	64.3	1,267.0
27. Construction materials	6,886.3	122.9	274.6	9.8	10.4	417.7	7,304.0
28. Glass	525.3	333.7	17.6	-2.1	2.9	352-1	877.4
29. Textiles	14,789.5	9,287.0	337-2	1,115.4	170.9	10,910.5	25,700.0
30. Apparel and footwear	3,810-2	10.205.9	439·0	2,988.1	56.8	13,689.8	17,500.0
31. Food	17,000-2	35,575.0	1,214.4	3,138.1	872.3	40,799.8	57,800.0
32. Industry n.e.c	454·9	4,805.1	610.7	-381·3	41·0	5,075.5	5,530.4
33. Construction	0.0	0.0	0.0	29,200.0	0.0	29,200.0	29,200.0
34. Agriculture	33,669.5	17,096-9	515.7	1,557-9	660·0	19,830.5	53,500.0
35. Forestry	231.3	0.0	0.0	76.7	0.0	76.7	308.0
36. Transportation and communication	11,256-2	0.0	0.0	0.0	0.0	0.0	11,256.2
37. Trade and distribution	11,363-9	0.0	0.0	0.0	0.0	0.0	11,363.9
38. Products n.e.c.	1,218-2	1,929.6	157-9	309-9	4·2	1,781.8	3,000∙0
39. Total purchases	154,005-2	85,175·0	6,999.3	54,084-2	5,264.3	151,522.8	305,528.0
40. Depreciation	8,983.8	2,825.5	2,094.5	0.0	0.0	4,920.0	13,903.8
41. Labour income	66,835.8	-	<u> </u>	 	· · · · · · · · · · · · · · · · · · ·	-[
42. Other net income	66,603·2	-					
43. National income	133,439.0	-					
44. Imports	9,100.0	-					
		-					
45. Total outlays	305,528.0	-					
46. Employment	73,983.4						

ANNEX TABLE 1: RECONSTRUCTED 1959 SOVIET INPUT-OUTPUT TABLE (continued) (Interindustry transactions matrix) (Product in millions of current roubles; employment in thousands of man-years)

 $^{a}M\&E = machinery and equipment.$ $^{b}n.e.c. = not elsewhere classified.$

Annex table 2 follows overleaf.

ANNEX TABLE 2: RECONSTRUCTED

(Full input coefficients,

Using sector	Ferrous ores	Ferrous metals	Non-ferrous ores	Non-ferrous metals	Coking coal	Metal products	Coal	Oil
Producing sector	1	2	3	4	5	6	7	8
1. Ferrous ores	. 1.00383	0.05524	0.00211	0.01576	0.00110	0.05404	0.00109	0.00060
2. Ferrous metals	. 0.03809	1.17618	0.03834	0.01994	0.01817	0.51382	0.01835	0.01004
3. Non-ferrous ores	. 0.00233	0.02567	1.00306	0.24508	0.00151	0.01352	0.00153	0.00094
4. Non-ferrous metals	. 0.01065	0.12272	0.00956	1.17424	0.00694	0.06435	0.00719	0.00436
5. Coking coal		0.15078	0.00651	0.05437	1.07647	0.08634	0.00371	0.00345
6. Metal products	. 0 ·01047	0.02095	0.00673	0.01046	0.00549	1.04401	0.00550	0.00247
7. Coal		0.26725	0.03978	0.09363	0.93209	0.17756	1.19410	0.03557
8. Oil	. 0.03718	0.05329	0.04815	0.05511	0.04365	0.05842	0.04315	1.21923
9. Gas	. 0.00143	0.00160	0.00119	0.00227	0.00197	0.00306	0.00080	0.00107
0. Other fuels	. 0.00450	0.00551	0.00218	0.00629	0.01949	0.00600	0.00294	0.00292
1. Electrical power	. 0.05642	0.04403	0.02336	0.07604	0.05829	0.06032	0.03520	0.03869
2. Electrical and power M&E ^a	. 0.00630	0.00470	0.00550	0.00374	0.00451	0.00442	0.00444	0.00228
3. Tools and instruments	. 0.01003	0.00765	0.00892	0.00579	0.00767	0.01362	0.00844	0.00280
4. General machinery		0.01405	0.01867	0.01119	0.01061	0.01292	0.01241	0.00571
5. Transportation M&E	. 0.00423	0.00359	0 ·00264	0.00235	0.00458	0.00345	0.00486	0.00358
6. Automobiles	. 0.01018	0.00783	0.00736	0.00560	0.00823	0.00804	0.00875	0.00634
7. Agricultural M&E	. 0.00424	0.00281	0.00382	0.00239	0.00192	0.00247	0.00184	0.00136
8. Machinery n.e.c. ^b	. 0.00533	0.00767	0.00358	0.00466	0.01777	0.00660	0.02086	0.00979
9. Metalworking		0.00307	0.00375	0.00234	0.00314	0.00399	0.00353	0.00084
0. Repair of machinery		0.02656	0.04035	0.02369	0.00801	0.02067	0.00525	0.00914
1. Abrasives	. 0.00264	0.00111	0.00251	0.00115	0.00029	0.00219	0.00032	0.00016
2. Mineral and basic chemicals		0.01366	0.01467	0.01031	0.01678	0.01221	0.00311	0.00991
3. Synthetics, paints		0.01458	0.01381	0.01061	0.01370	0.01624	0.01388	0.01132
4. Rubber products		0.01444	0.01077	0.00948	0.01853	0.01411	0.02016	0.01112
5. Lumber and woodworking	. 0.05210	0.04562	0.04387	0.03009	0.08900	0.05735	0.10963	0.01653
6. Paper	. 0.00468	0.00594	0.00442	0.00601	0.00282	0.01668	0.00307	0.00765
7. Construction materials	. 0.00736	0.00438	0.00629	0.00356	0.00480	0.00535	0.00528	0.00294
8. Glass	. 0.00157	0.00087	0.00125	0.00072	0.00088	0.00100	0.00090	0.00041
9. Textiles	. 0.02719	0.02681	0.02237	0.01915	0.02967	0.06330	0.03221	0.01605
0. Apparal and footwear		0.02393	0.02038	0.01606	0.03136	0.03451	0.03405	0.00689
1. Food	. 0.00686	0.00590	0.00582	0.00436	0.00541	0.00659	0.00485	0.00290
2. Industry n.e.c	. 0.00079	0.00063	0.00067	0.00047	0.00068	0.00072	0.00069	0.00040
3. Construction	. 0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
4. Agriculture	. 0.00970	0·00949	0.00791	0.00688	0.01076	0.01783	0.01143	0.00527
5. Forestry	. 0.00070	0.00071	0.00059	0.00055	0.00118	0.00081	0.00146	0.00022
6. Transportation and communication	. 0·19757	0.18492	0.08265	0.10625	0.29615	0.18116	0.32005	0.23684
7. Trade and distribution	. 0.04872	0.06543	0 ·04674	0.06201	0.03541	0.07453	0.04208	0.12877
8. Products n.e.c.	. 0.00188	0.01999	0.00170	0.02830	0.00127	0.01031	0.00133	0.00109
9. Labour input coefficients	. 0.46716	0.39837	0.32901	0.31829	0.44772	0.41522	0.47426	0.24027

j. An statute and a set

149

1959 Soviet input-output table

technology matrix $(I-A)^{-1}$

Gas	Other fuels	Electrical power	Electrical and power MSE	Tool and instruments	General machinery	Transportation MどE	Automobiles	Agricultural MごE	Machinery n.e.c.	Metalworkin
9	10	11	12	13	14	15	16	17	18	19
0.00041	0.00124	0.00066	0.01183	0.00518	0.01146	0.00853	0.00656	0.00872	0.00206	0.01250
0.00726	0.02088	0.01121	0.20804	0.06357	0.21710	0.15963	0.10979	0.17001	0.03333	0.24574
0.00056	0.00194	0.00103	0.02699	0.03225	0.01649	0.01374	0.01691	0.00876	0.00621	0.01326
0.00261	0.00913	0.00485	0.12695	0.15421	0.07855	0.06506	0.08072	0.04167	0.02958	0.06326
0.00179	0.00396	0.00226	0.03450	0.01576	0.03736	0.02568	0.02149	0.02844	0.00665	0.04548
0.00141	0.00561	0.00293	0.01525	0.01137	0.02152	0.01376	0.01828	0.01685	0.00543	0.02001
0.05527	0.04863	0.27552	0.08242	0.03529	0.08353	0.06550	0.05325	0.06498	0.01900	0.08856
0.02525	0.05156	0.09869	0.04003	0.01935	0.04088	0.03152	0.03414	0.03103	0.01180	0.03156
1.00070	0.00166	0.01957	0.00145	0.00087	0.00129	0.00116	0.00117	0.00124	0.00050	0.00095
0.04247	1.04318	0.06947	0.00430	0.00215	0.00725	0.00437	0.00260	0.00310	0.00165	0.00371
0.01313	0.05097	1.01640	0.04237	0.02311	0.03824	0.02910	0.02460	0.03242	0.01416	0.02608
0.00214	0.00902	0.00501	1.08609	0.00948	0.05908	0.13276	0.00900	0.01181	0.06220	0.00811
0.00283	0.01351	0.00492	0.06071	1.03527	0.03545	0.02883	0.01701	0.02654	0.04577	0.00780
0.00337	0.01701	0.00468	0.00565	0.00319	1.05202	0.01002	0.00360	0.00494	0.00367	0.00492
0.00073	0.00557	0.00210	0.00179	0.00100	0.00522	1.04893	0.00162	0.00186	0.00197	0.00237
0.00214	0.00724	0.00461	0.00584	0.00446	0.03870	0.00919	1.11740	0.00964	0.02082	0.00590
0.00122	0.01135	0.00246	0.01043	0.00094	0.02533	0.00496	0.00126	1.09954	0.01430	0.00198
0.00775	0.04331	0.01480	0.01537	0.00389	0.02745	0.03017	0.00720	0.01010	1.02963	0.00402
0.00054	0.00221	0.00163	0.01097	0.00184	0.01060	0.02505	0.00722	0.00320	0.00128	1.01765
0.00868	0.00627	0.01937	0.01267	0.00746	0.01170	0.01031	0.00914	0.00774	0.00255	0.00923
0.00011	0.00055	0.00025	0.02257	0.00274	0.00305	0.00524	0.00172	0.00220	0.00150	0.00132
0.00292	0.00703	0.00343	0.01526	0.00613	0.00918	0.00942	0.01000	0.00664	0.00459	0.00756
0.00843	0.01282	0.00670	0.05398	0.03707	0.03590	0.03451	0.08366	0.03680	0.02380	0.02402
0.00310	0.01562	0.00736	0.01820	0.00838	0.03698	0.01758	0.15786	0.05430	0.01481	0.01044
0.01288	0.04591	0.03151	0.03801	0.02268	0.03958	0.05648	0.03053	0.03645	0.01744	0.02627
0.00358	0.00187	0.00179	0.01005	0.00575	0.00205	0.00439	0.00598	0.00203	0.00358	0.00551
0.00153	0.00350	0.00250	0.00504	0.00186	0.00436	0.01115	0.00280	0.00275	0.00075	0.00415
0.00019	0.00072	0.00048	0.00688	0.00377	0.00165	0.00332	0.00598	0.00104	0.00085	0.00219
0.00932	0.03058	0.01370	0.04105	0.02406	0.03193	0.03370	0.06797	0.03798	0.01964	0.02155
0.00760	0.03793	0.01426	0.01624	0.01062	0.02059	0.01798	0.02147	0.01647	0.00343	0.01660
0.00226	0.00510	0.00274	0.01403	0.00789	0.01013	0.01005	0.01575	0.00886	0.00466	0.00564
0.00022	0.00091	0.00037	0.01089	0.00571	0.01094	0.00997	0.01047	0.00906	0.00486	0.00050
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00321	0.01062	0.00489	0.01541	0.00888	0.01224	0.01262	0.02155	0.01260	0.00630	0.000774
0.00017	0.00061	0.00042	0.00056	0.00034	0.00058	0.00080	0.00044	0.00055	0.00025	0.00041
0.02965	0.16465	0.10353	0.09593	0.04594	0.11641	0.07137	0.09357	0.11127	0.02593	0.14536
0.06073	0.01801	0.02428	0.04605	0.03353	0.03326	0.02587	0.04310	0.04343	0.02556	0.05832
0.00063	0.00145	0.00076	0.01031	0.00678	0.01111	0.01025	0.00751	0.01241	0.00394	0.01233
0.14402	0.62285	0.29603	0.41031	0.26034	0 ·41889	0·37 149	0.29558	0.36399	0.33194	0.43338

ANNEX TABLE 2: RECONSTRUCTED

(Full input coefficients,

Producing	Using sector	Repair of machinery	Abrasives	Mineral and basic chemicals	Synthetics, paints	Rubber products	Lumbe r and woodwo rking	Paper	Construction materials
sector		20	21	22	23	24	25	26	27
1. Ferrous ores		0.00808	0.01937	0.00305	0.00144	0.00110	0.00123	0.00114	0.00396
2. Ferrous metals		0.14612	0.03128	0.02468	0.01448	0.01337	0.01806	0.01805	0.05690
3. Non-ferrous ores		0.01407	0.02862	0.00660	0.00930	0.00429	0.00150	0.00172	0.00820
4. Non-ferrous metals		0.06696	0.03321	0.01946	0.04379	0.02022	0.00700	0.00784	0.02101
5. Coking coal			0.01864	0.04385	0.02059	0.00901	0.00942	0.00559	0.01139
6. Metal products		0.02035	0.00739	0.00882	0.00323	0.00637	0.00939	0.00592	0.01145
7. Coal			0.08617	0.12652	0.05462	0.03544	0.03926	0.08267	0.10861
8. Oil			0.07075	0.07861	0.05879	0.04035	0.06968	0.04952	0.07599
9. Gas			0.00281	0.00225	0.00546	0.00245	0.00052	0.00116	0.00330
10. Other fuels		0.00349	0.00690	0.00648	0.00421	0.00332	0.00497	0.01303	0.00902
11. Electrical power			0.09127	0.07431	0.04013	0.03368	0.01592	0.04818	0.05283
12. Electrical and power M&E			0.00416	0.00551	0.00294	0.00229	0.00274	0.00322	0.00488
13. Tools and instruments			0.00846	0.00763	0.00329	0.00382	0.00512	0.00522	0.00868
14. General machinery			0.00430	0.00908	0.00403	0.00359	0.00436	0.00865	0.00956
15. Transportation M&E			0.00220	0.00754	0.00150	0.00137	0.00386	0.00271	0.00555
16. Automobiles			0.00626	0.01441	0.00383	0.00415	0.01510	0.00271	0.01413
17. Agricultural M&E			0.00255	0.00236	0.00176	0.00140	0.00886	0.00339	0.00380
18. Machinery n.e.c.			0.00492	0.01706	0.00720	0.00140	0.00429	0.00339	0.00380
19. Metalworking			0.00512	0.00442	0.00486	0.00481	0.00429	0.000040	0.02273
20. Repair of machinery			0.03142	0.01700	0.01472	0.00481 0.00973	0.00976	0.00871	0.00442
21. Abrasives			1.07448	0.00040	0.00053	0.00034	0.00086	0.00032	0.0002138
22. Mineral and basic chemicals			0.03939	1.13155	0.06506	0.00034	0.00080		
23. Synthetics, paints			0.01401	0.05482	1.27036	0.02078		0.02045	0.00460
24. Rubber products		0.03941 0.02573	0.00876	0.02427	0.00900	1.12362	0.02477	0.01647	0.01740
25. Lumber and woodworking			0.02399	0.02427	0·00900 0·04681	0.03507	0.02032	0.01261	0.02128
26. Paper			0.02399	0.04079	0.04081 0.01755		1.34047	0.38211	0.05319
27. Construction materials			0.00013	0.01088		0.00906	0.00509	1.07791	0.01068
27. Construction materials 28. Glass			0.00724		0.00278	0.00227	0.00384	0.00922	1.21450
				0.00203	0.00805	0.00312	0.00534	0.00208	0.00088
29. Textiles			0.15060	0.04023	0.03565	0.31014	0.05839	0.03976	0.02695
30. Apparal and footwear			0.01802	0.02951	0.01309	0.01027	0.02643	0.01821	0.01740
31. Food			0.03601	0.03199	0.14803	0.06141	0.01040	0.00701	0.00880
32. Industry n.e.c.			0.00082	0.00532	0.00431	0.00630	0.00069	0.00065	0.01609
33. Construction			0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
34. Agriculture			0.04492	0.02322	0.06733	0.08785	0.02277	0.01460	0.01140
35. Forestry			0.00033	0.00063	0.00072	0.00053	0.01771	0.00541	0.00077
36. Transportation and communica			0.10748	0.49557	0.07867	0.07824	0.23278	0.16760	0.35048
37. Trade and distribution			0.02646	0.04241	0.04395	0.04263	0.06572	0.10376	0.07930
38. Products n.e.c		0.00755	0.00222	0.00300	0.01800	0.01311	0.00164	0.06753	0.01200
39. Labour input coefficients		0.50775	0 ·42617	0·47186	0•29741	0.28275	0.56432	0.45713	0.57511

1959 Soviet input-output table (continued)

technology matrix $(I-A)^{-1}$

Glass	Textiles	Apparel and footwear	Food	Industry n.e.c.	Construction	Agriculture	Forestry	Transportation and communication	Trade and distribution	Product n.e.c.
28	29	30	31	32	33	34	35	36	37	38
0.00909	0.00028	0.00034	0.00048	0.00169	0.00477	0.00049	0.00035	0.00110	0.00063	0.0001
0.02732	0.00449	0.00514	0.00814	0.02980	0.08602	0.00828	0.00591	0.01784	0.01059	0.0029
0.00289	0.00054	0.00064	0.00075	0.00369	0.00474	0.00080	0.00040	0.00191	0.00093	0.0002
0.01339	0.00254	0.00300	0.00348	0.01736	0.01924	0.00369	0.00173	0.00898	0.00440	0.0012
0.00567	0.00126	0.00149	0.00170	0.00660	0.01380	0.00195	0.00147	0.00358	0.00200	0.0007
0.01588	0.00127	0.00198	0.00164	0.00286	0.01401	0.00162	0.00141	0.00555	0.00293	0.0014
0.06412	0.01083	0.01176	0.01543	0.02874	0.04952	0.00976	0.00590	0.10022	0.01768	0.0094
0.05302	0.01340	0.01297	0.02511	0.02301	0.04417	0.03789	0.02505	0.11455	0.01086	0.0080
0.00177	0.00035	0.00037	0.00030	0.00086	0.00139	0.00019	0.00009	0.00063	0.00022	0.0001
0.01915	0.00189	0.00191	0.00109	0.00252	0.00389	0.00064	0.00029	0.00191	0.00128	0.0008
0.02726	0.00914	0.00967	0.00747	0.02177	0.02458	0.00667	0.00277	0.02337	0.00861	0.0046
0.00345	0.00124	0.00125	0.00190	0.00987	0.00760	0.00284	0.00045	0.00383	0.00285	0.0007
0.00508	0.00124	0.00131	0.00186	0.01177	0.02350	0.00229	0.00069	0.00525	0.00231	0.0005
0.00418	0.00288	0.00254	0.00177	0.00688	0.00663	0.00111	0.00041	0.00243	0.00552	0.0006
0.00288	0.00060	0.00063	0.00111	0.00336	0.00217	0.00117	0.00048	0.01532	0.00053	0.0005
0.00706	0.00162	0.00163	0.00301	0.01136	0.00827	0.00382	0.00097	0.02332	0.00160	0.0013
0.00298	0.00156	0.00123	0.00291	0.00780	0.00396	0.00627	0.01298	0.00136	0.00077	0.0003
0.00557	0.00375	0.00351	0.00849	0.01694	0.01407	0.01293	0.00094	0.01020	0.01348	0.0007
0.01485	0.00232	0.00349	0.00344	0.01360	0.04490	0.00469	0.01071	0.00144	0.00119	0.0005
0.03253	0.00699	0.00566	0.01593	0.01803	0.00802	0.02682	0.00119	0.01060	0.00154	0.0009
0.00215	0.00011	0.00021	0.00017	0.00042	0.00087	0.00028	0.00006	0.00023	0.00027	0.0000
0.00603	0.00374	0.00436	0.00546	0.02280	0.00432	0.01107	0.01075	0.00396	0.00259	0.0016
0.02503	0.02478	0.03082	0.00563	0.07189	0.02022	0.00580	0.00207	0.02593	0.00700	0.0073
0.01015	0.00385	0.00534	0.00398	0.03088	0.01145	0.00368	0.00207	0.04278	0.00770	0.0031
0.06889	0.00952	0.01626	0.01981	0.04053	0.15426	0.01147	0.00773	0.03463	0.04650	0.0234
0.01353	0.00388	0.00683	0.00862	0.03220	0.00567	0.00493	0.00194	0.00215	0.05579	0.0591
0.01185	0.00096	0.00107	0.00162	0.00144	0.22417	0.00125	0.00399	0.00775	0.00083	0.0008
1.01573	0.00032	0.00046	0.00141	0.00106	0.01218	0.00039	0.00011	0.00108	0.00030	0.0001
0.03267	1.32555	0.60877	0.01479	0.02659	0.02926	0.01067	0.00275	0.03031	0.05728	0.0143
0.01955	0.00382	1.14380	0.00674	0.00643	0.03010	0.00531	0.00198	0.01253	0.01138	0.0020
0.00634	0.01552	0.06321	1.32147	0.20768	0.01000	0.05304	0.00148	0.00473	0.00365	0.0013
0.00058	0.00215	0.00290	0.00141	1.00122	0.00348	0.00346	0.00028	0.00086	0.00033	0.0001
0.00000	0.00000	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000	0.0000
0.01092	0.27367	0.18847	0.49405	0.13230	0.01248	1.32524	0.02074	0.01101	0.01370	0.0038
0.00099	0.00013	0.00026	0.00028	0.00084	0.00444	0.00016	1.02065	0.00047	0.00064	0.0057
0.15323	0.02960	0.03416	0.05265	0.05367	0.11644	0.03911	0.03169	1.06385	0.03130	0∙039€
0.12001	0.05542	0.08098	0.11701	0.16407	0.03450	0.08149	0.00594	0.02091	1.01152	0.0112
0.01472	0.00093	0.00769	0.00296	0.05731	0.01407	0.00121	0.00050	0.00147	0.00398	1.0038
0.47400	0.32073	0.25272	0.46978	0.39849	0.45876	0.90715	1.21144	0.58145	0.52492	0.6247

 $^{b}M\&E = machinery and equipment.$ $^{b}n.e.c. = not elsewhere classified.$

151

Annex table 3: Commodity classification employed in the reconstructed 38-sector input-output table for 1959

Reconstructed sector designation	Description [®]	Published USSR table ^b
1. Ferrous ores	Ferrous ores and non-metallic raw materials for ferrous metallurgy	Part of 1
2. Ferrous metals	Cast iron, steel, ferro-alloys, rolled steel plate and sheet, rails and pipe	Part of 1
3. Non-ferrous ores	Non-ferrous ores	Part of 1
4. Non-ferrous metals	Non-ferrous metals and industrial diamonds	Part of 1
5. Coking coal	Coke and products of coke-chemistry, including tar and coal-based oils	2
6. Metal products	Industrial metal products: nails, wire, bolts, pins, springs, chains, welding electrodes, and other small metal items; refractory materials	3, 4
7. Coal	Anthracite and lignite; coal briquettes	5
8. Oil	Extraction of oil, gas by-products; oil refineries and processing of oil products	6, 7
9. Gas	Extraction of natural gas	8
10. Other fuels	Peat, peat briquettes, oil shales, liquid fuels from coal	9–11
11. Electrical power	Generation of electrical power (thermal and hydro) and of steam as by-product	12
12. Electrical and power machinery and equipment	Steam boilers and equipment, steam and gas turbines, nuclear reactors, steam engines, diesel engines, and other prime movers; electrical machinery; electrical lighting fixtures; electrical household appliances	13, 14
13. Tools and instruments	Cable and wire products; woodcutting and metalworking tools, electrical tools, measuring tools; industrial instruments and gauges, measuring and control apparatus; calculating and data processing equipment, including electronic computers; clocks, watches, optical and photographic equipment, including household types; ball and roller bearings	15, 19–21
14. General machinery	Metal and woodworking tools, lathes, and drills; forging and pressing equipment; casting equipment; mining and metallurgical machinery and equipment; pumps and compressors; machinery and equipment for the woodworking, paper, textile, apparel, food, and printing industries; hoisting and transporting equip- ment; construction machinery	16–18, 22–30
15. Transportation machinery, equipment and spare parts	Transportation machinery and equipment; shipbuilding and aircraft production	31
16. Automobiles	Passenger automobiles, trucks, and other motor vehicles	32
17. Agricultural machinery, equip- ment and spare parts	Tractors and other agricultural machinery and equipment	33
 Machinery not elsewhere classi- fied 	Radioelectronics and communication equipment; mis- cellaneous machinery and equipment	omitted
19. Metalworking	Sanitary engineering equipment; metalware and hard- ware; metal furniture; metal frames, structures, bridges	
20. Repair of machinery	Repair of all machinery and equipment	38
21. Abrasives	Abrasives and graphite products	39
22. Mineral and basic chemicals .	Mineral chemicals: sulphur, calcite, etc.; basic chemicals: ammonia, nitrate fertilizers, inorganic acids and salts	
23. Synthetics and paints	Aniline dyes, synthetic resins and plastics, synthetic fibres, organic synthetics, synthetic rubber, paint and lacquer; pharmaceuticals and photochemicals	

CHARACTERISTICS OF THE USSR INPUT-OUTPUT TABLES

 ٧.	G.	IKEML	

Reconstructed sector designation	Description ⁸	Published USSR table ^b
24. Rubber products	Tires, tubes, hoses and other rubber products; asbestos	47
25. Lumber and woodworking	Logging, lumber and woodworking; furniture and other wood products	49–52, 54
26. Paper	Paper and paper products; wood pulp and cellulose	53
27. Construction	Cement, gypsum and other construction materials; brick, ceramic blocks, tiles, insulating materials and concrete	
28. Glass	Glass and porcelain-faience products	56
29. Textiles	Textiles, hosiery, knitwear and felt goods	57
30. Apparel and footwear	Clothing and apparel, leather goods, footwear and fur products	58, 59
31. Food	Processed foods: fish, meat, milk and dairy products, sugar, flour, bread, processed and canned goods, table salt, alcoholic and non-alcoholic beverages; tobacco and products; candles, soap, perfumes and other cosmetics	•
32. Industry not elsewhere classified	Industrial products not elsewhere classified; printing and publishing; musical instruments and toys	omitted
33. Construction	Construction, new and maintenance	66
34. Agriculture	Agriculture, crops and animal husbandry	6869
35. Forestry	Forestry	70
36. Transportation and communi- cations	Freight transportation, and communications serving production	; 71
37. Trade and distribution	Retail and wholesale trade, including eating facilities, supply and distribution services, procurement of agri- cultural products	
38. Products not elsewhere classified	Metal scrap collection, publishing, non-commercial hunting and fishing, and other activities not elsewhere classified	

ANNEX TABLE 3 (continued)

^a Based on Central Statistical Administration of the USSR, Forms and Instructions for 1959 Input-Output, translated by U.S. Department of Commerce, Office of Technical Services, Washington, D.C., 1962.

^b Sector numbers refer to those in the published truncated version of the 1959 Soviet input-output table. Ts. S.U., Narodnoe khoziaistvo SSSR v 1960 godu, Moscow, 1961, pp. 103-143.

Part Two

APPROACHES TO INTERNATIONAL COMPARISONS

A COMPARATIVE STUDY OF THE INPUT STRUCTURE OF THE CHEMICAL INDUSTRIES IN SEVERAL INDUSTRIALLY DEVELOPED COUNTRIES

Hans Wittmeyer, Verband der Chemischen Industrie, Frankfurt-am-Main, Federal Republic of Germany

I. COMPARISON BETWEEN THE FEDERAL REPUBLIC OF GERMANY, ITALY AND THE UNITED STATES: YEARS PRIOR то 1955

The tables and the text are based on the results of a study made in 1958 by Diplom-Volkswirt Heinz Hipler under the auspices of Hans Möller in the Institute for Economics of the Johann Wolfgang Goethe University at Frankfurt-am-Main on behalf of and in collaboration with the Verband der Chemischen Industrie e.V.¹

The data for Italy and the United States are taken from relevant literature.² The earlier German figures derive from the official census of industries made in 1936³ and relate to the area of the former "Deutsches Reich".

The German figures on the input of materials and energy in 1953, 1954 and 1955 were produced by the Chemieverband and refer to the area of the Federal Republic of Germany.⁴ An early portion of this work has already been published;⁵ the remainder is in preparation.

Reference years

The statistics of different countries used in this section are not available for identical years. The data for the United States refer to 1919, 1929, 1939 and 1947, the Italian data to 1953, and those for the Federal Republic of Germany to 1936, 1953, 1954 and 1955. Under these

circumstances a comparison of the Italian data of 1953 with the German data of 1954 in table 1 seems justifiable. The comparison of the United States chemical industry in 1947 with that of the Federal Republic in 1954 (table 2) can also be justified to a certain extent, since the economic and technical conditions in 1954 in the latter country were still heavily influenced by the Second World War and the subsequent general collapse. Moreover, a study on the technical development of the chemical industry of the United States, which would be very useful, is hampered by large time gaps in the data, which are available only for 1919, 1929 and 1939. Nevertheless, such imperfections must be permitted in a pioneering work such as that first prepared by Leontief (reproduced in table 3). Here the item "undistributed", for instance, amounts to more than 40 per cent of the gross production in 1919 and 1929, which fact necessarily reduces the value of the other identified inputs.

Classification

One of the major difficulties pertaining to international comparison is the differences between countries' statistical methods, especially those in classification. The adjustment of the respective national classifications of the industrial branches into a comparable scheme has so far only partially been solved. The differences in the definition of inputs to the chemical industry were rather troublesome, especially in the comparison between the United States and the Federal Republic of Germany; the Italian classification however differed less from the latter. For that reason the industries have been aggregated into the larger groups shown in tables 1 and 2. The aggregation of the groups was dictated primarily by the nature of the available statistical data of the respective countries rather than by economic or technical considerations.

Special attention was given to the definition of the chemical industry. The original Italian definition used in table 1, industrie chimiche e delle fibre artificiale, is generally parallel to the German definition of chemische Industrie, which includes Kohlenwertstoff-Industrie. In both countries crude coal-tar and crude benzene are considered as chemical products. In view of the general lack of precision with which these comparisons must be made, it has seemed not absolutely necessary to adjust the definitions of either country to make them completely comparable.

¹ Hereafter referred to as Chemieverband. ² Instituto dello Stato, "Le Interdipendenze strutturali del sistema economico nazionale", chap. IV, Relazione generale sulla Situazione economica del Paese 1954 (Rome); Wassily W. Leontief, The Structure of the American Economy 1919 to 1939, 2nd Edition (New York, 1951); Stanford Research Institute, Calif., Chemical Economic Handbook, Vol. II and III; W. Duane Evans and Marvin Hoffenberg, "The interindustry relations study for 1947", The Review of Economics and Statistics, May 1952; U.S. Depart-ment of Commerce, Bureau of the Census, Census of Manufacturers: 1947 and 1954 (Washington, D.C.). ³ The "Leisse'sche Erhebung". See Die Deutsche Industrie,

Gesamtergebnisse der amtlichen Produktionsstatistik (Berlin, 1939). Schriftenreihe des Reichsamts für wehrwirtschaftliche Planung, Heft 1; further reference was made to unpublished details from this and from records of the former Reichsstelle Chemie in Berlin.

⁴ The figures on the Federal Republic's input of materials and energy in 1953, 1954 and 1955 derive from Ergebnisse der Erhebung Wiesbaden), and from the data in Kostenstrukturerhebung 1950, Federal Republic of Germany.

⁵ Hans Wittmeyer and Frederick Hauck, "Über den Input der Chemischen Industrie; aus den Strukturuntersuchungen des Referats Statistik des Verbandes der Chemischen Industrie", in Chemische Industrie, Heft 7/1957.

Federal Republic of German	y (1954)			Italy (1953)					
Input category	Millions of DM	Percenta of gros products	55	Percer of gr produ	oss	Millions of lire	Input category		
Kohlenbergbau	918·1	7.43	7·4	3.3	{1·4 1·9	9,754 13,154	Estrazione di combustibile Industrie dei derivati del carbone		
Mineralölverarbeitung	168 ∙0	1.36	1.4	2.4	2.4	16,821	Industrie dei derivati dei petroli		
Fremdstromerzeugung Wasser und Fremddampf	310-0 27-0	$\left. \begin{array}{c} 2\cdot 51\\ 0\cdot 20 \end{array} \right\}$	2.7	3-4	3.4	23,492	Energia elettrica, gas e acqua		
Sonstiger Bergbau Steine und Erden Glas und Feinkeramik	298·0 128·9 64·5	$\left.\begin{array}{c}2\cdot41\\1\cdot05\\0\cdot52\end{array}\right\}$	4∙0	6.9	{ ^{6·3} 0·6	43,526 4,131	Estrazione di minerali Industrie della lavorazione de minerali non metallici		
Eisen und Stahl NE-Metalle u. Hüttenvorst.	78·8 324·0	0·64	3.2	2.0	2.0	13,803	Industrie metallurgiche		
Maschinenbau Elektrotechnik Feinmechanik u. Optik Eisen-, Blech-u. Metallwaren	13·0 33·0 29·0 220·0	0.11 0.27 0.24 1.78	2.4	2.7	2.7	18,620	Industrie meccaniche		
Asbest- und Gummiwaren	17.6	0.14	0.1	0.2	0-2	1,351	Industrie della gomma		
Kunststoffverarbeitung	22·0	0.18	0.2	0.1	0.1	515	Industrie manifatturiere varie		
Zellstoff- u. Papierind.	255.4	2.07	2.1	2-3	$\begin{cases} 1 \cdot 0 \\ 1 \cdot 3 \end{cases}$	6,885 8,853	Industrie della carta e cartotecnic a Industrie poligrafiche e editoriali		
Sägewerke und Holzbearbeitung.	39 ∙6	0.36	0·4	0.1	0.1	885	Industrie del legno e sughero		
Textilien	103·0	0.83	0∙8	0.1	0-1	984	Industrie tessili Industrie del vestiario		
Pflanzliche und tierische Rohstoffe Genussmittelindustrie	438∙0 108∙4	3·55 0·88	4.4	6.6	{1·9 4·7	13,374 32,471	Agricoltore e foreste Industrie alimentari e del tabacco		
Transport	328-0	2.66	2.7	(2.0)	(2·0)	(14,010)	(Transporti)		
Chemie-Input (innerrer Input)	1,972·0	16.0	16.0	2.8	2.8	19,181	Industrie chemiche e della fibre artificale		
Abschreibungen	862·0	7∙0	7∙0	7.6	7.6	53,000	Ammortamenti		
Arbeits-, Kapital- und Unternehmerein- kommen, sonstige Vorleistungen und Steuern	5,576-1	45·2	45·2	5 9·4	59-4	411,821	Prodotto netto		
Bruttoproduktion	12,335.9	100.0	100.0	100.0	100.0	692,621	Produzione vendibile		

Table 1: Comparison of the input structure of the chemical industry of the Federal Republic of Germany in 1954 with that of Italy in 1953

 Table 2: Comparison of the input structure of the chemical industry in the Federal Republic of Germany in 1954 with that of the United States of America in 1947

Federal Republic of German	ry (1954)				United States of America (1947)						
Input category	Millions of DM		ntage ross uction	of	centage gross luction	Millions of US dollars	Input category				
Kohlenbergbau Wasser-und Fremddampf	918·1 27·0	7·4 0·2	7.6	1.6	$ \begin{cases} 0.6 \\ 0.8 \\ 0.2 \end{cases} $	75·6 91·9 23·9	Coal-mining Coke and products Natural, manufactured and mixed gas				
Mineralölverarbeitung	168 ∙0	1.4	1.4	2.0	$\begin{cases} 0.2\\ 1.8 \end{cases}$	26·4 211·2	Crude petroleum and natural gas Petroleum products				
Fremdstrom Sonstiger Bergbau Eisen und Stahl Eisen-, Blech- u.Metallwaren NE-Metalle	310·0 298·0 78·8 220·0 324·0	2·5 2·4 0·6 1·8 2·6	2·5 2·4 0·6 1·8 2·6	0·6 1·7 0·5 1·1 1·2	0·6 1·7 0·5 1·1 1·2	77·9 206·0 56·3 131·1 149·6	Electric light and power Mining Iron and steel Metal products Non-ferrous metals				
Maschinenbau Elektrotechnik Feinmechanik und Optik	13·0 33·0 29·0	0·1 0·3 } 0·2 }	0.6	0.7	$\begin{cases} 0.5 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.0 \end{cases}$	65·3 3·5 2·8 16·0 3·3	Machinery Motor vehicles Transportation equipment Professional and scientific equipment Electrical goods				
Steine und Erden Glas und Feinkeramik Asbest und Kautschuk Sägewerke und Holzbearbeitung	128·9 64·5 17·6 39·6	1·0 0·5 } 0·1 J 0·3	1∙6 0∙3	1·3 0·4	$ \begin{cases} 0.4 \\ 0.6 \\ 0.3 \\ \\ 0.4 \end{cases} $	45·7 74·1 36·4 49·9	Stones, sand, clay, abrasives Glass Rubber products Furniture and fixtures Lumber and wood				
Kunststoffverarbeitung Zellstoff und Papier	22·0 255·4	0·2 2·1	0·2 2·1	0·2 3·6	$\begin{cases} 0.2\\ 3.2\\ 0.4 \end{cases}$	24·7 381·1 42·5	Plastic products Paper and allied products Printing and publishing				
Textilien	103-0	0.8	0.8	0-1	{ ^{0·1} —	6.7	Textile mill products Apparel				
Pflanzl.u.tier.Rohstoffe Genussmittelindustrie	438∙0 108∙4	3·6 0·9	4.5	8•7	{1·2 { 7·5 {0·0	140·0 898·6 0·7	Agriculture Food and kindred products Tobacco manufacturing				
Transportkosten Chemie (innerer Input) Kostensteuern	328·0 1,972·0 554·0	2·7 16·0 4·5	2·7 16·0 4·5	2·9 27·7 5·7	$ \begin{array}{c} 2.9\\ 27.7\\ 5.7\\ 0.0\\ 0.3\\ 0.2\\ 7.0 \end{array} $	347.5 3,322.6 678.9 3.8 31.6 24.4 838.0	Miscellaneous manufacturing				
Abschreibungen Personalkosten Kapital-, Boden-, Gebäudenutzung Unternehmereinkommen und sonstige Vorleistungen	862·0 2,586·6 185·0 2,245·5	$ \begin{bmatrix} 7 \cdot 0 \\ 21 \cdot 0 \\ 1 \cdot 5 \\ 18 \cdot 2 \end{bmatrix} $	47•7	40·3	32.8	3,934.9	Households (capital and labour including depreciation)				
Bruttoproduktion	12,335.9	100-0	100.0	100.0	100.0	12,022.9	Gross purchase (Total)				

 TABLE 3: INPUT COEFFICIENTS OF THE UNITED STATES CHEMICAL INDUSTRY[®] 1919, 1929, 1939 and 1947

 (Percentages)

	Input	1919	1929	1939	1947
1 0	Chemicals and allied products	5.7	6.9	17.2	27.6
2 A	Agriculture	9.1	4.8	3.6	6∙8
3 F	Food and kindred products	2.3	1.5	1.0	5.0
4 I	Cobacco manufacturing		—		0.0
5 E	Energy		_		3.7
	(a) Coal-mining	1.3	1.0	1.5	0.6
	(b) Crude petroleum and natural gas	0.2	0.2		0.2
	(c) Petroleum products	0.2	0.2	1.4	1.5
	(d) Natural, manufactured and mixed gas	0.3	0.1	1.1	0.2
	(e) Electric light and power	0.2	1.0		0.6
	(f) Coke and its products	0.1	1.0	—	0.7
6 N	Mining		0.0		1.5
7 I:	ron and steel		—	0.8	0.4
8 N	Metal products	0.3	0.1		1.0
9 N	Non-ferrous metals	1.2	1.5	1.9	1.1
0 N	Machinery			0.0	0.5
1 N	Motor vehicles				0.0
2Т	Transportation equipment				0.0
3 E	Equipment: agriculture, construction, mining				
4 P	Plumbing and heating equipment			0.1	
5 P	Professional and scientific equipment		—	·	0.1
6 E	Electrical goods				0.0
	Furniture and fixtures			0.0	
8 I	Lumber and wood	1.4	0.3		0∙4
9 S	Stone, sand, clay and abrasives	1.6	2.1	2.6	0.3
0 C	Glass				0.5
1 1	Textile-mill products	_		0.2	0.0
2 A	Apparel			0.0	
3 L	eather and leather products	0.2	0.6	0.1	0.0
4 P	Paper and allied products			1.4	2.7
5 P	Printing and publishing				0.3
6 P	Plastics products	_			0.2
7 F	Rubber products			0.1	0.3
	Miscellaneous manufactures			0.0	0.3
	Construction		0.5	0.4	0.2
	Fransportation	0.3	2.7	4.6	2.8
	Personal services			3.7	
	Remaining industries	5.3	8.3	19·6	8.6
	abour and capital consumption	21.8	25.4	21.0	30.1
	Government (direct and indirect taxes)	3.1		3.7	5.5
	Jndistributed	45·4	41.8	14 ∙0	
C	Gross production	 100∙0	100.0	<u> </u>	100-0
	· · · · · · · · · · · · · · · · · · ·				

^aIncluding vegetable oils, which are not included in the German data.

TABLE 4: DIFFERENCES IN THE DEFINITION OF THE CHEMICAL INDUSTRY IN THE FEDERAL REPUBLIC OF GERMANY AND THE UNITED STATES OF AMERICA

	United States shipments (\$US 1,000)		Material input as percentage of shipment	
	1947	1954	1954	
A. Products included by the Federal Republic of Germany but not	by the Un	ited States of	America:	
Ferro-alloys	140,109	262,174	58	
Coke-oven by-products	128,617	193,902	70	
Candles	18,666	27,426	43	
Matches	56,386	61,246	42	
Fireworks	15,331	20,537	45	
Linoleum	67,208	84,706	44	
Roofing felt	274,051	324,078	63	
Chemicals for photography	210,994	442,944	35	
Lead pencils	45,492	50,986	47	
Carbon paper and inked ribbons	49,068	90,990	53	
Silicone carbide and aluminium oxide	19,902	34,698	42	
Total	1,025,824	1,593,687	54	
B. Products included by the United States of America but not by Vegetable oils	the Federal 1,667,911	Republic of 1,581,487	Germany : 85	
Salt (edible)	46,570	71,636	32	
Total	1,714,481	1,653,123	117	

Table 4 reveals the considerable differences existing between the United States and the German definitions. The products not included in the former are specified in terms of the value of shipments from the United States in 1947 and 1954, as well as a percentage of the total input of materials to gross production in 1954. As a whole they amount to a considerable value, but taken separately and compared with the total of chemicals they are less important. The inputs are widely spread over various items without any concentration and there would thus not be much danger of misinterpretation. This aspect of the differences in definition can therefore be disregarded in the present comparison.

More serious difficulties arise however in regard to the products included in the United States but not in the German definition. Vegetable oils are particularly important in that they have a markedly different input structure, which concentrates on raw agricultural staples. Vegetable oils are included only in table 3 and have been excluded from tables 2, 5 and 6.6

It has also been possible to apply the basic scheme for the global input, as laid down in table 7, to all three countries as far as supplementary data on value-added were available. The latter did not readily lend itself to subdivision, but this was of little importance because the main concern was with the input of materials and energy.

Statistical basis

The second (and often discussed) general problem, that of an institutional versus a functional basis for statistical compilation, had already arisen in the available German statistics. The 1936 German census of industries had been constructed on an institutional basis. The chosen unit however was the technical establishment, subdivided as far as possible according to process or product: but even by the mid-1930's these establishments were already heterogeneous and complex.

The study of the Chemieverband on the input structure of the chemical industry is functionally oriented; the product, not the producing institution, is considered as being of prime importance.

The far-reaching disaggregation of the German census of industries in 1936 and the variety of the data collected by the Chemieverband for later years made it possible to prepare pre- and post-war input tables both in institutional and in functional classifications (tables 8 and 9). The functional table (9) is, however, limited to the input of materials and energy.

It is admitted that neither purely institutional nor

⁶ In tables 1, 2 and 6 the original German and Italian denominations of the industrial sectors have not been translated in order not to misinterpret the meaning or to veil the national differences. M

TABLE 5: INPUT COEFFICIENTS FOR SUBSECTORS[&]

(Percentages)

To:				
From :	Chemicals Total	Inorganic chemicals	Organic chemicals	Plastic materials
1. Chemicals and allied products, total	27.7	20.1	29.7	46.5
(a) Inorganic chemicals	4.0	6.6	6.4	1.7
(b) Organic chemicals	8.6	7.8	15.8	34.3
(c) Plastic materials	1.2		1.2	0.0
(d) Synthetic rubber	0.0		0.1	
(e) Synthetic fibres	0.2	_	0.5	
(f) Explosives and fireworks	0.1	1.0	0.1	
(g) Drugs and medicines	2.0	0.9	1.8	
(h) Soap, glycerine and related products	2.1		0.2	4.5
(i) Paint and allied products	2.0		1.1	2.8
(j) Gum and wood chemicals	0.6	0.1	0.2	-
(k) Fertilizers	0.7	1.6	0.1	
(l) Animal oils	4 ·1		0.1	0.3
(m) Miscellaneous chemicals	2.1	2.1	1.8	0.9
e. Energy, total	4.2	9.1	8.2	1.4
(a) Coal-mining	0.6	2.2	1.0	0.5
(b) Crude petroleum	0.5	0.0	0.2	
(c) Petroleum products	1.8	2.0	2.8	0.2
(d) Natural, manufacturing and mixed gas	0.2	0.7	0.6	0.0
(e) Electric light and power	0.6	2.2	1.1	0.5
(f) Coke and products	0.8	2.0	2.2	0.5
Agriculture	1.2		1.8	_
. Food and kindred products	7.5	0.5	4.9	2.6
. Tobacco manufacturing	0.0	—		—
6. Mining	1.7	7.6	0.4	
7. Iron and steel	0.2	0.2	0.6	0.4
B. Metal products	1.1	0.3	1.1	0.0
). Non-ferrous metals	1.2	3.7	1.5	0.3
). Machinery	0.2	0.4	0.4	0.3
. Motor vehicles	0.0			
2. Transportation equipment	0.0	0.1	0.0	
B. Equipment for agriculture, construction and mining				
4. Plumbing and heating equipment	—		_	******
5. Professional and scientific equipment	0.1	<u> </u>		
5. Electrical goods	0.0		—	
7. Furniture and fixtures				
3. Lumber and woods	0.4	0.3	1.0	0.2
9. Stone, sand, clay and abrasives	0.4	1.6	0.3	0.0
). Glass	0.6	0.4	0.3	
I. Textile-mill products	0.1	0.5	0.1	
2. Apparel			_	
B. Leather and leather goods	0·0 3·2	1.0	1.3	7.1
Paper and allied products Deinting and publishing		0.1	0.1	0.1
5. Printing and publishing	0·4 0·2	0.0	0.0	2.0
		0.0	0.3	0.2
 Rubber products Miscellaneous manufacturing 	0·3 0·3	0.3	0.1	1.1
9. Construction	0.3	0.2	0.2	0.2
D. Transportation	2.9	5.5	3.3	3.1
I. Personal services	4°7			
2. Other industries	7.0	3.5	1.8	2.5
3. Households (labour and capital)	32.8	38.8	36-1	27.2
4. Government services	5.7	6.5	6.8	4.8
-		<u> </u>		
5. Gross production	100.0	100.0	100.0	100.0
(Value in \$1,000,000)	12,023	1,094	1,672	592

^a Excluding processing of vegetable oils.

