

Theory and Methods

RRI Input-Output Archive

10-1-1985

An Approach to Macroeconomic Model Building Based on Social Accounting Principles

Arne Drud

Wafik Grais

Graham Pyatt

Follow this and additional works at: https://researchrepository.wvu.edu/rri_iotheorymethods

Recommended Citation

Drud, Arne; Grais, Wafik; and Pyatt, Graham, "An Approach to Macroeconomic Model Building Based on Social Accounting Principles" (1985). *Theory and Methods*. 53. https://researchrepository.wvu.edu/rri_iotheorymethods/53

This Article is brought to you for free and open access by the RRI Input-Output Archive at The Research Repository @ WVU. It has been accepted for inclusion in Theory and Methods by an authorized administrator of The Research Repository @ WVU. For more information, please contact beau.smith@mail.wvu.edu.

DISCUSSION PAPER

Report No. DRD150

AN APPROACH TO MACROECONOMIC MODEL BUILDING BASED ON SOCIAL ACCOUNTING PRINCIPLES

> Arne Drud Wafik Grais Graham Pyatt

October 1985

Development Research Department Economics and Research Staff World Bank

The World Bank does not accept responsibility for the views expressed herein which are those of the author(s) and should not be attributed to the World Bank or to its affiliated organizations. The findings, interpretations, and conclusions are the results of research supported by the Bank; they do not necessarily represent official policy of the Bank. The designations employed, the presentation of material, and any maps used in this document are solely for the convenience of the reader and do not imply the expression of any opinion whatsoever on the part of the World Bank or its affiliates concerning the legal status of any country, territory, city, area, or of its authorities, or concerning the delimitations of its boundaries, or national affiliation.

Revised October 21, 1985

AN APPROACH TO MACROECONOMIC MODEL BUILDING BASED ON SOCIAL ACCOUNTING PRINCIPLES

Arne Drud Wafik Grais Graham Pyatt

May 1985

The World Bank does not accept responsibility for the views expressed herein, which are those of the authors and should not be attributed to the World Bank or to its affiliated organizations. The findings, interpretations, and conclusions are the results of research supported by the Bank; they do not necessarily represent official Bank policy. The designations employed, the presentation of material, and any maps used in this document are solely for the convenience of the reader and do not imply the expression of any opinion whatsoever on the part of the World Bank or its affiliates concerning the legal status of any country, territory, city, areas, or of its authorities, or concerning the delimitation of its boundaries, or national affiliation.

Abstract

Using the example of a small comparative static model of Thailand for 1980, the paper sets out an approach to macro-economic model building which is based on having two versions of a social accounting matrix (SAM) - one version contains data for a base year, while the cell-entries of the other are algebraic expressions for the determination of the corresponding transaction values. Thus the model is developed in transaction value (TV) form, and this is one distinguishing feature of the approach. Other features derives from different aspects of the relationship between the two SAMs. It is argued that the approach has distinct advantages for model description, calibration and solution and that these are important if models are to be used for policy purposes which place a premium on inteligibility and replicability within the context of a flexible modeling capability.

TABLE OF CONTENTS

Page No.

1.	In	tro	oduction1
2.	An	I	nitial SAM5
3.	Mo	de	ling in TV Form12
4.	Th	e I	First Stage of Modeling: Activities and Commodities17
5.	Th	e	Second Stage of Modeling: Factors, Domestic Institutions and the Rest of the World25
6.	C1	0 51	ure of the System
7.	Ca	1i	bration and Solutions
References			
Footnotes			
Tabi Tabi Tabi Tabi Tabi Tabi	le le le le le	1 2 3 4 5 6 7	The National Income Accounts for Thailand in 198044 An Expanded Social Accounting Matrix Showing Base Year Data and the First Stages of a Model in TV Form
			Appendix

1. Introduction $\frac{1}{2}$

This paper introduces an approach to macroeconomic modeling which we have been developing over several years. $2^{/}$ It does so through an example, which is taken from a recent study of development planning issues in Thailand. $3^{/}$ The example was chosen to reflect our primary concern in developing the approach, which has been to support the use of macromodeling techniques in the formulation of economic policy, not least by making the relationship between models and their supporting data bases more explicit. There are certain features of our approach which have been built into its design from the outset with this objective in mind. These will be commented on below as they arise in the course of the exposition.

We refer to our approach as the SAM (Social Accounting Matrix) approach. We also refer to the TV (Transactions Value) form of a model to describe the way in which a model is expressed within the SAM approach. This terminology requires some comment.

There is a dictum, usually attributed to Lord Keynes, that every economic model has a corresponding accounting framework. For macroeconomic models, this accounting framework must be complete in the sense that every receipt must be offset by a corresponding expenditure. One consequence is that all the transactions in a model can be expressed within a social accounting matrix (SAM) framework. The values assumed by all the different types of transactions can therefore be set out as the elements of a SAM matrix. Moreover, these elements can either be expressed as numbers, in which case the SAM is a data framework, or they can be expressed algebraically as functions which describe how the value of each type of transaction is determined. Accordingly, we shall be concerned here with two versions of any given SAM, one numeric and the other algebraic. Our approach derives its essential character firstly from this explicit recognition of two versions of the SAM for a given model and, beyond this, from the possibilities for exploiting the relationships between these two versions.

The use of a matrix (SAM) framework for reconciliation and presentation of data is not new. It is basic to the work of the Cambridge Growth Model 4/, for example, which in turn provided important foundations for the international standards on estimation and presentation of national income accounts as set out in United Nations Statistical Office (1968). It is less usual to present a model in a SAM framework. Indeed, the convention in economics has been to present models as a set of equations showing how prices and quantities are determined. Our approach departs from this convention by modeling prices and value flows instead. We refer to the resulting set of equations as an expression of the model in TV form, where the mnemonic 'TV' derives from the use of equations to describe how 'transaction values' are determined. Such equations replace the more conventional quantity equations in our approach. Thus a model in TV form is simply a set of equations which describe how prices and transaction values are determined. As we shall see, using the TV form of a model fits neatly within the SAM approach.

Since quantities are implied by value flows and prices, it is quite straightforward to translate a model expressed in TV form into the more conventional format of prices and quantities. By the same token, a model expressed in prices and quantities can always be translated into the TV form. There is no logical distinction between the two formulations. But there are real advantages to choosing the TV form within our approach, since this facilitates the creation of complementary pairs of SAMs, for data and

- 2 -

algebra, respectively. Such pairs are a help both in specifying a model which can be implemented from available data sources, and also in subsequent model calibration. In addition, we find that it is of some pedagogic value to display a model, via its TV form, as a social accounting matrix.

In general, our SAM approach would seem to have advantages for modeling in four main areas:

- the choice of details in relation to issues, on the one hand, and the availability of data, on the other. This follows directly from the fact that the same SAM is to capture both the theoretical specification of behavior/technology and the empirical facts. This is our starting point.
- making the best use of available data. The SAM framework and its inherent balances serves to constrain and hence reinforce individual datum, one with the other, so that data of mixed quality (including
- 'guestimates') can be enhanced in value and the best use made of them. - understanding model behavior. Expressing a model within a SAM via its TV form turns out to be a useful way of understanding its structure. As we shall see later, column summation of the SAM provides a check on adding up conditions within the model, and otherwise generates supply equations. Similarly, row summation corresponds to the demand side. To the extent that these two types of equation are insufficient to completely determine the model, it remains to add a third set of equations, which are known as closure rules. $\frac{5}{}$
- calibration and solution. With a complementary pair of SAMs, the theoretical formulation can always be calibrated to reproduce exactly the quantitative estimates of actual transactions in a base year. This does

- 3 -

not guarantee that the model will always have a solution for arbitrary changes in exogenous parameters. But it does guarantee that there is a solution in the base case, to which solutions in alternative cases can then be compared.

Taken together, these different aspects of our approach take us a long way down the road from building a model to having a modeling capability, i.e. a capability to maintain models; reproduce their results; transfer them to multiple locales; and to modify both calibration and specification with relative ease. It is important from this point of view that our Thailand example is drawn from a larger exercise which has demonstrated all these advantages of the SAM approach. For example, changing data implies a new SAM to which the model is then necessarily recalibrated. In this sense the data base can be kept up-to-date, and the model along with it. Similarly, a new model specification, calibrated to base data, necessarily reproduces the base solution. As a result it is quite straightforward to compare the implications of alternative specifications or scenarios when using this approach.

These and other features derive essentially from our starting point of having a pair of complementary SAMs for data and model specification. They are important features if we want to dispel notions of modeling as an <u>ad hoc</u> exercise and to replace them with a constructive sense of using models in a substantive dialogue on policy issues. As will be shown later, we have had to sacrifice some flexibility in order to capture these features, at least for the present. But this is not unacceptable, we think. If models are to be used substantively in policy dialogue, then the overriding considerations in our view are that they should be understandable and replicable. If, to start

- 4 -

with, this means that the formulations must be kept relatively simple, then so be it. In the dialogue on policy, arguments derived from model results which others cannot replicate are unlikely to carry much weight; and if such results are eventually found to be internally incorrect, then the use of models to advise on policy is set back accordingly.

Our Thailand example serves to illustrate some of the above points. It is developed in six sections following this introduction.

Section 2 sets out the initial SAM which is our starting point. This requires the type of data base which can be put together (with more or less facility) for most countries, using standard national accounts data and supplementary information on inter-industry transactions and commodity trade.

This is followed, in section 3, by some general discussion of modeling in TV form, which is then translated, in sections 4 and 5, into a specific model for Thailand.

The discussion in sections 4 and 5 concentrates on modeling the transaction values that are identified at the outset in the initial SAM. The result is a system which is not fully determined. To make it fully determined, i.e. to close the system, some further restrictions are needed. These are the closure rules previously referred to. They are discussed in section 6.

Finally, section 7 provides a brief discussion of some alternative closures, and results for Thailand derived from them.

2. An Initial SAM

Our starting point for discussion is the social accounting matrix (SAM) shown as table 1. This is a square table. It has 12 rows and columns

- 5 -

in our example. The table illustrates the characteristic of all SAMs that corresponding rows and columns are labeled identically. These row and column labels identify different accounts in the economic system, while the elements of the SAM itself refer to the value of transactions between these accounts for a particular time and place. The data for Thailand in Table 1 record transaction values in 1980. For any given account, and therefore for each particular row and column pair, the entries in the row are to be read as receipts or the revenue for that account, while the entries in the corresponding column represent outlays or the expenditure side of the account. In aggregate, within any economic system, all incomes must be matched by corresponding outlays. It follows that the totals for all corresponding row and column pairs must be equal. Beyond this, the SAM is a system of single entry bookkeeping. Any element of the SAM is a receipt for the account specified by the row in which the item is located, and it is an expenditure for the account identified by its column location. An item in row i, column j is therefore an expenditure or outlay by account j which is received by account i.

