WestVirginiaUniversity THE RESEARCH REPOSITORY @ WVU

A Microregional Analysis of Clinton County Pennsylvania - Volume

2

Hays B. Gamble
Pennsylvania State University
David L. Raphael
Pennsylvania State University

Follow this and additional works at: https://researchrepository.wvu.edu/rri_ioapplication

Recommended Citation

Gamble, Hays B. and Raphael, David L., "A Microregional Analysis of Clinton County Pennsylvania Volume 2" (1966). Applications. 68.
https://researchrepository.wvu.edu/rri_ioapplication/68

This Article is brought to you for free and open access by the RRI Input-Output Archive at The Research Repository @ WVU. It has been accepted for inclusion in Applications by an authorized administrator of The Research Repository @ WVU. For more information, please contact beau.smith@mail.wvu.edu.

A MICROREGIONAL ANALYSIS OF CLINTON COUNTY PENNSYLVANIA

VOLUME II

BY HAYS B. GAMBLE AND DAVID L. RAPHAEL
THE PENNSYLVANIA REGIONAL ANALYSIS GROUP THE PENNSYLVANIA STATE UNIVERSITY
pp 8: Equation (3) should read:

$$
Y_{i}=-a_{i 1} X_{1}-a_{i 2} X_{2}-\cdots+\left(1-a_{i i}\right) X_{i}-\ldots-a_{i m} X_{m}
$$

pp 14: Equation (12) should read:
$(I-A) X+B=Y$
pp 15: Equation (14) should read:
$X=(I-A)^{-1} Y$
pp 22: Last matrix notation should read:
$(I-A)=$ etc.
TABLE 3: Total internal transactions should be 147,221 instead of 147,211
pp 66: Line 9-criterion instead of criteria
pp 70: Line $15-(\text { I-A })^{-1}$ instead of $(1-A)^{-1}$
pp 123: Line 6 - activities instead of Households

A MICROREGIONAL ANALYSIS OF CLINTON COUNTY PENNSYLVANIA VOLUME II

BY HAYS B. GAMBLE AND DAVID L. RAPHAEL
THE PENNSYLVANIA REGIONAL ANALYSIS GROUP THE PENNSYLVANIA STATE UNIVERSITY

UNIVERSITY PARK, PENNSYLVANIA
JUNE 1966

TABLE OF CONTENTS

Page
List of Tables iii
List of Figures vi
Foreword vii
INTRODUCTION 1
Chapter
I THE CLINTON COUNTY INPUT-OUTPUT MODEL 6
Introduction 6
Mathematical Derivation 7
Numerical Example 19
Basic Assumptions of the Model and Implications of Economic Theory 27
II DEVELOPMENT OF THE CLINTON COUNTY MODEL 32
Data Collection 32
Matrix Construction 40
Sectoral Description of the Clinton County Matrix 42
III MULTIPLIER ANALYSIS 59
IV IMPACT ANALYSES 75
A. Fluctuations in the National Economy the "PRAG" Decade 76
B. The Removal or "Closing Down" of an Economic Activity 78
C. Automation of an Industry 82
D. The Introduction of New Economic Activities 86
E. Shortway Impact 96
V AN INTERREGIONAL MODEL OF CLINTON COUNTY 114
Introduction 114
An Interregional Model 115
Comparison of the Two Regions 120
LITERATURE CITED 136
SELECTED REFERENCES 138
APPENDIX 140

LIST OF TABLES

Table Page
1 Final Simplex Tableau - 5-Sector Region Example 24
2 Number of Interviews and Number of Completed Returns by Type of Activity 39
3 Transactions Matrix - Clinton County, Pennsylvania - 1963 43
4 Matrix of Technical Coefficients 44
5 Matrix of Interdependency Coefficients 45
6 Residual County Income Multipliers and Values By Sectors 62
7 Total Economic Activity Components and IndirectInternal Multipliers, By Sectors - Clinton County,Pennsylvania71
8 PRAG Decade Activity Levels - Clinton County, Pennsylvania ($\$ 1,000$ Units) 77
9 Technical Coefficients Changes - Transportation Service Sector - Removal of Railroad Service and Repair Facility 79
10 New Activity Analysis Evaluation - STRAN Reduced -Sawmill Ext. Income Unchanged80
11 New Activity Analysis Evaluation - STRAN Reduced - Sawmill Ext. Income +40 81
12 New Activity Analysis Evaluation - U-11 Out Over Three Years - (1965) 83
13 New Activity Analysis Evaluation - U-11 Out Over Three Years - (1966) 84
14 New Activity Analysis Evaluation - U-11 Out Over Three Years - (1967) 85
15 Technical Coefficient Changes - Material Processing Sector - Automation of a Paper Mill 86

LIST OF TABLES (Continued)

Table Page
16 New Activity Analysis Evaluation - I PAPR Automated (Ovdep $=0$ Balanced Thru Ext. D With Overflow) 87
17 New Sector Technical Coefficients - C1 Ski and Water Resort 88
18 New Activity Analysis Evaluation - Ski and Water Resort 89
19 New Sector Technical Coefficients - C2 Meter Factory 90
20
New Activity Analysis Evaluation - Meter Factory 91
21 New Sector Technical Coefficients - C8 Textile Mill - Branch Plant, Division and Local Ownership Variations 92
22
New Activity Analysis Evaluation - Textile Mill - Branch Plant 93
23 New Activity Analysis Evaluation - Textile Mill - Division 94
24 New Activity Analysis Evaluation - Textile Mill - Local Ownership 95
25 New Sector Technical Coefficients - C9 Particle Board Mill 96
26 New Activity Analysis Evaluation - Praglog - Particle Board Mill (Internal Sales) 9727 New Sector Technical Coefficients - CMotel, CRest,CSrvst - Shortway Motels, Restaurants and ServiceStations99
28 New Activity Analysis Evaluation - Shortway Impact - New External Sales 100
29 New Activity Analysis Evaluation - Shortway Impact - CMotel - CRest - CSrvst (Outside Ownership) 101
30 New Activity Analysis Evaluation - Shortway Impact - CMotel - CRest - CSrvst (Local Ownership) 102

LIST OF TABLES (Continued)

Tal ${ }^{*}$. Page31 New Activity Analysis Evaluation - Hiway Impact
$\mathrm{N} 10+\mathrm{N} 11$ (None Locally Owned) 10332 New Activity Analysis Evaluation - N11 + N12(Locally Owned)104
33
Clinton County Industry Sector Response Proportionsfor Eight Transfers - Industry, Retail, Households,and Agriculture Sector Responses108
34 Transactions Matrix - Interregional Model. ClintonCounty, Pennsylvania. 1963. ($\$ 1,000$ Units)11935 Technical Coefficients Matrix - Interregional Model.C1inton County, Pennsylvania. 1963. (\$1,000 Units)121
36 Interdependency Coefficients Matrix - InterregionalMode1. C1inton County, Pennsylvania. 1963.(\$1,000 Units)122
37 Comparison of Incomes and Expenditures for the Northern and Southern Regions 124
38 Partial and Total Export Demand Multipliers for Interregional Model 127
39 Indirect Internal Multipliers By Regional Sectors 132
40 Regional Interdependency of Export Demand By Sectors 133

LIST OF FIGURES

Figure Page1 Selected Sector Responses to External Income FlowsInto the Clinton County Industry Sector 110
2 Selected Sector Responses to External Income Flows Into the Clinton County Households Sector 113

FOREWORD

The purpose of this report is to serve as a technical supplement to Volume I of the Clinton County, Pennsylvania, study. In Volume I, the input-output technique was presented in very general terms. There was only a brief discussion of the procedures involved in the collection of the primary data and its assimilation into the input-output matrix. The descriptive analysis of the economy of the county and the methodologies employed in the impact analysis phase of the study were handled in a cursory manner. The purpose of Volume I was to acquaint individuals not well versed in the input-output technique with the study of Clinton County made by The Pennsylvania Regional Analysis Group.

This report, Volume II, treats all empirical phases of the study In greater detail and at a considerably higher technical level than did Volume I. Of primary interest to the research worker, the report calls for a moderate degree of familiarity with the input-output technique. Reasons for undertaking the study, a description of the study area, objectives of the study, overall conclusions, and further research recommendations will not be reiterated in this volume. This information and a more general discussion of the study as a whole are available in Volume I.

INTRODUCTION

An early application of the input-output technique was presented by Leontief (1) in 1941 as a study of the American economy. Since then, the input-output technique has experienced increasing use and application and undergone a number of modifications. Its theoretical base, however, still rests on the classical general equilibrium theory formulated by Walras (2).

More recent input-output studies in the United States have dealt with economies of varying size -- from a model of the national economy (3), a regional model of the United States emphasizing agriculture (4), and an interregional input-output model of the United States (5), to a study currently under way in New York State involving the economy of a single township.

There have been a number of excellent studies conducted at the state level. The Moore and Petersen Utah study (6) contains a detailed discussion of multipliers and their use and significance. The role of agriculture in the California economy has been studied through use of an input-output model as formulated by Martin and Carter (7), which also contains an excellent treatment of multipliers. Another California study, this one by Hansen and Tiebout (8), incorporates certain features of the economic base-foreign trade multiplier approach with certain features of the regional interindustry (input-output) approach, which they called an intersectoral flows analysis. Its distinguishing feature is use of number of employees in place of dollar values for the
empirical implementation of the model. A study recently completed of the State of Mississippi (9) focuses attention on those activities which are needed for development of families of structurally related industries, and the authors have made excellent use of a production skyline chart to emphasize this application. The University of Maryland has constructed an interindustry model of that state (10). All of the above studies relied principally on data from secondary sources. The Mississippi study, however, utilized survey techniques to obtain some of its data.

Studies employing input-output models encompassing regions smaller than states have been nearly as numerous, perhaps more so. Most of these have focused attention upon urban complexes and their economic structures. Outstanding among these are Hoch's model of the Chicago area (11), Hirsch's St. Louis study (12), and the study of the Sioux City area by Leven (13). The National Planning Association sponsored studies in three urban counties and constructed input-output models for each (14): Kalamazoo County in Michigan; Mobile County, Alabama; and Fulton County, New York. The main purpose of these last three studies was to identify and measure the direct and indirect impact of stipulated changes in foreign and domestic demand on the local economies of these three communities.

A multi-county study of southwestern Wyoming by Lund (16) has carried use of the input-output technique somewhat further than have previous studies. Lund (pp. 61-67) uses his input-output model to assess and forecast impact of changes in basic (export) income upon the
local economy. These changes take the form of increased output or external demand for already existing activities. He also takes into account changes in interrelationships endogenous to the model. Unfortunately, he does not spell out precisely how he accomplishes this, merely stating (p. 61) that changes could be overcome in actual application and were taken into account. Presumably this was accomplished by changing the values of technical coefficients. The Clinton County study, as will be explained in detail in chapters to follow, carries this impact technique much further, in that it not only assesses changes in final (external) demand, but introduces whole new industries and activities into the economy and also removes existing industries and changes completely the structure of an existing internal industry. The Wyoming model is unusual as compared to most other input-output models because it incorporates both local government and households into the producing (or internal) sectors rather than make them structural components of final demand. The Clinton County model also follows this procedure and carries it one step further by incorporating some federal and state government activities into the producing sectors and the remainder into final demand. Lund relied both on primary and secondary sources for his flows data.

The authors are aware of only three input-output studies in the United States at the single county level that have been oriented principally towards rural economies. Jansma and Bock (15) employed a version of the input-output technique in assessing secondary benefits to a local rural economy from watershed projects. They devised a
unique procedure for collecting transactions data through use of microfilmed samples of checks passing through the local bank. In a penetrating study of the natural resources of Carbon County, Wyoming, Harmston (17) uses basically the same type of input-output methodology as does Lund (16) and also assesses impact on the local economy resulting from changes in basic output. Rao and Allee (18) in their study of San Benito County, California, also portray the impact on the local economy of changes in final demand, projecting their estimates to the year 1975. Their main interest focuses upon rural-urban interactions of an agricultural area experiencing definite signs of urbanization. Data for this study was gathered from both primary and secondary sources.

The above studies are not intended to be a complete listing of all input-output studies in the United States, but they are, in the authors' opinion, the most significant ones. For those readers desiring further information on the input-output technique and closely related fields, the authors have compiled a list of selected references located at the end of this report.

Chapter I of this report discusses theoretical aspects of the input-output model, its mathematical concepts, limitations, and inherent assumptions. We realize that this will be repetitious of much that is to be found in the present literature on this subject, but we have several reasons for including it in this report. First, it will save the reader time in not having to look elsewhere for this information if he so desires it. For those not well versed in the input-
output technique, we have attempted to present this material in as clear and concise a manner as possible. This we believe in itself may be a contribution to the field. Second, working as closely with the model and the data as we have, we tend to "lose sight of the forest for the trees." Going through the task of writing this portion of the report will, it is hoped, keep the input-output technique in its proper perspective, principally the inherent limitations of the methodology. Third, we believe that a firm theoretical and technical background must be established for the real contribution of this study that follows -the extensive use of impact analysis.

Those readers choosing to omit this aspect of the report are urged to go direct1y to Chapter II, wherein is presented a detailed account of the gathering, compilation, and assimilation of data into the Clinton County matrix, together with a brief description of all sectors. The balance of the report deals with a discussion of multipliers (Chapter III), a detailed account of impact analysis methodology, procedures and results (Chapter IV), and a presentation of an interregional model of the Clinton County Economy (Chapter V).

CHAPTER I

Introduction

In this section of the report, it is our purpose to derive and demonstrate the basic model used in the Clinton County study. The model used is a version of what has been called a static open Leontief model. It is essentially this model which is developed in the following discussion.

For our investigation, a region was viewed as a set of inter-related sectors where the sector breakdown would be in accordance with some meaningful classification. In this case, a classification of 54 sectors was made based on economic considerations. Sector classification is discussed in some detail at a later point in this report. Money, as income from export sales in meeting external demands on sectors, flows into various sectors of the region from the rest of the world. This money then moves from sector to sector within the region as an internal flow of funds and finally out of the region in the form of external expenditures or transfers of funds.

The structure and use of an input-output model to simulate this flow of funds over a given time period will be found in the following material. It has been assumed that these flows from sector to sector are related in a linear manner. Though this assumption may not hold in a strict sense, it was felt that errors in description or prediction due to this assumption would not be too large in magnitude to prevent carrying out this investigation.

Mathematical Derivation

1.1 Definitions:

$$
\begin{aligned}
X_{i}= & \text { total flow in dollars into the } i \text { th economic sector } \\
& \text { over a base period } T .
\end{aligned}
$$

$x_{i j}=$ flow in dollars from sector j to sector i over a base period T.
$Y_{i}=$ external demand or the amount of funds in dollars flowing from outside the region into sector i over a base period T.

We require

$$
\begin{aligned}
& x_{i} \geq 0 \\
& x_{i j} \geq 0 \\
& Y_{i} \geq 0 \text { and } \\
& y_{i}>0 \text { for at least one } i
\end{aligned}
$$

where $i, j=1,2,3, \ldots, m$, i.e., we have m sectors in our region.

1.2 Derivation:

Obviously, for the i th sector,

$$
\begin{equation*}
x_{i}=x_{i 1}+x_{i 2}+\ldots+x_{i j}+\ldots+x_{i m}+Y_{i} \tag{1}
\end{equation*}
$$

i.e., the total flow of funds X_{i} through the i th sector is the sum of the flows from each of the sectors of the region; $\mathbf{x}_{\mathbf{i j}}, \mathbf{j}=1,2, \ldots, m$, and the flow from outside the region Y_{i}. However, we could express
equation (1) in the following manner:

$$
\begin{equation*}
X_{i}=a_{i 1} X_{1}+a_{i 2} X_{2}+\ldots+a_{i j} X_{j}+\ldots+a_{i m} X_{m}+Y_{i} \tag{2}
\end{equation*}
$$

where the $a_{i j}$ are coefficients such that

$$
0 \leq a_{1 j} \leq 1
$$

and

$$
\sum_{j} a_{i j} \leq 1
$$

The coefficients $a_{i j}$ are called input-output or technical coefficients. The reason for this particular name will become obvious from the discussion of a specific example which follows below.

Now (2) can also be expressed with external demand as a linear function of the set $\left\{x_{j}\right\}, j=1,2, \ldots, m ; i . e .$,

$$
\begin{align*}
Y_{i} & =X_{i}-a_{i 1} X_{1}-\ldots-a_{i j} X_{j}-\ldots-a_{i m} X_{m} \\
& =a_{i 1} X_{1}-a_{i 2} X_{2}-\ldots+\left(1-a_{i i}\right) X_{i}+\ldots-a_{i m} X_{m} \tag{3}
\end{align*}
$$

If we further "loosen" these equations by changing the equality of equation (3) to an inequality, we have

$$
\begin{equation*}
Y_{i} \geq-a_{i 1} X_{1}-a_{i 2} X_{2}-\ldots+\left(1-a_{i i}\right) X_{i}-\ldots-a_{i m} X_{m} \tag{4}
\end{equation*}
$$

This means we have a system of m inequalities in m unknowns. Equation (4) is one of m constraints which must be satisfied whenever a
set of values for the set $\left\{x_{j}\right\} j=1,2, \ldots, m$, is examined. Now the set of inequalities has an infinite number of solutions of this type. We wish to find the one solution which best satisfies a specific objective. For example, the objective might be to maximize profit expressed as a proportion of each sales dollar flowing into each sector. Specifically, let c_{i} be this proportion for the i th sector, then

$$
c_{i} x_{i}, c_{i} \geq 0
$$

represents the profit of the i th sector over the base period T. Thus, we can define an objective function.

$$
\begin{align*}
f\left(X_{1}, \ldots, X_{m}\right) & =c_{1} X_{1}+\ldots+c_{i} X_{i}+\ldots+c_{m} X_{m} \\
& =\sum_{i} c_{i} X_{i} \tag{5}
\end{align*}
$$

which represents the total profit of all sectors of the region over time T. The researcher, of course, is not limited to a profit objective function but to any appropriate function which may be maximized or minimized. Whatever the objective function may be, our model is set up to select those solutions which will maximize or minimize the objective function out of the infinite set of possible solutions. This infinite set consists of solutions satisfying the system of m inequalities and the conditions given in section 1.1.

This discussion can be more succinctly presented using matrix notation. This we will proceed to do.

Let

$$
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\vdots \\
\mathrm{x}_{\mathrm{i}} \\
\vdots \\
\mathrm{x}_{\mathrm{m}}
\end{array}\right]
$$

be the solutions vector, i.e., the set of values of dollar flows into each sector which maximizes or minimizes the objective function, whichever the case may be. We can call these values optimum activity levels. Let

$$
\mathrm{Y}=\left[\begin{array}{l}
\mathrm{Y}_{1} \\
\vdots \\
\mathrm{Y}_{\mathrm{i}} \\
\vdots \\
\mathrm{Y}_{\mathrm{m}}
\end{array}\right]
$$

be the external demand vector. This has also been called such things as "final bill of goods" and "exogenous demand."

Let

$$
\left.\begin{array}{rl}
A & =\left[\begin{array}{lllll}
{ }_{11} & \cdots & a_{1 j} & \cdots & a_{1 m} \\
\vdots & & & & \vdots \\
a_{i 1} & \cdots & a_{i j} & & \vdots \\
\vdots & & & & \vdots \\
a_{m 1} & \cdots & \cdots & \cdots & \cdots
\end{array} a_{m m}\right.
\end{array}\right] \begin{aligned}
& \\
&
\end{aligned}
$$

This is the input-output coefficients matrix.
Remembering that the identity matrix I is defined as

$$
I=\left[\begin{array}{lll}
1 & & 0 \\
& 1 & \\
& \ddots & \\
0 & & 1
\end{array}\right]
$$

we obtain the so-called Leontief Matrix

$$
(I-A)=\left[\begin{array}{cccc}
1-a_{11} & -a_{12} & \cdots & -a_{1 m} \\
-a_{2 I} & 1-a_{22} & & \vdots \\
\vdots & & \ddots & \vdots \\
-a_{m 1} & \cdots \cdots & \cdots & 1-a_{m m}
\end{array}\right]
$$

Using the above definitions, we can denote the conditions of section 1.1 and the syste of inequalities by means of the following matrix equations.

$$
\begin{gather*}
\mathrm{X} \geq 0 \\
(\mathrm{I}-\mathrm{A}) \mathrm{X} \leq \mathrm{Y} \tag{6}
\end{gather*}
$$

On the other hand, for our convenience we can add a positive "slack" variable to each of the m inequalities making each one an equality. Typically we would have

$$
\begin{equation*}
-a_{i 1} X_{1}-a_{i 2} X_{2} \ldots+\left(1-a_{i i}\right) X_{i}+\ldots-a_{i m m}+b_{i}=Y_{i} \tag{7}
\end{equation*}
$$

where b_{i} is the slack variable for the i th equation. In matrix notation we would have, then, a slack vector

$$
B=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Finally, we define the objective function coefficients vector

$$
c=\left(c_{1}, c_{2}, \ldots, c_{i}, \cdots, c_{m}\right)
$$

Using the slack vector and the objective function coefficients vector, we can expand the matrix formulation of (6) to the form below.

To maximize
cX

Subject to

$$
\begin{gather*}
X \geq 0 \tag{8}\\
(I-A) X+B=Y \tag{9}
\end{gather*}
$$

The first set of constraints (8) merely indicates that the activity level of any sector must be positive or zero. This eliminates the possibility of a negative activity level, which is meaningless and impossible in this formulation. The second set (9) represents the fact that a given sector cannot produce outputs which will exceed total internal and external demand for them. This is also characteristic of this model. More elaborate versions of the model, however, can be formulated in which sector outputs do exceed internal and external de-
mands. This gives us, of course, a production for inventory. This elaboration of the model will not be considered at present.

For purposes of the present discussion, we will consider only one more elaboration in the structure of the model. This is the fact that certain regional sectors will have capacity constraints. For example, there may be only so many workers available in a given region, and that sector whose output is labor will have a finite upper limit on the amount of labor it can provide. In the same manner, an industry is capable of producing only that amount which is possible with the given plant and equipment, and production cannot exceed this capacity. Where applicable, such capacity limits can be placed on appropriate sectors of the region.

Let us consider such a sector, say the ith sector. We can express this constraint on the i th sector by the following relation:

$$
\begin{equation*}
x_{i} \leq k_{i} \tag{10}
\end{equation*}
$$

where

$$
k_{i}=\text { the capacity limit for the } 1 \text { th sector and } k_{i} \geq 0
$$

We can write (10), using slack variables to make it an equality, in the form

$$
\begin{equation*}
x_{i}+1_{i}=k_{i} \tag{11}
\end{equation*}
$$

where

$$
I_{i}=\text { unused capacity of the } i \text { th sector }
$$

Equations for the sectors of the region of the form of equation (11) lead us to the following matrix representation.

Letting

$$
K=\left[\begin{array}{c}
k_{1} \\
\vdots \\
k_{i} \\
\vdots \\
k_{m}
\end{array}\right]
$$

and

$$
\mathrm{L}=\left[\begin{array}{c}
1_{1} \\
\vdots \\
\mathrm{I}_{\mathrm{i}} \\
\vdots \\
\mathrm{I}_{\mathrm{m}}
\end{array}\right]
$$

we have, finally, the following portrayal of the input-output analysis as a linear programming problem:

To maximize
CX

Subject to

$$
\begin{gather*}
X \geq 0 \\
(A-I) X+B=Y \tag{12}\\
X+L=K
\end{gather*}
$$

The system of matrix relations given in (12) has been called a static Leontief model. The "static" term refers to the fact that the region is considered only over a single time period T. As we will see, this can be used in a more dynamic sense by successive use of the model over several time periods.

The Clinton County study was carried out, in general, without explicit capacity constraints on the various sectors. Therefore, the system of equations solved in this investigation were of the form given in equations (8) and (9) above. Specifically, in order to determine the solutions for vector X, which gives the activity levels for each of the sectors of our region, we solved equation (9), i.e.,

$$
\begin{gather*}
(I-A) X+B=Y \\
(I-A) X=Y-B \\
X=(I-A)^{-1}(Y-B) \tag{13}
\end{gather*}
$$

As is well known, the Leontief matrix I - A) is square and r. 11^{-} singular and, therefore, its inverse $(I-N)^{-1}$ exists. $I, f\left(t, t^{f}\right.$ is means that

$$
\begin{equation*}
X=(I-\quad \cdot 1 y \tag{14}
\end{equation*}
$$

is a solution to the sustem of equations of the type shown in (s). Further, this solution is unique for the given external demand ec ca Y. Equating the right hand sides of (13) and (14), we ubtai: :he corr dition that

$$
\begin{equation*}
B=0 \tag{15}
\end{equation*}
$$

In other words, the slack variables are all zero. This is tantamount to saying that the region, if sector capacities are unrestricted, must be able to meet any external demand as given by the external demand vector Y. This follows, for if any element of the slack vector B were greater than zero, this would mean that the corresponding sector had that much unmet demand. The fact that we require equation (15) to hold for all $Y, Y>0$, means that there will never be unmet external demand with this particular version of our model. However, by adding appropriate sector capacity constraints, we can produce a system of equations whose solution will involve unmet external demands, i.e., where $B>0$. Such a development will be left for a later discussion.

It is perhaps important to explain the requirement of the preceding discussion. The fact that our model does not permit unmet demand is a consequence of the method used to solve the system of equations as presented in (8) and (9). Here the Leontief system is presented in the form of a linear programming problem in which the objective function cX is maximized. The problem, in this case, is solved using the simplex algorithm. Since what we are maximizing is total economic activity, the objective function coefficients vector is positive, i.e., c > 0 . In other words, at least one of the coefficients is greater than zero. This means that at least this one sector, under maximization, will meet a11 its available demand including its external demand from the final bill of goods. Further, maximization will require that it meet the largest possible internal demand from other sectors of the model. This fact, in turn, requires that other sectors achieve the maximum income
possible so that their expenditures in the original sector will be maximal. This leads, finally, to the fact that all available income from the final bill of goods must be obtained. Thus, no matter what the levels of external demand vector Y, it will be met, and the condition of equation (15) will, therefore, be satisfied.

Thus, we see that, for the given external demand vector Y, the model produces a unique solution vector X. This solution is determined by means of $(I-A)^{-1}$, the inverse of the Leontief matrix. We let

$$
(I-A)^{-1}=\left[\begin{array}{lllll}
\alpha_{11} & \cdots & \alpha_{1 j} & \cdots & \alpha_{1 m} \tag{16}\\
\vdots & & & & \vdots \\
\alpha_{i 1} & \cdots & \alpha_{i j} & & \vdots \\
\vdots & & & & \vdots \\
\alpha_{m 1} & \cdots & \cdots & \cdots & \alpha_{m m}
\end{array}\right]
$$

Entries of this inverse matrix are called "interdependency coefficients." The product of one of them with the external demand associated with its column sector yields the direct and indirect response in terms of economic activity of its row sector to this particular external demand input. For example, $\alpha_{i j} Y_{j}$ is total direct and indirect response of the i th sector of our model to the external demand input of Y_{j} units by the j th sector of the model.

Logically, if all direct and indirect responses of a given sector are added together, the sum must equal total economic activity of that sector, i.e.,

$$
\begin{equation*}
X_{i}=\alpha_{i 1} Y_{1}+\alpha_{i 2} Y_{2}+\ldots+\alpha_{i m} Y_{m} \tag{17}
\end{equation*}
$$

Equation (17) demonstrates how the Leontief inverse is used to determine the entries of the solution vector X.

In order to obtain total response R_{j} by all sectors of the model to a given external demand input Y_{j}, we add together the total responses of each individual sector to that input, i.e.,

$$
\begin{align*}
R_{j} & =\alpha_{1 j} Y_{j}+\alpha_{2 j} Y_{j}+\ldots+\alpha_{m j} Y_{j} \\
& =\left[\sum_{i=1}^{m} \alpha_{i j}\right] Y_{j} \\
& =m_{j} Y_{j} \tag{18}
\end{align*}
$$

where

$$
\begin{equation*}
m_{j}=\sum_{i=1}^{m} \alpha_{i j} \tag{19}
\end{equation*}
$$

The number obtained in equation (19) is called the multiplier for the sector involved, i.e., m_{j} is the multiplier for the j th sector of the model and equation (18) yields the total response of the region simulated by our model to the j th sector external demand Y_{j}. It is important to note that this response includes both direct and indirect activity of all sectors. Obviously, the quantity

$$
\sum_{j=1}^{m} m_{j} y_{j}
$$

which is the sum of direct and indirect responses of the region to all various external incomes, must equal total economic activity of the
region.
In order to understand how this model, developed in general by the preceding discussion, can actually be used for regional analysis, it is necessary to turn to a concrete example.

Numerical Example (5-sector hypothetical model)
Given a region and the desire to represent this region by the type of model just developed, how does one go about it? The problem is essentially one of estimating the necessary parameters of our model from historical data. In this particular example, the data were invented but could have been obtained from actual records over some historical time period of length T. In this example we let T equal one year.

Basic numbers which must be estimated are the input-output coefficients a_{ij}. Here

$$
i, j=1,2,3,4,5
$$

To do this, values of X_{ij} for the historical study period are obtained, i.e., the actual flow of funds from sector j to sector i is recorded. Also, values of Y_{j}, the amount of income from outside the region into each sector, are recorded. From these we can obtain the total of transactions X_{i} for each sector of our region. In our 5sector example we have the following transactions matrix.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	Y	TOTAL INPUT
S_{1}	21	0	5	2	0	70	98
$\mathrm{~S}_{2}$	1	5	4	20	0	30	60
$\mathrm{~S}_{3}$	3	12	0	35	5	3	58
$\mathrm{~S}_{4}$	30	1	22	0	2	15	70
$\mathrm{~S}_{5}$	10	7	15	10	3	25	70
Y	-23	35	12	3	60		
TOTAL	98	60	58	70	70		
OUTPUT							

Here the entries are, say, in $\$ 100,000$ units. To demonstrate how these numbers relate to our model we give the following examples:

$$
x_{34}=35 \quad Y_{2}=30 \quad X_{1}=98
$$

To lend realism to the model we identify the sectors as follows:

$$
\begin{array}{ll}
\mathrm{S}_{1} & \text { Industry } \\
\mathrm{S}_{2} & \text { Agriculture } \\
\mathrm{S}_{3} & \text { Retail and Service } \\
\mathrm{S}_{4} & \text { Households } \\
\mathrm{S}_{5} & \text { Government } \\
\mathrm{Y} & \text { Rest of the World }
\end{array}
$$

Thus, $\mathbf{x}_{34}=35$ means that $\$ 3,500,000$ was spent by households for retail goods and services over the year under study, $Y_{2}=30$ means that farmers sold $\$ 3,000,000$ worth of goods outside the region and $X_{1}=98$ means that industry in the region had a gross annual income of $\$ 9,800,000$.

By taking the money flow from the j th sector to the i th sector
and dividing by the total flow into the j th sector, we obtain the proportion of the total transactions of the j th sector which flow to the i th sector. In symbols

$$
a_{i j}=\frac{x_{i j}}{x_{j}}, \quad i, j,=1,2,3,4,5
$$

for example,

$$
a_{31}=\frac{x_{31}}{x_{1}}=\frac{3}{98}=.03
$$

These are estimates, based on historical data, of the input-output coefficients of our model. Calc̈ulating these estimates as indicated we obtain a coefficients matrix.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$
$\mathrm{~S}_{1}$.21	.00	.09	.03	.00
$\mathrm{~S}_{2}$.01	.08	.07	.29	.00
$\mathrm{~S}_{3}$.03	.20	.00	.50	.07
$\mathrm{~S}_{4}$.31	.02	.38	.00	.03
$\mathrm{~S}_{5}$.10	.25	.26	.01	.04

We demonstrate how these operate in the same manner as the input-output coefficients of our model. Following from equation (2) of our model, we have for the first sector S_{1} of our example,

$$
X_{1}=a_{11} X_{1}+a_{12} X_{2}+a_{13} X_{3}+a_{14} X_{4}+a_{15} X_{5}+Y_{1}
$$

Substituting our actual values, we have

$$
\begin{aligned}
\mathrm{x}_{1} & =(.21) 98+(.00) 60+(.09) 58+(.03) 70+(.00) 70+70 \\
& =20.58+5.22+2.10+70.00 \\
& =97.90
\end{aligned}
$$

which, except for rounding error, is the expected number 98.
Note that each row of the coefficients matrix gives the proportion of each column sector's total money flow which results as income to the sector identified with that row. Also, that each column provides the proportions of that column sector's total income which is disbursed to each sector of the region.