INPUT STRUCTURE OF CHEMICAL INDUSTRIES

of the United States industry, 1947

	(Percentages)								
Synthetic rubber	Synthetic fibres	Explosives and fireworks	Drugs and medicines	Soap, glycerine and related products	Paint and allied products	Gum and wood chemicals	Fertilizers	Animal oils	Miscellaneou chemicals
29.8	17.0	25.8	22.9	38.5	26.9	3.3	30.0	15.8	29.9
0.7	3.6	10.7	1.3	2.9	1.3	1.3	16.8	1.0	4·2
19.7	11-1	2.3	5.4	2.4	6.8	-	0.2	0.8	7.0
				0·3 0·1	5.8		-	0∙6 0∙2	1·0 0·1
	0.1		0.2	0.1	0.1			0.2	0.1
		0.7		0.1				0.2	0-1
	0.5	—	11.7	0.6	0.5			0.9	2.3
4∙4	0.8	10.9	0.4	2.5	0.4		-	1.7	7.0
	0.5	_	0·1 0·1	0·8 0·5	10·4 0·3	0.8		0.4	1·5 1·5
	_			0.1	<u> </u>		11.6	0.5	0.1
0.6			2.0	24.0	0.2		0.4	5-3	2.3
4.4	0.7	1.2	1.7	4.0	1.0	1.3	0.6	3.7	2.4
25·2 0·1	2·6 1·7	2·8 0·5	1·0 0·2	0·9 0·2	3·3 0·2	1·3 0·7	4∙8 0∙0	0·7 0·3	3·7 0·3
<u> </u>							<u> </u>		1.1
24.0	0.6	0.9	0.4	0.2	2.3	0.1	0.1	0.5	1.4
0.2	0.0	0.3	0.0	0.1	0.1	0.3	0.0	0.1	0.1
0·7 0·2	0.3	0·8 0·3	0·3 0·1	0·2 0·0	0·4 0·3	0.3	0∙6 4∙0	0·2 0·0	0·6 0·2
			1.2	0.3	0.9	24.5	0.2	2·1	1.1
0.1	0.8	0.3	1.7	10.0	11.8	0.4	0.8	44.3	4.6
							<u> </u>		0.0
		0.1	0.0	0.0	2·2 0·5		8·4 0·1	1.1	2·1 0·6
0.0	0·3 0·0	0·6 1·3	0·1 0·5	0·7 1·0	3.3	0·4 2·5	0.1	1·1 0·1	0·0 1·6
	0.1	0.1	0.1	0.2	4.4	0.1	0.0	0.3	0.2
1.0	0.4	0.3	0.2	0.3	1.3	0.3		0.3	0 ·9
	0.1		0.1	0.1	0.0				
		0.3		0.0	_	_	0.0		
		<u> </u>			0.2				0.8
					0.2	-			
	0.3	3.5		0.1	0.0	11.5		0.1	0.0
			0.0	0.2	1.0		0.3		0.5
-			2.8	0-3	0.1	0.1		0.1	1.4
		0.9	0.0	0.0	0.0			0.5	0.0
									0.2
0.9	12.3	1.9	3.2	4.4	1.3	0.2	4.3		3.7
0.0	0.5	0.1	1.1	1.0	0.2	0.1		0.0	0-3
	0.0	0.1	0.2	0.0	0.3				0.1
0.2	0.1	0·3 0·3	0.3	0.4	0·3 0·0	0.4	0·1 2·4	0·5 0·1	0∙4 0∙6
0.2	0.8	0.3	0.1	0.1	0·0 0·1	0.2	0.4	0.1	0.0
3.2	2.8	2.5	1.5	1.9	2.2	4∙0	10.5	1.0	1.9
3.6	2.3	4.5	12.4	9.7	3.1	4.4	6.0	14.6	13.0
30.8	48.7	46.5	43.8	25.4	32.0	42.4	26-3	16.3	27.2
5.0	11.2	7.4	6.8	4.5	4.3	4.0	5.4	2.4	5.0
100.0	100-0	100-0	100.0	100-0	100.0	100-0	100-0	100-0	100-0
253	727	159	1,270	1,533	1,627	157	523	776	1,640

163

TABLE 6: PRODUCT MIX OF THE CHEMICAL INDUSTRY IN THE FEDERAL REPUBLIC OF GERMANY AND IN THE UNITED STATES OF AMERICA: 1954

Federal Republic of Ge	rmany				United S	States of America		
		Percentage	Percentage	1				
Chemical product category	1,000 DM	of total	of total	\$US1,000	Census code	Chemical product category		
. Anorg. Industrie-								
chemikalien	1,732,090			1,962,571	2811, 2, 9	Industrial inorganic chemicals		
Düngemittel	1,272,968			855,196	2871, 2	Fertilizers		
Ferrolegierungen	105,046			11,929	2861051 2862051	Charcoal		
				102,833	2895	Carbon black		
				195,390	2896	Gases (compressed and liquefied)		
					3291, 111	· · · · · · · · · · · · · · · · · · ·		
				34,698	3291, 121	Silicone carbide and other		
				262,174	3313	electrometallurgical products		
	3,110,104	25.1	19.0	3,424,791				
2. Organische Industrie-				2,720,648	2822,	Industrial organic chemicals		
chemikalien	1,760,500				2829 except			
organ. Farbstoffe	600,393				2829411,			
Gerbstoffe uextrakte	68,648			75,810	611 28414	Glycerine		
Synth. Aromen u. Essenzen	10,437			99,222	2861, 2	Giywhine		
				,=	3, 5	Gum and wood chemicals except		
					2861051	charcoal		
					except			
				87,426	2862051 2821	Cyclic (coal-tar) crudes		
				193,902	29323	Coke-oven by-products		
	2,439,978	19.7	17.6	3,177,008	_,			
	2,437,770	177	170	5,177,000				
3. Kunststoffe einschl. synth. Kautschuk	1,044,485	8∙4	10.3	1,855,654	2823, 2824	Plastic materials and synthetic rubber		
4. Chemiefasern	993,698	8·0	6.6	1,202,343	2825, 2824	Synthetic fibres		
5. Pharmazeutica	1,077,253	8·7	10.8	1,202,343	2823	Drugs and medications		
6. Seifen und Waschmittel	701,773	0.1	10.0	405,031	2831, 3, 4 2841 except	Soap except glycerine		
Körperpflegemittel	285,776			405,051	2841 except 28414	soap except giveenne		
Textil-u. Lederhilfsmittel	200,000			744,481	2893	Toilet preparations		
Schuh-, Leder-, Fuss-				977,899	2842	Cleaning and polishing		
bodenpflegemittel	95,765			59,516	2843	Sulphonated oils and treatment agents		
	1,283,314	10.4	12.2	2,206,927				
7. Sprengstoffe, Pulver,				183,680	2826	Explosives		
Zündwaren				61,246	3983	Matches		
	168 500	1.4	1.5	20,537	3985	Pyrotechnics		
	168,599	1.4	1.2	265,463				
8. Chemischer Bürobedarf				15,543	2899373, 5, 6	Inks		
				50,986	3952	Lead pencils, crayons		
	107,099	0.9	0.9	90,990	3955	Carbon paper, inked ribbon		
				157,519				
9. Fotochemie	193,713	1.6	2.5	442,944	38615, 6 7, 8	Photographic equipment		
0. Saaten- und Pflanzen-				96,979	28991, 2	Insecticides, weed killers and		
schutzmittel, Schäd-				177,956	2897	fungicides		
lingsbekämpfungsmittel	137,345	1.1	1.5	274,935		-		
1. Leime und Klebstoffe,	176,667							
Gelatine usw.	27,111							
	203,778	1.6	1.0	180,224	2894	Glue and gelatin		
2. Industrielle Öle,		<i>.</i> -			2886	Grease and tallow		
Fette, Fettsäuren usw.	147,429	1.2	2.3	408,455	2887	Fatty acids		
3. Wachse und Stearin-			-					
erzeugnisse, Kerzen	100,000	0.8	0.5	27,426	3984	Waxes and candles		

INPUT STRUCTURE OF CHEMICAL INDUSTRIES

Federal Republic of	Germany				Uni	Inited States of America	
Chemical product category	1,000 DM	Percentage of total	Percentage of total	\$US1,000	Census code	Chemical product category	
4. Mineralfarben	353,402			1,458,297	2851	Paints and varnishes	
Druck-, Künstler- u.				370,222	2852	Inorganic colour pigments	
Lebensmittelfarben Lacke, Öle-, Leim- u.	97,893			45,431	2853	Whiting and fillers	
Wasserfarben	695,481			172,434	2891	Printing ink	
 Ather, Öle und Riechstoffe, Essenzen und Aromen 	1,146,776	9.2	11.4	2,046,384 47,615 5,280 25,977	2829411 2829611 28	Flower and perfume materials Flower-oil mixtures Essential oils	
 Chemische Bauten- und Holzschutzmit- tel, Kitte, Dach- 	10,000	0.1	0.4	78,872	-		
pappe usw.	225,544	1.8	1.8	324,078	2952	Roofing felts and coatings	
	12,389,115	100.0	100.0	18,020,685			

TABLE 6 (continued)

Note: The value of output relates to gross production in the case of the Federal Republic of Germany; the corresponding figures for the United States relate to gross shipments (including interplant transactions).

purely functional input-output tables can be prepared in practice. It was therefore necessary to adjust the functionally collected input data of the Chemieverband to the official statistics offering institutional data. The institutional unit in the Federal Republic of Germany is enterprise, whereas the United States data are based on establishment.

The structure of internal inputs

The tables for both countries contain transactions within the chemical industry. In data for the Federal Republic, only transactions between different enterprises are collected, whereas in the United States data, flows between various establishments of the same enterprise are also recorded. This methodological difference accounts for the fact that the internal input in the latter country (27 per cent) is nearly twice as high as that in the former one.

In the comparison between the Federal Republic and Italy there occurs a similar phenomenon, despite the application of the same methodological base. The Italian internal input amounts to 2.8 per cent which is only a sixth of the other figure. Since in both countries the enterprise has been the institutional unit and methodological differences are almost non-existent this must be attributed to the real structural difference between the chemical industries of these countries. One of the causes for this phenomenon might be the relatively high degree of vertical integration in the Italian chemical industry.

Variation of input coefficients

Another striking observation is the relative constancy of the input coefficients for the Federal Republic as compared with the considerable variations in the United States ones. The extent to which these can be attributed to statistical imperfections, above all to the incompleteness of the United States tables in the early years and to their time gaps, is no part of this study, but it is generally true that a broader aggregation of input sectors tends to diminish changes in coefficients.

Changes in the interindustry relations of important industries, when viewed in the light of economic evolution, occur rather gradually. Substitution between materials occurs, if at all, within the major categories (which will be defined in the next section), and rarely goes beyond the confines of these categories. The dynamic characteristic of the chemical industry is, in general, therefore not perceptible through these aggregated input data.⁷

Structure of production

The purpose of table 6 is to give an idea of the composition of the chemical products of the Federal Republic of Germany and of the United States in 1954. For this

H. WITTMEYER

⁷ See Hans Wittmeyer, "Zur Frage der Gültigkeit von Naturgesetzen in der Wirtschaft", in Allgemeines Statistisches Archiv, Band 44, Heft 2, 1960. Also see section IV of this paper.

Proprietor's income	ac		
Interests and rents for capital, buildings, machinery, estate	let value added	Gross	
Wages and salaries	ē	1 4	Gross
Taxes paid other than income taxes		value-added ^a	
Depreciations	_	fed*	production
Other services (non-material charges, distribution, advertising etc.)			Di
Intra-industry inputs	Ma	-1	
Inter-industry inputs (raw and auxiliary material, commission work etc.)	Material inputs		

TABLE 7: GLOBAL INPUT CLASSIFICATION SCHEME FOR THE CHEMICAL INDUSTRY

⁸ Gross value added in this context is the census concept rather than the national account concept in the sense that it includes not only factor services but non-factor services as well.

TABLE 8: INPUT COEFFICIENTS OF THE CHEMICAL INDUSTRY IN THE FEDERAL REPUBLIC OF GERMANY 1936 AND 1953-55—INPUT CLASSIFIED BY INDUSTRY

(Percentage)

Input (classified by industry)	1936	1953	1954	1955
. Coal-mining	8.1	7.8	7.4	7.5
2. Other mining	2.3	2.2	2.4	2.8
B. Steam	0.2	0.2	0.2	0.2
Lectricity (public)	2.1	2.4	2.5	2.5
5. Stone, sand and gravel	1.1	1.0	1.0	1.0
5. Iron and steel	1.4	0.7	0.6	1.0
7. Non-ferrous metals	1.8	2.4	2.6	2.8
3. Mineral oil refining	1.2	1.1	1.4	1.6
P. Rubber and asbestos	0.5	0.5	0.1	0.1
). Pulp, paper and boards	2.0	2.2	2.1	2-1
Lumber and wood	0.2	0.3	0.3	0.3
2. Metal manufactures	1.9	1.7	1.8	1.7
B. Glass and pottery	0.3	0.5	0.5	0.2
I. Textiles	1.1	0.8	0.8	0.8
5. Plastic products	0.5	0.2	0.2	0.5
5. Vegetable and animal crude materials	4.4	3.7	3.6	3.4
7. Food and beverages	1.3	1.0	0.9	0.8
3. Machinery, including electrical and precision				
instruments	0.2	0.6	0.6	0.6
O. Transportation	1.9	2.6	2.7	2.6
External input, total	32.2	31.6	31.8	32.5
D. Internal input (chemicals)	11.4	<u> </u>	16·0ª	
		h		
Input (materials and energy), total	43.6	<u> </u>	47-8	
		·	·····	
1. Taxes (trade, turnover etc.)			4·5*	
2. Depreciation			7.0ª	
B. Compensation of employees			21·0ª	
4. Interests and rents for capital, estate and buildings	56.4		1·5ª	
5. Proprietors' income				
5. Other services			18·2ª	
Gross production	100.0	100.0	100.0	100.0
(Value in millions of DM)	1 253.1)	(10,889.8)	(12,335.9)	(14,017.9)

^a Computed or estimated according to Kostenstrukturerhebung, 1950.

INPUT STRUCTURE OF CHEMICAL INDUSTRIES

TABLE 9: MATERIAL AND ENERGY CONSUMPTION OF THE CHEMICAL INDUSTRY IN THE FEDERAL REPUBLIC OF GERMANY—1936, 1953-55; INPUTS CLASSIFIED BY PRODUCT

(Percentage)

Input (classified by product)	1936	1953	1954	1955
1. Coal and related fuel, including			_, <u>,</u> ,	
coke	3.8	3.7	3.6	3.6
2. Gas	1.5	1.2	1.2	1.3
3. Crude coal-tar	2.1	1.5	1.2	1.3
4. Crude benzol	0.7	1.4	1.4	1.3
5. Petroleum, crude and refined (re-				
finery gas, liquefied gas)		0.0	0.3	0.3
6. Fuel oil	0.1	0.1	0.2	0.4
7. Benzene, test and special grade	0.2	0.3	0.3	0.3
8. Bitumen	0.5	0.2	0.2	0.1
9. Gasolines, lubricants	0.2	0.4	0.3	0.3
10. Electricity (public)	2.1	2.4	2.5	2.5
11. Water and steam service	0.2	0.2	0.2	0.2
12. Rock salt	0.2	0.3	0.3	0.3
13. Potash salts	0.8	0.3	0.3	0.4
14. Pyrites	0.4	0.9	0.9	1.2
15. Phosphate rock	0.5	0 ∙4	0∙4	0.2
16. Barytes	0.1	0.1	0.1	0 ∙1
17. Fluorspar	0.0	0.1	0.1	0.1
18. Quicklime, calcium carbonate and	~ •		~ .	~ .
limestone	0.5	0.4	0 ∙4	0.4
19. Clay	0.0	0.0	0.0	0.0
20. Quartz sand and powder	0.0	0.0	0.0	0.0
21. Kieselguhr	0.0	0.0	0.0	0.0
22. Gypsum and anhydrite	0.1	0.0	0.0	0.0
23. Acid and fire-proof stones	0.2	0.1	0.1	0.1
24. Non-ferrous metals	0.9	1.4	1.4	1.6
25. Non-ferrous metal ores, metallurgi-				
cal primary products	0.9	1.0	1.2	1·2 0·1
	0.2	0.2	0.1	
27. Pulp, paper and board	2.0	2.2	2.1	2.1
28. Wood and related products	0.5	0.3	0.3	0.3
29. Metal manufactures	1.9	1.7	1.8	1.7
30. Glass and pottery	0.3	0.2	0.2	0.2
31. Jute (yarn, staple and fabrics)	0.1	0.1	0.1	0.1
32. Other textile raw material	0.1	0.1	0.1	0.1
33. Jute and other textiles for packaging				
clothes	0.9	0.6	0.6	0.6
34. Plastics products	0.2	0.2	0.2	0.2
35. Oils and fats	2.0	2.3	2.3	2.1
36. Other vegetable and animal crude materials such as hides and skins, glands, drugs, waxes, gums and				
resins, natural essential oils	2.4	1.4	1.3	1.3
37. Crude and white spirits	0.9	0.6	0.6	0.2
38. Sugar and starch	0.2	0.2	0.2	0∙2
39. Machinery, including electrical, precision and optical instruments	0.2	0.6	0∙6	0.6
40. Transportation	1.9	2.6	2·7	2.6
Total (1-40)	30.1	30.0	30.1	30.5

TABLE 10: INPUT COEFFICIENTS FOR MAJOR MATERIAL GROUPS AND ENERGY

(Percentage)

Major input group	Federal Republic of Germany 1954	Italy	United States 1947
Republic of Germany 1954 Republic Italy Wajor input group 1954 Italy Gegetable and animal raw mate- rials, food and allied products 4.4 6.6 extiles 0.8 0.2 ulp, paper and allied products 2.1 2.9 oal 7.6 3.3 etrol/natural gas 1.4 2.4 urchased electricity 2.5 3.4			
rials, food and allied products	. 4.4	6.6	8∙7
Textiles	. 0.8	0.2	0.1
Pulp, paper and allied products.	2.1	2.9	3.6
Coal	7.6	3.3	1.6
Petrol/natural gas	1.4	2.4	2.0
Purchased electricity	2.5	3.4	0.6
Total energy	11.5	9.1	4.2

purpose the value of shipments of important product groups and their percentage composition are compared. No essential differences in the production structure of both countries can be noticed. The greatest difference (of about 6 per cent) appears in the first group, which is composed primarily of inorganic chemicals and fertilizers, and can be attributed to the higher per hectare fertilizer consumption.

Conclusions from the above investigations

The summary input comparison of the three countries given in table 10 shows some similarities between Italian and United States industries.

Despite the statistical imperfections mentioned earlier this table permits an analysis of the chemical structure of the three countries.

The fact that the input of total energy in each European country is more than twice as large as that in the United States is due to the considerably lower prices for energy in the latter. The similarity of the production structure of the Federal Republic of Germany and of the United States obviously tends to reduce such differences in energy consumption. Furthermore the price difference conceals the relative extent of the substitution of petroleum and natural gas for coal: this process was already rather advanced in the United States in 1947 while it began in the two European countries only in 1953–54 (see section IV).

In the United States the input of vegetable and animal raw materials is nearly double that of the Federal Republic. This relationship cannot be attributed solely to price differences. Probably the consumption in the United States and in Italy was considerably higher. This is connected with the high input of coal in the Federal Republic of Germany. Despite the high price of energy, coal was the only basic material for synthetics which, compared with derivatives of natural raw materials, played a more important part there than in the other two countries. There seem to be no reasonable economic explanations for the differences in the input of textiles and of pulp and paper products. They may be influenced by differences in the aggregation of these industries.

These observations concerning the economic and technical structure of the chemical industries of the countries compared here are not satisfactory. At this stage they are too vague to indicate any facts more specific than already well-known general trends. The statistical material used in this section is no doubt far from adequate.

II. An examination of the input-output data for the five member countries of the European Economic Community

Uniform classifications

The work of the Statistical Office of the European Communities (SOEC) for the establishment of uniform input-output tables merits a particular welcome. The great progress in international input-output statistics brought about by this work of the SOEC lies in the achievement of a uniform definition and standardized classification of the national data of the individual member countries. The statistical methods however have often preserved national peculiarities.

The classification follows the Nomenclature of the Industries Established in the European Communities (NICE) developed by the SOEC for institutional statistics. The input of materials is defined strictly according to the product list of the Statistics and Tariff Classifications for Foreign Trades and has therefore a pronounced functional character. The higher numbered categories of intermediate input (such as transport, commerce and other services) and primary factor input follow the scheme of compilation of gross national product. They are institutionally oriented.

In the first version of the SOEC tables, dated October 1964, intermediate inputs are divided into 85 categories, while in the second version (December 1965) they are divided first into 65 and then into 35 categories. The fifteen categories of primary input remain unchanged, however.

The correspondence between the 85 categories of intermediate input in the first version and the 65 and 35 categories in the second version is shown in table 11.

The classification of intermediate input into 35 categories has resulted in consistent chemical data for all the countries considered. Chemicals in this classification are put in category 18, which can be subdivided as follows for the purposes of this study:

- 18 (a) Plastics products (products of the plastics processing industries)
- 18 (b) Synthetic materials and artificial fibres (products of the plastics, synthetic rubber and artificial fibre producing industries)

TABLE 11: NOMENCLATURES FOR THE INPUT-OUTPUT TABLES PREPARED BY THE STATISTICAL OFFICE OF THE EUROPEAN COM-MUNITIES (SECOND VERSION, DECEMBER, 1965)

<u>.</u>	MUNITIES (SECOND VI	ersion,	DECEMBER, 19	(20)
			Correspondin	g Sector No. in
35-Sector alignmen	r Sector title		65-Sector alignment	85-Sector alignment
1.	Agricultural products wine), forestry and ducts	fishery	pro-	1, 2
2.	Coal and related fuels .		3	3
3.	Coal products (coke, ga	s)	4	4
4.	Iron and non-ferrous or	es	5, 6	5, 6
5.	Crude and refined petro ding distribution), nat			7, 44
6.	Minerals, non-metallic a ducts (cement, glass e			8, 9, 45, 46
7.	Meat (including canning ducts, vegetable and and oils	animal	ro- fats	
8.	Miscellaneous food pro	ducts		11, 12, 13, 15, 16
9.	Beverages	· · · · · · · · ·	17	17
10.	Tobacco	••••••	19	19
11.	Yarn, fabrics, knit fabri	cs	20, 21	20 (21, 22), 23.
12.	Clothing, textiles, carpet	ts, furs	22	24, 25
13.	Leather, footwear and ducts, other than cloth			26, 34 (35, 36)
14.	Wood, wood and con (including furniture ar			30) 27 (28, 29)
15.	Pulp, paperboard and ducts	-		30 (31, 32)
16.	Printing, publishing a activities			33
17.	Rubber and asbestos pro	oducts .	28	37
18.	Chemical products, arti plastics and synthetic	ficial fib product	res, s29, 30, 31	38, 39, 40, 41 (42, 43)
19.	Iron and steel products	(ECSC).	35	47 (48, 49,
20.	Iron and steel produ ECSC; metal furnitu ducts other than mach	re and p	oro-	50) 51 (52, 53),
21.	Non-ferrous metals and ducts			56 54
22.	Foundry products		38	55
23.	Non-electric machiner cars, aircraft		40, 41, 44,	
24.	Electrical machinery, ap equipment			65 59

INPUT STRUCTURE OF CHEMICAL INDUSTRIES

TABLE 11 (continued)

		Corresponding	Sector No. in
35-Sect alignmer		65-Sector alignment	85-Sector alignment
25.	Naval construction, motor vehicle and engines, bicycles		60, 62, 63, 64
26.	Precision and optical instruments miscellaneous industrial products recovered products	,	66, 67, 71
27.	Buildings and civil engineering	. 51	68 (69, 70)
28.	Electrical energy, gas, water services (including distribution)		72, 73
29.	Transportation and ancillary trades		74, 75, 76, 77, 78
30.	Commerce	. 60	79
31.	Communications	.61	80
32.	Finance and insurance	.62	81
33.	Other services	. 63	82
34.	Housing services	. 64	83
35.	Government services	.65	85
36.	Intermediate input (output) TOTAL (1 to 35)	.66	86

18 (c) Other chemicals

(corresponding to the products as defined by the Special Committee for Chemical Products of the OECD, except plastics and synthetic rubber).

These subcategories will be studied here in three different combinations: 18 (a + b + c), 18 (b + c) and 18 (c). Other SOEC categories of the 35-sector alignment subdivided or re-aggregated in this study are: Nos. 5, 6, 7–9 and 28. The results for the first three are shown in table 12. The subdivision of No. 28 is considered later.

For the Federal Republic of Germany the SOEC has established tables for 35 categories only. This means that chemicals appear as a whole in category 18. In order to eliminate plastics processing (18 (a)), which is generally not considered as part of the chemical industry, the present author has disaggregated the subcategory 18 (b + c) from Chemieverband data and adjusted it to the SOEC scheme. Consistent input data for Belgium, France, Italy and the Netherlands have been computed by adding the figures from categories 30 and 31 of the 65-category classification of the SOEC.

Because of the intensive interlacing of the synthetic materials and man-made fibres industry with other chemical industries in the Federal Republic of Germany it was not possible to isolate 18 (c) for the purpose of

TABLE 12: COMPARISON OF THE CLASSIFICATION IN THIS STUDY WITH THOSE OF SOEC

Classificat number in			SOEC classification number						
study		35-Sector		6ō-Sector	85-Sector				
18 (a+b+c) 18 (b+c) 18 (c)	c) }	18	{2	29 + 30 + 31 30 + 31 31	38+39+40+41+42+4339+40+41+42+4340+41+42+43				
5(a) 5(b)	}	5	{	7 44	7 32				
6(a) 6(b)	}	6	{	8+9+33 34	8+9+45 46				
7–9(a) 7–9(b) 7–9(c)	}	7+8+9	{	18 12 10, 11, 13–17	18 12 10, 11, 13–17				

comparison with other countries where consistent data are available as category 31 of the 65-category SOEC classification.

Table 13 is derived from the SOEC data for category 18 as a whole; in the last three rows the value terms are converted into United States dollars by means of exchange rate tables prepared by the United Nations. The intermediate input categories have been rearranged in different order, however, so as to reflect the functional characteristics of different input materials. As in SOEC publications the intra-industry inputs are shown in brackets and are not included in the totals. Input coefficients as well as value of production in terms of United States dollars for 18 (b + c) and for 18 (c) are given in tables 14 and 15 respectively. In these tables the input categories 5, 6, 7-9 and 18 are subdivided as explained above.

Formation of aggregates

In tables 13, 14 and 15 various input categories are grouped from the technical-economic point of view. The first group, "energy", incorporates categories 2 + 3(coalmining products), 5 (petroleum and natural gas and their derivatives produced by the mineral oil industry), and 28 (electricity and other secondary energies purchased or produced in the same establishment). This group includes the cost of energy production and distribution. The dual role played by the materials of this energy group in the chemical industry is worth noting: they not only are consumed as fuel or as a source for light and heat but also serve as raw material for organic synthesis.

The second group, "organic primary materials", aggregates categories 1 (agricultural, forestry and fishery products, including wine), 7 + 8 + 9 (vegetable and animal fats and oils, sugar, and food and beverages), 14 (wood, and wood and cork products, including furniture and related products), and 15 (pulp, paper and board and allied products).

169

Table 13: Input coefficients of all chemical industry 18 (a+b+c) for the five EEC countries, 1959

(In percentage of gross value of production)

SOEC code	Input	Belgium	Germany, Federal Republic of	France	Italy	Netherlands
28	Electricity, gas, compressed air, steam and water	6.0	6.7	3.4	5.3	2.2
2	Coal and related fuels	1.0	2.3	0.7	0.2	1.8
3 5	Coal products (cokes and gas)	1.0	0.9	1.3	1.2	3.9
3	Petroleum, natural gas and petroleum refining	1.6	2.6	2.0	5.2	6.3
	Energy, total	9.6	12.5	7.4	11.9	14.1
1	Agriculture, forestry and fishing	0∙4	1.1	0.8	1.0	0.7
79	Vegetable and animal oils, food and beverages	2.9	2.7	2.9	5.1	5.9
0 4	Tobacco products	0.5	0.4	0.2	₽ 0·3	0.5
5	Pulp, paper and allied products	2.5	2.2	3·4	2.5	3.7
	Organic primary materials, total	6.3	6.4	7.4	8.9	10.9
4	Metal ores	0.1	0.9	0∙4	0.2	0.4
6	Non-metallic mineral ores and products	5.3	4.4	3.7	3.5	1.0
21 19	Non-ferrous metals and products Iron and steel products, ECSC	2·6	1.7	0.9	1.6	0.5
. 9	fion and steel products, ECSC					0.7
	Inorganic primary materials, total	8∙0	7.1	5.0	5.3	2.6
20	Iron and steel, except ECSC, and metal products	1.8	2.3	1.6	0.4	1.5
22	Foundry products	0 ∙9		0-1		
23	Non-electrical machinery, railroad cars and aircraft	0.8	1.0	0.1		0.2
24	Electrical machinery	0.5	0.2	a		0.2
25	Ships, motor vehicles, engines and bicycles	0.1	0.5	0.2	1.4	
26	Precision instruments	0.1	0.2	0.3	8	0.2
	Repair and maintenance materials, total	4.3	4.2	2.3	1.8	2.6
11	Textiles	0.7	1.0	0.2	0.3	0.4
12	Clothing		0.2	0.5	8	
13 17	Leather products	 8	а 0·4	0.5	∎ 0·3	а 0·1
	Secondary materials (a), total	0.7	1.6	0.9	0.5	0.5
16	Printing and publishing	1.7	1.1	0.6	1.2	1.3
	Secondary materials (b), total	1.7	1.1	0.6	1.2	1.3
18	Imported chemical materials	19.8	6.3	15-5	16.7	25-9
	External material inputs, total	50·4 (12·9)	39·2 (18·8)	39·1 (14·1)	46∙3 (56•0)	
27	Construction	0.8	0.3	0.6	0.5	0.7
29	Transportation		3.3	3.1	4.1	
30	Trade		5.6	2.0	1.4	
31 32	Communications		1·1 1·3	0·5 1·0	1·4 1·8	
33	Other services		1.3	3.7	1.9	
34	Rental					·
35	Government services	_	1.1	8		·
	Construction and services, total	7.5	14.1	10.8	10.8	5.5
						-

SOEC code	Input	Belgium	Germany, Federal Republic of	France	Italy	Netherlands
37	Compensation of employees	22.0	18·2	20.0	13-2	13.7
38	Employers' contributions for social insurance	2.5	2.1	4·2	· 5·2	2.5
39	Depreciation	7.9	6.1	5.0	8.0	5.6
	Other income	6.3	15.4	10-1	12.1	11.9
41	Indirect taxes on sold products, less subsidies	3.3	4.9	10.7	4.3	2.9
43	Gross value added at factor cost (37 to 40)	38.7	41.8	39.3	38.5	33.7
44	Gross value at market prices (41 and 43)	42.1	46.7	50.0	42.8	36.6
46	Gross production at ex-factory prices (36 and 44)°	498-4	4,612.7	3,324.7	2,202.1	680-9
49	Imports at ex-customs prices ^c	295.8	515.7	382-1	304-9	335-3
50	Total availability ^o (46 and 49)	794·2	5,128.4	3,706.8	2,507.0	1,016-2

TABLE 13 (continued)

^aNegligible (less than 0.05 per cent).
^b Domestic products only; not included in 36 or in 46.
^c In millions of US dollars.

Table 14: Input coefficients of the chemical sub-sector 18 (b+c), excluding plastics, for the five EEC countries, 1959

(In percentage of gross value of production)

SOEC code (subdivision)	Input	Belgium	Germany, Federal Republic of	France	Italy	Netherlands
28 (a)	Electrical energy	4.1	5.8	2.4	3.8	2.0
(b)	Gas, compressed air, steam and water services	2.2	0.9	1.2	2.0	0.2
2	Coal and related fuels	1.0	0.8	0.8	0.2	1.9
3	Coal products (cokes and gas)	0.9	4·0	1.5	1.3	4·1
5 (a)	Petroleum and natural gas	_	0.1			
(b)	Petroleum refining	1.7	2.1	2.0	5.6	6.6
	Energy, total	9.9	13.7	7.9	12.9	14.8
1	Agriculture, forestry and fishing	0.4	1.2	0.9	1.0	0.8
- 7-9 (a)	Vegetable and animal fats and oils	1.6	1.1	1.9	1.9	3.1
(b)	Sugar	0.4	0.1	0.2	0.6	0.3
(c)	Miscellaneous food and beverages	1.0	1.3	1.2	3.1	2.9
10	Tobacco products				8	
14	Wood and wood products	0.1	0.2	0.2	0.2	0.4
15	Pulp, paper	2.5	2.1	3.8	2.6	3.9
	Organic primary materials, total	6.0	6.0	8.2	9.4	11.4
4 6 (a)	Metal ores Non-metallic mineral ores and products	0.1	1.0	0.4	0.3	0.4
	other than glass	5.0	3.9	3.3	2.5	0.4
21	Non-ferrous metals and products	2.8	1.7	1.0	1.8	0.6
19	Iron and steel products (ECSC)	R	0.1			0.7
	Inorganic primary materials, total	7.9	6.7	4.7	4.6	2.0

Table 14: Input coefficients of the chemical sub-sector 18 (b+c), excluding plastics, for the five EEC countries, 1959(continued)

(In percentage of gross value of production)

SOEC code (subdivision) 	Input	Belgium	Germany, Federal Republic of	France	Italy	Netherlands
20	Iron and steel except ECSC, metal products	1.9	2.2	1.8	0.3	1.5
22 23	Foundry products	1.0		0.1	—	— —
	aircraft	0.8	0.9	0.1		0.2
24	Electrical machinery	0.5	0.2	8	_	0.2
25	Ships, motor vehicles, engines and bicycles	0.1	0.5	0.2	1.5	0.2
26	Precision instruments	0.1	0.1	0.4	a	0.6
	Repair and maintenance materials, total	4.4	3.9	2.6	1.8	2.7
1	Textiles	0.7	0.7	0.2	0-1	0.3
12	Clothing		0.1	0.5	8	_
13 17	Leather products	0.1	ъ 0∙4	0.4	а 0·2	0·1 0·1
	Secondary materials (a), total	0.8	1.2	0.8	0.3	0.5
5 (b)	Glass and glass products	0.5	0.6	0.6	1.2	0.7
16	Printing and publishing	1.6	1.0	0.0	1.2	1.4
	Secondary materials (b), total	2.1	1.6	1.3	2.4	2.1
18 (a)	Plastic products	1.8	0.3	1.1	0.8	0.8
[8	Imported chemical materials	17.2	6.4	12.0	12.4	23.5
	External materials inputs, total	50.1	39.8	38.6	44·6	57.8
	(Internal input) ^b	(11.9)	(17·3)	(11-3)	(56-5)	(10.6)
	Construction	0.8	0.3	0.7	0.3	0.6
	Transportation	2.3	3.3	3.4	4.3	0.4
	TradeCommunications	1·3 1·3	5·4 1·1	2·1 0·5	1·5 1·5	1·3 0·3
32	Finance and insurance	0.6	1.3	1·0	1.9	1.3
3	Other services	1.6	1.4	3.4	2·1	1.7
34	Rental			_		
	Government services		1.2	8		_
	Construction and services, total	7.9	14.0	11.1	11.6	5.6
16	Intermediate input, total (1 to 35)	58·0	53-8	49•7	56-2	63·4
57	Compensation of employees	21.9	18.7	20.2	13.7	13.5
	Employers' contributions for social insurance	2.5	2.0	4.2	5.3	2.5
9	Depreciation	8.0	5.8	5.2	8-2	5-5
	Other income	6.4	14.8	10.2	12.3	12.1
	Indirect taxes on sold products, less subsidies	3.2	4.9	10.5	4.3	3.0
3	Gross value added at factor cost (37 to 40)	38.8	41.3	39.8	39.5	33.6
4	Gross value added at market prices (41 and 43)	42.0	46-2	50·3	43.8	36.6
6	Gross production at ex-factory prices (36		<u> </u>			<u> </u>
~	and 44)°	476.0	4,31 3·2	2,980.0	2,017-1	645.6
	Imports at ex-custom prices ^c	281.2	456·3	380-3	301·0	318-8
	Fotal availability ^c (46 and 49)	757.2	4,769.5	3,360.3	2,318.2	964·4

^a Negligible (less than 0.05 per cent).
^b Domestic products only; not included in 36 or in 46.
^c In millions of US dollars.

 Table 15: Input coefficients of the chemical subsector 18 (c), excluding plastics, synthetic materials and artificial fibres, for four EEC countries, 1959

(In percentage of gross value of production)

SOEC code (subdivision)	Input	Belgium	France	Italy	Nethe r land
 28 (a)	Electrical energy	4.2	2.6	4.0	2.1
(b)	Gas, compressed air, steam and water services	2.3	1.4	1.4	0.3
2	Coal and related fuels	1.1	0.8	0.2	2.0
3	Coal products (cokes and gas)	0.9	1.7	1.6	4.7
5 (a) (b)	Petroleum and natural gas Petroleum refining	2.0	2.1	6.2	<u> </u>
(0)					
	Energy, total	10.5	8.6	13.4	16.7
1	Agriculture, forestry and fishing	0.4	1.0	1.2	0.9
7-9 (a)	Vegetable and animal fats and oils	1.9	2.3	2.3	3.1
(b)	Sugar	0.5	0.2	0.6	0.3
(c)	Miscellaneous food and beverages	1.0	1.4	3.7	3.5
10	Tobacco products				
14	Wood, wood and cork products	0.1	0.3	0.2	0.6
15	Pulp, paper and allied products	1.3	3.2	1.3	2.6
	Organic primary materials, total	5.2	8.4	9-3	11.0
4 6 (a)	Metal ores Non-metallic mineral ores and products other	0.1	0.2	0.3	0.5
U (4)	than glass	5.7	3.9	3.0	0.5
21	Non-ferrous metals and products	3.1	1.2	2.2	0.7
19	Iron and steel products (ECSC)	0.1	-		0.8
	Inorganic primary materials, total	9.0	5.6	5.5	2.5
20	Iron and steel except ECSC and metal products	2.1	2.1	0.3	1.7
22 23	Foundry products	1.1	0.1		
	craft	0.8	0.1		0.2
24	Electrical machinery, apparatus and equipment	0.5	a		0.2
25	Ships, motor vehicles, engines and bicycles	0.1	0.2	1.6	0.2
26	Precision instruments	—	0.2	a	0.2
	Repair and maintenance materials, total	4.6	3.0	1.9	2.8
11	Textiles	0.8	0.2	0.1	0.3
12	Clothing		0.3	8	
13	Leather products			8	0.1
17	Rubber and asbestos products	a	0∙4	0.5	0.1
	Secondary materials (a), total	0.8	0.9	0.3	0.5
16 (b)	Glass and glass products	0.5	0.7	1.5	0.8
16	Printing and publishing	1.6	0.8	1.3	1.4
	Secondary materials (b), total	2.1	1.5	2.8	2.2
18 (a)	Plastic products	2.0	1.3	0.9	1.0
(b)	Synthetic materials and artificial fibres	1.2	1.5	0.7	1.6
	Imported chemical materials	13.7	5.9	9.6	19.3
	External materials inputs, total	49.1	36.7	44.5	57.6
	(Internal input) ^b	(10.1)	(7.0)	(62.9)	(8.6)

TABLE 15: INPUT COEFFICIENTS OF THE CHEMICAL SUBSECTOR 18 (C), EXCLUDING PLASTICS, SYNTHETIC MATERIALS AND ARTIFICIAL FIBRES, FOR FOUR EEC COUNTRIES, 1959 (continued)

(In percentage of gross value of production)

SOEC code (subdivision)	Input	Belgium	France	Italy	Netherlands
27	Construction	0.9	0.7	0.2	0.7
29	Transportation	2.5	3.6	4.7	0.5
30	Trade	1.4	2.0	1.5	1.3
31	Communications	1.4	0.6	1.7	0.3
32	Finance and insurance	0.6	1.0	2.0	1.3
33	Other services	1.8	3.8	2.3	1.9
34	Rental				
35	Government services	—	8		
	Construction and services, total	8.6	11.7	12.4	6-0
36	Intermediate input, total (1 to 35)	57.7	48.4	56.9	63.6
37	Compensation of employees	22.3	21.4	13.9	12.1
38	Employers' contributions for social insurance	2.5	4.4	5.5	3.7
39	Depreciation	7.8	4.9	8.0	4.8
40	Other income	6.4	10.1	11.1	12.5
41	Indirect taxes on sold products, less subsidies	3.3	10.8	4.6	3.3
43	Gross value added at factor cost (37 to 40)	39.0	40.8	38.5	33.1
44	Gross value added at market prices (41 and 43)	42.3	<u> </u>	43.1	36.4
46	Gross production at ex-factory prices ^o	419.2	2,524·6	1,653·2	532.8
49 50	Imports at ex-customs prices (36 and 44) [°] Total availability [°]	222·2 641·4	280·0 2,804·6	243·8 1,897·0	257∙5 790•3

^a Negligible (less than 0.05 per cent).
 ^b Domestic products only; not included in 36 or in 46.
 ^c In millions of US dollars.

The group "inorganic primary materials" consists of categories 4 (iron and non-ferrous ores), 6 (a) (minerals and non-metallic mineral products, other than glass), 21 (non-ferrous metals and products), and 19 (iron and steel manufacturing products in so far as they are controlled by the European Coal and Steel Community (ECSC)).

These three groups contain not only the raw material for the production of chemicals but also products serving other purposes in it.

The fourth group, "repair and maintenance materials", aggregates categories 20 (iron and steel products, except ECSC, metal furniture and metal products (except machinery), 22 (foundry products), 23 (non-electrical machinery, railroad cars and aircraft), 24 (electrical machinery, apparatus and equipment), 25 (naval construction, motor vehicles and engines, and bicycles), and 26 (precision, optical and related industrial products, and recovery products). This group mainly represents durable goods, as far as they are used in production. Investments are not tabulated here.

The group "secondary materials (a)", the fifth group, aggregates categories 11 (yarn, fabrics, knit and woven goods), 12 (clothing, other textile goods, carpets and furs), 13 (leather, footwear and other leather products except clothing), and 17 (rubber and asbestos products) This group represents auxiliary materials used mainly in technical operations such as filtration, filling, transportation, or as working clothes.

The next group, "secondary materials (b)", aggregates categories 6(b) (glass and glass products), and 16 (printing and publishing), and represents packaging and advertising costs.

Chemical materials, shown as external inputs to chemical industries in tables 13 and 14, relate only to imported chemicals and chemicals produced outside the particular chemical sector or sub-sector considered. Thus for the whole sector 18 (a + b + c), for example, only imported chemicals are shown as chemical inputs (table 13); when sub-sector (b + c) is considered (as in table 14) only the products of chemical sub-sector (a) and imported chemicals are shown as external inputs.

It must be emphasized that the aggregation of material and energy inputs in the above groups follows only a rough criterion. Just as the energy and raw material aggregates incorporate products serving other production purposes, so there will be some overlap with regard to the uses of secondary materials as well.

The input aggregates involved in the tabulated coefficients include both domestic products and imports; this does not apply to "internal" inputs which arise solely from domestic production.

Relations to the tables in section I

The Federal Republic of Germany and Italy have already been discussed in the preceding section. Although the methods and definitions involved in the tables shown there differ from those presented in this section, an attempt has been made to find relationships between 1953/54 (dealt with in section I) and 1959 (dealt with in this present section). This comparison again confirms the fact that the Italian input of animal and vegetable raw materials is considerably higher than the corresponding German input, while that of coal is higher in the Federal Republic than in Italy. The comparison may in one way or another provide an indication of the economictechnical differences between the two countries; but the veil of statistical and methodological differences, as well as differences in the structure of production and prices, does not permit far-reaching conclusions to be drawn regarding technological characteristics of the chemical industries of these countries.

Intercountry comparison

The comparison of the five member countries of the EEC in 1959 only partly confirms expectations. It could be foreseen, for instance, that the input of coal and coal products would be highest in the Federal Republic of Germany, followed by France and then by Italy. What could not be foreseen, however, was that it would be so high in the Netherlands and so low in Belgium. It might be possible to find an explanation of the fact that the input of refined petroleum products in Italy and the Netherlands is more than twice the consumption in France and the Federal Republic. On the whole, however, it must be admitted that the tables give no satisfactory information, despite the standardized classification of the SOEC system.

The aggregation of inputs into the above-mentioned categories brings out a marked similarity of input structure among the countries for all 18 (a + b + c), 18 (b + c) and 18 (c). The steadily increasing percentage of the energy input from 18 (a + b + c) to 18 (c) is due to the concentration in the latter of products consuming high energies.

A similar increase in the percentage of inorganic primary materials from 18 (a + b + c) to 18 (c) can be explained simply by the fact that 18 (c) is composed mostly of inorganic chemicals. Although these rates are considerably higher in 18 (c) than in 18 (a + b + c) in Belgium and France they are nearly unchanged in Italy and the Netherlands. The figures for sub-category 18 (b + c) compared with those for 18 (a + b + c) are lower in all the countries, though in most cases only slightly. This is because some of the inorganic primary materials serve not only as raw materials but also as auxiliary materials in sectors other than inorganic

The percentage of the input of organic primary materials decreases in Belgium and the Federal Republic of Germany from 18 (a + b + c) to 18 (c). This is normal, since sub-categories 18 (a) and 18 (b) are primarily organic. In France, however, the figures increase markedly and steadily; in Italy and the Netherlands the increase is moderate and unsteady.

chemicals.

The input of secondary products 18 (b) is highest in all countries in sub-category 18 (c), in which products consuming a great deal of advertising and packaging materials are evidently concentrated. For secondary materials 18 (a) and repair and maintenance materials, such clear relations cannot be expected, nor can they be detected in our input coefficient tables.

No doubt the aggregation of related input categories has improved the stability of input coefficients in many respects. Nevertheless, many questions still remain unanswered. For example, the importance of the inorganic inputs in Belgium and the Federal Republic of Germany. The situation is reversed in France, Italy and the Netherlands. This apparently contradicts the expectation that the use of coal for organic synthesis should be encouraged in view of the importance of coal-mining in the economies of Belgium and the Federal Republic of Germany, while in France and Italy climatic conditions favour the non-synthetic type of chemical industries.

Energy input

The coefficient of energy input differs significantly between countries. It should be borne in mind that all these coefficients are based on data in value terms. They depend on a variety of factors, among which four may be mentioned.

(a) A large proportion of coal, petroleum and natural gas serves as raw material and should be classified first in the group of organic primary materials. This portion of the raw material depends on the structure of the chemical industries and can therefore differ considerably from one country to another.

(b) The prices of various energy-producing materials differ among countries.

(c) The cost of energy depends partly on whether the secondary energy (electricity, gas, steam) is produced by the establishment itself or purchased from other enterprises.

(d) The evaluation of various kinds of energy is in no way uniform from country to country or from enterprise to enterprise. In the case of self-produced power it often depends on the individual evaluation scheme for internal services of the respective enterprise. When energy is purchased from other enterprises more favourable prices and agreements can be reached for large-scale consumers than for those with a medium or small consumption.

Last but no less important, corporate tax systems and other institutional factors affect the coefficients in value terms.

Internal input

The importance of the internal inputs decreases steadily and markedly from 18 (a + b + c) to 18 (c) in Belgium, France, the Federal Republic of Germany and the Netherlands, in all of which the internal input is less than half of the external input. Italy presents an anomalous case in this respect. Real structural differences apart, this has a great deal to do with the underlying method of statistical compilation. Table 1 in fact, where the Italian data for 1953 are examined in comparison with the German data for 1954, shows an entirely different picture.

Industry-mix

Input coefficients for a sector are affected not only by the choice of input categories but also by the way in which various consuming industries are grouped. In table 16 the relative importance of different chemical sub-sectors of category 18 (a, b, and c) is indicated in terms of various concepts (total availability, gross production, intermediate input, interindustry input, internal input and external input). The comparison shows that the relative contribution of sub-categories 18 (b + c) and 18 (c) to the total chemical category 18 (a + b + c) is rather similar among different countries, almost irrespective of the type of criterion used for measurement purposes.

The findings in this section could be summed up as follows:

The standardization of classifications, definitions and partly of compilation methods worked out by the SOEC has permitted a marked improvement in the possibility of international comparison.

The rearrangements of input categories have resulted in some accentuation of general patterns for purposes of comparison. The progressive aggregation of input categories and their comparison within the chemical industry as a whole, as well as its sub-sectors, has revealed certain peculiarities and similarities of the production structure. The information provided by the SOEC tables is still too vague however to provide an operational clue for the programming of chemical industries.

III. THE CHEMIEVERBAND'S DATA ON THE INPUT STRUCTURE OF THE CHEMICAL INDUSTRY IN THE FEDERAL REPUBLIC OF Germany, 1956, 1959 and 1961

The definition of the chemical industry corresponds to category 18 (b + c). The missing sub-category 18 (a) is not very important since it is not very closely connected with the chemical industry thus defined. Furthermore, the SOEC sub-category 18 (a) consists solely of the processing of primary plastics, which are first produced in 18 (b). In the case of the Federal Republic of Germany, less than half of the plastics produced in 18 (b) is delivered to 18 (a).

Sources

The tables and reports in this section are based on the investigations which have been undertaken over many years by the Chemieverband. The work of this organization concentrates on problems of particular interest to its members and its statistical methods are adjusted to such problems. Apart from the Leisse'sche Erhebung of 1936 for the old "Deutsches Reich" no further data on chemical inputs were available. The Chemieverband data cover the Federal Republic of Germany, including West Berlin.

TABLE 16: RELATIVE CONTRIBUTION OF SUB-CATEGORIES TO THE TOTAL CHEMICAL INDUSTRY: THE FIVE EEC COUNTRIES IN 1959

(In percentage of total category 18 (a + b + c))

	Belg	ium	France		Federal Republic of Germany	Itai	'y	Netherlands		
	(b + c)	(c)	(b + c)	(c)	(b + c)	(b + c)	(c)	(b + c)	(c)	
Total availability Gross production at ex-factory	95-3	80.8	90.7	75.7	93.0	92.5	75.7	94.9	77.8	
prices	95.5	84·1	89.6	75.9	93.5	91.6	75-1	94.8	78.	
Intermediate input Interindustry input (including in-	95.6	83.7	89.2	73.5	94.5	90.0	74.8	94.9	78.5	
ternal input)	93·4	78.5	84.1	62.3	92.1	90.6	78.9	92.3	73-8	
Internal input	87.9	65.6	72.0	37.6	86-0	92.5	84.4	81.6	54.6	
External input	95.9	82·0	88.5	71.2	95.0	88.3	72.2	94.6	77.9	

= Plastic Products

b = Synthetic materials and artificial fibres. c = Other chemicals.

177

Methods employed by the Chemieverband

The work of the Chemieverband has been based on the statistics of production of the Federal Statistical Office, Wiesbaden, which collects information on industrial production in both quantity and value terms. For a number of important basic products, supplementary data are published on the internally consumed products of establishments. Although the institutional unit of official statistics is the local establishment the work of the Chemieverband is based on the enterprise.

As a first step the quantities of major raw material requirements were computed by applying the qualitative and quantitative relations ordinarily known to chemists, such as structural formula and technical process, stoichiometry and the factor of efficiency. The quantities were then evaluated by means of individual or average f.o.b. prices. In order to check and complete quantities, prices and values use was made not only of official statistics on related industries but also of information from numerous offices, institutes and suppliers. Estimates of other minor miscellaneous material inputs were made in co-operation with the experts of chemical firms and their suppliers. Available official and professional data were very useful in establishing the quantities of energy inputs. The evaluation of energy presented a special problem, which had to be solved gradually in collaboration with experts.

Auxiliary materials were evaluated by means of the statistics of supplier industries—unfortunately, often unavailable—and in co-operation with the relevant offices, organizations and experts. The data were also partly estimated on the basis of general statistics.

One of the special problems encountered during the study was how to deal with the supply of durable goods to the chemical industry. From the supplier industries only the total values of shipments could be obtained. The breakdown of goods into those for investment and those for current production was very difficult and could be estimated only approximately.

These estimates from various sources were finally put together like a mosaic. The results obtained were checked and corroborated by data on investments, distribution and other costs. Later, a special inquiry was made into organic synthesis, as an additional source of information. This will be discussed in the next section.

Advantages and disadvantages of these methods

This working method has the disadvantages of requiring much time and special knowledge and entailing assembly difficulties and a certain expense. Another disadvantage, at least at the beginning, was that values could be obtained only for the chemical industry as a whole. The intra-industry input-output relations for chemicals had to be established later, following a step-bystep procedure. This method of estimation, when applied exclusively to the input of materials and energy, was not considered too disadvantageous. Information about the remaining input materials could be obtained from other sources (data on investments, distribution costs etc.).

These disadvantages are largely counterbalanced by four advantages.

(a) Special inquiries, which often cause embarrassment to enterprises, are not necessary. Moreover, special inquiries have the disadvantages that enterprise accounting is not adapted to the classification of interindustry transactions and that numerous errors often occur in the statements of firms.

(b) The data thus obtained are quite flexible. It was possible to adjust the data originally based on the German chemical definition to the SOEC definition.

(c) Information not only as to values but also as to the quantities of material inputs can be obtained easily by this method. The results for raw materials and energy are quite reliable; checking and correction can be done in a flexible manner; differences in prices and purchasing power present no problem; the technological facts and relations implied in estimates are clearer and the result can be better used.

(d) The method of the Chemieverband is no less advantageous in breaking down the input by type of uses: raw material, energy and auxiliary material. In the search for relationships between input and production a clear separation of raw material and energy proves indispensable. Auxiliary materials, such as lubricants, working clothes, and office and canteen supplies were only roughly estimated but were later completed by the general statistics of the SOEC and the Federal Statistical Office.