The basic structure of table 1 recognizes five types of accounts: (i) factor account(s)) (account 1); (ii) institution accounts (2 to 5); (iii) accounts for production (accounts 6 to 8); (iv) for commodities (accounts 9 to 11); and one or more accounts for the rest of the world (account 12). Each of these types of account must be represented (implicitly, if not explicitly) in any SAM which tries to capture the full range of macroeconomic transactions in a real economy. However, the disaggregations (if any) within each type of account are a matter of choice. For example, the SAM in table 1 divides production into Agriculture, Industry and Services. Some other disaggregation

- 6 -

could have been chosen, involving a more or less detailed treatment of production structure. The split into only three sectors in table 1 serves our present need for an illustrative example which is relatively small in size. Considerably more detailed SAMs are possible. $\frac{6}{}$ Whether more detail would be useful is yet another matter, and one which is of strategic importance in modeling. The extent of disaggregation for production, as for other parts of the SAM, is limited by the availability of suitable data. Equally, it is critical in determining whether specific issues are adequately captured in a particular model. It is unfortunately rare for the written description of a model to justify at any length the choice of classifications adopted. This seems to us a great weakness since the choice of classifications is important in our experience. $\frac{1}{2}$

A brief description of table 1 is as follows. The first account is for factors of production. In row 1, factors receive value added of 176 from agriculture, 153 from industry, and 273 from services. GDP (or total value added) is therefore 602. From this we must subtract 15 units of factor income paid abroad to obtain the total factor income of 587. This is allocated in column 1 to domestic institutions. Wages, plus unincorporated business profits (a total of 520) accrues to households, and the rest (67) is corporate profit. This last figure splits into 63 units of private sector corporate profits and 4 units of profit in state enterprises.

Accounts 2 to 5 are the accounts for domestic institutions. Just as we have only one account for factors, so in table 1 there is only one (shared) capital account for the domestic institutions (account 5). However, there are three separate current accounts for institutions: one for government (account 4),

- 7 -

and two for the private sector, viz households (account 2) and the private corporate sector (account 3).

Entries at the intersection of rows and columns 2 to 4 are current domestic transfers, e.g. direct taxes paid to government, dividends paid to domestic shareholders, etc. Government also receives indirect tax revenues from the commodity accounts (6 units of tax on agricultural commodities, 48 on industrial products, and 17 on services). Both households and government are shown as receiving (non-factor) transfer income from abroad: 5 units and 3 units, respectively.

The total current income of domestic institutions is disbursed in columns 2 to 4. Some goes, as we have seen, in current transfers to other domestic institutions (rows 2 to 4). In addition, both households and government consume commodities as recorded in rows 9 to 11. Any remaining income for each of the three institutions is saved. These savings show up in row 5 as transfers from the current accounts of institutions to their (combined) capital account. Domestic savings are shown as 72 for households, 65 for companies and 3 for government, making a total of 140. Because savings are by definition a residual, the accounts 2 to 4 (rows and columns) must necessarily balance.

To domestic savings of 140, we must add 49 of foreign savings (the deficit on the balance of payments) to obtain the total of 189 available to finance real investment. This is spent in column 5 mainly on industrial goods (presumably plant, machinery, vehicles and buildings) but also to some extent on such agricultural goods as seed stocks, trees and other perennials, as well as on, say, irrigation systems to the extent that these also are treated as an output of the agricultural sector.

- 8 -

The next set of accounts to consider are those for production activities, accounts 6 to 8. The SAM shows that the three activities distinguished in the table have gross outputs of 301, 521 and 448, respectively. To produce these outputs requires inputs of raw materials (commodities) the costs of which are shown at the intersection of rows 9 to 11 and columns 6 to 8. Net outputs, or value added, can now be obtained as gross outputs <u>less</u> raw material purchases for each production sector. The resulting figures are shown in row 1 as accruing to factors of production as previously discussed.

Accounts 9 to 11 capture commodity balances. The columns record supplies, while demand is measured in the rows. On the supply side we have sales of gross output by the domestic institutions in rows 6 to 8 as the main source. To these must be added imports, from row 12, of 2, 182 and 26, respectively, so that the total import bill is 210. Imports are valued c.i.f. while gross outputs (the revenue from sales by production activities) are measured at producer prices. Both are subject to (net) indirect taxes (row 4) before we arrive at total supplies of commodities at market prices: 309 for agricultural commodities, 751 for industrial commodities, and 491 for services.

The demands which match total supplies are recorded in rows 9 to 11. These are consumption demands (columns 2 and 4); investment, including any changes in stocks (column 5); raw material requirements (columns 6 to 8); and, finally, exports (column 12).

The last account to consider is the external account, number 12. The rest of the world receives payment for imports as previously noted. It pays the Thai economy for exports of 77, 59 and 32 so that there is a trade deficit

- 9 -

of 42 units. This is aggrevated by net factor income paid abroad of 15; and it is partially offset by net non-factor income receipts of 8. The net deficit is therefore 49 units, and this balancing residual is shown as foreign savings in row 5.

Subject to some qualifications which are noted below, a matrix such as table 1 can be assembled from the national accounts of most countries. Indeed experience in many countries, including Thailand, shows that substantially more detailed tables are possible, especially with respect to the disaggregation of the production and commodity dimensions of the SAM. It is potentially more difficult to refine the factor and institution accounts. This is a topic for discussion in the next section, since it leads to data requirements which go beyond those which can normally be met from the details of the national accounts.

There are three important respects in which table 1 calls for modification of national accounts data. Two of these concern the entries in the commodity accounts. The third concerns what national income accountants refer to as 'residual error'.

Compilation of table 1 requires details of raw material inputs into each production activity. For many countries the required input-output information is available. But for some it is not. In such cases a way of proceeding is to estimate the gross output for each activity and hence, by addition of imports, the aggregate supply of each commodity can be calculated. From such information the row and column totals for the technology matrix (i.e. for the matrix of transactions at the intersection of the rows for commodities and the columns for activities) can be derived. These totals can then be used, together with the technology matrix for some

- 10 -

other (but proximate) time or country, to estimate the required technology matrix via the RAS technique or in some other way. $\frac{8}{2}$

The second respect in which table 1 differs from normal national income accounts is that all commodity transactions are here recorded in market prices, while the standard reference on national income accounts (UNSO, 1968) recommends that (approximate) basic prices should be used to value commodity transactions. The distinction is discussed in Pyatt (1985), where it is argued that the official recommendation in UNSO (1968) is justified only if a particularly rigid theory of price formation and non-substitutability of inputs is maintained. As is recognized in UNSO (1968), data beyond those required for the standard system of national accounts are needed to reconstitute transaction values at market prices from those at basic prices. Since primary data sources typically provide figures for transactions valued at market prices, some effort may be needed to reverse the efforts of the national income statisticians so as to work back from accounts which are balanced at (approximate) basic prices to the balanced set of accounts required by table 1 in which commodities are valued at market prices.

Finally, it can be noted that there is no 'residual error' in table 1: the table is exactly balanced for every account. It would take us too far from our main thesis to discuss possible sources of 'residual error' in national accounts and ways in which it can be eliminated. $\frac{9}{}$ We therefore just note that it is important to eliminate 'residual error' as a preliminary to model calibration. And that to do so ideally requires that the accuracy of all the primary data sources which underly the figures in table 1 must first be reviewed in order that the adjustments eventually made to the published (unbalanced) figures, are in fact sensible.

- 11 -

This need to review the accuracy of data sources is complemented in the SAM approach by the need to decide on the taxonomies to be adopted. The implication is that sources of primary data are scrutinized both for their accuracy and for the disaggregations which they can sustain. This scrutiny is relative to the data and disaggregations one would like to have in order to address particular economic policy issues. Hence a strong sense of priorities for development of statistical information is an early spin-off from adopting a SAM approach to modeling.

3. Modeling in TV Form

Given the initial SAM provided by table 1, the next step in our approach is to explore ways in which the various elements in the table might be determined. This involves discussion both of how institutions behave and of the constraints set by technology. It leads to an alternative version of table 1 in which each of the numbers in the SAM is replaced by an algebraic specification of how that number is determined. So let T be the SAM matrix, with typical element t_{ij} . Let y_i be the sum of all elements in row i (and therefore also the sum of elements in column i).

Hence

 $y_{i} = \sum_{j} t_{ij} = \sum_{k} t_{ki}$ (1)

Further, define p_i and q_i such that

 $y_i = p_i q_i$ (2)

- 12 -

for all accounts i which relate to factors, activities or commodities, where p_i is understood to be the price of a particular factor, product or commodity and q_i is the corresponding quantity. Finally, let x be the exchange rate (the domestic price of a unit of foreign exchange); let $\underline{\pi}$ be a vector of parameters, such as international prices; and let θ be time. Then, given this notation, the next step in our approach is to specify a functional relationship

$$t_{ij} = t_{ij} (p, y, x : \underline{\pi}, \theta)$$
(3)

for every i and j, and to form a new SAM the elements of which are the functional relationships given by equations (3).

The first point to note about equations (3) is that the variables q_i do not appear in them. This is a matter of choice, given the equations (2), since it follows that each q_i is given by y_i/p_i . However, the choice is unusual, as noted earlier in our introduction, to the extent that normal practice in economics is to express a model as a set of relationships between prices and quantities. Our preference for model formulation in terms of prices and the value flows y_i and t_{ij} leads us to refer to the equations (3) as expressing a model in TV (transactions value) form. The advantages of doing so will emerge as we proceed. Meanwhile it can be suggested that the connotation of television invoked by this terminology is not inappropriate, since it is pedagogically useful to picture the model (in TV form) as a SAM, the cells of which are the functional expressions (3) determining each t_{ij} , rather than the numerical values of these functions in the base year.

- 13 -

Equations (2) show that the aggregates y_i can, in appropriate cases, be decomposed as the product of a price and quantity. This is also the case for particular cells of the SAM, so that it would be possible to write $t_{ij} = p_{ij} q_{ij}$. Such relationships are implicit in our approach, but subject to the strong restriction that $p_{ij} = p_i$ for all i and j: the price of any factor, product or commodity is independent of the account which buys it. Hence

$$t_{ij} = p_i q_{ij} \tag{4}$$

This is a very strong and important assumption. It implies that if the same good or (factor) service is sold at different prices in different markets, then we should provide separate accounts in the SAM for each of these markets. The modeling assumption is that prices are homogeneous along each row of the SAM. This rule can be expressed alternatively as the proposition that physically identical goods and services which sell at different prices in different markets are in fact different goods and should accordingly have their own separate accounts in the SAM. This, then, is an important criterion to consider when deciding on how much disaggregation there should be in the SAM. To the extent that a highly detailed set of disaggregations is not adopted, then the model will be subject to aggregation problems to the extent that prices are not homogeneous along each row. These may or may not severely diminish the value of results. The lesson of experience seems to be not that considerable disaggregation is necessary or desirable, but rather that disaggregations should be carefully chosen to focus on distinctions which are of strategic importance.

To develop our illustration we need to consider the processes and behavior which determine the various non-zero entries in table 1, and hence to produce a new SAM which has functional relationships, rather than numerical values as its elements. The consequences of doing this are shown in table 2, the derivation of which needs to be explained at some length. But before coming to these details, two general points about table 2 need to be noted.

The first point to note about table 2 is that there are two entries in every non-empty cell. One is a number and this is the numerical value in the base year of the transactions t_{ij} . Such base year values are to be denoted by t_{ij}^0 . The other cell entry is one of a set of Greek characters a, β , γ etc. These characters refer to members of a set of alternative versions of equations (3). Their specification is shown in table 3 and will be discussed subsequently. Meanwhile, from what has been said so far, it follows that, in effect, table 2 superimposes two SAMs. One is a data SAM (for the base year), while the other displays a model in TV form. For example, from table 2 it follows from the entries in row 5.1, column 3, that corporate savings had a base year value of 65, and that behaviorally these savings are to be modeled as functional form ε , which is interpreted via table 3 as saying that corporate savings are determined as a fixed proportion of total corporate income.