Remember that we have estimated the values of the input-output coefficients. We further assume that the estimated values for these coefficients will describe the relationships between sectors for any future time period. Using these values we have the input-output coefficients matrix for our 5-sector example.

$$
\mathrm{A}=\left[\begin{array}{lllll}
.21 & .00 & .09 & .03 & .00 \\
.01 & .08 & .07 & .29 & .00 \\
.03 & .20 & .00 & .50 & .07 \\
.31 & .02 & .38 & .00 & .03 \\
.10 & .25 & .26 & .01 & .04
\end{array}\right]
$$

and the related Leontief matrix

$$
(A-I)=\left[\begin{array}{rrrrr}
.79 & .00 & -.09 & -.03 & .00 \\
-.01 & .92 & -.07 & -.29 & .00 \\
-.03 & -.20 & 1.00 & -.50 & -.07 \\
-.31 & -.02 & -.38 & 1.00 & -.03 \\
-.10 & -.25 & -.26 & -.01 & .96
\end{array}\right]
$$

The external demand or bill of goods vector, using values from the transactions matrix, can be given initially as follows:
$\mathrm{Y}=\left[\begin{array}{r}70 \\ 30 \\ 3 \\ 15 \\ 25\end{array}\right]$
i.e., initially we assume that external demand for each sector in some future time period will be the same as that for the time period supplying the historical data. Of course, external demand can be fixed at any desirable level for a specific time period.

It is the solutions vector

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

whose values we wish to determine. This is done by adding slack variables to the system of equations and constructing an appropriate objective function. A convenient one that is also useful with respect to deriving information from the model is one in which the objective function coefficients vector is as follows:

$$
C=(1,1,1,1,1),
$$

i.e., all the coefficients are 1 . When the system is solved for the external demand vector Y above by means of the simplex algorithm, we

Immediately have"a large amount of information available in the simplex tableau. The solution tableau for our 5-sector example is shown in Table 1. The solutions stub indicates that each sector of our model is

TABLE 1
FINAL SIMPLEX TABLEAU - 5-SECTOR REGION EXAMPLE

			1	1	1	1	1	0	0	0	0	0
c_{j}	Basis	X	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}	b_{1}	b_{2}	b_{3}	b_{4}	b_{5}
1	S_{1}	98	1	0	0	0	0	1.33	. 05	. 18	. 15	. 02
1	S_{2}	60	0	1	0	0	0	. 23	1.17	. 30	. 50	. 04
1	S_{3}	58	0	0	1	0	0	. 40	. 36	1.41	. 82	. 13
1	S_{4}	70	0	0	0	1	0	. 58	. 19	. 61	1.38	. 09
1	S_{5}	70	0	0	0	0	1	. 31	. 41	. 48	. 38	1.09
		356	0	0	0	0	0	2.85	2.18	2.98	3.23	1.37

in solution and the third column from the left yields activity levels for each sector which make up the solution vector X. Just below the solution column is given the value of our objective function, 356 units. Since all objective function coefficients are 1 , this is merely the sum of activity levels for each sector yielding the total economic activity of the region as a whole. In the body of the table, in the slack variable columns $\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)$ is found the inverse of the Leontief matrix of our model. Entries in these columns are the inter-
dependency coefficients. Again, because of the objective function chosen, the entry at the bottom of each slack variable column is the sum of the interdependency coefficients in that column. In other words, they are the multipliers for the sector associated with that slack variable.

We demonstrate how the entries of our solution tableau provide various sorts of information. For the input vector

$$
Y=\left[\begin{array}{r}
70 \\
30 \\
3 \\
15 \\
25
\end{array}\right]
$$

of external demands, Table 1 gives economic activity levels generated by this demand in the column marked X. The values are, of course, entries of the solution vector X. At the bottom of the column is found the sum of all individual sector activity levels, in this case 356 units. This is the total regional economic activity. Interdependency coefficients can yield the economic response, both direct and indirect, to external demand of some sector of our region. For example, the interdependency coefficient for response of S_{3} Retail-Service to external income into the S_{1} Industry sector is $\alpha_{31}=.40$. External demand being met directly by S_{1} is $Y_{1}=70$ units. Response of the Retail-Service sector to this input is $\alpha_{31} Y_{1}=(.40)(70)=28$ units of direct and indirect economic activity. Total response of the RetailService sector of our example is found by adding the responses to each individual sector's external demand, i.e., by using all interdependency
coefficients of the S_{3} row of Table 1 . Thus, total direct and indirect response of the Retail-Service sector is

$$
\begin{aligned}
X_{3} & =\alpha_{31} Y_{1}+\alpha_{32} Y_{2}+\alpha_{33} Y_{3}+\alpha_{34} Y_{4}+\alpha_{35} Y_{5} \\
& =(.40)(70)+(.36)(30)+(1.41)(3)+(.82)(15)+(.13)(25) \\
& =28.00+10.80+4.23+12.30+3.25 \\
& =58.58 \text { units }
\end{aligned}
$$

The amount calculated is, of course, the activity level for the RetailService sector. The answer above is slightly larger than the original activity level for our example of 58 units. This is entirely due to rounding error, since the coefficients used in our example were rounded to two decimal places.

If we desire to know direct and indirect response by the whole region to a given sector's external demand, it is only necessary to find the product of that sector's multiplier and its external demand. These multipliers appear at the bottom of the columns of interdependency coefficients which make up the inverse columns in Table 1 . For example, external demand and, therefore, external income for S_{2} Agriculture is $Y_{2}=30$ units. The economic multiplier for the Agriculture sector is $m_{2}=2.18$. Thus, total regional direct and indirect response to this input is

$$
\begin{aligned}
\mathrm{m}_{2} \mathrm{Y}_{2} & =(2.18)(30) \\
& =65.40 \text { units }
\end{aligned}
$$

We have tried to demonstrate by means of the foregoing example how
the model used in this study can be utilized for a descriptive analysis of the money flows through a region. As can be seen, the model accurately reproduces the data used to derive it. In addition, information as to direct and indirect money flows can be determined by appropriate use of available input-output coefficients, interdependency coefficients, and sector multipliers. How these are employed will be demonstrated in the discussions which follow.

The modification and/or augmentation of the model in order to simulate economic changes and conduct various economic impact analyses will be found in the section on impact analyses as well as in Volume I. This material has been repeated so that the discussion could take place in the actual context of the 54 -sector Clinton County model.

Basic Assumptions of the Model and Implications for Economic Theory

The model developed in this study differs from most other regional input-output models primarily in composition of the endogenous and exogenous variables. Sectors representing households (including labor), governmental activities, and nonprofit organizations are structured, in most models, in the final demand (exogenous) sectors. In other words, they are not considered producing units of the local economy. In the clinton County model, on the other hand, most of these activities are considered as providing services of one kind or another and so are structured into the internal or endogenous sectors.

By considering labor as a producing activity, and thus including it in the internal sectors, one of the crucial assumptions of the
original Leontief model was dropped -- that labor for production activity was a scarce factor. All other local resource inputs in the Clinton County model are also entered under a "no scarcity" concept. Extreme care must be exercised when introducing new activities into the model or expanding present ones so that resource capabilities are not exceeded. For a small region such as a county, exceeding the present labor supply by a small margin may present no particular problems since in all likelihood there would be a reserve of labor available in surrounding counties to fill the gap. Reasoning along such lines would also be applicable to many other factor inputs as well, such as power, certain raw materials, transportation, intermediate products, food and other household consumption goods, and most services. For models of large multistate regions and for national models this assumption can be very restrictive. The smaller the region incorporated into the model, however, the less onerous this assumption becomes. It is not clear how capital resources would be affected by the assumption of no scarcity in a small region. Local capital may be plentiful but unavailable to local entrepreneurs. On the other hand, it seems reasonable to expect that outside capital would invest locally if a particular endeavor appears profitable. Fortunately, the model is capable of reflecting a distinction between activities financed with local capital and those financed with outside capital.

There are four assumptions associated with the structure of the internal producing sectors. These are:

1) Factors required to produce any good must be used in fixed
proportions.
2) Returns to scale are constant at unity; i.e., the activity operates with a homogeneous production function.
3) There is no joint production. Each activity is assumed to make a single product. The finer the model is sectorized, the less restrictive this assumption becomes.
4) The economic system is in equilibrium, at given prices.

An assumption inherent in the exogenous sectors is that the supply of each export good or service (those produced locally) is perfectly elastic and all prices are given.

There are several basic relationships inherent in the model used in this study. These are:

1) Total quantity of output of an activity is either consumed locally (becomes a factor input to some other local activity), is sold to final demand, or goes into inventories which must, however, maintain a constant proportion to total sector output.
2) Capital expenditures for producers' goods, consumer durables, maintenance of plant and equipment, replacement of capital equipment, and new construction are included in the production functions of business sectors and consumption functions of households. Thus the model is gross of investment expenditures in the current period.
3) The model is net of any capital consumption allowances (depreciation).
4) Household consumption functions are gross of saving. Saving is reflected as a factor payment to the overflow sector.
5) Total value of a sector's sales, whether sold (consumed) internally or externally, is equal to total payments made by that sector for factor inputs, whether purchased internally or externally.
6) It must follow from (5) then, that total external income to the region is equal to total external expenditures by the region. This means that the value of all imports is equal to the value of all exports, leaving the region with a zero net balance of trade for the time period. This follows from the mathematical formulation of the model, where all receipts and expenditures must be accounted for, just as they are in the more familiar double entry accounting procedures. Only under a barter form of economic system and under very primitive living standards could a small sub-national region exist in the absence of trade with the outside world. The primary economic justification for exporting goods and services is to obtain "outside" money with which to buy "outside" goods. If the money coming into the region from the outside is not ultimately spent in this way, but is used instead to augment the supply of "domestic" money, then an inflationary pressure will be generated. This may have the effect of promoting internal activity and raising the level of employment, but once full employment of local factors is reached, further exports not balanced by imports would lead only to inflation within the region. The converse may also hold. An excess of imports over exports (of goods and services) may lead to a decrease in employment of regional factor inputs and a decline of economic activity within the region. It appears perfectly reasonable to expect, then, that over a period of time, for a microregion within a
developed economy, the flow of money into the regional economic system is approximately equal to the flow of money out of that system.

CHAPTER II

DEVELOPMENT OF THE CLINTON COUNTY MODEL

Data Collection

Virtually all data in this study reflecting money transactions was obtained by field interviewing of randomly selected and/or pre-selected firms and households. ${ }^{1}$ This necessitated a knowledge beforehand of the population of business places in the county. The Lock Haven Chamber of Commerce provided a complete listing of industrial firms, but did not have a current listing of retail and service establishments. Yellow pages of the one phone directory for the county were quite helpful, but not all businesses were listed there. The most complete and reliable sources of information of this kind were obtained from lists of all businesses classified by type as compiled by two electric utilities serving the county -- the Pennsylvania Power and Light Company and West Penn Power Company.

A compilation of the above lists provided" the "master list" of all business activity in the county. This composite list was then broken down into lists of 89 different kinds of business activities. Because the county is so diverse in its socio-economic structure, these lists were further broken down into four "area" lists for each type of activity. These sub-areas included (1) the greater Lock Haven city
$\overline{1}$ Most transactions data on governmental activities was obtained from secondary sources.
area, (2) the northern mountainous section of the county including Renovo, ${ }^{1}$ (3) the residential and business area along the Susquehanna River valley from Lock Haven to the eastern border of the county, and (4) the southern ridge and valley section of the county, which is largely devoted to agriculture, predominantly dairy farming. In some cases, a particular activity occurred in only one or two sub-areas. The Lock Haven area was the only one containing representative activities for all 89 sectors.

All industrial activity sectors were sampled 100 percent, along with financial institutions, department and variety stores, utilities, and governmental units. For those sectors containing a large number of individual firms (such as gas stations, churches, and the like) a random sampling of 20 percent of all firms in each sub-area was made. Sectors that contained only a few individual firms (such as wholesale distributors) were sampled at a 50 percent rate. Other sectors were sampled at rates varying between 20 and 50 percent. The decision as to the size of the interview sample for each activity sector was largely an arbitrary one and was based on two considerations: (1) the number of individual firms comprising that particular sector and (2) the importance or significance of the sector to the economy of the region. The latter was mainly an intuitive judgement; e.g., farm equipment dealers were thought to exercise a greater economic role in the commu-

1 This portion of the county is typical of the Appalachian section of the state and includes about three-fourths of the area of the county, although only a small proportion of the population. It contains a disproportionately large share of the low income families in the county.
nity than shoe repair shops. Therefore, they should be sampled at a higher rate, even though the number of firms in both sectors was the same.

In some sectors, firms were pre-selected for interviewing. As an example, large chain stores in the food stores category, two large automobile dealers in the auto dealers sector, and a dominant contractor in the construction sector. When pre-selection of firms occurred in a sector, a random selection of the remaining firms was made. Tabulation of data for these sectors, following completion of the interviewing, incorporated a separate accounting procedure for pre-selected firms. In all sectors where random selections were made, a table of random numbers was used to select the firms to be interviewed.

A prior listing of the universe of households in Clinton County was clearly impractical and, of course, unnecessary. Selection of households for interviewing in the incorporated municipalities ${ }^{1}$ was accomplished by using a table of random numbers and the telephone directory for each municipality. Five percent of the households on each page were randomly selected. These provided only a base address, because use of these households for interviewing would have biased the sampling against homes without telephone service. Interviewers were instructed to actually contact and interview the household located two doors away from the base address in a predetermined direction. If this was impossible (e.g., the end of a street) the interviewer then went in

[^0]the opposite direction. In the case of apartment or multiple dwelling units, each apartment within a building was considered as a separate address, so that it was possible to interview a household within the building despite the "two doors away" rule.

Households not located in municipalities -- primarily rural households -- were selected for interviewing in an entirely different fashion. A grid of approximately one mile square blocks was drawn on a large 1962 general highway map of the county, which showed all cultural features, including private dwelling units. Four sub-areas were then delineated conforming to the three major valley systems in the southern portion of the county and the northern mountainous portion (Allegheny Plateau section). Blocks were then numbered consecutively for each of the four stratifications, and, by means of a table of random numbers, blocks were selected until approximately 5 percent of all households indicated on the map for each sub-area had been chosen. Every occupied household in each selected block was then visited and interviewed. In these areas, some households were farm households, and, along with the regular household data gathered, information was sought in connection with farming activities. This latter information was compiled to provide data for the agricultural sector.

If a household refused to cooperate in the survey, another household was chosen by the interviewer. If in a municipality, the interviewer contacted the household two doors away from the base address, but in the opposite direction. If in a rural block, the interviewer selected the nearest household located outside the block on the same
road. When a business firm rejected an interviewer, another firm in that same sector and sub-area was randomly selected. In all cases -for both firms and households -- attempts were made to maintain the sampling rate previously decided upon. Towards the end of the survey period, time did not permit replacing last minute rejections of business firms, so in some sectors the desired sampling rate was not achieved.

All governmental units were sampled, including federal, state, and local. For all local governmental units, except the county government, data on income and expenditures was obtained from Harrisburg, where these units file detailed annual reports on their finances. For the county government and the state and federal activities in Clinton County, data was gathered by personal interviewing of each office.

Prior to field contact by the interviewer, a letter was sent to all firms and nonprofit organizations selected for interviewing. This letter explained the purpose of the study and solicited the cooperation of the recipient. A sample of the letter sent to industrial firms is included in the Appendix, Figure A. Letters sent to commercial and nonprofit respondents followed much the same format.

Concurrent with the sending of letters, two local newspapers serving the county provided excellent cooperation in publicizing the study, explaining its purpose, and asking local merchants and residents to cooperate. This was done on several occasions during the data gathering period.

The business and nonprofit questionnaires originally devised were
tested on a number of selected firms and organizations in Clinton County prior to the main interviewing. Weaknesses and omissions that became apparent were remedied in subsequent questionnaires. There were 13 different types of questionnaires used. Samples of these appear in the Appendix, Figures B through N inclusive.

Some weaknesses appeared only after a substantial number of returns had been received or after the data had been compiled. The question asking for employment data and payroll (question number 3 on the Industrial Survey) proved to be poorly worded and designed, resulting in some confusion. The payroll information portion (referring to wages and salaries paid in dollars) should have been more explicit or should have been contained in a separate question. Once this fault became obvious, interviewers were instructed to point this out to respondents and to be alert for questionnaires improperly completed. Questions 10 and 11 on the Industrial Survey (also appearing as other numbers on other types of questionnaires) proved to be superfluous and served no useful purpose for this study.

Interviewers were given a short training session in the use of the questionnaires and carefully instructed as to the meaning of each question and the specific information desired. Questionnaires were not mailed -- all firms and households selected for interviewing were contacted personally by the interviewers. In the case of business firms, nonprofit organizations, and governmental units, questionnaires were usually left with the respondent to fill out at his convenience, the interviewer stating when he would return to collect the form. This,
perhaps, gave a little too much leeway for the respondent, because callbacks for uncompleted questionnaires proved to be a major effort and source of frustration for the interviewers toward the end of the survey period.

There were two household questionnaires -- one for municipal households and one for rural households. Since the municipal questionnaire is embodied in the rural form, only a sample of the latter is given (see Figure 0, Appendix). Question numbers 20 to 40 inclusive, Figure 0, comprise the entire municipal household questionnaire. To answer question 40, a small slip of paper (Figure P, Appendix) was handed to the respondent by the interviewer, and the respondent was asked to merely give the letter corresponding to the total annual 1963 household income. Household questionnaires were not left with the household; the interviewer completed them during the course of the interview.

In very few cases did households have firm data for many of the questions -- they were largely estimates. This is why, for example, in question 20 (Figure 0) expenses per trip were requested rather than annual expenditures. It was felt a better estimate could be made by households on this basis. A shopper usually knows about how much money he started off with and about how much he had upon returning, whereas if asked to state his purchases on a yearly basis his estimate would probably be much less reliable. For the same reason, question 22 was structured in the same manner. In asking question number 23, interviewers were instructed to use weekly or monthly figures for some of
the items if this provided an easier estimating basis for the respondent. In all cases where data reflected expenditures of less than a year's time period, values were corrected to annual figures for incorporation into the matrix.

Interviewing of businesses, nonprofit organizations, and nonurban households was done by six graduate students at The Pennsylvania State University. All initial contacts were completed in about three months, but it required another month to secure the return of all outstanding questionnaires. A total of 622 industrial, business, nonprofit, and governmental establishments were included on the interview lists (Table 2). Of this number, 62 were governmental offices whose data were secured direct from Harrisburg. Table 2 shows sampling rates, number of completed returns, and percentage of completed returns by the major groups of establishments.

TABLE 2
NUMBER OF INTERVIEWS AND NUMBER OF COMPLETED RETURNS BY TYPE OF ACTIVITY

Type of Activity	Number of Establishments	Sampling Rate $\%$	Number Contacted	Number of Completed Returns	Completed Returns $\%$
Industrial	75	100	75	62	83
Business	954	40	383	250	65
Nonprofit	176	35	62	47	76
Governments	102	100	102	102	100
Total	1,307	48	622	461	74

In addition to the above, there were 476 household interviews, of which 295 were from municipal areas and 181 from rural areas. Most of the municipal household interviewing was done by five wives of faculty members of Lock Haven State College. These women also interviewed beauty shops in the Lock Haven area. They completed their interviewing in about one month.

Matrix Construction

Compilation of data from all 937 returned questionnaires (476 household and 461 nonhousehold) was a time consuming and tedious procedure. Household data was processed by computer, but it was felt that more realistic results could be obtained by "hand" processing nonhousehold data.

All business, nonprofit, and governmental data was transferred to data processing cards. Print-outs of these data by sectors and subareas were used as work sheets for expansion of the data by appropriate "expansion" factors. Expansion factors varied from one sector to another due to variation in sampling rates between sectors. Furthermore, expansion factors varied between sub-areas within each sector because of differences in the number of acceptable and completed returns for each sub-area and pre-selection of some firms for interviewing. Data from these latter firms were not expanded for inclusion into the matrix. Totals were obtained for sub-areas for each sector and finally a summation was made of all data by sectors for the entire county. These latter totals showed amounts of expenditures for various
kinds of inputs and amounts of income from various sources, both internally and externally, for each sector. These data were then transferred to the matrix.

The 89 different kinds of business activities that were delineated for data-gathering purposes were aggregated into 54 activities or sectors for the final matrix. For example, the original master list of Professional Personal Services was broken down into separate lists for Doctors, Lawyers, Morticians, Accountants, and the like. Interview selection was then made from these lists. For the matrix, however, these were all combined into one sector.

In allocating data from the work sheets into various sectors of the matrix, judgement had to be exercised in many instances. For example, firms were requested to show total expenditures, both internally and externally, for maintenance and repair of buildings. The total value of this internal expenditure item for any one sector could be shown as a payment to either the Hardware and Building Materials sector or the Construction sector or both. An arbitrary allocation between the two sectors was first made in a "trial" matrix. When all data from the work sheets had been entered, total income as reported by the receiving sector was compared to total expenditures into that sector as allocated from the work sheets. In some cases, expenditures Into a sector exceeded income as reported by that sector. In other cases the reverse was true. Adjustments were then made to reconcile differences. To continue our example, if expenditures into the Hardware and Building Materials sector exceeded total income as reported by
these firms, and the opposite existed for the Construction sector, then adjustments in the payments for building repair and maintenance were made between these two sectors. In most all instances where adjustments of this type had to be made, total internal income as reported by sectors was given preferential weight. In other words, to achieve a balancing of internal flows between sectors, reported internal income was changed only when such adjustments could not reasonably be made on the expenditures side.

No such "balancing" could, of course, be made for external incomes and expenditures. For this reason, these values by sectors were assumed to be reliable estimates. Only as a very last resort were these changed to achieve a balancing of the matrix. Again, preference was given to reported income rather than expenditures.

A total of approximately nine man-months was required for coding, aggregation and compilation of the data, and for matrix construction.

Sectoral Description of the Clinton County Matrix

Several industrial sectors in the original 54 by 54 matrix had to be aggregated in order to avoid disclosure of data on individual firms. The condensed matrix is shown in Table 3; the sectors being numbered to conform to the original matrix. All subsequent problems and impact analyses, however, were processed on the full 54 by 54 matrix.

Table 4 shows the matrix of technical coefficients and Table 5 the matrix of interdependency coefficients. Interpretation and meaning of these three tables is described elsewhere in this volume and in

				4,													${ }^{\text {120, }} 3$,						${ }_{3}^{4}$		tor
Nutases		.coces6.	.0004	.20061	.0005	.00063	.asi9	.0238	.000\%	.002en	.0216	.coses	.0080	.0029	.000s8	.0026	.00288	.0066	.000s8.	.20064	.cosso	.00062	.0081	.20088	.00099	.00061	.coue	.0020	.000\%	.0020s	.0210	.oxas	.cezes	.cosen	.0029	.0030	.0020	.coss 2	.coss	.0836	.coss	.0228	.0205	.0029	.0001	.000n	112	.0023	
Food Proceseing	.00896			${ }^{.08728}$.033	.as	.0085	.10411	. 0315	.cose	.0073	. 13843	.2083	.as50	.exts	.00851	.ases	H2013.	.0633	.cxa6	.008se	.cos3	. $\times 3$.oves	.ecove	.0020	.01850	.cos70	.asme	.1072	.ans	.017	. 0837	.0020	.02186	49	.2063	.on63	.01381	.and	. 0478	.013so	.ones	.eess	.an7s	.2enn	so	.0037	,
	. 0 cose	couse		1.05099	cess	.019\%	.os)	.0077	.0017	.om	.000275	.0021	.00028	.0020	.0006	.cous	.00046	.00032	.comen	.0000	. 0 O2089	${ }_{\text {. }}^{\text {. } 0 \text { coses }}$.00023	.000076	.0040	.00072	.0002n	.a00s	.0009	.0002	.0015	.000	. 02022	.0008	.oxa	.coos	.00024	.00006	.00019	.00026	.oxens	.00015	.00050	.00031	.0077	.00030	.0029	.00011	, 5,10
mmats, nowl.	. 2358	.00421.	.xe2z	.02860 1.	73	.2024	221	.cosm	Ses	.owim	.coss	23	.00570	.00362	.cesso	27	.083et	.oan7	.0774	.01788	.0069	.0097	cosen	.0063	.0124	.ex)	.014)	.onte	.0853	.0021	a693	.cose	ens	.cesso	.0206	x2	.0148	.osect	.coss	.a053	.0189	.0037	.0078	.0780	.0072	.02588	\%6	.00379	
nur.as aeren.	.00086	.0046	. 200	.004s	.00088	.000	.00035	.00x9	.000\%	.0003	.00	.oson	.0002	.00061	.cose	.000	.osose	.00083	.006s	.coss	.0006	. $0 \times$. 20021	.ase	aces	. 200	.0008	.0006	. 0×808	.0017	.00069	. ∞	.006s	.0029	.0000	208	.0063	.0028	.coses			.00208				.0238	.0018		
meteate	. 0312	00056	.coues	.000	.00109	.0007 1	1.0109	.coss	.0267	.0023	.00099	.0005	.002st	.000	coss	.00	.0004	Oosic	.000s	.000 1	. 20	.00an	.cosn	.00082	cos36	.0003	.0030	. 000	.0028	.0017	,	. \times	.000\%	. \times	.00011	.000	.colot	.0230	.tress	.0008	. 1385	.ases	.00449	.0034	.0018	.00260	.co15	.00264	
analis	.00088	2002	.0012	.00079	.0022	. 00012	. 001	1.0010 .	.00032	.0022	. 2000	mome	∞	.00099	.0002	. 00007	. 00088	.0033	.0020	.0020	.2013	.0005	.0006	O20	.0020	.0000	.ocose	.omes	.0002	.oses	.0039	.0062	.coess	.00012	.0009	.000\%	.a0as	. 0 ¢79	.000e	. \times m	.oodes	. 0 en	. 0×2	.00000	.cous	.0003	.c003		4
nualroos	.00003	.00002	. \times	. -	.00074	. .	, 02	.000	.0006	.0000	. -	.0003	.0005		.00003	.00021	.aoce	.0000	∞	.0002	.coose	.0002	. 0002	.0005	.0000	. 0 D	.oom		.0000	amob	.000ct			.00006		.00028				.0000	.0000	.0000		.oson	.00es	.000	.cose		
Agri. Feede, Fert.	. 2025	. 0013	. ${ }_{\text {. }}$. 21	.00288	. 000	. 0×065	. 23	.ons	,00198	.0024	.2461	.cess	.00350	.0039	. $0 \times \infty$.om	.0033	.00055	.oxen	.00088	.007\%	. 20081	.03ss	coun	.0012)	.0023	.ams	.00190	.ceso	.02667	.oxe	.0040	. 0176	.moxes	. 00008	.0040		.coues	.coes3	.coese	.00210	.003s	.0322	.cees	.0026	.cose		
Aeteutere	.0059	.2een,	.co3s	.cos3	.oces	.035	, es	.15ana	.asys	.ox\%	.oxn1	1.0639	.a037	.0u61	.0009	.0x73	.oxas	.0220	.0037	.0266	.002	.0228	.0098	.omm	,0650	Dous	.oxns	.0024	.00720	.0922	0×2	.cons	.osk	.1008	.ome	.coesy	.cesi6	.oms	.ante	.once	.oeebs	.aners	.0120	.onve	.entor	.0199	.coes		is
ation	.00	.00076	.oxes	.0076	.cosy	. 0080	.00061	.0121	.0013	.0003	.00083	.020	1.00166	.000\%	.0006s	.0009	.00082	.000ss	.00066	.coses	.00064	.0036	.0003	.00036	.00078	.0030	.outes	.00038	.0045	.0179	.0018	.00122	.0003	.0063	. 0027	. 0009	.0000	.023	.0045	.0024	.0233	.0177	.0e2s	.omes	.ce29	.0024	.ceess	.0007	
rod store	.06060	.0.ese	.are	.ate	. 80	.as	. 0887	. 6	.20643	.0247	. 0398	.6998	.1228)).oenz	.arez	.ess	. 0376	161	.0268	. 0347	.an	.08502	.exs3	.036a	.eteso	. \times \%	.2022	.exh2	. 03	.1170	,	.rens	.0037	.en	.one	25	.09\%	.osess	. 0938	.atas	.oses	.073s	.sem	. 1338	.20n9	. 2378	13540		20
		.23)	.23	.o,	.oses	. 1		. 2089.	.166es	.exes	. 1	.0522	. 0		1.01816	.osess	.0389	.2165	.0166	.o1s8	.2393	.0126	.2009	.	.017\%	.eese	.0383		.atse	. 538	.exs	.8ye	.083	.14n	. .0ess	.0122	ars	.asp	.0396	. 028	.03s1	.ong	.asst	.0x/1	.ass9	.tere	.an7e		
Dane	.asteo	.09\%	.0390	.0008	. 989	. 038	. 08179	-o	.2003	.exto6	.04649	.0763	des	.22	ata	.eeom	.ests	O3sp	.ox	.0226	atess	.eest	.oz2	.ater)	. 422	.abso	.06er	.0228	. 1028	12008	.ones	.07808	.05s5	.asen	.0069	.exm	.0620	.ecors	.ante	.68391	.omm	.0759	.1278	.2002	.1338	.1233	.200n		${ }^{2}$
cloentige ${ }^{\text {a }}$	00178	.014	.0122	. 0	cess	.012	. 014	.240.	.ces	.0089	:on	2ent	. 03	.088	. 1220	.0733 2	216	.01098.	. 0137	.0294	. 018	.0103	.00805	.0101	0149	.0178	.050n4	.om	.8076	. 0379	oens	.e229	.017	.oesil	.0039	.ome	${ }^{22}$.e2\%	.amı	. 2337	.atso	∞	.atys	.ous	.arm	.asz12	+4	.1024	2
		.1138 :	:09\%	. 0134	.eent	. 0129	.0054	.eose	.esco	.0080	. 02238	.0164	128e74	.asst7	.2002	.0064	.eng	.osese.	.axes	.0002	.0093	.os	.0037	.084	.0188	.on40		.osb	.2029	, \times m	.017\%	.oum	.0359	.0083	.aves	.07\%	.0269	.onst	.ezas	.01so		ar7a	.osye	.oseor	.0949	0.0e97	.0\%11		
Nurat 4 tpept.	.0085	.00377	.00631	.0046	.0317	.0062	.011	.0223	.06	.00657	.0079	2031	.08621	.0346	abs3	.0038	.cosen			mosil	.00628		.cosy	,oves	cent	.00\%	. 0.600	.os)	.out	cos	out	.unk	. 0 \%87	coat	.0065	.own	.nab	.ases	.04e6	10330		Ons	.0232	.0287	.ense		.2e289		
6,mer'1	.atee	.0850	.04427	. 12	.os3	. 1	. 0174	.0779	.	.0337	.0228	.0493	.eess	.003	ce312	.0xeo	.cosy	.0196\%	.am	0197	,0420	.10149	.0157	.0230	9	.e27s	.0800	.0072	.0638	.0330	.0770	.cesse	1230	.0141	.0070	.0088	.02\%	.osese	. 7233	.0850	.7921	.oniz	.omm9	.0970	. 0389	.0978	.0378		n
mep'taversity 28	. 3599	.0654 .	.ax	.0e3s8	.02ese	.eem	.1982	.0236	.as	.01988	.oe	.200\%	.0538	. 22	1	. 0382	. 0188	.0215	.027	.0281	. 2086	1.0178	. 230	.1991	.038	.over	.03	.10	. \times	.on	.a6	.ox	.ons	.or	. ∞	.0031	.05	.047	. 5	,	.ataz	-	.rysen	.men	.reaz	.0042	.mer	.eess	${ }^{8}$
tens namperat	.2409	.oses	.0202	. 080	. 0440	.023	.001	.02e2e	.01858	.css	.020	.1270	.ose	.0026	.eesen	.00x9	.00162	.0062	.0021	20087	. 022	.0288	20037	01612	00661	.cest	. .088	.0016	. ${ }^{\text {a }}$	cess	Oatb	.an	.ose	.006\%	.008	.0049	.coum	.	.oscoz	.an	.	. 006	.as	.0628	.as	.00681	.0020	.cose 6	29
112 otaer mataill 30	.00810	D6740	.066)	as	.1225	.0939	cosob	.a761	.1230	Sam	.0047	0336	,1466	.oses	cost	.0599	.0078	,2000	.00217	Dobs	cose	O2067	-0099	,0123	xms	Cons	Oexes	cose	. 0126	ar7e	mom	.010n	.099	20016	. 014	mose	cons	.uss1	1230	.0627		.0176			,0.83		2\%66		¢
totes, Notest	.00066	.coss	.0006	.	.0005	.	.00062	.000\%	.000\%	.0024	.00088	.0081	.0014	.	.000	. 0008	.coos7	.	.	.00031	.000ts	.0039	. \times m	. 20	${ }^{1.00006}$.aoces	.0016	.0027	.0020	.0014	.0005	.coes	.0008	.00021	.00012	.000\%	.com	.0008	.0200	.c009	.0086	.00088	.0018	.0063	.00249	.02166	.0017	.00062	
mat. 4 morr.	.02288	.0026.	. \times d	.a	. $\times 1$. \times d	.0019	. \times	.anes	.00106	.0062	.0041	.asen	.	.ce2or	. 0124	.0016	.00136	.ae	.00269	.coes	.0017	.2016	. 0218	.ceats 1	1.009s	.os	.002s	. 2061	.cosy	.035s	.cess	.as3	. 2035	.0095	.cous	.cosw	. 0 osk	.00661	.0035	.oxes	.0073	.cons	.6073	.co73	.007s	.007s	.0026	
nowi mat	.0125	${ }^{00334}$.	.ox	.00988	.02075	.00788		.20699	.00562	.0039		.02638	.2005	.005m	.009\%	.00586	.coses	.022m	.0889	.0766	.088	.00887	. 02035	.0083	,osex	,2\%o			.ones	aesw		.0330		.08616	.coent	.0x6es	.cess					.01488			.0243		.atis		
Lentr	.0075	.cos3	.00122	.00179	.0065	.0029	.00167	.0eent	.	.006s	.	.0203	.ooss	.0069	.0123	.0019	.0008	.axes	.0124	.oum	.0020	.00441	.00088	.mil	own	.013	.	.00\%2 1	002\%	.cose	.083	.cemz	.onto	.ooed	. 000	.0008	coen	.00019	.0879	.oout	.0es\%	.0023	.0027	.0040	.0018	.00m	0069		
meres	.om	.cost	.0027	.omm	.ons4	. 0366	.0066	.aites	.os1	.asob	.00es	-1\%9	.1857	.conz	.0067	.cons	.0628	.aeso	.0072	asbe	.omet	.ases	.anes	.amp	aumo	onus	.assio	.asa		1.028	,um	.1293	.oves	.asser	.0013	.0040	.oser	.es	.aes,	.1720	.ass,	.1228	.ox	.eers	,oest	.ases	.esso		
xom-riot.s.aser.	.os	.cems .	.ox	.	. 0448	.	.cos	.cebs	.	.os	.ase	.cosk	.ove	.coes9	.0303	.0048	.0075	.cosn	.0379	Ooth	.osh	.0062	.02ese	.080 6	ous	.063	. 0223	.cons	.olas,		1.0073	.cees	.009	.0030	.	.ases	.208	. 1135	.ovse	.0031	.atteo	.ans	.over	.ane	.014es	.1449	.anis		\%
\%re	.2005	.0860	.00661	.coss,	.0005	.	.035s	. 210	.072	.0230	.0579	.eexes	.om	.coze2	.0036	. \times	.0220	.0024	.	.0048	.os	. 021	.0029	.ass	.083\%	.0082	.one	.00122	.0073	.ces	.0620 1	1.0445	.0819	.0027	.	.axe	.0165	.0288	.0xes	.063)	.and	.oost	.002es	.0100	. 0131	.cos8	.0093	.a780	*
Cmantrutioe	.2e	.exe	.01427	.024	. 02380	. 0353	.0145	.anso	.ex\%	.0036	.exen	ders	.02860	.01098	.0184	.cose	.ooxer	.0eas	.024	.0393	.0158	.2063	.01093	.aste	.ones	.08006	.aseso	.0073	.03868	.oser	-	.es	1.004	.orbs	.an7	. 214	.osea	.ram	.12em	1497	.6ms	1	.03\%1	.osto	.osseo	.0382	.085\%	.7755	9
moitealt	.ado	.05774	.0887	.ces	.0571	.ent	.037	${ }^{2} \mathrm{sem}$.2146	.ose3	.o3	.0775	.06346	.07m	.4833	. 1078	.aexe	.obss	.0570	.eses	.eevs	.0363	.ans	.0392	.css 1	.0846	.ostes	.115>	.ows	.cous	.0057	.eent			.coner	10		.axs	.asy	.se2s	.07x	3	.ater9		. 0 nes	.2008			
tro	.01382	.0987	.016\%	.	.e203	. 210	.ong	.ess	.01sn	.0072	. 1	.oxea	.0289		H2	.0028	.o10	.eedz	.0669	0135	.ovos	.00\%	.cosit	.014	.otal 7	ates9	.ose	.0039	.6311	cers	.eos,	.as	.ouse	.00659 2		.0027	.0380	.oses	.ess	.ents	.eesi	.0162	.ox	.0262	.ateo	.aus	.2466	.aou	3
noors 42	.1066	. 2089	.0633	.0074	.0466	.ab	.0073	.023s.	.010,	.cones	.0445	.ou4e	.0132	.aners	.00\% 2	.0860	.01167	.0825	.0996	.esr	.0030	.exs3	.0080	.asyes	azm	.0143	.0998.	.0076	.2026	.em	.0267	.ov84	O2tes	.0064			.eave	.0286	.osss	.03s	.axns	.0228	.eens	.ose+	.ou7en	.ouns	.omen	.0108	4
Nater,ar, matio		.0682	.cos		.00850	.coss	.0028	.0079	.0078	.cost	.omo	00683	.010\%	.cossa	.00780	.coss	.1227	.00866	${ }^{.0661}$.ates	.0023	.0084	.0029	.oo7s	.oum	. 0137	.0.662	.ceses	,om	.cess	.0x24	.006	.as60	O2087	.oot	.ama			.cens	.005	.asen	.ask	.outh	.0201	.017\%	. 1229	.0118		,
mont	.e23	.01987	. 0177	.ouse	.0443	.exes	. 0152	.0nto	. 03 m	.acee6	.eeos	.20676	.0020	.0095	.10297	.coses	.0162	${ }^{01066}$.01780	.asbes	. 0168	.0.689	.00021	.0193	.erts	028	.0320	.1172	.2am	.ax	O3s3	.oseds	.ess	O134	.omso				.ostio	.oses	.apes	.exss	.os	.085s	.0, ${ }^{3}$.as		.2880	
a art.		.ose9		.cose	.012729	.actes	.00380	. 0.1981	. 1312	.0013	.00574	.00982	.0079	.00312	.08560	.00280	.00481	.0063	.cos3s	.00788	.0049	.00\%88)	.00838	. 00371	.an76	.003s	.0272	.0029	.01840	.ans	.00388	.acteo	.0069	.osesy	.0020	.002609	.02149	.0067	.040e 1	.00788			Ooves	.0335	.12m	.0.3n	.0.35		
Couts mor'	.	.cost	.0299	.0032	.0038	.02er	.02est	.06618.	S25	.001\%	.cose	.0046	.0063	.00176	.0038	.0173	.0025	.0339 -	.exes	.0062	.00312	.ce2en	.0027	.cos3	.08n9	.coss	.0086	.0021	.0355	.00793	.002est	.0839	coses	.020	.000	.00778	.00617	.os	.est	.exto 1		, 34	.068	.as\%	.0089	d 2	. Deses		n
stat	.	.00235	.0019	.ce2en	.00410	.0205	.020	.0983	. 2175	. \times	.0295	.coss6	. 2001	.00209	.0018	.0020	. 0137	.asse 7	.00180	.0260	.0021	.0026	.0n10	.00180	cees	.00466	. 0 +	.0048	.on	.as	.os3	.on	. ${ }^{\text {cos}}$.0033	.ose	.001n	.0036	.ases	.asto	.0033	.asob	1.00)	.00680	.emo	.00s8	.0076	.om2	.cose	*
	. $\times 3$.02868	. 0^{2}	.0227	.osess	.ones	.ox	.exes	.0053	.000\%	.	.0059	. 8 m	.0216	.oxer	.0019	.om	. 0237	.ox	.02045	.0209	.02166	.0079	. 2383	9	.coss	.2040	.0203	.0089	.coss	.0316	.00899	. $\times 38$.cose	.	.0093	.ores	.0031	.cers	.as)	. ${ }^{\text {m }}$.0060	1.0580	.cose	.osse	.coso	.0889	.0059	9
Labor	S223	.6669	. 3074	. 720	. 68205	. 2866	.23536	.3996	.4743	.126es	.3n7	.2038	.1995	. 2385	. 2093	.1267	.1264	.2488	.2956	2100	. 3117	.2038	.12488	.2m	3ms	.2486	.3907	thas	.59208	1359	.2098	. 5998	,3135	.22\%	.0333	.2805	tne2	.stos	. 58×70	.se90	.578	sm3)	.1087	1.21820	.1883	.1889	,2839	ton6	s
mat	.033	.016	. 2	.0834	.2088	. 1029	.0218	.esse	.osem	.opos	.1734	.e298	.e880	. 2 est	0210	.01168	.05856	.029	.0433	2m2	.0269	.oses	. 2117	.e2e	ceat	.2074	.208	.191	.0369	Cam	and	.eeocs	.as	.ose	.0038	.0126	.askn	. 0 Seses	.escos	.024	.0883	.ase	.9x	. 01	*22	osaco	.0379	.0189	s
treater se	.122	.0679	.con9	.0046	. 1	.013	.0142	. 03	. 1	.022\%	.a	.ouce	. 0	.oxen	.0073	.cers	. -	.cros	.0028	.cos8	. 0331	.0661	.004\%	.cos30	.omas	.coss	.478	. ${ }^{\text {a }}$. 01238	. 1218	.0020	. $0 \times$.0891	.0036	. -	.020e6	. 015	.065\%	.ance	.006e	.ribs	. 03984	.0142	.1359			ouss	.077s	*
tarr	.1413	.2446	.0e78	.e2z2	.0457	.orm	.1998	12302	.28460	.65100	.0784	.38216	.0a33	.anza	.1172	.0787	.ose	.0226	.0898	.0174	.oses	.06030	.08526	.0941	.asce	. 235	.5m4	.atese	.2085	.ta03	172es	.600\%	. 234	.ons	.00w	.0466	.063	.0739	.anc	.082m	on	.ase	.asso	. 0386	.0930	.5x+68	1.0533	.04s	"
arert	.omm	osen	coso 0	cos9	oum	ceess	aobse	aneer	,01064	.02e	06st	acts	.0291	coess	.003\%	.0819	0573	0049	abaz	coter	cose	cos2	2028	.0050	axes	.0078	.000e	coso	O216	0412	mom	cose	cont	.cess	.003		seso	com	.007	exs	ouss.	.coses	.ore3	.0183	.054	.cos2	.127n		
								2025 2.	2.7356	1.508031			2.8876	1.59372	2.2043 21	1.52781	1.619992	2.0510 1.	1.76661 1	1.668066																													