Input by uses

In table 17 the total material and energy input was first subdivided into primary materials, energy, and secondary materials. The aggregate "energy" includes products of coal, petroleum and natural gas, which ordinarily serve in all industries as fuel or as the source of power and light. Products serving as basic material (coke for carbide, coke-oven or natural gas for the organic synthesis) are included in "primary materials".

This principle was not applied to electric or thermal energy however. For instance, power which is consumed for the production of chlorine and caustic soda by the electrolysis of rock salt and is incorporated in these products was not separated as such, but was included in the "energy" category. Although more than half of the power consumed by the chemical industry serves such special, direct production purposes the values and quantities of power were not subdivided, so as to avoid excessive complications.

From table 17 it can easily be calculated that 52.9 per cent of the total value of external input materials and energy are primary materials. Although the production pattern also determines the consumption of energy and secondary materials its influence should be most directly felt by primary materials. In terms of quantities, primary materials occupy 75.4 per cent of the total input materials Table 17: Material and energy inputs of the chemical industry (excluding plastics) of the Federal Republic of Germany, 1959: inputs classified by type of use

		Prima	y materials	En	ergy	Seconda	ry materials ^{&}	Т	otal
SOEC code (subdivision)	Inputs	Value ^b	Quantityc	Value ^b	Quantityc	Value ^b	Quantity ^c	Value ^b	Quantity ^c
28 (a)	Electricity			252.2	17,033.0			252-2	17,033.0
	Gas, compressed air, steam and water		_	37.0	´			37.0	·
	Coal and related fuels	8∙0	79 5∙0	27.4	4,441.0			35.4	5,236.0
3	Coal products (coke and gas)	161.6	4,596.0	12.6	434.0			174.2	5,030.0
5 (a)	Petroleum and natural gas	4 ·4	158.8					4.4	158.8
(b)	Petroleum refining	53.8	1,339-2	33.2	913·1	2.4	9.0	89.4	2,261.3
	Agriculture, forestry and fishing	44·1	289.3	••		6.4	21.0	50.5	310.3
7-9 (a)	Vegetable and animal fats and oils	50.0	230.0					50.0	230.0
	Sugar	3.5	33.5				—	3.5	33.5
	Miscellaneous food and beverages	29.4	104.1			25.0	90.0	54-4	194.1
	Tobacco								
	Wood and wood products	4.7	142.0			4.1	32.0	8.8	174.0
	Pulp, paper and allied products	66.9	406 5			26.2	55.0	93.1	461.5
	Iron and non-ferrous ores	41·0	1,419.3		_			41.0	1,419•3
6 (a)	Minerals and non-metallic mineral prod-					26.0		1000	12 196 0
	ucts other than glass	132.8	12,538.4			36.8	647.5	169.6	13,185.9
· · ·	Glass and related products		<u> </u>			24.6	50·0	24·6	50.0
	Non-ferrous metals and allied products	29.5	67·4			45·5 0·2	100·0 40·0	75·0 2·2	167·4 70·0
	Iron and steel manufacturing products ECSC	2.0	30.0		10 MIL 19	0.7	40.0	2.7	10.0
20	Iron and steel manufacturing products except					95·2	140.0	95 ∙ 2	140.0
22	ECSC metal furniture and metal products					95.2	140.0	95.2	1400
	Foundry products				- Contraction				
23	aircraft					38.6	32.0	38.6	32.0
24	Electrical machinery					7.9	12.0	7.9	12.0
	Ships, motor vehicles, engines and bicycles		_			20.5	21.0	20.5	21.0
	Precision instruments					6.7	0.1	6.7	0.1
	Textiles					27.6	8.0	27.6	8.0
	Apparel					5.7	2.0	5.7	2.0
	Leather products					1.0	0.1	1.0	0.1
	Rubber and asbestos products					15.7	11.0	15.7	11.0
	Printing and publishing					42.1	40.0	42.1	40.0
	Plastic products					14.5	120.0	14.5	120.0
()	Imported other chemicals	276.6	đ				—	276.6	d
	External input, sub-total	. 908.3	22,149.5	362.4	5,788·1e (17,033·0)	446.7	1,430.7	1,717.4	29,368·3 (17,033·0)
	(Internal input)	(707.8)				(36.9)		(744·7)	
	Input (materials and energy), total	1,616-1		362.4		483.6		2,462.1	

^a Installation materials, fillers, lubricants, packaging materials and other technical and auxiliary materials. ^b In millions of US dollars.

^c In 1,000 metric tons; electricity in million kWh.

^d Negligible (less than 0.05 per cent).

^e Electricity in million kWh.

and energy. The difference between the figures in value and quantity terms, although partly due to the exclusion of electric energy from the total weight, is mainly caused by the fact that any relation between quantities expressed in terms of actual weight is distorted because only part of the primary material (i.e. active substance) is transformed into a chemical product. The concentration of active substance varies considerably; in ores and minerals it is low, but in most non-ferrous metals it is 100 per cent. This distortion is eliminated by expressing the quantities of raw material uniformly as the content of active substance. An example will be given in the next section.

The other cause of this difference is a similar distortion

involved in the value-term data. Many materials have run through completely different stages of production and represent different grades of refinement. The grade of refinement of consumed materials as well as of the chemicals produced has proved very enlightening for an understanding of the complex pattern of production.

Differences between the value and the quantity coefficients are generally smaller with the secondary materials for technical use and auxiliary purposes (see table 18). The figures of this table however cannot be considered completely reliable: in many cases they are mere estimates based on averages, and are therefore rather approximate.

 TABLE 18: Specific uses of "secondary" materials in the chemical industry (excluding plastics) of the Federal Republic of Germany, 1959

Type of use	Millions of US dollars	Per centage	1,000 tons actual weight	Percentage
Technical installations	145.8	(32.6)	678.8	(47·4)
Technical material (fillers, lubricants etc.)	90.0	(20.2)	315.9	(22.1)
Auxiliary material for packaging and operative outfit	146.6	(32.8)	283.0	(19.8)
Other technical and auxiliary material	64.3	(14.4)	153-0	(10.7)
Secondary materials, total ^a	446.7	(100.0)	1,430.7	(100.0)

^a Excludes internal input.

Production pattern and input

The relationship between production and raw materials is especially close in chemicals. The complex correlation between raw material, production process and composition of the products depends on the special laws of conversion. The choice of auxiliary materials however depends more on other factors and conditions, such as the supply of mechanical industry.

The effects of rationalization or organizational efficiency in chemical production are different in the use of secondary (auxiliary) materials from what they are in production processes and the use of raw materials. Energy occupies an intermediate position because of its double functions. In order to demonstrate some of these characteristic relationships of the chemical industry the input of energy and materials was investigated separately. In the absence of comparable data for other countries the development in the Federal Republic was traced for the years 1956, 1959 and 1961.

Energy input

In table 19 the energy input is divided into "raw material" and "energy" according to its functional use. The figures are given both in quantity and value terms: the former are expressed in 1,000 tons of anthracite equivalent and the latter in millions of US dollars. Electric energy increased from 1956 to 1961 in quantity more than in value. Coal-mining products as a whole have decreased slightly, which is explained by the relative decrease in the coal consumption for internal power generation. The total consumption of petroleum and natural gas derivatives has increased nearly three times in weight and has doubled in value.

About half of the weight of all energy used has served as primary material. This portion has grown from 49.9 per cent in 1956 to 54.6 in 1961, although in value terms it has slightly decreased from 39.5 to 37.2 per cent. The percentage of coal-mining products in value terms was a little less than four times that of oil and gas derivatives in 1956 (41.8 as against 11.6) and only about twice as much in 1961 (32.4 as against 17.7). The margin between coal-mining products and oil and gas derivatives, compared in quantity, has decreased still more rapidly, from 74.0 as against 13.1 per cent (5.8:1) in 1956 to 55.3 as against 30.3 per cent (1.8:1) in 1961.

Input of primary materials

The input of primary materials in 1956, 1959 and 1961 is shown in value as well as quantity terms in table 20 which shows that the relationship of organic to inorganic primary materials in value terms has not changed during these six years, maintaining an approximate ratio of 2:1. Substitution of oil and gas derivatives for raw materials of vegetable and animal origin has made only slow progress. The consumption of the former has risen from 51.6 to 54.7 per cent during the period considered. The trend in quantity terms however appears different in many respects, but it gives rather an unrealistic picture since it is based on the actual weight figures. In order to make different raw materials comparable in terms of quantity they should be adjusted to a uniform measure representing the active substance involved. The investigation by the Chemieverband in this respect is not yet complete, but part of its findings will be discussed in the next section.

Conclusions

This example drawn from the chemical industry has shown that the relationship between input and production patterns becomes clearer when comparisons are made in both value and quantity terms, and also when input materials are well specified with respect to their uses (primary materials, energy and auxiliary materials).

IV. INPUTS AT THE PRIMARY STAGE OF ORGANIC SYNTHESIS

Definition of organic synthesis

In the following discussion those organic basic products that are derived from coal, petroleum or natural gas are designated as organic primary materials. Organic chemicals such as plastics, dyestuffs or pharmaceuticals produced from these through synthesis are not included

	28a Electricity	Coal	3 Coal products (coke, gas)	5a Petroleum and natural gas	5b Petroleum products	Energy input, total
A. In value terms (\$US 1,000,000)						
1956 {Raw materials Energy	240·2 240·2	8·2 35·0 43·2	160·3 11·7 172·0	2·7 — 2·7	32·9 24·2 57·1	204·1 311·1 515·2
1959 {Raw materials Energy Total	289·2 289·2	8·0 27·4 35·4	161·5 12·7 174·2	4·4 4·4	53·8 33·2 87·0	227·7 362·5 590·2
1961 {Raw materials Energy Total	 360·4 360·4	10·9 29·4 40·3	181·0 12·3 193·3	5·4 5·4	71·6 51·0 122·6	268·9 453·1 722·0
 B. In quantity terms (1,000 tons of anthracite equivalent^a) 						
1956 {Raw materials Energy Total	1,719·7 1,719·7	668·0 3,763·0 4,431·0	5,055·0 421·0 5,476·0	165·0 165·0	813·9 775·5 1,589·4	6,701·9 6,679·2 13,381·1
1959 {Raw materials Energy Total	2,095·0 2,095·0	630·0 2,542·6 3,172·6	4,897∙0 447∙0 5,344∙0	249·0 249·0	1,609·1 1,283·9 2,893·0	7,385·1 6,368·5 13,753·6
1961 {Raw materials Energy Total	2,419·1 2,419·1	772·0 2,558·0 3,330·0	5,502·0 419·0 5,921·0	317·0 317·0	2,552·1 2,195·7 4,747·8	9,143·1 7,591·8 16,734·9

 Table 19: Energy inputs in the chemical industry of the Federal Republic of Germany, by products and by uses---1956, 1959 and 1961

^a 1 kg anthracite = 7,000 kcal.

TABLE 20: PRIMARY MATERIAL INPUTS IN THE CHEMICAL INDUSTRY OF THE FEDERAL REPUBLIC OF GERMANY, 1956, 1959 AND 1961

			1956		1959		1961
	Input	Value ^a	Quant i ty ^b	Value [®]	Quantity ^b	Value ^a	Quantityb
28 (a)	Electrical energy (including distribu- tion)						
(b)	Gas, compressed-air, steam and water services				_		
2	Coal and related fuels	8.2	668·0	8.0	795 · 0	10.9	772·0
3	Coal products (coke, gas)	160-3	4,754·0	161.6	4,596.0	181.0	5,177.0
5 (a) (b)	Petroleum and natural gas Petroleum refining (including distri-	2.7	98.9	4.4	158.8	5.4	205.4
	bution)	32.9	679.3	53.8	1,180.4	71.6	1,808.0
1	Agricultural products (including wine), forestry and fishery pro-						
	ducts	38.4	246.0	44.1	289.3	49.5	296.1
	Vegetable and animal oils and fats	59.0	251.0	50.0	230.0	53.8	230.0
	Sugar	2.9	31.7	3.5	35.5	4.5	40.0
(c)	Miscellaneous food and beverages	24.9	84·1	29.4	104.1	35.6	114.0
10 14	Tobacco Wood, wood and cork products (in- cluding furniture, bedding and	-				_	
15	allied products) Pulp, paper-board and allied pro-	5.4	141.0	4.7	142.0	6.3	167·0
	ducts	61.2	320.7	66.9	406-5	72.7	418·0
4 5 (a)	Iron and non-ferrous ores Minerals, non-metallic mineral pro-	33.6	1,170.0	41·0	1,419.3	48.3	1,580-0
	ducts, excluding glass	123.5	10,942.7	132.8	12,538.4	147.8	13,680.3
(b)	Glass and allied products						
21	Non-ferrous metals and allied pro-						
	ducts	25.7	60.0	29.5	67.4	31.6	64·0
19	Iron and steel products (ECSC)	1.7	25.0	2.0	30.0	3.3	45∙0
	Primary materials, total	580.4	19,472.4	631.7	21,992.7	722.3	24,596.8

^a Millions of US dollars. ^b 1,000 tons (actual weight).

TABLE 21: CONSUMPTION OF PRIMARY ORGANIC CHEMICALS FOR THE PRODUCTION OF ORGANIC SYNTHESIS IN THE FEDERAL REPUBLIC OF GERMANY, 1957, 1959 AND 1961

	1	957	1.	959		1961
Primary organic chemicals	In 1,000 tons of carbon	Percentage obtained from oil and natural gas	In 1,000 tons of carbon	Percentage obtained from oil and natural ga s	In 1,000 tons of carbon	Percentage obtained from oil and natural gas
Carbon monoxide	110	(11)	156	(29)	169	(30)
Methane	10	(100)	10	(100)	16	(99)
Acetylene	170	(28)	227	(32)	259	(36)
Ethylene	64	(50)	141	(79)	234	(91)
Propane, propylene	34	(100)	69	(100)	124	(100)
Butane	9	(<u>—</u>) (100)	} 47	(100)	} 105	(100)
Butadiene		()))))
Non-aromatic hydrocarbons with 5						
and more C	14	(12)	37	(88)	92	(84)
Benzene	170	(0)	235	(0)	281	(4)
Foluene	18	(15)	23	(91)	34	(82)
Kylene	5	(0)	8	(72)	16	(96)
Naphthalene	62	(0)	81	(0)	95	(—)
Total	666	(24)	1,034	(40)	1,425	(50)

(In 1,000 tons of carbon content)

in this group. What constitutes the major raw material for organic synthesis is not coal and crude petroleum as such but their products or derivatives obtained by distillation, cracking or similar processes. These input materials are converted⁸ at the first stage into hydrocarbons (acetylene, propylene, benzene, etc.) and carbon monoxide. Through diverse processes and complicated synthesis series that pass through many stages and cross one another, higher organic compounds are built up. The number and diversity of these are too large for the structure of input and output for each specific category to be established. For the same reason statistics on specific products cannot be aggregated by simple addition. Because of the complexity of production and the cross-linkage of different stages of synthesis, double counting could not be avoided.

Statistical methods

Since the basic production scheme spreads fan-wise, it is most conveniently measured at its narrowest point, the primary stage of synthesis. This proposal was made by the Chemieverband as a basis for statistical methods, and has been accepted by the OECD Special Committee for Chemical Products and applied by a growing number of its members. The enterprises involved in organic synthesis therefore provided information on their consumption of hydrocarbons and carbon monoxide, measured in terms of actual weight. About 15 primary chemicals are involved, and the part of primary organic materials derived from coal is distinguished from the part of those derived from petroleum and natural gas. In order to make the actual-weight figures comparable, they were converted into tons of carbon content by means of stoichiometric coefficients, the carbon content being the active substance. The total weight of primary chemicals, expressed in tons of carbon content, therefore represents the total primary stage of organic synthesis.

As table 21 shows, the volume of organic synthesis in the Federal Republic of Germany rose between 1957 and 1961 from 666,000 tons of carbon content to 1,425,000 tons, or by 114 per cent.

Because of their proximity to the primary stage the products considered can on the whole be easily distinguished from those based on coal, petroleum and gas. At higher production stages such a distinction becomes virtually impossible. The dramatic trend towards the substitution of oil and gas for coal appears clearly in the percentage proportions shown in table 21: the consumption of oil-based products in the Federal Republic of Germany rose from 24 to 50 per cent of the total consumption of primary organics during the six years under review.

International comparison

Table 22 presents similarly organized information for four other countries as well. Unfortunately the necessary information on higher hydrocarbons is not available for some of these countries or for Japan, in regard to the very important aromatic hydrocarbons benzene, toluene and xylene. This failure is not due to the method itself and will probably soon be put right.

The Federal Republic of Germany and Japan rank first in terms of total consumption of primary organic chemicals. France and Italy follow, while the Netherlands remains at a much lower level. The proportion of

⁵ Inorganic chemicals derived from the same basic materials are not discussed here.

		Fr	rance		Feder	al Repu	blic of G	ermany		It	taly		Japan				Netherlands			
	To	tal		ch oil and tral gas	To	al		ch oil and tral gas	Tota	al		h oil and ral gas	Tota	ı		h oil and al gas	Total			h oil and al gas
Primary organic chemicals	a.w.	С.	a.w.	С.	a.w.	С.	a.w.	С.	a.w.	С.	a.10.	С.	a.w.	С.	a.w.	С.	a.w.	С.	a.tv.	С.
Acetylene	146	135	27	25 (18·5%)	250	231	136	125 (54%)	195	180	130	120 (66·7%)	351	324			b	b	ь	b
Ethylene	181	154	151	128 (83·1%)	600	514	592		282	240	282	240 (100%)	468	398	468	398 (100%)	59	50	41	35 (70%)
Propane and propylene	130	109	130	109 (100%)	266	228	266		158	132	158	132 (100%)	264	221	264		92	77	92	77 (100%)
Butane, butylene and butadiene	146	125	88	75 (60%)	195	168	195	168 (100%)	77	66	77	66 (100%)	103	88	103		33	28	33	28 (100%)
Aromatic hydrocarbon	398	365	137	126 (34·5%)	575	529	230		361	331	131	120 (36·3%)	551 ª	508 ª	159		69ª	64*	• 24	
Hydrocarbon $C_{\mathfrak{s}}$ and higher	126	110	115	100 (90·9%)	235	202	225		b 	b	b 	b	b 	ь 	b 	b	b 	b 	i)	b
Total	1,127	998	648	563 (56·4%)	2,121	1,872	1,644	1,433 (76·5%)	1,073	949	778	678 (71·4%)	1,737	1,539	994	854 (55·5%)	253	219	190	162 (74%)

TABLE 22: CONSUMPTION OF PRIMARY ORGANIC CHEMICALS FOR ORGANIC SYNTHESIS: FEDERAL REPUBLIC OF GERMANY, FRANCE, ITALY, JAPAN AND THE NETHERLANDS, 1964

(In	1,	000	tons,	actual	weight	(a.w.)	and	carbon	content))

Source: Reports of the OECD Special Committee for Chemical Products.

^a Except benzene, toluene, xylene.

^b No data available.

oil-based products is the highest in the Federal Republic of Germany, Italy and the Netherlands (more than 70 per cent); in France and Japan the rate is closer to 50 per cent. However, for Italy, Japan and the Netherlands the true figure would be higher in reality because the missing data on the higher hydrocarbons are mostly based on oil.

V. SUMMARY

Co-ordination of schemes

The above discussions have made clear the need for uniformity in the classification, definition and method of comparing input-output relations among different countries. It will be possible to achieve these conditions only gradually. The standardization of statistical methods seems to be the most difficult task. The input-output tables of the various countries are based partly on special surveys and partly on their statistics. To establish tables standardized in every sense numerous countries would have either to alter the legal basis of their statistics or to create a new one. It has not yet been possible to achieve this, even among European communities. In the meantime nothing can be done except to supplement national statistics by the use of secondary or auxiliary methods An attempt should be made however to elaborate a uniform scheme on the international level, into which unadjusted national data could be incorporated. In present conditions the common international framework embracing the total economy can only be rough in structure and an examination of it must follow the broad lines of national income accounts familiar to most countries.

Comparability at the expense of detail

One of the choices necessarily arising from international standardization is between more national data on aggregated sectors and less data on more disaggregated sectors. The first requirement of the SOEC, the subdivision of chemical data into five categories, can be met by only one member country. Even a subdivision into three categories could not be met by all members. It is only when any subdivision is renounced that all the five members can contribute tables uniformly classified and defined: and even this has called for considerable concessions with respect to methodology.

The gradual change of categories into larger aggregates may seem to enhance the comparability among different national tables, but the information thus provided then loses its real significance and flexibility from the point of view of its users.

Limits set to ordinary systems

Even if a country had at its disposal a highly refined statistical mechanism, certain limits would be set to the statistical exploration of the chemical industry, if realistic and reasonable description is preferred to a theoretically perfect approach. Such limits are due to the technical and economic peculiarities of the complex pattern of chemical production. They may be either narrow or wide, depending on the individual country. In the United States the breadth of the market and the resultant strong specialization of technical and economic activities seem to have had the effect of promoting statistical refinement. Another factor, which is not to be underestimated, is the openmindedness of enterprises in regard to statistics and their interest in statistical results, attitudes which have gradually developed in United States industries. The improvements achieved during the last 50 years⁹ seem to confirm the importance of this attitude.

The fact that Japanese input-output tables are highly detailed and informative may be partly due to other fortunate circumstances. In other industrialized countries, however, statistics tend to lag behind because of particular national circumstances and as we all know, the speed of a convoy depends on that of the slowest ship.

In the future the interaction between various chemical processes will probably grow more rather than less complex. This can be illustrated by the case of man-made fibres. Their differentiation from the precedent organic synthesis and from the neighbouring plastics is becoming more and more indistinct. Only when a very general survey of economies is expected from international comparisons of input-output tables will it be permissible to forgo any further subdivision of the chemical sector.

To deal with the inputs of the chemical industries proper consideration should be given to at least three points:

(a) the categorization of chemical sub-sectors;

(b) the functional specification of raw materials; and

(c) the provision of information in terms of value as well as of quantity.

(a) Categorization of chemical sub-sectors

The higher the level of disaggregation of the chemical sector at which basic national data are made available, the more easily can they be regrouped into uniform aggregates common to as many countries as possible. A universal scheme would probably involve at first the following two broad sub-categories:

1.0 basic and intermediate chemicals, and

2.0 special chemicals.

Basic and intermediate chemicals are mainly definite (monomer) chemical compounds such as sulphuric acid or methanol. As a rule they are not produced for a specific purpose fixed in advance, but serve as various intermediates. Only a small part of them leaves the chemical industry; most of them re-enter further various chemical processes. Special chemicals are, however, produced for a specific purpose defined beforehand. They are not generally definite individual compounds but

⁹ The statistical imperfections in earlier years (such as 1919) were illustrated in table 3.

1

TABLE 23: PRINCIPAL SPECIAL CHEMICALS

	Primary inputs ^a						
Category		0	S	N	Major users		
Fertilizers	+				Agriculture		
Pesticides		+			Agriculture		
Plastics and synthetic rubber		÷			Various (especially construction, miscel laneous manufactures, vehicles)		
Man-made fibres		+		+	Textiles, automotives, miscellaneous ma facturing		
Synthetic organic dyestuffs		+			Textiles, leather, paper		
Pigments	+			+	Construction, lacquers		
Paints and varnishes	+	+	+-	+	Construction, furniture, vehicles, machinery		
Printing ink and artists' colours		+	+		Printing, arts and crafts		
Pharmaceutical products		+		+	Consumption		
Tanning products, auxiliary products for					•		
textiles, and other industries	+	+		+-	Leather, textiles, paper		
Wood and building preserving agents,							
putty and cement, linoleum, roofing felt.		+		+	Construction		
Photochemicals		+	+	+	Consumption		
Soaps and detergents		+		÷	Consumption		
Toilet preparations				÷	Consumption		
Chemical supplies for offices		+	+	+	Consumption		

 a I = inorganic basic and intermediate chemicals; O = organic basic and intermediate chemicals; S = special chemicals; N = non-chemical input.

mixtures of compounds of the most varied types. Most of them leave the chemical industry and are processed in other industries or sold directly to consumers. Basic and intermediate chemicals are usually divided into:

- 1.1 inorganic basic and intermediate chemicals, and
- 1.2 organic basic and intermediate chemicals.

Special chemicals are further subdivided into:

- 1.21 products of organic synthesis, and
- 1.22 derivatives of vegetable and animal origin.

The term petrochemicals should be avoided for products of the higher stages of syntheses. As has been seen above in section IV, a considerable part of synthetic chemicals is still derived from other bases. It is often impossible moreover at higher stages of synthesis to identify the origin of chemical substances.

Although special chemicals mainly belong to a higher production stage than basic and intermediate chemicals their raw materials do not come exclusively from chemical industries. A considerable part of the external input goes directly into the special chemicals without passing through the basic or intermediate chemical sector. When their bases can be identified special chemicals may be classified as organic or inorganic: often however they are from both bases. The principal special chemicals are shown in table 23.

The exact classification of the groups and of the few less important chemicals not specified in the table can be made according to international specifications such as Statistics and Tariff Classification for Foreign Trade, the Standard International Trade Classification or the production specification prepared by the SOEC.

In most countries it will be possible to separate the input into inorganic or organic basic and intermediate chemicals. The possibility of separating the subsequent special chemicals from the basic and intermediate chemicals is limited. In the Federal Republic of Germany, for instance, it would hardly be possible and of little advantage to isolate plastics and synthetic organic dyestuffs from organic basic and intermediate chemicals. A separation of toilet preparations would however be easier.

(b) Functional specification of raw materials

Differentiation by main uses, especially between raw materials and energy, has proved more important than rather artificial division of chemical sectors for the analysis of structural relationships between inputs and production. The fact that functional relationships in quantity terms are subject to stoichiometric equations is of special advantage in the case of chemical productionan advantage that outweighs even the disadvantage arising from the complexity of chemical production patterns. The input of raw materials and energy can be estimated to some extent, without recourse to special inquiries, provided that the available production statistics are sufficiently reliable. If necessary the input of maintenance and other auxiliary materials, which has less influence on the production pattern, can be taken from general statistics or other data.

(c) Quantity and value

It is necessary to know not only the values but also the quantities of inputs. This is especially true of raw materials and energy, the quantity figures of which should first be collected in terms of actual weight and then converted into those of "active substance". The quantities of maintenance and auxiliary materials are less important, particularly as adequate measures of weight are not available. Quantities in conventional physical units may even be misleading.

Proposal for an international working programme

In view of the diversity and imperfection of national input-output statistics five steps can be recommended for the establishment of uniform chemical tables.

(a) All available national input-output statistics should be examined for their suitability to a general survey embracing as many countries as possible. At the beginning there will probably be some parallel surveys of different country groups. No matter how crude the aggregates in the first surveys may be the chemical and related industries should in every case be uniformly defined according to international classifications.

(b) Making the most of experience so far, a general scheme for chemicals should be developed. It can be gradually improved and refined.

(c) Governments, scientific institutes, and organizations of the countries involved should be encouraged to

(d) The work should not be exclusively oriented toward the compilation of gross national product, as has been the case until now. The more the work is adapted to the actual situation and the requirements of industrial enterprises, the more co-operation may be obtained from the latter. The co-operation of industrial enterprises seems indispensable for obtaining realistic results. In the Federal Republic of Germany all the enterprises concerned participate in the census (which has no legal weight) voluntarily and only because they are interested in the results.

(e) An effort should be made to improve the classical tables, and raw material balances of some sort should be established. This work could be started with selected important inorganics such as sulphuric acid, chlorine, caustic soda and nitrogen. For organic chemicals complex tables could be developed in accordance with the method described above in section IV. The initial material balance could be completed by extending, for example, the raw material balance of sulphuric acid to the whole sulphur group. The whole organic synthesis should be extended to the special chemicals.

With the help of horizontal and vertical supplements a special chemical framework for input and output can be established. This will help to corroborate the figures that remain aggregated despite continued subdividing.

A further advantage of this programme would be that a census of enterprises would not be required. Arrangements would have to be made to obtain specific answers from industrial experts.

APPROACHES TO THE PROBLEM OF INTERCOUNTRY COMPARISON OF INPUT-OUTPUT RELATIONS: A SURVEY AND SUGGESTIONS FOR FURTHER RESEARCH

Tsunehiko Watanabe, Kyoto University, Japan

I. INTERNATIONAL COMPARISONS OF INPUT-OUTPUT TABLES

Although considerable difficulties still exist in making useful international comparisons of input-output tables several attempts have been made in recent years. These studies will shed some light on a further exploration of comparative production structures particularly as to (i) the possibility of establishing meaningful relationships between the over-all degree of industrialization and the pattern of industrialization, (ii) techniques which may be useful in identifying and appraising various economic problems in developing countries for which the existing statistical information is insufficiently detailed, and (iii) the criteria for the international standardization of the input-output accounting system and its conceptual consistency.

International comparisons have so far been made with respect to the following three aspects of the input-output model:

1. The over-all comparison of the structure of production, chiefly on the basis of input-output coefficient matrices A;¹

2. comparisons of individual input-output coefficients;²

3. over-all comparisons of direct and indirect effects, based on inverse matrices,³ i.e. $(I-A)^{-1}$.

It must be emphasized that a truly meaningful comparative study can be made possible only by a careful reconsolidation of individual national tables on a uniform basis. From this point of view the present discussion should be considered as only tentative.

1. Over-all comparison of the production structure

Major findings from the first type of approach may be summarized under three headings.

(a) The nature of the interdependence of productive sectors was studied regarding two aspects: types of

productive sectors in terms of u and w, and positions of sectors in the triangular arrangement. The types of production sectors were identified by the ratio of purchased input to the total production :

$$u_j = \sum_i X_{ij} / X_j$$

and also by the ratio of intermediate demand to total demand: i.e.,

$$w_i = \sum_i X_{ij} / X_i \, . \, ^4$$

According to the u-w classification an individual productive sector can be characterized as "Final manufacture" ($u \ge \cdot 45$, $w \le \cdot 45$), "Final primary production" ($u \le \cdot 45$, $w \le \cdot 45$), "Intermediate manufacture" ($w \ge \cdot 45$, $u \ge \cdot 45$) and "Intermediate primary production" ($w \ge \cdot 45$, $u \le \cdot 45$). Applying this two-way classification to actual input-output tables, it will be useful to assess similarity of over-all patterns of interdependence among different countries. A typical example of this approach applied to four countries (Italy, Japan, Norway and the United States) is shown in table 1.

(b) The second approach was based on the triangular arrangement of the input-output matrix⁵ to examine the existence of one-way interdependence such as sequences of raw cotton-textiles-clothing. Although strict triangularity (arrangement of the input-output matrix in a triangular form having only zeros on one side of the diagonal) cannot usually be attained from actual tables, a considerable degree of triangularity can be detected in the tables of several countries. For example, the experimental triangulation in Italy, Japan, Norway and the United States, conducted by Chenery and Watanabe, gave such a high degree of triangularity that the percentage of transactions above the diagonal were 1.9, 5.7, 4.2, and 5.4, respectively.

(c) The third approach was comparison by type of production. The four-country comparison mentioned employed the following measure of differences in input coefficients between country k and country l:

¹See H. B. Chenery and T. Watanabe, "International Comparisons of the Structure of Production", in *Econometrica*, Vol. 26, No. 4, 1958, p. 487; and V. Cao-Pinna, "Principali caratteristiche strutturali di due economie mediterranee: Spagna e Italia", in *Economia Internazionale*, Vol. 11, No. 2, 1958, p. 259.

² See T. Watanabe, "A Test of the Constancy of Input-Output Coefficients Among Countries", in *International Economic Review*, 1961.

⁸ See T. Watanabe, "An Experimental Comparison of the Production Structures: EEC Countries and Japan", in *Weltwirt*schaftliches Archiv Bd. 92, 1964, p. 409.

⁴ Xij: consumption in the *j*-th industry of the goods produced by the *i*-th industry.

X_j: output of the *j*-th industry.

⁵ The discussion on the triangularity of input-output matrix was further elaborated and several useful results were obtained by D. Simpson and J. Tsukui: "The Fundamental Structure of Input-Output Tables: an International Comparison", in *Review of Economics and Statistics*, Vol. 47, 1965. See also the paper in this volume by Professor Ernst Helmstädter.

TABLE .	1	:	TYPES	OF	PRODUCTIVE	SECTOR
---------	---	---	-------	----	------------	--------

	Final	7 9	u	Intermediate	£U	и
	III. Final manufacture			II. Intermediate manufacture		
	3. Clothing	·12	·69			
	4. Shipbuilding	•14	-58	13. Iron and steel		·65
	8. Leather and leather products	•37	•66	22. Paper and paper products		•57
	1. Processed foods	·15	•61	28. Petroleum products	•68	•65
Manufacturing	2. Grain-mill products	•42	·89	19. Non-ferrous metals		•61
mananaetaring	- remport equipment	·20	·60	16. Chemicals		•60
	 Machinery Lumber and wood products 	.78	-51	23. Coal products	•67	·63
	14. Non metallic minarel products	.38	·61	11. Rubber products	•48	·51
	14. Non-metallic mineral products	-30	·47	12. Textiles		•69
	10. Industry, other	•20	·43	9. Printing and publishing	•46	•49
	IV. Final primary production	_		I. Intermediate primary production		
	A. Commodities :				·72	-31
	6. Fishing	·36	·24	27. Coal-mining	.87	.23
	-			20. Metal mining	.93	·21
Primary pro-	B. Services :			29. Petroleum and natural gas	.97	·15
duction	25. Transport	·26	·31	18. Non-metallic minerals		.17
	21. Trade		·16	24. Electric power		·27
	26. Services		·19	···· • • • • • • • • • • • • • • • • •		

Source : Chenery and Watanabe, op. cit.

$$\gamma_{kl} = \frac{\sum \left| a_{ij}^k - a_{ij}^l \right|}{\frac{1}{2} \sum \left(a_{ij}^k + a_{ij}^l \right)}$$

6

This test showed that comparability of coefficients in the manufacturing sectors was significantly higher than that in other sectors. Similarity in total interindustry use may also be examined by

$$\rho_i^{kl} = \sum_j a_{ij}^k X_j^l / \sum_j a_{ij}^l X_j^l .$$

In this comparison due attention should be paid to the possibilities of substitution between inputs and differences in input prices.

To judge from the results of those approaches it may be possible to state that the pattern of sectoral interdependence is reasonably similar among at least the four industrialized countries investigated. It may thus be said that the results of an analysis of interindustry relations in one country may be of some applicability to other countries, although at this stage of investigation these findings should not be taken to imply "direct transferability" of interindustry data from one country to another.

2. Comparison of individual input coefficients

This type of comparison was originally applied to the historical data within a single country.⁷ With regard to

the constancy of individual input-output coefficients there are two alternative hypotheses: the coefficients can be interpreted either as purely technological parameters that are defined in physical terms⁷ or as ratios in value terms.⁸

In testing the plausibility of these two interpretations by using intercountry data the fact has to be faced that no sufficient data are available for prices; the test therefore cannot make use of quantities in terms of physical units. Some theoretical qualification is consequently needed before a statistical analysis can be formulated. The following is a summary of the study made by Watanabe.⁹

Within the framework of neoclassical economics the production function will be stated as follows:

$$X = f(X_1, \dots, X_n), \tag{1}$$

where $X_1,...,X_n$ are factors of production employed to produce output X. This function is assumed to satisfy all the neoclassical conditions. Given the prices of factors of production, $P_1,...,P_n$ and of output P, the principle of profit maximization gives the following marginal conditions:

$$\frac{P_i}{P} = \frac{\partial f}{\partial x_i} \quad \text{(for all } i = 1, \dots, n\text{)}. \tag{2}$$

Since our statistical information is limited to the product of price and quantity, i.e. PX and $P_i X_i$ for all *i*, we have

⁶ a_{ii}^{k} input coefficient in the *i*-*i* cell of the *k*-th country.

⁷ See W. Leontief and others, Studies in the Structure of the American Economy (New York, 1953), p. 17.

⁸ See L. R. Klein, "On the Interpretation of Professor Leontief's System", in *Review of Economic Studies*, Vol. 20, No. 52, 1952–53, p. 131.

⁹ T. Watanabe, "A Test of the Constancy of Input-Output Coefficients Among Countries".

to convert equation (2) into the one expressing its theoretical consequence: constancy of the share of each production factor in the total value of production:

asteri (Adda)

$$P_i X_i = c_i (PX)$$
 (for all $i = 1,...,n$), (3)

where c_i is constant. This implies that only the Cobb-Douglas type of production function can be derived under the statistical limitation mentioned above. As a statistical equation corresponding to equation (3):

$$\log (P_i X_i)^k = \log \beta_{0i} + \beta_{1i} \log (PX)^k + u^k$$
 (4)

was set up and applied to intercountry data; u refers to random disturbance and k represents countries.

The testing criterion for equation (4) is that $\beta_{1i} = 1$ for all i = 1, ..., n. If $\beta_{1i} = 1$ for all *i*, the estimates of β_{0i} are equal to c_i for all *i*. Furthermore, if $\Sigma \beta_{0i} = 1$, we can say the production function is the Cobb-Douglas with constant return to scale. Then the constancy of the input-output coefficients can be interpreted in the same way as Klein's coefficients.10

The lack of sufficient variation of relative prices among countries (P_i/P) will give a significant limitation to the above interpretation. If the variation of (P_i/P) is not sufficiently large among countries concerned—which implies that our observations are concentrated in the local range of an equilibrium point on the production function (1)-then different production functions, including the Leontief function, have to be considered.

A statistical test based on the above formulation was applied to fifteen input-output tables. These were for five countries with a per capita income of less than about \$200 (India, Japan, Peru, Spain and Yugoslavia), five with income varying between \$200 and \$600 (Argentina, Colombia, Italy, the Netherlands and Puerto Rico) and five with an income of over \$600 (Australia, Canada, Norway, the United Kingdom and the United States). The principal input coefficients were determined from the relative size of each coefficient in each industry and also from common technological knowledge. As a result of this statistical test, the hypothesis that $\beta_{1i}=1$ for all i was not rejected in seven manufacturing industries. Estimated values of the principal input coefficients are shown in table 2 for the twelve sectors to which the test was applied, the hypothesis being acceptable only for the seven which are asterisked.¹¹

From these findings the following tentative conclusions may be drawn: (i) the "principal" input-output coefficients and the value added ratios are not very dissimilar between different countries; (ii) the similarity of these parameters, particularly in manufacturing industries, is much stronger than in other sectors; and (iii) the principal input coefficients estimated as in table 2 may be at least partly utilized as a kind of international reference data.

3. Over-all comparison in terms of inverse matrices

The approach in terms of inverse matrix can be formulated in the following way,¹² although this particular formulation may be only one of several possible alternatives. The basic framework of input-output theory provides us with the following relation:

$$B^{k}f^{k}_{i} = X^{k}_{i} \quad (i = 1, ... I)$$

$$(k = 1, ... K)^{13}$$
(5)

where subscript *i* designates specific column of final demand (e.g. private consumption, government expenditure, capital formation etc.) and superscript k represents country. In order to analyse differences in the production structure equation (1) can be decomposed as follows:

$$X_{i}^{k} = X_{i}^{l} = B^{k} f_{i}^{k} = B^{l} f_{i}^{l}$$

= $(B^{k} - B^{l}) f_{i}^{l} = B^{k} (f_{i}^{k} - f_{i}^{l})$
= $\Delta B^{kl} f_{i}^{l} + B^{l} \Delta f_{i}^{kl} + \Delta B^{kl} \Delta f_{i}^{kl-14}$ (6)

The three components of the right-hand side of the equation may be termed, respectively, (a) a structural difference, (b) a difference due to the level of income and (c) interaction of the two preceding components. (For the sake of simplicity we assume the relation $f_{k}^{k} = g(y^{k})$, where y^k is the *per capita* income in the k-th country.) Thus the structural difference can be interpreted as differences in direct and indirect requirements arising from the same pattern of the final demand, though such an interpretation involves an assumption that inputoutput coefficients as well as elements in the inverse matrix are free from changes in the level of income.

A few implications can be drawn from the above decomposition.

(a) The smaller the interaction effect, the higher the degree of similarity between two national economies.

(b) Even when difference in income level (and hence in budget proportions) is large, it is possible to have a negligible order of structural difference, i.e. $\triangle B^{kl} f_i^l$. This proposition can be tested both for a national economy as a whole and for an individual industry.

(c) Among the final demand columns private consumption expenditures will usually show the strongest association with income level and hence contribute to the relevancy of the following sign condition. Assume the logarithmic relation with regard to each specific item of per capita private consumption (say foods) and the level of per capita income: $\log C_j = \alpha_{0j} + \alpha_{1j} \log y$, where C_j and y represent per capita private consumption of j-th item and per capita income respectively. Assuming further the stability of coefficient α_{1j} among different

¹⁰ See L. R. Klein, *op. cit.* ¹¹ The test was applied to three other sectors: agriculture, mining and electricity. The hypothesis was rejected for these, however.

¹² For a detailed discussion see Watanabe, op. cit.

¹³ B^k : inverse coefficient matrix of the k-th country.

 f_i^k : the *i*-th column of the final demand of the k-th country, elements of which are expressed in percentage proportions.

 X_i^k : production level induced by f_i^k alone. $\sum_{i \in \Delta B^{kl} = B^k - B^l} \Delta f_i^{kl} = f_i^k - f_i^l$

*

*

Purchasing sector	Selling sector ^a	Input-output coefficients (range with \pm one standard error) ^b
Food (20-22)	Agriculture Service, trade and transport Others Primary factors	0.1922 (0.1129 0.3272) 0.0824 (0.0522 0.1299) 0.3771 (0.1103 0.2897) 0.3055 (0.1875 0.4977)
Textiles (23) ^e	Agriculture Chemicals Others Primary factors	0.2257 (0.1461 0.3488) 0.0092 (0.0049 0.0172) 0.3149 (0.2134 0.4646) 0.4436 (0.3404 0.5781)
Clothing (22)°	Textiles Chemicals Others Primary factors	0·3501 (0·2461 0·4980) 0·0150 (0·0036 0·0579) 0·1245 (0·0632 0·2406) 0·5497 (0·3252 0·7381)
Wood products (25–26)°	Agriculture Energy Others Primary factors	0·4227 (0·3428 0·5212) 0·1085 (0·0758 0·1554) 0·2110 (0·1561 0·2853) 0·3865 (0·3021 0·4945)
Paper and printing (27-28)°	Energy Service, trade and transport Others Primary factors	0.1564 (0.0793 0.3085) 0.1966 (0.1468 0.2574) 0.3634 (0.2802 0.4714) 0.4301 (0.3678 0.5030)
Leather products (29)	Agriculture Chemicals Service, trade and transport Others Primary factors	0·4095 (0·2939 0·5704) 0·0946 (0·0539 0·1659) 0·0675 (0·0410 0·1113) 0·0966 (0·0514 0·1670) 0·2594 (0·1991 0·3381)
Rubber products (30)	Agriculture Clothing and textiles Chemicals Others Primary factors	0.2359 (0.1663 0.3348) 0.1093 (0.0855 0.1399) 0.0370 (0.0238 0.0574) 0.0701 (0.0497 0.0991) 0.6165 (0.4570 0.8165)
Chemicals (31)°	Agriculture Mining Energy Others Primary factors	0.0534 (0.0296 0.0962) 0.1537 (0.0674 0.3504) 0.0515 (0.0236 0.1121) 0.3793 (0.3266 0.4406) 0.5040 (0.4339 0.5853)
Non-metallic mineral products (33)	Mining Chemicals Energy Others Primary factors	0.1696 (0.1046 0.2751) 0.0190 (0.0112 0.0324) 0.0766 (0.0368 0.1593) 0.1395 (0.0911 0.2137) 0.6974 (0.4949 0.9829)
Metal products (34-35)°	Mining Energy Others Primary factors	0.1365 (0.1033 0.1729) 0.0315 (0.1536 0.6464) 0.2660 (0.1927 0.3672) 0.5182 (0.3400 0.7898)
Machinery and transport equip- ment (36-38)°	Chemicals Metal product Others Primary factors	0.1816 (0.1256 0.2625) 0.1659 (0.1002 0.2685) 0.1921 (0.1464 0.2639) 0.6247 (0.4951 0.7883)
Construction (40)	Wood product Non-metal mining products Metal product Others Primary factors	0.0212(0.00760.0594)0.4939(0.32180.7579)0.1094(0.05470.2188)0.1546(0.06840.3493)0.4611(0.32570.6528)

TABLE 2:	ESTIMATES ()F P	PRINCIPAL	INPUT-OUTPUT	COEFFICIENTS

Source: This table was produced by the CID Secretariat on the basis of the estimation results presented in Watanabe, A test of the Constancy of Input-output Coefficients among Countries. ^a The ISIC code numbers for selling sectors are: 01, 02, 03, 04 for "agriculture"; 11, 12, 13, 14, 19 for "mining"; 51, 52 for "energy"; 61, 64, 71, 73, 81, 83, 90 for "tertiary"; the code numbers for "chemicals", "textiles", and "metal products" are the same as indicated for purchasing sectors. ^b The range was derived as: anti (log $\hat{\beta}_{ij} \pm Slog \hat{\beta}_{ij}$). It should be noted that the standard errors interpreted in this manner involve certain biases, since the model used for statistical estimation was specified in logarithmic terms. ^c In this sector the hypothesis that $\beta_{ij}=1$ for all *i* was not rejected.

TABLE 3 : DECOMPOSITION OF THE DIFFERENCES IN PRODUCTION STRUCTURES : THE FEDERAL REPUBLIC OF GERMANY, FRANCE AND ITALY, AS COMPARED WITH JAPAN

(Percentages)									
Fed	eral Repu Germany		<u></u>	France			Italy		
Industry $B\Delta f$	⊿Bf	⊿B⊿f	B⊿f	⊿Bf	⊿B⊿f	B⊿f	⊿Bf	⊿B⊿f	
Agriculture and forestry $\dots -1.5$	-6.7	0.1	0.2		-0.2	12.8	-5.6	1.2	
Processed foods $\dots -4.2$	- 3·1	0.6	-5.0	-1.2	0	-2.2	-3·2	1.8	
Coal (including manufactured gas) $2\cdot 2$	1.1	0	1.3	 0∙4	0	0.3	— 0·6	0·1	
Electricity 0.8	-0.1	-0.1	-0.1	-0 .9	-0.1	0.1	-0.1	0	
Petroleum and natural gas $\dots -0.2$	-0.5	0.6	1.6	1.8	-0.1	1.5	0.8	0.2	
Construction materials 0.7	0.5	-0.3	0.3	-0 .6	-0.1	0.3	-0.3	0	
Iron and steel	-1.1	-0.6	2.4	-2.6	-1.0	0.2	-1.1	0.2	
Non-ferrous metals 1.4	-0.2	-0.4	0.9	-0.5	-0.3	0.3	-0.5	0	
Machinery 9.5	0∙4	0.4	7.7	-0.6	0.2	2.9	-0.7	0.6	
Chemicals 3.1	0.3	-0.6	1.5	-2.0	-0.1	1.4	-2.5	0	
Textiles, clothing and leather									
products 0.4	-0.3	0	1.3	-0.3	0	2.1	-0.5	0.1	
Industry, other 0	-0.4	0.1	0.9	-4.3	0	-0.8	-4·8	0.5	
Construction $\dots -2.1$	1.0	-0.2	0.2	0	0	-3.1	0	0	
Transport and communications $-2\cdot 2$	0.3	0.3	-2.0	0.3	0.4	-1.2	-3.0	1.0	
Services	-4.7	0	-9.2	-4·0	-0.2	-13.5	-8.6	4.4	
Trade -2.6	-0.1	0.2	-1.2	7.6	0.5	-4.9	-1.2	0.6	
	• •	• -							

Source: Reproduced from T. Watanabe, "An Experimental Comparison of the Production Structures: EEC Countries and Japan", in Weltwirtschaftliches Archiv, Bd. 92, 1964. The input-output tables used for the three countries of the European Economic Community are those shown in "Méthodes de prévision du développement économique à long terme". Rapport d'un groupe d'experts, EEC, in Information Statistique, No 6, Bruxelles, 1960.

countries the following sign condition will easily be derived:

$$\operatorname{Sign}\left\{ \Delta f_{ij}^{kl} \right\} = \operatorname{Sign}\left\{ \left(\frac{y^k}{y^l} \right)^{\alpha_{1j}} - 1 \right\}, \quad (7)$$

where if $\alpha_{1j} \stackrel{>}{\underset{<}{\sim}} 1$, then $\Delta f_{ij}^{kl} \stackrel{>}{\underset{<}{\sim}} 0$;

therefore, $\alpha_{1j} \stackrel{>}{\underset{<}{\sim}} 1$ implies $B^l \Delta f_{ij}^{kl} \stackrel{>}{\underset{<}{\sim}} 0$,

since the elements of B^l matrix are all positive.

The trichotomy defined in equation (6) was applied to the four input-output tables of France, the Federal Republic of Germany, Italy and Japan. Table 3 shows the results of the computation for the first three countries, Japan being the basis of comparison.

As can be seen from this table the interaction effects are significantly smaller than the other two components, except in the case of processed food (Italy) and iron and steel (France). The variance due to differences in budget proportions is generally larger than the structural difference between those four countries, where the range of per capita income is approximately from \$300 to \$900. These two findings may be interpreted as an evidence of similarity in the production structures. The relative smallness of interaction effects implies that the above type of comparison will be effective at least for industrialized countries.

The average magnitude of structural differences,

 $\Delta B^{kl} f_{i}^{l}$, is compiled in table 4. The average degree of structural difference does not seem to be very large, at least among the four countries considered here: such difference is especially small for manufacturing industries.15

4. A further examination

Although the approaches mentioned above could indicate several interesting aspects of the input-output relations in different countries, they may be described as

TABLE 4 : AVERAGE SIZE OF STRUCTURAL DIFFERENCES[®]

(Percentages)

Country	Federal Republic of Germany	France	Italy	Japan
Federal Republic of Germany	0.0	1·5 (0·4)	1·1 (0·4)	1·5 (0·6)
France	1·6 (0·5)	`0∙Ó	1.7 (0.3)	2·4 (0·7)
Italy	1·3 (1·5)	1·9 (0·3)	`0·Ó	1.7 (1.6)
Japan	1.5 (0.4)	2·2 (0·4)	2·1 (0·4)	0.0

^a Figures within parentheses are the average magnitude of structural difference for the eleven manufacturing industries alone.

¹⁵ For details see T. Watanabe, "An Experimental Comparison of the Production Structures: EEC Countries and Japan".

Simpson and Tsukui's definition of these concepts is as follows:

(a) Decomposability

When industries are grouped according to their physical qualities, and blocs are arranged in the order of metal, non-metal, energy and services, then the matrix appears to be decomposable in such a way that the blocs follow the order of sectors in the triangulated matrix: this property of the matrix is sometimes described as "bloctriangularity".