The second point to note about table 2 is that it is bigger than table 1. The relationship is in fact a nested one: table 2 is a 'blown-up' version of table 1 such that table 2 can easily be reduced to correspond to table 1 exactly. The way to effect this reduction is implied by the numbering of accounts in table 2. Table 1 has 12 accounts, while table 2 has 33. As a typical example of how the number of accounts has expanded it can be noted

- 15 -

that table 1 has one account for factors of production, and this is labeled as account #1. In table 2 there are four accounts for factors of production, and these are labeled as accounts 1.1, 1.2, 1.3 and 1.4. If these four accounts in table 2 are consolidated into a single account $\frac{10}{}$, then this single account will be equivalent to account #1 in table 1. Similarly, consolidation of accounts 2.1, 2.2 and 2.3 in table 2 yields account #2 in table 1; and so on.

The reason for expanding the SAM in table 1 to that in table 2 is related to the assumption that prices are constant along any row of the SAM and to the list of functional forms for t_{ij} shown in table 3. If the elements in table 1 were expressed directly in terms of the functional relationships which might be thought to determine them, then some of these functional relationships could be quite complicated. Table 3 would then need to provide a long list of alternatives in order to cover most likely cases. However, it turns out that, in practice, most of the specifications which have in fact been used by modelers, while quite complex in themselves, are found on examination to be equivalent to a sequence of relatively simple steps. If each step in such a sequence is recognized by giving it a separate account in the SAM, then the specification of behavior within any one account is a correspondingly simple matter which can potentially be captured by some option within a relatively simple and restricted menu of behavioral specifications. The resulting model is simpler to implement and also simple to understand. Just how this works will become clearer as we go through our example. As we do so the point to keep in mind is that, while the list of alternative specifications shown in table 3 could easily be extended, practice shows that there is little need to do so. Our approach to modeling restricts the choice of algebraic specifications to a list more or less like that in table 3, but

- 16 -

otherwise allows total freedom in the accounting dimension, corresponding to any sequencing of these elementary specifications to describe technology and behavior. Most of the modeling formulations which we have come across so far in different planning models can be accommodated within this approach. Indeed it is only in relatively recent exercises which attempt to model quantity restrictions on imports or multiple outputs from individual activities that some need to extend the menu provided by table 3 has in fact arisen.

4. The First Stage of Modeling: Activities and Commodities

For present expository purposes it is convenient to present the development of table 1 to the form provided by table 2 in two steps, starting first with the activity and commodity accounts and then modeling the accounts for factors, institutions and the rest of the world as a subsequent step. Since all modeling is approached via columns of the SAM in table 1, this means that we start by modeling the expenditure of the activity and commodity accounts, i.e. columns 6 to 11 of table 1.

The production account for agriculture shows a gross output of 301 in table 1. From column 6 of the table, this is evidently made up of 125 units of raw material purchases, and 176 units of net output or value added. Suppose our modeling decision is to assume that raw material inputs are strictly complementary, i.e. a Leontief technology, while net output or value added is generated as a CES combination of factor inputs, labor and capital. Table 2 shows that we model this in two steps. In column 6.1 of table 2, labor and capital are combined to generate net output, which is then purchased, as an aggregate, by account 6.2 where it is combined according to a Leontief (fixed coefficients) specification with raw materials in column 6.2.

- 17 -

These are the specifications implied by the notations a and ß defined in table 3 which appear in columns 6.1 and 6.2.

In elaboration of this procedure, the first point to note is that table 1 does not provide all the data needed for columns 6.1 and 6.2 of table 2. The missing information is the split of value added in agriculture into wages and profits: if value added is to be modeled as a CES combination of labor and capital, then we need base year data on the corresponding split of factor payments. If our model of net output generation was more sophisticated, involving, for example, several different types of labor then the data requirements implied would be more extensive accordingly.

It can also be noted that table 2 goes beyond a simple split of value added into wages and profits insofar as account 1 in table 1 is replaced by four accounts, labeled 1.1 to 1.4, in table 2. The first of these is an account for labor, so that row 1.1 receives all wage payments. The three remaining accounts are distinct accounts for the capital employed in each of the three production activities 'agriculture', industry' and 'services'. Recalling our rule that each factor price is assumed to be independent of where that factor is employed (i.e. constant along the row), it follows that the layout of factor accounts in table 2 corresponds to the notion that labor is homogeneous across all sectors while capital is (potentially) sector specific.

The proposition that the elements of column 6.1 are generated via a CES production technology also requires some elaboration. We can write the production function as

$$q_{j} = \left\{ \sum_{i}^{r} F_{ij}(\theta) q_{ij}^{-j} \right\}^{-1/\rho_{j}}$$
(5)

where q_j is output; the variables q_{ij} are inputs, and $F_{ij}(\theta)$ stands for functions of time, θ , which allow for exogenous technical change. For simplicity, constant returns to scale are assumed; and the constant elasticity of substitution between factor inputs in column j, i.e. σ_j is given by $1/(1 + \rho_j)$. To arrive at the specification implied by α in table 3, three more assumptions are needed. The first two of these are: (i) that each input q_{ij} is available in perfectly elastic supply at a price p_i ; and (ii) that inputs q_{ij} are combined so as to minimize the cost of producing output q_j . These assumptions imply the familiar result that marginal cost is given by the second part of

$$p_{j} = MC_{j} = \{p_{i}/F_{ij}(\theta)\} (q_{ij}/q_{j})^{1/\sigma} \text{ for all } i$$
(6)

The proposition that price equals marginal cost is now the third assumption to complete the specification.

To translate this result into TV form we substitute t_{ij}/p_i for q_{ij} and y_j/p_j for q_j in equation (6) to obtain

$$t_{ij} = [F_{ij}(\theta)]^{\sigma_{j}} (p_{i}/p_{j})^{1-\sigma_{j}} y_{j}$$
(7)
= $a_{ij}^{\sigma} f_{ij}(\theta) (p_{i}/p_{j})^{1-\sigma_{j}} y_{j}$ (8)

where, in general, the notation a_{ij} is used for the expression of t_{ij} as a fraction of the column total y_i :

- 19 -

$$\mathbf{a_{ij}} = \mathbf{t_{ij}} / \mathbf{y_j} \tag{9}$$

and a_{ij}^{o} is the value of a_{ij} in the base year. Also, as a matter of convention, all prices are taken to be unity in the base year. Hence a_{ij}^{o} is equal to $\left[F_{ij}(0)\right]^{\sigma j}$; and $f_{ij}(\theta)$ is equivalent to $\left[F_{ij}(\theta)/F_{ij}(0)\right]^{\sigma j}$. It follows that $f_{ij}(\theta)$ is also unity in the base year.

Given these normalization conventions, the expression (8) for t_{ij} defines specification a in table 3. It can be noted that the base year data in table 2 determine a_{ij}^0 , so that to complete the calibration of specification a requires additionally only a value for the substitution elasticity σ_j , and specification of the (exogenous) functions of time $f_{ij}(\theta)$.

We can build on these results to model column 6.2 of table 2. Our assumption is that expenditures in this column correspond to Leontief technology, in which inputs are strictly complementary. This is specification β in table 3. It is a special case of the CES formulation, corresponding to a zero value for σ_i . Hence, from (8), specification β implies

$$t_{ij} = a_{ij}^{o} f_{ij}(\theta) (p_i/p_j) y_j$$
(10)

where a_{ij}^{o} is the base year Leontief coefficient which determines the initial value of the ratio q_{ij}/q_{j} ; and the functions $f_{ij}(\theta)$ allow such coefficients to change exogenously over time.

Production of industrial goods and services is specified in the same way as the production of agricultural goods in table 2. We can therefore now turn our attention to modeling the expenditure accounts for commodities, starting with the cost (or supply) of agricultural commodities.

- 20 -

In table 2 there are four accounts for agricultural commodities (accounts 9.1 to 9.4) in place of the single account 9 in table 1. The extra detail reflects an attempt to capture some of the important differences in composition that can maintain within such a broadly defined composite as 'agricultural goods.'

There are essentially two main sources for the aggregate supply of a particular commodity: imports and domestic production. Depending on the source of supply, different taxes may be levied, e.g. import duties and sales taxes. Also, the composition of the bundle 'agricultural commodities' may differ according to who is buying so that we would expect some differences in composition between imports and exports, for example. The modeling in table 2 attempts to capture something of all these points.

From table 1 we learn that domestic output of agricultural goods is 301 units. Imports supply a further 2 units. Hence, with the addition of 6 units of indirect taxes of various types, we arrive at a gross supply at market prices of 309 units. Table 2 tells this same story in a somewhat more elaborate form.

Row 6.2 in table 2 shows that domestic output of agricultural goods has two destinations. One is the domestic market, the other exports. New data are needed to split the gross output of 301 units into the 227 units supplied to the domestic market and the (remaining) 74 units for exports. It is to be noted that the latter are not sold to the rest of the world directly. This is because they are subject to an export duty. Agricultural goods are 'readied' for export in account 9.2. The account buys goods from domestic producers in row 6.2, adds the tax (of 3 units) in row 4.1, and then sells the composite of agricultural commodities f.o.b. in row 9.2 to the rest of the world.

Imports arrive c.i.f. from the rest of the world in column 9.3, where they are readied for the domestic market by paying customs dues in row 4.1.

- 21 -

In this way we have two sources of supply for the domestic market. Some 3 units are supplied by column 9.3 and these have their origin in imports; while 229 units are provided via column 9.1 from that part of domestic output which is not destined for export. Both sources are combined in column 9.4 to yield a composite bundle of imported and domestically produced agricultural products. It is this composite bundle which is sold in row 9.4 to meet the requirements of domestic final demand.

This particular treatment of a commodity account is by no means the only one possible. It serves purely as an illustration which, for example, could be improved by giving some attention to the incidence of transport and distribution margins. As it stands, however, the treatment involves only minor data demands, viz to split the 6 units of indirect taxes on agricultural commodities as shown in table 1 into its three constituent elements, as in table 2. $\frac{11}{}$ When this is done 74 (= 77 - 3) units of domestic gross output must be destined for export. Hence 227 (= 301 - 74) units are retained for domestic use and all the other SAM figures fall into place.

Modeling the commodity accounts in table 2 is fairly straightforward. In column 9.1 a tax is added to goods of domestic origin prior to their moving on to help in meeting domestic final demand. This mark-up can be denoted by $\tau_j(\theta)$. The indirect tax revenue is therefore a proportion, $\tau_j(\theta)$, of the value of the commodity before tax. This can be expressed alternatively as a proportion $\tau_j(\theta)/[1 + \tau_j(\theta)]$ of the value of the commodity after tax, i.e. of y_j . Hence, to specify indirect tax revenues, we have

$$t_{ij} = [\tau_j(\theta)/(1 + \tau_j(\theta))] y_j$$
(11)

and this defines the specification γ in table 3.