Volume I. The remainder of this portion of the report will deal with a brief description of each of the sectors.

Sectors 1 through 17 comprise the industrial activities in the county. All manufacturing and processing occurs in these sectors and they are the largest sellers of goods to the outside world. They can, therefore, be considered the county's basic economic activities.

Sector 1, Mining. Eight firms are included in this sector, of which six are coal producers (bituminous), one a fire clay producer and one firm the operator of a stone quarry. Two coal mining firms have annual production in excess of 100,000 tons. The smallest coal producer has a production of only several hundred tons per year.

Sector 2, Food Processing. Included in this sector are four meat processing firms, four dairy products firms, two bakeries, two flour mills, a fish hatchery, and a bottling plant. One flour mill is unique in that it is still run entirely by water power.

Sector 3, Textiles. Three mills are included in this sector. Two of these are branch or division plants. The third mill is locally owned and manufactures nationally known products.

Sectors 4, 5, 10, Material Processing. A diverse group of firms comprises this aggregated sector. Three woodworking plants, one of : which manufactures chair frames, were contained in the original sector 4. Sector 5 included the New York and Pennsylvania Company, a large : pulp and paper mill which at the time of the survey was a subsidiary of the Curtis Publishing Company. (More recently the mill has been acquired by the Hammermill Paper Company.) A paper converting firm,

Clinton Paper Company, was also included in this sector. Sector 10 was made up of two firms -- General Armature (subsidiary of Maremont Corporation) and a small family operated machine shop.

Sector 6, Printing and Publishing. Seven firms are included in this sector, two of which publish daily newspapers -- the Lock Haven Express and the Renovo Daily Record. Four of the remaining printing firms are small family operated businesses.

Sectors 9, 11, Fabrication and Assembly. Sector 9 originally comprised a steel fabricating firm -- the Jersey Shore Steel Company. Sector 11 contained the Piper Aircraft Corporation and a mobile homes manufacturer, Capital Coach Company. All three firms are largely locally owned. During 1963 Capital Coach Company operated a branch plant in the Renovo area. This plant has recently been acquired by another mobile homes manufacturer (D̈ivco Wayne Corporation).

Sector 12, Chemicals. Four chemical plants are included in this sector plus a branch plant of a firm making a bituminous road paving material. Three of the chemical firms are locally owned. The fourth is a branch plant of American Aniline Company.

Sector 14, Sawmills. Four small locally owned and operated sawmills utilizing local timber are included in this sector.

Sector 15, Pulpwood. Twelve pulpwood producers supplying the local paper mill comprise this sector.

Sector 16, Agricultural Feeds, Fertilizers. Four feed mills that grind and mix livestock feeds and one fertilizer producer make up the firms in this sector.

Sectors 7, 8, 13, 17, Miscellaneous Industries. Sector 7 includes a clay products manufacturing firm utilizing locally mined fire clay. Sector 8 includes a cement products firm manufacturing cesspools and other concrete products. Sector 13 includes two aircraft instrument repair firms. Sector 17 includes a firm manufacturing a specialty item made of fur for the textile industry, and a firm making fishing lures.

Sector 18, Agriculture. All farming activities are included in this sector. Data from 25 farms were obtained from the rural household survey. All farming activity takes place in the southern portion of the county, and, except for an area east of Lock Haven in the Susquehanna River valley, dairying provides the largest source of income. In the Lock Haven area there are a number of large truck farms raising potatoes and other produce.

Sector 19, Education. The Lock Haven State College, a state supported institution, is the only activity incorporated into this sector. Since the bulk of its revenue, either from tuition or public funds, comes from nonlocal sources, it can be considered as an important basic activity.

Sectors 20 through 30 are made up of all retail activities in the county. Most of the income for each of these sectors is derived from purchases by local firms, organizations, and households, primarily the latter. Each sector does make some sales to outside buyers, however. This latter portion of income can be considered basic in nature, although in the aggregate these sectors must be considered nonbasic.

Sector 20, Food Stores. There were 91 food stores in Clinton

County in 1963. Of these, five were branch stores of major chains, and data on these stores was processed separately, except in the case of one store which refused to cooperate. Many of the remaining stores were located in rural areas and sold items other than food and. groceries, particularly gasoline. In such cases, food and grocery sales comprised the larger share of total income.

Sector 21 , Service Stations. As in the case of food stores, some of the 108 gas stations that comprised this sector sold items other than gasoline and oil products and car servicing. Unless these other sales (primarily food and grocery items) were greater than gasoline sales, the firm was classified in this sector.

Sector 22, New and Used Car Dealers. Thirty firms were included in this sector, of which two were pre-selected for interviewing because of their size.

Sector 23, Clothing Stores. There were a total of 29 stores in this sector. Total sales of all these stores does not reflect the total income received in the county during the year from the sale of clothing items, however. Many department and variety stores also sold substantial amounts of clothing; these sales are not included in this sector. This same reasoning is also applicable to sales of other retail items, such as household furnishings, hardware materials, and the like.

Sector 24, Bars and Restaurants. These establishments, of which there were 102 in 1963, are included in the retailing sectors primarily because a commodity that exchanges hands is involved. It was felt a
distinction was necessary between retailing and service establishments, and the basic criteria was whether a good of some kind was involved in the transaction, as opposed to a service function in which there is no commodity exchange. Some bars and restaurants were located in hotels (particularly in the rural areas) and consequently a portion of the total sales for this sector represents income from lodging.

Sector 25, Jewelry, Drug and Sporting Goods Stores. There were too few firms in each of these three retailing categories to make a meaningful separation. There were 21 establishments in this combined grouping in 1963.

Sector 26, Furniture and Appliance Stores. Out of a total of 34 establishments in this sector, two were pre-selected for interviewing. For some of the establishments in this category, servicing charges make up a large share of the income. But as long as the retailing of consumer durables occurred, the firms were included in this sector.

Sector 27, Hardware and Building Materials Dealers. Twenty-three hardware stores and other retail outlets for building materials, such as lumber supply firms, are included in this sector. In addition, there were 12 coal yards also incorporated in the sector. Much of the income to these establishments originates from contractors in the construction sector and is wholesale in nature. But unless only a very minor share of total income came from retail sources, the firm was considered a part of sector 27 .

Sector 28, Department and Variety Stores. There were 12 firms in this sector, including such nationally known chains as F. W. Woolworth,

Sears Roebuck, Montgomery Ward, and others. Three firms were locally owned establishments.

Sector 29, Farm Equipment Dealers. These firms primarily sell farm equipment to the agricultural sector. In addition, some sell garden tools and supplies to nonfarm households and construction equipment to contractors. There were a total of six firms in this sector.

Sector 30, All Other Retail Stores. Retail establishments not fitting any of the above descriptions were all grouped together into this miscellaneous retailing sector. Such businesses as florists, gift shops, stationery stores, nurseries, hobby shops, music stores, a livestock auction, and other specialty stores were included in this sector. There were a total of 51 such firms.

Sector 31 , Hotels and Motels. This and the next six sectors comprise the service sectors portion of the model. In 1963 there were a total of 30 hotels and motels which were included in sector 31. A1though a number of these establishments also had bars and/or restaurants in conjunction with the hotel or motel, the main business activity appeared to be that of providing rooming services.

Sector 32, Entertainment and Recreation. Movie theatres, a playhouse for stage productions, bowling alleys, minature golf, and other such forms of recreational services comprised this sector. A total of 12 firms are represented in the matrix.

Sector 33, Finance. Six banks, five consumer credit firms, and a savings and loan association are included in this sector. Numbers in the matrix do not reflect the values of new deposits, new loans, or
payments on the principal of outstanding loans. They only reflect income (interest and other service charges) earned from loans or amount of interest paid to owners of time deposits, plus current operating costs of the institutions themselves. Therefore, there are no transactions included in this sector's income row or expenditures column that reflect absolute values of the transfer of capital resources.

Sector 34, Real Estate and Insurance. A total of 32 firms are included in this sector. Most real estate firms are locally owned, but only one insurance company is locally owned with head offices within the county. The remainder of the insurance offices are agents for national insurance firms. Matrix values show only premium payments for insurance, not amount of claims paid, except in the case of hospitalization. Hospitalization claims paid to clients are included in values shown in the expenditures column for this sector. For the real estate transactions portion of this sector, only commissions and fees are shown in the income row. Capital values of real estate transfers are not included.

Sector 35, Cleaning and Laundry. Ten firms, including coin operated laundromats, are included in this group.

Sector 36, Professional Personal Services. There were 99 professionally trained persons running their own businesses included in this sector. A breakdown shows 43 doctors and dentists, seven lawyers, nine morticians, five accountants, two veterinarians, and four miscellaneous professions (engineers, surveyors). In addition, 29 nurses available for private nursing duty were included. As a group, this sector had
the poorest rate of response to field interviewing.
Sector 37, Nonprofessional Personal Services. This sector included all those business services that required skills at a less than professional level. Included were 24 barber shops, 35 beauty shops, plus about 60 metal, woodworking, radio and television repair, shoe repair, refrigeration repair, watch repair, and upholstery repair shops, and music and dance studios.

Sector 38, Transportation. This sector included 13 trucking firms, two railroads (Pennsylvania and New York Central), three gas transmission pipelines, two taxi firms, and one bus firm. Although one of the gas transmission firms operates extensive underground gas storage facilities in the county (Leidy Field), it was included in this sector. Also included in this sector are the Pennsylvania Railroad repair shops at Renovo, the principal industry of this community.

Sector 39, Construction. Eleven general contractors and 24 specialized contractors, such as electrical, plumbing, roofing, masonry, and excavating, were included in this sector. This sector receives as income the new internal capital construction expenditures from other sectors of the model, plus some of the building maintenance and repair costs of these sectors.

Sector 40, Wholesalers and Distributors. This sector is comprised of eight beverage distributors, 11 oil and gasoline distributors, four food wholesalers, four salvage and second-hand parts establishments, and seven miscellaneous wholesalers.

Sector 41, Electric Utilities. Two power companies (The Pennsyl-
vania Power and Light Company and West Penn Power Company) serve the Clinton County area and were included in this sector.

Sector 42, Telephone Utilities. Two locally owned telephone companies serving small areas of the county plus the Bell Telephone Company of Pennsylvania and Western Union Telegraph Company were the firms included in this sector.

Sector 43, Water, Gas, Television, and Radio Utilities. Included in this sector were nine local water and sewage utilities, some of them. very small; 14 television cable companies; one radio broadcasting firm; and two gas utilities.

Sector 44, Nonprofit Organizations. This was the largest nonhousehold sector in the model, insofar as number of units was concerned, and contained 176 different organizations. Included were 97 churches, 42 fraternal organizations, 16 social agencies, 16 volunteer fire companies, and five unions.

Sector 45, Local Governments. These included 21 township accounts, seven borough accounts, and four separate accounts for the City of Lock Haven (City account, water fund, library fund, and highway aid fund).

Sector 46, Public Schools. Included in this sector were the accounts of four school jointures and 27 school districts.

Sector 47, County Government. All accounts for the various activities of the Clinton County government were included in this sector.

Sector 48, State A Government. All agencies of the state government carrying on business activities through a local office were
included in this sector. Such activities as the Pennsylvania Department of Forest and Waters, the State Game Commission, the Fish Commission, the Pennsylvania Department of Highways, the State Liquor Control Commission, the State Employment Service, the State Board of Public Assistance, the State Department of Health, and the Pennsylvania National Guard all maintained local offices or stores in the county.

Sector 49, Federal A Government. This sector is the federal counterpart of state sector A and included 18 United States Post Offices, the local accounts of the Veterans Administration office, the Extension Service, a Federal Fish Hatchery, and a local office of the Army Corps of Engineers.

Sectors 50 through 53, the Households Sectors. Households were disaggregated into these four sectors in order to show more explicitly sources of household income. Sector 50 shows all income earned from wages, salaries, and commissions, whether from local or nonlocal employment. The nonlocal income reflects the earnings of those county residents commuting to jobs outside the county. Sector 51 shows all rental payments for residences and places of business. It was assumed that when such payments were made locally these were to households rather than to firms engaged in the business of rental of real property. Sector 52 shows all transfer income received by households. For the internal portion of the model, this income reflects dividend payments from incorporated enterprises, retirement or pension payments, and interest payments from local banks for time deposits. From external sources, this form of household income would include all of
the above forms of payments but only those from nonlocal firms, plus government transfer payments such as social security, unemployment compensation, public assistance, Veterans Administration payments, and the like. It also included an imputed value for surplus food distributed to local households. Sector 53 shows the proprietary income or profits accruing to local households from unincorporated business enterprises. It was, in affect, the "balancing" sector of the model. After summing up all income and expenditures of local unincorporated businesses by sectors, any excess of income was assigned to this sector as a net return to the owners. Within any sector, some firms may have shown a net loss while others indicated a net profit. A value shown in this sector row is the net balance of profits and losses for all individual firms in that sector.

Household expenditures (columns 50 through 53) reflect a single household consumption function, but apportioned among the four sectors based on the contribution each sector makes to total household income. This may not be too realistic, as there may be significant differences in average household incomes according to the four sources of household income. ${ }^{1}$ This was not tested in the model, but it can be shown that there are both high and low income households in all four sectors. Refinement of the model to include household consumption functions reflecting varying levels of household incomes may be an improvement.

Sector 54, Overflow and Depletion. This sector was introduced

[^1]into the model to account for sectors which, on balance, showed negative profits (depletion column) and to show the retained profits of locally owned corporate enterprises, or the net savings of local households (overflow row). Some sectors, due to unusually high capital expenditures for new construction, showed a net loss in their monetary transactions for the year. Since the internal sum of this capital expenditures column was greater than the sum of retained earnings and household savings, money was introduced into the model to make up for the deficiency. This amounted to $\$ 788,000$ and is shown as an external "investment" in the local economy. It is to be hoped that in future models this crude handling of capital accounts can be refined so as to more accurately portray the vital role capital investment plays in economic development within a region.

Sector 55, External Labor (row) and Recreation (column). Since a disaggregation of the independent variables is not necessary for the mathematical solution of the model, rows and columns in this portion of the matrix need not coincide with each other as they must in the internal or dependent variable portion. Row 55 (external labor) shows amounts paid by local firms for labor commuting into Clinton County from outside the region. These are nonresidents of the county working in local establishments. Column 55 (recreationists) shows the expenditures made by nonresident outdoor recreationists in C1inton County during the year. These are primarily tourists, people owning summer vacation homes in the county, and hunters and fishermen.

Sectors 56 and 57, State B and Federal B Governments. These are
the nonlocal government agencies that take taxes, fees, license costs, and other payments from the local economy and make payments into the local economy for such things as transfer payments, educational support, price support payments for agricultural commodities, locally produced goods and services; and the like. Local business firms paid business taxes, sales taxes; excise taxes, employers share of social security payments, unemployment compensation, and so forth. Households paid their share of social security payments, income taxes, sales taxes, license and registration fees, fines, and the like into these two sectors.

Sector 58, All Other External. This sector included all nonlocal purchasers of Clinton County goods and users of services sold to the outside world, other than the purchases by recreationists and the state and federal governments. It also included those firms or individuals selling goods and services to Clinton County firms and households other than those mentioned above. These external private buyers constituted the main market for the products of the county. Virtually all the goods and services not available locally were purchased from external suppliers. Proximity. of these nonlocal buyers and sellers had no relevance insofar as this model was concerned -- they could be located in an adjoining county or in a foreign country.

CHAPTER III

MULTIPLIER ANALYSIS

The column sum of interdependency coefficients for any given sector shows the amount of direct and indirect economic activity that will be generated by the economic system as a whole in order for that sector to meet one dollar of final demand. These sums have been called "export demand multipliers" and are shown in the bottom row of the interdependency coefficients matrix (they are also shown in column 2, Table 1, of Volume I). These multipliers have value in showing the interdependency of any one sector with other internal sectors of the system and the relative contributions to the economy from basic external income of each sector. They can be somewhat misleading, however, if one is primarily concerned with the benefits accruing to the people of a region as a result of the exporting of goods and services. Much of the money flowing through a regional economy does not end up or is not "available" for use by the people. Many times multiple accounting of the same dollar occurs as it passes from one sector to another.
A.more meaningful and realistic estimate of economic returns to the residents of a region as a result of export activities would be the sum of the direct and indirect returns to households (sectors 50 through 53), local governments (sectors 45 through 47) and nonprofit organizations (sector 44). These returns may be appropriately called the "residual county income." They would approximate the net economic
returns to the county and would be somewhat analagous to a value added figure for a regional economy. They may be computed by individual sectors or for the economy as a whole.

Multiplier values for each of the three components of residual county income for any sector can be obtained directly from the interdependency matrix, Table 5. Summing these would give a residual income multiplier by sectors. Taking sector 3 (textiles) for example, the sum of the four household interdependency coefficients is .355 , the sum of the three local government coefficients is .013 , and the nonprofit interdependency coefficient is .018. The sum of these three residual income component multipliers is . 386 . This is the residual income multiplier for this sector. Multiplying each of these multipliers by the level of export demand for sector 3 ($\$ 16,626,000$) gives the absolute value of the components and the total direct and indirect amount that textile firms in the county contribute to residual county income. This latter figure would be $\$ 6,418,000$. For the household component alone, the absolute value is $\$ 5,902,000(.355 \times \$ 16,626,000)$. Since sector 3 contributed directly to households $\$ 4,391,000$ (sum of rows 50 through 53, column 3, transactions matrix), the indirect portion amounts to $\$ 1,511,000$. This indirect portion represents the value of economic activity that households not directly employed in textile firms earned in "supporting" those households who received direct income from these firms. These "indirect" households would be primarily engaged in retailing and servicing activities in the county from which "textile" households made purchases. This illustrates the interdepend-
ency of basic and nonbasic activities in the economy. Households provide the major link between basic and nonbasic activity through their expenditures for the goods and services needed to sustain the wellbeing of the home and family.

Table 6 shows, by sectors, the residual income component multi- pliers, the total residual county income multiplier, and the absolute value of residual county income. It must be remembered that Table 6 is interpreted in terms of final demand; i.e., values shown in column 5 are direct and indirect contributions to residual income made by the sectors named at the left. Direct contributions from final demand for any sector are obtained by multiplying the appropriate technical coefficients times final demand for that sector. The indirect portion only from final demand is then the difference between this product and the absolute sector value shown in column 5, Table 6.

One of the most striking features of Table 6 is the comparatively low residual income multipliers of the retail sectors group as compared to the industry sectors group and the service sectors group. A composite residual income multiplier for the 11 retail sectors is .301 , while the 11 industry sectors shows a composite multiplier of .412 , and the seven service sectors a composite multiplier of .766. This follows the same trend as does the export demand multipliers for these three groups, although the trend in the case of the latter multipliers is not as pronounced (see Table D, Appendix, Volume I). Comparing the absolute values of the contributions of each of these three groups to direct and indirect residual income originating from final demand, we find industry

TABLE 6
RESIDUAL COUNTY INCOME MULTIPLIERS AND VALUES BY SECTORS

Activity Sector		Household Multiplier 1	Local Gov' t Multiplier 2	Nonprofit Multiplier 3	Residual Income Multiplier 4	Absolute Value of Residual Income (\$1,000) 5
Industrial						
Mining	1	. 510	. 020	. 023	. 553	\$ 953
Food Processing	- 2	. 414	. 018	. 019	. 451	1,214
Textiles	3	. 355	. 013	. 018	. 386	6,418
Mat'1 Process'g	(4,5,10	- .412	. 018	. 019	. 449	16,969
Printing	6	. 741	. 035	. 034	. 810	121
Fab \& Assembly	9,11	. 349	. 015	. 022	. 386	14,958
Chemicals	12	. 329	. 014	. 015	. 358	3,293
Sawmills	14	. 712	. 067	. 041	. 820	25
Pulpwood	15	. 726	. 041	. 038	. 805	---
Agr Feeds	16	. 181	. 009	. 008	. 198	31
Misc Mfg	7,8,13,17	7 . 449	. 018	. 020	. 487	736
Agriculture	18	. 583	. 034	. 027	. 644	1,188
Education	19	. 901	. 032	. 040	. 973	1,676
Retail Trades						
Food Stores	20	. 194	. 011	. 010	. 215	121
Gas Stations	21	. 354	. 020	. 019	. 393	597
Auto Dealers	22	. 213	. 009	. 010	. 232	778
Clothing	23	. 286	. 013	. 016	. 315	202
Bars, Restnts	24	. 318	. 021	. 016	. 355	155
Jw1, Drgs,Sprtg	25	. 360	. 016	. 017	. 393	118
Furn \& Appl	26	. 289	. 014	. 018	. 321	161
Hdw, Bldg Mat	27	. 348	. 019	. 016	. 383	221
Dep't \& Var	28	. 304	. 012	. 017	. 333	284
Farm Equipment	29	. 199	. 012	. 009	. 220	74
All Other Rtl	30	. 308	. 020	. 019	. 347	164
Service Trades						
Hotels,Motels	31	. 423	. 063	. 028	. 514	440
Ent, Recr	32	. 505	. 027	. 033	. 565	16
Finance	33	. 883	. 041	. 052	. 976	654
R1 Est \& Ins	34	. 207	. 009	. 012	. 228	35

TABLE 6 (Continued)

		1	2	3	4	5
Service Trades (cont) Laundry Prof Prs Srvs Nnprf Prs Srvs	35	.788	.036	.040	.864	$\$$

contributing $\$ 47.7$ million, retail $\$ 2.9$ million, and services $\$ 2.8$ million. This emphasizes the crucial role of industrial activities in providing the economic base for the regional economy.

The comparatively high residual income multiplier of the service sectors group can be easily explained. Payments to households make up a significantly greater share of costs of these activities than is the case for many other kinds of activities. Service trades have little need for raw materials, wholesale goods, power, and other inputs that are necessary to industrial and retail sectors. This becomes apparent when one compares the residual income multiplier of 1.091 for the professional personal services sector with the multiplier of .233 for auto dealers or .358 for chemicals. In other words, most expenditures by service sectors are made locally and are comprised of payments to households. Many expenditures by industrial and retail firms, on the other hand, are external and go for goods not available locally. If these latter firms were able to purchase more of their inputs from local sources, they would show a higher residual income multiplier.