(b) *Bloc independence*

The matrix of industries grouped in this manner shows an appreciable degree of independence among the blocs. That is to say, an industry is not strongly related to other industries outside its own bloc. This property is sometimes described as "blocdiagonality". With the exception of the "services" bloc, the blocs referred to above appear to be almost independent of one another in the input-output tables of the fewcountries studied by Simpson and Tsukui.

(c) Triangularity

The framework matrix shows not only these two above properties but also the property of being almost triangular in all its elements.

(d) Physical homogeneity of blocs

The industries of each bloc have a common physical characteristic. Before it is possible to clarify what those fundamental characteristics actually imply, two problems have to be investigated: how to determine the principal input-output coefficients which constitute the framework matrix and what are the effects of changes in the product-mix. The first problem was handled by Simpson and Tsukui in a rather arbitrary manner: they simply discarded those a_{ij} coefficients which are smaller than an arbitrarily given critical value, and maintained the remaining ones as principal coefficients in their framework matrix.¹⁷

One way to evaluate the appropriateness of the critical value may be as follows: if two input-output matrices, say

$$a_{ij} \leq \left(\frac{100}{n}\right)$$
 per cent,

where n is the number of sectors.

 \overline{A} and A, are different only with respect to non-principal coefficient matrix D (= \overline{A} -A)—that is to say, all elements in D will be smaller than a given critical value and the principal coefficients are assumed to be all equal between the two matrices \overline{A} and A—then the structural difference weighted by a given pattern of final demand will be:

$$u = [(I - \bar{A})^{-1} - (I - A)^{-1}] Y = [+\bar{B}D - (\bar{B}D)^2 + ...] \bar{X}$$
(8)

where $\overline{X} = (I - \overline{A})^{-1} Y = \overline{B}Y$. In general, the convergence of the series of u will be easily proven and it will usually be possible to truncate this series at the lower order, say, at the second. The importance of matrix D (non-principal coefficients) can thus be evaluated according to the size of u.

As to the second problem—variation in the productmix—it is worth noting that this factor has played a significant role in accounting for the changes in individual coefficients over time within a single country; for example in the Japanese table, most of the changes in input-output coefficients during the recent five-year period have been attributed to changes in the productmix. It is already known that the pattern of industrial growth measured in terms of the product-mix of manufacturing industry is largely dependent on the level of *per capita* income.¹⁸ The variation of product-mix will no doubt be an important problem in international comparisons of input-output matrices.

To conclude this section a few lines of further research may be suggested to be conducted in this field of international comparisons of input-output matrices. They are: (a) the determination of principal coefficients, (b) an assessment of the nature of interdependence revealed in the inverse matrices, (c) a comparison between the principal coefficient matrix and the whole matrix, and (d) an analysis of the effects of the variation of product-mix.

II. INTERNATIONAL COMPARISON OF CAPITAL-OUTPUT RATIOS¹⁹

One of the most crucial variables encountered in a quantitative approach to the problem of economic development is the capital-output ratio. Even though the notion is conceptually clear to most economists very few studies have succeeded in finding consistent and reliable measurements of capital-output ratios, especially in the case of developing countries.

One way to make the concept of capital-output ratios more useful in development programmes is to undertake a systematic comparison of available estimates suitable

¹⁶ Simpson and Tsukui, op. cit.

¹⁷ Simpson and Tsukui used the following rule:

¹⁸ See United Nations, Centre for Industrial Development, A Study of Industrial Growth (New York, Sales No. 1963 II.B.2).

¹⁹ This section is a revised and enlarged version of T. Watanabe: "A Note on the Japanese capital-output ratio", Memorandum C-4, Stanford Project for Quantitative Research in Economic Development, July 1957.

for the derivation of a hypothesis or bench-mark against which available estimates of capital-output ratios can be checked.

The investigation in this section of the possibility of constructing such a hypothesis about capital-output relations is divided into three parts: 1. a comparison of over-all capital-output ratios; 2. a comparison of capitaloutput ratios by industry, and 3. a comparison of capitallabour ratios between the United States and Japan.

To summarize the principal conclusions: 1. The overall capital-output ratios appear to be stable, but significantly dependent upon the degree of industrialization in each country. 2. Cross-country difference in the capitaloutput ratios for specific industries would be greatly reduced when allowance is made for the variation of the size of the firm. 3. Capital-labour ratios are a sensitive indicator of the degree of economic development and the unbalanced structure of these capital-labour ratios among industries can be associated with economic backwardness.

1. Over-all capital-output ratios

An extensive survey of national wealth estimates has been carried out by the International Association for Research in Income and Wealth.²⁰ This survey includes over-all capital-output ratios over a period of time for eight countries, as well as similar ratios for specified years (between 1950 and 1955) for 16 countries.²¹

It points out that considerable differences exist in the valuation methods, the relative prices, and the nature of the basic statistics used. This survey however suggests three tentative hypotheses: (a) over-all capital-output ratios over time appear to be concentrated between 3.0 and 5.0; (b) intercountry comparison of over-all capital-output ratios shows a similar range of values; and (c) there is more likelihood under certain circumstances that capital-output ratios will be higher in underdeveloped than in developed countries.²² The common neo-classical interpretation implying that relative scarcity of capital prevails in relatively underdeveloped economies does not appear to be in accordance with the findings of the survey.

The problem is to provide a consistent interpretation of the above three hypotheses from the point of view of development theory. Although there are several possible ways only one will be explored here.23

Our interpretation will be based primarily on an intercountry study of investment functions.²⁴ First the following variables are defined:

T. WATANABE

 K_t^* = desirable stock of capital in the t^{th} period;

- K_{t-1} = stock of capital available at the beginning of the tth period;
 - $I_t = \text{gross fixed capital formation during the } t^{\text{th}}$ period,
 - $Y^{t} =$ gross national product in the t^{th} period; come in the *t*-th period;

$$Y_{At} = \text{agricultural income}$$

 $\Delta Y_t = Y_t - Y_{t-1}$

All variables are defined in per capita terms.

Second, within the theoretical framework used here the following relations are assumed:

$$I_{t} = \alpha(K_{t}^{*} - K_{t-1}) \\ K_{t}^{*} = \beta_{1} Y_{t} + \beta_{2}(Y_{At} - Y_{At}^{*}) \\ \Delta I_{t} = I_{t} - I_{t-1}$$
(9)

where Y_{At}^{\bullet} is the predicted (or standard) income originating from agriculture, and is estimated on the basis of per capita national income, (Y) and population, (N)using the following double-logarithmic statistical equation:

$$\log Y_{At}^* = \theta_0 + \theta_1 \log Y_t + \theta_2 \log N_t \tag{10}$$

This relation between agricultural income and total national income was investigated extensively by Chenery.25 If a country (the United Kingdom, for example) is relatively industrialized in the sense that the predicted agricultural income exceeds the actual one, i.e. $Y_{At} < Y_{At}^*$ then the second equation in (9) implies that the actual capital-output ratio is higher than the standard ratio (β_1) , provided that β_2 is negative. Conversely, if $Y_{At} > Y_{At}^*$, the actual capital-output ratio is smaller than

the standard one. The values for $\frac{(Y_A - Y_A^*)_t}{Y_t}$ are given

in table 5.

The implications of equations (9) can be tested by the following statistical procedure. From equation (9) and with the definition of identity:

$$K_{t-1} - K_{t-2} = I_{t-1}$$

we will have:

$$\Delta I_t = \alpha \left\{ \beta_1 \Delta Y_t + \beta_2 \Delta (Y_A - Y_A^*)_t - I_{t-1} \right\}$$

Then the statistical equation to be applied on intercountry data follows:

$$\frac{I_{t}}{Y_{t}} = \delta_{0} + \delta_{1} \frac{\Delta Y_{t}}{Y_{t}} + \delta_{2} \frac{\Delta (Y_{A} - Y_{A}^{*})_{t}}{Y_{t}} + \delta_{3} \frac{I_{t-1}}{Y_{t}} (11)$$

²⁰ International Association for Research in Income and Wealth, The Measurement of National Wealth, ed. by R. Goldsmith and C. Saunders. Income and Wealth Series VIII, London, Bowes and Bowes, 1959.

²¹ See R. Goldsmith and C. Saunders, op. cit., tables VI and VII, pp. 30–32.

²² These are not the present author's own views. S. A. Abbas in Capital Requirement for the Development of South and South-East Asia (Lounz, New York, 1956), gave almost the same hypotheses in his studies, which were based on different observations.

²³ Abbas gave one alternative answer which is based mainly on the relative size of "pre-condition" sectors to economic development (ibid. chap. VI).

²⁴ The following part of this section is a tentative application of investment studies which will be reported separately in more studies undertaken by the Stanford Project for Quantitative Research in Economic Development. The author has benefited from helpful suggestions by Professors I. Adelman and H. S. Houthakker with regard to the formulation of investment functions.

²⁵ H. B. Chenery, "Patterns of Industrial Growth", in American Economic Review, Sept. 1960.

TABLE 5 : DATA FOR INVESTMENT STUDIES^a

(Per	centaş	zes)
------	--------	------

Country	I_t/Y_t	$\Delta \mathbf{Y}_t / \mathbf{Y}_t$	$\mathbf{I}_{t-1}/\mathbf{Y}^{t}$	$\frac{\Delta(\mathbf{Y}_{A}-\mathbf{Y}_{A}^{*})_{t}}{\mathbf{Y}_{t}}$	$\frac{(\mathbf{Y}_{A}-\mathbf{Y}_{A}^{*})_{t}}{\mathbf{Y}_{t}}$
Argentina	19.58	6.36	16.91	1.41	3.71
Austria	22.06	6.52	22.34	<i>—</i> ∙55	2.50
Belgium	16.47	3.62	14.95	− ·03	-3.29
Brazil	1 3 ·97	2.12	14.02	2.06	2.61
Burma	18.54	-7.09	20.19	-2.68	-13·74
Canada	26.07	6.81	21.11	·53	1.40
Ceylon	10.35	-7.73	10.59	-6·27	13.68
China (Taiwan)	12.01	1.64	12.30		5.87
Congo (Democratic Republic of) *	22.67	3.44	26.22	 ·87	-12.67
Costa Rica	19.69	-1.52	19.69	5.78	12.08
Denmark	16.82	·58	17.06	·51	6.83
Ecuador	14.31	3.30	13.85	1.57	5.28
Federal Republic of Germany	22.91	3.01	21.42		-2.42
Greece	15.56	11.26	12.41	2.72	12.76
Honduras	14.10	4.21	12.63	2.31	20.75
Ireland	14.04	-2.37	14.05	-2.97	12.14
Italy	20.81	2.81	19.59	-1.64	6.22
Jamaica	22.84	12.03	12.83	62	3.37
Japan	22.95	10.00	16.71	-1.83	0.51
Luxembourg	19.86	8.22	20.52	·82	-3.55
Mauritius	11.22	2.10	12.53	•99	0.64
Могоссо	11.71	1.07	15.40	.09	2.72
Netherlands	24.59	4.01	21.78		-2.32
Peru	25.83	2.25	23.87	-3.77	-5.28
Philippines	7.91	4.31	6.87		14.90
Portugal	14.35	2.96	13.68	·47	2.07
Puerto Rico	20.74	3.21	17.38	-2.16	-3.62
Trinidad	23.34	5.87	21.89	-2.25	-8.61
United Kingdom	14.89	1.95	14.39	•21	-5.34

Source: Derived from the United Nations: Yearbook of National Accounts Statistics 1958. Note: t represents 1958. ³ Prior to independence.

where $\delta_1 = \alpha \beta_1$, $\delta_2 = \alpha \beta_2$, and $\delta_3 = 1 - \alpha$. Common denominator Y_t was introduced mainly to avoid exchange rate inconsistencies. Using the data given in the *Yearbook* of National Accounts Statistics 1958²⁶ and also the values of

$$\theta_0 = .805, \theta_1 = .474, \text{ and } \theta_2 = -.088,$$

for the coefficient in equation (10), we have the following equation:

$$\frac{I_t}{Y_t} = \delta_0 + .57 \frac{\Delta Y_t}{Y_t} + .85 \frac{I_{t-1}}{Y_t} - .66 \frac{\Delta (Y_A - Y_A^*)_t}{Y_t}$$
(12)

where $R^2 = .8701$ and the degrees of freedom are 25. The statistical data used are shown in table 5. According to this result, $\alpha = .15$, $\beta_1 = 3.8$ and $\beta_2 = -4.4$. We may conclude then that the standard capital-output ratio is 3.8, which is fairly compatible with the observed estimates given in The Measurement of National Wealth.²⁷ The fluctuations of actual values around 3.8 represent differences in the degree of industrialization in individual countries: that is,

$$\frac{K}{Y} = 3.8 - 4.4 \frac{(Y_A - Y_A^*)}{Y} \cdot$$
(13)

10.00

Thus the present hypothesis implies that there is no unique value for the actual capital-output ratios among different countries: the degree of concentration of these ratios around the standard value, 3.8 appears however to be quite high.²⁸

2. Capital-output ratios by industry

It is often observed that in the capital-output ratios of specific industries little difference exists between developed and underdeveloped countries; the validity of this statement may however be weakened by possible variations in technology, price structure, capacity

²⁶ United Nations, *Yearbook of National Accounts Statistics 1958* (New York, 1959).

²⁷ R. Goldsmith and C. Saunders, op. cit.

²⁸ It may be noted here that use of Y_A^* as an indicator for the degree of economic development is due mainly to the fact that sufficient data exist to permit the estimation of such an indicator.

utilization etc.²⁹ This hypothesis may or may not be compatible with structural differences, which are due mainly to differences in the product-mix of each given industry among different countries. To examine this point further we will introduce the following notations:

- $K_i^n = \text{stock}$ of capital of the i^{th} industry in the n^{th} country
- X_i^n = output (or capacity) of the *i*th industry in the *n*th country;
- K_{ij}^{n} = stock of capital for the j^{th} group of activities (products) of the i^{th} industry in the n^{th} country;
- X_{ij}^{n} = output of the j^{th} group of activities (products) of the i^{th} industry in the n^{th} country.

In terms of the above notations the capital-output ratio of a given industry, k_i^n will be defined as:

$$k_i^n = \frac{\sum_{j} K_{ij}^n}{\sum_{j} X_{ij}^n} \text{ for the } n^{\text{th}} \text{ country.}$$

Since
$$k_{ij}^n = \frac{K_{ij}^n}{X_{ij}^n}$$
, we will have:
$$k_{ij}^n = \sum k_{ij}^n w^n \qquad (14)$$

$$k_i^n = \sum_j k_{ij}^n w_{ij}^n , \qquad (14)$$

where $w_{ij}^n = \frac{X_{ij}^n}{\sum_i X_{ij}^n}$ i.e., the share of output produced by

the j^{th} group of activities (products) in the total output of the i^{th} industry.

In order that $k_i^n = k_i^m$ when $w_{ij}^n \neq w_{ij}^m$, which seems to be a reasonable assumption for the purpose of comparison between underdeveloped and developed countries, the condition: $k_{ij}^n = k_{ij}^m = k_i^n = k_i^m$ must be satisfied. This last condition implies there should be no difference between larger and smaller firms within a country, nor between different countries, in the capital-output ratio of a specific industry. This appears to be dubious, however, in cases when both highly advanced production techniques and extremely primitive production techniques are used side by side as is often the case with underdeveloped countries. Consequently the degree of similarity of the capital-output ratio of specific industries between different countries must be examined more carefully.

A comparison may be made between Japan and the United States, since in both countries the data for capitaloutput ratios are readily available.

The 1947 capital and inventory coefficients were prepared for the United States 190 industries by the Harvard Economic Research Project.³⁰ Approximately 60 per cent of the capital-output ratios for 1947 were computed as incremental coefficients, mainly on the basis of engineering data.

The Japanese capital-output ratios, which were derived from the 1955 National Wealth Survey,³¹ may have different characteristics, although most of the components used in the definition of capital-output ratios of these two countries are very similar. There is however no mixture of the average ratio and the incremental ratio in the Japanese estimates, unlike the United States data. There may also be slight differences in the definition of the denominator used; in 1947 United States industries were operating at nearly full capacity, while in 1955 almost all Japanese industries were operating at less than full capacity. This difference in the degrees of capacity utilization may lead to generally higher capital-output ratios in Japan than in the United States.

Direct comparison of capital-output ratios by industry is shown in table 6. The 1955 Japanese coefficients for manufactured gas, land transportation and housing appear somewhat higher than those of the United States, but all other coefficients look fairly comparable between the two countries.

For the purpose of over-all comparison however, total gross output or capacity might not be suitable, since this includes many intra-firm transactions and large values of raw materials, most of which are imported at relatively high prices in Japan. For this reason capital-income ratios may be preferred to capital-output ratios. Capitalincome ratios, of which the denominators are defined as national income originated by specific industry, computed for the four aggregative sectors of the economy are shown in table 7. A comparison of tables 6 and 7 shows that capital-income ratios are more similar between the two countries than the corresponding capital-output ratios, even though there is a larger gap between the years of estimate in the two countries.

²⁹ See S. A. Abbas, op. cit.; V. V. Bhatt, "Capital-Output Ratios of Certain Industries: A Comparative Study of Certain Countries", in *Review of Economics and Statistics*, Vol. 36, No. 3, Aug. 1954; and R. N. Grosse, "The Structure of Capital", in W. Leontief and others, *Studies in the Structure of the American Economy*.

³⁰ Detailed information about data sources and methods used is to be found in Harvard Economic Research Project: *Estimates of the Capital Structure of American Industries*, 1947 (mimeographed, 1953). For bilateral comparison between the United States and Japan a 190-industry classification was further aggregated into 30 industry classifications. The capital-output ratios in the latter classification were computed as the weighted average, using output as weight.

⁸¹ In 1955 the Economic Planning Agency of Japan made a National Wealth Survey which covered almost all economic units and which provided an adequate and uniform statistical basis for determining capital coefficients. Using statistical information from this survey together with other sources two types of capital coefficients were computed: the average capital-output ratio and the marginal capital-output ratio. The former is defined as the ratio of existing fixed capital assets (excluding land) at the end of the specific year to the value of output during that year. The latter coefficient is defined as the ratio of the increment of fixed capital stock over the specific years (from 1951 to 1955) to the corresponding increment in output. Further information about computation procedure and data sources is given in Economic Research Institute, Economic Planning Agency, Japan, National Income Accounts, 1957 and National Wealth Survey, 1955 (Economic Bulletin No. 1, Feb. 1959); Capital Structure and Differentials between Firms (Research Series No. 6, Mar. 1960) (in Japanese); and Council for Industrial Planning, Capital Structure of the Japanese Economy (Tokyo, 1958).

TABLE 6 : CAPITAL-OUTPUT RATIOS FOR 32 INDUSTRIES

	Japan				United States	japan	
	Average capita	ıl-output ratio			Capital- output	Leading firms ^h Average capital-output	
	1955 at current prices	1954 at 1951 prices	1951-1 955	1951-1954	output ratio 1947 [®]	ratio, 1955, at current prices	
All industry	1.080	0.993	0.364	0.340			
I. Agriculture, forestry and fishing	1.227	1.548	0.298	0.531			
1. Agriculture	1.430	1.889	0.278	0.639	1.611		
2. Forestry	0.433	0.487	0.427	0.504			
3. Fishing	0.691	0.619	0.243	0.223	1.127		
II. Mining	0.553	0.492	0.504	0.469			
4. Coal	0.563	0.489	1.392	1.179	0.809	0.918	
5. Other mining	0.535	0.499	0.156	0.186	1.567	0,10	
III. Manufacturing	0.213	0.168	0.235	0.191			
6. Processed foods	0.140	0.133	0.174	0.177	0.228	0.146	
7. Textiles	0.174	0.121	0.105	0.075	0.308	0.400	
8. Lumber and wood	0.282	0.327	0.016	0.027	0.438	0.382	
9. Paper and pulp	0.195	0.136	0.429	0.349	0.458	0.483	
10. Printing	0.179	0.104	0.276	0.173	0.394	0.399	
11. Chemicals	0.284	0.220	0.379	0.319	0.428	0.584	
12. Coal and petroleum products	0.287	0.241	0.160	0.132	1.256	1.252	
13. Rubber	0.162	0.111	0.080	0.038	0.334	0.302	
14. Leather	0.093	0.060	0.192	0.129	0.110	0.219	
15. Non-metallic mineral products	0.406	0.296	0.745	0.499	0.870	0.581	
16. Metal products	0.202	0.159	0.324	0.296	0.432	0.750	
17. Machinery	0.340	0.279	0.374	0.279	0.475	0.453	
18. Transport equipment	0.324	0.301	0.066	0.007	0.467	0.475	
19. Industry (other)	0.089	0.028	0.218	0.184			
IV. Transportation, communications and other public							
utilities	2.610	3.071	2.131	2.592			
20. Manufactured gas	0.900	1.069	0.791	0.695	1.295		
21. Electricity	3.304	4.124	5.166	6.448	3.298		
22. Water supply	6.852	7.220	3.400	2.800			
23. Land transport	2.698	3.260	1.194	1.573	2.544		
24. Water transport	2.078	2.030	1.858	2-258	2.488		
25. Communications	1.826	2.340	1.531	1.967	4.329		
V. 26. Construction	0.063	0.070	0.109	0.138	0.140		
VI. Trade and services	2.217	2.349	0.269	0 ·2 5 8	2.547		
27. Trade	0.556	0.492	0.022	- 0.008	0.985		
28. Non-residential building	0.472	0.576	0.472	1.247			
29. Housing	31-870	59·776	31.870	34.000	8.159		
30. Financial and other services	0.774	1.029	0.235	0.304			
31. Central government services	1.925	3.756	-0.408	0.317			
32. Local government services	17.780	17.584	21.671	17.584			

^a Compiled from Harvard Economic Research Project, *Estimates of the Capital Structure of American Industries*, 1947. ^b Leading firms are defined as those holding large amounts of capital assets relative to other firms in each industry (see the text).

The next step is to make a more detailed breakdown of industry. The ranking of industries according to size of capital-output ratios is indicated in table 8.

In 1947 in the United States, transportation, communication and public utilities involved the largest amounts of fixed capital assets per unit of output; extractive industries, such as agriculture, mining, forestry and fishing came next; and after them the processing of mineral products. The marginal capital-output ratios of the Japanese industries show a considerable divergence from this tendency,³² whereas the ranking based on the average ratios is, on the whole, comparable to that of the United States industries.

Relatively large differences in the ranking between the United States and the Japanese average coefficients are

³² Since the computational procedure is questionable, no conclusive statement can be made about marginal coefficients. Further internal checking of the Japanese marginal coefficients might enable a more precise interpretation to be made.

TABLE 7 : CAPITAL-INCOME RATIOS

	United States 1939	Japa n 1955
I. Agriculture	1.64	1.37
II. Mining	1.56	1.15
II. Manufacturing V. Transport, communications and other	1.23	1.11
public utilities	5.53	5.19
V. Total	2.29	1.87

Source: Compiled by S. Shishido. [Existing fixed capital assets in both countries exclude government assets and land.]

 TABLE 8 : RANKING OF INDUSTRIES IN THE UNITED STATES AND

 IN JAPAN BY SIZE OF CAPITAL-OUTPUT RATIOS

	United	Jaj	ban
Industry	States	(<i>a</i>)	(b)
Communications	1	3	4
Electricity	2	1	1
Overland transport	3	5	2 3
Overseas transport	4	2	
Agriculture	5	12	5
Mining, other than coal	6	18	10
Manufactured gas	7	6	6
Coal and petroleum products	8	17	14
Fishing	9	14	7
Trade	10	24	9
Non-metallic mineral products	11	7	11
Coal-mining	12	4	8
Machinery	13	10	12
Transport equipment	14	22	13
Paper and pulp	15	8	18
Lumber and wood	16	23	16
Metal products	17	11	17
Chemicals	18	9	15
Printing	19	13	19
Rubber	20	21	21
Textiles	21	20	20
Processed foods	22	16	22
Construction	23	19	24
Leather	24	15	23

Note: Column (a) ranks Japanese industries according to marginal capitaloutput ratios 1951-55, as in column 3 in table 6. Column (b) ranks Japanese industries according to average capital-output ratio 1955 at current prices as in column 1 in table 6.

seen in line 6, "Mining, other than coal" and line 8, "Coal and petroleum products". These differences can be explained by the large discrepancy as regards petroleum, natural resources of which are almost non-existent in Japan.

These tendencies are confirmed by the capital-output ratios of the Japanese firms which were computed by classifying all the firms within each industry into from fifteen to seventeen groups according to the size of the capital assets owned by each firm, and computing the capital-output ratio for each such group. The firms most heavily endowed with capital assets are classified as the leading firms. Each firm in this group holds capital assets valued at about ten thousand million yen (some 30 million United States dollars).³³ The capital-output ratios of the leading firms are shown in column 6 of table 6.

This shows striking similarities to column 5 of table 6. This implies that the leading Japanese firms are operating under almost the same conditions with respect to their capital-output ratios as the average United States firm in each manufacturing industry. A comparison of column 5 with column 1 shows that the Japanese firms are small and with relatively low capital-output ratios; this would imply a relatively high labour intensity in these firms. The hypothesis that $k_{ij}^n = k_i^n$ is therefore obviously untenable if the size distribution of firms within industry is taken into account. But if the weight for the leading firms is sufficiently large or if the amount of output produced by the group of leading firms as compared with total output in a single industry is large enough, the degree of comparability of the capital-output ratio in each industry will not be affected too greatly by the difference in the size distribution of firms.

Under such conditions it may not be altogether unreasonable to apply the estimates of the capital-output ratios for specific industries obtained in a country like the United States to similar industries in underdeveloped countries. When the weight of the leading firms is not large enough, the upper limit of capital requirements might be obtained with reference to the average capitaloutput ratios of the developed countries.

We can therefore conclude that there is not much difference in the capital-output ratios of specific industries between different countries, if proper consideration is given to the size distribution of firms within each industry.³⁴

3. Comparison of the capital-labour ratios by industry between the United States and Japan

So far our discussion has been limited to the concept of capital-output ratio. Intercountry similarities of capitaloutput ratios, however, do not imply comparability of countries as to the degree of economic development. A measure which would more vividly reflect the differences in the degree of economic development therefore seems to call for discussion.

The neoclassical production theory states that a larger

³³ The largest amount of capital assets owned by individual firms varies from industry to industry. For example, the smallest amount, about 20 million yen of capital assets, is observed in the furniture industry. Most of the heavy industries hold 20 billion yen or over. This computation was reported in *Capital Structure and Differentials between Firms* (see footnote 31).

³⁴ The size distribution according to the number of employees was also investigated in *Capital Structure and Differentials between Firms* and supported similar conclusions with respect to the capitaloutput ratios. This distribution was based on the 1957 survey of firms.

TABLE 9 : FIXED CAPITAL ASSETS PER EMPLOYEE

		(1) United States (1947)	(2) Japan (1954)	(3) (1)/(2)	(4) Japan leading firms (1955)	(5) (1)/(4)
1.	Agriculture and forestry	19.58	0.37	52.91		
2.	Fishing	2.24	0.47	4.77		
3.	Coal-mining	4.86	0.65	7.48		
4.	Other mining	24.29	1.02	23.81		
5.	Processed foods	5.07	0.55	9.22	3.38	1.50
6.	Textiles	2.78	0.57	4.88	1.95	1.43
7.	Lumber and wood products	3.13	0.37	8.46	1.19	2.63
8.	Paper and allied products	6.07	0.76	7.98	4.14	1.47
9.	Printing and publishing	3.45	0.21	16.44	1.05	3.29
10.	Chemicals	7.80	1.19	6.56	2.67	2.92
11.	Coal products	35.84	4.44	8 ·0 7	27.05	1.32
12.	Petroleum products	38.18	6.23	5.64	27.05	1.32
13.	Rubber products	3.43	0.46	7.46	2.05	1.67
14.	Leather products	1.00	0.20	5.00		
15.	Non-metallic mineral products .	6.96	0 ·46	15.13	5.62	1.24
16.	Iron and steel products	7.89	1.19	6.63	4.58	1.72
17.	Non-ferrous metal products	9.26	1.43	1.48	2.29	4.04
18.	Machinery	4.95	0.46	10.76	1.59	3.11
19.	Transport equipment	5.40	0.65	8.31	1.44	3.75
20.	Industry (other)	2.19	0.12	18.25	1.04	2.11
21.	Electricity	46.36	13.85	3.35		
22.	Transportation	15.57	3.61	4.31		
23.	Trade	6.18	0.40	15.45		

(Thousands of United States dollars)

Source: Column 1 is compiled from Harvard Economic Research Project: Estimates of the Capital Structure of American Industries, 1947 and Report and Research; column 2 from National Income Accounts, 1957 and National Wealth Survey, 1955; and column 4 from Capital Structure and Differentials between Firms (see footnote 31).

degree of variation exists in capital-labour ratios than in capital-output ratios; more precisely, if labour productivity goes up, the capital-labour ratio will go up faster than the capital-output ratio. This statement implies that advanced economies tend to be much more capitalintensive than underdeveloped economies.

Actually, the lower wage rates and the higher capital costs in the Japanese economy seem to have resulted in an extensive substitution of labour for capital, as can be seen from the comparison of capital-labour ratios between Japanese and the United States industries in table 9, which indicates several characteristics reflecting the relative backwardness of the Japanese economy.³⁵

(a) Generally speaking the United States capital-labour ratios are about seven or eight times larger than the Japanese ratios; in six out of the 23 industries differences are more than ten times larger (see column 3 in table 9). These six industries (agriculture and forestry, other mining, printing and publishing, non-metallic mineral products, industry (other), and trade) are mainly composed of small firms, over 90 per cent of which have less than 20 employees, mostly family workers.

(b) There is a larger variation of capital-intensity among the Japanese industries than among those of the United States. The range of variation among the Japanese industries is almost 2.5 times that of the United States as a whole; however, it should be noted that the range of variation within manufacturing industries is about the same in both countries.

(c) The ranking of industries according to the size of capital-labour ratios, given in table 10, is quite similar in the two countries, with the exception of industries like agriculture, non-metallic mineral products, trade, coal mining, and textiles. Among these the first three are

³⁵ The results in table 9 were computed without any adjustment for prices and employment conditions. In the case of the United States, however, the wholesale price index for machinery, which is a key component of fixed capital assets, increased by some 25 per cent from 1947 to 1954. On the other hand, the general level of employment increased by about 10 per cent. Even assuming that there had been no increase in the stock of capital from 1947 to 1954, fixed capital assets per employee in the United States industries for 1954 might have had a slight upward tendency. Another adjustment must be made for the official exchange rate. There is no adequate information on the purchasing power parity for this purpose, except an approximate computation in T. Watanabe and R. Komiya, "Findings from Price Comparisons, principally Japan vs. the United States", in *Weltwirtschaftliches Archiv*, Oct. 1958. In general, purchasing equivalence between the United States dollar and the Japanese yen is probably lower than the

official exchange rate (US 1 = yen 360); a comparison of wholesale prices showed US 1 = yen 330. The exchange rate problem therefore may not be so critical in accounting for the apparent differences of capital-labour ratios.

 TABLE 10 : RANKING OF CERTAIN INDUSTRIES BY SIZE OF CAPITAL-LABOUR RATIO

Industry	United States	Japan	
Electricity	1	1	
Petroleum products	2	2	
Coal products	3	3	
Other mining	4	8	
Agriculture and forestry	5	19	
Transportation	6	4	
Non-ferrous metal products	7	5	
Iron and steel products	8	6	
Chemicals	9	7	
Non-metallic mineral products	10	16	
Trade	11	18	
Paper and allied products	12	9	
Transport equipment	13	10	
Processed foods	14	13	
Machinery		17	
Coal-mining	16	11	
Printing and publishing	17	21	
Rubber products	18	15	
Lumber and wood products	19	20	
Textiles		12	
Fishing	21	14	
Leather products	22	22	

Source: Compiled from table 9.

relatively less capital-intensive in Japan than in the United States, and the latter two relatively more capital-intensive.³⁶ The Spearman rank correlation coefficient proves in fact to be \cdot 75.

(d) A comparison of table 10 with table 8 indicates that the similarity in ranking between United States and Japanese industry is greater in relation to their capitaloutput than to their capital-labour ratios. The Spearman rank correlation coefficient was $\cdot 95$ for the former and $\cdot 75$ for the latter. The ranking of industries with respect to capital-output ratios and capital-labour ratios in the United States shows a high correlation but a very low one in the case of Japan (the Spearman coefficient is $\cdot 76$ for the United States and $\cdot 30$ for Japan).

(e) Large deviations between the capital-labour ratios of the United States and the Japanese industries will be reduced sharply if the ratios of the average United States firm are compared with those of the leading Japanese firms (see column 5 in table 9). This implies that a greater part of the over-all differences between the two countries is accounted for by very large differences in the capitallabour ratios between small and large firms within Japanese manufacturing industries.³⁷ These observations may enable us to confirm our previous conjectures that (a) the degree of economic development is reflected much more readily in the magnitude of capital-labour ratios than of capital-output ratios; (b) the most important factor responsible for the relative backwardness of an economy is an unbalanced structure of production within an industry in which a number of small firms with primitive technologies operate together with large technologically advanced firms; (c) the use of modern technologies with high capital-intensity is likely, because of financial and other restrictions, to be concentrated in a small number of large leading firms.

III. SUGGESTIONS ON INPUT-OUTPUT ANALYSIS FOR DEVELOPING COUNTRIES

1. Data for technical coefficient matrix

There is no doubt that a standardized set of technical coefficient vectors would be of great use in the industrial programming of the developing countries. Tentative suggestions on this subject, based on the discussions of the previous sections, are presented below.

(a) Industrial classification

Since the major concern of the Centre's "proposal" is industry level rather than plant level, individual sectors should preferably be defined on a standard industrial classification such as the ISIC in view of the practicality in data collection and an analytical linkage of the proposed study with conventional industrial studies. This does not, of course, deny the need for some additional alternative classification systems, designed for particular analytical use, covering such sectors as energy industries, light manufactures, heavy manufactures, import-substituting, and export-oriented. Such analytical requirements can be fully taken into account in determining the degree of disaggregation on the ISIC basis. It should be noted, however, that some adjustment of the ISIC may be inevitable for analysis on an activity basis. as has been pointed out earlier.

(b) Activity or technical-unit basis

Conventional census data on an establishment basis will be of limited use for our purposes. Conversion of such data to an activity or technical unit basis will be essential in order to have a standardized set of technical coefficient vectors or matrices. As noted earlier, the use of a product-mix coefficient matrix may be helpful, if the basic cost data are not directly available on an activity basis.

In this context the output of an individual sector should be defined in gross terms. Particularly in the case of sectors of strategic importance for industrial programming, since the technical coefficients for such sectors must be highly comparable with those of other countries.

³⁶ Relatively speaking the textile industry in Japan is mature and the coal-mining industry is the one which has had very large government subsidy during the post-war period. Agriculture, trade and the non-metallic mineral products industry have been organized in small-scale firms.

³⁷ For the distribution of the capital-labour ratios by size of firms see *Capital Structure and Differentials between Firms* (see footnote 31).

(c) *Technical coefficient matrix*

The technical coefficient matrix will preferably have many more columns than rows because the change in product-mix is the most influential factor affecting coefficients. The number of rows for manufacturing industries need not be very detailed for the purpose of analysis of sectoral output, imports, employment and capital requirements. Though it is very difficult to decide the optimal size of this rectangular matrix, approximately 50×200 may be considered as a bench-mark suitable for dealing with the problem of technological progress in most of the developing countries.

The industrial classification as specified in the rows must have special reference to natural resource endowment and possibilities of import substitution in developing countries. In addition to this row classification, functional divisions of inputs, such as energy inputs, distribution costs, principal direct production materials, etc., will also be useful.

As for the columns for manufactures the sectoral classification must be as detailed as basic data permit, particularly in those sectors where the product-mix is changing fast with the changes in *per capita* incomes technologies, import and export patterns, etc.

(d) Gross and net input with respect to by-product and scrap

In practice input coefficients are computed on a net basis, i.e. after deducting coefficients for by-products and scrap, in the case of "negative-input method". In view of the need for a technical analysis it would be preferable to have a reference matrix for by-products and scrap so as to facilitate the conversion to a gross coefficient matrix (i.e. technical coefficients before such deduction).

(e) Valuation

It is generally accepted that producer's price is desirable in the compilation of the technical coefficient matrix, since the homogeneity of the row in the matrix can be more firmly secured by the use of producer's price valuation.

For indirect taxes (net of price subsidies) it will be convenient for analytical purposes if the coefficients at market prices are converted into those at factory prices by using the following formulae:

Ì

$$I' = V' (I - A)^{-1}$$
(1)

$$P' = V' (I - A)^{-1}$$
(2)

$$I' = \bar{V}_f' (I - A_f)^{-1}$$
(3)

In this case,

$$A_{\ell} = \hat{P}A\hat{P}^{-1} \tag{4}$$

$$\overline{V}_f' = V_f' P^{-1} \tag{5}$$

where I' = unit vector for price levels; A = technical coefficient matrix at market prices; $A_f =$ the same at

factor costs; P = vector of price levels at factor costs; V = vector of value added ratios at market prices; $V_f =$ the same at factor costs before adjustment of output; $\overline{V}_f =$ the same at factor costs after adjustment of output for the factor cost basis. A notation with a prime indicates row vector, and one with a circumflex a diagonal matrix.

As can be seen from the above, matrix A_f , valued at factor costs, will be more stable and suitable for international comparison, since coefficient matrix A is more subject to changes in government price policies.

This formula can also be extended to a more general case where any factor giving rise to price distortions needs to be eliminated. For instance, factors such as customs duties, import restrictions and multiple exchange rates tend to distort their relative prices, which might dilute the practical applicability of the technical coefficients valued at market prices. Thus it would be desirable to remove various distorting factors so that the technical coefficients reflect purely technological relations based on a certain normalized set of relative prices. The adoption of international prices would be considered as a first approximation.

(f) Physical relationships

A physical balance or quantity table, as prepared in Japan and other countries, is also useful for checking the workability of the standard coefficients in value terms. Engineering data also serve similar purposes, but they may be of more limited use because they are available only at plant level. Thus it would be desirable to prepare the standard technical coefficients at industry level in physical terms at least for selected sectors of strategic importance for industrial programming.

2. Input-output simulation for developing countries

From the findings in the sections above, a tentative suggestion may be drawn as to the input-output simulation for those developing countries which do not have sufficient statistical information for their planning purposes. In some developing countries the availability of the statistical information needed for the compilation of input-output tables may be quite high but the compilation of an input-output matrix and its use for projections and planning by their own data may not be so fruitful because of insufficiencies in the existing technologies and also of rapid obsolescence of the existing information. Thus an input-output simulation based on our standardized coefficient matrices would provide useful bench-mark data for planning and programming purposes.

(a) Determination of principal input-output coefficients

The following procedures may be suggested for the purposes of determining the principal input-output coefficients.

(i) Coefficients may be discarded by the use of the formula suggested in the previous section; this method is particularly useful for countries where (a) imports are

relatively small; (b) there is no significant serious price control, especially of the materials to be purchased by manufacturing sectors; (c) classification of industries is based on the international code; (d) statistical information about a thousand or more commodities is available, at least with regard to their total output; and (e) there is the possibility of using an input-output matrix with at least 40 sectors, of which more than 30 should represent manufacturing industries.

(ii) The engineering and economic properties of the principal coefficients should be examined.

(iii) Decomposability, bloc interdependence and triangularity in the principal coefficient matrices should be tested for various industrialized countries, the number of countries should be larger than five, and significant differences in relative prices should be corrected as indicated in section III (1) (e) above.

(b) Test of possible variations in the principal coefficients due to changes in the product-mix

This test would be specially needed to clarify the nature of the principal coefficients applicable to developing countries. In several developing countries, such as India, estimates of those coefficients are already available. For countries where no estimates of principal coefficients are available it is desirable to conduct a special survey.

(c) Compilation of a standard principal coefficient matrix

Using the information collected through the above two procedures, a standard matrix can be constructed whose elements are only principal coefficients.

(d) Test of the standard principal coefficient matrix

From the standard principal coefficient matrix A^* it is possible to compute $(I - A^*)^{-1}$. Multiplying this inverse matrix by the final demand vectors of several countries for which reliable input-output tables are available some deviations will be found between the actual and the computed outputs. It will be necessary to trace possible causes of deviations.

T. WATANABE

(e) Application of the standard principal coefficient matrix

(i) For those countries which have relatively sufficient statistical information to compile vectors of output and final demand, compute:

$$(I - A^*)X^{act.} = Y^{est.}$$

 $(I - A^*)^{-1}Y^{act.} = X^{est.}$

(ii) For those countries which have information for either X or Y, compute either

$$(I - A^*)X^{act.} = Y^{est.}$$

 $(I - A^*)^{-1}Y^{act.} = X^{est.}$

and

or

and compare the results with other available data, such as those in national income accounts.

(iii) For those countries which have no information about X or Y, derive a hypothetical vector X by using A Study of Industrial Growth,³⁸ and then compute $(I - A^*)X^{est.} = Y^{est.}$ Check the estimate of $Y^{est.}$ against whatever information is available for income and production.

It has to be emphasized here that the above type of simulation alone may not be very meaningful for the developing countries which are still at the pre-industrial stage. For these countries it will be desirable to utilize the labour coefficients as a principal tool of analysis since the combination of principal inputs, capital input and labour input would be one of the most important aspects of economic growth. In this connexion it may be noted that the principal coefficient matrix may well be constructed excluding service sectors and probably agriculture sectors, since these may involve a mixture of elements of both traditional life and industrial institutions, especially in most of the developing countries.

³⁸ United Nations, op. cit. (see footnote 18, page 192).

NOTE ON THE POSSIBILITIES OF UTILIZING THE TECHNIQUES AND DATA OF INTERNATIONAL COMPARISONS FOR INDUSTRIAL PROGRAMMING IN THE DEVELOPING COUNTRIES

Henri Aujac, Bureau d'information et de previsions economiques (BIPE), Neuilly-sur-Seine, France

In working out policies for economic development one is faced with two kinds of problems. First of all the image of the future economy which a country wishes to attain ought to be constructed in terms that are clear and operational—and consequently relatively detailed and precise. In solving this problem of what to do, the Leontief tables have proved quite useful. But then one should be able to formulate specific economic policies which can lead to given desired situations: we are dealing with a problem of how to do it, for the solution of which a great deal other than the conventional Leontief tables will be required.

Consider a particular industry: say the cotton textile industry or the electronic industry. To study the problem of what to do for the future development of such an industry one would wish to have a series of historical monographs for various industrialized countries, describing in an analytically comparable framework the various aspects and factors of their past development, such as the diverse circumstances which governed the birth, growth and eventual decline of the industry, changes in the techniques of production and marketing, quantitative and qualitative changes in production, evolution of investment and employment, functional linkage between the industry and the rest of the national economy, particular policy measures adopted and their impact, etc. In this perspective an inspection of both cases of failure and success would provide equally valuable lessons. History often repeats itself, and each country should adapt the lessons obtained from experience in other countries to particular conditions of its own economy and industries. It is clear that such monographs dealing with the historical development of an industry in various countries would provide an extremely useful source of information for those persons who are concerned with the promotion of similar industries in other countries.

Now to turn back to the precise objective of this note: we are all aware of the fact that the planners of developing countries cannot resort to the conventional method of utilizing an input-output table, which consists of determining production targets of each sector from given hypotheses concerning the growth of final demand and the technical coefficients relating to use of raw materials, energy, capital and labour. In the case of developing economies the technical coefficients compiled for a recent year can represent only a forlorn past and seldom be of practical use for projection purposes; projections would often involve replacement of the whole system of coefficients by a new system, covering new lines of industrial activities envisaged for a given plan period. Again, in evaluating the probable magnitude of individual coefficients (which in fact becomes possible only after such a new system is called forth for projection purposes) one would have to draw upon the method of international comparisons rather than the country's own historical data. To what extent then can the planners of developing economies take one aspect here and another there, in the form of coefficients borrowed from different countries, in drawing up input-output tables for their future economies? What knowledge should they have about those borrowed coefficients in order to integrate them *mutatis mutandis* into an operationally consistent system?

The Leontief tables which have been compiled in various developed countries do not seem all equally adaptable to the needs of planners in developing countries. Certain highly developed countries place full confidence in private enterprises as regards their capability to adapt themselves to changes in market conditions. Such is especially true of a country like the United States. Under such circumstances an input-output table is expected to be not so much a detailed description of the flow of products characterizing various specific production processes as a national-accounting device clarifying ways in which value-added is generated in various activities and then transformed into final demand of consumption and investment. This is certainly one of the reasons why the industry classifications adopted in these countries are generally based on the grouping of enterprises rather than of products, and thus meet very poorly the need of persons who wish to draw up a precise programme for future industrial development in developing countries.

In other countries, such as France, somewhat less confidence is placed in the rapidity of adaptation of enterprises; governments in such countries are therefore more concerned with the problem of keeping them alert to future perspectives by setting up serious market studies for the principal products. In such cases the input-output information bears principally upon the description of production processes, and its compilation tends to be oriented for the product-basis classification. In principle the coefficients established in this manner would be indicative of the production conditions, both technical and economic, of each stage of production. The approach by detailed product groups proves inappropriate to deal with the value-added aspect of the production structure; but this limitation is not so important for those who wish to draw up development programmes for the future, since this type of table permits detailed analysis of the production processes of an industrially more developed country, as required in the context of forward planning for a less developed country. But experience proves that even this type of detailed table is not easily usable in fact by the planners of developing countries.

One of the key factors responsible for the relative ineffectiveness of many existing tables for programming purposes is the high level of aggregation involved in the underlying sector classifications. A detailed classification scheme, which would make the resulting table useful for the planners of developing economies, may however not necessarily be found so useful for those of developed economies. For the latter it would suffice to question any foreseeable changes in individual technical coefficients extracted from the table of the base year. In fact the classification of activities and products which define these coefficients might not be so seriously implicated in that type of projection; a classification scheme of the order of 100 or 200 sectors usually permits only such a highly rudimentary description of production processes that many of the technical coefficients defined in that scheme may appear almost unchanged for five years or so.

In fact however, even if their nominal titles remain unchanged, their substantive contents undergo changes under the influence of various factors characterizing the dynamism of economic development, such as installation of new technologies, launching of new products, substitution among different materials, modifications in the internal structure of industries, changes in relative prices, entrepreneurial behaviour in respect of investment, research and development, specific policy measures of the public authorities, etc. Technical coefficients derived from a table of only a few hundred sector alignment can only reflect the consequences of these various development factors; they cannot explain how such and such factors influence such and such coefficients. Thus the apparent stability of nomenclatures masks a fundamental problem posed by the planning of developed countries as well as of developing countries.

The interindustry tables now available for many developed countries have proved in fact to be poor instruments for planning and *ex ante* analysis; rather they are instruments for *ex post* analysis, often more effective in describing the remunerations of primary production factors than the network of interindustry transactions *per se*. Therefore the planners of developing countries should not hope for too much from the possibility of borrowing technical coefficients from the tables of developed economies for the purpose of industrial programming in their own countries.

If too much aggregation is the key source of the whole complaint, it is no doubt only of a transitory nature. "Insufficient information", often referred to as a major excuse, is in fact not always the case. On the contrary the information of various types which we usually manage to collect to construct a Leontief table cannot all be utilized effectively; the nomenclature to be retained at the final stage of compilation is much less detailed than what would appear possible at the outset; thus a nomenclature which can be common to all products has to be aligned along the product groups whose specific markets or consumptions are not really well known. Consequently such a nomenclature can mobilize only part of the available information. Another-and more importantreason is simply that we do not know enough about the nature and causes of the wealth of nations: even a table built under a highly detailed nomenclature would not easily be utilized for planning purposes, since detailed analysis of production processes will not be of much use when it is impossible to project final demand and technical coefficients under the same detailed nomenclature. Projections of technical coefficients for example can be set up only through the synthetic dialogue between economists and engineers, which is actually almost impossible owing to the lack of common language.

These difficulties, if surmountable at all, will not be overcome without cost and patient effort and possibly not within the foreseeable future. What then can possibly be done to assist today's developing countries by way of programming data for interindustry relations?

1. DETAILED DESCRIPTION OF VARIOUS PRODUCTION BLOCS OF DEVELOPED COUNTRIES

If we cannot hope for a complete reorganization of interindustry compilation in developed countries we may still be able to provide planners of developing countries with some form of description of the functional and structural detail of industries in developed countries. This descriptive approach might release us from the tough constraint of input-output compilation—the need to force the alignment of classifications upon the products and processes which do not fit well into any statistical scheme. For that matter, instead of attempting to describe a whole national system of production, it would be convenient to draw an elaborate picture of each individual bloc of production (or *filière de production*) which constitutes part of the total system.

The industrial system normally involves an uneven structure of interrelations. Although one industry maintains strong connexions with some other particular industry or industries its linkage with the rest of the system may be comparatively weak. For example the linen, cotton, wool, silk, synthetic fibres, knitted goods, clothing, and similar industries constitute a tight conglomerate; its interior may be characterized by a particularly rigid hierarchy. Such a group is in fact composed of those industries which occupy different stages of transformation within the same line of production, ranging from processing of raw materials to delivery of finished products. Thus the activity of the clothing industry is directly influenced by the demand of final consumers; the activity of the weaving industry is immediately dependent on that of the clothing industry, and these two industries directly command the activity of the spinning industry. Such a group of linearly dependent industries may be so distinguished and treated as a bloc. It may also be noted that these blocs are not completely independent of one another but are themselves subject to a degree of hierarchy (bloc-triangularity). Thus, with some caution, we shall be able to treat each bloc separately, at least for the sake of procedural convenience.

We shall gain a considerable degree of freedom as to the way to handle each bloc. First of all there will be no need to secure strict correspondence between the nomenclature of activities and of products. Furthermore a nomenclature applied to the description of the detail of one bloc does not have to be the same as that applied to the detail of another bloc, but different nomenclatures may be selected in an *ad hoc* manner in accordance with the specific features of individual blocs. Descriptions can be given in terms of physical units or of value or of both.

With the problem of nomenclature out of the way for the moment the descriptive scheme for each bloc ought to be designed so as to meet the requirements for international comparability. For that purpose each bloc would have to be analysed from a few different angles, in each case with the use of whatever nomenclature may be considered particularly suitable. Such a task may cover at least three stages:

(a) qualitative analysis of technical processes;

(b) numerical economic analysis in the greatest possible statistical detail; and

(c) integration of the above analysis into an over-all Leontief frame.

(a) Qualitative technical analysis

The principal aim is to describe the technical aspects of the transformation process at each of the stages involved in a given bloc of production. Techniques utilized at different stages may often be mutually dependent. The classifications of activities and products to be used will generally be far more detailed than those normally employed for gathering basic statistical information. Such classifications may not always permit quantitative description but would be of great interest from the point of view of intertemporal comparisons as well as international comparisons of technical coefficients.