- 22 -

It is of some interest to diagnose at this point and note that the incidence of indirect taxes can be related to the Leontief formulation of commodity technology as captured by equation (10). To see this, it is helpful to think of the indirect tax on good j as a label which needs to be attached to each unit of that good before it can be sold. Let p(j) be the price of such a label. Let us further assume that there is a distinct label for each type of good that is taxed, and that each type of label has its own account in the SAM. Commodity accounts buy their respective labels, while revenue from the sale of labels accrues to government. In buying the labels, commodity accounts must purchase them in a fixed proportional relationship to the goods themselves (in fact in a one-to-one relationship), so that the cost of buying labels can be modeled according to the Leontief formulation (10), with p(j) replacing p_j as the unit cost of the input and $f_{ij}(\theta)$ set at unity (since there can be no technological progress to change the one-to-one ratio in which labels are required in relation to goods). Such an approach would be equivalent to the specification (10) provided that the level of p(j) is set as

$$p(j) = \left[\frac{\tau_{j}(\theta)}{1 + \tau_{j}(\theta)} / \frac{\tau_{j}(0)}{1 + \tau_{j}(0)}\right] p_{j}$$
(12)

This states that the cost of the tax label for good j must be a fraction, $\tau_j(\theta)$, of the pre-tax cost of the good itself and otherwise follows from the fact that p_j is a post-tax price which, like p(j), must be normalized to have unit value in the base period.

Column 9.2 of table 2 follows along the same lines as column 9.1, but with a different tax rate $\tau_j(\theta)$. The same holds for column 9.3 also. But here we are dealing with imports as the essential supply source. If $\pi_j(\theta)$ is their price in foreign currency units, and x is the exchange rate, then the domestic

- 23 -

price of imports is $x \pi_j(\theta)$. Substituting this for p_i in equation (10) and suppressing the technical change term $f_{ij}(\theta)$ yields

$$t_{ij} = a_{ij} \left[x \pi_{j}(\theta) / p_{j} \right] y_{j}$$
(13)

which is specification δ for imports in table 3. It can be noted that in assuming that $p_i = x\pi_j(\theta)$, the exchange rate x and the foreign currency price, $\pi_j(\theta)$, of imports are effectively normalized to be unity in the base period. Hence equation (13) is essentially the same as equation (10) but with $\pi_j(\theta)$ substituted for $f_{ij}(\theta)$, and x substituted for p_i .

The final step in modeling the supply of agricultural commodities comes in account 9.4. Here goods of both foreign and domestic origin are brought together to form a composite bundle which is used to meet domestic final demand. In formulating the specification of how this bundle is determined two extreme versions are possible. In one, all imports are strictly complementary to domestic goods in meeting domestic requirements. If this was the case then the Leontief model β would provide the correct specification for the entries in column 9.4. The polar opposite case arises when imports are regarded as being perfectly competitive with domestically produced goods and, therefore, perfect substitutes for them. Between these extremes is a whole range of possible cases which, as Armington (1969) was perhaps the first to point out, can all be captured by the CES specification α . This is in fact the treatment adopted in our illustrative example.

Since 'industrial' commodities and 'services' are treated in the same way as 'agricultural' commodities in our illustrative example, the above effectively concludes our discussion of how activities and commodities are to be treated. It can be noted that the treatments imply that all our specifications can be expressed in effect as being Leontief or CES. Since the former is a special case of the latter, it follows that the CES function defines the most general class of specifications which we have adopted. Relative to the simpler treatment of commodity balances in terms of fixed coefficient models, as in UNSO (1968), for example, our approach can be seen as allowing for a second order of approximation to reality by introducing the influence of relative prices via a set of constant elasticities of substitution.

5. <u>The Second Stage of Modeling: Factors, Domestic Institutions and the Rest</u> of the World

The national income accounts for most countries give very little if any factorial disaggregation of the contribution to domestic product by different production activities. Yet some such disaggregation is necessary if we want to address employment or income distribution issues. There is therefore a tension between the desire to have a significant disaggregation of the factor accounts and the empirical problems of calibrating the resulting model. Table 2 shows a very conservative resolution of this problem. Value added in each production sector is split between wages and profits. Labor is (implicitly) assumed to be homogeneous and freely mobile across sectors, so there is only one account for labor. Capital, on the other hand is treated as being sector specific. Therefore there are three types of capital, each of which is to have its own rental price. This is not, of course, the only possible treatment of the factor accounts. But it serves for illustrative purposes. As we have already seen, this treatment implies that the value added data in table 1 need to be split between wages and profits, as shown in table 2. Then, as a next step, in the outlay accounts for the factors of production, the total income for each of the four factors must be allocated according to who receives it. As can be seen from table 2, the assumptions made

- 25 -

are: that (i) all wages accrue to households; (ii) that all profits in agriculture also accrue to households (corporate agriculture or plantations being insignificant in Thailand); (iii) profits earned in industry are part'v profits of unincorporated activities (15 units), partly profits of state enterprises (2 units), and otherwise (40 units) are profits of the private corporate sector; and (iv) there is a similar spread over households, companies and government of profits earned in the service industry, as shown in the table. As with the split of value added into wages and profits, so too the allocation of profits earned in industry and services to households, companies and government calls for estimation of data beyond those that table 1 provides.

The crucial consideration in modeling the disbursement of factor incomes in columns 1.1 to 1.4 in table 2 is the distribution of factor ownership. Assuming there is no discrimination in factor markets, then the return to a factor service will be the same irrespective of who provides it. And the opportunity to provide the service will be in proportion to factor ownership, again assuming no discrimination. So, in the absence of discrimination, the share of any particular institution in the income earned by a factor will be equal to the proportion of that factor which is owned by the institution in question. $\frac{12}{}$

An important characteristic of the class of models with which we are concerned in this paper is to assume that factor supplies are fixed within the unit time period of the model, and are changed or updated only between periods. We have very little to say about updating in this paper. And the fact that factor endowments and their ownership are frozen at the beginning of each model period implies that, within period, the allocation of factor incomes will be in the same fixed (i.e. the frozen) shares for each factor as its ownership. This is specification ε in table 3 and its implies that

- 26 -

$$t_{ij} = a_{ij}^{0} f_{ij}(\theta) y_{j}$$

such that

$$\sum_{i=1}^{\infty} f_{ij}(\theta) = 1$$
(15)

where the variable $a_{ij}^{0}f_{ij}(\theta)$ measures the share of institution i in the ownership of factor j in time period θ . An implication is that the ratios a_{ij}^{0} measure the distribution of factor ownership in the base period.

Comparing tables 1 and 2, it is evident that there is to be no attempt in our example to disaggregate the household sector. This may come as a surprise to the reader familiar with the emphasis on disaggregation of the household sector in such early SAM studies of development issues as Pyatt, Roe et al (1977). The explanation is, in part, that households are disaggregated in the more detailed model from which our present example is drawn. In consequence, the distribution of income between different groups of households can be studied. For the rest, there is nothing essential about disaggregating household - or production, for that matter - within a SAM. The appropriate choice of disaggregations is relative to the issues. The implication with reference to our example is that it can be used to explore distributional issues only in so far as they concern the distribution between households, companies, and governments.

The next issue is to model household expenditures. Comparing tables 1 and 2, this is seen to require three new accounts (2.1 to 2.3) in place of the former account 2.

Comparing tables 1 and 2 we see that the gross income account for households (account 2.1) serves the same purpose on the revenue side as the former account 2, i.e. it collects together all the revenue which accrues to households

(14)

from other accounts. On the expenditure side, account 2.1 pays out a proportion of its income to government as taxes and a further proportion into savings (the combined capital account). The remaining proportion is paid into the consumption account, account 2.2. These outlays are therefore fixed value shares of gross income and they are modeled as specification ε . Ξ.

We now want to model the allocation of total household consumption expenditure as a linear expenditure system. This requires two steps. The first is to model committed expenditures on particular commodities in account 2.2 and derive total discretionary expenditure as a residual. This residual is to be paid into account 2.3. It constitutes total discretionary expenditure. The second step is then to allocate the total discretionary expenditure over commodities in account 2.3.

Functional form Ψ describes committed expenditures. Since $t_{ij} = p_i q_{ij}$ for all i, j, the specification

 $t_{ij} = t_{ij}^{o} f_{ij}(\theta) p_{i}$ (16)

implies that q_{ij} follows some exogenous path given by $t_{ij}^{o} f_{ij}(\theta)$. This is what is meant by the specification Ψ in table 3.

That part of total consumer expenditure which is not required to purchase committed quantities is determined as a residual in column 2.2 and is otherwise unspecified. This is treated as specification ν in tables 2 and 3.

This unspecified amount (which was lll units in the base year) is all paid into account 2.3 and constitutes discretionary expenditure. It is allocated to commodities according to fixed value shares (specification ε) in column 2.3, and completes the specification of household expenditures.

- 28 -

It can be noted that the only data required by table 2 to calibrate this formulation of household expenditures beyond those that are supplied in table 1 is the split of consumer expenditure on each commodity in the base year between that part which is committed and that part which is discretionary.

The numerical detail for the corporate sector is the same in table 2 as in table 1. The modeling is also simple. Corporate income is spent as dividends paid to households, as taxes paid to government, or it is saved. The model specification of these allocations shown in table 2 is to treat them as following exogenously given value shares, i.e. specification ε .

The treatment of government expenditures in table 2 is somewhat more complicated. It requires two new accounts (4.1 and 4.2) in place of the former account 4. However, given the details in table 1, no extra data is required. The first step is to allocate sums which are fixed in value terms as transfers to households, to companies, and to the government consumption expenditure account, 4.2. These correspond to specification ϕ in table 3.

$$t_{ij} = t_{ij}^{o} f_{ij}(\theta)$$
(17)

Government saving is then a residual item, which is denoted by a new specification, v. The next step is to allocate government consumption demand over commodities. The specification chosen assumes that the commodities are purchased in fixed relative quantities. This is specification κ and it requires that

$$t_{ij} = \left[t_{ij}^{o}f_{ij}(\theta) p_{i} / \sum_{k} t_{kj}^{o}f_{kj}(\theta) p_{k}\right] y_{j}$$
(18)

In the capital accounts for domestic institutions, total savings are gathered in row 5.1. Expenditures are modeled in column 5.1 as fixed value shares, and therefore according to specification ε . In other words, a fixed proportion of aggregate investment expenditure is allocated to expansion of the capital stock in each of the three production sectors. These investment allocations are translated into commodity demands in columns 5.2, 5.3 and 5.4. The translation is effectively via what is known in the input-output literature as a B matrix. This means that goods are required in fixed quantity ratios to provide extra units of capacity in each of the production sectors. It therefore implies that the expenditures in these columns should follow specification κ . The data required to implement this approach are details of the two-way classification of investment expenditures by both sector of origin and sector of destination, as in table 2, as an extension of the one-way classification, by sector of origin only, which is provided by table 1.

It remains to determine a specification for each element of the expenditure account for the rest of the world, i.e. column 12 in tables 1 and 2.

The rest of the world's expenditures on commodities (i.e., exports) are modeled by specification μ :

 $t_{ij} = t_{ij}^{0} \bar{f}_{ij}(\theta) p_{i}^{1-\eta} (x \pi_{i})^{\eta} i$ (19)

Recalling that $t_{ij} = q_{ij}p_i$, it follows that n_i is the own price elasticity of demand for exportable i, while the function $f_{ij}(\theta)$ reflects any shifts in world demand for the domestic product.

A special case of specification μ is used to model the first four items in column 12. These are not commodity exports. They refer to net

- 30 -

factor and non-factor income transfers from abroad. And because they are on a net basis, it is difficult to model them with any substantial behavioral content. As an alternative to addressing the data problems of estimating the gross flows, the expedient has been adopted of simply assuming that the net flows have exogenous values. This is achieved by restricting n_i and π_i in (19) to unity. Hence

$$\mathbf{t}_{ij} = \mathbf{t}_{ij}^{\mathbf{o}} \mathbf{f}_{ij}^{\mathbf{o}}(\mathbf{\theta}) \mathbf{x}$$
(20)

The value flows in question are therefore exogenous at levels t_{ij}^{o} f (0) in foreign currency units.