Residual income multipliers for those sectors comprising the components of residual income must, of course, exceed 1.000. But it is surprising to see the residual income multiplier for Federal A sector being so high (1.353). Examination of Table 4 (technical coefficients matrix) provides the answer. Out of every expenditure dollar by this sector, nearly 97 cents went directly as a payment to households. ${ }^{1}$

[^2]Five sectors out of the 48 shown in Table 6 contribute, directly and indirectly, about 65 percent of the total residual county income. These are:

Material Processing	$\$ 16,969,000-19.4 \%$
Fabrication and Assembly	$14,958,000-17.1$
Labor Households	$10,850,000-12.4$
Transfer Households	$7,925,000-9.1$
Textiles	$6,418,000-7.3$

The residual income multiplier for any particular sector is determined not only by the amount of internal expenditures out of final demand by that sector, but also by the distribution of these expenditures among various internal sectors. This is also true for the export demand multiplier for any sector. Thus, it is possible for two sectors to have about the same value for their export demand multipliers but different values for residual income multipliers. Comparison of the multipliers for mining, food processing, and miscellaneous manufacturing, shown below, illustrates these divergencies.

	Export Demand Multiplier	Residual Income Multiplier
Mining	2.172	.553
Food processing	2.159	.451
Miscellaneous manufacturing	1.963	.487

Mining, with about the same export demand multiplier as food processing, returns to the people in the region about $\$ 100,000$ more in
benefits than does food processing for every $\$ 1$ million of export demand. Food processing would contribute more to total direct and indirect economic activity in the county than miscellaneous manufacturing, but returns to the people about $\$ 36,000$ less in benefits than does miscellaneous manufacturing for the same value of exports. This use of the multipliers can be of significant value to local planners and others charged with the responsibility of bringing new industry into an area or furthering development of already existing industries. If concern is primarily for the local people in the region, one criteria used to judge the desirability of an activity should be the benefits that the people derive from this activity. It is important, therefore, that appropriate multipliers be used for such evaluative purposes.

The total export demand multiplier for the entire economic system is 1.9437. This is derived by dividing total economic activity by total export demand, or $\$ 303,224,000$ by $\$ 156,003,000$. It shows the amount of direct and indirect economic activity generated by each dollar of final or export demand for all sectors. By itself, however, this multiplier is not very indicative of what takes place within the system nor is it capable of reflecting the diversity of economic activities of a particular system. A study made by Gamble (19) in Sullivan County, Pennsylvania, shows the economy of this county to have virtually the same value for its total export demand multiplier (1.9440). Yet the structure of the economies of these two counties are very dissimilar. Sullivan County, with a total economic activity of only $\$ 25,432,000$, is very rural. Industrial activity makes up only

17 percent of total activity, whereas for Clinton County it comprises 38 percent of total activity or more than double the rate for Sullivan County. Out of a total external income of $\$ 13,082,000$ for Sullivan County, 27 percent results from sales by agricultural and sawmill activities. The comparable figure for $C 1 i n t o n$ County is 1 percent. Households in Sullivan County spend 24 cents of their income dollar in local retail stores, whereas in Clinton County households spend 44 cents of their income dollar in local retailing sectors. Intuitively, one would expect county multipliers to reflect this diversity in the "mix" of internal activities.

The total export demand multiplier tells us nothing about the proportion of the external income dollar spent internally and the proportion spent externally. For each sector, some of the receipts from sale of goods and services to the outside world will be spent within the region and some outside. It is only that portion of external income spent inside the region that will generate additional income to the region. Generally speaking, the more complex the internal structure of a regional economy -- i.e., the more varied the economic activities -- the more additional or indirect income will be generated. What we are saying, in effect, is that the more opportunities the dollar spent locally has of being respent or reused in the region, the greater will be the total economic activity level of the regional economy. Regional multipliers should be able to reflect the degree of complexity of internal economic activities in a region.

It is possible to disaggregate total economic activity for Clinton

County into a number of components. To begin with, there is the direct component, or total export income, and the indirect component. These two components were $\$ 156,003,000$ and $\$ 147,211,000$, respectively, in 1963. But only a portion of the $\$ 156,003,000$ of export income was spent inside the region. This portion can be found by multiplying the sum of all internal technical coefficients for each sector by the level of export demand for that sector, and then summing these products for all sectors. Doing this we find that of the $\$ 156,003,000$ of export income, $\$ 65,928,000$ was spent initially within the region. We could call this the "primary internal expenditure." The remainder of total external income, or $\$ 90,075,000$, was spent initially outside the region. This could be called the "primary external expenditure." Together they make up the direct portion of total economic activity for the county.

It was the expenditure of the primary internal component, or $\$ 65,928,000$, not the total direct portion ($\$ 156$ million), that generated the indirect portion of total economic activity ($\$ 147.2$ million). But we know from the mathematical formulation of the model that the primary internal component itself will ultimately flow back to the outside world (i.e., be spent externally). For any dollar of external income to a particular sector, it will, eventually, indirectly find its way back outside the region through expenditures by a number of different sectors, not just the one originally receiving it. With respect to all sectors, all of the primary internal component will, ultimately, be spent externally. This could be called the "indirect external
component" of total indirect income. The remainder of the indirect portion of total economic activity, or $\$ 147,211,000$ minus $\$ 65,928,000$, could be called the "indirect internal component."

Aligning these four components in sequence may better portray the disaggregation of total economic activity discussed above.
\(\left.\begin{array}{llll}Primary internal component-\$ 65,928,000

Primary external component-90,075,000\end{array}\right\} \$ 156,003,000\)| Total direct |
| :---: |
| activity |

The indirect internal component appears to be a more realistic estimate of the true amount of indirect activity generated by the system, since it does not recount the dollars originally spent inside the region that will ultimately be spent outside the region.

The indirect internal component originates entirely from the expenditure of the primary internal component. Dividing the first by the second, we get:

$$
\frac{81,283}{65,928}=1.233
$$

This could be called the "indirect internal multiplier." It means that for every dollar of final demand income spent within the region, an additional $\$ 1.23$ of indirect income will be generated internally by the system. It is perhaps interesting to compare this multiplier with the "indirect internal multiplier" for the Sullivan County study (19) where
we have a "rural" regional economy rather than the somewhat more "industrial" regional economy of Clinton County.

The comparable values and multiplier for the Sullivan County economy are:

$$
\frac{5,312}{7,038}=.755
$$

Thus, it appears that the use of an indirect internal multiplier will be more reflective of the complexity of the internal structure of a regional economy than will the use of a total export demand multiplier.

Disaggregation of total county economic activity into the four components discussed above may be achieved from data provided in the transactions matrix. Disaggregation on the sectoral level into the same four components, however, is not possible from data provided only by this matrix. One must first obtain the inverse of the technical coefficients matrix; i.e., the interdependency coefficients matrix $[1-A]^{-1}$.

This disaggregation by sectors has been done in Table 7. The original 17 industrial sectors are shown individually since they comprise such an important part of basic income (70 percent). The remaining 37 sectors have been grouped in the same manner as is shown in Table B, Appendix, Volume I. Rather than use absolute values, multiplier values and technical coefficient values are used so as to avoid disclosure of data on individual firms. Use of these values rather than absolute values in no way alters the interpretation of the data.

Columns 1 and 2 in Table 7 are obtained directly from the tech-

TABLE 7

TOTAL ECONOMIC ACTIVITY COMPONENTS AND INDIRECT INTERNAL MULTIPLIERS, BY SECTORS CLINTON COUNTY, PENNSYLVANIA

Sectors	Direct			Indirect			Indirect Internal Multi- plier 6	$\begin{gathered} \text { Rank } \\ 7 \end{gathered}$
		Primary	Primary					
		Internal 1	$\begin{gathered} \text { External } \\ 2 \end{gathered}$	$\begin{gathered} \text { Internal } \\ 3 \end{gathered}$	Total	$\begin{gathered} \text { Rank } \\ 5 \end{gathered}$		
Industry								
Mining	1	. 528	. 472	. 644	1.172	17	1.220	24
Food Processng	g 2	. 499	. 501	. 661	1.160	18	1.325	10
Textiles	3	. 308	. 692	. 406	. 714	23	1.318	14
Wood Products	4	. 546	. 454	. 743	1.289	15	1.361	3
Paper Products	s 5	. 377	. 623	. 498	. 875	21	1.321	11
Printing	6	. 653	. 347	. 880	1.533	10	1.348	5
Clay Products	7	. 568	. 432	. 742	1.310	14	1.306	17
Cncrt Prdcts	8	. 870	. 130	. 968	1.838	4	1.113	26
Steel Fabrctn	9	. 133	. 867	. 178	. 311	30	1.338	6
Machining	10	. 439	. 561	. 604	1.043	20	1.376	2
Trans Eqpmt	11	. 346	. 654	. 490	. 836	22	1.416	1
Chemicals	12	. 307	. 693	. 390	. 697	24	1.270	22
Instrmt Repr	13	. 473	. 527	. 641	1.114	19	1.355	4
Sawmills	14	. 887	. 113	1.176	2.063	2	1.326	9
Pulpwood	15	. 770	. 230	1.006	1.776	5	1.306	16
Ag Feeds, Frt	16	. 224	. 776	. 279	. 503	27	1.246	23
Misc Mfg	17	. 214	. 786	. 282	. 496	28	1.318	13
Agriculture	18	. 837	. 163	. 869	1.706	9	1.038	29
Education	19	. 809	. 191	1.078	1.887	3	1.333	7
All Retail	20-30	. 333	. 667	. 358	. 691	25	1.075	28
All Service	31-37	. 560	. 440	. 727	1.287	16	1.298	18
Transportation	38	. 605	. 395	. 793	1.398	11	1.311	15
Construction	39	. 646	. 354	. 740	1.386	13	1.146	25
Wholesale	40	. 231	. 769	. 297	. 528	26	1.286	19
Utilities 4	41-43	. 216	. 784	. 277	. 493	29	1.282	20
Nonprofit	44	. 748	. 252	. 995	1.743	6	1.330	8
Local Govts 4	45-47	. 737	. 263	. 972	1.709	8	1.319	12
State \& Fed	48,49	. 762	. 238	. 971	1.733	7	1.274	21
Households	50-53	. 726	. 274	. 671	1.397	12	. 924	30
Ovdep	54	1.000	--	1.111	2.111	1	1.111	27

nical coefficients matrix and are merely the sum of the internal and external coefficients, respectively, for each sector. Together they sum to 1.000. Column 4 is the total activity multiplier for the sector named at the left (or the sum of the sector's interdependency coefficients) minus 1.000. This means that the original dollar of final demand income -- the direct income -- is subtracted, leaving only the indirect portion as represented by the values in column 4. Subtracting column 1 from column 4 gives column 3, the indirect internal component. Since the indirect external component is the same as the primary internal component (column 1), it is not repeated in this table. To clarify what has been presented thus far in Table 7, take mining, sector 1 , as an illustration. Out of every dollar of income received by this sector from the sale of its products to the outside world, it will spend about 53 cents within the region (column 1) and about 47 cents outside the region (column 2). The 53 cents spent internally, however, will generate an additional 64.4 cents of indirect activity within the region (column 3).

Column 5 ranks the 30 values appearing in column 4 (the total indirect activity multipliers) in order of magnitude. Column 6 is derived by dividing column 3 by column 1 . In the case of sector 1 (mining), the value in column 6 tells us that every dollar of final demand income spent inside the region by this sector will generate an additional $\$ 1.22$ worth of indirect economic activity within the region. Column 7 ranks the 30 sectoral indirect internal multipliers in order of magnitude.

Comparison of the rankings of the values in columns 4 and 6 is quite revealing. The multiplier values in column 6 are more realistic indicators of a sector's interdependency on other internal sectors than are total activity multipliers by sectors. For example, sector 11 (transportation equipment) spent only about one-third of its export income dollar locally and stood $22 n d$ out of 30 in the size of its total activity multiplier. Yet it had the highest indirect internal multiplier of all. This means that dollars spent internally by this sector had greater indirect income generative power for the region's economic system than had dollars spent internally by any of the other $29 \mathrm{sec}-$ tors. An almost parallel situation exists for sector 9 -- which occupies last position in ranking of total multiplier and sixth position in ranking of indirect internal multiplier. Similar examples can be found in the cases of sectors 10,4 , and 13 . This reversal in rankings can be explained, at least in part, by relatively large shares of internal payments going to local households. As was stated earlier, household sectors are the major "link" between industrial or basic activities and nonbasic activities of the economy. It is this linkage that accounts for much of the interdependency among internal sectors. By the same token, the lack of significantly large internal payments to local household sectors explains the opposite trend in comparative rankings for sectors 8 and 18. Sector 8 spent about 87 percent of its external income locally and had the fourth largest total multiplier, but dropped to 26 th position for its indirect internal multiplier. Sector 18 stood ninth and 29 th, respectively, in the rankings
for these two multipliers. Both of these sectors had only a small proportion of their local expenditure dollar going to households.

The importance of local households in providing the basis for interdependency among sectors is dramatically illustrated in the low value of the indirect internal multiplier for households themselves. It is the lowest multiplier of the 30 shown in Table 6 and the only one less than 1.000. In the case of households, they themselves are direct recipients of external income and their primary payments are largely made to nonhousehold activities. In other words, households purchase only a very small proportion of their local needs from other households.

It is felt that the indirect internal multiplier for any sector is a more meaningful multiplier than the total export demand multiplier for that sector. It is a more realistic indicator of a sectors interdependency on the rest of the economic system in order for that sector to meet its commitments to final demand. It is the best measure of the power of a dollar spent internally by a sector to generate additional economic activity within the region.

IMPACT ANALYSES

In this chapter we wish to present, in specific detail, the various impact studies discussed in Volume I of this report. For a general discussion of the methodology, the reader is directed to the appropriate section of Volume I. As spelled out there, our procedure will be to present the particular changes made in the Clinton County model parameters in order to simulate desired economic changes in the region. Following this, changes in economic activity levels will be presented in tabular form and compared with activity levels for the basic Clinton County model.

A note is perhaps appropriate at this point concerning interpretation of data to be presented in this section. There are several assumptions implicit in the model used here. Therefore, there are limitations on the accuracy of estimates of economic impacts derived from the model's use. These have been discussed in Volume I (pp. 41-42) and the reader should be familiar with them as he examines and interprets the following material. Of these points, one deserves repetition for emphasis. This is the spurious exactitude of our impact predictions. An increase or decrease in economic activity is only as accurate as the parameter changes introduced to produce it. Since these changes are only approximations and, in many instances, educated guesses, the impacts registered by our model are only rough measures or estimates.

Even though our model shows an exact amount of increase or decrease in economic activity, it should only be viewed as a first approximation to what might occur in the region under the impact of the economic changes which have been simulated.

All of the impact analyses have been described in Volume I. The reader should refer to them when examining the impact data which follows. We shall confine ourselves to a presentation of specific changes made in each case and a presentation of actual imnacts of these rhanges.

A. Fluctuations in the National
 Economy - the "PRAG" Decade

Since it was felt that the various changes forecast for the 54 sectors of the Clinton County model over a 10 -year period would be too voluminous for presentation, these forecasts and their economic impacts were aggregated and summarized for the 10 -year period of the "PRAG" decade. The four aggregated sectors are now Industry, Retail and Service, Government, and Households. The fluctuations in external income to each of these sectors caused by fluctuations in the national economy are shown in Table 8, along with their effects on the total activity levels of these sectors. Note that there has been no internal change made in the Clinton County model. Changes in economic activity levels are attributed solely to fluctuations in export sales and external transfer income flows reflecting changes occurring in the national economy.

TABLE 8
PRAG DECADE ACTIVITY LEVELS CLINTON COUNTY, PENNSYLVANIA
($\$ 1,000$ UNITS)

Activity Sector		Year										
		1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
Industry	Ext. Act.	108633	108452	118992	107905	99897	97927	99794	107407	116507	123911	127414
	Total Act.	115676	116645	126591	114975	106565	104508	106489	114526	124088	131873	135570
Retail-	Ext. Act.	28566	29456	30386	27877	26115	26332	27616	29499	31457	32919	33696
Service	Total Act.	103754	106850	111186	103712	98000	97484	100117	106400	113129	118447	121346
Government	Ext. Act.	3871	4149	4175	4255	4337	4337	4271	4255	4246	4275	4304
	Total Act.	8055	8466	8691	8500	8364	8326	8337	8564	8815	9054	9198
Households	Ext. Act.	14933	15176	15426	15586	15460	15412	15490	16010	16364	16628	16893
	Total Act.	75739	77787	81322	76541	72769	72022	73281	77688	82419	86251	88383
Total Region	Ext. Act.	156003	157233	168979	155623	145809	144008	147171	157171	168574	177733	182307
	Total Act.	303224	309749	327790	303729	285697	282341	288224	307177	328451	345625	354496

B. The Removal or "Closing Down"

of an Economic Activity
The "closing down" of two industries in Clinton County were simulated with the model. The railroad maintenance and repair shop facility was removed from the Clinton County economy in a single step. This resulted in two basic adjustments of the model. Technical coefficients for the repair shop's sector of the economy were adjusted to account for this removal, and adjustments were made in external income to those sectors affected by this "closing down." The nature and derivation of these adjustments are discussed in Volume I of this report. The specific technical coefficient changes are given in Table 9. These are the actual changes made in the coefficients of the Transportation Service sector of our model. Following this are Tables 10 and 11 where changes in external income (export activity) of the sectors involved in this simulation are shown. In addition, these tables show changes in total economic activity for various sectors of the region. Here, for reasons of brevity, the 54 sectors of the economy have been aggregated into 14 sectors. Again, these results are discussed at some length in Volume I. These two impact tables present data for the two cases discussed, namely: the case when a purchase of railroad ties in the amount of $\$ 40,000$ formerly made with a local sawmill by the local railroad facility was dropped (Table 10) and the case when the purchase was continued with the local sawmill but was made by a railroad purchasing office outside Clinton County (Table 11). In this case, the $\$ 40,000$ amount appears as an external income (export activity) to the Industry sector in Table 11.

TABLE 9

TECHNICAL COEFFICIENT CHANGES TRANSPORTATION SERVICE SECTOR REMOVAL OF RAILROAD SERVICE AND REPAIR FACILITY

Sector Number	Sector Name	```Basic Coefficients```	Adjusted Coefficients
6	Printing-Publishing	. 00102	. 00124
14	Sawmills	. 00581	--
21	Gas Stations	. 00726	. 00797
22	Auto Dealers	. 01569	. 01914
24	Bars, Restaurants	. 00029	. 00035
26	Furniture and Appliances	. 00073	. 00089
27	Hardware, Building Materials	. 00436	. 00532
28	Department and Variety	. 00073	. 00089
29	Farm Equipment	. 00305	. 00372
30	A11 Other Retail	. 00058	. 00071
33	Finance	. 00015	. 00018
34	Real Estate and Insurance	. 00276	. 00337
36	Professional Personal Service	. 00073	. 00089
37	Nonprof. Personal Service	. 00087	. 00106
38	Transportation	. 03733	. 04554
39	Construction	. 00930	. 00744
40	Wholesale	. 03632	. 03810
41	Electric	. 00261	. 00071
42	Telephone	. 00320	. 00354
43	Water, TV, Radio	. 00015	. 00018
44	Nonprofit	. 00145	. 00177
45	Local Government	. 00073	. 00089
46	Public Schools	. 00291	. 00354
47	County Government	. 00073	. 00089
49	State-Federal A	. 00073	. 00053
50	Labor	.43997	. 10668
51	Rent	. 00015	. 00018
52	Transfer	. 00145	. 00177
53	Proprietary	. 02353	. 02871

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N5 Description: STRAN Reduced - Sawmill Ext. Income Unchanged

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	115,468	- 206	- . 2	108,633	108,633		
Agriculture	3,210	3,180	- 30	- . 9	1,845.	1,845		
Education	1,862	1,857	- 5	- . 3	1,722	1,722		
All Retail	49,097	47,852	-1,245	- 2.5	9,555	9,555		
All Service	12,093	11,837	- 256	- 2.1	3,638	3,638		
Transportation	6,884	5,221	-1,663	-24.2	3,127	1,507	-1,620	-51.8
Construction	5,123	5,012	- 111	- 2.2	1,227	1,227		
Wholesale	12,114	11,896	- 218	- 1.8	4,972	4,972		
Utilities	5,144	5,015	- 129	- 2.5	166	166		
Nonprofit	5,494	5,358	- 136	- 2.5	1,526	1,526		
Local Government	6,150	6,058	- 92	- 1.5	2,961	2,961		
State-Federal A	1,906	1,874	- 32	- 1.7	910	910		
Households	75,740	73,188	-2,552	- 3.4	14,933	15,510	+ 577	+ 3.9
Ovdep	2,732	5,358	+2,626	+96.1	788	788		
Candidate								
Total	303,223	299,174	-4,049	- 1.3	156,003	154,960	-1,043	$-.7$

非38 Sector Multiplier 2.671027 Total Multiplier $\underline{-3.8821}$
\#38 Basic Multiplier 2.3975

TABLE 11
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N5A Description: STRAN Reduced - Sawmill Ext. Income +40

Activity	Total Activity Leve1s				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,510	- 164	- . 1	108,633	108,673	$+40$	
Agriculture	3,210	3,187	- 23	- .7	1,845	1,845		
Education	1,862	1,857	- 5	- . 3	1,722	1,722		
A11 Retail	49,097	47,873	-1,224	- 2.5	9,555	9,555		
All Service	12,093	11,840	- 253	- 2.1	3,638	3,638		
Transportation	- 6,884	5,221	-1,663	-24.16	3,127	1,507	-1,620	-51.8
Construction	5,123	5,015	- 108	- 2.1	1,227	1,227		
Wholesale	12,114	11,902	- 212	- 1.8	4,972	4,972		
Utilities	5,144	5,016	- 128	- 2.5	166	166		
Nonprofit	5,494	5,360	- 134	- 2.4	1,526	1,526		
Local Government	6,150	6,060	- 90	- 1.5	2,961	2,961		
State-Federal A	1,906	1,878	- 28	- 1.5	910	910		
Households	75,740	73,215	-2,525	-3.3	14,933	15,510	+ 577	+ 3.9
Ovdep	2,732	5,358	+2,626	+96.1	788	788		
Candidate								
Total	303,223	299,292	-3,931	- 1.3	156,003	155,000	-1,003	- . 6

Sector Multiplier \qquad Total Multiplier -3.9192

In addition, the more complex case in which a large manufacturing facility was "phased out" over a three year period is represented in Tables 12,13 , and 14 . This "phase out" was of a more complex nature. Rather than close down this industry in one step following the base year of 1963, the closing was accomplished over a three year period of the PRAG decade, from 1964 to 1967. Economic characteristics of this period with respect to Clinton County are summarized in Table 8. The phasing out procedure in this context and its hypothetical results on the region are discussed on pages 51 to 54 in Volume I. Impact analysis data upon which this discussion is based will be found in Tables 12, 13, and 14 . The notation $U-11$ refers to the manufacturing, fabrication, and assembly sector of the model. What is happening can be seen quickly by comparing the $\mathrm{U}-11$ entries in these tables for the standard decade years and the table for the new activity situation in which the industry being "phased out" has been reduced in activity or removed. This comparison should be done for both total and export activity levels over the PRAG standard decade years 1965, 1966, and 1967.
C. Automation of an Industry

As discussed in Volume I, the next economic change simulated with the Clinton County model was the automation of a paper mill. The specific adjustments reported in Volume I are given in Table 15. These were three: reductions in the Laundry sector and Labor sector coefficients and an increase in the Electric Utilities sector coefficient.

TABLE 12
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N3A-1965 Description: U-11 Out Over Three Years - (1965)

Activity	Total Activity Levels				Export Activity Levels			
	1965 Standard Decade	New Activity	Absolute Change	Percent Change	1965 Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	126,592	106,254	-20,338	-. 1607	118,992	99,950	-19,042	-. 1600
Agriculture	3,366	3,309	- 57	-. 0169	1,920	1,920		
Education	2,048	2,037	- 11	-. 0054	1,898	1,898		
All Retail	52,618	49,433	- 3,185	-. 0605	10,148	10,148		
All Service	13,089	12,253	- 836	-. 0639	4,007	3,857	- 150	-. 0374
Transportation	7,218	7,096	- 122	-. 0169	3,254	3,254		
Construction	5,467	5,137	330	-. 0604	1,302	1,302		
Wholesale	13,057	12,541	516	-. 0395	5,377	5,377		
Utilities	5,513	5,102	- 411	-. 0746	166	166		
Nonprofit	5,803	5,235	568	-. 0979	1,526	1,526		
Local Government	6,713	6,448	- 265	-. 0395	3,265	3,265		
State-Federal A	1,978	1,908	- 70	-. 0354	910	910		
Households	81,323	75,242	- 6,081	-. 0748	15,426	16,180	+ 754	+. 0489
Ovdep	3,005	1,784	- 1,221	-. 4063	788	788		
Candidate								
Total	327,790	293,779	-34, 011	-. 1038	168,979	150,541	-18,438	-. 1091
U-11	39,174	20,073	-19,101	-. 4876	39,025	19,983	-19,042	-. 4879

Sector Multiplier \qquad Total Multiplier \qquad

TABLE 13
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N3A-1966 Description: U-11 Out Over Three Years - (1966)

Activity	Total Activity Levels				Export Activity Levels			
	1966 Standard Decade	New Activity	Absolute Change	Percent Change	1966 Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	114,977	94,885	-20,092	-. 1747	107,905	88,959	-18,946	-. 1756
Agriculture	3,246	3,187	- 59	-. 0182	1,862	1,862		
Education	2,134	2,123	- 11	-. 0052	1,993	1,993		
All Retail	48,675	45,395	- 3,280	-. 0674	8,701	8,701		
All Service	12,112	11,398	- 714	-. 0589	3,586	3,574	- 12	-. 0033
Transportation	7,145	7,031	- 114	-. 0160	3,254	3,254		
Construction	5,231	4,876	- 355	-. 0679	1,315	1,315		
Wholesale	11,951	11,431	- 520	-. 0435	4,839	4,839		
Utilities	5,186	4,772	- 414	-. 0798	166	166		
Nonprofit	5,357	4,845	- 512	-. 0956	1,373	1,373		
Local Government	6,586	6,315	- 271	-. 0411	3,345	3,345		
State-Federal A	1,914	1,842	- 72	-. 0376	910	910		
Households	76,543	70,241	- 6,302	-. 0823	15,586	16,201	+ 615	+. 0395
Ovdep	2,676	1,713	- 963	-. 3599	788	788		
Candidate								
Total	303,733	270,054	-33,679	-. 1109	155,623	137,280	-18,343	-. 1179
U-11	30,191	11,165	-19,026	-. 6302	30,049	11,103	-18,946	-. 6305

Sector Multiplier \qquad Total Multiplier \qquad

TABLE 14
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N3A-1967 Description: U-11 Out Over Three Years - (1967)

Activity	Total Activity Levels				Export Activity Levels			
	1967 Standard Decade	New Activity	Absolute Change	Percent Change	1967 Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	106,565	82,578	-23,987	-. 2251	99,897	77,047	-22,850	-. 2287
Agriculture	3,157	3,085	- 72	-. 0228	1,825	1,825		
Education	2,227	2,213	- 14	-. 0063	2,093	2,093		
A11 Retall	46,095	42,205	- 3,890	-. 0844	8,111	8,111		
All Service	11,427	10,538	- 889	-. 0778	3,332	3,298	- 34	-. 0102
Transportation	6,786	6,662	- 124	-. 0183	3,091	3,091		
Construction	4,829	4,479	- 350	-. 0725	1,118	1,118		
Wholesale	11,064	10,451	613	-. 0554	4,355	4,355		
Utilities	4,918	4,431	- 487	-. 0990	166	166		
Nonprofit	5,009	4,473	- 536	-. 1070	1,236	1,236		
Local Government	6,502	6,227	- 275	-. 0423	3,427	3,427		
State-Federal A	1,862	1,777	- 85	-. 0456	910	910		
Households	72,768	65,106	- 7,662	-. 1053	15,460	16,602	+ 1,142	+. 0739
Ovdep	2,487	1,699	- 788	-. 3168	788	848	+ 60	+.0761
Candidate								
Total	285,696	245,924	-39,772	-. 1392	145,809	124,127	-21,682	-. 1487
U-11	25,678	2,765	-22,913	-. 8923	25,542	2,692	-22,850	-. 8946

Sector Multiplier \qquad Total Multiplier \qquad

TABLE 15

TECHNICAL COEFFICIENT CHANGES -
MATERIAL PROCESSING SECTOR AUTOMATION OF A PAPER MILL

Sector Number	Sector Name	Basic Coefficients	Adjusted Coefficients
35	Cleaning-Laundry	.00028	.00006
41	Electric Power	.01378	.01654
50	Labor	.25299	.12397

The net effect of these changes produced a large reduction in operating expenditures, especially that to the Households-Labor sector. These savings made it possible to discontinue the provision of $\$ 788,000$ to this industry of operating funds from external sources as was being done in the basic study year. It could now supply them from internally available funds. Table 16 , which presents detailed impact data for this simulation, shows this adjustment as a reduction of $\$ 788,000$ of external income.

D. The Introduction of New Economic Activities

Four different new economic activities were introduced into Clinton County by simulation using the 54-sector Clinton County model. This was done by augmenting the 54 -sector model with a new "candidate" sector. Typical technical coefficients were derived from appropriate sources such as The Skier Market in Northeastern North America (20).

TABLE 16
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N4B Description: I PAPR Automated (Ovdep $=0$ Balanced Thru Ext. D With Overflow)

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	114,577	-1,097	- . 9	108,633	108,633		
Agriculture	3,210	3,155	- 55	- 1.7	1,845	1,845		
Education	1,862	1,850	- 12	- . 6	1,722	1,722		
All Retail	49,097	46,158	-2,939	- 6.0	9,555	9,555		
All Service	12,093	11,469	- 624	- 5.2	3,638	3,638		
Transportation	6,884	6,781	- 103	- 1.5	3,127	3,127		
Construction	5,123	4,934	- 189	-3.7	1,227	1,227		
Wholesale	12,114	11,728	- 386	- 3.2	4,972	4,972		
Utilities	5,144	4,963	- 181	- 3.5	166	166		
Nonprofit	5,494	5,211	- 283	- 5.2	1,526	1,526		
Local Government	6,150	5,932	- 218	- 3.5	2,961	2,961		
State-Federal A	1,906	1,843	- 63	- 3.3	910	910		
Households	75,740	69,526	-6,214	-8.2	14,933	14,933		
Ovdep	2,732	1,855	- 877	-32.1	788	0	-788	-100.0
Candidate								
Total	303,223	289,982	-13,241	- 4.4	156,003	155,215	-788	- . 5

\#5 Sector Multiplier 1.5587 Total Multiplier \qquad
\#5 Sector Basic Multiplier 1.8754

This publication was the major source of data for our simulation of a ski and water resort in Clinton County. The manner of this derivation is discussed in Volume I for all four economic activities (pp. 57-65) along with the derivation of estimates of internal and external income related to the new enterprises. Technical coefficients for the ski and water resort appear in Table 17, while the new external income sector (C1) with its relevant values, together with the regional impact data, are shown in Table 18. Similar information is given for the meter factory simulation in Tables 19 and 20.