The historical transformation of a bloc considered in a given country may be traced in terms of modifications of the nomenclatures of activities and products; the chronological series of nomenclatures applied to different periods would reveal the nature and extent of technical progress, speed of emergence of new products, tendency to lengthening or shortening of each of the processing stages, etc. It would be interesting to see through this series, for example, the cyclical movement between simplicity and complexity of production processes which characterizes technological progress: an originally simple process becoming increasingly complex to improve the qualities of products, then becoming simplified by virtue of technological innovation until the need for further qualitative improvements leads again to more complex technological devices.

The descriptive technical analysis would probably bring to light the precise pattern of dependence between the techniques used at different stages within a given bloc of production; in which case the technical coefficients pertaining to the particular bloc would have to be examined as a whole body, and comparisons of coefficients, whether intertemporal or international, would have to be made, not for an individual coefficient but for an individual bloc as a whole.

(b) Numerical economic analysis

Numerical economic analysis consists of analytical description of the production and consumption on the one hand and the purchases and sales on the other hand of materials and energy actually taking place among enterprises for production purposes. The description should be in quantitative terms in both physical and value units wherever possible. The nomenclatures to be used would not be very different from those used for the collection of basic statistical information and would generally be more aggregative than those required for the technical analysis.

The linkage of a given bloc with the rest of the economy would be set out in two directions: one relating to those industries consuming the products of the bloc, and the other to the products of other industries consumed by the bloc. There would thus be four types of nomenclatures involved in the analysis. First come two types of activity nomenclatures: one relating to the industries within the bloc and the other relating to consuming industries outside the bloc. Second are two types of product nomenclatures: one relating to the commodities produced within the bloc and the other to the products to be acquired from outside it and consumed inside it. Each of these nomenclatures may be chosen more freely than in the case when data for different blocs are integrated into a single table covering the whole economy.

This scheme of quantitative description should reveal two aspects: the one pertaining to production-consumption of materials and the other to deliveries-purchases between industries. Changes in input-output coefficients, when viewed in the former context, can be associated with the process of technical progress described in the preceding qualitative analysis. The same changes may also be interpreted, in the latter context, as structural changes affecting the organizational structure of enterprises in the bloc, such as tendency towards concentration, vertical or horizontal integration, etc.

(c) Integration of the preceding analyses into an over-all Leontief frame

The nomenclature for an over-all Leontief table will be obtained for the industries involved in each bloc studied by simple aggregation of the activities referred to in the preceding partial numerical analysis. Consistency of nomenclatures between the partial and the over-all numerical analyses will generally be secured because the different nomenclatures of numerical description are

H. AUJAC

This triform approach to interindustry coefficients will permit the provision of the analytical instruments necessary to put together the experience of all who are to assist in the preparation of operational plans and programmes: engineering experts, who can provide information on the characteristics of products and fabrication processes; professional managers of industries, who know from experience the organization of their industries and their specific economic problems; and national accountants, who can interpret the particular development of each industry in terms of over-all economic progress. On the one hand a close collaboration among these three categories permits the formation of realistic views on the past and current conditions of different industries in developed economies; on the other hand the data compiled in this manner may possibly serve as a source of reference programming data for planners of developing economies.

Intercountry comparisons

Now the data of various developed economies organized by such an approach will have to be studied carefully with a view to assessing their adaptability to the conditions of developing economies. Such comparative evaluation may take various forms, of which the following seem to be the most interesting:

(a) analysis of the relationship between the structure of final demand and the structure of a given bloc of production;

(b) comparison of relative prices of various materials and products;

(c) analysis of the organizational structure of the enterprises in the proper functioning of the bloc; and

(d) analysis of the structure of the machine park attached to each bloc and the technical progress connected with the machine park.

We have already noted that there exists a somewhat strict interdependence among different stages of the production process, which is set out in the form of the technical coefficients of a given bloc. These coefficients are also dependent on the conditions of demand markets, which command the development of the whole bloc. From this point of view the demand to be satisfied by the particular bloc, the characteristics of its products, and its technological structure together form the total object of study; and they have to be treated as such. Differences in quantitative and qualitative final demand between developed and developing economies are specially likely to be an important factor responsible for the dissimilarities of technical coefficients of similar blocs between different economies.

Obviously the relative prices play an important role in the choice of raw materials and fabrication processes wherever there is scope for substitution. The structure of relative prices is indeed different among developed countries and still more so between developed and developing countries. The nomenclature of products and processes to be utilized in technical qualitative analysis and sometimes also that entering into the detailed economic analysis of blocs—will define the products for which individual market prices can be studied rather easily. It will thus become possible to investigate for each country the connexion between the price structure relevant to a particular bloc and the technological structure of that bloc. Although it may not be possible to establish strict and distinct relationships between them the information organized in this manner will no doubt provide indications useful in practice to the countries making decisions as to the creation or development of the production bloc considered.

Confrontation of the technological structure of a bloc with the organizational structure of the group of enterprises involved in it may also reveal an aspect of strategic importance. Whether the given bloc is composed of a number of small enterprises or of only a few enterprises with strong vertical integration will certainly make much difference to the alignment of technical coefficients, their values and modes of changes. The intercountry adaptability of technical coefficients cannot therefore properly be evaluated without information on the underlying organizational structure: the number and size of enterprises; the degree of concentration at different stages of the bloc; the causes, speed and modality of organizational changes; the pattern of transactions between the enterprises at different stages of the bloc, etc.

The circulation and transformation of materials-in other words, technical coefficients corresponding to the technical qualitative analysis-are in most cases tightly conditioned by the characteristics of the particular machinery and equipment involved. This connexion seems to be even closer than that between the technical coefficients and the specifications of labour, as revealed by certain comparisons between the production data of developed countries and of developing countries. It is therefore necessary to gather, for each activity classified for technical description, the information relating to the machine park by type of equipment, age structure, extent of automation, and other technical characteristics. Machine parks to be set up in a developing country tend to be different from those actually existing in a developed country; the former will generally be relatively young, although the machines may be acquired partly from used-machine markets.¹

¹ One might then be tempted to search for technical coefficients effective for developing countries by isolating the characteristics of new investments taking place in developed countries. For that purpose, suppose that for an advanced country the value of the same coefficient be compared at intervals of from three to five years; on the basis of some reasonable assumptions the observed changes might be imputed to the new investment undertaken during the period considered. Unfortunately such an approach would not make much sense for a number of reasons: first of all, new machinery and equipment are not usually destined to build up a new bloc rivalling an old machine park but are distributed more or less evenly over the assets of old blocs. The marginal productivity of capital could thus normally not be assimilated to to the average productivity of new capital.

In elaborating a plan for a developing country the values of technical coefficients derived from the data of developed economies ought to be extrapolated with due allowance for the differences between the actual machine park of the reference countries and the one projected for the developing country. This extrapolation will have the better likelihood of being valid the better the quality of information regarding the structure of different parks and the technical progress implied in shifting from one park to another.

To sum up: the descriptive data offered by the classical Leontief table should be elaborated by means of as much detailed numerical economic analysis of various blocs of production as possible, as well as highly precise qualitative descriptions of their technological structures. A good deal of data concerning the structure of final demand, relative prices, organization of enterprises, machine parks etc. should be gathered systematically, to complete these analyses of blocs. When such studies for various important blocs of production become available from many developed countries the planners of developing countries will be in a better position to construct an image of their future economies; they will then be equipped with the means of talking usefully with the economists and engineers of developed countries specializing in various industries. The same studies moreover will equally benefit the planners of developed countries. Some of these latter appear to be tempted to shy away from the cumbersome problems of planning by orienting themselves toward the elaboration of abstract models which are seductive enough intellectually but of limited use in practice. Studies resulting from the present suggested approach might help planners of both developed and developing countries to remember the real concrete problems facing them in the organization of economic growth.

II. STRUCTURE OF THE TRANSACTIONS WITHIN THE BLOC OF TEXTILE INDUSTRIES IN FRANCE: AN ILLUSTRATION OF THE PROPOSED APPROACH²

An experiment has been conducted in France along the lines suggested above, referring in particular to the bloc of "primary textile materials, the textile industries, and industries of clothing and allied textile products". It was intended to provide only quick illustration of the work to be accomplished and not a complete exemplification of the proposed approach. Part of the basic information obtained by the author from personal sources moreover is considered as confidential and can be released to the public only to the extent that other countries are ready to furnish similar information.

Qualitative analysis

H. AUJAC

It seems possible without too much difficulty to set out a nomenclature of production stages, their products and their consumers, detailed enough to reveal their technological characteristics.

Figure I presents such a description relating to the manmade fibre textiles alone.³ For the sake of clarity however it indicates the nature of the operations to be executed (carding, drawing and so on) without mentioning the various specialized machinery intervening at each stage of transformation. For example, drawing is done through several passages on roller-drafting and an additional operation on flyer-spinning when the materials are treated according to the cotton-type processing cycle, and by three operations on intersections and one passage on finisher in the combed-wool-type treatment cycle. Such a diagram could be prepared in greater detail and eventually supplemented by technological monographs relating to each industry.

Figure I reveals that the length of process varies according to whether it involves the treatment of staple fibres or that of filament yarn, the latter permitting the avoidance of a long spinning process. While this variation in the length of time taken by processing at the stage of the semi-finished product is caused particularly by the use of primary textile materials of chemical origin, a similar phenomenon occurs at the final stage as well; most knitting plants involve a shorter cycle of treatment than the weaving plants, which require special preparation of warp-yarns and pirning of weft-yarns in the case of classical weaving crafts (shuttles equipped with cylinders).

This particular figure is already simplified and does not explain how the new technologies modify the traditional technical relations. For example a weaving machine without shuttles (such as the Sulzer type) does away with the pirning operation; techniques developed parallel to those of textile processing permit the obtaining of fabrics directly from staple fibres of all types or from chemical materials in liquid form flowing out of extrusion plates. The shortened cycle of transformation has been created for products with specialized usage but which are at least partly competitive with certain classical products. Such aspects of technological progress are an indispensable part of the nomenclature needed for the analysis of technical coefficients.

In an analysis of a figure of this sort it is advisable to bear in mind that the complexity of the transformation network of a given type of fibre itself depends on historical traditions. Thus five types of man-made fibre are distinguished in France: four of them require different types of treatment in spinning and the last one in throwing. This differentiation is linked to the traditional structure of the textile industries in a country that became developed some time ago. It seems possible to

²The author wishes to thank Miss Guiriec, a textile-industry specialist in the *Bureau d'informations et de prévisions économiques*, for her assistance in preparing this section. Miss Sermage, statistician in the same *Bureau*, collaborated in the elaboration of the statistical tables.

⁸ The remaining part of the textile industries can also be described in similar detail, but cannot be revealed to the public so long as the "reciprocity clause" is not satisfied at the international level.

distinguish at least three stages in the history of the development of the textile industries. In the earliest days the transformation lines were organized according to types of natural fibres, each line being specialized. This juxtaposition of different lines without notable interconnexion among them lasted until the emergence of chemical textiles. Since that time interindustrial connexions have become increasingly complex, and are coupled with the development of mixing techniques. What one finds today is a huge complex of interlocking processing lines. This state however already promises to be transitory and a reverse movement appears to be taking place, aiming at the simplification of networks; this movement is due to equipment enabling the integration of several traditionally separated operations into a continuous flow, as well as the development of polyvalent inter-fibre materials.

The technological structure of the textile industries is thus undergoing relatively rapid changes. The nomenclatures for our qualitative technical analysis, if established for different time periods or for different countries, will be able to reveal the dynamic of technological structures and the technical coefficients which depend on them.

Quantitative analysis

Tables 1 and 2, compiled for the present purpose, relate only to the flows of raw and semi-finished products in the textile industry bloc. Table I indicates the balance in terms of tonnage between the supply and the utilization of primary textile materials and semi-finished products. Table 2 shows the balance in value terms but expresses it in the form of technical coefficients.⁴ Figure II indicates a classification scheme suitable to economic analysis. The figure and the two tables include knitting mills but exclude the final stage of the apparel industries.

Obviously there is a difference between the nomenclature of the official table of the French National Accounts and that adopted in this study. The latter is much closer to the one utilized by the textile syndicates which collect the basic statistical information in this field.

The nomenclature in the official table of the French National Accounts

This nomenclature relates to the interindustry transactions table for 1958, published in 1966 by the National Printing Office. In the 77-sector table, which is the most detailed among those officially available, the textile industries are classified into five branches:

- 1. Natural textile fibres: this branch includes raw wool and products of its primary preparation (combed wool and chemical fibres); raw cotton, linters, cotton waste, and other natural fibres;
- 2. Man-made (regenerated and synthetic) primary fibres and filaments;
- 3. Yarns and threads: this sector includes combed and carded yarns; threads of cotton, flax and hemp; threads from schappe spinning and silk yarn; threads of regenerated and synthetic fibres; threads from jute and other hard fibres; cordage and twine; thrown yarns;
- 4. Fabrics and allied products: this comprises fabrics, felt and carpets of wool; fabrics of cotton, linen and hemp and articles made from them; fabrics and ribbons of silk and man-made fibres; fabrics, carpets and sacks of jute and other fibres; lace, tulle, embroideries, *point lace*, trimmings and allied cotton industry products; cotton-wool; rubberizing;
- 5. Products of knitting mills: knitted fabrics and articles made therefrom.

The nomenclature in this study

The nomenclature used by the Office for Economic Information and Planning (BIPE) for the analysis of textile industries can easily be aggregated into the five branches of the French National Accounts, but its level of disaggregation corresponds to the statistical information gathered by the syndicates.

- 1. Natural textile fibres:
 - 1 Wool evaluated in thoroughly washed form; virgin wool fibre, combing and spinning wastes, teasing waste;
 - 2 Cotton: raw cotton fibres, linters, spinning waste, teasing wastes;
 - 3 Flax: flax fibres called "strands";
 - 4 Ramie: fibres;
 - 5 Hemp: fibres or "strands";
 - 6 Sisal, manilla and other hard fibres;
 - 7 Jute: raw fibres and teasing wastes;
 - 8 Raw silk and silk waste.

In the presentation of the table, the industries at the pre-fibre stage (such as teasing, stripping, steeping and scutching) are omitted.

- 2. Primary materials of chemical origin:
 - 9 Rayon (silk type): continuous viscose filament, reinforced rayon filament, acetate and triacetate continuous filament;
 - 10 Rayon staple (cotton type) called "fibranne": discontinuous fibres of viscose and polynosic, acetate and triacetate, and wastes (including those of continuous rayon filament);
 - 11 Synthetic yarn: continuous yarn of polyamide 66 (nylon) and polyamide 11 (rilsan), continuous

⁴ Here again, information not available to the general public was involved. For that reason only the coefficient table can be shown here.

INTERNATIONAL COMPARISONS FOR INDUSTRIAL PROGRAMMING

TABLE 2 : TECHNICAL CO-EFFICIENTS RELATIVE TO THE CONSUMPTION OF TEXTILE RAW MATERIALS AND SEMI-FINISHED PRODUCTS FOR OUTPUT=1,000 BY VALUE

Year: 1962	001		1,000	DI VAI	JUE					J	une 19	66
	S	pinning				Manu- facture of twine		Weav	ing		Manu- facture of	
	Worsted and	Cotton	Flax and hemp	Throw- ing	Thread spinning	and -	Wool	Cotton		Silk	• cotton	Hosier
Wool (tub-washed), waste, reclaimed products	117											
Cotton (fibres), linters, waste, reclaimed products	11	405									373	
Flax (fibres)	<u></u>		452									
Ramie								··· · -				
Hemp (fibres)			3			23					- 113	
Sisal, manilla						385	_,					
Jute and reclaimed products						3						
Raw silk and silk waste				59						9		
Regenerated cellulosic filament yarn				88			12	19		64	·	5
Regenerated cellulosic staple fibre	22	49	34								17	
Synthetic filament yarn				604	50			15		151		50
Synthetic staple fibre	32	23	21			12						~
Materials without detailed breakdown						·						
Products of wool-combing	513											
Products of spinning combed wool	Innin						371					154
carded wool	-;;11111. 	CHUUU. CUUUU	(1) [[[]	 			280					19
cotton	./////////////////////////////////////	n in	(((()))) (((()))	 	161		4	640	170	12		64
flax and hemp			(11111). (111111).	 	22	75			367			4
jute	1111111- 1111111		nnn Minn	/ /			3	2				
schappe	1111111 1111111	httille NTNTN	1111111 1111111	 						42		
Throwing	<u> </u>			IIIIII	7/		48			53	-	59
Thread spinning			-	·	[][]]	7						
Manufacture of twine and cord		,										- <u></u>
Products of wool weaving						····	1		(((((((
cotton weaving							-//////// ////////			([[[]]	 	
linen weaving							.///////- ////////		//////// /////////////////////////////		[~_ <u>~</u>
silk weaving							-/////// ///////			[[[[]]]]	[
jute weaving							·//////// ////////	1.11.111111 1.11.11111		71111111 7111111	 	~ · ···
Milled felt	•				····· · · · · · · · · · · · · · · · ·							
Manufacture of cotton wool											111111	1
Needle punching			·				_	+				- <u></u>
Hosiery								<u> </u>	<u> </u>			
Output	1.000	1,000	1.00	0 1.00	0 1.00	0 1,000	1,000	1,000	1,000	1,000) 1.000	

Р

polyester yarn (tergal), continuous chlorofibres (rhovyl and clorène), continuous acrylic yarn (crylor and courtelle);

- 12 Synthetic fibres: discontinuous fibres of polyamide 66 and 11, polyesters, chlorofibres and acrylic fibres.
- 3. Intermediate products and threads:
 - 13 Wool combing (including chemical fibres);
 - 14 Worsted spinning (including chemical fibres, combed or uncombed);
 - 15 Woollen spinning (including uncombed chemical fibres);
 - 16 Cotton spinning;
 - 17 Spinning of flax and hemp;
 - 18 Spinning of jute;
 - 19 Schappe spinning (silk and chemical fibres);
 - 20 Throwing: silk and rayon throwing and "bulking" or "texturing" of synthetic yarns;
 - 21 Sewing-thread manufacture;
 - 22 Twine and cordage.

4 and 5. Final textile products, woven, knitted and others:

- 23 Wool fabrics: fabrics for clothing, coverings, technical fabrics (endless sleeves for paper mills, filters, fabrics for slippers, etc.); woollen carpets.
- 24 Cotton fabrics: fabrics for clothes, lingerie, household linen, upholstery coverings; fabrics for technical uses (canvas covers, window blinds, belts, filters, materials for canvas shoes, fabrics for sails etc.); carpets.
- 25 Silk fabrics: patterned fabrics for clothes and furniture; plain fabrics for clothes, lingerie, voile and technical uses (gauze for flour mills, aeronautic fabrics, sails etc.); ribbons.
- 26 Flax fabrics: fabrics for clothes, household linen, upholstery, and other technical uses.
- 27 Jute fabrics: furniture fabrics, technical fabrics (for tailoring, upholstery etc.); sacks for packing.
- 28 Felts of fulled wool: for technical uses (paper mills, filters, jointing, thermic and phonic insulation etc.)
- 29 Quiltings: for medical and technical uses.
- 30 Stitch knitting: of jute principally for technical uses (insulating packaging, covering etc.).
- 31 Knitted goods: knitted goods of cotton, wool, artificial and synthetic fibres; stockings, socks, lingerie, undergarments, coats and other articles (layette, bathing costumes, berets, gloves etc.).

For the sake of simplicity, certain textile industries of an auxiliary nature are here grouped into one sector, together with other industrial sectors and agriculture: they are those based on non-standard technologies and often considered as secondary, such as lace, tulle, pointlace and embroidery, trimmings, narrow fabrics, elastic cloth, water-proofing etc., and also dressmaking and the like (which are excluded from the textile industries in the strict sense).

Justification of the selected year of reference

Both tables are for the year 1962, which is considered as being more normal than other years in the recent period.⁵ In this year the conditions of various branches of the textile industry were representative enough of their relative position: chemical fibre production and rayon yarn were both on a strong expansionist trend, while the knitted-goods sector was growing at a moderate pace; woollen and cotton textiles remained relatively stationary and even slightly depressed. The choice of 1962 avoids the problem of temporary structural disequilibria which would otherwise have to be taken into account.

Resource balances evaluated in tons of primary materials and fabricated products (table 1)

The elaboration of accounts in physical quantities (tons) constitutes the basis of the quantitative description of the bloc. These are in fact based on the most detailed and reliable statistical information that is available for the purpose of constructing the balance of each product or industry branch. The balance of resources and uses for each product or activity involves the following relationships:

Resources	=	uses
Resources	=	production + imports
Uses	===	intermediate consumption by enter-
		prises
	-	-final consumption by households and
		governments
	-	exports
	-	-variation of stocks.

Table 1 shows a representative structure of the textile industry of a developed country. It involves both categories of expensive fibres (wool and synthetic) and less expensive fibres (cotton and regenerated). This industry is characterized by the fabrication of elaborate products —as demonstrated by the development of the process of the "long treatment" cycle of worsted spinning for example—and the development of modern processes such as texturing of synthetic yarns throwing; it comprises various branches producing all kinds of fabrics and knitwear, in addition to specialized activities in the production of textiles for technical use (felts of fulled wool, stitch-knittings, quilting etc.).

The construction of such a table encounters certain difficulties, especially those arising from the complexity of flows of interdependence.

(i) First come the difficulties connected with the nonconcordance of nomenclatures—the differences of nomenclature between trade statistics and production statistics. Another difficulty is related to the regime of temporary

⁵ The year 1963 was characterized by a very strong expansion provoked by the repatriation from Algeria of its European population and increased tax revenues, while 1964 and 1965 were affected by the crisis of overproduction which followed the 1963 expansion.

admissions. Customs statistics do not permit a distinction between thrown man-made yarns and single yarns. The temporary admissions make it difficult to grasp the nature of treated products: for example 5,000 tons of unspecified materials consumed by the throwing industry correspond partly to temporary admissions and partly to raw materials of national origin, which include spun glass twisted or coated for industrial uses.

(ii) Then there are the difficulties arising from the nonhomogeneity of statistical sources. In order to arrive at a numerical balance it is often necessary to arbitrate between incoherent data. Appreciable differences often exist between the identified deliveries from a branch of industry and the identified receipts or fabrications by client industries. While some gaps may be accounted for by competitive imports there are also gaps stemming from the uneven coverage of enterprises involved in statistical inquiries; the coverage depends on the size and the degree of integration of enterprises. This necessitates the provision of a category "miscellaneous goods not specified in kind", as in the case of the material consumption of woollen spinning.

(iii) Difficulties also arise in connexion with the lack of precision of nomenclatures which cover heterogeneous products. Raw materials consumed at the stage of spinning are, despite price differences, generally homogeneous enough to permit a calculation of meaningful technical coefficients for that particular stage; but the same thing cannot be said of the materials consumed at subsequent stages. In weaving and knitting mills the input materials are highly heterogeneous because of the mixture of different fibres occurring in spinning, and factors influencing the quality and price of materials bear great significance at these stages; the quality of spun goods depends on various factors such as fineness, torsion, appearance. composition of fibres etc. It hardly makes sense to calculate the materials consumed by the clothing industry entirely in terms of tons, without due allowance for the differences in quality and costs among various kinds of fabrics. A resource balance described in tonnage, as in table 1, even though established under the most detailed zomenclature that the statistical information can afford, 15 not by itself capable of expressing the complexity of the real existing structures.

(iv) There are also difficulties connected with shifting in time. Another difficulty in the analysis of interindustry linkages arises from the time elapsing between the fabrication of a product, its delivery from the factory, its receipt by using sectors, and its consumption in these sectors. This factor is particularly important in the case of the textile industries, which cover a relatively wide range of activities; more than one year can elapse between the treatment of raw materials serving for the production of histery and the consumers' purchase of the final product. The effects of this time factor are possibly reflected in the column for stocks and adjustments in table 1, but it is extremely difficult to analyse them without sufficient mformation.

Table 1, showing the resources and uses of products

evaluated in tons, seems to provide an analytical tool indispensable for studying the interrelations among various branches of textile industries: but it cannot be considered as any more than a means of partial analysis. A table in terms of tons can hardly be sufficient by itself to determine the technical coefficients for the many stages of transformation involved in the textile industries. The conversion of such a table into value terms thus constitutes a necessary second step.

Technical coefficients relating to textile raw materials and semi-products (table 2)

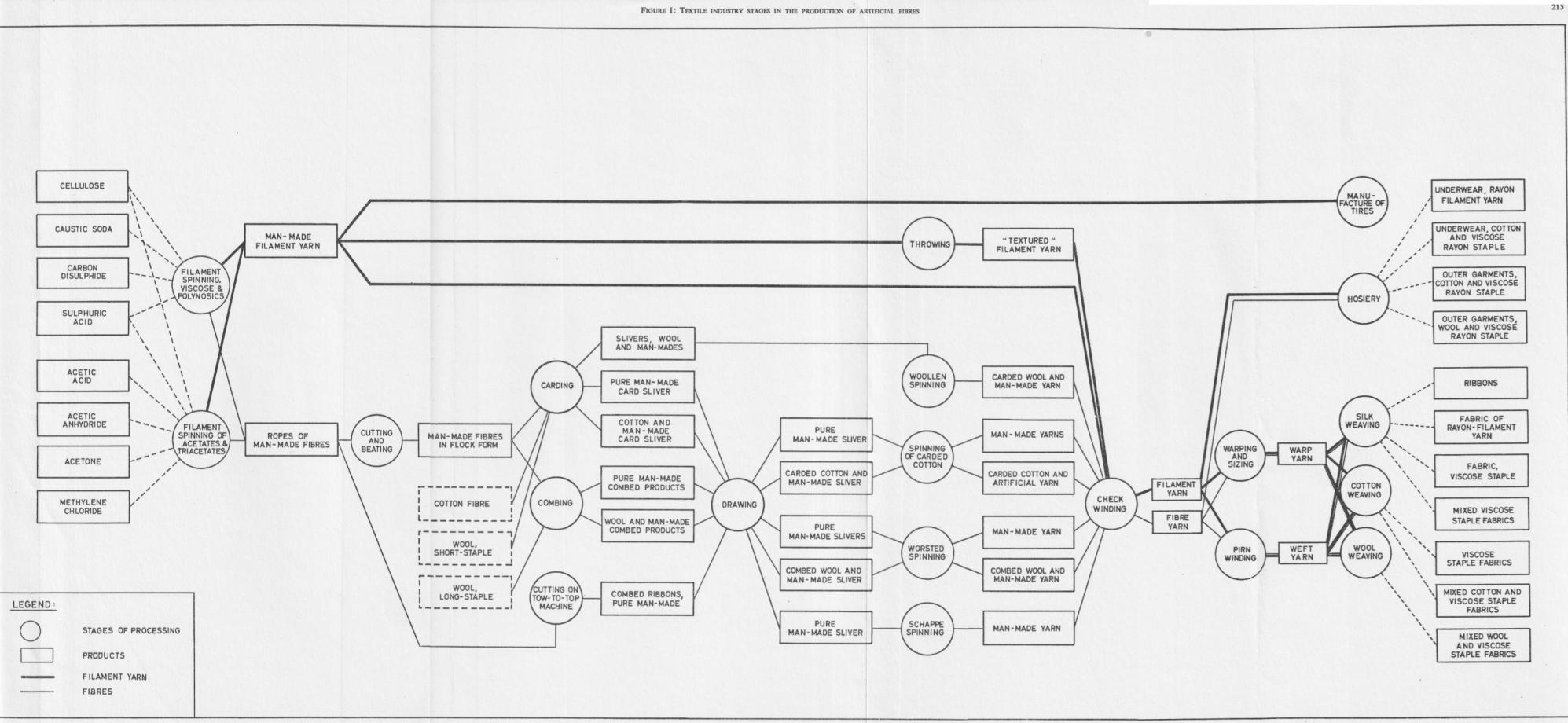
The coefficients shown in table 2 are derived from the transactions expressed in value terms. This stage of analysis too is subject to many difficulties, and the table should be considered only as an attempt of a pre-liminary nature.

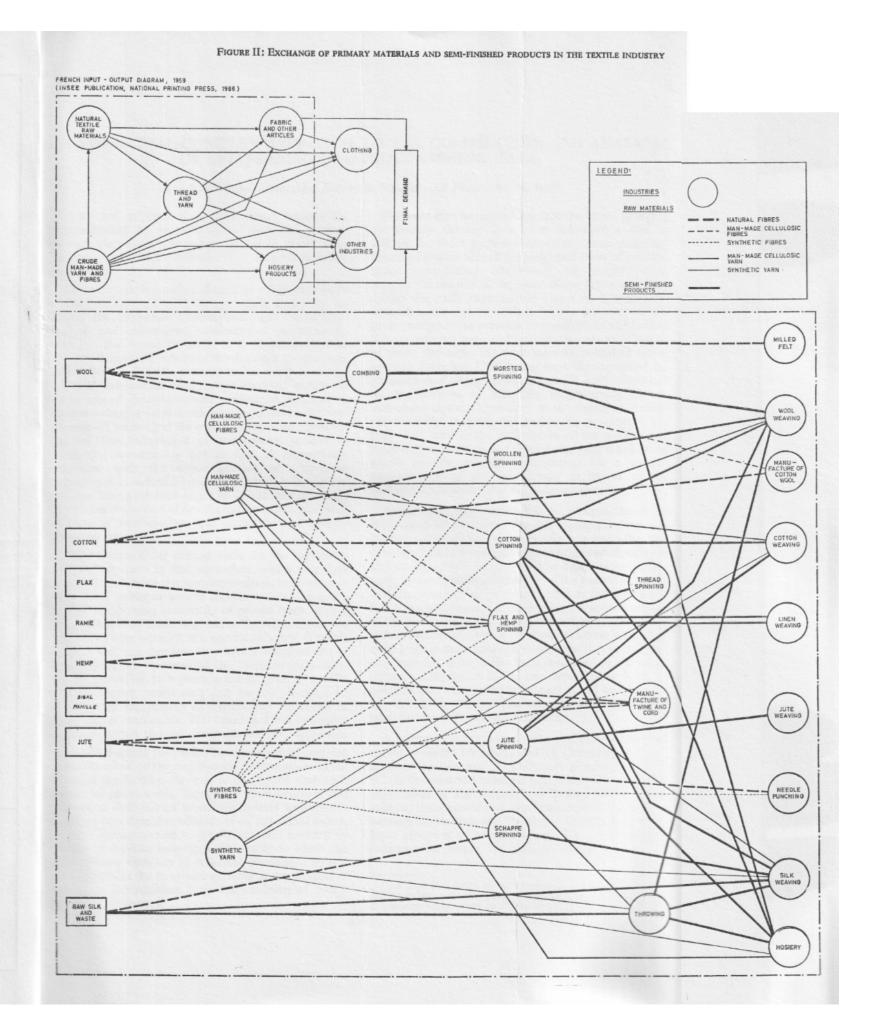
The difficulties encountered at this stage relate to the choice of representative prices for the group of products of which each production stage is composed. This problem is in fact less serious at raw material stages, especially when raw materials are imported. But in the valuation of domestic production the heterogeneity of the products involved in a given branch prohibits the application of a nominal price relating to any single particular product. Furthermore business turnovers are seldom specified with sufficient product nomenclature; the part of the transactions not accompanied by monetary clearance is usually excluded in turnover statistics; this is typically the case of enterprises with integrated plants of woollen spinning and weaving. Thus recourse is made to an average price in order to put together different sets of information which are often incompatible: nominal prices, turnovers and export prices. In this case the average price reflects rather the structure of transactions than the actual selling price.

While the results presented in value terms in table 2 should be considered as a preliminary summary of our knowledge about the textile industries it is hoped that they will also serve as an illustration of the framework of research which has been proposed to facilitate international comparisons of interindustry relations.

To sum up: this note is intended to indicate only the first step towards making international comparisons of technical coefficients easier and more profitable. It has no other ambition than to show that this approach is feasible.

A detailed approach to the economic and technical aspects of industry would help to reveal fundamental structural data characterizing the modes of development of each industry, which can vary from country to country. The information to be derived from an international comparison under this approach would help to define the degree of technological and economic development implied in the structure of interindustry transactions of each country considered. The structural data assembled through this approach could reinforce the information contained in the conventional form of Leontief tables, which is rather too synthetic to meet the real requirements of industrial planning.


International comparisons ought to go beyond the limited frame of a study of technical coefficients. The industries of different countries should be compared with reference not only to the specific components of an individual branch of industry but also to general data characterizing each of the countries considered and the structure of internal demand. This is particularly necessary in the case of the textile industries, where products have to be well adapted to a specific demand pattern. Experience indicates that textile products indeed depend on income levels and climatic conditions as well as the social habits of individual countries.


The need for a precise knowledge of the demand structure is particularly acute in the case of the textile

industries because of the rigorous linkage between the products to be fabricated and the nature of the equipment suitable to produce them. Raw materials are still highly specialized according to the fibres to be treated, and their lengths and properties, despite the effort made in the past decade to create polyvalent interfibre materials. The quality of products depends even more on the nature and the length of the transformation process involved than on the qualities of the fibres themselves. Thus synthetic yarns when "textured" become quite different from what they were previously.

In the textile industries the raw materials are valorized according to precise uses defined beforehand. This strong linkage between demand, products and fabrication techniques makes it necessary to establish a special scheme of analysis dealing with the bloc of textile industries as a whole in the context of international comparisons.

None	Year: 1962																									J	June 196
non-		raw	Wool							-	Thread	of twine						Milled	Manufacture of cotton	Needle		sectors		consumption by households		Stock and	Total
LowJoing the low </th <th></th> <th>materiais</th> <th>combing</th> <th>Worsted</th> <th>Woollen</th> <th>Cotton</th> <th>and hemp</th> <th>Jute</th> <th>Schappe</th> <th>Throwing</th> <th>spinning</th> <th>and cord</th> <th>Wool</th> <th>Cotton</th> <th>Linen</th> <th>Silk</th> <th>Jute</th> <th>felt</th> <th>wool</th> <th>punching</th> <th>Hosiery</th> <th>activity^a</th> <th>enterprises</th> <th>Government</th> <th>Exports</th> <th>adjustments</th> <th>ts uses</th>		materiais	combing	Worsted	Woollen	Cotton	and hemp	Jute	Schappe	Throwing	spinning	and cord	Wool	Cotton	Linen	Silk	Jute	felt	wool	punching	Hosiery	activity ^a	enterprises	Government	Exports	adjustments	ts uses
Change density of the series	Wool (tub-washed), waste, reclaimed products		106,000	1,100	31,200													2,500				_	140,800		34,100	+5,060	179,96
ReachedImage: Second of the seco	Cotton (fibres), linters, waste, reclaimed products	·/////////////////////////////////////			8,600	295,400													17,410				321,410				
NameN	Flax (fibres)	///////////////////////////////////////					38,930																38,930		29,470		68,40
Image <th< td=""><td>Ramie</td><td>11111111111111</td><td></td><td></td><td></td><td></td><td>760</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>760</td><td></td><td></td><td></td><td>- 8</td></th<>	Ramie	11111111111111					760																760				- 8
Sale namb is and hole namb 	Hemp (fibres)						280					3,310										1,810	5,400		240		5,6
Image <th< td=""><td>Sisal, manilla</td><td>///////////////////////////////////////</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>68,000</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>68,000</td><td></td><td>150</td><td>+1,340</td><td>69,49</td></th<>	Sisal, manilla	///////////////////////////////////////										68,000	-										68,000		150	+1,340	69,49
Rare dia damineImage of the set of the s	Jute and broken products	-/////////////////////////////////////						83,010				570								16,000			99,580				105,24
Reage-aid ending finance is a stand of the stand of th	Raw silk and silk waste								60	600						240											1,20
Reamptable lange langeLeteJane	Regenerated cellulosic filament yarn	[[[[[[[[[[[[[[[[[[[[[[[6,350			2,500	6,000							1.850	17.100	46,900				60,54
Ander demond and and an and an analysis of the set of the se	Regenerated cellulosic staple fibre	- /////////////////////////////////////	8,640		13,500	27,000	1,800	500	390										560		-,		_				83,33
Sende shallowSende 4.303.004.002.002.003.00 <th< td=""><td></td><td>[[][[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16,600</td><td>600</td><td></td><td></td><td>1,750</td><td></td><td>11,600</td><td></td><td></td><td></td><td></td><td>6,500</td><td></td><td></td><td></td><td></td><td></td><td>43,30</td></th<>		[[][[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]								16,600	600			1,750		11,600					6,500						43,30
Matched balle brackedonMatched balle brackedonS.000		- /////////////////////////////////////	8,060	4,340	3,200	4,830	400		2,200			280								2.510	.,						30,20
Indicide of one-looping Indicide of on					4,370	320				5,000								430	2.320	-,		1	-		.,		
Products of spring combd vool 91,000	Products of wool-combing	-		92,300																			92,300		24.210	-1.170	115.34
acadel word 44,20 5,700							///////////////////////////////////////	///////////////////////////////////////	[[[[[[[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]				30,300								21.000			10.800		.,	93,08
other 900 2,500 5,500 2,800 2,800 2,800 2,800 2,800 2,800 2,800 2,800 2,800 3,800 4,100 4,000 3,000 4,000 3,000 4,000 4,000 3,000 4				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		\ 	//////////////////////////////////////																	- 10	_
Bax and henp Multiplication of tool and or old and or											5 700			225.500	8.500	2 830						12 640					
jute 2,800 2,120 65,59 11,200 4,000 4,00 8,300 2,200 4,80 8,30 2,200 4,80 8,30 2,200 4,80 8,30 2,200 4,80 7,1 Incrving								(1111111111111 11111111111111			2 840		220,000		2,000					24,230	12,040					
schappe 1111000000000000000000000000000000000				[][]][[][][]][]][]][]]]]								2,040	2.800	2 120	21,000		65 550					11 320					
Throwing 4,100 4,470 8,300 6,300 23,200 4,380 + 800 28,400 Thread-granning IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				(11)///////////////////////////////////	///////////////////////////////////////	tititititititi	(((((((((((((((((((((((((((((((((((((((2,120		2 000						11,520				1 400	
Thread-aginning Improvement of the and cord Improvement of the angle of the				17 <i>565611111111</i> 6667167111111									4 100							-	Q 300	6 3 2 0				+ 820	
Manufacture of twine and cord 74,190 4,70 76,000																4,470					0,500	0,330		2 510	4,500	T 020	
Products of wood weaking 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,300 9,42 52,730 23,700 52,730 23,700 52,730 23,700 52,730 23,700 52,730 <td></td> <td>2,510</td> <td>4 700</td> <td></td> <td></td>																								2,510	4 700		
cotton waving inca waving <td>provide a second s</td> <td></td> <td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td> <td></td> <td></td> <td></td> <td></td> <td>52 720</td> <td></td> <td>23 300</td> <td></td> <td></td> <td></td>	provide a second s																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					52 720		23 300			
line waving 4,100 23,320 910 28,330 silk waving jute waving 14,700 10,700 9,300 +480 55,230 60,800 5,840 +1,300 12,700 93,00 +480 55,230 65,840 +1,300 12,700 93,00 +480 55,230 1,570 4,100 12,700 9,300 +480 55,230 65,840 +1,300 17,760 28,30 1,570 4,800 1,570 1,570 4,800 1,570 1,570 1,570 1,570 1,570 1,570 1,570 18,510 1,570 18,510 18,510 1,570 18,510													///////////////////////////////////////	(11111111111111	11111111111111	1111111111111									110	
silk waving 14,700 10,770 9,300 4,40 35,20 jute waving 52,320 6,000 5,840 +1,350 55,240 5,840 +1,350 55,240 28,50 17,2 Making of cotton wool 55,240 99,320 60,870 327,550 42,170 83,510 2,650 7,200 75,000 54,420 65,550 2,930 20,290 18,510 55,040 8,930 63,50 2,910 10,910 6,550 2,930 20,290 18,510 55,040 8,930 63,50 510 2,220 100 50 4,40 64 64 34,240 65,550 2,930 20,290 18,510 50,400 8,930 65,50 5,940 8,930 63,50 5,940 8,930 63,50 5,940 8,930 63,50 5,940 8,930 63,50 14,700 16,700 8,240 64,80 17,800 8,500 14,700 16,700 8,240 14,700 14,700 16,700 16,700 16,700 16,700 16,700 16,700 16,700 16,70 16,700 16,700 <td></td> <td>///////////////////////////////////////</td> <td>1111111111111111</td> <td></td> <td>- 110</td> <td></td>													///////////////////////////////////////	1111111111111111												- 110	
jute waving jute waving <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td>111111111111111111111111111111111111111</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 400</td><td></td></th<>														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	111111111111111111111111111111111111111											1 400	
Milled felt Image: Second																	[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]										
Making of cotton wool Image: State S															1111111111111							52,320		0,000		+1,330	
Needle punching Image: Needle punching Needle	Terminal content of the second s																	The Party new York Commencement									4,40
Hosiery Minimula 122,700 99,320 60,870 327,550 42,170 83,510 2,650 28,550 7,200 75,000 86,800 235,370 29,560 34,240 65,550 2,930 20,290 18,510 67,000 65,040 8,930 63,550 2,930 20,290 18,510 67,000 63,50 64 0-9 0-6 0-9 9-4 5-1 4-6 6-6 3-0 27-6 16-7 0 8-2 6-6 -6 3-0 27-6 16-7 0 8-2 -6 -6 3-0 2-7 16-7 0 8-2 -6 -6 3-0 2-7 16-7 0 8-2 -6 -6 3-0 2-7 16-7 0 8-2 -6 -6 3-0 2-1 4-6 6-6 3-0 2-1 16-910 18,510 61,500 -6 -6 3-0 2-1 16-910 18,510 61,500 -6 -6 -6 3-0 2-2,470 -6 -6 3-0 2-2,80 4-30 2-2,470 -6 -6 -																		1							280		
Consumption of textile materials 122,700 99,320 60,870 327,550 42,170 83,510 2,650 28,550 7,200 75,000 86,800 235,370 29,560 34,240 65,550 2,930 20,200 18,510 67,000 Estimated loss of weight or volume (percentage) 8-0 6-8 13·1 9-5 26-0 5-0 6-4 0-9 0-6 0-9 9-4 5-1 4-6 6-6 3-0 27-6 16-7 0 8-2 Output 112,880 92,570 52,903 296,510 31,210 79,320 2,480 28,300 7,160 74,300 78,620 223,480 28,210 31,970 63,560 2,120 16,910 18,510 61,500<																						18,510	16,510	55.040	0.020		
Consumption of textile materials 122,700 99,320 60,870 327,550 42,170 83,510 2,650 7,200 7,500 86,800 235,370 29,560 34,240 65,550 2,930 20,200 18,510 67,000 Estimated loss of weight or volume (percentage) 8·0 6·8 13·1 9·5 26·0 5·0 6·4 0·9 0·6 0·9 9·4 5·1 4·6 6·6 3·0 27·6 16·7 0 8·2 Output 112,880 92,570 52,903 296,510 31,210 79,320 2,480 28,300 7,160 74,300 78,620 223,480 28,210 31,970 63,560 2,120 16,910 18,510 61,500 </td <td>Hostery</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td>55,040</td> <td>8,930</td> <td></td> <td>63,97</td>	Hostery																							55,040	8,930		63,97
Estimated loss of weight or volume (percentage) 8·0 6·8 13·1 9·5 26·0 5·0 6·4 0·9 0·6 0·9 9·4 5·1 4·6 6·6 3·0 27·6 16·7 0 8·2 Output 112,880 92,570 52,903 296,510 31,210 79,320 2,480 28,300 7,160 74,300 78,620 223,480 28,210 31,970 63,560 2,120 16,910 18,510 61,500 61,500 66,830 9,480 120 3,280 1,950 2,280 430 2,470 6,830 2,470 6,830 9,480 120 3,280 1,950 2,280 430 2,470 6,830 2,470 6,830 9,480 120 3,280 1,950 2,280 430 2,470 6,830 2,470 6,830 2,480 120 3,280 1,950 2,280 430 2,470 6,830 2,800 1,950 2,280 430 2,470 6,830 2,800 1,950 2,280 430 2,470 6,850 2,470 6,850 2,800	Consumption of textile materials		122 700	99 320	60.870	327 550	42 170	83 510	2 650	28 550	7 200	75.000	86.800	235 370	29 560	34 240	65 550	2 930	20 200	18 510	the second s	///////////////////////////////////////					
Output 112,880 92,570 52,903 296,510 31,210 79,320 2,480 28,300 7,160 74,300 78,620 223,480 28,210 31,970 63,560 2,120 16,910 18,510 61,500 Imports 2,460 510 222 1,100 550 4,070 — 100 — 4,680 6,830 9,480 120 3,280 1,950 2,280 430 2,470	Particular and a second s																			10,510							
Imports 2,460 510 222 1,100 550 4,070 - 100 - 4,680 6,830 9,480 120 3,280 1,950 2,280 430 2,470																				19 510							
	Output		112,000	92,570	52,905	290,510	51,210	19,520	2,400	28,300	7,100	74,300	78,020		20,210	51,970	05,500	2,120	10,910	10,510	61,500						
TOTAL RESOURCES 948,630 115,340 93,080 53,130 297,610 31,760 83,390 2,480 7,160 78,980 85,450 232,960 28,330 35,250 65,510 4,400 17,340 18,510 63,970 1,803,130 199,440 304,710 15,600 2,291,60	Imports		2,460	510	222	1,100	550	4,070		100	_	4,680	6,830	9,480	120	3,280	1,950	2,280	430		2,470						-
	TOTAL RESOURCES	948,630	115,340	93,080	53,130	297,610	31,760	83,390	2,480	28,400	7,160	78,980	85,450	232,960	28,330	35,250	65,510	4,400	17,340	18,510	63,970		1,803,130	199,440	304,710	-15,600	2,291.65

AN INDUSTRIAL-COMPLEX APPROACH TO THE COMPILATION AND ANALYSIS OF INTERINDUSTRIAL PROGRAMMING DATA

Vera Cao-Pinna, Centre for Economic Studies and Plans, Rome, Italy

There are at least three interrelated reasons for recommending the organization of proposed research through the industrial-complex approach rather than through the single-industry or single-commodity approaches.

The major one is readily indicated by the general scope of the task assigned to the programming section of the Centre for Industrial Development, i.e. "to collect, analyse and disseminate quantitative programming data . . . that would be useful to developing countries in formulating their industrial development programmes and policies". Indeed, a comparative analysis of the technical and market relationships observed within the major sets of closely associated industrial processes in various countries helps developing countries to evaluate the over-all impact and the costs of alternative industrial policies. The formulation of development policies in developing countries is not in fact so immediately concerned with the implementation of alternative technologies in individual industries (which is the type of problem facing the final stages of operational planning) as with the evaluation of development projects expressed in terms of combinations and integrations of various industrial processes.

Another reason for placing stress on the industrialcomplex approach is that up-to-date engineering data for specific industrial processes are available in abundance from either public or private sources and can be easily utilized by planning authorities or private firms, once a decision has been taken to promote the expansion or the creation of new capacity in a specific industry. It seems to be of little use therefore to assemble scattered sets of data supposedly representing the "technological standards" prevailing at a given point of time in specific industry sectors, unless such data can be processed so as to permit explanation of intercountry variations of input-output coefficients. This latter task will not easily be accomplished through the single-industry approach.

The third reason for preferring the industrial-complex approach relates to the major sources of variations in the technical coefficients. Since it is recognized that such factors as product-mix, input-mix, price structure and production scale cannot be strictly isolated with respect to actual operational conditions of an individual sector, all these factors should be jointly analysed country by country in order to investigate the extent to which the cross-country variation of technical coefficients reflects the variation in the structural patterns of the productive system, as distinguished from the variation of purely technological factors.

It should also be pointed out that the extent to which the already existing sources of information can be utilized for these purposes-especially basic statistical materials hidden behind the published form of conventional input-output tables-will be limited rather severely. In the first place, most of the tables compiled during the early experimental stages in this area of research could not be utilized for the purposes of the study because of the practical impossibility of eliminating the compilatory gaps and specification errors involved in them. Secondly, the most recently published tables relate to the period 1958-60 and have been compiled for the purpose of general macro-economic analysis and not for the purpose of industrial programming for an individual sector. Therefore, even assuming (rather optimistically) that it would be possible to assemble the basic data used in the compilation of the most recent input-output tables, it is doubtful that such a collection would provide adequate information for a correct interpretation of the intercountry variations in the technical coefficients of many industry sectors.

Recent experience obtained in the compilation of the 1959 input-output tables for the European Common Market countries has shown on the one hand that the use of a common commodity classification and of common accounting criteria helps indeed to bring into evidence some similarities and peculiarities of the general structure of the various productive systems,¹ but on the other hand that it is not sufficient for discovering the specific origins of the intercountry variations observed as to the magnitudes of technical coefficients; such variations are in fact quite large in many cases. It is doubtful that in Belgium and Italy for example the basic data used in the interindustry compilation for certain broad areas (such as chemical and mechanical industries) would be adequate for identifying the real dissimilarities of input-output relationships between these countries.

A comparison between the two sets of accounts presented in tables 1A (Italy) and 1B (Belgium) and also between the two sets of coefficients presented in table 1C (both countries) indicates that within the particular subsections of the Belgian and Italian tables (which relate to the chemical and allied industries) the difference between the absolute and the relative importance of some input groups is by no means negligible; the intrasector consumption within the five producing sectors first

¹See Statistical Office of the European Communities, *Tableaux* entrées-sorties pour les pays de la Communauté Economique Européenne—Annexe aux informations statistiques, Brussels, 1964.