The remaining item in column 12 is the current account deficit. This is left unspecified, at least at this stage, using specification v.

6. Closure of the System

When the modeling specifications we have discussed so far are restricted by the SAM accounting identities (1), the resulting system is underdetermined. It must therefore be restricted further in order that we should arrive at a fully determined system. The further restrictions which fulfill this role are referred to as closure rules.

Let f be the number of factor accounts in table 2 (f = 4); let d be the number of domestic institution accounts, current and capital (d = 10); and let a and c be the number of activity and commodity accounts, respectively. Now, a = 6, c = 12 and there is one further account (for the rest of the world). It follows that the total number of accounts, n, is 33, where n = f + d + a + c + 1.

- 31 -
The system has variables t_{ij} , y_i , p_i and x. There are n^2 variables t_{ij} ; n variables y_i ; and a price, p_i , for each factor, activity and commodity, i.e., a total of f + a + c prices p_i . The total number of variables is therefore $n^2 + n + f + a + c + 1 = n^2 + 2n - d$. This gives a total 1145 variables in our example. However, most of these are trivial since they refer to zero values of t_{ij} . With only 85 non-zero values of t_{ij} , the effective number of variables is reduced to 141. It can be noted that quantities q_{ij} and q_i are not counted as variables since they do not enter explicitly at any stage, given that the model is expressed in TV form.

The first set of equations to consider are the specifications of t_{ij} which have been discussed previously and set out in table 2. These cover all elements of the SAM except for those which are explicitly unspecified. There are three of the latter in our example, viz household discretionary expenditure (column 22), government savings (column 4.1) and foreign savings (column 12). In general the number of unspecified elements can be denoted by u , so that the specifications of equation (3) in table 2 provide $n^2 - u$ restrictions.

Having specified the t_{ij} 's as above, the system now has 2n + u - d degrees of freedom remaining. Most of these are taken up by the accounting restrictions of the SAM, i.e. by equation (1), which states that the y_i 's are given by the row and column totals of the SAM. There are 2n of these restrictions. But, as we shall see, some of them are redundant.

From tables 2 and 3, it can be seen that our within-period modeling of the outlays by factor accounts assumes that they are determined as fixed value shares. This corresponds to specification ε and the formulation provided by equation (14). Summing this formulation for ε over all rows i yields as an expression for the column sum, y_i , which is

- 32 -

$$\mathbf{y}_{j} = \sum_{i} \mathbf{t}_{ij} = \left[\sum_{i} \mathbf{a}_{ij}^{O} \mathbf{f}_{ij}(\theta)\right] \mathbf{y}_{j}$$
(21)

However, equation (15) restricts the term in square brackets to be unity. So equation (21) now reduces to $y_j = y_j$. Consequently, the column sum for the factor accounts will always be equal to the corresponding value of y_j , so that no new restriction on the system is implied.

This same conclusion is reached for any column in which specification κ is used. As we have seen, this specification is expressed algebraically in equation (18). Summing over rows i, in this case yields

$$\mathbf{y}_{j} = \sum_{i} \mathbf{t}_{ij} = \sum_{i} [\mathbf{t}_{ij}^{o} \mathbf{f}_{ij}(\theta) \mathbf{p}_{i} / \sum_{k} \mathbf{t}_{kj}^{o} \mathbf{f}_{kj}(\theta) \mathbf{p}_{k}] \mathbf{y}_{j}$$
(22)

which again reduces to $y_1 = y_1$, i.e. a redundancy.

It follows that the only column summation equations which actually restrict the model are those which do not involve either specification ε or κ . This means none of the factor accounts; some, say d* (where $d* \leq d$) of the domestic institution accounts; and all of the accounts for activities, commodities and the rest of the world account (a+c+l). Hence accounting consistency in terms of column summation imposes d* + a + c + l = n - f -(d - d*) restrictions on the system.

The restrictions implied for the activity and commodity outlay accounts are particularly interesting. When a CES formulation is adopted (specification α), it follows from equation (8) that summing over i and equating the result to y_j , we get an expression which can be rearranged to yield:

$$p_{j} = \left[\sum_{i} a_{ij}^{0} f_{ij}(\theta) p_{i}^{-\sigma_{j}}\right]^{1/(1-\sigma_{j})}$$
(23)

In other words, accounting consistency implies an interdependence among prices. Specifically, each output price, p_j , is a CES aggregate of the input prices, p_i , in this case.

Our earlier discussion of the choice of specification for activity and commodity accounts showed that the CES case covered the more restricted specifications β , γ and δ . This result can now be used to make the following inference. If we regard the exchange rate as the price of foreign exchange, then the model contains f + a + c + 1 prices. Accounting consistency for each activity and commodity now imposes a restriction like that in equation (23). Hence there are a + c such restrictions in total and therefore f + 1 degrees of freedom remain in the determination of prices. One way of interpreting this result is that if the exchange rate and each factor price was known, then all prices would be known, i.e. all other prices could be derived via the requirement of accounting consistency by columns.

Accounting consistency by columns is complemented by a similar requirement from equation (1) for accounting consistency by rows. However, if all columns of the SAM satisfy accounting consistency then, as a mathematical necessity, one of the rows will do so also, provided that all the others do. Consequently, accounting consistency be rows can provide us with only n - 1linearly independent restrictions.

From these arguments, the SAM consistency constraints on rows and columns as given by equation (1) provide $2n - (f + 1) - (d - d^*)$ linearly independent restrictions. By taking them into account, we are then left with a model which has $[2n + u - d] - [n - f - (d - d^*)] - [n-1] = (f + 1) + (u - d^*)$ degrees of freedom. Moreover, we have seen that f + 1 of these

- 34 -

degrees of freedom must be taken up in order to fully determine prices. The remaining $u - d^*$ degrees of freedom then correspond to the number of unspecified transaction values, t_{ij} , <u>less</u> the number of substantive restrictions imposed by accounting consistency on the outlay accounts for domestic institutions.

To take up the $(f + 1) + (u - d^*)$ remaining degrees of freedom involves the choice of the corresponding number of closure rules from among the alternatives provided by table 4.

The first of the closure rules allowed in table 4 is for any price -it could be a factor price, such as a wage or any other price -- to be given exogenously. The second option allows relative prices to be fixed. For example, if skilled and unskilled labor are distinguished separately, then we may want to fix their wage differential. It can be noted that if there are exactly f + 1 restrictions of the first two types, then the system of prices will be exactly determined in the model. And there cannot be more than f + 1 such restrictions because this would over-determine prices. Moreover, it must be the case that there is at least one restriction of the first type: the absolute level of at least one price must be set exogenously. This is because all the other equations in the system are homogeneous of degree one in prices and incomes. The scale of values is arbitrary therefore unless we fix it explicitly.

The third type of closure rule provided for in table 4 implies that q_j is fixed exogenously by the function $y_j^{0}g_j(\theta)$, so that the ratio of p_i to y_i is fixed. This closure is useful if, for example, we want to assume that the price of some particular factor of production will always adjust to allow full employment of that factor, as when we assume that capital stock is industry specific and fixed within the model period.

- 35 -

The choice of closure rules has an important bearing on the structure and behavior of the model. If there are fewer than f + 1 restrictions of the first two types, then the implication within the model is that prices are not independent of the scale of production. If prices are indeed independent of the scale of production, then the resulting system is referred to as a fixprice model. Otherwise it is flex-price, and prices will rise as the scale of production expands.

An overall consequence of following through the SAM approach is that model specification can be thought of as defining seven sets of equations, as presented in table 5.

The first set of equations comprises the specifications for transaction values, t_{ij} , drawing on the alternative forms of equation (3) which are allowed for in the list of options provided by table 3. Since there are n^2 cells in the SAM and t_{ij} is specified for all but u of these, it follows that this first set of equations provides n^2 -u restrictions on the system.

The second, third and fourth sets of equations all derive from the accounting restrictions defined by the SAM. Thus, the second set of equations comprises the row summation equations for the SAM, of which there are n. However, one of these is linearly dependent on the others, given the column summation equations which constitute the third and fourth sets of restrictions. There are therefore n - 1 linearly independent row summation equations.

The column summation equations are split into two sets so as to distinguish those for activity and commodity accounts, which can be interpreted as price equations, from those of the summation equations for domestic institutions and the rest of the world which are not redundant.

- 36 -

There are $d^* + 1$ of the latter and a + c of the former.

The last three sets of equations correspond to the three types of closure rule in table 4. In order that the absolute price level should be determined in the system, some ℓ domestic prices or the exchange rate must be set exogenously, where $\ell \ge 1$. However, ℓ cannot exceed f + 1 since there is a total of a + c + f domestic prices in the system and a + c restrictions are already placed on these by the column summation equations of the SAM. To the extent that ℓ falls short of f + 1, there can be k closure rules which impose restrictions on relative (as opposed to absolute) prices, and k must be such that $k + \ell$ does not exceed f + 1.

The remaining set of closure rules restricts income levels, y, in one form or another. This last set must have a sufficient number of elements so as to bring the total number of closure rules up to $(u - d^*) + (f + 1)$ and hence complete the specification of an exactly determined system.

In aggregate table 5 provides a set of $n^2 + n + f + a + c + 1$ equations which can be solved for f + a + c domestic prices; the exchange rate; the n incomes y_i ; and the n^2 elements of the SAM.

7. Calibration and Solutions

Calibration of the model developed in the previous sections calls for the estimation of a number of parameters. These can be divided into two groups. The first group comprises those parameters which can be estimated from the base year SAM, while parameters in the second group cannot. Parameters in the first group have been denoted t_{ij}^{o} , a_{ij}^{o} , y_{i}^{o} and $\tau_{j}(o)$ while those in the second group are the exogenous functions $f_{ij}(\theta)$, $g_{x}(\theta)$ and $g_{i}(\theta)$, together with various elasticities σ_{j} and n_{i} and tax rates $\tau_{j}(\theta)$.

- 37 -

The parameter values t_{ij}^{o} , a_{ij}^{o} and y_{j}^{o} can all be taken directly from the base year SAM. Accordingly, to the extent that a balanced base year SAM is readily available, model calibration is a straightforward matter. Alternatively, the base year SAM and parameters such as σ_{j} and n_{i} can in principle be estimated simultaneously if suitable time-series data are available. The gain in efficiency may or may not be worth the extra effort involved. But in either event, what is important here is that, whichever approach is adopted, an important consequence will be that the model exactly reproduces the base case as set out in the initial SAM. This has two important advantages. Firstly, it implies that the starting point for all comparative static and dynamic experiments is known exactly. There is no ambiguity about the starting point and hence about the changes which the model generates. Secondly, the fact that the base case is reproduced exactly guarantees that, at least in one case (viz the base case), the model has a solution.

The conditions under which a model will always have a solution are not pursued here because they have little to do with whether the approach to modeling is SAM-based. Similarly, we will not explore here the issue of how to solve such models numerically. Rather, to conclude this paper we present some results for our Thailand example which is calibrated according to the SAM set out in table 2, and otherwise by the parameter values in table 6.