TABLE 17

NEW SECTOR TECHNICAL COEFFICIENTS -
C1 SKI AND WATER RESORT

Sector Number	Sector Name	Technical Coefficient
2	Food Processing	.06289
6	Printing, Publishing	.03145
20	Food Stores	.01887
22	Auto Dealers	.01258
27	Hardware, Building Material	.00629
28	Department and Variety	.00629
33	Finance	.07547
34	Real Estate, Insurance	.03145
36	Professional Personal Service	.00629
37	Nonprof, Personal Service	.01258
40	Wholesale	.03145
41	Electric Power	.00629
44	Nonprofit	.00629
45	Local Government	.00629
46	Public Schools	.02516
47	County Government	.00629
50	Labor	.15094
53	Proprietary	.26415

TABLE 18
NEW ACTIVITY ANALYSIS EVALUATION

Run No. N6 Description: Ski and Water Resort

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	115,682	+ 8		108,633	108,633		
Agriculture	3,210	3,213	+ 3	+ . 1	1,845	1,845		
Education	1,862	1,862			1,722	1,722		
All Retail	49,097	49,190	+ 93	+. 2	9,555	9,583	+ 28	$+.3$
All Service	12,093	12,134	+ 41	+. 3	3,638	3,645	+ 7	+. 2
Transportation	6,884	6,884			3,127	3,127		
Construction	5,123	5,127	+ 4	+ . 1	1,227	1,227		
Wholesale	12,114	12,135	+ 21	+. 2	4,972	4,972		
Utilities	5,144	5,152	+ 8	+. 2	166	166		
Nonprofit	5,494	5,496	+ 2		1,526	1,526		
Local Government	6,150	6,161	+ 11	+ . 2	2,961	2,961		
State-Federal A	1,906	1,908	+ 2	+.1	910	910		
Households	75,740	75,857	+117	+. 2	14,933	14,933		
Ovdep	2,732	2,713	- 19	-. 7	788	788		
Candidate C1		159	+159			129	+129	
Total	303,223	303,673	+450	+ . 1	156,003	156,167	+164	$+.1$

Sector Multiplier 2.7647 Total Multiplier 2.7439

TABLE 19
NEW SECTOR TECHNICAL COEFFICIENTS -
C2 METER FACTORY

Sector Number	Sector Name	Technical Coefficients
6	Printing, Publishing	
13	Instruments	.00412
20	Food Stores	.01020
21	Gas Stations	.00098
22	Auto Dealers	.00118
24	Bars, Restaurants	.00098
27	Hardware, Building Material	.00059
33	Finance	.01039
34	Real Estate, Insurance	.02706
35	Laundry	.00490
37	Nonprof, Personal Service	.00020
38	Transportation	.00314
41	Electric Power	.02333
42	Telephone	.01235
43	Water, TV, Radio	.00118
44	Nonprofit	.00216
45	Local Government	.00196
46	Public Schools	.00235
47	County Government	.00588
50	Labor	.00235
54	Ovdep	.24941
		.04804

There were three variations incorporated with the introduction of a textile mill into the region, based on whether the new activity was a branch plant under outside ownership, an autonomous division, or a locally owned enterprise. Different sets of technical coefficients covering these variations are presented in Table 21 while external income (export activity) and impact information are presented in Tables 22, 23, and 24 for the branch, division, and locally owned

TABLE 20

NEW ACTIVITY ANALYSIS EVALUATION
Run No. N7 Description: Meter Factory

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	116,007	+ 333	$+.3$	108,633	108,633		
Agriculture	3,210	3,229	$+19$	$+. .6$	1,845	1,845		
Education	1,862	1,866	+ 4	$+.2$	1,722	1,722		
All Retail	49,097	50,207	+ 1,110	+ 2.3	9,555	9,555		
All Service	12,093	12,496	+ 403	$+3.3$	3,638	3,638		
Transportation	6,884	7,037	+ 153	+ 2.2	3,127	3,127		
Construction	5,123	5,216	$+\quad 93$	+ 1.8	1,227	1,227		
Wholesale	12,114	12,259	+ 145	$+1.2$	4,972	4,972		
Utilities	5,144	5,327	$+183$	+ 3.6	166	166		
Nonprofit	5,494	5,662	+ 168	$+3.1$	1,526	1,526		
Local Government	6,150	6,286	+ 136	+ 2.2	2,961	2,961		
State-Federal A	1,906	1,929	+ 23	+ 1.2	910	910		
Households	75,740	77,842	+ 2,102	+ 2.8	14,933	14,933		
Ovdep	2,732	3,007	+ 275	+10.1	788	788		
Candidate C2		5,100	+ 5,100			5,100	+5,100	
Total	303,223	313,470	+10,247	$+3.4$	156,003	161,103	+5,100	$+3.3$

TABLE 21
NEW SECTOR TECHNICAL COEFFICIENTS -
C8 TEXTILE MILL
BRANCH PLANT, DIVISION AND LOCAL OWNERSHIP VARIATIONS

Sector Number	Sector Name	Technical Coefficients		
		Branch	Division	Local Owners
6	Printing, Publishing	----	. 00066	. 00058
21	Gas Stations	. 00139	. 00098	. 00088
22	Auto Dealers	----	----	. 00058
24	Bars, Restaurants	-	. 00033	. 00029
27	Hardware, Building Material	. 01385	. 00819	. 00876
28	Department, Variety	----	. 00328	. 00351
30	All Other Retail	----	. 00033	. 00029
31	Hotels, Motels	----	. 00033	. 00088
33	Finance	----	. 00328	. 00906
34	Real Estate, Insurance	----	. 00491	. 00438
36	Professional Personal Service	---	. 00164	. 00175
37	Nonprof. Personal Service	. 00277	. 00066	. 00088
38	Transportation	----	. 01016	. 00906
39	Construction	. 01385	. 00328	. 00292
40	Wholesale	----	. 00164	. 00234
41	Electric Power	. 03047	. 00721	. 00643
42	Telephone	. 02216	. 00524	. 00467
43	Water, TV, Radio	. 00693	. 00164	. 00146
44	Nonprofit	. 00277	. 00229	. 00263
45	Local Government	. 00139	. 00033	. 00029
46	Public Schools	. 00277	. 00066	. 00058
47	County Government	. 00139	. 00033	. 00029
50	Labor	. 90028	. 22051	. 20537

variations respectively.
Finally, the particle board mill coefficients will be found in Table 25. The external income (export activity) and impact information for the particle board mill will be found in Table 26.

TABLE 22
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N8 Description: Textile Mill - Branch Plant

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,710	$+36$		108,633	108,633		
Agriculture	3,210	3,218	+ 8	$+.2$	1,845	1,845		
Education	1,862	1,864	+ 2	+.1	1,722	1,722		
All Retail	49,097	49,548	+ 451	+. 9	9,555	9,555		
All Service	12,093	12,187	$+94$	+. 8	3,638	3,638		
Transportation	6,884	6,892	$+8$	+. 1	3,127	3,127		
Construction	5,123	5,164	$+41$	+. 8	1,227	1,227		
Wholesale	12,114	12,172	+ 58	+. 5	4,972	4,972		
Utilities	5,144	5,230	+ 86	+1.7	166	166		
Nonprofit	5,494	5,537	$+43$	+.8	1,526	1,526		
Local Government	6,150	6,187	+ 37	+. 6	2,961	2,961		
State-Federal A	1,906	1,915	$+\quad 9$	+. 5	910	910		
Households	75,740	76,661	+ 921	+1.2	14,933	14,933		
Ovdep	2,732	2,745	+ 13	+. 5	788	788		
Candidate C8		773	+ 773			722	+722	
Total	303,223	305,803	+2,580	+. 9	156,003	156,725	+722	+. 5

TABLE 23

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N8A Description: Textile Mill - Division

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,714	$+40$		108,633	108,633		
Agriculture	3,210	3,219	$+\quad 9$	+. 3	1,845	1,845		
Education	1,862	1,864	$+2$	+.1	1,722	1,722		
All Retail	49,097	49,591	+ 494	+1.0	9,555	9,555		
All Service	12,093	12,221	+ 128	+1.1	3,638	3,638		
Transportation	6,884	6,924	+ 40	+. 6	3,127	3,127		
Construction	5,123	5,166	$+43$	+. 8	1,227	1,227		
Wholesale	12,114	12,181	$+67$	+. 6	4,972	4,972		
Utilities	5,144	5,229	+ 85	+1.7	166	166		
Nonprofit	5,494	5,544	+ 50	+. 9	1,526	1,526		
Local Government	6,150	6,189	$+39$	+. 6	2,961	2,961		
State-Federal A	1,906	1,915	$+\quad 9$	+. 5	910	910		
Households	75,740	76,684	+ 944	+1.2	14,933	14,933		
Ovdep	2,732	2,745	$+13$	+. 5	788	788		
Candidate C8A		3,052	+3,052			3,052	+3,052	
Total	303,223	308,238	+5,015	+1.7	156,003	159,055	+3,052	+2.0

Sector Multiplier 1.6435 Total Multiplier 1.6432

TABLE 24
NEW ACTIVITY ANALYSIS EVALUATION
Run No. N8B Description: Textile Mill - Local Ownership

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	$\begin{gathered} \text { New } \\ \text { Activity } \end{gathered}$	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,718	+ 44		108,633	108,633		
Agriculture	3,210	3,219	+ 9	+ . 3	1,845	1,845		
Education	1,862	1,864	+ 2	+. 1	1,722	1,722		
A11 Retail	49,097	49,631	+ 534	+1.1	9,555	9,555		
All Service	12,093	12,255	+ 162	+1.3	3,638	3,638		
Transportation	6,884	6,925	+ 41	$+.5$	3,127	3,127		
Construction	5,123	5,168	+ 45	$+.9$	1,227	1,227		
Wholesale	12,114	12,189	+ 75	+. 6	4,972	4,972		
Utilities	5,144	5,233	+ 89	+1.7	166	166		
Nomprofit	5,494	5,549	+ 55	+1.0	1,526	1526		
Local Government	6,150	6,190	+ 40	$+.7$	2,961	2,961		
State-Federal A	1,906	1,917	+ 11	+. 6	910	910		
Households	75,740	76,749	+1,009	+1.3	14,933	14,933		
Ovdep	2,732	2,746	$+14$	$+.5$	788	788		
Candidate C8B		3,423	+3,423			3,423	+3,423	
Total	303,223	308,776	+5,553	+1.8	156,003	159,426	+3,423	+2.2

TABLE 25

NEW SECTOR TECHNICAL COEFFICIENTS C9 PARTICLE BOARD MILL

Sector Number	Sector Name	Technical Coefficients
6	Printing, Publishing	
15	Pulpwood	.00228
18	Agriculture	.00856
21	Gas Stations	.00285
27	Hardware, Building Material	.00057
28	Department, Variety	.00114
33	Finance	.00057
34	Real Estate, Insurance	.00114
36	Professional Personal Service	.00114
37	Nonprof. Personal Service	.00034
39	Construction	.00034
40	Wholesale	.00160
41	Electric Power	.01166
42	Telephone	.03872
43	Water, TV, Radio	.00228
44	Nonprofit	.00320
45	Local Government	.00023
46	Public Schools	.00091
47	County Government	.00240
50	Labor	.00091
		.09261

E. Shortway Impact

In the same manner as above, coefficients and external incomes relevant to the impact study of effects of a new highway through the lower portion of Clinton County will be presented. There were three individual studies made at first. These included two in which three new sectors were added to the model to account for three types of business enterprises forecast to be located at four new interchange sites in Clinton County. These three types of enterprises were

TABLE 26

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N9 Description: Praglog - Particle Board Mill (Internal Sales)

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	115,828	+ 154	+. 1	108,633	108,633		
Agriculture	3,210	3,250	+ 40	+1.2	1,845	1,845		
Education	1,862	1,864	$+2$	+.1	1,722	1,722		
All Retail	49,097	49,748	+ 651	+1.3	9,555	9,555		
Al1 Service	12,093	12,255	$+162$	+1.3	3,638	3,638		
Transportation	6,884	6,897	$+13$	$+.2$	3,127	3,127		
Construction	5,123	5,186	$+63$	+1.2	1,227	1,227		
Wholesale	12,114	12,307	+ 193	+1.6	4,972	4,972		
Utilities	5,144	5,592	+ 448	+8.7	166	166		
Nonprofit	5,494	5,554	$+60$	+1.0	1,526	1,526		
Local Government	6,150	6,237	+ 87	+1.4	2,961	2,961		
State-Federal A	1,906	1,920	+ 14	$+.7$	910	910		
Households	75,740	77,004	+ 1,264	+1.7	14,933	14,933		
Ovdep	2,732	2,750	$+\quad 18$	$+.7$	788	788		
Candidate C9		8,758	+ 8,758			8,708	+8,708	
Total	303,223	315,150	+11,927	+3.9	156,003	164,711	+8,708	+5.6

Sector Multiplier 1.3623 Total Multiplier 1.3697
motels, restaurants, and service stations. "hese three were introduced under two variations: (1) outside ownership and (2) local ownership of the firms. Technical coefficients for these new sectors will be found in Table 27.

The third study concerned an increase in external income to local retail sectors brought about by improved access into Clinton County. This increase and the resulting impact information are given in Table 28.

New external incomes (export activities) and impact data for the new Shortway economic sectors are shown in Tables 29 a 30 . Each of the two Shortway sector variations were combined with he study involving the increase in external retail sales. Data for these two combined impact studies are presented in Tables 31 and 32.

At this point in the report we shall discuss a rather interesting characteristic of our model. This is the method of tracing the flow of money, entering a given sector, as it passes through the region from sector to sector until it finally leaves the regional economy. What we propose to do is demonstrate how the model can be made to yield the step by step proportional response of a given sector of our model to any input of external income flowing into some other sector of our model.

To do this we employ a particular method of computing the inverse of the Leontief matrix of our model. This inverse is, of course, the matrix of interdependency coefficients.

TABLE 27
NEW SECTOR TECHNICAL COEFFICIENTS - CMOTEL, CREST, CSRVST SHORTWAY MOTELS, RESTAURANTS AND SERVICE STATIONS

Sector Number	Sector Name	Motel Coefficients		Restaurant Coefficients		Service Station Coefficients
		Outside	Local	Outside	Local	Outside and Local
2	Food Processing	-	----	. 15564	. 19455	----
6	Printing, Publishing	. 00358	. 00358	. 00156	. 00778	. 00592
20	Food Stores	-	----	. 06226	. 11673	----
21	Gas Stations	----	----	. 00078	. 00078	----
22	Auto Dealers	. 00358	. 06810	---	--	. 00410
26	Furniture and Appliances	--	---	. 00389	. 00389	----
27	Hardware, Building Material	. 00538	. 00538	. 01012	. 01012	. 00273
28	Department, Variety	. 01434	. 03226	. 03191	. 03191	. 00228
33	Finance	----	.01792	----	----	----
34	Real Estate, Insurance	-	. 01792	. 00623	. 00623	. 00273
36	Professional Personal Service	. 00538	. 00538	. 00233	. 00233	. 00182
37	Nonprof. Personal Service	---	--	. 00545	. 00545	. 00182
40	Wholesale	. 03584	. 03584	. 00311	. 00311	. 53279
41	Electric Power	. 02688	. 02688	. 00467	. 00467	--
42	Telephone	. 03584	. 03584	. 00078	. 00078	. 00182
43	Water, TV, Radio	. 02688	. 02688	. 00156	.00156	. 00911
44	Nonprofit	. 01792	. 01792	. 00156	. 00156	. 00091
45	Local Government	. 01434	. 01434	. 00778	. 00778	. 00046
46	Public Schools	. 02509	. 02509	. 01012	. 01012	-_--
47	County Government	. 01434	. 01434	. 00778	. 00778	----
48	State A	----	----	. 15564	. 15564	----
50	Labor	. 25441	. 13441	. 12685	. 12685	. 07058
51	Rent	---	----	. 01556	----	--
53	Proprietary	----	. 12000	-	---	. 05965

TABLE 28

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N11 Description: Shortway Impact - New External Sales

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
All Industry	115,674	115,677	$+3$		108,633	108,633		
Agriculture	3,210	3,210			1,845	1,845		
Education	1,862	1,862			1,722	1,722		
All Retail	49,097	49,201	+104	$+.2$	9,555	9,645	+ 90	$+.9$
All Service	12,093	12,096	+ 3		3,638	3,638		
Transportation	6,884	6,884			3,127	3,127		
Construction	5,123	5,124	$+1$	+.02	1,227	1,227		
Wholesale	12,114	12,118	+ 4	$+.03$	4,972	4,972		
Utilities	5,144	5,147	$+3$	$+.1$	166	166		
Nonprofit	5,494	5,496	+ 2	$+.04$	1,526	1,526		
Local Government	6,150	6,152	+ 2	$+.03$	2,961	2,961		
State-Federal A	1,906	1,906			910	910		
Households	75,740	75,765	+ 25	$+.03$	14,933	14,933		
Ovdep	2,732	2,732			788	788		
Candidate								
Total	303,223	303,370	+147	$+.04$	156,003	156,093	+ 90	$+.1$
Direct Only			+90					
Indirect Only			+ 57					

Sector Multiplier \qquad Total Multiplier 1.6333

TABLE 29

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N10 Description: Shortway Impact - CMOTEL - CREST - CSRVST (Outside Ownership)

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,870	+ 196	+. 2	108,633	108,633		
Agriculture	3,210	3,242	+ 32	+1.0	1,845	1,845		
Education	1,862	1,863	$+1$	+.1	1,722	1,722		
All Retail	49,097	49,602	+ 505	+1.0	9,555	9,555		
All Service	12,093	12,194	+ 101	+. 8	3,638	3,638		
Transportation	6,884	6,894	+ 10	+. 1	3,127	3,127		
Construction	5,123	5,173	+ 50	+1.0	1,227	1,227		
Wholesale	12,114	12,627	+ 513	+4.2	4,972	4,972		
Utilities	5,144	5,241	+ 97	+1.9	166	166		
Nonprofit	5,494	5,538	+ 44	+.8	1,526	1,526		
Local Government	6,150	6,232	+ 82	+1.3	2,961	2,961		
State-Federal A	1,906	2,046	$+140$	+7.3	910	910		
Households	75,740	76,466	+ 726	+1.0	14,933	14,933		
Ovdep	2,732	2,743	+ 11	+. 4	788	788		
Candidate CMOTEL		455	+ 455			455	+ 455	
CREST		850	+ 850			850	+ 850	
CSRVS		800	$\begin{array}{r}+800 \\ \hline\end{array}$			800	+ 800	
Total	303,223	307,836	+4,613	+1. 5	156,003	158,108	+2,105	+1. 3
Direct Only			+2,105					
Indirect On			+2,508					
Sector Multiplier		Total Multiplier 2.1914						
Motel - 2.0828	Restaurant - 2.3775 Gas Station - 2.0550							

TABLE 30

NEW ACTIVITY ANALYSIS EVALUATION
Run No. N12 Description: Shortway Impact - CMOTEL - CREST - CSRVST (Local Ownership)

Activity		Total Activity Levels					Export Activity Levels			
		Standard Decade	New Activity		olute ange	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industr		115,674	115,914	$+$		$+.2$	108,633	108,633		
Agriculture		3,210	3,249	+		+1.2	1,845	1,845		
Education		1,862	1,863	$+$	1	$+.1$	1,722	1,722		
All Retail		49,097	49,705	+	608	+1.2	9,555	9,555		
All Service		12,093	12,215	$+$	122	+1.0	3,638	3,638		
Transportat	ion	6,884	6,894	$+$	10	$+.1$	3,127	3,127		
Constructio		5,123	5,174	+	51	+1.0	1,227	1,227		
Wholesale		12,114	12,635	$+$		+4.3	4,972	4,972		
Utilities		5,144	5,245	+	101	+2.0	166	166		
Nonprofit		5,494	5,540	+	46	$+.8$	1,526	1,526		
Local Gover	nment	6,150	6,234	+	84	+1.4	2,961	2,961		
State-Feder	al A	1,906	2,046	$+$	140	+7.3	910	910		
Households		75,740	76,493	$+$		+1.0	14,933	14,933		
Ovdep		2,732	2,742	+		+. 4	788	788		
Candidate	CMOTEL		455	$+$				455	+ 455	
	CREST		850	$+$				850	+ 850	
	CSRVST		800	+				800	+ 800	
Total		303,223	308,054		, 831	+1. 6	156,003	158,108	+2,105	+1. 3
Direct Only					,105					
Indirect Only										

Sector Multiplier _ Total Multiplier 2.2950
Motel - 2.2859 Restaurant - 2.5261 Gas Station - 2.0550

TABLE 31

NEW ACTIVITY ANALYSIS EVALUATION
Run No. N13 Description: Hiway Impact N10 + N11 (None Locally Owned)

Activity	Total Activity Levels				Export Activity Levels			
	Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Industry	115,674	115,873	+ 199	+. 2	108,633	108,633		
Agriculture	3,210	3,242	+ 32	+1.0	1,845	1,845		
Education	1,862	1,863	$+1$		1,722	1,722		
All Retail	49,097	49,705	+ 608	+1.2	9,555	9,645	+ 90	+. 9
All Service	12,093	12,195	+ 102	$+.8$	3,638	3,638		
Transportation	6,884	6,894	$+10$	$+.1$	3,127	3,127		
Construction	5,123	5,174	+ 51	+1.0	1,227	1,227		
Wholesale	12,114	12,631	+ 517	+4.3	4,972	4,972		
Utilities	5,144	5,244	$+100$	+1.9	166	166		
Nonprofit	5,494	5,540	$+46$	$+.8$	1,526	1,526		
Local Government	6,150	6,234	+ 84	+1.4	2,961	2,961		
State-Federal A	1,906	2,046	+ 140	+7.3	910	910		
Households	75,740	76,493	+ 753	+1.0	14,933	14,933		
Ovdep	2,732	2,743	+ 11	+. 4	788	788		
Candidate 55 Motel		455	$+455$			455	+ 455	
56 Rest		850	+ 850			850	+ 850	
57 Gas	Sta.	800	+ 800			800	+ 800	
Total	303,223	307,982	+4,759	+1. 57	156,003	158,198	+2,195	+1.4
Direct Only			+2,195					
Indirect Only			+2,564					

Sector Multiplier \qquad Total Multiplier 2.1681

NEW ACTIVITY ANALYSIS EVALUATION

Run No. N14 Description: N11 + N12 (Locally Owned)

Activity		Total Activity Levels				Export Activity Levels			
		Standard Decade	New Activity	Absolute Change	Percent Change	Standard Decade	New Activity	Absolute Change	Percent Change
A11 Indust		115,674	115,917	+ 243	$+.2$	108,633	108,633		
Agricultur		3,210	3,249	$+39$	+1.2	1,845	1,845		
Education		1,862	1,863	$+1$		1,722	1,722		
All Retail		49,097	49,807	+ 710	+1.4	9,555	9,645	+ 90	$+.9$
All Servic		12,093	12,217	+ 124	+1.0	3,638	3,638		
Transporta	ion	6,884	6,895	$+\quad 11$	+. 2	3,127	3,127		
Constructio		5,123	5,176	$+53$	+1.0	1,227	1,227		
Wholesale		12,114	12,639	+ 525	+4.3	4,972	4,972		
Utilities		5,144	5,247	+ 103	+2.0	166	166		
Nonprofit		5,494	5,541	+ 47	+. 9	1,526	1,526		
Local Gove	rnmen	6,150	6,235	$+85$	+1.4	2,961	2,961		
State-Fede	ral A	1,906	2,048	+ 142	+7.5	910	910		
Households		75,740	76,519	+ 779	+1.0	14,933	14,933		
Ovdep		2,732	2,743	$+11$	$+.4$	788	788		
Candidate	Mote		455	+ 455			455	+ 455	
	Rest		850	+ 850			850	+ 850	
-	Gas	Sta.	800	+ 800			800	+ 800	
Total		303,223	308,201	+4,978	+1.64	156,003	158,198	+2,195	+1.4
Direct Only				+2,195					
Indirect Only				+2,783					

Sector Multiplier \qquad Total Multiplier 2.2679

Total Multiplier
\qquad

$$
\begin{aligned}
A= & \left(a_{i j}\right)=\text { technical coefficients matrix and } \\
& (I-A)=\text { the Leontief matrix }
\end{aligned}
$$

then we wish to find

$$
(I-A)^{-1}
$$

which is needed to determine economic activity levels of various sectors of our regional model. It can be shown that, if

$$
\sum_{i=1}^{m}\left|a_{i j}\right|<1
$$

the Leontief inverse can be written

$$
\begin{equation*}
(I-A)^{-1}=I+A+A^{2}+A^{3}+\ldots \tag{1}
\end{equation*}
$$

This is the so called Neumann expansion. Defining

$$
A^{0}=I
$$

this can be written

$$
\begin{equation*}
(I-A)^{-1}=\sum_{k=0}^{\infty} A^{k} \tag{2}
\end{equation*}
$$

Obviously, the series in (2) converges to the inverse of the Leontief matrix. Each matrix of the sequence $\left\{A_{k}\right\}_{k=0}^{\infty}$ can be given a specific economic interpretation with respect to the flow of funds. We discuss
several of these.
$A^{0}=1$, the identity matrix. This accounts for the initial direct input of external income into a given sector. The typical entry

$$
a_{i j}^{(0)}=\left\{\begin{array}{l}
1 \\
0 \text { when } i=j \\
0 \text { when } i \neq j
\end{array}\right.
$$

allows external income to flow only into its own sector, i.e., the external income identified with a particular row sector is initially all transferred into that sector's column.

A, the technical coefficients matrix.
This provides the first distribution and transfer of funds from the original sectors to others; i.e., $a_{i j}^{(1)}=$ the proportion of external income of the j sector transferred to the i th sector on the first transfer.
A^{k}, the k th transfer response matrix.
This distributes the original sector external income still remaining in the region to various sectors of the region. This income arrives at the sectors after k internal transfers. It does so as a proportion of the original external income into each sector, i.e., $a_{i j}^{(k)}=$ the proportion of the original external income into the j th sector which will be transferred from other sectors of the model to the i th sector on the k th transfer. In other words, it is the proportional k th transfer
response of the i th sector to the original j th sector input of external income.

Since at every transfer there is a "leakage" to the rest of the world, we would expect that these transfer proportions or responses would become increasingly smaller, approaching zero, this last being the condition when all but a negligible proportion of the input funds will finally have left the region. In other words, given $\delta>0$, there exists an N such that A^{N} will have entries

$$
a_{i j}^{(N)}<\delta
$$

for δ chosen as small as we want. Though this is, in general, true, there will be local fluctuations of these proportions before they "settle down" monotonically toward zero.

At this point, it is perhaps best to turn to a concrete example. Expansion of equation (2) was calculated for the 14 -sector version of the Clinton County model. The technical coefficients matrix and the interdependency coefficients matrix for this version will be found in the Appendix of Volume I of this report. Table 33 presents some selected entries from the first eight matrices of the Neumann expansion for the 14 -sector Clinton County model. The entries shown are those for the Industry sector (column 1, Table C, Appendix Volume I). They give the transfer proportions from the Industry sector to the Industry, Retail, Households, and Agriculture sectors respectively.

Examining Table 33 we see that initially all Industry external income went into the Industry sector. The Transfer 0 row shows a

TABLE 33
CLINTON COUNTY INDUSTRY SECTOR
RESPONSE PROPORTIONS FOR EIGHT TRANSFERS -
INDUSTRY, RETAIL, HOUSEHOLDS, AND AGRICULTURE SECTOR RESPONSES

Transfer Number	Response Proportions			
	Industry	Retail	Households	Agriculture
0	1.0000	.0000	.0000	.0000
1	.0165	.0101	.2618	. .0052
2	.0099	.1194	.0319	.0006
3	.0072	.0207	.0481	.0013
4	.0016	.0238	.0157	.0004
5	.0007	.0086	.0107	.0003
6	.0004	.0055	.0048	.0001
7	1.0386	.0025	.0027	.0001
8	1.0386	.1920	.0013	.0000

response proportion of 1.00 for Industry and 0 for all the others. The Transfer 1 row gives the initial distribution of these funds over the four sectors listed. These are actually technical coefficients relating the Industry sector with these four sectors. This can be verified by comparing entries in this row with the corresponding entries in the 14-sector model technical coefficients matrix which can be found in the Volume I Appendix.

Looking down each column we see that the proportional response is converging on zero as the funds gradually "leak" out of the region over
successive transfers. There is, however, some initial fluctuation of these transfers proportions. This is indicated by the circled maximum response proportions. This behavior can be seen graphically in Figure 1, and can be traced by examining successive entries in each column of Table 33. We shall now interpret this behavior in somewhat greater depth.

Equation (2) implies that the sum of corresponding entries of the matrices of the Neumann expansion should yield interdependency coefficients of the inverse matrix $(I-A)^{-1}$, i.e.,

$$
\sum_{k=0}^{\infty} a_{i j}^{(k)}=\alpha_{i j}
$$

where $\alpha_{i j}$ is the interdependency coefficient associated with the total i th sector response to the j th sector input. Thus, we would expect that finite sums of such corresponding entries would converge to the value of the interdependency coefficient as the sums include increasingly larger numbers of entries. The bottom two rows consider this possibility. Here are found totals for only the first eight transfers. Below these sums are given the values of the corresponding interdependency coefficients. These are taken from the interdependency coefficients matrix of the 14 -sector model (Table 1 Appendix, Volume I). We note that the Industry total is already identical with its coefficient to the fourth decimal place and that the Agriculture total differs only by . 0001 . On the other hand the Retail and Households totals still differ from their coefficients by . 0014 and .0013 respectively. The
fact that the convergence is somewhat less rapid probably reflects the fact that these sectors are involved in much more internal economic activity than the others. It is characteristic that the totals shown in Table 33 are less than the interdependency coefficients since the total response given by the interdependency coefficient constitutes an upper 1fmit.

Successive responses are shown graphically in Figure 1 for the Industry, Houscholds, and Retail oectors. Here we see that the initial Industry input goes entirely to the Industrial sector; none of it goes to the Households or Retail sectors. The first transfer shows a large response by the Households sector to this Industrial input and only a small response by the Retail sector. This is largely due to the transfer of funds to Households by Industry for wages and salaries. This money is now in the hands of consumers. During the second transfer we see a much larger response by the Retail sector to the initial Industry input. Consumers are now spending their wages and salaries for retail goods and services. After a large drop in response by Households in the second transfer, we see a modest rise in the third transfer. In all likelihood, this is largely due to wages and salaries paid by retail establishments out of receipts from expenditures of part of the household income in the previous transfer.

The above discussion should suffice to show how the flow of particular money inputs through the model can be portrayed. We note, finally, that responses subside and approach zero over successive transfers, reflecting the gradual outflow of the original external

Figure 1. Selected sector responses to external income flows into the Clinton County Industry sector.
income input.
In order to show what successive response patterns are like for a different sector, Figure 2 was prepared. Here is portrayed the response patterns of the same three sectors as those shown in Figure 1. In this case, it is the response of these three sectors to the external income into the Households sector. This is income to Households coming from such things as wages for jobs held outside Clinton County, social eecurity pencions, dividonds, and the like. The fluctuations portrayed can be given a similar interpretation as that given previously for Industry external income. This is left to the reader.

Figure 2. Selected sector responses to external income flows into the Clinton County Households sector.

CHAPTER V

an Interregional model of clinton county ${ }^{1}$

Introduction

Geographically and economically Clinton County may be divided into two sub-regions. In area, the southern one fourth, approximately, of the county lies in the ridge and valley section of the state and is domfnated, economically, by the industrial activity centered around the city of Lock Haven. This has been denoted as the southern region (region 1) of the county for purposes of this analysis. The northern region (region 2), encompassing the remainder of the area of the county, lies in the Allegheny Plateau section of the state and is characterized by the rough terrain of the Allegheny Mountains. Virtually no agricultural activity takes place in the northern region, and this area is mostly in forest cover and largely under the ownership of several state agencies, primarily the Department of Forests and Waters. The Boroughs of Renovo and South Renovo are the only communities of any appreciable size in this northern region. Economic activity centers largely around the Pennsylvania Railroad repair shops in Renovo and some coal mining (bituminous) and some natural gas storage and transmission activities.

[^3]The southern region contains about 81 percent of the total county population, or 30,471 persons, based on the 1960 Census of Population. The remainder, or 7,148 persons (19 percent), lives in the northern region, mostly in the boroughs previously mentioned. Households in the northern region received about 14.7 percent of the total County household income, and southern households 85.3 percent, based on data collected in 1964 during the survey of households. The northern region can be considered as rather typical of many depressed areas in the Appalachian section of Pennsylvania.

An Interregional Model

Besides the political tie-in of the northern region to the southern region (Lock Haven is the county seat), there is a considerable degree of economic tie-in as well. Quite a few people from the northern region find employment in the industries and commercial establishments in the southern region. Further, northern households purchase quite a few of their necessities from stores in the Lock Haven area. It was felt desirable to express this economic interrelationship of a relatively depressed area with a relatively stable or prosperous area by means of an interregional money-flows model.

Data from the field survey were gathered and compiled on a regional basis with the thought in mind of depicting the interdependence of the two regions. Due to the rather limited diversity of economic activity in the northern region, however, only 11 sectors were used for each of the two regions in construction of the interregional input-output model.

These 11 sectors aggregated the 54 sectors of the full county model in the following manner:

Sector 1, Primary Activities. Includes mining (1), sawmills (14), pulpwood (15), and agriculture (18) of the original model.

Sector 2, Manufacturing. Includes original sectors 2 through 13 and sectors 16 and 17.

Sector 3, Retail. Includes original sectors 20 through 30.
Sector 4, Service. Includes original sectors 31 through 37 plus education (19) and nonprofit (44).

Sector 5, Transportation. This sector is the same as the original sector 38.

Sector 6, Construction. Same as the original sector 39.
Sector 7, Wholesale. Same as the original sector 40.
Sector 8, Utilities. Includes original sectors 41 through 43.
Sector 9, Government. Includes original sectors 45 through 49.
Sector 10, Households. Includes original sectors 50 through 53.
Sector 11, Ovdep. Same as the original sector 54.