TABLE 1A: ITALY-INPUT-OUTPUT SUBMATRIX OF THE CHEMICAL AND ALLIED INDUSTRIES, IN THE CONTEXT OF THE 85×85 INPUT-OUTPUT TABLE FOR 1959 (Transactions expressed in millions of lire)

	Purchasing					Interin	dustry trans	actions ^a					Ra	ntios
No.	Producing sectors	Origin of the flows ^b	39	40	37	38	44	Total A	Other intermediate sectors B	Total intermediate consumption C	Final demand D	Total resources Ep, Ei	.4 :C	C :E
39	Synthetic materials and artificial fibres	d i	14,094 7,411	7,138	2,308 7,397	43,873 14,503		67,413 29,311	95,806 6,456	163,219 35,767	78,369 —	241,588 35,767	0·41 0·82	0·68 1·00
40	Other basic and final chemical products (excluding pharmaceuticals)	d i	41,195 2,029	595,347 88,094	10,694 533	4,746 292	8,181 407	660,163 91,355	477,738 23,491	1,137,901 114,846	315,960 13,572	1,453,861 128,418	0·58 0·80	0·78 0·89
37	Rubber and asbestos manufactures	d i	203 13	1,382 84	7,424 275	1,113 68	6 1	10,128 441	102,271 5,804	112,399 6,245	55,758 321	168,157 6,566	0·09 0·07	0·67 0·95
38	Plastic manufactures	d i		5,246 280	_			5,246 280	66,336 1,275	71,582 1,555	43,975 874	115,557 2,429	0·07 0·18	0.62 0.64
44	Petroleum derivatives (production and distribution)	d i	7,028 327	58,719 2,297	1,016	295	52,054 255	119,112 2,879	463,683 42,110	582,795 44,989	345,018 4,764	927,813 49,753	0·20 0·06	0.63 0.90
А	Total	d i	62,520 9,780	667,832 90,755	21,442 8,205	50,027 14,863	60,241 663	862,062 124,266	1,205,834 79,136	2,067,896 203,402	839,080 19,531	2,906,976 222,933	0·42 0·61	0·71 0·91
В	Other intermediate sectors	d i	62,498 5,092	296,606 59,348	48,032 27,042	14,902 490	56,410 295,791	478,448 387,763	12,616,825 1,517,994	13,095,273 1,905,757	19,068,006 559,956	32,163,279 2,465,713	0·04 0·20	0·41 0·77
С	Total intermediate consumption	d i	125,018 14,872	964,438 150,103	69,474 35,247	64,929 15,353	116,651 296,454	1,340,510 512,029	13,822,659 1,597,130	19,163,169 2,109,159	19,907,086 579,487	35,070,255 2,688,646	0·09 0·24	0·43 0·78
	Ad:Cd	d	0.50	0.69	0.31	0.77	0.52	0∙64	0.09	0.14	0.04	0.08		
	Ratios Ai:Ci	i	0.66	0.60	0.23	0.97		0.24	0.05	0.10	0.03	0.08		
D ₁	Wages and salaries	d	28,448	113,538	28,342	10,067	16,916	197,311	6,203,863	6,401,174			•	
D_2	Social security contributions	d	10,731	48,658	8,616	4,315	5,979	78,299	1,714,243	1,792,542				
$\begin{array}{c} \mathbf{D_3}\\ \mathbf{D_4}\end{array}$	Amortizations and other revenues	d	55,623	140,305	22,056	16,192	66,676	300,852	1,471,784	1,772,636				
D	Value-added	d	94,802	302,501	59,014	30,574	89,571	576,462	15,389,890	15,966,352				
Ep ₁	Production at factor cost (including intrasector consumption)	d	234,692	1,417,042	163,735	110,856	502,676	2,429,001	30,809,679	33,238,680				
Ep ₂	Indirect taxes (less subsidies) on domestic products	d	6,896	36,819	4,422	4,701	425,137	477,975	1,429,850	1,907,825				
Ер	Production at ex-factory prices (including intrasector consumption)	d	241,588	1,453,861	168,157	115,557	927,813	2,906,976	32,239,529	35,146,505°				
Ei1	Imports (c.i.f.) of similar products	i	30,122	110,188	5,339	1,890	37,905	185,444	2,080,503	2,265,947				
Ei2	Indirect taxes (less subsidies) on imports of similar products	i	5,645	18,230	1,227	539	11,848	37,489	308,960	346,449				
Ei	Imports at ex-customs prices	i	35,767	128,418	6,566	2,429	49,753	222,933	2,389,463	2,612,396°				
	Contraction 1000 - Contraction Contraction		itico Drugo	1 1001		·	·				•			

Source : Statistical Office of the European Communities, Brussels, 1964. ^a Including intrasector consumption.

bd = domestic production, of sea and air transportation services incorporated in the c.i.f. values ofimported events of the row and column values of total production and total imports do not coincide: this is due to the transfer, to domestic production, of sea and air transportation services incorporated in the c.i.f. values ofimported grades.

as a second and a second second 1959.

115

					(Transaci	tons expr	essea in n	nillions of Bel	giun francs)					
Í	Purchasing sectors	the				Interindus	try transacti	onsa					R	atios
No.	Producing sectors	Origin of t flows ^b	39	40	37	38	44	Total A	Other intermediate sectors B	Total intermediate consumption C	Final demand D	Total resources Ep, Ei	A:C	C :E
39	Synthetic materials and artificial fibres	d i	370 520	20 40	190	170 250		560 1,000	800 1,940	1,360 2,940	1,850 10	3,210 2,950	0·41 0·34	0·42 1·00
40	Other basic and final chemical products (excluding pharmaceuticals)	d i	250 280	1,010 660	50 110		70 80	1,380 1,070	3,690 5,130	5,070 6,200	6,340 1,500	11,410 7,700	0·27 0·17	0·44 0·81
37	Rubber and asbestos manufactures	d i		10		_		10 10	1,720 1,660	1,730 1,670	770 80	2,500 1,790	0·01 0·01	0.69 0.95
38	Plastic manufactures	d i					40 30	40 30	590 520	630 550	490 180	1,120 730	0.06 0.05	0·56 0·75
44	Petroleum derivatives (production and distribution)	d i	_	180 110	20		600 —	800 110	6,980 4,380	7,780 4,490	12,250 3,490	20,030 7,980	0·10 0·02	0·39 0·56
A	Total	d i	620 740	1,220 810	70 310	170 250	710 110	2,790 2,220	13,780 13,630	16,570 15,850	21,700 5,260	38,270 21,110	0·17 0·14	0·43 0·75
В	Other intermediate sectors	d i	410 310	3,680 1,710	640 480	210 10	1,090 7,320	6,030 9,830	277,080 106,910	283,110 116,740	624,280 58,210	907,390 174,950	0·02 0·08	0·31 0·67
C	Total intermediate consumption	d i	1,030 1,050	4,900 2,520	710 790	380 260	1,800 7,430	8,820 12,050	290,860 120,540	299,680 132,590	645,980 63,470	945,560 196,060	0·03 0·09	0·32 0·68
	Ad:Cd	d	0.60	0.25	0.10	0.45	0.39	0.32	0.04	0.06	0.03	0.04		
	Ratios Ai:Ci	i	0.70	0.32	0.39	0.96	0.01	0.18	0.11	0.12	0.08	0.11		
D ₁	Wages and salaries	d	540	2,130	690	270	1,480	5,110	211,810	216,920				
\mathbf{D}_2	Social security contributions	d	70	230	80	30	170	580	23,020	23,600				
D ₃	Amortization	d	280	1,040	110	50	1,430	2,910	50,240	53,150				
D4	Other revenues	d	170	320	30	70	1,670	2,260	183,520	185,780				
D	Value added	d	1,060	3,720	910	420	4,750	10,860	468,590	479,450				
Ep ₁	Production at factor cost (including intrasector consumption)	d	3,140	11,140	2,410	1,060	13,980	31,730	879,990	911,720				
Ep ₂	Indirect taxes (less subsidies) on domestic products	d	70	270	90	60	6,050	6,540	27,400	33,940				
Ep	Production at ex-factory prices (including intrasector consumption)	d	3,210	11,410	2,500	1,120	20,030	38,270	907,390	945,660				
Ei1	Imports (c.i.f.) of similar products	i	2,680	7,190	1,530	600	5,420	17,420	160,120	177,540				
Ei2	Indirect taxes (less subsidies) on imports of similar products	d	270	510	220	130	2,560	3,690	14,830	18,520				
Ei	Imports at ex-customs prices	i	2,950	7,700	1,750	730	7,980	21,110	174,950	196,060				

TABLE 1B: BELGIUM—INPUT-OUTPUT SUBMATRIX OF THE CHEMICAL AND ALLED INDUSTRIES, IN THE CONTEXT OF THE 85×85 INPUT-OUTPUT TABLE FOR 1959 (Transactions expressed in millions of Belgian francs)

Source: Statistical Office of the European Communities, Brussels, 1964. ^a Including intrasector consumption. ^b d = domestic; i = imported.

221

<

Purchasing sectors s Synthetic materials and artificial fibres	I = Italy B = Belgium	39 (Domestic d	and imported		
\$	I=It B=B	39 (40	27 1		
Synthetic materials and artificial fibres				01	33	44
	I B	·0890 ·2773	·0049 ·0052	·0577 ·0760	·5052 ·3750	
Other basic and final chemical products (excluding pharmaceuticals)	I B	·1789 ·1464	·4701 ·1464	·0668 ·0640	·0436	·0093 ·0075
Rubber and amiant manufactures	I B	·0009	·0010 ·0009	·0458 ·0040	·0102	
Plastics manufactures	I B		·0038			·035
Petrol derivatives (production and distribution)	I B	·0304	·0420 ·0254	·0060 ·0080	·0025	·0564 ·0299
Total	I	·2992	·5218	·1763	·5615	·0657
	B	·4237	·1779	·1520	·3750	·0409
Other intermediate consumption	I	·2798	·2448	·4465	·1332	·3796
	B	·2243	·4724	·4480	·1964	·4199
Total intermediate consumption	I	•5790	·7666	·6228	·6947	·4453
	B	•6480	·6503	·6000	·5714	·4608
Wages and salaries	I	·1177	·0781	·1685	·0871	·0182
	B	·1682	·1867	·2760	·2411	·0739
Social security contributions	I	·0444	·0335	·0512	·0374	·0064
	B	·0218	·0202	·0320	·0268	·0085
Amortization and other revenues	I	·2303	·0965	·1312	·1401	·0719
	B	·1402	·1191	·0560	·1071	·1548
Value-added	I	·3924	·2081	·3509	·2646	·0965
	B	·3302	·3260	·3640	·3750	·2372
Production at factor cost	I	·9714	·9747	·9737	·9593	·5418
(including intrasector consumption)	B	·9782	·9763	·9640	·9464	·6980
Indirect taxes (less subsidies) paid on respective products	I	·0286	·0253	·0263	·0407	·4582
	B	·0218	·0237	·0360	·0536	·3020
Production at ex-factory prices	I	1.0000	1.0000	1.0000	1.0000	1.0000
(including intra-sector consumption)	B	1.0000	1.0000	1.0000	1.0000	1.0000
	Rubber and amiant manufactures Plastics manufactures Petrol derivatives (production and distribution) Total Other intermediate consumption Total intermediate consumption Wages and salaries Social security contributions Amortization and other revenues Value-added Production at factor cost (including intrasector consumption) Indirect taxes (less subsidies) paid on respective products Production at ex-factory prices (including intra-sector consumption)	Rubber and amiant manufacturesI BPlastics manufacturesI BPlastics manufacturesI BPetrol derivatives (production and distribution)I BTotalI BOther intermediate consumptionI BTotal intermediate consumptionI BWages and salariesI BSocial security contributionsI BAmortization and other revenuesI BValue-addedI BProduction at factor cost (including intrasector consumption)I BIndirect taxes (less subsidies) paid on respective productsI BProduction at ex-factory pricesI	Rubber and amiant manufacturesI B·0009 BPlastics manufacturesI BPlastics manufacturesI BPetrol derivatives (production and distribution)I B·0304 BTotalI B·2992 BOther intermediate consumptionI B ·2243Total intermediate consumptionI B ·2243Total intermediate consumptionI B ·6480Wages and salariesI B ·1682Social security contributionsI B ·1682Amortization and other revenuesI B ·2303 B ·1402Value-addedI B ·3302Production at factor cost (including intrasector consumption)I B ·0218Production at ex-factory prices (including intra-sector consumption)I B ·0200	Rubber and amiant manufacturesI B $\cdot 0009$ $$ $\cdot 0009$ $\cdot 0009$ Plastics manufacturesI B $$ Petrol derivatives (production and distribution)I B $\cdot 0304$ $$ $\cdot 0420$ $\cdot 0254$ TotalI B $\cdot 2992$ $\cdot 4237$ $\cdot 5218$ $\cdot 1779$ Other intermediate consumptionI B $\cdot 2243$ $\cdot 2798$ $\cdot 4724$ Total intermediate consumptionI B $\cdot 2243$ $\cdot 2798$ $\cdot 4724$ Total intermediate consumptionI B $\cdot 6480$ $\cdot 6503$ Wages and salariesI B $\cdot 1682$ $\cdot 1177$ $\cdot 1682$ Social security contributionsI B $\cdot 1402$ $\cdot 0218$ $\cdot 0202$ Amortization and other revenuesI B $\cdot 3302$ $\cdot 2303$ $\cdot 3260$ Production at factor cost (including intrasector consumption)I B $\cdot 9782$ $\cdot 9763$ $\cdot 9763$ Indirect taxes (less subsidies) paid on respective productsI B $\cdot 0218$ $\cdot 0226$ $\cdot 0253\cdot 0237Production at ex-factory prices(including intra-sector consumption)IBB\cdot 0200\cdot 0000$	Rubber and amiant manufactures I 0009 0010 00458 Plastics manufactures I — 0009 0040 Plastics manufactures I — -0038 — Petrol derivatives (production and distribution) I -00304 0420 00600 Total I -2992 -5218 -1763 Other intermediate consumption I -2798 -2448 -4465 Other intermediate consumption I -2798 -2448 -4465 Total intermediate consumption I -5790 -76666 -6223 Wages and salaries I -1177 0781 -1685 Social security contributions I -0244 -0335 -0512 Amortization and other revenues I -3924 -2081 -3509 Value-added I -3924 -2081 -3509 Production at factor cost (including intrasector consumption) I -9714 -9747 -9737 Production at factor cost respective products I -9782 <	Rubber and amiant manufacturesI B -0009 0009 -0010 0009 -0458 0000 -0102 -00009 Plastics manufacturesI B $$ B $$ $$ $$ $$ $$

TABLE 1C: INPUT-OUTPUT COEFFICIENTS OF THE CHEMICAL AND ALLIED INDUSTRIES IN ITALY AND BELGIUM, 1959

Source: Tables 1A and 1B.

considered appears to be quite different in the two countries.

The difficulty in measuring and evaluating intrasector flows is one of the major factors hampering the intercountry comparison of input-output tables. Obviously the only way to eliminate this handicap is to reduce the magnitude of such flows by disaggregating as much as possible of each sectoral activity (and of its productmix and input-mix) into the various constituent industrial processes. But it would be simply an illusion that such a a task could be achieved on the basis of the existing body of national statistics with the help of the generally vague and limited knowledge of statisticians about the complex technologies prevailing in various industrial processes. It is worth pointing out that many of the most striking differences observed in the 1959 tables of the European Common Market countries seem to be almost inexplicable, even for the steel and energy sectors, for which fairly detailed sub-matrices were compiled in both physical and value terms.

In the light of the recent experience gained in the field of intercountry comparisons of conventional inputoutput tables therefore one should assume that it is about time seriously to consider the advisability of diverting part of the considerable amount of time and money consumed in the preparation of such tables to the organisation of a new data system which would permit not only an improvement in social account estimates or the elaboration of consistent sets of macro-economic projections but also the incorporation of technological information into economic model-building so as to meet present and future needs for operational planning. This suggestion (already put forward by others since 1961²) should receive full consideration in formulating the parameter patterns project of the CID. This would help to bridge the gap between statisticians and industrial engineers and also to improve the qualitative standards of input-output systems (at least with regard to fastgrowing industries and new products arising from the most advanced technologies).

This proposal should not be interpreted as a suggestion encouraging a shift from general to partial economic analysis: on the contrary selective studies on the technological aspects of industrial development should be organized in such a way that any pool of technical data could be easily reassembled into the general framework of classical (static or dynamic) input-output analysis.

Nor does that proposal imply that the new data system should necessarily cover an entire national economy, since there are a number of sections of the productive system which are not very strongly interrelated; such sections are typically more directly linked to consumers' behavioural patterns than to technological progress, and consequently their development can be analysed by means of other analytical tools.

The proposed project of the Centre for Industrial Development may or may not be easily adaptable to the institutionalization of this new data system, for such an institutional matter should be handled through the work programme of the United Nations Statistical Office. However the proposed research of the Centre will in any event have to face many problems which could not be adequately solved without implementing, if only in a tentative and *ad hoc* manner, such a new data system.

These problems may be grouped under the following headings:

- I. Delimitation of an industrial-complex area and its relationships with the rest of the economy;
- 11. Preparation of a detailed classification scheme for the inputs and products of an industrial-complex area;
- III. Preparation of a document specifying the criteria to be followed in compiling various specific submatrices and dovetailing them into an over-all framework of the economy;
- IV. Preparation of special questionnaires for collecting data not readily available from the existing stock of statistics.

Some suggestions follow as to the first three types of problems.

I. DELIMITATION OF AN INDUSTRIAL-COMPLEX AREA AND ITS RELATIONSHIPS WITH THE REST OF THE ECONOMY

It is hardly necessary to mention the difficulty of establishing the frontiers of an industrial-complex in the context of an over-all input-output model. However, since the process of vertical and horizontal integration within and between industries is so rapid in developed economies, rather broad terms of definition may be accepted in delimiting each set of closely related activities. It is evident that some common and objective criteria must be used for isolating specific industries whose technological relationships are to be analysed in detail in terms of an industrial-complex sub-matrix.

The delimitation of the five broad areas proposed by the Centre is not based on a common criterion, since only the third one (chemicals, rubber products, petroleum and coal products) covers a partial but sufficiently selfcontained set of interrelated industrial processes. The fourth (paper, woodworking and non-metallic mineral products) and the final area (textiles, leather, foodprocessing and other miscellaneous consumer goods) seem to be too broadly defined and lacking in congruity of terms of interrelationship among their constituent productive processes.

The common origin of the basic inputs (farm products in the latter examples) can in fact be a valid delimitation criterion only if the basic inputs are so specialized (as in the case of forestry products, fibres, animal breeding etc.) that one-way processing sequences can be easily identified. It appears therefore that those last two areas have been proposed with a view to implementing the singleindustry or commodity approach rather than the industrial-complex approach.

The basic criterion to be used in establishing an industrial complex should be grounded on the nature and extent of technological interdependence among various industries. It is known that such interdependence arises from the multi-uses of the product-mix of an industry, and from the complexity of technological processes within an industry.

The first aspect suggests that the production scale and product-mix of a given industry depend to a large extent on the demand levels and the technologies prevailing in many other productive sectors; the second aspect on the other hand suggests that the production scale and product-mix of other productive sectors depend on the output level and the technology prevailing in that particular sector. And it is also known that the industries producing intermediate goods in particular are strongly affected by the first type of relationship, while the second type tends to be specially important for industries producing finished goods.

This distinction however cannot be very clear-cut in the productive systems of developed countries, since many industries are closely connected in both directions. The strict definition of an industrial-complex area should therefore relate to the tightness of interrelations on both the demand and the supply sides.

² See W. I. Abraham and M. Hoffenberg, *Some Problems of Standardization*, presented at the International Conference on Input-Output Techniques, Geneva, 1961.

Delimitation of an industry-complex area may be undertaken by grouping together industries characterized by such two-way interdependencies or by one-way relationships with the rest of the productive sectors. Among various possible criteria a very interesting one has been suggested in the presentation of an analogue of the 1958 United States input-output relations.³ The most peculiar features of this multi-coloured and triangulated table are that in each cell of the 81×81 interindustry table are registered three types of figures, of which the first represents the absolute figure of the interindustry transaction, the second the corresponding input-output coefficient, and the third the corresponding coefficient of the inverse matrix $(I-a_{ij})^{-1}$. The cells with input coefficients greater than 1/81 are coloured for visual aid.

³ See W. W. Leontief, "The Structure of the U.S. Economy", in Scientific American, April, 1965. Different colours are used to distinguish the six major areas into which the 81 productive sectors are classified: final non-metals, final metals, basic non-metals, basic metals, energy and services. The critical ratio of 1/81 = 0.0123457 corresponds to what would result if all the sectors were interrelated to an equal extent.

Although this procedure is obviously affected by the particular aggregation level involved in the United States input-output table for 1958 the method may provide a practically useful criterion for delimiting the external framework of an industrial-complex submatrix (which relates to a group of sectors whose relationships with the rest of the productive system run characteristically in a one-way direction). The same approach also suggests a criterion which might be used for delimiting an industrialcomplex area covering the most relevant two-way relationships within a given set of closely associated activities. It would be preferable however to use different

TABLE 2. POSSIBLE DELIMITATION OF THE INDUSTRIAL COMPLEX AREA FOR THE CHEMICAL AND ALLIED INDUSTRIES

IN THE CONTEXT OF THE ITALIAN PRODUCTIVE SYSTEM

(Sectorial standard ratios of total requirement of domestic inputs and actual net input-output coefficients)

	Purchasing industries	1	2	3	4	5	
Prod	hucing industries	(1:25=.0400)	(1:24=.0417)	(1:46=.0217)	(1:26=.0385)	(1:28=.0357)	Total
	Petroleum derivatives		.0309	.0684	.0025	.0063	
1.	(1:63 == ,0159)	<i>(a)</i>	0800,	.0070	.0003	.0012	.0765
2	Synthetic materials and artificial fibres	-		.0083	.3797	.0144	
~	(1:13≃.0769)	-	(a)	.0314		.0101	.2344
3	Basic and final chemicals (excluding pharmaceuticals)	.0093	.1811	(3)	.0411		
5	(1:65=.0154)	.0095	.0480	14)	.0055	.0125	.0755
_	Plastic manufactures	-	-	.0051		-	
4	(1:320313)	-	-	.0454	-	-	.0454
5	Rubber manufactures		.0009	.0016	.0096	(a)	
5	(1:63=.0159)		.0013	.0086	,0069	141	.0168
	Total	.0093	.2129	.0844	.4329	.0372	
	2 / 2 1 1						

Source: The 1959 input-output table, published by the Statistical Office of the European Communities.

(a)-Intraconsumption to be accounted, whenever possible

critical ratios for different sectors; this differentiation may be made according to the number of effective interindustry transactions originated (on both demand and supply sides) by the production level of each sector, and thus the delimitation brings into evidence only those interindustry transactions which imply higher ratios than the critical ones, computed for columns and rows respectively. Suppose for instance that in an 81×81 inputoutput table the number of effective transactions between a given sector and other productive sectors was 20 along the column and 50 along the row (this sort of situation occurs typically for an intermediate sector): then the critical column and row ratio for this sector would be 0.50 (1:20), and 0.020 (1:50) respectively.

The meaning of such sectorally diversified ratios may be less abstract than that of the single over-all critical ratio, since they imply an identical degree of interdependence only between a given sector and the part of the remaining sectors with which it does in fact have transactions. The deviations from such sectoral ratios of the actual column and row distributions of the transactions of individual industries of which the sector is composed would provide an objective measure of the degree of concentration involved in the input and the market structure of the sector.

This criterion is applied tentatively to the table for 1959 of input-output in Italy, to define an industrial-complex area associated with the chemical industries. As can be seen in table 2 the input coefficients and the row distribution coefficients of the five industries considered (both net of intrasector consumption) are registered in the upper and the lower section in each cell respectively, and only the triangles containing coefficients higher than the corresponding critical row and column ratios (as above defined) are shadowed.

This device brings into evidence the fact that in the Italian productive system the industrial-complex area of the chemical industry is rather broad, covering practically all the five sectors considered. The following characteristics may be noted in particular:

(a) Transactions between the chemical industry and the synthetic materials and artificial fibres industry greatly exceed the magnitude represented by the respective critical column and row ratios;

(b) transactions between the petroleum derivatives industry and the basic and final chemicals industry and (obviously) those between the synthetic materials industry and the manufactures of plastics are also of great significance in relation to the critical ratios; and

(c) significant one-way relationships exist however between rubber manufactures and the chemical industry and also between the plastics manufactures and the chemical industry.

The delimitation of this five-sector complex would be better warranted if one had started with a further disaggregation of these sectors, and had investigated first the most tightly packed sub-area composed by the chemical and synthetic materials industries alone.

In an analysis of industrial complexes it is evident that attention cannot be confined to the interrelationships within the selected area, since its relationships with other productive sectors should be carefully investigated from a technological viewpoint in order to make sure that such relationships run, if approximately, only in a one-way direction.

The less restrictive criterion used by Professor Leontief in his presentation of the 1958 input-output table for the United States as applied to the same Italian table, are presented in table 3. Here, in addition to the cells of the submatrix relating to the five chemical and related industries, a cross is registered also in those cells for transactions of these industries with other supplying and purchasing sectors whose relative magnitudes exceed the over-all critical ratio: 1:65 = 0.015384 (66 being the order of the Italian input-output table and 65 the maximum number of transactions of each sector, when intra-sector consumption is excluded). This table can thus be considered as indicating the minimum desirable level of disaggregation which should be used in designing a general framework for the analysis of the industrial complex area considered in this example.

II. CLASSIFICATION OF INPUTS AND OUTPUTS FOR THE INDUSTRIAL-COMPLEX ANALYSIS

Another major problem concerns the desirable degree of disaggregation to be adopted in describing and analysing the input-mix and the output-mix of the sectors covered by an industrial-complex area. This problem of classification ought to be tackled simultaneously for all the areas of the productive system to be studied in terms of industrial complexes.

Preliminary investigations should therefore be made not only on the spread of technological and market relationships and the degree of specialization to be involved in each industrial-complex sub-matrix but also on the practical possibility of integrating various sets of detailed information into the general framework of a classical input-output model without incurring serious gaps or inconsistencies in the process of rearranging various submatrices.

The use of transformation matrices would indeed permit the consolidation of a commodity-flow table into an interindustry matrix in an almost mechanical manner.⁴ The problem is however much more complicated than it appears at first sight because more than one different approach would have to be followed in investigating the technical relationships within each industrial-complex area. For many industries the within- and betweenindustry relationships can be investigated on a commodity-basis, both for the input and the output sides of transactions. For certain industries however only the process-approach can shed light on technological relationships. In some industries the changes in product-

⁴ See University of Cambridge Department of Applied Economics, "A Social Accounting Matrix for 1960", A Programme for Growth (Chapman and Hall, London, 1962).

TABLE 3: ITALY—MAJOR WITHIN AND BETWEEN-INDUSTRY

(Domestic flows only, net

Purchasing			Industric	al complex an	ea													
sectors Producing sectors		Petroleum deraiatives	Synthetic materials and artificial fibres	Basic and final chemicals (excluding pharmaceuticals)	Plastics manufactures	Rubber manufactures	Fats and oils	Textiles	Lumber	Paper and paperboard	Non-metallic minerals	Non-ferrous metals	Motor car repairs	Electricity	Agriculture and forestry	Solid fuels	Iron ores	Other metallic ores
	No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Petroleum derivatives	1	x		X			x			x	x		X	x				
Synthetic materials, artificial fibres	2		X	-	x			X										
Basic and final chemicals (excluding pharmaceuticals)	3		X	X	x	x	X	X	x	x	x	x	x		x	x	x	x
Plastics manufactures	4			X					x									
Rubber manufactures	5			-									x					
Total	1-5	x	x	x	x	x		1	·[[.]]	.
Fats and oils	6			X														
Textiles	7				x	x	1	Note :	Betw	een-in f purcl	dustry	relati	ionshir rs are	os out above	of the the ge	indus neral s	trial-c standa	omple rd rat
Lumber	8	.		-	x						0				Ĩ			
Paper and paperboard	9		X	-														
Non-metallic minerals	10			x														
Non-ferrous metals	11	-		x			1											
Motor-car repairs	12		-	x														
Electricity	13	-	x	x	-	x												
Road transportation	36	-		x			1											
Commerce	39	-	x		-	-	1											
	1	-1				-	-1											
Manufactured gas	41		X	X														

mix are in fact so closely related to changes in input-mix that technologies are far from being constant, even at the individual plant level.

It is possible to distinguish three cases in any attempt to solve the classification problems to be faced in the setting up of an industrial-complex submatrix.

(a) The simplest case refers to those industries where fixed proportions of given basic inputs are required per unit of a given product (this is likely to be the case for some chemical products such as fertilizers, and for many mechanical products).

(b) A less simple case relates to those industries where fixed proportions of alternative basic inputs may be used per unit of a given product (for instance, in the production of synthetic materials). (c) The most complex case occurs in those industries where alternative basic inputs may be used in varying proportions per unit of a given product: a typical example is offered by petroleum products derived from crude oils of different qualities and/or from different types of processing.

For the first case a detailed analysis of product-mix may be sufficient to determine the consumption of relevant basic inputs. In the second, detailed information on both product-mix and input-mix should be available for investigating intercountry variations in production technologies. Finally, in the most complex cases the joint variation of input-mix and product-mix may make it practically impossible to find any stable pattern of technological relationships.

Thus for the first two types of industry groups it would

RELATIONSHIPS OF THE CHEMICAL AND ALLIED INDUSTRIES

of intrasector consumption)

Non-metallic minerals (for construction)	Fishing	Beverages	Sugar	Preserved food	Leather	Footwear repairs	Printing, editing	Non-metallic mineral works	Glass and glassware	Foundry	Farm machinery	Electrical machinery and equipment	Motor cars	Miscellaneous manufactures	Pharmaceuticals	Residential construction	Public works	Road transportation	Sea transportation	Auxiliary transportation services	Commerce	Services not else- where specified	All other sectors
18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	••••
X	х	x	X	x				x	X		_		X				X	X	x	X	x	x	
														x									
X		x			x		X	X	X	X				x	x	x						x	
					x							x		x			X						
						X					x		x					X					

area are registered (X) only if the net input-output 1:65 = 0.015384.

be comparatively easy to set up (with the help of industrial engineers) an appropriate and detailed classification for inputs and outputs, and to quantify in physical terms the corresponding technical relationships. For the third type however classification may possibly be limited to the major categories of basic inputs and end-products, without attempting to specify the various semi-finished products and by-products circulating within the various industrial processes operated with a given equipment-mix.

Tables 4A, 4B and 5 attempt, with the assistance of an industrial engineer, to set up:

(a) a two-way classification scheme in the Italian language for the major basic inputs and the principal uses of the major products of the synthetic materials industry in Italy and

(b) a (simplified) two-way classification scheme indicating the sequences of intraindustry consumption of the intermediate products of the petroleum derivatives industry (this scheme is reproduced only to point out the difficulty of quantifying all the cells marked by a cross).

III. COMPILATION SCHEME FOR AN INDUSTRIAL-COMPLEX SUB-MATRIX

The size and form of an industrial-complex submatrix will obviously depend on the degree of specification adopted for recording the within- and between-industry relationships of the selected areas. It can be anticipated however that either the central section of a submatrix or the general framework into which it should be fitted will be in most cases in a rectangular rather than a square form. The type of data needed for compiling various submatrices will also vary with the type of industries concerned and the degree of specification applied to relevant flows. While both quantitative and value data may be obtained (through a careful preparation of *ad hoc* questionnaires) for most of the purchased inputs and of the intermediate products delivered to other sectors, it is too much to expect (unless some arbitrary cost imputation criteria are employed) that value data can also be obtained for intraindustry consumption flows for each of the industries covered by an industrial-complex area. Research may here be limited to the collection of quantitative data, or of the corresponding engineering coefficients, from which might be derived intraindustry consumption flows among specific processes.

As regards secondary and by-products it seems advisable to employ the "fictitious sales" approach, and to abandon the ordinary procedure of input-output compilation, in which secondary products and byproducts are separated from the output of the industry where they originate or are treated as negative inputs of the industry concerned.

Among many other problems arising in the compilation of a specific submatrix (which will have to be carefully examined case by case) only the very general ones can be considered at this quite preliminary stage of investigation: such problems relate to: (a) treatment of imported inputs; (b) treatment of transportation costs; (c) treatment of indirect taxation; (d) price levels of individual and aggregate flows.

These problems might be treated in the following manner.

(a) Imported inputs might be separately registered

Outputs Basic inputs	Polveri fenoliche da stampaggio	Resine fenoliche per laminati	Polveri ureiche da stampaggio	Polveri melaminiche da stampaggio	Resine melaminiche per laminati	Resine poliestere	Altre	Policloruro di vinimile e polimeri	Polioletine	Polistirolo	Resine metacriliche	Restne poliammidiche	Acetato e aceto butivrato di cellulosa	Altre
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Basic chemicals Acetato di vinile Acido acetico ,, adipico ,, butirrico ,, fumatico ,, maleico ,, maleico ,, metacrilico ,, solforico ,, tereftalico Cloruro di vinile Esametilendiammina Etilene Formaldeüde Glicole etilenico ,, propilenico Gomma sintetica Melamina Propilene Stirolo Urea Altri prod. chim.	x x x	x x x	x	x x x	x	(X) (X) (X) (X) (X) (X)	x	x	x x x	x x x	x	(X) (X) X	(X) (X) X	
Other basic inputs (for the utilization of plastic materials) Glass fibres Paper waste, rags, mineral powder, etc	X		x	x		x	x	x	x	x	x	x	x	x
Other	Х	x	x	x	x	x	x	x	x	x	x	x	x	X

TABLE 4A: ITALY-BASIC INPUTS OF PRINCIPAL PLASTIC MATERIALS

Note: The symbol X indicates significant entries; the symbol (X) indicates possible alternative combinations of basic chemical inputs.

(so far as possible in both quantitative and value terms) in each cell of the column vectors, at least in the central section of an industrial complex sub-matrix.

(b) All transportation costs, including those relating to the use of own-transportation means, imputable to the actual consumption of all inputs might be consolidated and accounted for at the bottom of the column vectors relating to the industries covered by each industrial-complex area.

(c) The same treatment could be given to indirect taxes and to trade margins paid by the industries covered by the industrial-complex area for their purchased or self-produced inputs; total production of an industry (net, or gross, of intraindustry consumption) should thus be evaluated at factor costs.

.

229

TABLE 4B: ITALY, 1961—PERCENTAGE DISTRIBUTION OF PLASTIC MATERIALS CONSUMED IN THE MAJOR USING SECTORS (Sectors are ranked according to the percentage distribution of total plastics consumption in 1961)

Plastic Mater	Using sectors	Packing materials	Electrical, and telecom- nunications equipment	Construction	Miscellaneous manufactures	Furniture	Household utensils	Radio, T.V. and house- hold electrical equipment	Hygienic and sanitary equipment	Transportation means	Toys	Table cloth, footwear and apparel	Agriculture (tubes)	Machinery and precision instruments	Paper products, glassware, paints, inks, etc.	Other chemicals	Other sectors
1 2 3	Resine termo-indurenti Polveri fenoliche da stampaggio Resine fenoliche per laminati. Polveri ureiche da stampaggio	5·3 1·9 3·3	25·9 19·7 5·6	21.9	6·1 3·6 2·5	55·3 4·2 25·4 2·1	3·5 0·8 2·7	$ \begin{array}{c} 16.1 \\ 12.3 \\ 3.2 \end{array} $	91·9 63·3 28·6	35·1 9·9 2·3	0.5 0.5	62·5		23·0 17·1 5·9	16·1 13·0 3·1	6.2	
4 5	Polveri melamminiche da stampaggio paggio Resine melamminiche per lami- nati		0.4			0·6 22·9		0.4	200	0.1		554			51		
6	Resine poliestere	0.1	0.5	21.9		0.1		0.2		22.8		27.1				6.2	
8 9 10 11 12 13	Resine termo-plastiche Policlorure di vinile Poliolefine Polistirolo Resine metacriliche Resine poliannmidiche Acetato e aceto butirrato per cellulosa	8.71 11.5 61.2 14.4	73.7 59.3 9.4 2.3 1.3 1.2 0.2	78·1 77·5 0·6	74.5 28.8 33.4 12.3	41·3 38·5 1·0 1·8	92·9 1·8 76·1 15·0	83·2 14·7 9·8 51·4 2·0 4·0 1·3	8·1 5·3 2·8	62.9 30.3 5.9 9.6 13.5 1.1 2.5	99·2 15·4 34·5 49·3	32·5 27·1 4·0 1·4	100-0 90-5 9-5	60·0 32·5 17·4 10·1	46·4 23·8 6·6 16·0	92·4 83·4 6·9 2·1	95-8 70-1 18-3 7-4
7, 14	Altre	7.6	0.4		19.4	3.4	3.6	0.7		2.0	0.3	5.0	-	17.0	37.5	1.4	4.2
	Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100-0	100.0	100-0	100.0	100.0
	Percentage distribution of total plastics consumption	15.0	13.4	11.4	7.5	7.2	6.8	6.1	5.1	4.1	3.8	3.5	1.6	1.4	1.4	1.3	10.4

		Processes	1	2	3	4	ð	6	7	8	9	10	11	12	13	14	15	1	17	18	
				ion			.9									se		fuel			12
Prod	ucts		Desalter	Atmospheric distillation (topping)	Vacuum distillation	Thermal and catalytic reforming	hermal and catalyti acking	Vis-breaking	Coking	Desulphurization	Merow	Aromatic extraction	Refinery gases	Alkylation	Lube oil processing	Liquified petroleum gas blending	Gasolines blending	etroleum, diesel and I blending	Steam electricity production	Other basic utilities	The rest of the economy
	Exogenous basic inputs	Crude oils Natural gasolines	$\frac{q}{X}$	$\frac{\nabla \Xi}{X}$	<u> </u>	X	L C		x		V		*			19	x	d' 10	S 4	<u> </u>	T
		Ethyl fluid Other additives	l	[[X	x			
1	Desalter	Desalted oil							X										[]		
2	Atmospheric distillation (topping)	Gas Gasolines Kerosene Medium oils Residuum			x	x	x x	x	x	X X	x	x	х				x	X X X			
3	Vacuum distillation	Fuel oil Lubricant oil Asphalt													x			x			x X
4	Therm al and catalytic reforming	Gas Reformed gasolines										x	x				x				
5	Thermal and catalytic cracking	Gas Cracked gasolines Cracked oils									x		x				x	x			
6	Vis-breaking	Gas Gasolines Lower viscosity oils									x	•	х				x	x			
7	Coking	Gas Gasoline Coke										-	x				x		x		x
8	Desulphurization	Gas Desulphurized products					x						x					x			
9	Merox	Liquified petroleum gas Gasolines				x										x	x				
10	Aromatic extraction	Benzene Toluene Xylenes Aromatic gasolines															x	-			X X X
11	Refinery gases	Hydrogen Fuel gas Liquified petroleum gas Pentane		x	x	X X	x	x	x	X X	x			x		x	x		x		X X X
12	Alkylation	Gas Alkylated gasolines											x				x				
13	Lube oil processing	Lube oils Waxes Heavy aromatics																x			x x
14	Liquified petroleum gas blending	Liquified petroleum gas															x	-			x
15	Gasoline blending	Aviation gasoline Premium motor fuel Regular motor fuel		-	•			-													X X X
16	Petroleum, diesel, fuel oil blending	Jet fuels Petroleum Diesel Fuel oil		x	x	x	x	x	x	x		x				•		-	x		X X X X
17	Steam and electricity production	Steam Electricity (self-production).	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	X X	x	X X		X X	X X
18	Other basic utilities		X	X	X	X	X	X	X	x	x	X	X	X	X	X	X		X		x
	Other exogenous inputs		X	X	X	X	X	X	X	x	\mathbf{X}	X	X	X	X		X	X	X	X	

TABLE 5: ITALY—A SIMPLIFIED SCHEME OF THE INPUT-OUTPUT RELATIONSHIPS WITHIN THE PETROLEUM-DERIVATIVES INDUSTRY

THE HIERARCHICAL STRUCTURE OF INTERINDUSTRIAL TRANSACTIONS

Ernst Helmstädter, University of Bonn, Federal Republic of Germany

Simple models of the production structure often show a strictly hierarchical order of the producing sectors. The flow of goods begins with a sector where raw material is produced; it is followed by a sector of manufacturing, and the last stage produces the final goods for consumption or investment.

Input-output models of the economic structure are much more complicated. There exists a multiplicity of transactions among numerous sectors, for practically every sector delivers to and receives from every sector. The idea of a hierarchical order does not seem to have any chance of application in such a model. But if we accept some plausible definitions we are able to bring the sectors even of an enlarged input-output model into a well defined hierarchical order.

This order is the result of the triangulation of a transactions matrix. Triangulation itself means to arrange the sectors in such a way that the sum of all transactions on one side of the main diagonal of the transactions matrix is maximized and the sum of the transactions on the other side is minimized.

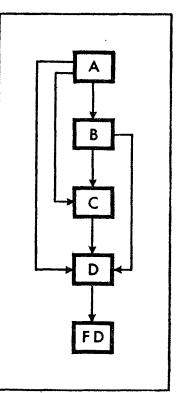
What is the purpose of ascertaining the sector hierarchy by triangulation? First of all we want to know the peculiar structural properties of the interindustrial transactions: the mutual dependence or independence of the single sectors and groups.¹ By the triangulation of transactions matrices we find in fact that transactions flow mainly in one direction; mutual transactions are relatively weak. In other words interindustrial transactions show a strong linearity instead of an expected circularity.

The triangulation of transactions matrices provides a basis for the definition of some ratios which are useful for intercountry comparisons. One such ratio is the "degree of linearity", which has the same value in all industrial countries.

Another purpose of triangulation is to facilitate the delimitation of transaction blocs. Such a bloc is characterized by the specially high degree of linearity of the transactions between the sectors which form it.

The characteristics of interindustrial transactions revealed by triangulation may also be useful in actual planning, especially while plans are in their experimental stage. It is easier to estimate the effects of a planned activity when one realizes that a relatively strong one-way interdependence exists among sectors.

The hierarchy of industries is also of great importance


in dynamic problems. The static solution of an open Leontief-model gives only the values of production which are compatible with a certain final demand vector; but, if we examine a process of expansion with structural changes of the final demand vector—as in the case of developing economies—we have to explain how the expansion of the single sectors would progress period by period. Some sectors must initiate the structural change and others have to follow suit in order to avoid idle production capacities.

This article gives (I) a short description of the method of triangulation, and (II) defines some useful measures for structural analysis. The basic findings of empirical research work are then presented (III), and conclusions are drawn for further investigations and applications (IV).

I. METHOD OF TRIANGULATION

(a) Basic ideas

If sectors of an economy did not contain any mutual transaction relations—like those shown in figure I—the triangulation would not cause any difficulty and the

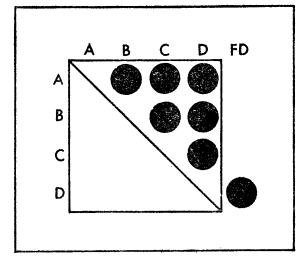


FIGURE I.

¹ See W. Leontief, *Input-output Economics* (New York, Oxford University Press, 1966), p. 48.

triangulated transactions matrix of that flow diagram would be as shown in figure II. The matrix is perfectly triangular and there exists only one direction of flows. Because there is no mutual or circular flow one can speak of a strict linearity of the production structure.

FIGURE	11

Empirical transactions matrices contain mutual deliveries between sectors, even if in a relatively weak measure. From this single fact arises the difficulty of triangulation. The basic criterion for triangulation thus consists in assigning an appropriate directional weight to mutual flows between sectors.

H. Aujac suggests a criterion of "better customer".² According to this criterion sector A is considered a better customer than sector B if the delivery from A to B (X_{AB}) in relation to the total output of A (X_A) is smaller than the delivery from B to A (X_{BA}) in relation to the total output of B (X_B) :

$$\frac{X_{AB}}{X_A} < \frac{X_{BA}}{X_B} \rightarrow \quad "A \text{ is a better customer than } B". (1)$$

In figure II the sectors below or on the right-hand side of a given sector are all better customers of this sector. The better customer criterion in this case would permit triangulation of the transactions matrix.

As both $Aujac^3$ and $Masson^4$ point out, the better customer criterion is not sufficient to triangulate actual interindustrial matrices: further aspects must be taken into consideration.

Chenery and Watanabe⁵ suggest starting the triangula-

tion with a provisional arrangement of sectors. Sectors at relatively primary stages will generally show a relatively small share of inputs from other sectors and of outputs to final demand. Final stage sectors on the other hand will have a large share of inputs from other industries and of final demand output. Arranging sectors according to these shares is only the first step. Chenery and Watanabe suggest that a further arrangement of sectors should then be made so as to maximize the sum of entries on one side of the transactions matrix. But they give no further explanation as to how to do this.

In a recently published article Simpson and Tsukui⁶ triangulate transactions matrices directly by maximizing the sum of transactions under the principal diagonal. This is the procedure that has been described in detail elsewhere by the present author.⁷

The maximization of a sum of flows is the consequence of a criterion for arranging single sectors and groups. Let us consider two sectors, A and B, which deliver to each other. In general the two flows have different amounts

$$X_{AB} \neq X_{BA}.$$
 (2)

All we need to do is to accept the definition that the sector making the larger amount of delivery should be taken as the primary-stage sector relative to the other sector. From this principle follows the triangulation of the transactions matrix by maximization of the flow sum above (or below) the principal diagonal.

If $X_{AB} > X_{BA}$ we regard A as being at a primary stage relative to B. This means that B on the output side of A is more important than on the input side, and vice versa that A is more important on the input side of B than on the output side. We can say that A with respect to B plays the role of a relative supplying sector, and that B with respect to A plays the role of a relative demanding sector. The underlying criterion can be called the relative supplying-demanding criterion.

By accepting this criterion we can use it for the arrangement not only of single sectors but also of groups of sectors. If we arrange single sectors and all possible groups according to the relative supplying-demanding criterion in such a way that we allocate relative primarystage sectors and sector groups above or on the left-hand side of the corresponding demanding sectors and sector groups we automatically maximize the sum of the transactions above the principal diagonal.

If empirical transactions matrices have certain properties which in all practical cases can be taken as

² H. Aujac, "La hiérarchie des industries dans un tableau des échanges interindustriels et ses conséquences sur la mise en oeuvre d'un plan national décentralisé", in *Revue économique*, Vol. 11, no. 2, 1960, pp. 169–238.

⁸ Op. cit.

⁴ D. Masson, "Méthode de triangulation du tableau européen des échanges interindustriels", in *Revue économique*, vol. 11, no. 2, 1960, pp. 239-265.

⁶ H. B. Chenery and T. Watenabe, "International Comparisons of the Structure of Production", in *Econometrica*, vol. 26, 1958, pp. 487–521.

⁶ D. Simpson and J. Tsukui, "The Fundamental Structure of Input-Output Tables: An International Comparison", in *Review* of *Economics and Statistics*, vol. 47, 1965, pp. 434-446. ⁷ E. Helmstädter, "Produktionsstruktur und Wachstum", in

⁷ E. Helmstädter, "Produktionsstruktur und Wachstum", in Jahrbücher für Nationalökonomie und Statistik, vol. 169, 1957, pp. 173-212 and 427-449; "Die geordnete Input-Output-Struktur", in Jahrbücher für Nationalökonomie und Statistik, vol. 174, 1962 in pp. 322-361; and "Die Dreiecksform der Input-Output-Matrix und ihre möglichen Wandlungen im Wachstumsprozess", in F. Neumark (ed.), Strukturwandlungen einer wachsenden Wirtschaft, Schriften des Vereins für Sozialpolitik NF 30/II, Berlin 1964, pp. 1005-1063.

given there exists only one arrangement of the sectors which maximizes the sum of the above diagnonal entries. This well-defined arrangement forms the sectoral hierarchy.

(b) Mathematical formulation

Let X be a square matrix of order n with the following elements:

$$X_{ik} \ge 0$$
 ; $i, k = 1, 2, ..., n$. (3)

The *n* rows and columns of X are fixed by ordinal numbers⁸ (i=1, 2, ..., n) beginning at the left end of the main diagonal of X. Instead of speaking of the *i*. row or column we speak of the *i*. stage. The task of triangulation is to arrange the staging of sectors in such a way that the sum of the above-diagonal entries is maximized:

$$\sum_{\substack{i=1\\k>i}}^{(n-1)} X_{i.k.} = \max \quad . \tag{4}$$

The same arrangement minimizes the sum of the belowdiagonal entries and maximizes the sum of the abovediagonal entries in the difference matrix Δ . We denote the elements of this matrix as follows:

$$d_{i.k.} = X_{i.k.} - X_{k.i.} {5}$$

Then the arrangement is intended to give

$$\sum_{\substack{i=1\\k>i}}^{(n-1)} d_{i,k.} = \max \quad .$$
 (6)

The staging of sectors has to be done in a systematic way. Our first step consists in satisfying the following conditions:

$$\sum_{k=(i+1)}^{m} d_{i.k.} > 0 \quad ; \quad m = (i+1), \dots, n \quad ; \qquad (7)$$

$$\sum_{k=m}^{(i-1)} d_{k.i.} > 0 \quad ; \quad m = 1, \dots, (i-1) \quad .$$
 (8)

Inequality (7) states that all the row sub-sums in the difference matrix \triangle , which can be obtained from the diagonal to the right, have to be positive; (8) concerns the column sub-sums to be obtained from the diagonal upwards. They also must be positive.

If (7) or (8) is not satisfied we can always rearrange the sectors. Given a contradiction to (7):

$$\sum_{k=(i+1)}^{m} d_{i.k.} = -c < 0 \quad ,$$

because of the skew symmetry of the difference matrix Δ we have:

$$\sum_{k=(i+1)}^{m} d_{k,i} = c > 0 \quad .$$

Let sector A be at the *i*. stage. If we move this sector to the *m*. stage and move the sectors which were at stages from (i+1). to *m*. to stages from *i*. to (m-1)., then the row sub-sum (-c) disappears from the abovediagonal side of Δ and the column sub-sum (c) comes in. This is in accordance with (8) and so after the rearrangement we have:

$$\sum_{k=i}^{(m-1)} d_{k.m.} = c > 0 \quad .$$

In the same way contradictions to (8) are eliminated.

Each contradiction to (7) and (8) can be removed by taking one sector only out of the sequence of sectors and putting it in another position. If a contradiction to (7) exists, we may have the following sequence of sectors

$$\cdot \to \cdot \to \cdot \to A \to B \dots \to \dots C \to \cdot \to \cdot \to \cdot$$

where the sector A holds the *i*. stage and C the *m*. stage according to the notation in the sum of the left-hand side of inequality (7). After the necessary rearrangement the new sector sequence is

$$\rightarrow \cdot \rightarrow \cdot \rightarrow B \dots \rightarrow \dots \leftarrow C \rightarrow A \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot$$

with A on the m., B on the *i*. and C on the (m-1). stage. In the case of a contradiction to (8) we may first have the sequence

 $\cdot \to \cdot \to \cdot \to B \dots \to \dots C \to A \to \cdot \to \cdot \to \cdot$

where A holds the *i*., B the m. and C the (i-1). stage. After the necessary rearrangement we have the sequence

$$\rightarrow \cdot \rightarrow \cdot \rightarrow A \rightarrow B \dots \rightarrow \dots C \rightarrow \cdot \rightarrow \cdot \rightarrow \cdot$$

where A holds the m., B the (m+1). and C the *i*. stage.

The rearrangement, which lets the contradictions to (7) and (8) disappear, changes only the position of a single sector A relative to a certain number of neighbouring sectors such as B and C. Those other sectors, which are marked by three dots on the left-hand and right-hand ends of the sequence in the above examples, do not change their stages.

Each such rearrangement lets disappear from the above-diagonal side of the Δ matrix any given negative sub-sum (-c) and brings in the positive sub-sum (c). Through such a rearrangement the sum of all above-diagonal entries of the Δ matrix increases. It is obvious that any process of rearrangement must somewhere come to an end because the maximum sum of the above-diagonal entries is limited.