One of the main advantages of the SAM-based approach and the software which now supports it is that it is relatively easy to change a model This is illustrated via table 7 which sets out the results for four different models of the effects of an increase in the tax on agricultural exports of 1% from 4.05% to 5.05%. In all four models, it is assumed that capital stocks are sector specific and fixed in the short run. Hence all three are flex-price

- 38 -

models. The first twi models are Keynesian. The exchange rate is assumed to be fixed as is the wage. This implies surplus labor. To close the models, real investment is taken to be exogenous in Model 1 and the inflow of foreign exchange is exogenous in Model 2. Model 3 and 4 differs only from Model 1 and 2, respectively, in endogenizing wages by imposing an assumption of full employment.

The most immediate effect of an increase in the tax on agricultural exports in Thailand would obviously be to reduce their quantity. In Model 1, lower agricultural exports lead to lower agricultural activity; which directly depresses agricultural employment and indirectly depresses employment in the other sectors. The lower level of general activity leads to a drop in GDP and hence in imports. However, these are not sufficient to compensate for the negative effect on the current account deficit of the drop in exports.

In Model 2, the current account deficit is not allowed to increase. Total savings and investments are therefore reduced compared to Model 1, and GDP drops even further.

In Model 3, the wage flexibility dampens the effects of the increase in the export tax rate compared to Model 1. In particular, it allows lower prices for industrial sector output which then leads to an expansion of industrial exports. This expansion compensates for the loss of agricultural sector exports so that the current account deficit improves.

In Model 4, the current account deficit is not allowed to decrease, so investment increases and wages drop less than in Model 3.

Comparison of the results for the four models shows the crucial importance for policy conclusions of the choice of closure rules. By facilitating an easy comparison of alternative closures, our SAM approach and its associated software will not resolve debate about which closures are most

- 39 -

plausible. But what it will do is to provide a sound basis for policy debate in terms first of the base year SAM, and secondly by providing comparable results on the implications of alternatives.

References

- Amranand, P. and W. Grais (1984). "Macroeconomic and distributional implications of sectoral policy interventions: The Case of Energy and Rice in Thailand." <u>Staff Working Papers</u>, No. 627. Washington, D.C.: The World Bank.
- Armington, P. (1969). "A theory of demand for products distinguished by place of production." <u>International Monetary Fund Staff Papers</u>, 16.
- Bacharach, M. (1970). <u>Bi-proportional Matrices and Input-Output Change</u>. Cambridge: Cambridge University Press.
- Byron, R.P. (1978). "The estimation of large social accounting matrices." Journal of the Royal Statistical Society Series A, 141:3.
- Cambridge, Department of Applied Economics. (1962). <u>A Program for Growth</u>. I-XI. London: Chapman and Hall.
- Chewakrengkai A. and B. Lamsan (1982). <u>A Social Accounting Matrix for</u> <u>Thailand in 1975</u>. Bangkok: National Economic and Social Development Board and The World Bank. Washington D.C.
- Drud, A., W. Grais and G. Pyatt (1983). "The transactions value approach: A systematic method of defining economywide models based on social accounting matrices." Proceedings of the 4th IFAC/IFORS/IIASA Conference and the 1983 SEDC Conference on <u>Economic Dynamics and Control</u>. Washington, D.C. (June).
- Grais, W. (1981). "Aggregate demand and macroeconomic imbalances in Thailand: Simulations with the SIAM I model." <u>Staff Working Papers</u>, 448. Washington, D.C.: The World Bank.
- Pyatt, G. and A. Roe, with J. Round, R. Lindley, and others (1977 <u>Social</u> <u>Accounting for Development Planning with special reference to Sri Lanka</u> Cambridge, University Press.

and J.I. Round (1984). "Improving the macroeconomic data base: A SAM for Malaysia, 1970." <u>Staff Working Papers</u>, No. 646. Washington, D.C.: The World Bank.

and E. Thorbecke (1976). <u>Planning Techniques for a Better</u> <u>Future</u>. Geneva: International Labor Office.

(1985). "Commodity balances and national accounts: A SAM perspective." <u>The Review of Income and Wealth</u> (forthcoming).

Taylor, L. (1983). <u>Structuralist Macroeconomics: applicable models for the</u> <u>Third World.</u> Basic Book, New York.

United Nations Statistical Office. 1968. <u>A System of National Accounts</u>. Studies in Methods, Series F, No. 2, Rev. 3. New York: United Nations.

Footnotes

- 1/ We are indebted to various colleagues and collaborators over several years for encouraging our work and, more recently, for comments on this paper. Of course, neither they nor the World Bank has any responsibility for the views expressed here.
- 2/ Graham Pyatt is largely responsible for the conception of this approach, while Arne Drud and Wafik Grais have been prime movers of its systems and econometric implementation, respectively. An earlier paper (Drud,Grais and Pyatt, 1983) has been written from the system's perspective. The present paper is intended for economists with a primary interest in policy modeling.
- 3/ See Grais (1981), Chewakrengkai and Lamsam (1982) and Amranand, P. and W. Grais (1984).
- 4/ See Cambridge Department of Applied Economics (1962-), especially volumes 1, 2, 5 and 6.
- 5/ For a discussion of closure rules and their importance in macroeconomic models, see Taylor (1983)
- 6/ Pyatt and Round (1984) present a SAM which has some 212 accounts (rows and columns), including 51 factor accounts; 36 accounts for institutions; 30 accounts for activities and 59 for commodities. This same SAM is subsequently doubled in size by showing the data separately for each of two regions. Citing this example is not intended to suggest that very detailed SAMs are necessarily a good thing. They have value as a data base for a variety of applications. But for any one application, a more aggregated version of the SAM is likely to prove most useful.
- 7/ Pyatt and Thorbecke (1976) discuss criteria for classifying factors, activities and institutions. Pyatt (1985) discusses the interdependence of classifications for activities and commodities.
- 8/ The RAS technique is a method for changing a given (non-negative) matrix by row and column scaling operations so that its row and column totals correspond to prescribed values. The most complete exposition of the method is in Bacharach (1970).
- 9/ One approach to the problem is discussed in Byron (1978).
- 10/ Consolidation is a technical term covering an operation which is in two stages. To consolidate two or more accounts, the first step is to replace them with a new account in which the elements are the (vector) sums of the entries in the accounts being consolidated. The second step is to set to zero the element of the aggregate account which lies on the main diagonal of the new SAM.
- 11/ The simplifying assumption implied by this is that indirect tax rates are the same for all domestic transactions, irrespective of type of buyer.

12/ If there is discrimination, then this is a violation of the axiom that a given factor is paid the same whoever might supply it and wheresoever it is employed. If the seriousness of the discrimination seems to merit it, the correct treatment is to model the different sections of the factor market as being different markets, i.e. to disaggregate to a point at which homogeneity more or less maintains and there is no serious discrimination within any market.

								Out	lays or Expen	ditures						
				Factore		Institu	LIOUB	Combined	Product	ion Activ	[les	Co	mmodities		Rest	1
				of	Cur	rent Accour	nte	Capital		l.			2		the	Total
				Production	Households 2	Companies	Government	Account	Agriculture	Industry 7	Servicea	Agriculture 9	Indust ry	Services	World	
1	1			1			(i			····· ····	ć		·····		
-	Fac	ctors	of Production						176	151	273				-15	587
		u r r	Households	520		4	1								5	530
I	1 1 5 ' t 1 u	e n t	Companies	63	6		10									79
			Government	4	9	10			N			6	48	17	3	97
1	5 8	Comb	ined Cap. A/c		72	65	3								49	189
 (((Agriculture Industry									301	521			301 52
R E		L 	Services				8							448		448
el 9 11) c =		Agriculture		132			19	22	47	12				n	309
i∎i ii€ 	0 10 6 1		Industry	-	193		8	170	40	212	49				59	751
			Servi ces		118		75	•	63	89	114				32	491
112	Ren	st of	the World									2	182	26		210
	Tot	tale		587	530	79	97	189	301	521	448	309	751	491	210	

Table 1 The National Income Accounts for Thailand in 1980 (units: billions of baht)

1 44 Т

- 45 -

Table 2 An Expanded Social Accounting Matrix Showing Base Year Data and the First Stages of a Model in TV Form

				Capital	Househ	olds	Current a/c		Constitued Capital arc	Agriculture	Industry	Services	Agricultural		Industrial	1	Services	Rest	
				Labor Ag Ind Serv	Gross Tot. Income Consum	al Discretionar Consumption	y Companies	Government Income Consumption	Savings Capital Formation	Net Gross	Net Gross	Net Gross	Domestic Exports Import		Domentic Exports Imports Compositi		TTA Importe Compos	the	Totals
				1.1 1.2 1.3 1.4	2.1 2.	2 2.3	3	4.1 4.2	5.1 5.2 5.3 5.4	6.1 6.2	7.1 7.2	8.1 8.2	9.1 9.2 9.3	9,4	10.1 10.2 10.3 10.4	11.1 11.	2 11.3 11.4	112 World	-
1.1		-	Labor				and the state of the state of		a second s	141	a 92	a 191							424
1.2	F P a r	C	Agriculture							a 35									26
	c o	a																	- 20
	o u	p 1		Benchil				estflcflone a	Der		a							u	
1.3	r c s t	t	Industry								61.							-4	57
	i	1	Services									a		1				μ	
1.4	f n		Services			and the second						02 -						-11	
2.1		H	Gross Income	ε ε ε ε ε 424 35 15 46			е 4	¢ 1										μ 5	530
	c	u	na weigh (an delle he use	E			annan 19 Cata - Mat	USER ADDRESS										
2.2	u	e	Total Consum.		443		-	and the second second second	and the second second second second second										443
	I r n r	h o			ν			and intermediate	to a continues										
2.3	s e t n	1 d	Discretionary		11	1													111
	1 1	8					_												
3	u		Companies	40 23	6			10											79
	C 1	G	1																
	0 8	0	10	abattat .			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	gil dimmain	is \$11 eleberats										
4.1	n / s c	e	Income	2 2	9		10						2 3 1		29 * 19	17 T *	т. +	р З	97
	8	r																	
4.2			Consumption					83											83
		n		editors causes			6 99 91	able for the way	ALL LAND										
		t	1		ε		E	ν										v	
5.1	с	C	Savings		72		65	3	The survey was									49	189
	0	a																	. C
-	b	P 1	and the second				an a	a test constraint strategy and the second strategy and	3										2
5.2	i	t	Agriculture	monute			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the price and	38										38
	e	1					el the s	erid. All all	in atoms to che										
	d a	F					estance of	eas be appeald.	3										
5.3	Cc	o r	Industry						66										66
	·P																		
5.4	L L	t	Services	alterna in in	2.6.2 . 36.253.30				85										85
	a 1	1						· · · · · · · · · · · · · · · · · · ·											
		n								8									
6.1	PA		Net Output	read and the store			ST. C. C.	a a suma an	the so we	176									176
6.2	r c o t	Ag	Gross Output										в в 227 74						301
7.1	d i		Net Output					and the second s			β								153
1.1	c i	Ind	Net output	and the second second second second second					a the second		155				B B				155
7.2	t t i i		Gross Output	In the me Law	animente a		matrice	LONG.				ß			462 59				521
8.1	0 e	Serv	Net Output						·			273				8 8			273
8.2			Gross Output			and the second										416 32	<u>!</u>		448
9.1		g	Domestic	alon is exceed	111									229					229
		r i																μ	
9.2		c	Exports				and the second											77	77
	C	1		Dent (Y is any	300008									٩					
9.3	0	с ц	Imports						and the second					3					3
0.4		r	Composite	The second second	*	٤ 4 18	100	a much in	к к 17 2	B 22	β 47	β 12							232
1.4	d	1	composite	and an and all	11	10					•								
	i E	I						contarr.							a				
10.1	7	n d	Domestic												491			μ	491
10.2		u	Exports	A STREET AND A STREET AND A														59	59
10.3	A	s t	Imports	Look pointing	and the large		a 22 10	sit elsments	in a column						a 201				201
10.4	c	T 1	Composite		¥ 13	د الا ال		к 8	к к к 21 64 85	β 40	β 232	ß 49							692
2	u	8																	
	n t	1															a		1.00
11.1	8	S	Domestic														433	μ	433
11.2		r	Exports														a	32	32
11.3		i	Imports	La sue mer a	1 10 10 10 10 10 10 10 10 10 10 10 10 10												26		26
11.4		C e	Composite		* 8	ε 10 38		к 75		β 63	ß 89	в 114							459
		8	1										ó		δ		5.		
12	Re	st of t	the World										2		182		26		210
		Total	1	424 35 57 71	530 44	3 111	79	97 83	189 38 66 85	176 301	153 521	273 448	229 77 3	232	491 59 201 692	433 3	26 459	210	
		REAL	THE NEW YORK OF THE]								ALC: NO DECISION	100 100 100 100