Each of the two regions is represented by a system of 11 equations showing sources of revenue from within the region, from the other adjoining region, and from final demand outside the combined regions. Thus, the interregional model consists of 22 equations and 528 unknowns. The balance equations for this model are as follows:

$$
\begin{aligned}
& x_{1}^{1}=x_{11}^{11}+x_{12}^{11}+\ldots+x_{111}^{11}+x_{11}^{12}+x_{12}^{12}+\ldots+x_{111}^{12}+y_{1}^{1} \\
& x_{2}^{1}=x_{21}^{11}+x_{22}^{11}+\ldots+x_{211}^{11}+x_{21}^{12}+x_{22}^{12}+\ldots+x_{211}^{12}+y_{2}^{1} \\
& \vdots \\
& x_{11}^{1}=x_{111}^{11}+x_{112}^{11}+\ldots+x_{1111}^{11}+x_{111}^{12}+x_{112}^{12}+\ldots+x_{1111}^{12}+Y_{11}^{1} \\
& x_{1}^{2}=x_{11}^{21}+x_{12}^{21}+\ldots+x_{111}^{21}+x_{11}^{22}+x_{12}^{22}+\ldots+x_{111}^{22}+y_{1}^{2} \\
& x_{2}^{2}=x_{21}^{21}+x_{22}^{21}+\ldots+x_{211}^{21}+x_{21}^{22}+x_{22}^{22}+\ldots+x_{211}^{22}+y_{2}^{2} \\
& \vdots \\
& x_{11}^{2}=x_{111}^{21}+x_{112}^{21}+\ldots+x_{1111}^{21}+x_{111}^{22}+x_{112}^{22}+\ldots+x_{1111}^{22}+y_{11}^{2}
\end{aligned}
$$

where X is regional output, x is regional intersectoral purchases and Y regional final demand shipments to the outside world. Superscripts denote regions and regional flows and subscripts denote commodities and commodity flows. For example, X_{2}^{1} is the total value (in dollars) of output of manufacturing in the southern region; x_{21}^{12} is the total value of manufactured goods produced by the southern region and purchased by northern primary activities; and Y_{1}^{2} is the final demand or sales to the outside world by northern primary activities.

The model may be considered as consisting, basically, of six major blocks or components as shown in the following diagram:

Block 1 represents sales from the southern region to itself (x^{11}); block 2 represents sales from the southern region to the northern region (x^{12}); block 3 represents sales from the southern region to final demand $\left(Y^{1}\right)$; block 4 represents sales from the northern region to the southern region $\left(x^{21}\right)$; block 5 represents sales from the northern region to itself $\left(x^{22}\right)$; and block 6 represents sales from the northern region to final demand (Y^{2}).

In deriving the actual monetary values for the various cells of the interregional matrix, the 54 -sector model was first aggregated into an ll-sector model for the entire county as a single region. Data from the individual interview forms for all northern businesses, nonprofit organizations, govermmental units, and households were then compiled and entered into the appropriate cells in blocks 2, 4, 5, and 6. The values for the cells in blocks 1 and 3 were then obtained by subtraction from the ll-sector total county matrix. The transactions matrix for the 22 by 22 interregional model is shown in Table 34.

The technical coefficients (a) are calculated in a straightforward manner, the same as for other Leontief input-output matrices. That is, a_{32}^{11} is the amount of purchases by southern retail stores from every unit of output of southern manufacturing establishments and is derived from the equation:

$$
a_{32}^{11}=\frac{x_{32}^{11}}{x_{2}^{1}}
$$

Likewise, a_{32}^{21} is the amount of purchases by northern retail stores from
table 34. transactions matrix - Interiegional model. clinton county, pennsyivania. 1963. (\$1000 unitb)

every unit of production of southern manufacturing establishments, and is calculated from the equation:

$$
a_{32}^{21}=\frac{x_{32}^{21}}{x_{2}^{1}}
$$

Table 35 shows the matrix of technical coefficients for the 22 by 22 interregional model.

The problem is programmed and elements of the inverse matrix calculated the same as for other matrices presented in this study; that is, through use of the simplex algorithm by means of a digital computer. The model is structured as a linear programming problem, and the output provides us with activity levels for each sector of each region as well as the total activity level for the county as a whole. Elements of the inverse of the Leontief matrix, or the interdependency coefficients, for the 22 by 22 interregional model are shown in Table 36.

Comparison of the Two Regions

The strong economic tie-in of the northern region to the southern region becomes readily apparent from examination of Table 34 . One need merely compare block 2 of the Transactions Matrix (northern region purchases from southern region) with block 4 (southern region purchases from northern region). Many cells in block 2 have entries, whereas in block 4 only a few cells show transactions taking place. Comparison of the Household sector rows and columns for these two blocks is particularly revealing. Northern Households purchased heavily from southern

TABLE 35. TECHNICAL COEFFICIENIS MATRIX, INTERREGIONAL MODEL - CLINH'ON COUNTY, FENNSYLVANIA. 1963.

TABLE 36. INTERDEPENDENCY COEFFICITNIS MATRIX, INTERREGIONAL MODEL - CLINTON COUNIY, PENNSYLVANIA. 1963.

		$\begin{array}{lllllllll}\text { S } & \mathbf{O} & \mathbf{U} & \mathrm{T} & \mathrm{H} & \mathbf{E} & \mathrm{R} & \mathbf{N}\end{array}$											N		0	R	H E	R N					
		$\underset{1}{\operatorname{Prim}}$	$\underset{2}{\mathrm{Mg} \mathrm{~g} .}$	$\begin{gathered} \text { Retl } \\ 3 \end{gathered}$	$\underset{4}{\text { Serv }}$	$\begin{gathered} \text { Trns } \\ 5 \end{gathered}$	$\begin{gathered} \text { Cnst } \\ 6 \end{gathered}$	$\begin{gathered} \text { Whls } \\ 7 \end{gathered}$	$\begin{gathered} \text { Util } \\ 8 \end{gathered}$	$\begin{gathered} \text { Govt } \\ 9 \end{gathered}$	$\begin{gathered} \text { Hshld } \\ 10 \end{gathered}$	Ovdp 11	$\begin{gathered} \text { Prim } \\ 12 \end{gathered}$	$\begin{gathered} \text { Mfg. } \\ 13 \end{gathered}$	$\begin{array}{r} \text { Retl } \\ 14 \end{array}$	Serv. 15	$\begin{array}{r} \text { Trns } \\ 16 \end{array}$	$\begin{gathered} \text { Cnstr } \\ 17 \end{gathered}$	$\begin{gathered} \text { Whls } 1 \\ 18 \end{gathered}$	$\begin{gathered} \text { Util } \\ 19 \end{gathered}$	Govt 20	$\begin{gathered} \text { Hshld } \\ 21 \end{gathered}$	Ovdep 22
Primary	1	1.0531	. 0109	. 0133	. 0073	. 0037	. 0320	. 0113	. 0017	. 0093	. 0090	. 0104	. 0068	. 0029	. 0162	.0078	.0194	. 0126	. 0022	. 0075	. 0126	. 0099	. 0078
S Mfg.	2	. 1440	1.0363	. 0434	.0349	. 0170	. 0314	. 0169	. 0114	. 0737	.0494	. 7431	. 0194	.0081	. 0105	. 0184	. 0237	. 0216	. 0091	. 0163	. 0766	. 0277	. 0184
0 Retail	3	.4856	. 1830	1.1510	. 3668	. 1944	. 4277	. 1382	. 1030	. 3873	. 5909	. 3035	. 2346	. 1090	. 1144	. 2719	. 3199	. 2971	. 1030	. 2600	. 2576	. 3898	. 2719
U Service	4	. 1046	. 0563	. 0444	1.1218	. 0523	. 0926	. 0374	. 0366	. 1165	. 1698	. 2748	. 0902	. 0321	. 0376	. 1711	. 1017	. 1010	. 0285	. 0630	. 0902	. 1272	.1111
T Transp	5	. 0128	. 0047	. 0028	. 0054	1.0805	. 0129	. 0018	. 0036	. 0398	. 0080	. 0048	. 0034	. 0016	. 0060	. 0040	. 0048	. 0053	. 0011	. 0032	. 0040	. 0059	. 0039
H Const	6	. 0269	. 0150	. 0137	. 0931	. 0246	1.0922	. 0188	. 0095	. 1495	. 0368	. 0314	. 0319	. 0164	. 0145	.0943	. 0392	. 0456	.0081	. 0921	. 0493	. 0400	.0943
E Wholesl	7	. 0889	. 0310	. 0979	.0612	. 0844	. 0663	1.0240	. 0181	. 0709	. 0829	. 0430	. 0461	. 0177	.0534	. 0506	. 0557	. 0581	. 0196	. 0572	. 0551	. 0654	. 0506
R Utility	8	. 0350	. 0263	. 0226	. 0436	. 0192	. 0314	. 0163	1.0207	. 0409	. 0437	. 0296	. 0492	. 0259	. 0256	. 0553	. 0730	. 0670	. 0183	. 0397	. 0559	. 0906	. 0553
N Gov't	9	. 0374	. 0182	. 0179	. 0413	. 0185	. 0252	. 0123	. 0137	1.0706	. 0537	. 0262	. 0114	. 0057	. 0058	. 0136	. 0170	. 0150	. 0040	. 0101	. 0132	. 0194	. 0135
Hshlds	10	. 5420	.3427	. 2510	. 6301	. 3208	. 4723	. 2241	. 2037	. 6930	1.2671	. 3951	. 1151	. 0494	. 0635	. 1511	. 1494	. 1432	. 0426	. 1234	.1436	. 1760	. 1511
Ovdep	11	. 0084	. 0132	. 0037	. 0092	. 0044	. 0066	. 0031	. 0028	. 0099	. 0173	1.0116	. 0017	. 0007	. 0009	. 0022	. 0022	. 0021	. 0007	. 0018	. 0026	. 0026	. 0022
Primary	12	. 0002	. 0008	. 0002	. 0001	. 0001	. 0002	. 0001		. 0002	. 0002	. 0006	1.0004	. 0030	. 0007	. 0004	. 0018	. 0009	. 0001	. 0003	. 0005	. 0008	. 0004
N M P .	13	. 0001		. 0001	. 0001		. 0001		.0004	. 0001	. 0001	. 0001	. 0005	1.0002	. 0008	. 0009	. 0007	. 0008	. 0028	. 0037	. 0005	. 0009	. 0009
O Retail	14	. 0046	. 0105	. 0033	. 0059	. 0043	. 0277	. 0023	.0031	. 0101	. 0033	. 0089	. 1789	. 0788	1.0633	. 1483	. 2335	. 4077	. 0473	. 1360	. 1890	. 2968	. 1483
R Service	15	. 0020	. 0050	. 0015	. 0022	. 0019	. 0053	. 0010	. 0015	. 0025	. 0013	. 0041	. 0755	. 0367	. 0297	1.0705	. 1116	. 3022	. 0318	. 0724	. 0787	. 1495	1.0705
T Transp	16	. 0067	. 0234	. 0020	. 0029	.0010	. 0226	. 0009	. 0005	. 00449	. 0022	. 0173	. 0256	. 0069	. 0041	. 0037	1.0045	. 2041	. 0009	. 0037	. 0345	. 0042	. 0037
H Const	17												. 0003	. 0001	. 0001	. 0002	. 0004	1.0004	. 0001	. 0002	. 0003	. 0005	. 0002
E Whlsl	18	. 0005	. 0011	. 0003	. 0007	. 0004	. 0053	. 0002	. 0013	. 0012	. 0004	. 0010	. 0393	. 0053	. 0519	. 0126	. 0297	. 0267	1.0031	. 0119	. 0125	. 0196	. 0126
R Utility	19	. 0004	. 0010	. 0003	. 00004	. 0004	. 0012	. 0002	. 0003	. 0005	. 0002	. 0008	. 0145	. 0090	. 0138	. 0216	. 0223	. 0226	. 0045	1.0125	. 0264	. 0277	. 0216
N Gov't	20	. 0033	. 0020	. 0006	. 0008	. 0007	. 0023	. 0004	. 0005	. 0010	. 0005	.0016	. 0823	. 0138	. 0228	. 0283	. 0448	. 0407	. 0112	. 0305	1.0297	. 0537	. 0283
Hshlds	21	. 0154	.0394	. 0120	. 0170	. 0152	. 04717	. 0077	. 0117	. 0196	. 0101	. 0324	. 5782	. 2854	. 2177	. 5338	. 8700	.7978	. 1878	. 3549	.6194	1.1838	. 5338
Ovdep	22	. 0002	. 0005	. 0002	. 0002	. 0002	. 0005	. 0001	. 0002	. 0003	.0001	. 0004	. 0076	. 0038	. 0029	. 0071	. 0115	. 0105	. 0025	. 0047	. 0082	. 0157	1.0071
Total		2.5722	1.8214	1.6821	2.4452	1.8442	2.3967	1.5169	1.4445	2.7016	2.3472	2.9407	2.6128	1.7126	1.7561	2.6076	3.1368	3.5831	1.5294	2.3053	2.7604	2.7074	3.6076

activities (column 22, rows 1 through 10); the total amounting to almost $\$ 4.4$ million. On the other hand, Southern Households purchased only $\$ 7,000$ from northern activities (column 10, rows 13 and 14). Insofar as household income is concerned, Northern Households earned about $\$ 2$ million from southern activities, whereas Southern Households earned only $\$ 11,000$ from Northern Households.

Total income, direct and indirect, of all northern sectors was about $\$ 25,672,000$, or 8.5 percent of the county total of $\$ 303,224,000$. Of the total income to the northern region, $\$ 4.9$ million, or 19 percent, was received from the southern region, whereas only $\$ 5.6$ million, or 2 percent of the total income to the southern region, was received from the northern region. The northern region, in effect, had a negative "balance of payments" with the southern region of about $\$ 700,000$. Table 37 summarizes much of the data from the transactions matrix to show the economic interrelationships of these two regions.

Comparison by regions of item 5 with item 4 in Table 37 shows the predominance of the southern region in terms of basic activity. This predominance is also reflected in the figures in item 7, and shows the greater importance of the southern region as compared to the northern region in providing basic income for the county economy. It is interesting to note, however, that if one considers the northern region as a separate economic entity, its exports as a percent of its total economic activity would then be in almost the same proportion as for the southern region, or items 7 plus 8. We would have:

TABLE 37
COMPARISON OF INCOMES AND EXPENDITURES
FOR THE NORTHERN AND SOUTHERN REGIONS
$\left.\begin{array}{llcc}\hline & \begin{array}{c}\text { Southern } \\ \text { Region } \\ \%\end{array} & \begin{array}{c}\text { Northern } \\ \text { Region } \\ \%\end{array} \\ \hline \text { 1. Regional population as percent of county } & & \\ \begin{array}{ll}\text { total }\end{array} & 81.0 & 19.0 \\ \text { 2. Regional household income as percent of } \\ \text { total county household income }\end{array}\right)$

```
Northern region - 34.9 plus 18.1 = 54.0%
Southern region - 53.0 plus 2.0 = 55.0%
```

Item 8 shows the much greater dependence of the northern region on the southern region, rather than the reverse, insofar as income is concerned. Northern Households received, on the average, 19 percent of their total income from the southern region as compared to virtually no household income flowing into the southern region from the north (item 10). Northern Households, on the other hand, realized a considerably larger proportion of their income from sources external to the county than did Southern Households (27.4 percent versus 18.4 percent), as shown in item 12. This was not as a result of more commuting to outside jobs by Northern Households, but rather a greater amount of transfer income, mostly social security, flowing into Northern Households from external governmental sources. At the same time, Northern Households spent a considerably smaller portion of their income outside the county than did Southern Households. This, in part, would probably be because of the relative inaccessibility of external retail markets for Northern Households as compared to Southern Households. Northern Households, however, spent a considerably greater sum in the adjoining southern region (nearly 40 percent), whereas Southern Households spent virtually nothing in the adjoining northern region.

The data presented here illustrate well the strong economic attachment of the northern regional economy to the southern regional economy. The data point sharply to nodal influences of a trading and manufacturing center on the local economies of nearby areas.

A comparison of the partial and total export demand multipliers for various sectors by regions, as shown in Table 38, further reflects the greater economic dependence of the northern region on the southern region. These multipliers, as explained previously, are the interdependency coefficients for various regional activities.

Interpretation of the multiplier values in Table 38 for the interregional model is quite straightforward. Taking Southern Manufacturing (row 3) as an example, and reading across the row from left to right, the values have the following meanings. For every one dollar of export sales by Southern Manufacturing activities, Southern Households (column 1) must produce or generate, directly and indirectly, about 34 cents worth of economic activity; Northern Households (column 2) about 4 cents worth; and all households in the county, northern and southern (column 3), about 38 cents worth of economic activity. The same export dollar will also require, directly and indirectly, about 2 cents worth of economic activity from Northern and Southern Governmental units (column 4), for a total residual county income (column 5) of about 40 cents from each dollar of export demand for Southern Manufacturing activities. ${ }^{1}$ In total, for every dollar of sales to final demand, Southern Manufacturing activities generate directly and indirectly about \$1.82

1 Residual county income in the case of this interregional model does not include the returns to nonprofit organizations as it did in the case of the full 54-sector county model. The direct and indirect returns to nonprofit organizations in the case of the interregional model are buried in the data for the two regional service sectors and cannot be separated out. Nonprofit organizations would have to be treated as individual sectors for both regions in order to derive direct and indirect returns to them.

TABLE 38

PARTIAL AND TOTAL EXPORT DEMAND MULTIPLIERS FOR INTERREGIONAL MODEL

	Households			Total	Residual	Export
	Southern 1	$\begin{gathered} \text { Northern } \\ 2 \end{gathered}$	$\begin{gathered} \text { Total } \\ 3 \end{gathered}$	$\underset{4}{\text { Government }}$	$\begin{gathered} \text { Income } \\ 5 \end{gathered}$	$\begin{gathered} \text { Demand } \\ 6 \end{gathered}$
Southern Primary	. 542	. 015	. 557	. 040	. 597	2.572
Northern Primary	. 115	. 578	. 693	. 093	. 786	2.613
Southern Mfg.	. 343	. 039	. 382	. 020	. 402	1.821
Northern Mfg.	. 049	. 285	. 334	. 020	. 354	1.713
Southern Retail	. 251	. 012	. 263	. 019	. 282	1.682
Northern Retail	. 063	. 218	. 281	. 029	. 310	1.756
Southern Service	. 630	. 017	. 647	. 042	. 689	2.445
Northern Service	. 151	. 534	. 685	. 042	. 727	2.608
Southern Transp.	. 321	. 015	. 336	. 019	. 355	1.844
Northern Transp.	. 149	. 870	1.019	. 062	1.081	3.137
Southern Const.	. 472	. 041	. 513	. 027	. 540	2.397
Northern Const.	. 143	. 798	. 941	. 056	. 997	3.583
Southern Wh1s1.	. 224	. 008	. 232	. 012	. 244	1.517
Northern Wh1s1.	. 043	. 188	. 231	. 015	. 246	1.529
Southern Utility	. 204	. 012	. 216	. 014	. 230	1.444
Northern Utility	. 123	. 355	. 478	. 041	. 519	2.305
Southern Government	ats . 693	. 019	. 712	1.071	1.783	2.702
Northern Government	ts . 144	. 619	. 763	1.043	1.806	2.760
Southern Hshlds.	1.267	. 010	1.277	. 055	1.332	2.347
Northern Hshlds.	. 176	1.184	1.360	. 073	1.433	2.707
Southern Ovdep	. 395	. 032	. 427	. 028	. 455	2.941
Northern Ovdep	. 151	. 534	. 685	. 041	. 726	3.608
Total County	4.15	. 071	. 486	. 052	. 538	1.944

worth of economic activity (column 6) for both the northern and southern regions. The same interpretation is applicable to the other 21 regional sectors shown in Table 38.

Manufacturing is the only activity that has a total multiplier for the establishments in the southern region exceeding in value the multiplier for the northern establishments. All other sector activities show a higher total export demand multiplier for the northern establishments than for the southern establishments (comparison of regional pairs in column 6). This is due to the greater volume of purchases by northern activities in the southern sectors than purchases by southern activities in northern sectors. (It will be remembered that northern households were particularly heavy purchasers in the southern region.) Therefore, the dollar of income from export sales by northern activities will generate a greater amount of economic activity for the county as a whole than a dollar of export sales income to southern activities.

Comparison of multiplier values for Southern Households (column 1) from northern activities with the values for Northern Households (column 2) from southern activities is rather striking. In every case, the multiplier value of the former is greater than the multiplier value of the latter. For example, for every dollar of final demand to the Northern Retail sector, Southern Households must generate about 6 cents worth of economic activity (column 1), whereas Northern Households need only generate about 1 cent of activity for every dollar of final demand to the Southern Retail sector (column 2). In the first instance, the 6 cents the Southern Households must generate is all indirect, result-

Abstract

ing primarily from purchases by Northern Households from southern activities. In the second instance, the 1 cent the Northern Households must generate is mostly all direct, resulting from employment of northern residents in the Southern Retail sector (a total of $\$ 267,000$ in wages was paid for such labor services -- see row 22 , column 3, Table 34).

Comparison of total indirect internal multipliers for the two regions in terms of the interregional model further substantiates the greater economic attachment of the northern region to the southern region. Alignment of relevant data for the two regions shows the following (in terms of $\$ 1$ million units):

	Primary			Indirect			Total Exp.\qquad	```Int. Coeff. 8```	Ind. Int. Mult. 9
	Int. 1	$\begin{array}{r} \text { Ext. } \\ 2 \\ \hline \end{array}$	Total 3	Int. 4	$\begin{array}{r} \text { Ext. } \\ 5 \end{array}$	Total 6			
S. Region	59.9	87.2	147.0	70.6	59.9	130.5	277.6	. 407	1.180
N. Region	5.6	3.4	9.0	11.1	5.6	16.7	25.7	. 622	1.994

The northern region initially spends a considerably larger amount within the county, about 62 cents, of its aggregate final demand dollar than does the southern region, which initially spends locally about 41 cents of its aggregate final demand dollar (column 8). For each dollar spent within the county from final demand to the southern region, an additional $\$ 1.18$ in economic activity in the county will be generated. On the other hand, for each dollar spent within the county from final demand to the northern region, an additional \$1.99 in economic activity in the county will be generated (column 9).

The situation is altogether different, however, if one considers the regions separately and not within the framework of the county as a whole (by regarding the respective adjoining region as part of the outside world). Alignment of the relevant data in such a situation shows the following:

	Primary			Indirect			Total Exp. 7	Int. Coeff. 8	Ind. Int. Mult. 9
	$\begin{gathered} \hline \text { Int. } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Ext. } \\ \hline \end{array}$	$\begin{gathered} \text { Total } \\ 3 \\ \hline \end{gathered}$	$\begin{array}{r} \hline \text { Int. } \\ 4 \\ \hline \end{array}$	$\begin{array}{r} \text { Ext. } \\ 5 \\ \hline \end{array}$	$\begin{gathered} \text { Total } \\ 6 \\ \hline \end{gathered}$			
S. Region	57.9	94.6	152.6	66.9	58.0	124.9	277.6	. 380	1.154
N. Region	7.0	6.9	13.9	4.8	7.0	11.8	25.7	. 503	693

Column 8 shows that while a greater share of final demand income will still be initially spent by northern sectors within their own region (.503) than by southern sectors within their own region (.380), the amount of indirect income in each region generated by a dollar of local expenditures is much less for the northern region. This indirect internal income is $\$ 1.15$ for each locally spent dollar in the southern region and $\$.69$ in the northern region. The lower value in the northern region in this case reflects the lack of diversity of mix of economic activities in the northern region as compared to the southern region. The economy of the northern region is less complex and extensive than is the economy of the southern region. In the previous case, however, where the interregional economy of the entire county was taken into consideration, the higher indirect internal multiplier value for the northern region as compared to the southern region reflected the high dependence of the northern economy on the activities of the
southern economy.
Table 39 shows, in terms of the interregional model, the same analysis extended to individual sectors, but in terms of multipliers rather than absolute values. Indirect external coefficients by sectors are not shown since they are the same as primary internal coefficients by sectors. The total indirect multiplier for each sector is the total export demand multiplier for that sector less 1.000 . It will be noted that the indirect internal multipliers for the northern activity sectors are, in every case, larger in value than the corresponding multipliers for the southern activity sectors. Again, this reflects the greater economic dependency of the northern region on the southern region.

Table 40 shows interdependency coefficients by sectors and regions, together with their absolute values, to portray with even more clarity the interdependency of the two regions. Columns 1 and 2 sum by regions the interdependency coefficients for the 22 sectors in Table 36, the interdependency matrix. Columns 3 and 4 in Table 40 show the absolute values, obtained by multiplying the corresponding multipliers in columns 1 and 2 by the appropriate final demand for each sector. Comparison of the northern region multipliers in the upper half of column 2 with the southern region multipliers in the lower half of column 1 shows the greater dependence of the northern region on the economy of the souther region than the reverse. Southern region multipliers for northern activity sectors (column 1, lower half) are all much greater in value than their counterparts in the upper half of column 2.

TABLE 39

INDIRECT INTERNAL MULTIPLIERS BY REGIONAL SECTORS

		Direct		Indirect		Indirect Internal Multiplier 5
		Primary Internal 1	Primary External 2	$\begin{gathered} \text { Internal } \\ 3 \end{gathered}$	$\begin{gathered} \text { Total } \\ 4 \end{gathered}$	
Southern	Primary	. 761	. 239	. 811	1.572	1.066
Northern	Primary	. 630	. 370	. 983	1.613	1.560
Southern	Manufacturing	. 349	. 651	. 472	. 821	1.352
Northern	Manufacturing	. 271	. 729	. 432	. 713	1.594
Southern	Retail	. 332	. 668	. 350	. 682	1.054
Northern	Retail	. 332	. 668	. 424	. 756	1.277
Southern	Service	. 637	. 363	. 808	1.445	1.268
Northern	Service	. 637	. 363	. 971	1.608	1.524
Southern	Transportation	. 404	. 596	. 440	. 844	1.089
Northern	Transportation	. 813	. 187	1.324	2.137	1.629
Southern	Construction	. 646	. 354	. 751	1.397	1.163
Northern	Construction	1.000	--	1.583	2.583	1.583
Southern	Wholesale	. 232	. 768	. 285	. 517	1.228
Northern	Wholesale	. 214	. 786	. 315	. 529	1.472
Southern	Utility	. 196	. 804	. 248	. 444	1.266
Northern	Utility	. 556	. 444	. 749	1.305	1.347
Southern	Governments	. 750	. 250	. 952	1.702	1.269
Northern	Governments	. 696	. 304	1.064	1.760	1.529
Southern	Households	. 705	. 295	. 642	1.347	. 911
Northern	Households	. 850	. 150	. 857	1.707	1.008
Southern	Ovdep	1.000	--	. 941	1.941	. 941
Northern	Ovdep	1.000	--	1.608	2.608	1.608

TABLE 40

REGIONAL INTERDEPENDENCY OF EXPORT DEMAND BY SECTORS

	Multip South. Region 1	$\begin{aligned} & \text { pliers } \\ & \text { North. } \\ & \text { Region } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Valu } \\ & \frac{\text { South. }}{\text { Region }} \\ & 3 \end{aligned}$	$\begin{gathered} \text { ues } \\ \frac{\text { North. }}{\text { Region }} \\ 4 \end{gathered}$	Percent of Total Sector Activity	nt of Sector vity North. Region 6	Percen Total al Act South. Region 7	nt of Regiontivity North. Region 8
So. Primary	2.539	. 033	\$5,811	\$77	99	1	2	--
So. Mfg.	1.738	. 084	182,668	8,806	95	5	66	34
So. Retail	1.662	. 020	14,392	177	99	1	5	1
So. Service	2.415	. 030	14,863	187	99	1	5	1
So. Transp.	1.820	. 024	4,430	59	99	1	2	--
So. Const.	2.290	. 106	2,810	131	96	4	1	1
So. Wh1s1.	1.504	. 013	7,436	63	99	1	3	--
So. Utility	1.425	. 020	237	3	99	1	--	--
So. Gov't.	2.661	. 040	8,971	136	99	1	3	1
So. Hshlds.	2.329	. 019	27,655	220	99	1	10	1
So. Ovdep	2.873	. 067	2,264	53	98	2	1	--
Total Southe			\$271,537	\$9,912			98	39
No. Primary	. 610	2.003	798	2,622	23	77	--	10
No. Mfg.	. 269	1.443	473	2,533	16	84	--	10
No. Retail	. 348	1.408	311	1,259	20	80	--	5
No. Service	. 780	1.827	570	1,336	30	70	--	5
No. Transp.	. 806	2.331	559	1,615	26	74	--	6
No. Const.	--	--	--	--	--	--	--	--
No. Whlsl.	. 237	1.292	7	36	16	84	--	--
No. Utility	--	--	--	--	--	--	--	--
No. Gov't.	. 761	2.000	380	1,000	28	72	--	4
No. Hshlds.	. 954	1.753	2,918	5,358	35	65	1	21
No. Ovdep	--	--	--	--	--	--	--	--
Total Norther			\$ 6,016 \$	\$15,759			2	61
Total County			\$277,553 \$	\$25,671			100	100

Columns 5 and 6 show the proportion of each regional sector's total activity attributable to each of the two regions (sector row), while columns 7 and 8 show the proportion of each region's total activity attributable to each sector.

Reading across the Southern Manufacturing sector row may help to clarify the meaning of the data in the different columns. Column 1 shows that for every dollar of final demand to Southern Manufacturing establishments, the southernregion as a whole must produce, directly and indirectly, about $\$ 1.74$ in economic activity while the northern region must produce about 8 cents worth of activity (column 2). In terms of total value, this means that to enable the Southern Manufacturing sector to meet its final demand of $\$ 105.1$ million, all sectors in the southern region must produce about $\$ 182.7$ million worth of activity (column 3) and all sectors in the northern region about $\$ 8.8$ million worth of activity (column 4). The $\$ 182.7$ million worth of activity for all southern sectors represents 95 percent (column 5) of the total direct and indirect activity generated in the county by Southern Manufacturing final demand and the $\$ 8.8$ million, or the balance of this total, about 5 percent (column 6). The $\$ 182.7$ million also represents about 66 percent of the total value of all economic activity in the southern region (column 7). The $\$ 8.8$ million represents 34 percent of the total value of all economic activity in the northern region (column 8).

From the regional sums in columns 7 and 8 of Table 40 it can be seen that for the southern region about $\$ 6$ million or 2 percent of its
total income of $\$ 277.6$ million is generated, directly and indirectly, by export activity of the northern region. On the other hand, 39 percent or $\$ 9.9$ million of the total income of about $\$ 25.7$ million to the northern region was directly and indirectly attributable to export demand activity of southern sectors. The disproportionate balance in income shares between these two regions as shown in these figures lends support to the type of program suggested by some researchers and planners whereby development efforts and funding within Appalachia should be concentrated in those areas with some degree of nodal influence already evident and showing the most potential for future growth.