We now call the above procedure "simple rearrangement". This simple rearrangement can fulfill conditions (7) and (8), which are only necessary, but not sufficient, conditions for the maximizing arrangement of sectors. The second step is to form "rearrangement chains" by which two or more sectors or groups of sectors change their relative positions simultaneously. Theoretically there are a number of possible rearrangement chains. But fortunately the triangulation of actual transactions

⁸ In this formulation a point following a number indicates that the number is ordinal: e.g. *i*. means *i*-th.

matrices requires the application of rearrangement chains only infrequently.⁹

II. STRUCTURAL RATIOS

Some ratios are useful for an analysis of triangulated transactions matrices. "Degree of linearity" $\bar{\lambda}$ is defined as the percentage ratio of the sum of above-diagonal entries V_{max} to the total sum of interindustrial transactions T:

$$\lambda = 100 \; \frac{V_{max}}{T} \quad . \tag{9}$$

The successfulness of triangulation may be measured with reference to an absolute degree of linearity $\overline{\lambda}$, which itself is independent of the triangulation. We sum up the absolute values of the above (or below) diagonal entries in the Δ matrix:

$$D = \sum_{\substack{i=1\\k>i}}^{n-1} \left| d_{i.k.} \right|$$
(10)

Sum D is the highest limit which could ever be reached by triangulation, which satisfies (6). Now, using D, we define the absolute maximum sum of above-diagonal entries \overline{V} that could be attained by triangulation:

$$\overline{V} = D + \frac{T-D}{2} = \frac{T+D}{2}$$
 (11)

The absolute degree of linearity $\overline{\lambda}$ will then be obtained as:

$$\tilde{\lambda} = 100 \, \frac{\overline{V}}{T}.$$

It always holds that:

$$\leq \overline{\lambda}$$
 . (13)

The difference between these two values:

$$\delta = \overline{\lambda} - \lambda \tag{14}$$

shows how close the actually performed triangulation is to its thinkable target.

With D, we can calculate a "spread ratio" s for a transactions matrix:

$$s = 100 \frac{D}{\tilde{T}} \quad . \tag{15}$$

Substituting D/T from (11) and (12) we obtain:

$$\overline{\lambda} = \frac{100 + s}{2} \quad . \tag{16}$$

 λ , $\overline{\lambda}$ and s indicate over-all characteristics of a transactions matrix. But similar ratios can also be used for individual sectors. We define the partial degree of linearity of sector i as:

 $\lambda_i = 100 \frac{V_{i max}}{T_i} ,$

where

and

$$V_{i max} = \sum_{k=1}^{(i-1)} X_{k.i.} + \sum_{k=(i+1)}^{n} X_{i.k.}$$
(18)

(17)

 $T_{i} = \sum_{k \neq i} X_{k.i.} + \sum_{k \neq i} X_{k.i.} \quad .$ (19)

The absolute partial degree of linearity is:

$$\bar{q}_i = 100 \frac{\bar{V}_i}{T_i} , \qquad (20)$$

where

$$\overline{V_i} = \frac{T_i + D_i}{2} \tag{21}$$

and

$$D_i = \sum_{k=1}^n |d_{i,k}| \quad .$$
 (22)

The partial spread ratio is given by:

$$s_i = 100 \frac{D_i}{T_i} \,. \tag{23}$$

III. EMPIRICAL FINDINGS

Table 1 contains the ratios λ , $\overline{\lambda}$ and s for 36 triangulated transactions matrices obtained from 16 countries. The number of sectors varies from 6 to 38. The degree of linearity λ of the triangulated transactions matrices averages 82.9 per cent—that is, the sum of abovediagonal entries is 4.8 times greater than the sum of below-diagonal entries. There exists in general a strong linearity in the structure of transactions, and the differences in this ratio among various countries are generally small. In the matrices of the United Kingdom, the Netherlands and Israel the values of λ are appreciably lower than in others. Cyprus (No. 29) has the highest λ .

One would expect the degree of linearity to be negatively correlated with the degree of aggregation. This is in fact the case with the matrices of the United States for 1939 (Nos. 14, 17 and 36). The 1953 matrices of Italy (Nos. 13 and 34) and the 1954 matrices of the United Arab Republic (Nos. 12, 26 and 27) however contradict that expectation.

The data in table 1 leave unanswered the question of whether there exists a systematic relation between λ and the level of industrialization. A high λ is shown by the following relatively less industrialized countries: Italy (Nos. 2 and 34, but not No. 13); the United Arab Republic (Nos. 12, 26 and 27) and Cyprus (Nos. 29 and 30). Two relatively highly-industrialized countries have a low λ : the United Kingdom (Nos. 6 and 20-23) and the

⁹ For a more detailed description of the rearrangement chains, see E. Helmstädter, "Dreiecksform der Input-Output-Matrix und hire möglichen Wandlungen im Wachstumsprozess", op. cit., pp. 341-356.

No.	Country	Year	Number of sectors	λ	λ	s
1	Japan	1951	29	83.4	88.4	76.7
2	Italy		29	93.8	94.8	89.5
3	Norway		28	83.8	87.2	74.3
4	United States		29	83.3	86.3	72.6
5	Federal Republic of Germany		23	83.9	88.7	77.3
6	United Kingdom		23	76.0	78.7	57.3
7	Netherlands		25	79.0	84.0	67.9
8	Denmark		19	82.6	83.1	66.1
9	France		15	87.7	89.3	78.6
10	OEEC member countries		26	86.6	89.1	78.2
11	Poland		20	82.6	85.4	70.7
12	United Arab Republic		28	93.0	94.6	89.2
13	Italy		26	79.4	84.2	68·3
14	United States		10	67.3	74.6	49.4
15	25 55 · · · · · · · · · · · · · · · · ·		13	82.2	86.8	73.5
16	27 27 27 27 27 27 27 27 27 27 27 27 27 2		13	81.7	86.2	72.4
17	22 23 24 24 24 24 24 24 24 24 24 24 24 24 24		13	82.3	87.3	74.5
18	Federal Republic of Germany		8	81.2	83.2	66.4
19	29 33 33 37 11 11 11 11 11 11 11 11 11 11 11 11 11		35	80.6	82.7	65.4
20	United Kingdom		11	71.6	76.6	53.1
21	39 39		9	76.2	77.6	55.1
22	25 55 ·····		9	73.6	75.0	50.0
23	27 59 ······		10	72.8	73.7	47.3
24	Poland		7	82.4	83.8	67.5
25	India		10	84.0	86.2	72.3
26	United Arab Republic		7	91.0	91.1	82.2
27			33	92.8	95.2	90.5
28	" " " " " Israel		6	74.4	75.3	50.5
29	Cyprus		14	97.4	97.8	95.6
30	C)prus		14	96.9	97.4	94.7
31	Federal Republic of Germany		17	85.7	88.8	77.7
32	Belgium		17	85.0	88.6	77.2
33	France		15	81.3	85.7	71.4
34	Italy		16	88.6	89.9	79.9
35	Netherlands		16	75.8	80.0	60.0
36	United States		38	84·2	91.1	82.1
50	Office States	1939	30	04-2	21.1	04-1
	Unweighted arithmetic mean			82.9	85.8	71.5

TABLE 1 : STRUCTURAL RATIOS OF TRIANGULATED INTERINDUSTRIAL TRANSACTIONS MATRICES

Note: For source of the untriangulated transactions matrices see Helmstädter, "Die Dreiecksform der Input-Output-Matrix und ihre möglichen Wandlungen im Wachstumsprozess", op. cit.

Netherlands (Nos. 7 and 35). But this is certainly not sufficient in itself to establish a meaningful hypothesis about the relationship between λ and the degree of industrialization.

At the present stage of research it is not possible to point out specific facts which might account for the variation of the value of λ among different countries. We have to be satisfied here with the statement that the linearity of transactions is generally strong and differs from country to country more or less insignificantly.

Let us now compare the actual degree of linearity λ with the absolute degree of linearity $\overline{\lambda}$, both shown in table 1. This last ratio averages 85.8 per cent. Its difference from λ amounts to only 2.9 per cent. If the above-diagonal sum reached the absolute maximum of \overline{V} we could gain only a slightly better triangulation. The highest possible gain amounts to 7.3 and 6.9 per cent (United States, Nos. 14 and 36). But in all these cases one can easily show that the absolute maximum of the above-diagonal sum \overline{V} cannot actually be reached by a further rearrangement of sectors.

Triangulated transactions matrices for three different countries at three different dates are illustrated in figures III, IV and V. These figures show the difference matrices Δ of three transactions matrices with more than 30 sectors. Solid circles show the positive differences of mutual transactions and open circles the negative differences. If the triangulation could realize the absolute degree of linearity ($\overline{\lambda}$) all solid circles would be allocated above the principal diagonal and all open circles below it.

Although not all solid circles are situated above the diagonal, in the case of figure III (the United States, 1939) 71 per cent of them are. In figure IV (Federal Republic of Germany, 1960) the percentage is 78 per cent and in figure \triangle (United Arab Republic, 1954) it is 87 per cent. These percentages are in a certain relation to the degrees of linearity of the transactions matrices

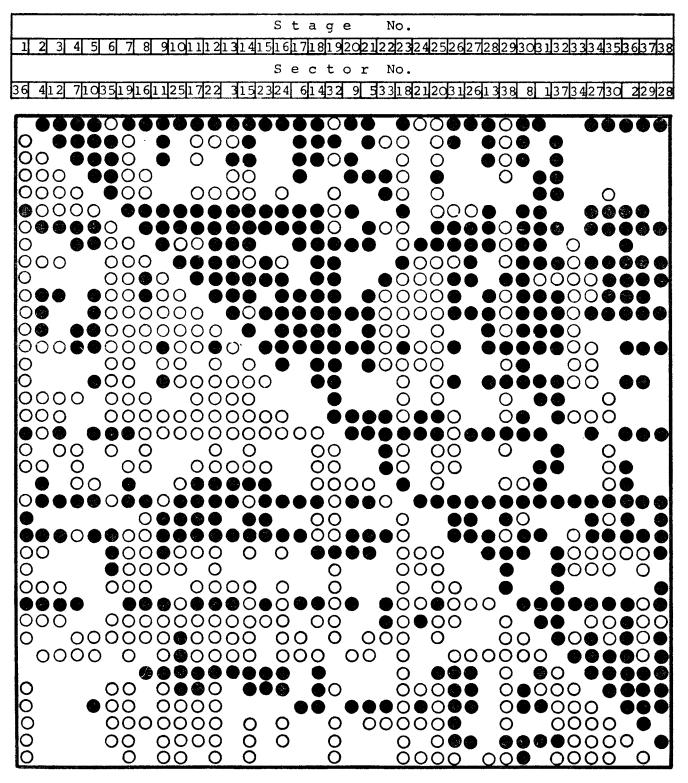


FIGURE III. THE DIFFERENCE MATRIX OF THE TRIANGULATED[®] TRANSACTIONS MATRIX, UNITED STATES, 1939

^aFor source of the untriangulated transactions matrix see table 2, below.

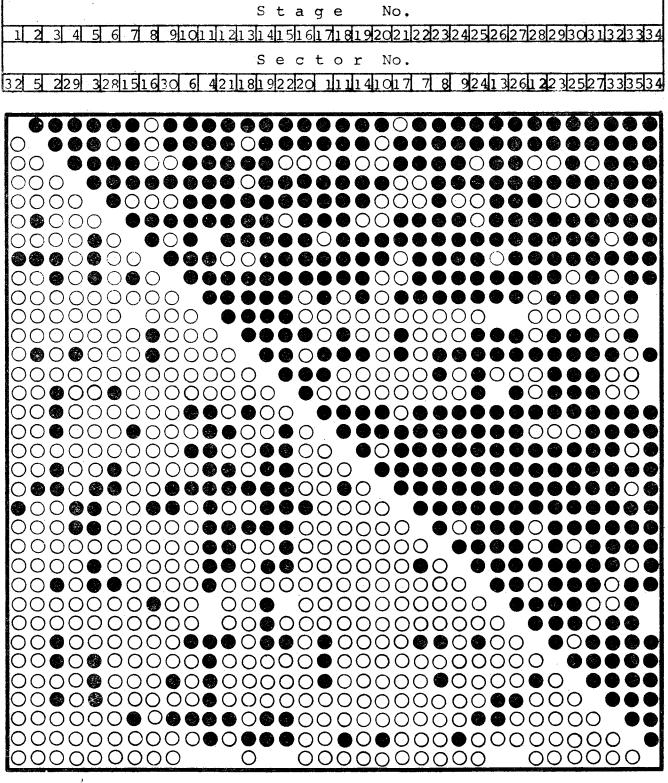


FIGURE IV. THE DIFFERENCE MATRIX OF THE TRIANGULATED^a TRANSACTIONS MATRIX, FEDERAL REPUBLIC OF GERMANY, 1960

Source of the untriangulated transactions matrix: Statistical Office of the European Communities, Input-Output-Tabellen für die Länder der Europäischen Wirtschaftsgemeinschaft, Brussels, 1964.

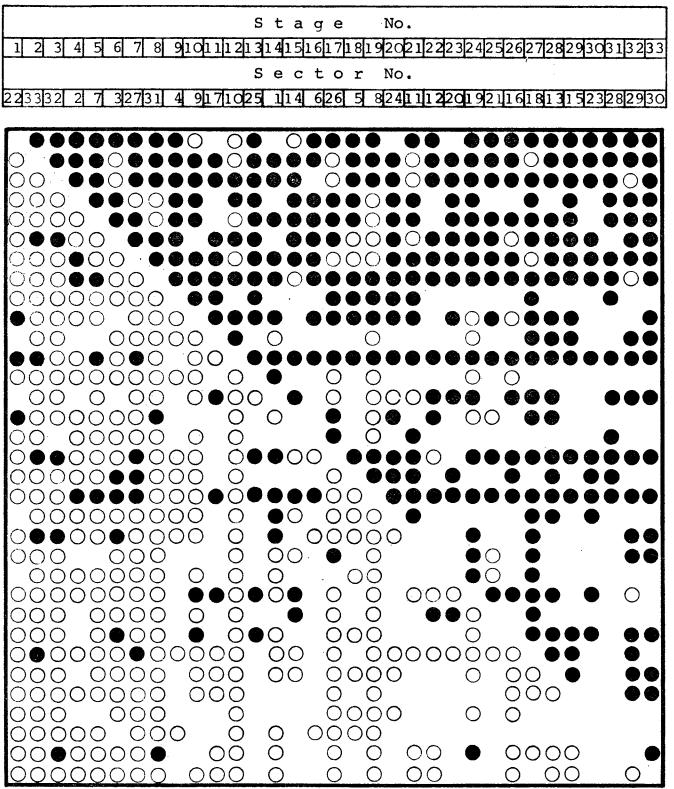


FIGURE V. THE DIFFERENCE MATRIX OF THE TRIANGULATED^a TRANSACTIONS MATRIX, UNITED ARAB REPUBLIC, 1954

Source of the untriangulated transactions matrix: Gamal El Eleish, "The Input-output Model in a Developing Economy", in T. Barna (ed.), Structural Interdependence and Economic Development, London 1963, p. 199, table 1.

of the three countries, which amount to 84.2 per cent in the United States, 80.6 per cent in the Federal Republic of Germany and 92.8 per cent in the United Arab Republic as can be seen from table 1 (Nos. 36, 19 and 27).

These three figures visualize the general character of triangulated matrices. A comparison between the three tables brings to light some interesting facts. First the difference matrices have zero elements (absence of either solid or open circle) in different measures. The matrices of figures III and V contain 30 per cent of zero elements, that of figure IV only 2 per cent. The triangular character of the matrices of figures IV and V is much more pronounced than that of figure III. The clearest triangularity is given by figure V. In figure IV triangularity is clear too, but there exists a bloc of five sectors (which are basic material sectors) with relatively high inputs from sectors at the end of the sector hierarchy. The matrix of figure III also shows some blocs, but in that of figure V solid circles and open circles are distributed in such a way that we are not inclined to isolate blocs of several sectors.

As an example of further structural analysis the triangulated transactions matrix of the United States for 1939 with 38 sectors is reproduced in table 2. In this table we have $\lambda = 84.2$ per cent. The above-diagonal sum is 5.3 times larger than the sum below the diagonal.

Triangulation brings the sectors into a hierarchical order. The raw material sectors are located at lower stages and the final producers at higher ones, as shown by the industry column on the left-hand side of the matrix in table 2.

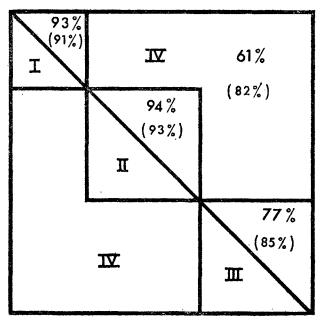
Table 3 shows the partial degrees of linearity for the 38 sectors in the 1939 United States matrix. In general, differences between λ_i and $\bar{\lambda}_i$ are a little larger at lower stages than at higher stages. The relatively final stages seem to fit somewhat better on the whole into the hierarchical arrangement than the relatively primary stages.

Considering the entries x_{ik} larger than \$10 million in table 2 alone, we find 255 entries above the diagonal and 130 below it, i.e. only 66·3 per cent lie above the diagonal. But if we pick out only the entries larger than \$100 million we have 88 entries (81·5 per cent) above the diagonal and 20 below. In terms of values of these entries the above-diagonal sum is 89·1 per cent of the total sum of these entries. The large-value entries in the matrix are more strongly triangulated (89·1 per cent) than the entries as a whole (λ =84·2 per cent). This is the reason for the relatively high number of solid circles below the diagonal in figure III. These solid circles are related to generally small entries in the transactions matrix.

The stages 7 to 21 form a bloc of relatively strong triangularity with respect to their mutual deliveries. Above the diagonal there are 90 (or 93.8 per cent) positive entries while there are only six below it. Equally strong triangularity holds for the little bloc formed by stages 1 to 6.

So far we have considered only a few ratios for structural analysis of this kind. Other ratios may well be of interest, too. For example, one could draw some parallels both above and below the main diagonal, and compare the sum of the entries between the first parallel and the diagonal, between the first and the second parallels, and so on, but this is not the place to go into this kind of structural analysis.

IV. CONCLUSIONS


This article has tried to give an outline of the possibilities of structural analysis by the method of triangulation. This method has revealed the hierarchy of industries or the relatively high degree of linearity of the interindustrial transactions.

If one accepts the basic "relative supplying-demanding criterion", then triangulation means to arrange the sectors so that the sum of flows on one side of the principal diagonal of the transactions matrix is maximized. A well-defined sectoral hierarchy is the result of this triangulation criterion.

Intercountry studies in structural analysis are based mainly on comparisons of structural properties, and they require the formulation of structural characteristics. The triangulation of transactions matrices gives a broad basis for definitions of structural ratios which can be used for purposes of comparison. The special viewpoint of this method concerns the over-all characteristics of matrices rather than regarding isolated transactions within such a matrix.

The triangulation approach is useful not only for the comparison of structural characteristics of different countries but also for planning structural activities; and, especially with dynamic problems, it is advantageous to realize that a remarkably strong sector hierarchy exists.

FIGURE VI.

΄

-

TABLE 2: TRIANGULATED INTERINDUSTRY TRANSACTIONS MATRIX OF THE UNITED STATES, 1939 (Millions of dollars)

																				of dolla																						
ge		1	2	3	4	1	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	Total deliveries	
•	Sector No.	36	4	12	7	,	10	35	19	16	11	25	17	22	3	15	23	24	6	14	32	9	5	33	18	21	20	31	26	13	38	8	1	37	34	27	30	2	29	28	to other industries	Total output
Trade	36	897	19	27		10	19	-	393	23	297	287	93	800	78	288	154	434	160	583	-	1	3	-	1,535	-	8	550	120	144	-	963	1,446	-	-	600	265	4,048	420	1,908	15,676	16,87
Iron and steel foundry products	4	-	-	7 7	7	4	15	47		2	57	-	-	-	10	7	-	-	12	10	71	-	9	-	-	-	-	1	-	3	-	126		8	-	-	-	-	-	-	389	51
Machine tools	12	-		17	7	4	11	9	-	3	36	-	-	-	25	16	-	-	4	18	-	5	-	-	-	-	-	-	-	3	-	54	-	117	-	-	-	-	-	-	305	48
Engines and turbines	7	-	-	-	T	3	2	4	-	-	-	1	-	1	-	-	-	-	11	-	1	1	28	2	1	-	8	-	-	-	-	-	1	12	-	-	-	-	-	-	73	14
. Transportation equipment, n.e.c.	10	-	-	-	-	-	-	169	-	-		-	-	-	-	-	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-	4	9	-	-	-	-	-		186	28
. Steam railroad transportation	35	4	27	-	3	1	-	138	712	38	19	117	241	205	219	58	168	31	14	18	-	4	-	-	249	-	4	-	-	2	-	88	521		-	8	10	285	2	-	3,048	4,44
. Coal and coke	19	-	11		1	1	1	209	252	9	10	48	50	75	202	10	6	5	3	7	1	-	1	4	9	-	210	4	2	1	-	12	2	75	-	27	6	49	4	4	1,059	2,30
Non-ferrous metals	16	-	2	2	3	6	5		1	1,323	32	-	3	94	108	52	-	-	6	98	144	21	21	-	1	6	49	51	5	2	-	85	5	157	-	1	-	23	-	-	981	2,95
Industrial and heating equipment	11	43	1	2 -	-	_	-	-	9	9	55	31	19	7	5	2	10	3	-	3	420	_	-	-	92	-	8	-	52	-	-	1	30	167	-	65	17	70	12	26	1,103	2,57
Pulp and paper	25	257	-		-	_	-	4	1	6	9	679	46	67	2	9	1	6	-	13	49		-	2	-	1	1	23	423	-	47	1	2	43	-	21	5	244	7	18	1,308	42
. Non-metallic minerals	17	2	13	3	4 -	_	4	13	-	6	10	23	281	128	29	8	-	28	1	31	1,444		1		6	-	-	8	-	1	2	60	14	65	-	-	5	137	2	-	2,045	2,73
. Chemicals	22	-		7 —		1	4	15	13	10	3	33	22	844	36	26	29	8	2	39	343	2	8	-	13	-	_	42	. 50	3	38	31	357	212	-	260	31	133	28	38	1,837	5,01
. Ferrous metals	3	-	4	5	6	3	22	69	-	43	105	-	-	-	1,188	634	-	64	55	49 -	592	-	36	-	-	-	-	-	-	10	1	374	24	166	-	-	-	-	-	-	2,298	3,88
Iron and steel products, n.e.c.	15	2	1	2	6	9	14	23	1	-	49	-	-	39	1	32	5	58	17	61	879	4	23	-	43	-	3	11	-	11	27	208	21	71	-	1	-	305	5	6	1,905	2,60
5. Lumber and timber products	23	-	-			_	-	-	-		-	-	-	-	-	-	445	183	-	8	799	-	2	-	-		-	-	-	-	-	9	46	55	-	-	-	-	-	-	1,102	1,84
5. Furniture	24	13	-	_		_	5		-		7	-	-	2		6	-	25		18	58	-	_	-	2	1	-	6	-	3	107	9	47	18	-	5	<u> </u>	16	5	-	328	1,6
7. Agricultural machinery	6	-	-			_	_			-			_	-			-	-	1	-	41	-	-	-	-	-	_	-	-	-	-	-	400	70	-	-	-	-		-	511	6
3. Electrical equipment	14	37	-			_	_	9	-	-			-		2	2	_	-	-	330	306	1	3	17	-	104	69		-	_	9	81	-	114	-	-	-	_	-	-	754	2,7
O. Construction	32	212		4	4	1	1	598	14	9	11	18	19	21	43	9	12	5	3	7	-	7	5	162	461	165	264	12	9	1	1,401	14	295	-	-	14	4	73	2	8	3,888	11,29
D. Aircraft	9	-	-			_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	15	-	28	-	-	-	-	-	-	-	-	-	87	-	-	-	-	-	-	115	28
I. Shipbuilding	5	1-	-			-	_	_	-				_	-	-	-	-	-	-	-	-	-	1	69	-	-	-	-	-	-	-	-	7	4	-	-	-	1	-	-	81	4
2. Miscellaneous transportation	33	1-		2 -		-			15	-	-	-	47	2	45	1	43	-	-	-	-		-	-	1,211	-	-	-		-	-	-	235	-	-	-	-	16	-	-	1,617	2,6
3. Petroleum products and refining	18	670	-	6	2	2	2	85	11	16	14	41	91	72	94	16	30	4	2	14	131	16	2	319	1,861	3	98	14	5	1	74	21	403	442	15	20	13	53	3	12	2,817	8,2
4. Communications	21	235	_			-	-	-	-		1		2	1	-	1	2	1	-	-	-	_	-	-		8	_	2	13	-	186	-	-	-	-	1	-	7	-	3	455	1,5
5. Manufactured gas and electric power	r 20	19	1	1	4	1	1	14	33	40	26	26	46	52	42	18	7	9	3	15	5	1	3	33	11	-	4	27	21	4	1	18	64	-	-	48	11	66	6	16	702	2,8
6. All other manufacturing	31	55	_			-	_	30	_		6	10	-	1		1		-	-	6	17	2	12	_	-	-	-	180	-	2	373	8	2	71	-	13	-	-	-	104	713	2,3
7. Printing and publishing	26	5					_						-	-	-		-	-	_	_	_	-	-		-	-	-	-	390	1-	1,251	-	-	26	-	-	-	-	-	-	1,282	2,7
8. Merchandise and service machines	13	69				_	_	-	_		-	-	-	_			-	_	_	_	-	-	-	-	-	_	_	_	-	-	53	-	-	43	-	1	-	-	_	3	169	4
9. Business and personal services	38	451		1	4	2	_	12	2	3	19	8	11	183	13	8	1	17	6	45	3	1	-	32	35	4	2	14	21	6	103	65	551	2	29	15	41	367	14	50	2,038	18,62
0. Motor vehicles	8	33				_		5	-	-		-	-	-	-		-	_	-	-	3	_	-	72	-	1	1	-	-	-	2	1,589	158	242	-	-	-	2	-	-	519	5,10
1. Agriculture and fishing	1	-	-			_	_	-	-			85	-	175		-	98	2	-	_	91	-	_	-	_	_	_	7	-	1-	-	-	948	453	-	480	-	4,998	_	103	6,492	12,4
2. Foreign trade	37	-	-		1	1	1	-	5	331	8	206	63	161	22	8	35	8	2	5		_	-	-	40	-	27	61	10	-	-	2	337	-	284	306	196		21	54		3,1
3. Transoceanic transportation	34	-	-			-	-	-		36	1	22	7	18	3	1	4	1	-	1	_	_	_		5	-	3	7	1	-	-	-	38	101	-	33	21	89	2	6	400	4
4. Textile mill products	27	8				_		-		1	4	25	2	8	_	2	4	48	-	2	2	_	4	_	-	-		18	4	-	13	61	51	109	-	643	71			1,592	2,087	4,4
5. Rubber	30	20				_	6	2	-	_	13		-	4			-		12	3	4	1	1	30	2	1	_	2	1	1	32	182	54			1	20		22		447	1,1
6. Food processing	2	-	-			-	_		-	-		7	_	47	-		-	-	_	-		-	-	_	-	-	_	2	-	-	1	-	643	269	-	25	-	1,527			1,125	
7. Leather	29	-	-			_			-		2		-	4		-		2	_		-	_	-		_			2	4	-	15	4	14	27	-	2		-	437			
B. Clothing	28	-	-			_	_		-			-	-	1		-		1			-	-						-	-	1-	1	1	-	32			-	-	-	425		1
Total purchases from other in		1	-						1,210	585	739			2,168				918	313				162		3,716	286	755	864	741	-	3 634	2,478				1,947		11,852		3,972	-	155,95

Source: W. W. Leontief, The Structure of American Economy, 1919-1939, Second Edition, New York, 1953, table 24 (original table). ^a The above-diagonal elements sum is maximized.

Stage No.	<i>i</i>	Sector	λ _i	$\bar{\lambda}_i$	1 5
1.	36	Trade	88·0	94·4	88.7
2.	4	Iron and steel foundry products	75.4	91.3	82.6
3.	12	Machine tools	89.9	95·0	89.9
4.	7	Engines and turbines	76.5	95·0	89.9
5.	10	Transportation equipment	77.9	99.7	99.3
6.	35	Steam railroad transportation	74·3	89·2	78.4
7.	19	Coal and coke	85.5	87.4	74·8
8.	16	Non-ferrous metals	66.3	82.2	64.4
9.	11	Industrial and heating equipment	80·9	91.5	83-1
0.	25	Pulp and paper	66.0	80.7	61.4
1.	17	Non-metallic minerals	86.3	99 ·2	88.4
2.	22	Chemicals	77.6	85.1	70-1
3.	3	Ferrous metals	83·0	93.8	87.7
4.	15	Iron and steel products, other	92.9	96.4	92.4
5.	23	Lumber and timber products	86.2	95.0	90.0
6.	24	Furniture	89.5	94.7	89.4
7.	6	Agricultural machinery	96.6	99.4	98.8
8.	14	Electrical equipment, other	91.8	95·3	90.5
9.	32	Construction	86.6	95.5	91.0
.0.	9	Aircraft	88.5	100.0	100.0
.1.	5	Shipbuilding	90.9	100.0	100.0
22.	33	Miscellaneous transportation	73.2	86.5	73·0
23.	18	Petroleum products and refining	73·5	79.2	58.4
4.	21	Communications	66.4	99·2	98.4
.5.	20	Manufactured gas and electric power	68.9	90.9	81.9
6.	31	All other manufacturing	84·0	89.2	78·6
27.	26	Printing and publishing	97.7	98.5	96.9
.8.	13	Merchandising and servicing machines	79.3	89.1	78·2
.9.	38	Business and personal services	82.9	97.5	94•9
0.	8	Motor vehicles	87.8	98.5	96.9
11.	1	Agriculture and fishing	87·0	89· 0	78 ∙0
2.	37	Foreign trade	69.8	75-7	51.5
3.	34	Transoceanic transportation	65.7	85.4	70.9
4.	27	Textile mill products	90.2	93·5	86.9
5.	30	Rubber	63.8	89.5	79· 0
6.	2	Food processing	92.3	92.4	84.7
57.	29	Leather	90.4	94.3	88.6
8.	28	Apparel	99.1	99.2	98 ·3

TABLE 3: PARTIAL RATIOS OF THE TRIANGULATED TRANSACTIONS MATRIX, UNITED STATES, 1939

Another bloc-triangularity is built up by stages 23 to 38: but there we have only 74 positive entries (or 77.1 per cent) above the diagonal and 20 below.

Looking at the transactions among these three blocs, we find 164 positive entries (or 61.2 per cent) above the diagonal and 104 below. This part of the matrix shows a relatively weak linearity. This characteristic of the difference matrix is summarized in figure VI. The percentage figures refer to the proportion of the number of positive entries (solid circles) which are found above the diagonal. Those in brackets (which are not very different) refer to the proportion of sum of the values of the above-diagonal entries to the total value sum of entries in the concerned area of the matrix. It is remarkable that the higher values are around the diagonal.

92.3

84.4

MODIFIABLE RECTANGULAR INPUT-OUTPUT MATRICES

T. I. Matuszewski, Universite Laval, Quebec, Canada

This paper discusses some characteristics of an inputoutput system for the province of Quebec now being constructed by the Bureau de la Statistique du Québec with the collaboration of the Laboratoire d'Econométrie de l'Université de Montréal.¹

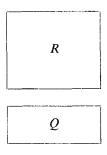
What interests us here is the practical application of the proposed system. It may turn out that some of its features are relevant to the points raised in "Parameter-patterns for industrial development", prepared by the Research Division of the Centre for Industrial Development, in April 1965. It must be borne in mind that the system was designed with reference to the particular needs of Quebec and subject to the constraints of data collection possibilities, time, and the resources available for the study. Governmental statistical activities in Canada are conducted at two levels: federal and provincial. In a number of instances the Quebec statistical agencies have to follow federal practices and even rely on federal sources for some of the basic data they need. This often creates rather delicate problems, since an obvious desire to avoid duplication runs against the fact that the requirements of the federal Government and those of the government of Quebec are not the same. Their responsibilities are different: so are the instruments at their disposal. There also exist substantial divergencies in their respective economic philosophies.

Among the special characteristics of the Quebec situation, which have inevitably conditioned the formulation of the proposed system, is that Quebec is a region with high living standards and an economy which has a tendency to run below its full capacity. It forms part of the vast North American economy and the mobilities of capital, goods, and even labour are exceptionally high. It has no independent monetary or commercial policy. The fiscal policies of the federal Government exert much more influence than those of the government of Quebec. In the short run at any rate, the usual problem of the savings/investment equilibrium is totally absent. So is the balance of payments problem.

The limitations of the proposed system will become obvious in the course of our examination, and the last section of this paper spells out what appear to be the major weaknesses and makes some suggestions as to the directions of possible improvements.

MATRICES OF COEFFICIENTS

The system distinguishes productive sectors (industries) and non-productive sectors (final demand categories). This latter group comprises certain activities often treated in earlier systems as industries or parts of industries. Thus all government activities except those whose services are paid for directly by the users, like the post office, are included in final demand; so are all educational, church and similar activities and also hospitals. One of the consequences of this is that part of the Gross Domestic Product is generated outside the productive system. This may be slightly embarrassing if one wants to adhere strictly to national accounts concepts. It was thought preferable however to treat as productive only those sectors whose activity levels appear to be in fact determined by the activity levels of other sectors.


Similarity of input structures and institutional significance in principle determine the grouping of establishments into sectors. The similarity of outputs from the users' viewpoint is irrelevant. In practice the industry definitions imposed by the federal Government could not be cut across. We have no use for the Marshallian concept of industry as a group of firms producing the same product, although this concept still presides over the official statistics.

The input structure of each productive sector is described by a column vector of coefficients representing inputs, at consumer prices and regardless of origin, of the various classes of goods and services per \$1 worth of output. It is convenient to partition this vector into two sub-vectors: the upper one corresponding to goods and services produced within the system, called "products", and the lower one corresponding to other goods and noncompetitive imports. No one-to-one correspondence is imposed between the products ont he one hand and the productive sectors on the other; in fact the Quebec system contains over 60 productive sectors and nearly 250 classes of products. The columns of coefficients are not fixed: their modifications are described below. At any given moment however, the input structure of the productive sectors may be described by two rectangular matrices:

¹ For a description of the fundamental features of the proposed system see T. Matuszewski, "Un système rectangulaire d'échanges inter-industries à rendements non proportionnels", presented at the September 1965 meeting of the Econometric Society in Rome (mimeographed), and for a rather informal discussion of the general approach followed in designing the system see the same author's "Some Remarks on an Econometric Model of a Provincial Economy", in *Canadian Journal of Economics and Political Science*, vol. 31, 1965, pp. 552–558. A brief summary of the former paper, made by the Secretariat of the CID, is printed in annex I, where it is followed by a numerical example given by the author.

The elements of these matrices are non-negative (see below, however). The sums of the corresponding columns of A and B are equal to one. In what follows the elements of the various matrices will be denoted by the corresponding lower case letters.

The structure of the market for each product is described by a column of non-negative coefficients whose sum is equal to one and which represent market shares of the way in which \$1 worth of demand at consumer prices for the product in question is allocated among the sectors which produced the goods and services concerned and which provided the related trade and transportation services. The shares of competitive imports and of indirect taxes are indicated in the lower portion of the column. If the column vectors of market shares (one for each product) are partitioned so that their upper portions correspond to productive sectors and the lower portions to the "leakages" outside the system, and are then written side by side, we get a description of the marketing structure at any given moment given by two rectangular output matrices:

This arrangement eliminates the necessity of tracing the exchanges of every sector with every other sector. All exchanges are channelled through a system of markets represented by the output matrices R. It may be noted that in the Quebec system the classification of products is based on the principal product definitions of the Standard Industrial Classification (SIC). This was chosen in preference to the Standard Commodity Classification developed some time ago by the federal Government. It was thought essential to have a framework which covered all activities and which could be readily related to production statistics.

The rectangular matrices described so far represent nothing more than a particular way of organizing data for the construction of a traditional input-output system. The advantages² of keeping separate the descriptions of the production structure and of the marketing structure consist chiefly in offering greater scope for accumulating and transmitting knowledge about interindustry relations. This may be of special importance in the construction of regional tables or of tables intended to span a period of important structural changes. The organization of data into two sets of rectangular matrices may be particularly helpful if use is to be made of information other than that derived from the statistical observation of the actual interindustry flows in some base year.

It is always possible to calculate the product RA so as to get the usual sector-by-sector input-output matrix. Transformations from the products space to the sectors space will then be identity transformations and we shall get a system characterized by a Leontief matrix (I-RA).

COLUMN MODIFICATIONS

The advantages of rectangular matrices may be pursued further to increase the realism and the flexibility of the system. Certain consequences have to be faced however. Column modifications require additional data. Moreover—and this is more fundamental—the nature of the results which the system can supply changes completely.³ General solutions are no longer possible.

The "Système rectangulaire d'échanges inter-industries à rendements non proportionnels" specifies the types of column modifications applicable to matrices A (expression 8) and R (expression 9). Modifications of the columns of B and Q are given by analogous expressions. All the different types of modifications except one appear in the numerical example given below in annex I. The one left out concerns changes in the columns of R determined by the cumulative level of the total demand for a particular product. It creates no computational difficulties and does not seem to be of great economic importance.

It is easily seen that modifications determined by the product-mix of output and by the sector (of origin) mix of demand could be handled by increasing the number of sectors and of products respectively, and redefining them so that the formal homogeneity of the relevant flows is assured. In addition to increasing the dimensions of the system this would make it necessary to aggregate at each stage of the calculations the results relating to groups of sectors and groups of products. It was thought preferable to avoid this. What is more, the arrangement envisaged here will make it easier to replace in a future version of the model the simple weighting of columns by a more sophisticated representation of the effects of changes in the product-mix of output or the sector-mix of demand.

The main purpose of the modifications of the columns of R triggered by the cumulative levels of the outputs of certain sectors reaching predetermined thresholds is to provide for possible restrictions on production capacity. All the modifications of this type included in the

² See the discussion in the two papers mentioned in footnote 1.

³ This point is taken up below in the section on the uses of the system, pp. 236-7.

numerical example are in fact capacity restrictions. Now in general the attainment of its capacity by a productive sector will affect the markets for more than one product. Further its effect is felt at the current iteration. A sector refuses to accept more demand than it can handle. To use the symbols of the paper mentioned above, R_k is a function of X_k where the two are related by $X_k = R_k Y_k$. Consequently the corresponding modifications of R are more complicated than the superficially analogous modifications of A determined by the activity levels of production sectors. The third iteration of the numerical example given in annex I illustrates the kind of difficulties which may arise.

It may seem strange that capacity restrictions are handled by the matrices R, the output or (more properly) marketing matrices, instead of by the matrices A describing the production structure. This is so because the Quebec system implicitly assumes that demand is always satisfied. There can be no bottle-necks so far as products are concerned. The elements of X_{k-1} are in fact just production plans or intentions until the corresponding additional inputs are secured. The model however treats them as if they were definite increments in activity levels, on the happy assumption that the inputs needed will always be available. If a supplying sector hits its capacity limit, demand is automatically diverted to other sectors, chiefly to competitive imports. Consuming sectors are never forced to cut back their production for lack of inputs.

Another apparent paradox arises in the treatment of by-products. These are outputs whose production is determined not by demand but by the activity levels of the sectors in which they are produced. In conformity with common practice they are treated as negative inputs. Hence the possibility of negative elements in matrices A. In this way they are given priority when it comes to allocating demand among the various sectors supplying the product in question. This marketing priority turns out to be reflected by the presence of a negative coefficient in the matrix describing the production structure. But one can argue of course that by-products are primarily a production phenomenon.

By-products are not numerous and are to be distinguished from secondary products, which compete with other outputs of a given sector instead of being complementary to it. Secondary products give rise to no special difficulties, although they may cause the productmix modifications mentioned above. In fact, there being no one-to-one correspondence between products and sectors the concepts of primary and secondary products have no meaning.

It may be expected that data limitations will result in a relatively small number of the columns of A and of Rbeing subject to modifications. In such a case it is useful to have a computation programme able to skip the modification sub-routines when they are not required.

NUMERICAL CALCULATIONS

The paper "Un système rectangulaire d'échanges

inter-industries à rendements non proportionnels" discusses the computations necessary to obtain a standard solution of the system consisting in activity levels of production sectors and the levels of total demand for various products corresponding to a given final demand. The auxiliary vectors of total primary input demands and of the levels of the various leakages outside the production system are obtained at the same time.

The problems to which numerical solutions give rise follow in the first place from the very dimensions of the system, whose nature requires that it be highly disaggregated. Secondly, the determination of the matrix Rappropriate for a given iteration creates a difficulty of principle. In the particular case of the very simple modifications adopted here this difficulty may be fairly easily overcome. The choice of more complicated functions is likely to necessitate more extensive use of successive approximations.

The Bureau de la Statistique du Québec is at present preparing for a CDC 3400 computer programme which will yield a standard solution of the system. In the meantime the small numerical example given in appendix I will serve as an illustration. Calculations were stopped after the eighth iteration. The example contains no modifications of the columns of R dependent on the cumulative level of product demand. All the other types of column changes are illustrated. There are capacity restrictions on the outputs of three sectors, one of which becomes effective. In designing the example the two rows of the B matrix were thought of as corresponding to labour and capital respectively. The two rows of the Q matrix may be taken to be associated with indirect taxes and with competitive imports respectively.

It will be noted that, column modifications apart, a solution of the system requires a volume of computations of an order comparable to that needed to find a special solution of a Leontief system by expansion in powers of a matrix. The modifications, although tedious to handle with paper and pencil, are on the whole quite straightforward and the information is readily accessible.

With respect to the modification of R in terms of the accumulated activity levels however the example given here may be misleading. As the number of columns subject to this type of modification increases it becomes much more likely that the tentative R fails to be compatible with the accumulated output levels on the first try. This occurred on all except one of the iterations of the example but cannot be expected to happen so often with real systems. What is more, on certain iterations a number of successive modifications of R may be necessary as the accumulated outputs of various sectors hit their respective thresholds.

EMPIRICAL DETERMINATION OF PARAMETERS

Whether distinct input and output matrices are kept only at the model construction stage or their separate existence is maintained right through the applications. one of the main objectives in designing the system is attained. It was to give it such a formulation that the data it requires correspond as closely as possible to the format in which they arise in the normal course of production and exchange. This applies also to the results which constitute the solution. They will be comparable to current routine statistics.

The information needed to specify the various modifications cannot be obtained solely by observing interindustry flows in any given year, except perhaps where these are measured at a level of detail greater than that adopted for the system itself. This information must come from the experience of other regions, from engineering and institutional data and, it may be hoped, from the analysis of establishment statistics. Probably time-series data will be of use only if they are available at a very fine level of detail.

This present article puts a good deal of emphasis on separating the supposedly stable production relations from the supposedly unstable commercial and institutional arrangements. However, this is no more than a particular application of a more fundamental principle. The basic idea is to keep separate on the one hand relations which are permanent or autonomous, and on the other the more or less accidental relations which deal with the way in which the unchangeable components combine in particular situations. The procedure then is to carry out *ad hoc* aggregations for special purposes without distorting the basic data which will be preserved, accumulated and transferred in their original format. Modern equipment and the "software" that has grown around it make this perfectly feasible.

There is no logical reason to consider all commercial and institutional relations as necessarily less fundamental than production relations. Certain commercial arrangements seem remarkably persistent. The steady flow of heavy purchases of business services by Canadian branches from their parent corporations in the United States may serve as an example. Wherever uniform quality and regularity of component deliveries are important we may expect to find rather stable relations with supplies and subcontractors. This is particularly visible in industries where raw materials are responsible for a small part of the total cost and where mass production and/or working to strict deadlines and rigid quality standards are the rule. Some of the Quebec examples one may cite are aircraft manufacture and certain food processing industries.

This tendency may be expected to grow with time as the actual physical content of output becomes less and less important. We have perhaps inherited from the past an undue respect for material goods, although in fact they represented the main constraints, and we may tend to overlook the possibilities and requirements of efficient organization and timing of production activities.

USES OF THE SYSTEM

As has been pointed out the proposed system is not designed to yield general solutions of the kind associated with the inverses of Leontief matrices. Its standard use is intended to be the calculation of activity levels of the production sectors and of total demands for various products together with their auxiliary vectors, corresponding to a given final demand. With minor adjustments to the programme these results may be summarized into the main components of the Gross Domestic Product.

Competitive imports corresponding to a given final demand come out classified by products. It would make a fairly substantial modification of the programme and would slow down computations if competitive imports were to be calculated also by the consuming sector. In general the arrangement whereby exchanges between sectors are channelled through a system of markets cannot be easily reconciled with the concepts of commodity ("product") balance equations.

Non-competitive imports are treated as a primary input. The original programme will compute their total only. It will not be difficult to give in addition their break-down by commodity groups or even by country of origin—although some additional assumptions will have to be made in the latter case.

An option is provided in the programme for recording primary inputs including non-competitive imports by sectors. Because of the non-proportionalities these have to be accumulated step by step. Since they play no role in further calculations the increases of primary inputs by sectors are put on tape at each iteration to be added up later.

The programme is such that it can reconstruct at any iteration the appropriate A and R (and B and Q) matrices according to the expressions (8) and (9) given in "Un système rectangulaire". It is thus not necessary to start always with zero vectors. On the contrary it is intended that most application will consist in calculating the marginal effects of a given increase in final demand. This will require a detailed specification of the initial state of the system. The model however cannot be run backwards: the final demand vectors actually fed in can have no negative elements. Among other things this somewhat complicates the calculation of trade-offs between different final demand categories.

One may regret the absence of general solutions. However, this is the price paid for relaxing some of the more rigid assumptions of the usual input-output models. It is of course possible to collapse the system into a square form, assume fixed coefficients, and thus return to the traditional model.

If the system is to be used to prepare decisions it does not seem possible to adapt it so that some systematic optimization procedure could be applied to it. One will have to follow the simulation practice of working out the probable consequences of a small number of different choices and comparing them subjectively. This is perhaps not so unsatisfactory as it may look. In real situations, when most of the constraints are taken into account, the domain of choice may well turn out to be so restricted that such a procedure will lead into close vicinity of the rigorous optimum.

MODIFIABLE RECTANGULAR INPUT-OUTPUT MATRICES

The autonomy of the various parameters and relations of the system should justify its use for analysis of structural change. Such analysis will be facilitated by its flexibility and in particular by the breakdown of computations into blocks relating to individual sectors and to individual markets. One can change the number of sectors and of markets and also alter the rules of column modifications.

LIMITATIONS OF THE PROPOSED SYSTEM

The system was designed for the particular needs of the government of Quebec. Its emphasis on the propagation of demand and its neglect of possible supply difficulties have already been mentioned. Reference has also been made to rather obvious possible improvements like the replacement of step functions by more sophisticated ones and the incorporation of stochastic elements.

More fundamental objections stem from the ambiguity

249

of the very concept of the input coefficient. The use of rectangular matrices and the abandoning of the proportionality assumption do not go far enough to remove it. Does the use of producers' prices for outputs and consumers' prices for inputs really lead to more stable coefficients? Should calculations be made in constant or in current prices? If the latter, how should these prices be arrived at? Then there is the question of closing the system so that final demand feeds on the incomes created by the productive sectors.

Most of these problems, including that of the proper handling of capacity restrictions and of other supply difficulties, seem to converge around the necessity of introducing a time dimension into the calculations. Even the fundamental relations between inputs and outputs involve lags, planning horizons and rates of change in the levels of activity. It appears that perhaps the most fruitful line to follow will be that of introducing realistic time-phasing into models of the kind discussed here.

ANNEX I

General scheme of computation and numerical example

A. GENERAL SCHEME OF COMPUTATION

The solution consists of the following summation:

Computation starts with an initial projection of either vector Y^{0}

 $\begin{pmatrix} Y^{0} \\ \cdots \\ Z^{0} \end{pmatrix}$ (final demand arranged in the commodity space; Z designates

a vector of primary production factors) or $\begin{cases} X^0 \\ \dots \\ U^0 \end{cases}$ (the same final

demand arranged in the activity space; U involves elements such as indirect taxes and competitive imports). In fact X^0 alone can trigger off computation; Y^0 , Z^0 and U^0 are necessary only as the initial terms to be added into the cumulation of iteration results.

Once iterative computation starts it holds at each (k-th) step of iteration that:

$$\begin{cases} Y^k \\ \cdots \\ Z^k \end{cases} = \begin{cases} A^k \\ \cdots \\ B^k \end{cases} X^{k-1} \qquad (k = 1, 2, \ldots)$$

or

$$\begin{cases} X^k \\ \cdots \\ U^k \end{cases} \quad \begin{cases} R^k \\ Q^k \end{cases} Y^k \qquad (k = 1, 2, \ldots)$$

where A^k , B^k , R^k and Q^k are matrices of "marginal" coefficients determining the increments of requirements between steps of iteration in the commodity space and in the activity space, respectively. Coefficients may change also within an iteration. and

$$\begin{cases} Y\\ \vdots\\ Z \end{cases} = \sum_{k=0}^{\infty} \begin{cases} Y^k\\ \vdots\\ Z^k \end{cases}$$

 $\begin{cases} X \\ \cdots \\ U \end{cases} = \sum_{k=0}^{\infty} \begin{cases} X^k \\ \cdots \\ U^k \end{cases}$

Coefficients are subject to modifications in the course of iteration in which cumulative levels of X's increase step by step. The marginal input coefficients at the k-th iteration are generally determined as functions of three arguments:

$$A^{k} = A\left(\sum_{g=0}^{k-1} X^{g}, \sum_{g=0}^{k-1} B^{g+1} \hat{X}^{g}, R^{k-1} \hat{Y}^{k-1}\right)$$

 B^k are determined according to similar arguments. The marginal coefficients of market share at the k-th iteration are also given by:

$$R^{k} = R\left(\sum_{g=0}^{k} Y^{g} , A^{k} \widehat{X}^{k-1} , \sum_{g=0}^{k} X^{g}\right)$$

 Q^k is similarly modified in the course of iteration.

B. NUMERICAL EXAMPLE (WITH ARTIFICIAL DATA)

Vectors: elements correspond to: X Y Z U 5×1 sectors 7×1 products 2×1 2×1 primary goods (indirect taxes competitive imports Matrices: 7×5 A B R 2×5 5 imes 7Q 2×7

2. Input matrices, A and B

Here, columns of B appear below the corresponding columns of A.

Column 1: changes determined by the cumulative level of X_1 , including X_1^{k-1}

Thresholds:

1. Dimensions

	$0 \le X_1 \le 1.0$	$1.0 < X_1 \le 2.5$	$2.5 < X_1 \le 4.0$	$4.0 < X_1 \le 100.0$
1.	-300	·200	·200	·200
2.	•000	-000	.000	•000
2. 3.	-200	·200	·200	·100
4.	•000	.000	.000	.000
5.	-100	·200	·300	·300
6.	·100	·100	·100	·100
7.	•000	·000	·000	.000
1.	·200	·100	·100	·200
2.	·100	·200	·100	·100

Column 2: change determined by the cumulative level of $b_{12}X_{2}$, including $b_{12}X_{2}^{k-1}$

Thresholds:

	$0 \le b_{12} X_2 \le .4$	$.4 \le b_{12} X_2 \le 100.0$
1.	•000	.000
2.	•300	·200
3.	·100	·100
4. 5.	-000	•000
5.	-000	-000
6. 7.	·300	·200
7.	•000	·000
1.	·100	·200
2.	·200	•300

Column 3: weighting determined by the product mix

Weights:

ognis.	$\frac{r_{3.5}^{k-1} Y_5^{k-1}}{D_3^{k-1}}$	$\frac{r_{3.1}^{k-1} \ Y_1^{k-1} \ r_{3.4}^{k-1} \ Y_4^{k-1}}{D_3^{k-1}}$
1.	·100	-000
2.	-000	•000
2. 3.	·300	-200
4.	•200	-300
4. 5. 6.	•000	.000
6.	•000	.000
7.	·200	·200
1.	.100	·200
2.	·100	-100

where D_3^{k-1} is such that the sum of weights = 1.