Specif	fication		
Symbol	Equation Number	Description	Restrictions on Use
Specific	cations which	n can only be used in the outlay	accounts for commodities and activities
α	8	Constant elasticity of substitution with constant returns to scale	Must apply to all elements in a column
β	10	Leontief	Must apply to all elements or all elements but one in a column
Ŷ	11	Indirect taxes	Can only be used in row accounts for indirect taxes or Government. All other items in the same columns must be specified as β or δ
δ	13	Imports	Can only be used in row accounts for the rest of the world. All other items in the same column must be specified as γ
The only	y specificati	ion allowed in factor outlay acco	ounts
£	14	Fixed value shares	$\sum_{ij}^{O} f_{ij}(\theta) = 1 $ Must apply to all elements in a column
Specific	cations for u	use in the outlay accounts for do	omestic institutions
Φ	17	Value is exogenous	
Ψ	16	Quantity is exogenous	
ε	14	Fixed value shares	$\sum_{ij}^{0} f_{ij}(\theta) = 1$. Must apply to all elements in a column
ĸ	18	Fixed relative quantities	Must apply to all elements in a column
v		t _{ij} is not specified	
Specific	cations for u	use in the rest of the world out	lay account
μ	19	Export demand	
v		t _{ij} is not specified	

Table 3 Alternative Specifications of Eduation 3

Table 4

Description	Formulation
Price or exchange rate is exogenous	$p_{i} = g_{i}(\theta)$ $x = g_{x}(\theta)$
Relative prices are exogenous	$p_{i} = \beta_{ij}(\theta)p_{j}$
Quantity is exogenous	$y_i = y_i^0 g_i(\theta) p_i$

Alternative Specifications for Closure Rules

N.B. $g_i(o)$, $g_x(o)$ and $\beta_{ij}(0)$ must be unity.

Та	b	1	e	5
		-	~	-

Structure of a SAM-based Model

lesson and the second se			
Equation	Number of Equations	Ту	vpe of Equation
t _{ij} = t _{ij} (p, y, x)	n ² - u	Cell equatio	ons
$y_i = \sum_j t_{ij}$	n - 1	Row summatio	on equations.
$y_j = \sum_{i} t_{ij}$	d [*] + 1	Non-price equations	Column
0 = h(p)	a + c	Relative price equations	summation equations
$p_i = \bar{p}_i \text{ or } x = \bar{x}$	1 ≤ £ ≤ f + 1	Absolute price equations	
0 = k(p, x)	$k \leq (f+1) = l$	Relative price equations	Closures rules
0 = g(y, p; x)	(u-d [*]) + (f+1) - (k+l)	Non-Price equations	а

.....

Sector	Elasticities of factor substitution ^g i	Import demand functions ^o i	Export demand functions ^µ 1
Agriculture	0.9	0.8	6.0
Industry	0.6	1.5	2.6
Services	1 0.8	3.0	2.3

34

Table 6Elasticities Used in Model Calibration

ŝ

10₄₁

3

Table 7Effects of an Increase of 1% in theTax on Agricultural Exports for Four Models

Model Assumptions	Model 1	Model 2	Model 3	Model 4			
Capital stocks	Fixed and fully employed						
Exchange rate	Fixed						
Real investment	Fixed	Adjusts to savings	Fixed	Adjusts to savings			
Current account	Residual	Fixed	Residual	Fixed			
Wages	P	ixed	Adjusts to employi	o full ment			
Model Results: % cha	anges	(2 	(<u>6</u>)	ž			
Wage Employment Consumption Price Index Real Investment GDP at current m.p. GDP at constant m.p. Nominal Govern- ment revenue BOP deficit	none -0.747 -0.168 none -0.653 -0.525 -0.005 1.409	none -0.842 -0.202 -0.529 -0.778 -0.601 -0.186 none	-0.537 none -0.356 none -0.372 -0.009 0.309 -0.624	-0.511 none -0.334 0.198 -0.338 -0.005 0.362 none			

Appendix

The SAM approach to macroeconomic model building has been implemented as one of many solution systems under the General Algebraic Modeling System, GAMS. The modeling system has facilities for easy data entry, data manipulation and report generation. These aspects of GAMS are described in [1] and [3]. An introduction to the SAM-based modeling component is under development, [2].

The following pages show the input file representing the four models described in the paper and some summary reports with solution statistics. The SAM in this implementation has a few additional factor accounts to reflect the fact that factors on the domestic factor markets are different from factors earning income from abroad.

References:

- Bisschop, J. and A. Meeraus: "On the Development of a General Algebraic Modeling System in a Strategic Planning Environment", Mathematical Programming Study, vol. 20, 1982, p.1-29.
- 2. Drud, A. and D. Kendrick: "An Introduction to GAMS-TV", (preliminary title), World Bank, forthcoming.
- 3. Kendrick, D. and A. Meeraus: "GAMS: An Introduction", Development Research Department, World Bank, 1985.

10/29/85 11:48:53 PAGE

1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF ACCOUNT SET AND ACRONYMS

SET ACC ACCOUNT SET FOR THE THREE SECTOR THAILAND DEMONSTRATION MODEL / з 4 FACTOR ACCOUNT FOR LABOR 5 FAC-LABOR FACTOR ACCOUNT FOR AGRICULTURAL CAPITAL 6 FAC-C-AGRI 7 FAC-C-IND FACTOR ACCOUNT FOR INDUSTRIAL CAPITAL FAC-C-SERV FACTOR ACCOUNT FOR CAPITAL IN THE SERVICE SECTOR 8 ACCOUNT FOR NET FOREIGN CAPITAL IN INDUSTRY FOR-C-IND 9 ACCOUNT FOR NET FOREIGN CAPITAL IN SERVICES 10 FOR-C-SERV TOT-C-IND ACCOUNT FOR TOTAL CAPITAL IN INDUSTRY 11 ACCOUNT FOR TOTAL CAPITAL IN SERVICES 12 TOT-C-SERV ACCOUNT FOR TOTAL INCOME FOR HOUSEHOLDS 13 HOUSE-INCM 14 HOUSE-TCON ACCOUNT FOR TOTAL CONSUMPTION FOR HOUSEHOLDS HOUSE-COMM ACCOUNT FOR COMMITTED CONSUMPTION FOR HOUSEHOLDS 15 ACCOUNT FOR DISCRETIONARY CONSUMPTION FOR HOUSEHOLDS HOUSE-DISC 16 ACCOUNT FOR THE INSTITUTION COMPANIES 17 COMPANIES 18 GOVRN-INCM ACCOUNT FOR TOTAL INCOME FOR THE GOVERNMENT GOVRN-CONS ACCOUNT FOR CONSUMPTION FOR GOVERNMENT 19 CONSOLIDATED SAVINGS ACCOUNT FOR ALL INSTITUTIONS 20 SAVINGS CAPITAL ACCUMULATION FOR AGRICULTURE 21 CAP-F-AGRI 22 CAP-F-IND CAPITAL ACCUMULATION FOR INDUSTRY CAP-F-SERV CAPITAL ACCUMULATION FOR THE SERVICE SECTOR 23 NET PRODUCTION (VALUE ADDED) IN AGRICULTURE 24 ACT-N-AGRI GROSS PRODUCTION IN AGRICULTURE 25 ACT-G-AGRI 26 ACT-N-IND NET PRODUCTION (VALUE ADDED) IN INDUSTRY 27 **GROSS PRODUCTION IN INDUSTRY** ACT-G-IND NET PRODUCTION (VALUE ADDED) IN THE SERVICE SECTOR 28 ACT-N-SERV 29 ACT-G-SERV GROSS PRODUCTION IN THE SERVICE SECTOR 30 CM-DM-AGRI DOMESTIC COMMODITIES IN AGRICULTURE EXPORTED COMMODITIES IN AGRICULTURE 31 CM-EX-AGRI IMPORTED COMMODITIES IN AGRICULTURE 32 CM-IM-AGRI 33 CM-CP-AGRI COMPOSITE COMMODITIES IN AGRICULTURE 34 CM-DM-IND DOMESTIC COMMODITIES IN INDUSTRY 35 CM-EX-IND EXPORTED COMMODITIES IN INDUSTRY CM-IM-IND IMPORTED COMMODITIES IN INDUSTRY 36 37 CM-CP-IND COMPOSITE COMMODITIES IN INDUSTRY DOMESTIC COMMODITIES IN THE SERVICE SECTOR CM-DM-SERV 38 39 CM-EX-SERV EXPORTED COMMODITIES IN THE SERVICE SECTOR IMPORTED COMMODITIES IN THE SERVICE SECTOR 40 CM-IM-SERV 41 CM-CP-SERV COMPOSITE COMMODITIES IN THE SERVICE SECTOR ACCOUNT FOR INDIRECT TAXES 42 INDR-TAX 43 R-O-WORLD ACCOUNT FOR THE REST OF THE WORLD 1 44 45 ACCCP(ACC) SET OF COMPOSITE COMMODITY ACCOUNTS / CM-CP-AGRI, CM-CP-IND , CM-CP-SERV / 46 ACCFAC(ACC) SET OF FACTOR ACCOUNTS 47 48 / FAC-LABOR, FAC-C-AGRI, FAC-C-IND , FAC-C-SERV / ACCEX(ACC) SET OF EXPORT COMMODITY ACCOUNTS 49 50 / CM-EX-AGRI. CM-EX-IND . CM-EX-SERV / ACCIM(ACC) SET OF IMPORT COMMODITY ACCOUNTS 51

- 52 -

-53

9

. .