1. Leontief, W. The Structure of the American Economy, 1919-1939. 2nd Ed. Rev. Oxford University Press, New York, 1951.
2. Walras, L. Elements of Pure Economics. Translated by W. Jaffe, London, Allen and Unwin, 1954, 620 pp.
3. Goldman, M. R., Marimont, M. L. and Vaccara, B. N. "The Interindustry Structure of the United States: A Report on the 1958 Input-Output Study," Survey of Current Business. U. S. Dept. of Commerce, Washington, D. C. Vol. 44, No. 11, Nov. 1964, pp. 10-30.
4. Carter, H. O. and Heady, E. O. An Input-Output Analysis Emphasizing Regional and Commodity Sectors of Agriculture. Res. Bull. 469, Agr. and Home Econ. Exp. Sta., Iowa State University, Ames, Iowa, 1959.
5. Moses, L. N. "The Stability of Interregional Trading Patterns and Input-Output Analysis," Am. Econ. Rev. Vol. 45, No. 5, Dec. 1955, pp. 803-832.
6. Moore, F. T. and Petersen, J. W. "Regional Analysis: An Interindustry Model of Utah," Rev. of Econ. and Stat. Vol. 37, Nov. 1955, pp. 368-383.
7. Martin, W. E. and Carter, H. O. A California Interindustry Analysis Emphasizing Agriculture, Part 1 and 2. Calif. Ag. Exp. Sta. Giannini Foundation Res. Rep. No. 250, Feb. 1962.
8. Hansen, W. L. and Tiebout, C. M. "An Intersectoral Flows Analysis of the California Economy," Rev. of Econ. and Stat. Vol. 45, No. 4, Nov. 1963, pp. 409-418.
9. Carden, J. G. D. and Whittington, F. B., Jr. Studies in the Economic Structure of the State of Mississippi. Vol. 1 and 2. Miss. Ind. and Tech. Research Comm., 1964.
10. University of Maryland. "A Regional Interindustry Study of Maryland," Studies in Business and Economics. Bur. of Bus. and Econ. Res., College Park, Md. Vol. 8, No. 2, Sept. 1954.
11. Hoch, I. Chicago Area Transportation Study; Forecasting Economic Activity for the Chicago Region. Chicago, May, 1959.
12. Hirsch, W. Z. "Interindustry Relations of a Metropolitan Area," Rev. of Econ. and Stat. Vo1. 41, No. 4, Nov. 1959, pp. 360-369.
13. Leven, C. L. "Regional Income and Product Accounts: Construction and Application," Design of Regional Accounts. Ed. by W. Hochwald. Resources for the Future, Johns Hopkins Press, Baltimore, Md., 1961, pp. 148-195.
14. Hochwald, W., Striner, H. E. and Sonenblum, S. Local Impact of Foreign Trade: A Study in Methods of Local Economic Accounting. National Planning Association, Washington, D. C., 1960.
15. Jansma, J. D. and Back, W. B. Local Secondary Effects of Watershed Projects: A Case Study of Roger Mills County, Oklahoma. Econ. Res. Serv. Bull. 178, Resource Dev. Econ. Div., U. S. Dept. Agric., Washington, D. C., May 1964.
16. Lund, R. E. An Analysis of a Local Economy in a Period of Rapid Transition. College of Commerce and Industry, University of Wyoming, Laramie, 1962.
17. Harmston, F. K. A Study of the Resources, People, and Economy of Carbon County, Wyoming, 1962. College of Commerce and Industry, University of Wyoming, Laramie, 1962.
18. Rao, A. S. and Allee, D. J. Analysis of Economic Growth in Agricultural Areas: An Application of Input-Output Analysis With Special Reference to San Benito County, California. Unpublished manuscript. Agric. Exp. Sta., University of Calf., Berkely, not dated.
19. Gamble, H. B. An Input-Output Mode1 Incorporating Impact Analysis to Evaluate the Resources and Economy of a Rural Appalachian Community. Unpublished Doctoral dissertation. The Pennsylvania State University, University Park, Pa., 1965.
20. U. S. Department of Commerce. The Skier Market in Northeastern North America. Area Redevelopment Authority, Washington, D. C., 1964.

SELECTED REFERENCES

Chenery, H. B. and Clark, P. G. Interindustry Economics. John Wiley and Sons, Inc., New York, 1959, 345 pp.

Dorfman, R. "The Nature and Significance of Input-Output," Rev. of Econ. and Stat. Vol. 36, No. 1, May 1954, pp. 121-133.

Fox, K. A. "The Study of Interactions Between Agriculture and the Nonfarm Economy; Local, Regional and National," Journ. Farm Econ. Vol. 44, No. 1, Feb. 1962, pp. 1-34.

Friedman, J. and Alonso, W., Editors, Regional Development and Planning, A Reader. The M.I.T. Press, Cambridge, Mass., 1964, 722 pp.

Hamburg, M. and Langford, T. W., Jr. Selected Methods of Analysis for Urban Economic Planning and Development in Pennsylvania; Commentary on Regional Economic Accounting Systems, Benefit-Cost Analysis and Statistical Decision Theory. Department of Internal Affairs, Commonwealth of Pennsylvania, Release No. S-1lc, 1964, 63 pp.

Hirsch, W. Z. (Ed.). Elements of Regional Accounts. Resources for the Future, The Johns Hopkins Press, Baltimore, Md., 1964, 221 pp.

Hochwald, W. (Ed.). Design of Regional Accounts. Resources for the Future, The Johns Hopkins Press, Baltimore, Md., 1961, 281 pp.

Isard, W. Methods of Regional Analysis: An Introduction to Regional Science. John Wiley and Sons, Inc., New York, 1960, 784 pp.

Leontief, W. and others. Studies in the Structure of the American Economy. Oxford University Press, New York, 1953, 561 pp.

Leven, C. L. Theory and Method of Income and Product Accounts. Center for Regional Economic Studies, University of Pittsburgh, Pittsburgh, Pa., reprinted 1963, 293 pp.

Meyer, J. R. "Regional Economics; A Survey," The Am. Econ. Rev. Vol. 53, No. 1, March 1963, pp. 19-54.

Palmer, E. Z. (Ed.) and others. The Community Economic Base and Multiplier. University of Nebraska Publication No. 199, The University of Nebraska, Lincoln, 1958, 144 pp.

Perloff, H. S., Dunn, E. S., Jr., Lampard, E. E., and Muth, R. F. Regions, Resources, and Economic Growth. Resources for the Future, The Johns Hopkins Press, Baltimore, Md., 1960, pp. 87-96.

Petersen, J. W. Regional Economic Forecasting: A Survey of Available Techniques. Report prepared for the National Aeronautics and Space Administration, Washington, D. C., $1964,58 \mathrm{pp}$.

Ryan, J: N. "The Leontief System," South. Econ. Journ. Vol. 19, No. 4, 1953, pp. 481-489.

Tiebout, C. M. "Community Income Multiplier: A Population Growth Mode1," Journ. Reg. Science. Vol. 2, No. 1, 1960, pp. 75-84.

Tiebout, C. M. The Community Economic Base Study. Supplementary Paper No. 16, The Committee for Economic Development, New York, 84 pp .

Figure A: Advance letter sent to Industrial Firms

PENNSYLVANIA REGIONAL ANALYSIS GROUP
120 Boucke Building
University Park, Pennsylvania, 16802

Dear \qquad -
(Date)
The Pennsylvania Regional Analysis Group of the Pennsylvania State University is making a detailed study of the economy of Clinton County. This is a basic research attempt to better understand the kinds of economic activities taking place in a typical county in Central Pennsylvania. We are hoping to be able to identify and express, in mathematioal terms, the various relationships between different business groupings within the county and also between the county and the rest of the nation. Much of the study will involve the use of high speed electronic computers using new techniques never before applied to an economic study of this kind. We hope to evaluate the effects of new industrial activities on the economy of the county and to show what industries or business activities will be most beneficial to the county in years to come. The results of our work will, of course, be made available without charge.

The only way a meaningful and useful study of this kind can be accomplished is to go within the area itself. The best way of collecting the necessary information is to talk directly with the businesses and firms in the county. Because your organization is one of the county's major economic units, we would like very much to have an opportunity to discuss this matter personally with you. Sometime during the next few weeks you will be contacted in this regard by a member of our research team. We sincerely hope that you will cooperate with him as your participation is essential to the success of the study. All individual data will, of course, be kept strictly confidential and will be made available only to those individuals authorized by you. The only data that will be published or released will be composite information reflecting the activities of the groupings of industries.

If you desire further information about this research study prior to the visit by our research man, please let me know. If you desire to check locally, you may contact Richard A. Morse at the Lock Haven Chamber of Commerce or Edward Ball, Director of the Office of Planning, Housing and Redevelopment at the Court House. Both of these organizations have endorsed the study and can give you some additional details.

Sincerely yours,

Hays B. Gamble, Research Director

HBG/ch

Figure B: Industrial Survey Questionnaire

CONFIDENTIAL - For authorized personnel only

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building
University Park, Pennsylvania 16802

Industrial Survey (1)
Code no. (2)

1. Is this plant the : a) Head Office (3)

Location of branch plants (5)
b) Branch office or plant (6)

Location of head office (7)
2. (For Head Office only) What proportion of your company is locally owned (owners residing in Clinton County)? (8)
3. What was your company's 1963 average employment at this plant?

number of employees part-time (9) full-time	payroll	
(12)	(10)	(11)

Non-Clinton County residents \qquad
4. Of your total number of employees at this plant, approximately how many are women? (15)
5. What trend do you foresee in your labor requirements over the next five years (check one)?

Increasing (16) Decreasing (17) Stable (18)
6. What were your approximate 1963 expenditures for new buildings or additions, including land and remodeling of existing buildings? (19) Approximately how much of this was purchased outside Clinton County? (20)
7. Approximate 1963 expenditures for new capital equipment, including company cars and trucks
a) From within Clinton County?

General classification or kind of equipment

Total expenditures
(21) (22)
\qquad
\qquad
\qquad
b) From outside Clinton County?

Source (State)	General kind of equipaent	Total (23)

\qquad
\qquad
\qquad
\qquad
8. What was your approximate 1963 depreciation in plant
and equipment? (26)
9. What was the approximate value of your 1963 change in inventory? gain (27) loss (28)
10. What are jour primary sources of capital funds?
a) Internal funding (from within the company (29)
b) From banks within Clinton County (30)
c) From public or private agencies within Clinton County other than banks (31)
10. (continued)

Industrial Survey
Page 3
d) From other sources within Clinton County (32)
e) From sources outside of Clinton County but within Pennsylvania (33)
f) From sources outside of Pennsylvania (34)
11. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?
Yes (35) No (36)
12. What was your total value added by manufacturing for

1963? (37)

13. a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security? (38)
b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld? (39)
c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in A and B above)? This would include corporate taxes, business taxes, excise taxes, etc. (40)
d) What were your approximate net payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc. (41)
e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts? (42)
14. What were your approximate outlays in 1963 for raw materials, contract work, and component parts?
a) From within Clinton County

General kind of input volume or quantity approximate total cost (43) (44) (45)

Industrial Survey Page 4

14. (continued)

b) From outside Clinton County

| General kind | Source
 of input | (State) | Volume or
 quantity |
| :---: | :---: | :---: | :---: | | Approximate |
| :--- |
| (46) |

\qquad
\qquad
\qquad
15. What were your approximate outlays in 1963 for the following? (Please do not show any expenditure more than once)
$\frac{\text { local outside }}{(53)}(54) \quad$ total
a) Costs of general supplies not entering final product
b) Costs of maintenance and repair
(56) (57
(58) of plant and equipment (except motor vehicles
(59) (60)
(61)
c) Rental payments
(62) (63)
(64)
d) Electric power and light
(66) (67)
(68)
e) Heat \& Fuel--coal, oil, gas (underline those used) (65)
(69) (70)
f) Telephone and telegraph
(72) (73)
g) Water \& sewage \qquad
h) Insurance (premium payments only- (75) (76) including hospitalization for employees) \qquad
(78) (79) (80)
i) Finance (interest payments only)
(81) (82) (83)
j) Transportation 1. rail
(84) (85) (86)
2. truck (Common \& contract carrier
(87) (88)
(89)
3. Other \qquad
15. (continued)

Industrial Survey
Page 5
k) Personal Services (accountants, auditing, legal, medical, etc.)

1) Maintenance and operating costs
local outside total of cars, trucks, and other vehicles (except labor) including allowances for business use of personal care
(96) (97)
(98)
m) General office expenses (except labor)
(99) (100) (101)
n) Sales expenses including advertising (except labor)
(102) (103) (104)
o) Contributions to nonprofit organizations
(105) (106) (107)
p) Retirement or pension fund payments (employer's share only)
$\overline{(108)(109)}$
q) Miscellaneous
16. What was your approximate total production from this plant during 1963 (in tons, M b.f., or other appropriate physical units.)

Description
(111)

\qquad
\qquad
\qquad
\qquad
17. (Head Office only) What were your total dividend payments in 1963 , if any? (113) About how much of this was
paid: locally? (114) outside? (115)
18. What was your approximate 1963 total gross income from your Clinton County operation only? (116)

Industrial Survey Page 6
19. What proportion of the total gross income originating at your Clinton County operation would you estimate came from the following regions, and what principal kinds of economic activities, including Defense, would you say the purchasers were engaged in (if final consumer, please state "consumer"). For branch plants not making direct sales, please place in the column marked "approximate value" an estimate instead of the proportion of your total production from this plant going to the activities or business you list:
a) Clinton County

Activity or business
Approximate value
(117)
(118)
b) Pennsylvania

Activity or business Approximate value
(119)
(120)
c) Rest of World

Activity or Business Approximate value
(121)
(122)

Figure C: Retail Store Survey Questionnaire

CONFIDENTIAL - For authorized persoanel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY
Pennsylvania Regional Analysis Group Retail Stores Survey (1)
The Pennsylvania State University
120 Boucke Building Code no. (2)
University Park, Pennsylvania

1. Is this store: (a) the head or main Store (3)

Number of branch stores in Clinton County: (4)
Outside Clinton County? (5)
(b) a branch store (6) \qquad - Location of main office (7)
2. (For head offices only) What proportion of this business is locally owned (owners residing in Clinton County)? (8)
3. What was the average employment in your store in 1963 ?

| Number of employees | |
| :--- | :--- | | Total |
| :--- |
| part-time |
| full-time |
| (9) |
| payroll |

Non-Clinton County residents \qquad
4. About how many of these enployees were women?
5. What were your approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing buildings? (19) - Approximately how much of this was purchased outside of Clinton County? (20)
6. Approximate 1963 expenditures for new capital equipment, including company cars and trucks:
$\frac{\text { Kind of Equipment }}{(21)} \quad$ Total Cost
(a) from within Clinton County \qquad
\qquad
6. (continued)

Retail Stores Survey (1)
$\frac{\text { Kind of Equipment }}{(24)} \frac{\text { Total Cost }}{(25)}$
(b) from outside Clinton County \qquad
\qquad
\qquad
7. What was your approximate 1963 depreciation in plant and equipment? (26) -
8. What was the approximate value of your 1963 change in inventory?

Gain (27) Loss (28)
9. What are your primary sources of capital funds?
(a) Internal funding (from within the company)
(29)
(b) From banks within Clinton County (30)
(c) From public or private agencies within Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside Clinton County but within Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
10. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35) No (36)
11. (a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security?
(38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld? (39)
(c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above)? This would include corporate taxes, business taxes, excise taxes, etc.

Retail Stores Survey (1) Page 3
(d) What were your approximate net payments of all kinds during 1963 to the State Government and its agencies? Include unemployment conpensation, sales taxes, excise taxes, etc.
(4I)
(e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts? (42)
12. What were your approximate outlays in 1963 for the following items? (Please do not show any expenditure more than once.)
$\frac{\text { local }}{\text { outside }}$ total
(a) Costs of merchandise purchased for resale (list by broad categories such as food, clothing, etc. \qquad
\qquad
\qquad
(53) (54) (55)
(b) Costs of materials and general supplies used in the operation of the business but not for resale

(c) Costs of maintenance and repair of plant and equipment (except motor vehicles) \qquad
(d) Rental costs \qquad
(e) Electricity

(f) Heat \& Fuel - coal, fuel oil, gas (underline) (65)

(69)	(70)	(71)
(72)	(73)	(74)

(g) Telephone and telegraph
(h) Water \& Sewage
(i) Insurance (premium payments only-including employer's share of hospitalization for employees)
12. (continued)

Retail Stores Survey (1)
Page 4
(j) Finance costs (interest payments $\frac{\text { local outside total }}{(79)}$ only)
(81)
82) (83)
(k) Transportation: rail
(84) (85) (86)
truck
(87) (88) (89)
other
(90)
(91)
(92)
(1) Personal services (accountants, lawyers, repair men, etc.)
(93) (94) (95)
(피) Maintenance and operating costs of cars and trucks (except labor) including allowances for business use of personal cars \qquad (96) (97)
(98)
(n) General office expenses (except labor \qquad
(o) Advertising \qquad
(p) Contributions to nonprofit organizations \qquad
(q) Retirement or pension fund payments (employer's share only) \qquad
(r) Miscellaneous
13. What, approximately, were your total gross sales at this store in 1963 (116)
14. About what proportion of these total sales would you estimate were to customers residing outside of Clinton County (123)
15. About what proportion of your total sales are to tourists, hunters, or other non-Clinton residents here on vacation?
(124)

Retail stores survey (1) Page 5
16. Approximately what proportion of your total sales within Clinton County were to the following?
(a) Industrial or manufacturing plants (125)

Mainly what kinds of plants were these (126)
(b) Other retail and service establishments (127)

Mainly what kinds of stores were these (128)
(c) Farmers (129)
(d) Builders and Contractors (130)
(e) Government accounts, including schools (131)
(f) Nonprofit organizations (132)
(g) Households or private individuals (final consumers) (133)
\qquad
(h) Others (specify) (134)
17. Approximately what proportion of your total gross receipts are from sales of the following products?
(a) Food and groceries (135)
(b) Gasoline and automobile servicing and repairs (136)
(c) New and used car sales (137)
(d) Clothing and wearing apparel (138)
(e) Household furnishings and furniture, including appliances (139)
(f) Lumber, building materials, hardware (140)
(g) Drugs and cosmetics (141)

Retail stores survey (I) Page 5

17. (continued)
(h) Jewelry (142)
(i) Repair Services (143)
(j) Other (specify) (144)

FIGURE D: SERVICE ESTABLISHMENTS SURVEY

CONFIDENTIAL - For authorized personnel only.
CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University 120 Boucke Building University Park, Pennsylvania

Service Establishments Survey (1)

Code no. (2)

1. How many months of the year are you open? (151)
2. What proportion of this business is locally owned? (8)
3. Average number of employees in 1963:

$\frac{\text { Number of Emplayees }}{\text { Nurt-time full-time }}$	Total Payroll	
(9)	(10)	(11)

Clinton County residents \qquad
Non-Clinton County residents \qquad
4. Of the total number of employees, about how many are women?
(15)
5. What were your approximate 1963 expenditures for new buildings or additions including land and remodeling of existing structures?
(19) Approximately how many of this was purchased outside of Clinton County (20)
6. Approximate 1963 expenditures for new capital equipment, including company cars and trucks:

Kind of Equipment Total Cost (21) (22)
(a) From within Clinton County \qquad
\qquad
(24) (25)
(b) From outside Clinton County: \qquad
\qquad
\qquad
\qquad
7. What are your primary sources of capital funds?
(a) Internal funding (from within the company) (29)
(b) From banks within Clinton County (30)
(c) From public or private agencies within Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside of Clinton County but within Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
8. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35)
No (36)
9. (a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security?
(38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld? (39)
(c) What were your approximately payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above? This would include corporate taxes, business taxes, excise taxes, etc.
(40)
(d) What were your approximate new payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc.
(41)
(e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts?

Service Establishments Survey (1)
Page 3

10. What were your approximate outlays in 1963 for the following items? (Please do not show any expenditure more than once)
$\frac{\text { Local }}{\text { (50) }}$ (51) \quad (52)
(a) Costs of merchandise purchase for resale (list by. broad categories, such as food, gasoline, etc. \qquad
\qquad

(b) Costs of materials and general supplies used in the operation of the business, but not for resale
(56) (57) (58)
(c) Costs of maintenance and repair of plant and equipment (except motor vehicles) \qquad
(d) Rental costs
(59) (60) (61)
(e) Electric \qquad
(f) Heat \& Fuel
$\longrightarrow(69)$ (70) (71)
(g) Telephone and telegraph
(72) (73) (74)
(h) Water and sewage
(78) (79) (80)
(i) Insurance (premium payments onlyincluding hospitalization for employees) \qquad

(78)	(79)	(80)
	(84)	(85)

(k) Transportation (specify by what kinds)
(90) (91) (92)
(1) Personal services: accountants, repair men, lawyers, doctors, etc.

(m) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business and use of personal cars \qquad
(n) General office expenses (except labor) \qquad
Service Establishments Survey (1)
Page 4
10. (continued)

Local Outside	Total	
(99)	(100)	(101)

(o) Advertising
(102) (103) (104)
(p) Contributions to nonprofit organizations
(105) (106) (107)
(q) Retirement or pension fund payments (employer's share only) \qquad
(108) (109) (110)
(r) Miscellaneous \qquad
11. Approximately what were your total gross receipts (sales) in 1963? (116)
12. About what proportion of these would you estimate came from customers outside of Clinton County? (123)
13. About what proportion of your total sales would you estimate were to tourists, hunters, or other non-Clinton County residents here on vacation? (124)
14. About what proportion of your total sales to Clinton County Customers were in the following:
(a) Industrial and manufacturing plants (125)
Mainly, what kind of plants were these? (126)
(b) Other retail establishments (127)
Mainly, what kind of stores were these? (128)
(c) Governmental accounts (including schools) (131)
(d) Households (final consumers) (133)
(e) Others (specify) (134)

> Service Establishments
> Survey (1)
> Page 5
15. Approximately what proportion of your total gross receipts are from sales of the following products or services:
(a) Restaurant and dining (152)
(b) Bar (153)
(c) Lodging (154)
(d) Repair services and parts (143)
(e) Cleaning and Laundry (155)
(f) Personal grooming services (barbers, beauty shop operators) (156)
(g) Retail Sales (157)
(h) Recreation and entertainment services (158)
(i) Other (specify) (159)

FIGURE E: FINANCIAL INSTITUTIONS SURVEY (1)

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY
Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building
University Park, Penna.

1. Type of institution? (160)
2. What was your average employment in 19638

3. About how many of these employees were women? (15)
4. What were your approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing structure? (19) About how many of this was purchased outside of Clinton County? (20)
5. Approximate 1963 expenditures for new capital equipment? (161) About how much of this was purchased outside of Clinton County? (25)
6. What are your primary sources of capital funds?
a) Internal funding (from within the company) (29)
b) From banks within Clinton County (30)
c) From public or private agencies within Clinton County other than banks (31)
d) From other sources within Clinton County (32)
7. (continued)

Financial Institutions Survey (1) Page 2
e) From sources outside of Clinton County but within

Pennsylvania (33)
f) From sources outside of Pennsylvania (34)
7. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35) No (36)
8. a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security? (38)
b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld? (39)
c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in a) and b) above? This would include corporate taxes, business taxes, excise taxes, etc. (40)
d) What were your approximate new payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc. (41)
e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts? (42)

Financial Institutions Survey (1) Page 3

9. What were your approximate outlays in 1963 for the following items?

Financial Institutions Survey (1) Page 4
10. What were your total demand deposits at the end of

1961 (162)
1962 (163)
1963 (164)
11. How much interest on government bonds of all types did you earn in 1963 ? (165)
12. Approximately how much interest on mortgages held for your own account and on mortgages which you service for other lenders did you earn in 1963 ? (166) What proportion of this would you estimate came from residents of Clinton County? (167) What proportion of this latter amount would you estimate came from: a) industrial and manufacturing establishments (168)
b) business and commercial establishments (169) ;
c) Governmental bodies (170) ;
d) private individuals (171) .
13. During 1963 approximately how much interest did you receive on all all other kinds of loans held for your account and on loans which you service for other lenders? (172)

What proportion of this would you estimate came from residents of Clinton County (173) Of this latter amount what proportion would you estimate came from:
a) Industrial and manufacturing establishments (174)
b) Business and commerical establishments (175)
c) Governmental bodies (176)
d) Private individuals (177)

Financial Institutions Survey (1) Page 5
14. What was your volume of shares (or time deposits) outstanding at the end of

1961 (178)
1962 (179) 1963 (180)
15. Approximately what were your total interest payments during 1963 to holders of time deposits (181) About what proportion of this would you estimate was paid to residents of Clinton County (182) Of this amount, about what proportion would you estimate was paid to the following:
a) Industrial and manufacturing establishments (183)
b) Business and commercial establishments (184)
c) Governmental bodies (185)
d) Non-profit organizations (186)
e) Private individuals (187)
f) Others (specify) (188)
16. Do you manage any trusts for beneficiaries living in Clinton County? (189) If so, about how much was earned by all of them during 1963? (190)
17. What proportion of your total demand deposits would you estimate are owned by the following:
a) Industrial and manufacturing accounts (191)
b) Retail, commercial, small business accounts (192)
c) Governmental accounts including schools (193)
d) Non-profit organizations (194)
e) Utilities (195)
f) Private individuals and households (196)

FIGURE F: REAL ESTATE \& INSURANCE SURVEY (1)

CONFIDENTIAL - For authorized personnel only

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University 120 Boucke Building
University Park, Pennsylvania

Real Estate \& Insurance Survey (1)

Code No. (2)
l. Location of head or main office (7)
2. Average Employment during 1963:

$\frac{\text { Number of Employees }}{}$	Total	
part-time	fulli-time	Payroll

Clinton County Residents \qquad
Non-Clinton County Residents \qquad
3. How many of these employees were women? (15)
4. What were your approximate 1963 expenditures for new buildings, renovations, or additions, including land in connection with the operation of this office only?

About how much of this was purchased outside of Clinton County? (20)
5. What were your approximate 1963 expenditures for new capital equipment, including cars used in connection with the business (specify kind of equipment): (21, 24)

About what proportion of this was purchased outside of the county? (25)
6. What were your approximate outlays in 1963 for the following items? Please do not show any expenditure more than once.

Real Estate \& Insurance
Survey (1)
Page 2
6. (continued)

Local	Outside	Total
(53)	(54)	(55)

(a) Costs of materials and general supplies used in the operation of the business \qquad (61)
(b) Rental costs

```
(62) (63)
```

(64)
(c) Electric
(65) (66)
(68)
(d) Heat \& Fuel \qquad
(e) Telephone and telegraph
(72) (73)
(74)
(f) Water \& Sewage

(g) Insurance (premium payments only-including employer's share of hospitalization for employees) \qquad
(78) (79)
(80)
(h) Finance (interest costs only)
(90) (91)
(92)
(i) Personal services (accountants, lawyers, etc.) \qquad (93) (94) (95)
(j) Maintenance and operating costs including allowances for business use of personal cars
(96) (97)
(98)
(k) Office operating expenses (except labor) \qquad
(102) (103) (104)
(1) Contributions to nonprofit organizations
(105) (106) (107)
(m) Retirement or pension fund payments (employer's share only) \qquad
(n) Miscellaneous (including advertising

Real Estate \& Insurance Survey (1)
Page 3
7. What were your approximate outlays in 1963 for the following government payments (in connection with your business only):
(a) Social security payments on employees (both employer's and employee's share (38)
(b) Employee's income taxes withheld (39)
(c) Business taxes to the Federal Government or other Federal payments (40)
(d) Total payments of all kinds to the State State Government, including unemployment compensation, sales taxes, transfer taxes, license fees, etc. (41)
(e) Total payments to the County Government and local governments including school districts (42)
8. What were the approximate total premium payments on all kinds of insurance paid by your clients to you or your firm during 1963? (238) Of this amount, about what proportion came from clients outside of Clinton County? (239)
9. Approximately how much did you receive in 1963 in commissions, rentals, and other fees (exclusive of insurance) from clients residing outside of Clinton County? (240)

FIGURE G: PERSONAL SERVICES SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building University Park, Pennsylvania

Personal services survey (1) Code No. (2)

1. What proportion of this business is locally owned? (8)
2. Average number of employees in 1963:

$\frac{\text { Number of Employees }}{}$	Total	
part-time full-time Payroll		
(9)	(10)	(11)
(12)	(13)	(14)

Non-Clinton County residents \qquad
3. How many of these employees were women? (15)
4. What were your approximate 1963 expenditures for new buildings, renovations, or additions, including land, in connection with your business only? (19)

About how much of this was purchased outside of Clinton County? (20)
5. Approximate 1963 expenditures for new capital equipment, including cars and other vehicles, used in connection with your business
(specify kind of equipment)?
$\frac{\text { Kind of Equipaent }}{(21,24)}$
\qquad
\qquad
\qquad

Personal Services Survey (1) Page 2
6. What were approximate outlays in 1963 for the following items?

Please do not show any expenditure more than once.

Local	Outside	Total
(53)	(54)	(55)

(a) Costs of materials, drugs, supplies, ets.,used in connection with your business \qquad
(56)
(57)
(58)
(b) Costs of maintenance and repair of plant and equipment (except motor vehicles)
(59) (60)
(61)
(c) Rental costs
(62)
(63)
(d) Electric
(66)
(e) Heat \& Fuel--coal, fuel oil, gas (underline) (65)
(f) Telephone and telegraph
(69) (70)
(74)
(g) Water and Sewage
(72) (73)
(77)
(h) Insurance (premium payments only on insurance directly connected with the business or its employees
(78) (79) (80)
(i) Finance (interest payments only) \qquad
(90) (91) (92)
(j) Personal services (accountants, lawyers, doctors, repair men, etc.)
(k) Maintenance and operating costs of cars and other vehicles used only in connection with the business including allowances for business use of personal auto \qquad
(1) Office expenses

(96)	(97)	(98)
(102)	(103)	(104)

(m) Contributions to nonprofit organizations \qquad
(m) iztributions to nonprofit organ(108) (109) (110)
(n) Miscellaneous \qquad

Personal Services Survey (1) Page 3
7. What were your approximate outlays in 1963 for the following governmental payments (in connection with the business only)?
(a) Social Security payments to the Federal Government on employees only (both employer's and employee's shares) (38)
(b) Employee's income taxes withheld (39)
(c) Federal business taxes, if any, and all other Federal payments (40)
(e) Total payments to the County and local government including school districts (42)
8. What were your approximate gross receipts in 1963? (116)
9. About what proportion of your gross receipts would you estimate came from customers residing outside of Clinton County. (123)
10. About what proportion of your gross receipts would you estimate came from tourists, hunters, or other non-Clinton County residents here on vacation? (124)
11. About what proportion of your gross receipts originating within the county (county residents) were from the following?
(a) Manufacturing and industrial firms (125)
(b) Retail, wholesale, and other business establishments (127)

Personal Services Survey (1)
Page 4
11. (continued)
(c) Local governmental bodies or agencies including schools (131)
(d) Private individuals or households (133)
(e) Nonprofit organizations (132)
(f) Other (specify) (134)
12. About what proportion of your total gross receipts are paid direct by insurance companies? (247)
13. (Attorney's only) Do you manage any estates or trust funds for beneficiaries residing in Clinton County? (189)

If so, about how much did all of them combined earn during 19638 (190)

FIGURE H: TRANSPORTATION SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ANALYSIS GROUP

Pennsylvania Regional Analysis Group The Pennsylvania State University 120 Boucke Building
University Park, Pennsylvania

Transportation survey (1)
Code No. (2)

1. Major form of transportation (248)
2. Location of main or head office (7)
3. What proportion of this business is locally owned (8)
4. What was your average employment during $1963 ?$

$\frac{\text { Number of Employees }}{\text { part-time full-time }}$| Total |
| :--- |
| (9) |
| (10) |

Clinton County residents
(12) (13)
(14)

Non-Clinton County Residents
5. About how many of these employees were women? (15)
6. What were your approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing structures? (19) About how much of this was purchased outside of Clinton County? (20)
7. What were your approximate 1963 expenditures for new capital equipment, including company cars, trucks, etc.

Kind of Equipment Total Cost
(21) (22)
(a) From within Clinton County \qquad
\qquad
(24)
(25)
(b) From outside Clinton County \qquad
\qquad
\qquad

Transportation Survey (1)

Page 2
8. What was your approximate depreciation in plant and equipment during 1963 (26)
9. What are your primary sources of capital funds?
(a) Internal funding (from within the company) (29)
(b) From banks within Clinton County (10)
(c) From public or private agencies within Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside of Clinton County but within Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
10. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35) No (36)
11. (a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security?
(38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld? (39)
(c) What were your approximate payments of all kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above)? This would include corporate taxes, business taxes, excise taxes, etc.
(40)
(d) What were your approximate net payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc.
(41)

11. (continued)

(e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts?
12. What were your approximate outlays in 1963 from this office for the following items? (Please do not show any expinditures more than once.)

Local	Outside	Total
(50)	(51)	(52)

(a) Costs of goods and materials purchased for resale (if any) \qquad
(b) Costs of materials and general supplies used in the operation of the business but not for sale \qquad
(c) Costs of maintenance and repair of plant and equipment (except motor vehicles)
(249) (250) (251)
(d) Payments to subcontractors or haulers \qquad
(e) Rental costs

(f) Electricity
(66) (67) (68)
(g) Heat \& Fuel--coal, fuel oil, gas (underline) (65)
(69) (70) (71)
(h) Telephone and telegraph
(72) (73) (74)
(i) Water and Sewage

(j) Insurance (premium payments only-including employer's share of hospitalization for employees) \qquad (78) (79) (80)
(k) Finance (interest payments only)
(90) (91) (92)
(1) Personal services (accountants, repair men, lawyers, etc.
12. (continued)

Transportation Survey (1) Page 4

(m) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business use of personal cars
(96) (97) (98)
(n) Office expenses
(99) (100) (101)
(o) Advertising
(102) (103) (104)
(p) Contributions to non-profit organizations \qquad
(q) Retirement or pension fund payments (employer's share only) \qquad
(r) Miscellaneous
13. What were the major products you hauled during 1963 and the approximate percentages of each?