Column 4: change determined by the cumulative level of X_4 , including X_4^{k-1} , and weighting determined by the product mix.

Weights:	$\frac{r_{4.6}^{k-1}}{D_4^{k-1}}$	k-1 6 1	$\frac{r_{4.3}^{k-1} Y_3^{k-1}}{D_4^{k-1}}$	
Thresholds:	-	$5.0 < X_4 \le 100.0$	D_4 $0 \le X_4 \le 5.0$	$5.0 < X_4 \le 100.0$
1.	•000	.000	·100	·100
2.	·100	·100	·100	·100
2. 3.	•000	.000	•000	.000
4.	.000	·000	.000	•000
5.	·300	·400	·200	·200
6.	.100	·100	.000	•000
7.	·200	·200	·300	•400
1.	·200	·100	-200	·100
2.	·100	·100	·100	·100

where D_4^{k-1} is such that the sum of weights = 1.

Column 5: no changes; product 2. is a by-product of this sector, hence the corresponding coefficient is negative.

1.	·200
2.	100
3.	·000
4.	·200
5.	·000
6.	·200
7.	·100
1.	-300
2.	-100

For the

 $\mathbb{E}^{[n]_{1}} = \mathbb{E}^{[n]_{1}}$

3. Output matrices. R and Q

Here, columns of Q appear below the corresponding columns of R.

Column 1: change determined by the cumulative level of X_1 , including X_1^k

Thresholds:

	$0 \leq X_1 \leq 6.0$	$6.0 < X_1 \le 100.0$
1.	•500	·000
2.	•000	.000
3.	·200	·300
4.	.000	·000
5.	·100	·100
1.	·100	·200
2.	·100	·400

Column 2: change determined by the cumulative level of X_1 , including X_1^k , and weighting determined by sector-mix.

Weights:

		$\frac{a_{2,2}^k X_2^{k-1}}{F_2^{k-1}} \qquad \frac{a_{2,2}^k}{F_2^{k-1}}$	$\frac{4 X_4^{k-1}}{F_2^{k-1}}$	
Thresholds:	$0 \le X_1 \le 6.0$	$6.0 < X_1 \le 100.0$	$0 \le X_1 \le 6.0$	$6.0 < X_i \le 100.0$
1. 2. 3.	-600 -000 -000 -000	-000 -000 -000 -000	-700 -000 -000 -000	-000 -000 -000 -000
4. 5.	·100	·100	·100	·200
1. 2.	·100 ·200	·200 ·700	·100 ·100	•200 •600

where F_2^{k-1} is such that the sum of weights = 1.

Column 3: changes determined by the cumulative level of X_4 , including X_4^k , and by the cumulative level of X_2 , including X_2^k .

Thresholds of X_4 :

$$0 \le X_4 \le 10.0 \quad 0 \le X_4 \le 10.0 \quad 10.0 < X_4 \le 100.0 \quad 10.0 < X_4 \le 100.0$$

Thresholds of X_2 :

	$0 \le X_2 \le 7.0$	$7.0 < X_2 \le 100.0$	$0 \le X_2 \le 7.0$	$7.0 < X_2 \le 100.0$
1.	·000	.000	-000	.000
2.	·500	.000	·600	.000
3.	•000	·000	.000	.000
4.	·200	·400	·000	-000
5.	·200	·200	·200	·200
1.	·100	·100	·100	·200
2.	-000	·300	·100	·600

Column 4: change determined by the cumulative level of X_2 including X_2^k and weighting determined by sector mix.

Weights:

$$\frac{a_{4,3}^k X_3^{k-1}}{F_4^{k-1}} \qquad \frac{a_{4,5}^k X_5^{k-1}}{F_4^{k-1}}$$

Thresholds:

	$0 \leq X_2 \leq 7.0$	$7.0 < X_2 \le 100.0$	$0 \leq X_2 \leq 7.0$	$7.0 < X_2 \le 100.0$
1	000			
1.	·000	·000	•000	•000
2.	·200	·000	·100	•000
2. 3.		·300	·400	•400
4.	.000	-000	.000	•000
4. 5.	-200	·100	·100	·100
1.	·200	·200	·200	·200
2.	·100	·400	•200	·300

where F_4^{k-1} is such that the sum of weights = 1.

Column 5: no changes.

1. 2.	•000
3.	•000 •500
4. 5.	·000 •100
1. 2.	-100 -300

Column 6: change determined by the cumulative level of X_4 including X_4^k .

Thresholds:

	$0 \le X_4 \le 10.0$	$10.0 < X_4 \le 100.0$
1.	.000	•000
2.	.000	•000
3.	.000	•000
	·600	.000
4. 5.	·100	·100
1.	·100	•300
2.	·200	·600

Column 7: change determined by the cumulative level of X_2 , including X_2^k .

Thresholds:	$0 \le X_2 \le 7.0$	$7.0 < X_2 \le 100.0$
1.	•000	.000
2.	-200	.000
3.	-000	•000
	.000	•000
4. 5.	•500	•600
1.	·200	·200
2.	·100	•200

4. Summary of column modifications

Matrices A and B:

Column 1: thresholds on
$$\sum_{g=0}^{k-1} X_1^g$$

(capacity constraint $X_1 \le 6.0$)
Column 2: threshold on $\sum_{g=0}^{k-1} b_{1,2}^{g+1} X_2^g$
(capacity constraint $X_2 \le 7.0$)

2·0 5·0 2·0 4·0 3·0

2∙0 2∙0

	Column 3:	weighting determined by product-mix	
	Column 4:	threshold on $\sum_{g=0}^{k-1} X_4^g$	
		(capacity constraint $X_4 \leq 10.0$)	
		weighting determined by product-mix	
	Column 5:	no changes (this sector has one by-product).	
Matrice	es R and Q:		
	Column 1:	threshold on $\sum_{g=0}^{k} X_{1}^{g}$	
	Column 2:	threshold on $\sum_{g=0}^{k} X_{1}^{g}$	
		weighting determined by sector-mix	
	Column 3:	thresholds on $\sum_{g=0}^{k} X_{2}^{g}$ and $\sum_{g=0}^{k} X_{2}^{g}$	
	Column 4:	threshold on $\sum_{g=0}^{k} X_{4}^{g}$	
		weighting determined by sector-mix	
	Column 5:	no changes	
	Column 6:	threshold on $\sum_{g=0}^{k} X_{4}^{k}$	
	Column 7:	threshold on $\sum_{g=0}^{k} X_{2}^{k}$.	
5. Final de	emand		
	Yo		X ₀
1. 2. 3. 4.	2 4 4	2:0 1. 2:0 2. 1:0 3. 1:0 4.	
5	4	LO 5.	

1. 2. 3. 4. 5. 6. 7.		2·0 2·0 4·0 4·0 2·0 2·0	1. 2. 3. 4. 5.	
	Zo			U_0
1. 2.		1-0 •0	1. 2.	

Rows 3 and 4 of R_0 —necessary to determine product-mix weights of columns 3 and 4 of A_1

	Ro									
	1.	2.	3.	4.	5.	6.	7			
2.						—	_			
3.	·200	.000	·000	·100	·300	•000	•000			
4.	•000	.000	·700	•000	·000	•600	•000			
5.										

6. Solution

Accumulation of Y and Z

	Iterations									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	
1.	2.000	3.500	4.323	4.693	4.882	4.969	5.006	5.022	5.029	
2.	2.000	3.500	3.714	3.820	3.831	3.823	3.919	3.817	3.816	
3.	4.000	5.420	6.199	6.584	6.828	6.791	6.819	6.831	6.836	
4.	4.000	5.080	5.804	6.224	6.436	6.541	6.589	6.610	6.619	
5.	4.000	5.220	6.206	6.630	6.837	6.922	6.955	6.970	6.976	
6.	2.000	4.320	5.268	5.707	5.886	5.958	5.989	6.003	6.009	
7.	2.000	3.780	4.612	5.069	5-311	5.424	5.473	5.494	5.503	
1.	1.000	3.880	5.353	6.061	6.396	6.542	6.608	6.635	6.647	
2.	•000	2.300	3.379	3.893	4.087	4.160	4.192	4.206	4·212	

Accumulation of X and U

	Iterations									
	0.	1.	2.	3.	4.	5.	6.	7.	8.	
1.	2.000	3.683	4·232	4.486	4.588	4.626	4.642	4.649	4.651	
2.	5.000	6.221	6.882	7.000	7.000	7.000	7.000	7.000	7.000	
3.	2.000	3.294	4.209	4.640	4.855	4.952	4·993	5-011	5.018	
4.	4.000	5.676	6.401	6.792	6.957	7.025	7.055	7.068	7.074	
5.	3.000	4.984	5.958	6·477	6.731	6.846	6.895	6.916	6.925	
1.	2.000	3.368	4.054	4.402	4.566	4.640	4.672	4.686	4.692	
2.	2.000	3.593	4 ·390	4.929	5.213	5.339	5.393	5-417	5.427	

Accumulation of $b_{1,3}$ X_3

Iterations								
1.	2.	3.	4.	5.	6.	7.	8.	
∙600	•841	∙974	1·001	1·001	1·001	1∙001	1·001	

0th iteration

 X_0, U_0, Y_0 , and Z_0 are those of final demand (see above)

Product-mix information:

$r_{3.1}^0 Y_1^0$	$r_{3.4}^0 Y_4^0$	$r^0_{3,5}Y^0_5$	$r_{4.3}^0 Y_3^0$	$r_{4.6}^0 Y_6^0$
·400	·400	1.200	2.800	1.200

1st iteration

Yı	and Z_1		X_1	and U_1
1.	1.500		1.	1.683
2.	1.500		2.	1.221
3.	1.420		3.	1.294
4.	1.080		4.	1.676
5.	1.220		5.	1.984
6.	2.320			
7.	1.780			
1.	2.880		1.	1.368
2.	2.300		2.	1.593
Sector-mix information:				
	$a_{2.2}^1 X_2^0$	$a_{2.4}^1 X_4^0$	$a_{4.3}^1 X_3^0$	$a_{4.5}^1 X_5^0$
	1.400	•400	•480	•600

Product-mix inform	mation:	h				
	$r_{3.1}^1 Y_1^1$	$r_{3.4}^1 Y_4^1$	$r_{3.5}^1 Y_5^1$	$r_{4.3}^1 Y_{5.3}^1$	$r_{4.6}^1 Y_6^1$	
	•300	·384	·610	·284	1.392	
2nd iteration						
	נ	Z_2 and Z_2			X_2 and U_2	
	1. 2. 3. 4. 5. 6. 7.	•823 •214 •779 •724 •986 •948 •832		1. 2. 3. 4. 5.	-549 -661 -915 -725 -974	
	1. 2.	1·473 1·079		1. 2.	•686 •797	
Sector-mix information						
		$_{.2}X_2^1 \qquad a_2^2$		$x_{4.3}^2 X_3^1$	$a_{4\cdot 5}^2 X_5^1$	
	•2	244 ·	168	•327	•397	
Product-mix inforr	nation:					
	$r_{3.1}^2 Y_1^2$	$r_{3.4}^2 Y_4^2$	$r_{3\cdot 5}^2 Y_5^2$		$r_{4^{\cdot}3}^2Y_3^2$	$r_{4^{-}6}^2 Y_6^2$
	·165	·257	·493		·1 5 6	·569
3rd iteration						
	1. 2. 3. 4. 5. 6. 7.	·370 ·106 ·385 ·420 ·424 ·439 ·457		1. 2. 3. 4. 5.	$\begin{array}{r} \cdot 086 + \cdot 168 = \cdot 254 \\ \cdot 118 + \cdot 000 = \cdot 118 \\ \cdot 146 + \cdot 285 = \cdot 431 \\ \cdot 115 + \cdot 276 = \cdot 391 \\ \cdot 171 + \cdot 348 = \cdot 519 \end{array}$	
	1. 2.	·708 ·514		1. 2.	$\cdot 118 + \cdot 230 = \cdot 348$ $\cdot 127 + \cdot 412 = \cdot 539$	
Sector-mix informa	ation:					
		$_{2}X_{2}^{2}$ a_{2}^{3}	X_{A}^{2} a^{2}	X_1^2	$\pi_{4}^{3} S_{5}^{2}$	
	•13			225	·195	
				2*		

N.B. X_3 and U_3 are the sum of two vectors, the first being $\frac{R}{Q} \times .374 Y_3$ and the second $\frac{R}{Q} \times .626 Y_3$

Product-mix information:

•

$r_{3.1}^3 Y_1^3$	$r_{3.4}^3 Y_4^3$	$r_{3.5}^3 Y_5^3$	$r_{4.3}^3 Y_3^3$	$r_{4.6}^3 Y_6^3$
·025 ·049	∙049 ∙096	·072 ·140	·026 ·102	·089 ·174
·074	·145	·212	·128	·263

4th iteration

	Y_4 and Z_4		X_4 and U_4
1. 2. 3. 4. 5. 6. 7.	-189 -011 -144 -212 -207 -179 -242	1. 2. 3. 4. 5.	·102 ·000 ·215 ·165 ·254
1. 2.	·335 ·194	1. 2.	·164 ·284

Sector-mix information:

$a_{2,2}^4 X_2^3$	$a_{2,4}^4 X_4^3$	$a_{4,3}^4 X_3^3$	$a_{4.5}^4 X_5^3$
·024	·039	·108	·104

Product-mix information:

$r_{3.1}^4 Y_1^4$	$r_{3.4}^4 Y_4^4$	$r_{3.5}^4 Y_5^4$	$r_{4.3}^4 Y_3^4$	$r_{4.5}^4 Y_5^4$
•037	·074	·104	·058	·107

5th iteration

	Y_5 and Z_5		X_5 and U_5
1.	·087	1.	·038
2.		2.	·000
	·063	3.	·097
4.	-105	4.	·068
3. 4. 5.	·085	5.	-115
6.	-072		
7.	·113		
1.	·146	1.	·074
2.	·073	2.	·126

Sector-mix information:

$a_{2.2}^5 X_2^4$	$a_{2.4}^5 X_4^4$	$a_{4.3}^5 X_3^4$	$a_{4.5}^5 X_5^4$
·000	·017	·054	·051

Product-mix information:

$r_{3.1}^5 Y_1^5$	$r_{3,4}^5 Y_4^5$	$r_{3.5}^5 Y_5^5$	$r_{4.3}^5 Y_3^5$	$r_{4.6}^5 Y_6^5$
•017	·037	·043	·025	·043

6th iteration

	Y_6 and Z_6		X_6 and U_6
1.	·037	1.	·016
2.		2.	·000
2. 3.	-028	2. 3.	·041
	·048	4.	·030
4. 5. 6.	·033	5.	·049
6.	-031		
7.	·049		
1.	·066	1.	·032
2.	·032	2.	· 05 4

257

Sector-mix informati	ion:				
	$a_{2,2}^6$	$X_2^5 a_{2.4}^6$	$X_4^5 a_{4.3}^6$	$X_3^5 a_{4.5}^6$	X_{5}^{5}
	·000	•00	7 ·02	5 •02	3
Product-mix informa	ition:				
	$r_{3.1}^6 Y_1^6$	$r_{3.4}^6 Y_4^6$	$r_{3.5}^6 Y_5^6$	$r_{4.3}^6 Y_3^6$	$r_{4.6}^6 Y_6^6$
	·007	·017	·017	·011	·019
7th iteration					
	Y_7 a	and Z_7		X7 a	nd U_7
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02 12 21 45 44 21		100 200 301 401 502	0 8 3
	1. ·02 2. ·01			1. •01 2. •02	-
Sector-mix informati	$a_{2.2}^7$			$X_3^6 a_{4.5}^7$ 1 ·01	-
Product-mix information	ation:				
				$r_{4.3}^7 Y_3^7$	

8th iteration

	Y_8 and Z_8		X_8 and U_8
1.	·007	1.	.002
2.		2.	·000
2. 3.	·005	3.	·007
4.	·009		·006
4. 5. 6.	·006	4. 5.	·009
6.	·006		
7.	·009		
1.	·012	1.	•006
2.	·006	2.	·010

Sector-mix information:

$a_{2.2}^8 X_2^7$	$a_{2.4}^8 X_4^7$	$a_{4.3}^8 X_3^7$	$a_{4.5}^8 X_5^7$
•000	·001	•006	·004

Product-mix information:

`**.**-•

 $r_{3.1}^8 Y_1^8$ $r_{3.4}^8 Y_4^8$ $r_{3.5}^8 Y_5^8$ $r_{4.3}^8 Y_3^8$ $r_{4.6}^8 Y_6^8$

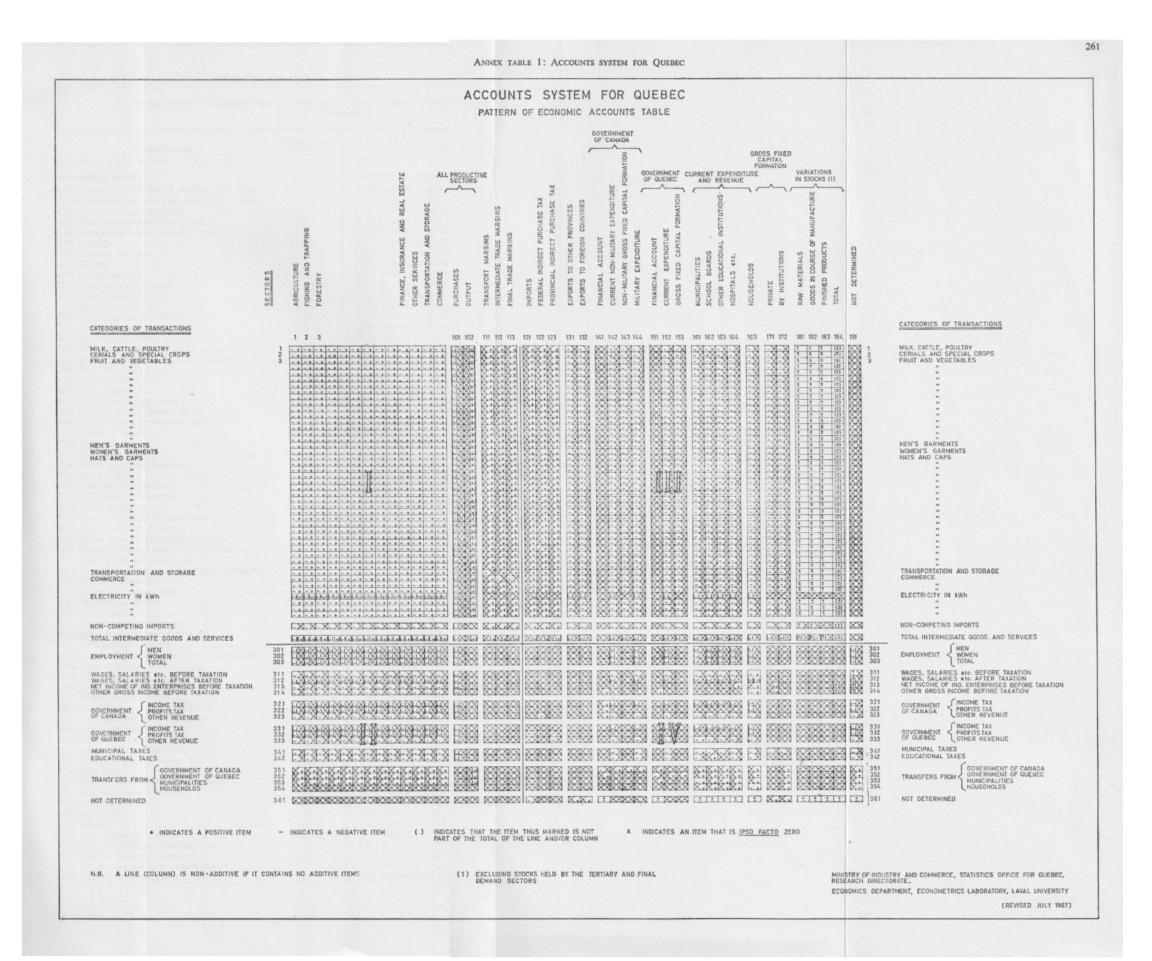
ANNEX II

A preview of the national accounts system of Quebec

With the permission of the Ministry of Industry and Trade of the Government of Quebec a small excerpt from the interim results of the 1961 input-output compilation is given in this annex.

Table 1 presents the general scheme of compilation for the national accounts system of Quebec, of which the rectangular input-output table is an integral part. In this table the sign + indicates positive entry and relates to the system of markets or output matrices R and S mentioned in the text. The sign - indicates negative entry and relates to the input structure of each productive sector (and the structure of expenditures of each final demand sector). When the entry appears in parentheses it is the non-additive type of information and is not included in the numerical total of row and column. A column or row which has no additive entry is therefore non-additive. The sign \times indicates that there is no entry by definition.

Quadrant I has nearly 300 row sectors (commodities) coded in accordance with the Canadian SIC, and 59 column sectors (industries). The cross-classification of these sectors in the commodity space and in the industry space is given in table 2.


In table 3 the preliminary estimates of the output vector and of the input vector are shown for each of the seven selected column sectors. These sectors are:

- No. 11. Bakery and confectionery (=SIC 1280, 1291)
- No. 14. Distillery, brewery, winery (=SIC 1430m 1450, 1470)
- No. 15. Tobacco manufacture (=SIC 1510, 1530)
- No. 19. Cotton spinning and weaving (=SIC 1830)
- No. 24. Furniture and fixtures (=SIC 2610, 2640, 2660, 2680)
- No. 29. Iron and steel mills (=SIC 2910)

No. 33. Metal stamping, pressing and coating (=SIC 3040)

Shipments are valued at f.o.b. at establishments. The costs of transport to purchasers are treated as the purchase of transport services by the latter, so that the inputs from rows 5060 and 5070 appear as non-additive entries at this stage of compilation. Similarly, indirect taxes, even if they are paid by sellers, are charged to purchasers of goods and services. While the estimates shown for these seven sectors are still preliminary, they are among those which are relatively quickly established and any revisions are expected to be of a minor order.

The product-mix of output and the structure of input are shown in table 3 both in terms of values (thousands of Canadian dollars) and in terms of coefficients (6-digit decimal fractions). Primary inputs or elements of value-added are coded by the letters I, W, P, T_1 , T_2 , S, and R.

....

ANNEX TABLE 2: CLASSIFICATION OF COMMODITIES AND INDUSTRIES FOR RECTANGULAR TABULATION (Tentative)

Commodity space	Corresponding industry No.	Commodity space
(Intermediate sectors)		(Intermediate sectors)
0110 Livestock and livestock combination farms	1	1720 Leather tanneries
0130 Field crop and field crop combination farms	1	1740 Shoe factories
0150 Fruit and vegetable farms	1	1750 Leather glove factories
0190 Miscellaneous speciality farms	1	1791 Leather belting manufacturers
0210 Services incidental to agriculture	1	1792 Boot and shoe findings manufacturers
0310 Logging	3	1799 Miscellaneous leather products manufacturers
0390 Forestry services	3	1830 Cotton yarn and cloth mills
0410 Fishing	2	1930 Wool yarn mills
0450 Fishery services	2	1970 Wool cloth mills
0470 Hunting and trapping	2 4	2010 Synthetic textile mills
0510 Placer gold mines	4 4	2110 Fibre-preparing mills
0520 Gold quartz mines 0530 Copper-gold-silver mines	4	2120 Thread mills 2130 Cordage and twine industry
0540 Nickel-copper mines	4	2140 Narrow fabric mills
0550 Silver-cobalt mines	4	2150 Pressed and punched felt mills
0560 Silver-lead-zinc mines	4	2160 Carpet, mat and rug industry
0570 Uranium mines	4	2180 Textile dyeing and finishing plants
0580 Iron mines	4	2190 Linoleum and coated fabrics industry
0590 Other metal mines	4	2210 Canvas products industry
0610 Coal mines	4	2230 Cotton and jute bag industry
0630 Petroleum and gas wells	4	2291 Automobile fabric accessory manufacturers
0650 Natural gas processing plants	4	2292 Embroidery, pleating and hemstitching manu-
0660 Oil shale and bituminous sand pits	4	facturers
0710 Asbestos mines		2299 Miscellaneous textiles industry not elsewhere
0730 Gypsum mines	5	classified
0770 Salt mines		2310 Hosiery mills
0790 Other non-metal mines		2390 Other knitting mills
0830 Stone quarries		2420 Custom tailoring shops
0870 Sand pits or quarries		2431 Men's clothing factories
0920 Petroleum prospecting 0940 Other prospecting	5 5	2432 Men's clothing contractors
0960 Contract drilling for petroleum		2441 Women's clothing factories 2442 Women's clothing contractors
0980 Other contract drilling		2442 Wohlen's clothing contractors
0990 Other services incidental to mining	5	2460 Fur goods industry
1011 Slaughtering and meat-packing plants		2470 Hat and cap industry
1012 Animal oils and fats plants		2480 Foundation garment industry
1013 Sausage and sausage-casing manufacturers		2491 Fabric glove manufacturers
1030 Poultry processors		2499 Miscellaneous clothing industry not elsewhere
1051 Butter and cheese plants	8	classified
1053 Pasteurizing plants	8	2511 Shingle mills
1055 Condenseries		2513 Sawmills except shingle mills
1056 Ice cream manufacturers		2520 Veneer and plywood mills
1070 Process cheese manufacturers	8	2541 Sash and door and planing mills (excluding
1110 Fish products industry		hardwood flooring)
1120 Fruit and vegetable canners and preservers	9	2542 Hardwood flooring
1230 Feed manufacturers		2560 Wooden box factories
1240 Flour mills 1250 Breakfast cereal manufacturers	10 10	2580 Coffin and casket industry
1250 Biscuit manufacturers		2591 Wood preservation
1291 Bakeries		2592 Wood handles and turning
1310 Confectionery manufacturers		2594 Cooperage
1330 Sugar refineries	12	2599 Miscellaneous wood industries not elsewhere
1350 Vegetable oil mills		classified
1391 Macaroni manufacturers		2610 Household furniture industry
1393 Malt and malt products	12	2640 Office furniture industry
1394 Rice mills	12	2660 Other furniture industries
1396 Miscellaneous food manufacturers	12	2680 Electric lamp and shade industry
1410 Soft drink manufacturers	13	2711 Pulp and paper mills
1430 Distilleries	14	2712 Newsprint
1450 Breweries	14	2713 Other papers
1470 Wineries	14	2720 Asphalt roofing manufacturers
1510 Leaf tobacco processing	15	2731 Folding box and set-up box manufacturers
1530 Tobacco products manufacturers	15	2732 Corrugated box manufacturers
1610 Rubber footwear manufacturers	16	2733 Paper bag manufacturers
1630 Rubber tire and tube manufacturers	16	2740 Other paper converters
1690 Other rubber industries	16	2861 Printing and bookbinding

Corresponding industry No.

22

22 20 20

25

ANNEX TABLE 2: CLASSIFICATION OF COMMODITIES AND INDUSTRIES FOR RECTANGULAR TABULATION (continued) (Tentative)

Commodity space	Corresponding industry No.	Commodity space	Corresponding industry No.
(Intermediate sectors)		(Intermediate sectors)	
2862 Lithographing	28	3651 Petroleum refining	45
2871 Engraving and duplicate plates	28	3652 Manufacturers of lubricating oils and greases	45
2872 Trade composition or typesetting	28	3690 Other petroleum and coal products industries	45
2880 Publishing only	28	3710 Explosives and ammunition manufacturers	48
2890 Printing and publishing	28	3720 Manufacturers of mixed fertilizers	48
2910 Iron and steel mills	29	3730 Manufacturers of plastics and synthetic resins	40
2920 Steel pipe and tube mills	31	3740 Manufacturers of pharmaceuticals and	-11
2940 Iron foundries	31	medicines	46
2950 Smelting and refining of non-ferrous metals	30	3750 Paint and varnish manufacturers	48
2960 Aluminium rolling, casting and extruding	31	3760 Manufacturers of soap and cleaning compounds	46
2970 Copper and alloy rolling, casting and extruding	31	3770 Manufacturers of toilet preparations	46
2980 Non-ferrous metal rolling, casting and extrud-	51	3780 Manufacturers of industrial chemicals	48
ing, not elsewhere classified	31	3791 Manufacturers of printing inks	48
3010 Boiler and plate works	34	3799 Other chemical industries not elsewhere classi-	-10
3020 Fabricated structural metal industry	32	fied	48
3030 Ornamental and architectural metal industry	34	3811 Instrument and related products manufacturers	40
3040 Metal stamping, pressing and coating industry	33	3812 Clock and watch manufacturers	49
3050 Wire and wire-products manufacturers		2012 Clock and watch manufacturers	49
	34	3813 Orthopaedic and surgical appliances manu-	40
060 Hardware, tool and cutlery manufacturers	34	facturers	49 40
3070 Heating equipment manufacturers	34	3814 Ophthalmic goods manufacturers	49
3080 Machine shops	34	3815 Dental laboratories	49
1090 Miscellaneous metal fabricating industries	34	3820 Jewellery and silverware manufacturers	49
3110 Agricultural implement industry	35	3830 Broom, brush and mop industry	49
150 Miscellaneous machinery and equipment manu-		3840 Venetian blind manufacturers	49
facturers	35	3850 Plastic fabricators not elsewhere classified	49
160 Commerical refrigeration and air-conditioning		3931 Sporting goods industry	49
equipment manufacturers	35	3932 Toys and games industry	49
180 Office and store machinery manufacturers	35	3950 Fur dressing and dyeing industry	49
210 Aircraft and parts manufacturers	36	3970 Signs and displays industry	49
230 Motor vehicle manufacturers	39	3981 Button, buckle and fastener industry	49
240 Truck body and trailer manufacturers	39	3982 Candle manufacturers	49
3250 Motor vehicle parts and accessories manu-		3983 Hair goods manufacturers	49
facturers	39	3984 Artificial flowers and feathers manufacturers	49
260 Railroad rolling stock industry	38	3985 Model and pattern manufacturers	49
270 Shipbuilding and repair	37	3986 Musical instruments industry	49
280 Boatbuilding and repair	37	3987 Sound recording industry	49
290 Miscellaneous vehicle manufacturers	39	3988 Typewriter supplies manufacturers	49
310 Manufacturers of small electrical appliances	40	3989 Fountain pen and pencil manufacturers	49
320 Manufacturers of major appliances (electric		3993 Smokers' supplies manufacturers	49
and non-electric)	40	3995 Stamp and stencil (rubber and metal) manu-	
3340 Manufacturers of household radio and tele-		facturers	49
vision receivers	42	3996 Statuary, art goods, regalia and novelty manu-	
3350 Communications equipment manufacturers	41	facturers	49
3360 Manufacturers of electrical industrial equip-		3997 Umbrella manufacturers	49
ment	42	3998 Artificial ice manufacturers	49
370 Battery manufacturers	42	3999 Other miscellaneous industries	49
380 Manufacturers of electric wire and cable	41	4040 Building construction	50
390 Manufacturers of miscellaneous electrical pro-		4060 Highway, bridge and street construction	51
ducts	42	4090 Other construction	51
410 Cement manufacturers	43	4210 Special-trade contractors transportation, com-	
430 Lime manufacturers	43	munication and other utilities	50
450 Gypsum products manufacturers	43	5010 Air transport	53
4470 Concrete products manufacturers	43	5020 Services incidental to air transport	53
480 Ready-mix concrete manufacturers	43	5040 Water transport	53
511 Clay products manufacturers (from domestic		5050 Services incidental to water transport	53
clays)	43	5060 Railway transport	53
512 Clay products manufacturers (from imported		5070 Truck transport	53
clays)	43	5080 Bus transport, interurban and rural	53
3520 Refractories manufacturers	43	5090 Urban transit systems	53
3530 Stone products manufacturers	43	5120 Taxicab operations	53
3540 Mineral wool manufacturers	43	5150 Pipeline transport	53
3550 Asbestos products manufacturers	44	5160 Highway and bridge maintenance	53
3561 Glass manufacturers	44 44	5170 Other services incidental to transport	53
		5170 Other services incidental to transport	53
3562 Glass products manufacturers 3570 Abrasives manufacturers	44	5240 Grain elevators	53 53
3590 Other non-metallic mineral products industries	44	5240 Grain elevators	53
3370 Other non-metanic mineral products industries	44	5270 Other storage and warehousing	23

ANNEX TABLE 2: CLASSIFICATION OF COMMODITIES AND INDUSTRIES FOR RECTANGULAR TABULATION (continued) (Tentative)

Commodity space	Corresponding industry No.	Commodity space	Correspondin, industry No.
(Intermediate sectors)		(Intermediate sectors)	
5430 Radio and television broadcasting	55	8660 Legal service	59
5440 Telephone systems	55	8690 Other services to business management	59
5450 Telegraph and cable systems	55	8710 Shoe repair shops	59
5480 Post office	55	8720 Barber and beauty shops	59
5720 Electric power	56	8730 Private households	59
5720 Electric power in kilowatt hours	56	8740 Laundries, cleaners and pressers	59
5740 Gas distribution	57	8750 Hotels, restaurants and taverns	59
5760 Water systems	57	8760 Lodging houses and residential clubs	59
5790 Other utilities	57	8770 Funeral directors	59
6000 Commerce	52	8780 Dressmaking	59
6580 Repairs of motor vehicles at retail shops	52	8790 Other personal services	59
7020 Savings and credit institutions	58	8910 Labour organizations and trade associations	59
7040 Investment companies and security dealers	58	8930 Photography	59
7310 Insurance carriers	58	8940 Blacksmithing and welding shops	59
7350 Insurance and real estate agencies	58	8960 Miscellaneous repair shops	59
7370 Real estate operators	58	8970 Services to buildings and dwellings	59
8010 Elementary and secondary schools	59	8990 Other miscellaneous services	59
8030 Vocational schools	59	9020 Defence services	59
8050 Universities and colleges	59	9090 Other federal administration	59
8070 Libraries, museums and other repositories	59	9310 Provincial administration	59
8090 Education and related services not elsewhere		9510 Local administration	59
classified	59	9910 Other government offices	59
8210 Hospitals	59	9990 Unallocated	
8230 Offices of physicians	59	9999 Non-competitive imports	
8250 Offices of dentists	59	I Intermediate goods and sevices, total	
8270 Other health services	59		
8280 Welfare organizations			
3310 Religious organizations	59	(Value added)	
8510 Motion picture theatres and film exchanges	59	W Wages and salaries before taxes	
3530 Bowling alleys and billiard parlours	59	P Other incomes before taxes	
8590 Other recreational services	59	T ₁ Indirect taxes, Government of Canada	
8610 Accountancy service	59	T _a Other fiscal receipts, Government of Canada	
8620 Advertising service	59	S Other fiscal receipts, government of Quebec	_
8640 Engineering and scientific service	59	R Municipal taxes	

ANNEX TABLE 3	OUTPUTS AND INPUTS FOR SEVEN SELECTED SECTORS,	QUEBEC, 1961
	(Value data in thousands of Canadian dollars)	

Code	Value	Coefficient	Code	Value	Coefficient
1. Bakery and con	fectionery		11. Bakery and Co Inputs:—continu	onfectionerycontinued	
Outputs:	20	202		26	101
1120	29	202	4210		181
1280	33,437	233,289	5010	52	363
1291	108,960	760,209	5040	1	7
1310	606	4,228	5060	(519) ^b	
1391	134	935	5070	(506) ^b	
1396	86	600	5120	7	49
3150	49	342	5190	275	1,919
4040	28	195	5440	366	2,553
-10-10			5480	61	426
T = + 1	143,329	1,000,000	5720	622	4,340
Total	143,523	1,000,000	5720Q	(62,106)°	7,570
-					975
Inputs:	2.62	1 000	5760	124	865
0110	262	1,828	5790	27	188
0150	1,029*	7,179	7310	521	3,635
0190	32	223	7370	1,021	7,123
0610	138	963	8610	188	1,312
0630	1,114	7,772	8620	1,462	10,200
0650	55	384	8640	132	921
0770	121	844	8740	270	1,884
			8750	178	1,804
1011	1,420	9,907			
1012	6,031	42,078	8970	1,113	7,765
1051	428	2,986	8990	1,114	7,772
1053	192	1,340	I I	79,349	553,617
1055	608	4,242	W	40,839	284,932
1120	1,819	12,691	Р	22,054	153,867
1240	22,823	159,235	T ₁	(136) ^b	
1250	1,161	8,100	S	199	1,388
1280	61	426	Ř	888	6,196
	197		K	000	0,170
1291		1,374	Id Distilland Land		
1310	2,061	14,380	14. Distillery, brew	ery and winery	
1330	5,562	38,806	Outputs:		
1350	495	3,454	1230	1,505	12,996
1393	178	1,242	1396	275	2,375
1396	5,652	39,434	1430	55,551	479,694
1799	21	147	1450	56,438	487,354
2230	10	70	1470	392	3,385
2431	163	1,137	2731	283	2,444
	105	84	3561	200	17
2441	6	42	3760	800	6,908
2513					
2731	3,728	26,010	3770	317	2,737
2732	3,344	23,331	3780	49	423
2733	1,570	10,954	3799	193	1,667
2740	6,653	46,418			
2861	475	3,314		Total 115,805	1,000,000
2910	7	49			
3010	9	63	Inputs:		
3030	51	356	0130	3,582ª	30,931
3040	17	119	0210	4	35
3050	3	21	0610	20	172
	176	1,228	0630	1	9
3060	990	6,907	0650	1	9
3080					
3090	7	49	0730	4	35
3110	60	419	1120	70	604
3150	1,036	7,228	1250	212	1,831
3160	38	265	1330	688	5,941
3240	13	91	1393	7,466	64,470
3360	10	70	1396	204	1,762
3390	3	21	1430	3,350	28,928
	5 7	49	1450	701	6,053
3561			1470	59	509
3651	1,478	10,312		53	
3652	2	14	2431		458
3750	4	28	2560	43	371
3760	112	781	2594	635	5,483
3780	9	63	2599	14	121
3811	4	28	2720	97	838
3998	1	7	2731	2,499	21,579
	331	2,309	2740	527	4,551

267

ANNEX TABLE 3: OUTPUTS AND INPUTS FOR SEVEN SELECTED SECTORS, QUEBEC, 1961 (continued) (Value data in thousands of Canadian dollars)

Code	Value	Coefficient	Code	Value	Coefficient
	wery and winery—continued	!	•	ufacture—continued	
Inputs:-continu			Inputs:—conti		
2861	1,037	8,955	2713	2,346	12,100
3040	4,310	37,218	2731	8,336	42,996
3070	1	9	2732	17	88
3080	1,652	14,265	2740	7,492	38,643
3090	147	1,269	2861	183	944
3150	882	7,616	2970	5,503	28,384
3360	46	397	3040	1,764	9,099
3561	2,926	25,267	3050	6	31
3562	49	423	3060	62	320
3651	977			1 020	
		8,436	3080	1,039	5,359
3750	15	130	3090	7	36
3760	16	138	3150	269	1,387
3780	812	7,011	3180	1	5
3811	33	285	3230	1	5
4040	556	4,801	3310	1	5
4090	230	1,986	3360	33	170
5010	84	725	3390	2	10
5040	2	17	3651	194	1,001
5050	21	181	3652	1	5
5120	11	95	3750	1	5
5160	3	93 26			139
			3760	27	
5190	448	3,869	3770	17	88
5440	227	1,960	3780	194	1,001
5480	33	285	3799	1	5
5720	460	3,972	3811	2	10
5720 Q	(77,511)°		3850	158	815
5760	463	3,998	4040	909	4,689
5790	300	2,591	4210	586	3,023
6580	27	233	5010	89	459
7310	284	2,452	5040	2	10
7370	66	570	5060	(719) ^b	
8610	113	976	5070	(697) ^b	
8620					
	4,971	42,926	5120	12	62
8640	242	2,090	5190	474	2,445
8740	25	216	5440	183	944
8750	290	2,504	5480	47	242
899 0	135	1,166	5720	326	1,681
I	42,124	363,748	5720 Q	(30 ,986)°	
W	23,639	204,128	5760	51	263
Р	2,425	20,942	5790	48	248
T_2	45,803	395,518	7310	342	1,764
ร้	247	2,133	7370	550	2,837
Ř	1,567	13,531	8610	239	1,233
K	1,507	15,551		9,117	47,025
Tabaaa water	for a farma		8620	9,11/	47,023
Tobacco manuj	lacture		8640	534	2,754
Outputs:	< ^ ^		8740	69	356
1510	6,922	35,703	8750	307	1,583
1530	186,860	963,807	8990	266	1,372
3150	94	485	9090	1	5
4040	1	5	I	119,405	615,880
	Toru 102.977	1 000 000	W	27,132	139,944
	Total 193,877	1,000,000	P	46,622	240,474
			T ₁	(312,734) ^f	
Inputs:			T ₂	3	15
0130	76,523	394,699	S	161	830
0610	10,525	52	R	554	2,857
0630	22		к	<i>J</i> . 4	2,037
		113	10 0	the and meaning	
0650	6	31	19. Cotton spinn	ing ana weaving	
1330	683	3,523	Outputs:		<u>.</u>
1530	240	1,238	1830	162,207	915,028
1690	1	5	2010	1,263	7,125
1799	10	52	2110	2,099	11,841
2299	4	21	2130	3,654	20,612
2431	15	77	2299	8,047	45,394
2513	13	5	2277		
2560	80	413		TOTAL 177,270	1,000,000
	00	41.3	1	101AL 1//.4/V	1.000.000

ANNEX TABLE	3: OUTPUTS AND	INPUTS F	FOR SEVEN	SELECTED	SECTORS,	QUEBEC,	1961	(continued)
	(Value	data in ti	housands c	f Canadia	in dollars)	ł		

Code	Value	Coefficient	Code	Value	Coefficient
9. Cotton spinnin	g and weaving—continued		24. Furniture—cont	inued	
Inputs:			Inputs:		
0110		23	0310	33	265
0130	33,600°	189,541	0610	68	545
0610	1,023	5,771	0630	22	176
0650	44	248	0650	6	48
1396	1,107	6,245	1690	1,122	8,994
1830	51,148	288,532	1720	182	1,459
2010	1,745	9,844	1830	166	1,330
2110	1,476	8,326	2120	81	649
2120	21	119	2130	18	144
2230	81	457	2150	18	144
2560	10	56	2190	1,990	15,953
2731	122	688	2230	10	80
2732	861	4,857	2299	10,452	83,788
2733	35	197	2513	9,914	79,475
2740	648	3,655	2520	8,041	64,460
2861	395	2,228	2541	85	681
3040	73	412	2560	103	826
3080	2,567	14,481	2610	2,920	23,408
3150	5,007	28,245	2640	24	192
3651	408	2,302	2660	,925	15,432
3652	91	513	2680	8	64
3780	4,964	28,002	2731	915	7,335
4040	1,042	5,878	2732	1,839	14,742
5010	37	209	2733	152	1,219
5040	1	6	2740	526	4,216
5060	(479) ^b		2861	588	4,714
5070	(641) ^b		2910	551	4,417
5120	5	28	2920	478	3,832
5190	199	1,123	2960	1,661	13,315
5440	152	857	3040	8,020	64,292
5480	49	276	3050	3,335	26,735
5720	1,852	10,447	3060	189	1,515
5720Q	(295,108)°	, 	3080	347	2,782
5760	286	1,613	3090	1,184	9,491
5790	16	90	3150	834	6,686
7310	150	846	3390	69	553
7370	310	1,749	3562	1,536	12,313
8610	85	479	3570	822	6,590
8620	480	2,708	3651	465	3,728
8640	37	209	3652	8	64
8740	33	186	3750	2,683	21,508
8750	128	722	3760	12	96
8990	149	841	3799	802	6,429
I	110,441	623,009	3811	6	48
Ŵ	38,004	214,385	3931	3,097	24,827
Р	26,917	151,843	3985	26	208
S	39	220	4040	791	6,341
R	1,869	10,543	5010	51	408
	,		5040	1	8
4. Furniture			5060	(127)"	
Outputs:			5070	(114) ^b	_
1690	1	8	5190	275	2,205
2299	603	4,834	5440	482	3,864
2513	739	5,924	5480	182	1,459
2520	196	1,571	5720	762	6,109
2541	64	513	5720Q	(49,913)°	0,10>
2610	74,857	600,085	5760	48	385
2640	8,232	65,991	5790	48 6	48
2660	32,733	262,402	7310	400	3,207
2680	5,970	47,858	7370	657	5,267
2740	25	201	8610	374	2,998
3030	755				2,998 10,918
3050	382	6,052	8620	1,362	
3562		3,062	8640	818	6,557
3562 3799	112	898	8740	31	249
1/74	75	601	8750	178	1,427
5177	TOTAL 124,744		8990	256	2,052

-

ANNEX TABLE 3: OUTPUTS AND INPUTS FOR SEVEN SELECTED SECTORS, QUEBEC, 1961 (continued) (Value data in thousands of Canadian dollars)

Code	Value	Coefficient	Code	Value	Coefficien
4. Furniture—con				el Mills—continued	
Inputs-continue			Inputs—conti		
W	43,220	346,470	8640	87	1,936
Р	6,848	54,897	8740	3	67
T_1	(1,671) ^b	—	8750	74	1,647
S	38	305	8990	124	2,759
R	631	5,058	I	27,588	613,858
			W	12,626	280,940
9. Iron and steel n	nills		P	4,176	92,920
Outputs:	11115		S	552	
2910	44,942	1 000 000	3	552	12,282
2910	44,942	1,000,000	33. Metal stam	ping, pressing and coating	
	Total 44,942	1,000,000	Outputs:	pung, pressing and country	
	· · · · · · · · · · · · · · · · · · ·		2660	195	2,029
			2910	226	2,352
Inputs:			2960	143	1,488
0310	3	67	2970	145	
					2,019
0580	10	223	2980	145	1,509
0590	429f	9,546	3030	7,292	75,888
0610	703	15,642	3040	84,701	881,48
0630	183	4,072	3060	667	6,94
0790	276	6,141	3070	443	4,610
0830	13	289	3090	654	6,800
1350	37			125	
		823	3390		1,30
1630	3	67	3840	1,304	13,571
2230	3	67			
2513	146	3,249		Total 96,089	1,000,000
2560	240	5,340			
2713	94	2,092			
2731	13	289	Inputs:		
2732	199			10	10
		4,428	0310	13	13:
2733	9	200	0540	148	1,540
2749	112	2,492	0560	569	5,921
2910	13,107	291,643	0610	9	94
2920	15	334	0630	141	1,467
2960	34	756	0650	37	385
2970	1	22			
			1750	6	62
2980	143	3,182	2110	7	73
3040	24	534	2230	5	52
3050	2,187	48,663	2513	200	2,081
3060	93	2,069	2560	52	541
3080	1,952	43,434	2599	855	8,898
3150	509	11,326	2640	1	10
3430	108	2,403	2731	129	
					1,343
3511	129	2,870	2732	830	8,638
3520	537	11,949	2733	190	1,97
3570	83	1,847	2740	194	2,019
3590	262	5,830	2861	\ 356	3,705
3651	667	14,841	2910	28,170	293,165
3690	311	6,920	2920	313	3,257
3780	190	4,228	2950	10	104
3799	253	5,620			104
		5,629	2960	4,861	50,588
4040	448	9,968	2970	596	6,203
4210	791	17,600	2980	566	5,890
5010	21	467	3040	8,858	92,185
5060	(25) ^b		3050	211	2,19
5070	(20) ^b	<u> </u>	3060	584	6,078
5120	3	67	3080	878	9,137
5190			2000		
	114	2,537	3090	2	20
5440	127	2,826	3150	1,586	16,506
5480	20	445	3250	550	5,724
5720	2,145	47,728	3360	350	3,642
5720 Q	(534,574)°	, <u> </u>	3562	648	6,744
5760	202	4,495	3651	446	4,642
5790	5				
		111	3652	3	31
7310	94	2,091	3690	6	62
7370	4	89	3750	1,446	15,049
8610	40	890	3780	454	4,725
8620	208	4,628	3799	1,215	12,645

Ì

1000

Code	Value	Coefficient	Code	Value	Coefficient	
33. Metal stamping, pressing and coating—continued Inputs:—continued			33. Metal stamping, pressing and coating—continued Inputs:—continued			
3998	1	10	7310	226	2,352	
4040	209	2,175	7370	189	1,967	
5010	77	801	8610	182	1,894	
5040	2	21	8620	479	4,985	
5060	(87) ^b		8640	84	874	
5070	(68) ^b		8740	51	531	
5120	10	104	8750	266	2,769	
5190	411	4,277	8990	197	2,050	
5440	434	4,517	I	58,992	613,927	
5480	58	604	W	25,733	267,804	
5720	490	5,099	Р	10,292	107,113	
5720Q	(50,324)°	, <u></u>	T ₁	(104) ^b		
5760	96	999	S	57	593	
5790	35	364	R	1,015	10,563	

ANNEX TABLE 3: OUTPUTS AND INPUTS FOR SEVEN SELECTED SECTORS, QUEBEC, 1961 (continued) (Value data in thousands of Canadian dollars)

I—Intermediate goods and services, total; W—Wages and salaries before taxes; P—Other incomes before taxes; T_1 —Indirect taxes, Government of Canada; T₂—Other fiscal receipts, Government of Canada; S—Other financial receipts, government of Quebec; R—Municipal taxes.

^a Of which 890 is nuts. ^c In kilowatt hours. ^e Raw cotton. ^b Distribution costs, not included in total: ^d Of which 638 is hops. f Manganese.

Industrial Planning and Programming Series of the United Nations Industrial Development Organization

HOW TO OBTAIN UNITED NATIONS PUBLICATIONS

r

United Nations publications may be obtained from bookstores and distributors throughout the world. Consult your bookstore or write to: United Nations, Sales Section, New York or Geneva.

COMMENT SE PROCURER LES PUBLICATIONS DES NATIONS UNIES

Les publications des Nations Unies sont en vente dans les librairies et les agences dépositaires du monde entier. Informez-vous auprès de votre librairie ou adressez-vous à: Nations Unies, Section des ventes, New York ou Genève.

COMO CONSEGUIR PUBLICACIONES DE LAS NACIONES UNIDAS

Las publicaciones de las Naciones Unidas están en venta en librerías y casas distribuidoras en todas partes del mundo. Consulte a su librero o diríjase a: Naciones Unidas, Sección de Ventas, Nueva York o Ginebra.