Kinds of Products \% of Total Business (252)
14. About what proportion of the total tonnage of freight hauled by you during 1963 represents shipments moving:
(a) Into Clinton County from outside (254)
(b) Out of the county (255)
(c) Solely within the county (256)
15. What was your approximate 1963 gross income at this office (116)

Transportation Survey (1) Page 5
16. What proportion of this would you estimate was paid by customers residing outside Clinton County or whose business was located outside the county? (123)
17. Of your total receipts from Clinton County Customers only, what proportion would you estimate came from the following:
(a) Industrial or manufacturing concerns (125)
(b) Retail or other small businesses (127)
(c) Governmental operations, including schools (131)
(d) Utilities (149)
(e) Builders and contractors (130)
(f) Households (133)
(g) Other (specify) (134)
\qquad
\qquad
\qquad

FIGURE I: BUILDERS AND CONTRACTORS SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University 120 Boucke Building University Park, Pennsylvania

Builders and Contractors Survey (1)

Code No. (2)
l. What proportion of this business is locally owned (owners residing in Clinton County)? (8)
2. What was your average employment during 1963 ?

| $\frac{\text { Number of Employees }}{\text { part-time full-time }}$ | Total |
| :--- | :--- | :--- |
| (9) Payroll | |

Clinton County residents
(12) (13) (14)

Non-Clinton County residents
3. About how many of these employees were women? (15)
4. Major type of contract or construction work performed? (257)
5. What were your approximate capital expenditures for new buildings, including land, and additions or remodeling of existing buildings used in connection with your business during $1963 ?$ (19)
\qquad
outside of Clinton County? (20)
6. What were your approximate 1963 expenditures for new capital equipment, including cars,trucks, and other automotive or power equipment?

Kind of Equipment	Total Cost
(21)	(22)

(a) From within Clinton County \qquad
\qquad
\qquad

Builders and Contractors
Survey (1)
Page 2
$\frac{\text { Kind of Equipment }}{(24)} \quad$ Total Cost

6. (continued)
(b) From outside Clinton County
(25)
7. What was your approximate depreciation in plant and equipment during 1963? (26)
8. What was the approximate value of your change in inventory during 1963 ?

Gain (27) Loss (28)
9. What are your primary sources of capital funds?
(a) Internal funding (from within the company) (29)
(b) From banks within Clinton County (30)
(c) From public or private agencies with Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside of Clinton County but within

Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
10. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35) No (36)
11. (a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security? (38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld?
(39)
11. (continued)

Page 3

(c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above? This would include corporate taxes, business taxes, excise taxes, etc.
(d) What were your approximate new payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc. (41)
(e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts?
(42)
12. What were your approximate outlays in 1963 for the following items? (Please do not show any expenditures more than once)

Local	Outside	Total
(50)	(51)	(52)

(a) Cost of materials used by your firm in all of its construction and contracting jobs, including cost of materials purchased for retailing
(b) Costs of materials and general supplies used in the operation of the business but not for resale \qquad
(c) Costs of maintenance and repair of
plant and equipment (except motor vehicles) \qquad
(56) (57)
(58)
(59) (60). (61)
(d) Rental costs \qquad
(e) Electricity
(62) (63) (64)
(f) Heat \& Fuel -- coal, fuel oil, gas (underline) (65)
(g) Telephone and Telegraph
(72) (73) (74)
(h) Water and Sewage \qquad
(i) Insurance (premium payments only)--
including employee's share of hospitalization for employees
12. (continued)
Builders and Contractors
Survey (1)
Page 4

Local	Outside	Total:
(78)	(79)	(80)

(j) Finance (interest payments only, including Bond costs)
(81) (82) (83)
(k) Transportation: rail

rail__	(84)	(85)	(86)
truck	(87)	(88)	(89)
other	(90)	(91)	(92)

(1) Personal services (accountants, repair men, lawyers, doctors, etd.)

```
                        (93) (94) (95)
```

(m) Maintenance and operating cost\$ of cars, trucks, and other vehicles (except labor), including allowances for business use of personal cars \qquad
(n) Office expenses (except labor)
(96) (97) (98)
(o) Advertising
(99) (100) (101)
(102).(103) (104)
(p) Contributions to non-profit organizations
(105) (106) (107)
(q) Retirement or pension fund payments (employer's share only) \qquad
(r) Miscellaneous
(108) (109) (110)
13. Did you subcontract any work during 1963 ? \qquad Approximately how much did this cost you:
(a) To Clinton County subcontractors (258)
(b) To subcontractors outside of Clinton County
(259)
14. What was your approximate total gross income in 1963? (116)
15. Of this about what proportion came from customers residing outside of Clinton County?

Page 5
16. Of the work done by you within Clinton County, about what proportion would you estimate was done for the following?
(a) New resident home construction (133)
(b) Remodeling or renovation of existing homes (133)
(c) Construction of hunting cabins, summer vacation homes, or remodeling of existing one's for non-Clinton County residents (124)
(d) Construction of new manufacturing or industrial buildings (125)
(e) Remodeling or renovation of manufacturing or industrial buildings (125)
(f) Construction of new stores or store buildings (127)
(g) Remodeling or renovation of existing stores or store buildings (127)
(h) Construction or remodeling for non-profit organizations (132)
(i) Governmental accounts (including school) (131)
(j) Farmers (129)
(k) Utilities (149)
(1) Others (specify) (134)

FIGURE J: WHOLESALE DISTRIBUTORS SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building
University Park, Pennsylvania

Wholesale distributors Survey (1)

Code No. (2)

1. Is this: (a) the head or main store? (3)

Number and location of branch stores (5)
(b) Branch store (6)

Location of main office (7)
2. (For head office only) What proportion of this business is locally owned (owners residing in Clinton County)?
(8)
3. What was your store's 1963 average employment?

$\frac{\text { Number of Employees }}{\text { part-time full-time }}$	Total	
Payroll		
(9)	(10)	(11)

Clinton County Residents \qquad
Non-Clinton County Residents \qquad
4. About how many of these employees were women? (15)
5. What were your approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing buildings?
(19)

About how much of this was
purchased outside of Clinton County? (20)
6. Approximate 1963 expenditures for new capital equipment, including cars, trucks, etc.
$\frac{\text { Kind of Equipment }}{\text { (21) Total Cost }}$
(a) From within Clinton County
(24)
(25)
(b) From outside Clinton County \qquad

```
Wholesale Distributors
    Survey (l)
Page 2
```

7. What was your approximate 1963 depreciation in plant and equipment (26)
8. What was the approximate value of your 1963 change in inventory? Gain (27) Loss (28)
9. What are your primary sources of capital funds?
(a) Internal funding (from within the Company) (29)
(b) From banks within Clinton County (30)
(c) From public or private agencies within Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside of Clinton County but within Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
10. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?

Yes (35) No (36)
11. (a) What were your approximate payments to the Federal Government in 1963 for both employer's and employee's share of social security?
(38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income tax withholdings? (39)
(c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above? This would include corporate income taxes, business income taxes, excise taxes, etc., (40)

```
Wholesale Distributors
    Survey (1)
Page 3
```

11. (continued)
(d) What were your approximate new payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc. (41)
(e) What were your approximate total payments of all kinds during 1963 to the County and local government including senool districts?
12. What were your approximate outlays in 1963 for the following items? (Please do not show any expenditure more than once)

Wholesale Distributors
Survey (1)
Page 4
13. (continued)
(i) Insurance (premium payments only-including hospitalization for employees) \qquad
(j) Finance (interest payments only)

local	outside	total
(75)	(76)	(77)

(78) (79) (80)
F
(82) (83)
(k) Transportation: rail truck \qquad other \qquad
(1) Personal services (accountants, lawyers, etc.) \qquad
(m) Maintenance and operating costs of cars, trucks, and other vehicles (except labor) including allowances for business use of personal cars
(96) (97) (98)
(n) Office expenses (except labor)
(99) (100) (101)
(o) Advertising
(102) (103) (104)
(p) Contributions to nonprofit organizations \qquad
(q) Retirement or pension fund payments (employer's share only)
(108) (109) (110)
(r) Miscellaneous \qquad
13. Approximately what were your total 1963 gross sales at this store? (116)
14. Approximately what proportion were local sales and what proportion retail?

Wholesale	Retail
(145)	(146)

Sales to Clinton County residents or businesses \qquad (148)

Sales to Non-Clinton County residents or businesses \qquad
15. About what proportion of your total sales would you estimate were to tourists, hunters, or other non-Clinton County residents here on vacation? (124)
16. About what proportion of your total sales to Clinton County customers only were to the following?
(a) Industrial or manufacturing firms (125)

What kinds of firms or plants were these in general (126)
(b) Retail or service establishments (127)

What kinds were these in general (128)
(c) Farmers (129)
(d) Builders and contractors (130)
(e) Utilities (149)
(f) Government accounts including schools (131)
(g) Non-profit organizations (132)
(h) Households or private individuals (133)
(i) Others (specify) (134)
17. What principal products do you handle (150)

CONFIDENTIAL - For authorized personnel only.

CLINTON COUNTY REGIONAL ECONOMIC STUDY
Pennsylvania Regional Analysis Group
The Pennsylvania State University 120 Boucke Building University Park, Pennsylvania

1. Type of Utility (205)
2. Location of Main or Head Office
(7)
3. Proportion of this utility that is locally owned (owners residing in Clinton County?
(8)
4. What was your company's average employment in 1963 (Clinton County operations only)?

	Number of Employees		Total Payroll
	full-time	part-time	
	(9)	(10)	(11)
	(12)	(13)	(14)

5. About how many of these employees were women? (15)
6. What were your approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing structures? (19) About how much of this was purchased outside of Clinton County? (20)
7. Approximate 1963 expenditures for new capital equipment, including company cars, trucks, etc.
\qquad (21) (22)
(a) From within Clinton County \qquad
\qquad
\qquad
\qquad
\qquad

Utilities Survey (1)
Page 2
7. (continued)

Kind of Equipment Total Cost (24)
(25)
(b) From outside Clinton County
\qquad
\qquad
\qquad
8. About how much did you spend in 1963 for rights-of-way and other easements? (206) About how much of this was spent outside Clinton County? (207)
9. What was your approximate depreciation in plant and equipment in $1963 ?$ (26)
10. What was the approximate net value of your 1963 change in inventory?
Gain (27) Loss (28)
11. What are your primary sources of capital funds?
(a) Internal funding (from within the company (29)
(b) From banks within Clinton County (30)
(c) From public or private agencies within Clinton County other than banks (31)
(d) From other sources within Clinton County (32)
(e) From sources outside of Clinton County but within Pennsylvania (33)
(f) From sources outside of Pennsylvania (34)
12. Assuming demand for your goods and/or services constant, would you expand your present operations here in Clinton County if capital funds were available at a lower rate of interest?
Yes (35)
No (36)

Utilities Survey (1) Page 3
13. (a) What were your approximate payments to the Federal Government in 1963 for employer's and employee's share of social security?
(38)
(b) What were your approximate payments to the Federal Government in 1963 for employee's income taxes withheld?
(39)
(c) What were your approximate payments of all other kinds to the Federal Government in 1963 (exclusive of the payments in (a) and (b) above)? This would include corporate taxes, business taxes, excise taxes, etc.
(d) What were your approximate new payments of all kinds during 1963 to the State Government and its agencies? Include unemployment compensation, sales taxes, excise taxes, etc. (41)
(e) What were your approximate total payments of all kinds during 1963 to the County and local Government including school districts
(42)
14. What were your approximate outlays in 1963 for the following items? (Please do not show any expenditure more than once.)
$\frac{\text { local }}{\text { outside }}$ total
(a) Costs of goods and merchandise purchased for resale \qquad
(b) Costs of materials and general supplies used in the operation of the business but not for resale \qquad
(c) Costs of maintenance and repair of plant and equipment (except motor vehicles)
(d) Rental Costs

(e) Electricity
14. (continued)

> Utilities Survey (1)
> Page 4
$\frac{\text { local }}{\text { loutside }}$ (66) total
(f) Heat \& Fuel - coal, fuel oil, gas (underline) (65)
(g) Telephone and Telegraph
(69) (70)
(h) Water \& Sewage \qquad
(72) (73)
(h) Water \& Sewage
(75)
(76)
(77)
(i) Insurance (premium payments only-m including hospitalization for employees \qquad (78)
(79) (80)
(j) Finance (interest payments only) (81) (82) (83)
(k) Transportation: rail
\qquad
(84)
(85)
(86) truck \qquad (87)
(88)
(89)
other

(1) Personal services (accountants, repair men, lawyers, doctors, etc.)
(93)
(94
(95)
(m) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business use of personal cars
(96) (97) (98)
(n) Office expenses (except labor)
(208) (209) (210)
(o) Costs of work subcontracted
(100) (101)
(p) Advertising
(102) (103) (104)
(q) Contributions to non-profit organizations \qquad
105) (106) (107)
(r) Retirement or pension fund payments (employer's share only) \qquad
(108) (109) (110)
(s) Miscellaneous \qquad
15. What were your approximate total 1963 gross receipts from your Clinton County operations only? (116)

Utilities Survey (1) Page 5
16. Could you estimate about what proportion of these came from the following?
(a) Manufacturing and industrial plants (125)
(b) Retail stores and other small businesses (127)
(c) Farms (129)
(d) Non-profit organizations (such as churches, etc.) (132)
(e) Household consumers (133)
(f) Hunting Camps, Summer Vacation Homes (124)
(g) Governmental operations, including schools (131)
(h) Other utilities (149)
(i) Others (specify) (134)

FIGURE L: NON-PROFIT ORGANIZATIONS SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only

CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building
University Park, Pennsylvania

Non-Profit organizations Survey (1)

Code No. (2)

1. Kind of organization (church, service club, fraternal order,etc.)
(240)
2. About how many persons did your organization employ during $1963 ?$

Number of	Employees	Total
part-time	full-time	Payroll
(9)	(10)	(11)

Clinton County residents \qquad
Non-Clinton County residents
3. About how many of these were women? (15)
4. What were your approximate 1963 expenditures for new buildings, including land, and additions or remodeling of existing buildings?
(19)

About how much of this was
purchased outside of Clinton County? (20)
5. What were your approximate 1963 expenditures for new capital equipment, including cars used in connection with the business of the organization?
$(21,24)$
About what proportion of this was purchased outside of Clinton
County? (25)
6. What were your approximate outlays in 1963 for the following items? Please do not show any expenditure more than once.

Local	Outside	Total
(50)	(51)	(52)

(a) Cost of goods purchased for resale \qquad
-more-

Non-profit Organizations Survey (1)
Page 2
6. (continued)

Local Outside Total
(b) Costs of materials and general sup- (53)
(54)
(55)
plies used in the operation of the business but not for resale
(56)
(57)
(58)
(c) Costs of maintenance and repair of plant and equipment except motor vehicles \qquad
(59) (60) (61)
(d) Rental costs
(62) (63) (64)
(e) Electricity
(66) (67) (68)
(f) Heat \& Fuel -- coal, fuel oil, gas (underline) (65)
(g) Telephone and telegraph
(69) (70) (71)
(h) Water and sewage
72) (73) (74)
\square
(i) Insurance (premium payments only) including employer's share of hospitalization for employees \qquad
(78) (79) (80)
(j) Finance (interest payments only)
(91)
(k) Personal services (accountants, lawyers, doctors, repair men,etc.)

(1) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business use of personal cars) \qquad
(m) Office expenses (except labor)

(96)	(97)	(98)
(99)	(100)	(101)

(n) Advertising
(105) (106) (107)
(o) Retirement or pension fund payments (employer's share only) \qquad
(p) Contributions, payments, etc, to parent organization or other activities supported wholly or in part by your organization \qquad
6. (continued)

(q) Miscellaneous

Non-profit Organizations Survey (I)
Page 3

Local	Outside	Total
(108)	(109)	(110)

\qquad
7. What were your approximate total payments to the Federal Government in 1963 for social security payments, including both employer's and employee's shares?
8. What were your approximate total payments to the Federal Government in 1963 for income taxes withheld?
(39)
9. What were your approximate total payments of all kinds during 1963 to the State Government, including unemployment compensation, sales and use taxes, etc.
(41)
10. What were your approximate total payments of all kinds to the local and county government, including school districts, during

1963? (42)
11. What were your approximate total gross receipts during 1963 ? (116)
(Please include financial support, if any, from parent organization.)
12. About what proportion of your total receipts would you estimate came from sources outside of Clinton County? (123)
13. Of the proportion that came from sources within Clinton County, about how much came from:
(a) Gifts, donations, or dues (244)
(b) Sale of goods or services (245)
(c) Other (specify) (246)
14. Of the proportion of your total gross receipts that came from sources within Clinton County about what proportion would you estimate came from the following?
(a) Private individuals or households (133)
(b) Industrial or manufacturing firms (125)
(c) Retail stores or other small businesses (127)

Non-profit Organizations Survey (1)
 Page 4

14. (continued)
(d) Governmental offices or agencies, including schools (131)
(e) Other (specify) (134)

FIGURE M: GOVERNMENTAL SURVEY QUESTIONNAIRE

CLINTON COUNTY REGIONAL ECONOMIC STUDY
Pennsylvania Regional Analysis Group Governmental Survey (1)
The Pennsylvania State University
120 Boucke Building
University Park, Pennsylvania

1. Level of Government: State (211) Federal (212)

Local (213)
2. Office or Agency (214) Location (215)
3. Average Employment for 1963

full-time	Number part-time
(9)	Total payroll
(12)	(11)
	(13)

Non-Clinton County Residents
4. About how many of these enployees were women? (15)
5. Approximate 1963 expenditures for new buildings or additions, including land, and remodeling of existing structures (19)

About how much of this was purchased outside of Clinton County? (20)
6. Approximate 1963 expenditures for new capital equipment, including cars, trucks

Kind of equipment Total cost (21) (22)
a) From within Clinton County \qquad
\qquad
\qquad
b) From outside Clinton County \qquad
\qquad
\qquad
\qquad

Governmental Survey (1) Page 2
7. What were your approximate outlays in 1963 for the following items
$\frac{\text { local outside total }}{(53)(54)}$
a) Costs of goods and merchandise of a non-capital nature (list by broad categories)
\qquad
\qquad
b) Costs of maintenance and repair of
plant and equipment (except motor vehicles)
(56) (57 (58)
\qquad
(208) (209) (210)
c) Work contracted to private firms or persons \qquad
d) Rental costs
(59) (60)
(61)
(62) (63)
(64)
e) Electricity
(66) (67) (68)
f) Heat \& Fuel--coal, fuel oil, gas (underline) (65)
(69) (70) (71)
g) Telephone and Telegraph

h) Water and Sewage
(75) (76) (77)
i) Insurance premiums
(78) (79)
j) Finance (interest payments only)
(82)
(83)
k) Transportation: rail
(84) (85) (86)
truck

1) Personal services (lawyers, accountants, etc.) \qquad
m) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business use of personal cars
n) Office expenses (except labor)
```
-continued on next page-
```

Governmental Survey (1) Page 3
7. (continued)

p) Contributions to nonprofit organications
(105) (106) (107)
q) Retirement or pension fund payments (employer's share only) \qquad
r) Miscellaneous operating costs \qquad
8. List below transfer payments to:
a) Other governmental units or agencies within Clinton County only

Total
(217)
b) Private firms or households within Clinton County only

(219)
9. Sources and kinds of income

Source	Description	Total
(220)	(221)	(222)

a) Transfer payments
\qquad
(223) (224)
(225)
b) Taxes \qquad
\qquad
\qquad

Governmental Survey (1) Page 4
9. (continued)

| | Sources
 Lescription | Dotal |
| :--- | :--- | :--- | :--- |

\qquad
\longrightarrow (229) (230) (231)
d) Fines \qquad
(232) (233) (234)
e) Sale of goods, services, capital assets, leasing, easements
\qquad
f) Other (specify) (235) (236)
\qquad
\qquad
\qquad

FIGURE N: EDUCATION SURVEY QUESTIONNAIRE

CONFIDENTIAL - For authorized personnel only
CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group
The Pennsylvania State University
120 Boucke Building
University Park, Pennsylvania

Education Survey (1)
Code No. (2)

1. Approximately how many employees did you have in 19638

	Number		payroll
	full-time	part-time	
	(9)	(10)	(11)
Clinton County Residents			
	(12)	(13)	(14)

Non-Clinton County Residents \qquad
2. About how many of these employees were women? (15)
3. What were your approximate 1963 expenditures for new buildings and additions and remodeling or renovation of existing structures?
(19)

About how much of this was pur-
chased outside Clinton County? (20)
4. What were your approximate 1963 expenditures for new capital equipment, including cars, trucks, furniture, laboratory equipment, etc.

Kind of equipment	Total Cost
(21)	(22)

a) From within Clinton County \qquad
\qquad
b) From outside Clinton County \qquad
\qquad
\qquad
5. What was your approximate depreciation in plant and equipment in 19638 (26)

Education Survey (1) Page 2
6. What were your approximate payments in 1963 to the Federal Government for employer's and employee's share of social security?
(38)
7. What were your approximate payments to the Federal Government in 1963 for employee's income tax withholdings? (39)
8. What were your total payments to the State Government for unemployment compensation?
(41) What, if any, did your
other payments to the State Government amount to? (41)
9. What were your approximate total payments, if any to the local or county government, including school districts?
10. Approximately how many students were in the following categories in 1963?
a) Commuting daily (197)
b) Residents in college provided facilities (198)
c) Residents in facilities provided by local townspeople (199)
11. What were your approximate outlays in 1963 for the following items?

a) Costs of goods and materials purchased of a non-capital nature and consumed in the operation
(56) (57) (58)
b) Costs of maintenance and repair of plant and equipment (except motor vehicles) \qquad
c) Food and dining services
(200) (201) (202)
c)
(59) (60) (61)
d) Rental costs
(62) (63) (64)
e) Electricity
f) Heat \& Fuel--coal, fuel oil, gas (underline) (65)

Education Survey (1)
Page 3
11. (continued)
g) Telephone and Telegraph

local	outside	total
(69)	(70)	(71)

h) Water and Sewage
(72) (73) (74)
(75) (76) (77)
i) Insurance (premium payments onlyincluding hospitalization for employees) \qquad
(78) (79) (80)
j) Finance (interest payments only)
k) Transportation: rail
(81) (82) (83)
(84) (85) (86)
truck
(87) (88) (89)
other \qquad
(92)

1) Personal services (accountants, lawyers, doctors, etc., if not on regular payroll \qquad
(93) (94)
(95)
m) Maintenance and operating costs of cars, trucks and other vehicles (except labor) including allowances for business use of personal cars
(96) (97) (98)
n) Office \& administrative expenses (if not included above) \qquad
o) Retirement or pension fund
(108) (109) (110)
p) Other (specify as to broad
12. What were your approximate total receipts from registration fees and room and board fees paid by students during 1963? (200)
13. What were your approximate total receipts from State Government during 1963 ? (201)
14. What were your approximate total receipts from the Federal Government during 1963 ?

Education Survey (1)
Page 4
15. What were your approximate total receipts from other sources during 1963 (such as athletic admissions, etc.) (203)
16. Of your total gross receipts, what proportion would you estimate came from within Clinton County? (204)

Figure 0: RURAL AREAS HOUSEHOLD SURVEY QUESTIONNAIRE
CONFIDENTIAL - For authorized personnel only
CLINTON COUNTY REGIONAL ECONOMIC STUDY

Pennsylvania Regional Analysis Group The Pennsylvania State University 120 Boucke Building University Park, Pennsylvania

Rural Areas Household Survey

Block No. (1)
Interviewer (3) \qquad

1. Check one:

(a) Farm dwelling occupied year around (200)
(b) Non-farm dwelling occupied year around (201)
(c) Farm dwelling used as hunting camp or summer vacation home (202)
(d) Vacant or abandoned farm dwelling (203)
(e) Hunting camp or summer vacation cabin (204)
2.

Persons	Relation to interviewee	Age		Occupation	Type of Business	Location	Months employed 1963
(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)

\qquad
\qquad
\qquad
3. In your opinion what is Clinton County most in need of at the present time? (12)

Rural areas household survey Page 2
4. Approximately how many acres are in this property? (205)
\qquad Do you farm this or any other acreage? (206) (If answer is no - go to page 5, question \#20)
5. Did you sell any crops, livestock or other farm commodities in 1963? (207) (If answer is no, go to question \#20.)
6. Main type of farming carried on (208)
7. Approximately how many of the following do you have on your farm?
(a) Milk cows (209)
(b) Beef animals (210)
(c) Sheep (211)
(d) Hogs (212)
(e) Poultry (213)
(f) Other livestock (214)
(i) Acres in hay (217)
(j) Acres in other crops (218)
8. During 1963 what was your approximate income from sales of the following:

	Estimated Quantity	Amount Received		
Product	Sold	local	outside	total
	(219)	(220)	(221)	(222)

(a) Milk
(223) (224) (225) (226)
(b) Eggs
(227)
(228) (229) (230)
(c) Broilers
(231) (232) (233) (234)
(d) Veal calves
(235) (236) (237) (238)
(e) Beef
(239) (240) (241) (242)
(f) Dairy calves \& cows \qquad
(g) Hogs \qquad

Rural areas household survey Page 3
8. (continued)

9. Did you receive any income from doing custom work from others during 1963? \qquad About how much (279)

Was this done in Clinton County (280)
10. Did you rent any of your land to others? \qquad
Was he (they) a resident of Clinton County (281)
About how much did you receive (282)
11. Did you rent any land from others in $1963 ?$ \qquad
Was he (they) a resident of Clinton County? (283)
About how much rent did you pay? (284)
12. Did you build any new buildings, make improvements or renovations to any of your existing farm buildings (except your house) last year? \qquad About how much did this come
to? (285) How much of this was purchased outside of Clinton County (286)

Rural areas household survey Page 4
13. Did you purchase any land last year? Approximate cost (207) Was this purchased from a resident of Clinton County? (288)
14. Did you purchase any farm equipment, including dairy and barn equipment during $1963 ?$ \qquad About how much did this amount to (289) How much of this would you estimate was purchased outside of Clinton County? (290)
15. Did you hire any labor last year? Were any
of them residents outside of Clinton County? (291)
About what were your total wage costs (292)
16. Did you purchase any livestock last year that you intend to hold for more than one year \qquad About how much did they all cost (293 Approximately how much of this was purchased outside of Clinton County (294)
\qquad
17. Could you give an estimate of the following expenditures on your farm during 1963 ?

item	local	outside	total
	(295)	(296)	(297)
(a) Feed purchased, including milling costs and hay			
	(298)	(299)	(300)
(b) Fertilizer and lime	(301)	(302)	(303)
(c) Seed and plants	(304)	(305)	(306)
(d) General farm supplies and hand tools			
	(307)	(308)	(309)
(e) Machinery repair and parts	(310)	(311)	(312)
(f) Hauling costs			

Rural areas household survey Page 5
17. (continued)

item	local	outside	total
(g) Veterinary, breeding fees	(313)	(314)	(315)
	(316)	(317)	(318)
(h) Gas and oil			
	(319)	(320)	(321)
(i) Custom work			
(j) Electricity Farm share only)	(322)	(323)	(324)
	(325)	(326)	(327)
(k) Miscellaneous			

If respondent does not know or does not have a breakdown of
his general farm expenses as above, try to ascertain what
his total costs for the above items amounted to: (328)
About what proportion of this was
purchased outside of Clinton County? (329)

18. What was your approximate 1963 depreciation in buildings, equipment, and livestock purchased (as reported on income tax form)
(330)
19. What was your approximate gain or loss (if any) from exchange or sale of property? (This includes land, buildings, farm equipment, livestock held for more than 6 months). This item as reported on income tax form.
Gain (331) Los8 (332)
20. We need to know something about the shopping habits of the people in Clinton County.
(a) How many shopping trips approximately do you make outside
the county per year? (13)
(b) Where do you usually go? (14)
(c) What items do you usually purchase? (15)

Rural areas household survey Page 6
20. (continued)
(d) About what are your average expenditures per trip (16)
(e) Total for year (17)
21. About how much did you spend last year on mail order purchases? (18)

What were the usual items purchased? (19)
22. About how much does your household spend per week for food and groceries? (20) Total for year (21)
About what proportion of this is spent
outside Clinton County (22)
23. Could you give me an approximation of your 1963 household expenditures for the following:

	Item Local	Outside	Total
	(23)	(24)	(25)
(a)	Clothing and apparel		
	(26)	(27)	(28)
(b)	Medical care and drugs		
	(29)	(30)	(31)
(c)	Laundry, repair services, etc.	(33)	(34)
(d)	Education		
	(35)	(36)	(37)
(e)	Premiums for all forms of insurance	(39)	(40)
(f)	Entertainment and recreation (including bar and restaurant)		
	- (41)	(42)	(43)
(g)	Electricity__ (44)	(45)	(46)
(h)	Telephone and telegraph_(47)	(48)	(49)
(1)	Heating costs (coal, fuel oil, gas--underline)		
	(50)	(51)	(52)
(j)	Water and sewage		

Rural areas household survey Page 7
23. (continued)

Item	Local	Outside	Total
	(106)	(107)	(108)
(k) Contributions to nonprofit organizations			
	(53)	(54)	(55)
(1) County and Local taxes			
	(56)	(57)	(58)
(m) Hired domestic help	(59)	(60)	(61)
(n) Total automobile expenses (if not known go to 24)			

24. About how many miles per year do you drive your car? (62)

What proportion of your gas, oil and car repairs do you purchase outside of Clinton County? (63)
25. Did any of you go on a vacation outside the county last year?

About how much did you spend for this?
(64)
26. Did you contribute last year to anyone else's support who lives outside of Clinton County? \qquad About how much did this amount to? (65)
27. Did you or anyone else in your household purchase an automobile last year? New or used? (66) About how much was paid for it, including the trade-in allowance if any? (67) Was this purchased outside of

Clinton County? (68)
28. Did you buy any furniture or household appliances last year? About how much did these cost? (69) What proportion was purchased outside the county? (70)

Rural areas household survey Page 8
29. We need information about housing arrangements for this study. Do you folks own or rent your home? (71) (For those renting) -- How much rent do you pay? (72) permonth. Does the owner live in Clinton County? (73)
30. (For home owners) -- Do you have a mortgage on this home? (74) About how much did your payments amount to in 1963 (76) (or, (75) permonth.) Did you pay this mortgage here in Clinton County? (77)
31. Do you folks own any other real estate \qquad Kind of property (78) Location: Inside County (79) Outside county (80)

About how much, if any, rent did you receive in 1963 from this property (81) About how much of this went to pay for the expenses of maintaining the property? (82)
32. Do you have a mortgage on this other property? \qquad About how much did your payments amount to in 1963 (83) Did you pay this here in Clinton County? (84)
33. Did any of you make any payments on loans (besides mortgages) during 1963? Approximately how much was paid (85) Was this paid outside the county? (86)
34. Approximately what was the cost, if any, of any major improvements, renovations, or additions to your home during 1963? (87) About how much of this was purchased outside

Rural areas household survey Page 9
34. (continued)
of the county? (88)
35. Did any of you receive any gifts, awards, or win any prizes last year? \qquad About how much did you receive? (89) How much of this came from outside the county (90)
36. Did any of you receive any money last year from the following sources and about how much was received?
Local Outside Total
(a) Trust funds

(b) Dividends and/or interest from stocks, bonds, mutual funds \qquad
(c) Interest from savings accounts \qquad
37. Did you receive any income last year from rooming and boarding hunters or other vacationers?

About how much was this? (100)
38. To make sure we haven't missed anything, do you have any business interests outside of Clinton County that we haven't discussed?
(101)

About how much was earned from this last year?
(102)
39. (For rural areas only) (a) Did you lease any of your land to hunting clubs last year? \qquad About how much did you receive for this? (103)
(b) Did you re-
ceive any other income from recreational sources such as fee fishing, fee hunting, boating, leasing of campsites, etc. (104)
40. In which category would your combined household incomes fall? (105)

FIGURE P: TOTAL ANNUAL HOUSEHOLD INCOME CATEGORIES (For Question Number 40, Figure 0, Appendix)

A Under \$1,000
B 1,000-1,999
c 2,000-2,999
D 3,000-3,999
E 4,000-4,999
F 5,000-6,999
G 7,000 - 8,999
H 9,000 - 11,000
I 11,000-14,000
J 14,000 - 17,000
K 17,000 - 20,000
L Over 20,000

[^0]: 1 City of Lock Haven and Boroughs of Flemington, Mill Hall, Renovo, South Renovo, Avis, Beach Creek, and Loganton.

[^1]: 1 High income households would not show the same consumption function as low income households.

[^2]: 1 It should be remembered that only local expenditures are shown for this sector. External purchases by the Post Offices in the county are made by the district office in Philadelphia or the head offices in Washington and, therefore, are not reflected in Table 4.

[^3]: ${ }^{1}$ Volume I of this study did not contain any discussion of an Interregional Model of Clinton County. The authors felt that because of the technical nature of such a discussion it could best be handled in the present volume. The primary value of the interregional model presented here is the interest in such an approach that may be engendered among researchers in the field of regional analysis.