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF ACCOUNT SET AND ACRONYMS

•

52 53	CONS	(ACC) SET	GRI, CM-IM-IND , CM-IM-SERV / OF CONSUMPTION ACCOUNTS
54		HOUSE-CO	DMM, HOUSE-DISC, GOVRN-CONS /;
55 56 57	ALIAS(ACC	ACCC)	а.
58 59	ACRONYMS	CES EXPORT	CONSTANT ELASTICITY OF SUBSTITUTION FUNCTION EXPORT SPECIFICATION
60 61 62		IDIST IMPORT	FIXED IN FOREIGN EXCHANGE INCOME DISTRIBUTION IMPORT SPECIFICATION
63 64		IO ITAX	LEONTIEF PRODUCTION FUNCTION Indirect tax specification
65 66 67		QEXO QSHR	EXOGENOUS QUANTITY CONSUMPTION SYSTEM FIXED QUANTITY SHARES CONSUMPTION SYSTEM
68 69		VEXO	EXOGENOUS VALUE TRANSFER EXOGENOUS VALUE CONSUMPTION SYSTEM FIXED VALUE SHARES CONSUMPTION SYSTEM
70 71		UNSPEC	UNSPECIFIED
72 73 74		MF NMF Inst	MARKET FACTOR ACCOUNT NON MARKET FACTOR ACCOUNT INSTITUTIONS INCOME AND TRANSFER ACCOUNT
75 76		INSTC	INSTITUTIONS CONSUMPTION ACCOUNT ACTIVITY OR COMMODITY ACCOUNT
77 78 79		TAX Row	TAX ACCOUNT REST OF THE WORLD ACCOUNT
80 81		PQ Q	PRICE AND QUANTITY EXOGENOUS Quantity exogenous
82		P	PRICE EXOGENOUS

.

- 54 -

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF SOCIAL ACCOUNTING MATRIX

.

84	TABLE SAM(A	CC,ACC) SOC	IAL ACCOUNTI	NG MATRIX FO	R THAILAND IN	1980
00			EAC-C-ACDT	EAC-C-TND	EAC-C-SERV	
87	TOT-C-IND	FAC-LADUK	FAC-C-AGRI	FAC-C-IND 61	FAL-L-SERV	
86	TOT-C-SERV				82	
80	HOUSE-TNCM	A7A	36		ΨL	
00	COMDANTES	727				
91						
97						
93	+	FOR-C-IND	FOR-C-SERV	TOT-C-IND	TOT-C-SERV	
94	TOT-C-IND	-4				
95	TOT-C-SERV	-	-11			
96	HOUSE-INCM		••	15	46	
97	COMPANIES			40	23	
98	GOVRN-INCM			2	2	
99					-	
100	+	HOUSE-INCM	HOUSE-TCON	HOUSE-COMM	HOUSE-DISC	
101	HOUSE-TCON	443				
102	HOUSE-COMM		332			
103	HOUSE-DISC		111			
104	COMPANIES	6				
105	GOVRN-INCM	9				
106	SAVINGS	72				
107	CM-CP-AGRI			114	18	
108	CM-CP-IND			138	55	
109	CM-CP-SERV			80	38	
110						
111	+	COMPANIES	GOVRN-INCM	GOVRN-CONS		
112	HOUSE-INCM	4	1			
113	COMPANIES		10			
114	GOVRN-INCM	10				
115	GOVRN-CONS		83			
116	SAVINGS	65	3			
117	CM-CP-AGRI		+ :			
118	CM-CP-IND			8		
119	CM-CP-SERV			75	\overline{Q}	
120						
121	+	SAVINGS	CAP-F-AGRI	CAP-F-IND	CAP-F-SERV	
122	CAP-F-AGRI	38				
123	CAP-F-IND	66				
124	CAP-F-SERV	85				
125	CM-CP-AGRI		17	2		
126	CM-CP-IND		21	64	85	
127	CM-CP-SERV					
128						
129	+	ACT-N-AGRI	ACT-N-IND	ACT-N-SERV		
130	FAC-LABOR	141	92	191		
131	FAC-C-AGRI	35				
132	FAC-C-IND		61			

-71

- 40

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF SOCIAL ACCOUNTING MATRIX

.

134 + ACT-G-AGRI ACT-G-IND ACT-G-SERV 136 ACT-N-AGRI 176 153 137 ACT-N-SERV 153 138 ACT-N-SERV 273 139 CM-CP-AGRI 22 47 140 CM-CP-SERV 63 89 114 141 CM-CP-SERV 63 89 114 142 - CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 143 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI 229 144 ACT-G-AGRI 227 74 229 145 CM-DM-AGRI 229 3 1 146 CM-IM-AGRI 23 1 201 147 INDR-TAX 2 3 1 201 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-SERV 462 59 19 152 153 CM-DM-IND CM-EX-SERV CM-IM-SERV 201 154 INDR-TAX 29	133	FAC-C-SERV			82	
135 + ACT-G-AGRI ACT-G-IND ACT-G-SERV 136 ACT-N-SRN 176 153 137 ACT-N-SERV 273 139 CM-CP-AGRI 22 47 12 140 CM-CP-AGRI 22 47 12 141 CM-CP-SERV 63 89 114 142 - - CM-CP-AGRI 229 143 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 229 3 1 145 CM-DM-AGRI 2 3 1 229 3 1 145 CM-JM-AGRI 2 3 1 2 3 1 2 3 1 1 146 CM-JM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 153 201 155 156 102 101 154 INDR-TAX 29 19 155 150 CM-DM-SERV 433 160 <t< td=""><td>134</td><td></td><td></td><td></td><td></td><td></td></t<>	134					
136 ACT-N-AGRI 176 137 ACT-N-IND 153 138 ACT-N-SERV 273 139 CM-CP-AGRI 22 47 140 CM-CP-FIND 40 232 49 141 CM-CP-SERV 63 89 114 142 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 143 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI 229 144 ACT-G-AGRI 227 74 229 145 CM-OM-AGRI 3 3 1 147 INDR-TAX 2 3 1 3 148 R-O-WORLD 2 3 1 3 150 + CM-DM-IND CM-IM-IND CM-CP-IND 201 151 ACT-G-SERV 462 59 182 161 153 CM-JM-TAX 29 19 155 182 156 154 INDR-TAX 29 182 433 160 161 182 161 161	135	+	ACT-G-AGRI	ACT-G-IND	ACT-G-SERV	
137 ACT-N-IND 153 138 ACT-N-SERV 273 139 CM-CP-AGRI 22 47 12 140 CM-CP-SERV 63 89 114 142 + CM-DM-AGRI CM-EX-AGRI CM-CP-AGRI CM-CP-AGRI 143 + CM-DM-AGRI CM-EX-AGRI CM-CP-AGRI 229 144 ACT-G-AGRI 227 74 229 145 CM-OM-AGRI 223 3 1 146 CM-OM-AGRI 233 1 249 147 INDR-TAX 2 3 1 2 148 R-O-WORLD 2 3 1 2 149 - CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 150 + CM-DM-IND CM-EX-IND CM-IM-IND 201 151 ACT-G-IND 462 59 182 161 152 CM-OM-IND 201 101 101 101 154 INDR-TAX 29 19 102 101 <td>136</td> <td>ACT-N-AGRI</td> <td>176</td> <td></td> <td></td> <td></td>	136	ACT-N-AGRI	176			
138 ACT-N-SERV 273 139 CM-CP-AGRI 22 47 12 140 CM-CP-FIND 40 232 49 141 CM-CP-SERV 63 89 114 142 * CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI 143 * CM-DM-AGRI CM-EX-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 229 145 CM-OM-AGRI 3 1 146 CM-IM-AGRI 3 1 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 2 149 * CM-DM-IND CM-EX-IND CM-IM-IND 150 + CM-DM-IND CM-EX-IND CM-IM-IND 151 ACT-G-IND 462 59 19 152 CM-OM-IND 201 102 101 154 INDR-TAX 29 19 182 155 R-O-WORLD 102 102 156 FOR-CG-SERV 416 32 433 160 CM-IM-SERV CM-EX-SERV CM-IM-SERV 161 INDR-TAX 17 26 163	137	ACT-N-IND		153		
139 CM-CP-AGRI 22 47 12 140 CM-CP-IND 40 232 49 141 CM-CP-SERV 63 89 114 142 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 143 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 229 3 1 145 CM-DM-AGRI 2 3 1 3 3 147 INDR-TAX 2 3 1 3 3 146 CM-IM-AGRI 2 3 1 3 3 147 INDR-TAX 2 3 1 3 </td <td>138</td> <td>ACT-N-SERV</td> <td></td> <td></td> <td>273</td> <td></td>	138	ACT-N-SERV			273	
140 CM-CP-IND 40 232 49 141 CM-CP-SERV 63 89 114 142 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 143 + CM-DM-AGRI 229 3 1 144 ACT-G-AGRI 227 74 3 145 CM-DM-AGRI 229 3 1 146 CM-OM-AGRI 3 3 3 147 INDR-TAX 2 3 1 3 148 R-O-WORLD 2 3 1 2 149 - 2 3 1 2 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 201 153 CM-IM-IND 201 182 155 201 155 153 CM-IM-IND 201 182 155 182 160 182 155 154 INDR-TAX 29 19 182 165 <td>139</td> <td>CM-CP-AGRI</td> <td>22</td> <td>- 47</td> <td>12</td> <td></td>	139	CM-CP-AGRI	22	- 47	12	
141 CM-CP-SERV 63 89 114 142 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 3 3 145 CM-DM-AGRI 229 3 1 146 CM-IM-AGRI 2 3 1 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 3 1 149 2 3 1 2 149 2 3 1 2 149 2 3 1 2 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 19 201 15 152 CM-DM-IND 20 182 201 149 201 154 INDR-TAX 29 19 182 155 182 16 182 160 182 160 182 155 160 160 160 160 160	140	CM-CP-IND	40	232	49	
142 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 229 145 CM-DM-AGRI 229 3 1 146 CM-IM-AGRI 2 3 1 147 INDR-TAX 2 3 1 2 148 R-O-WORLD 2 2 1 149 - CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 150 + CM-DM-IND CM-EX-IND CM-IM-IND 201 151 ACT-G-IND 462 59 491 201 152 CM-DM-IND 201 201 154 1NDR-TAX 29 19 155 R-O-WORLD 182 201 156 182 165 182 156 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 166 163 164 + INDR-TAX 17 26 164 166 FOR-C-IND </td <td>141</td> <td>CM-CP-SERV</td> <td>63</td> <td>89</td> <td>114</td> <td></td>	141	CM-CP-SERV	63	89	114	
143 + CM-DM-AGRI CM-EX-AGRI CM-IM-AGRI CM-CP-AGRI 144 ACT-G-AGRI 227 74 3 145 CM-DM-AGRI 3 3 146 CM-IM-AGRI 3 3 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 3 1 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 3 152 CM-DM-IND 201 155 R-O-WORLD 201 154 INDR-TAX 29 19 19 19 155 R-O-WORLD 182 433 160 CM-IM-SERV 433 160 CM-IM-SERV 26 161 1NDR-TAX 17 26 163 INDR-TAX 17 26 163 164 + INDR-TAX 26 163 FOR-C-IND -4 166 FOR-C-SERV -11 167 100 SE 26 164 +	142			3 0		
144 ACT-G-AGRI 227 74 145 CM-DM-AGRI 229 146 CM-IM-AGRI 3 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 3 1 149 2 3 1 2 149 2 3 1 2 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 201 152 CM-DM-IND 462 59 491 201 153 CM-IM-IND 201 19 10 10 10 154 INDR-TAX 29 19 10 <td< td=""><td>143</td><td>+</td><td>CM-DM-AGRI</td><td>CM-EX-AGRI</td><td>CM-IM-AGRI</td><td>CM-CP-AGRI</td></td<>	143	+	CM-DM-AGRI	CM-EX-AGRI	CM-IM-AGRI	CM-CP-AGRI
145 CM-DM-AGRI 229 146 CM-IM-AGRI 3 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 3 1 149 * CM-OM-IND CM-EX-IND CM-IM-IND CM-CP-IND 150 + CM-OM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 201 153 CM-IM-IND 201 102 101 102 154 INDR-TAX 29 19 102 102 102 155 R-O-WORLD 102 102 102 102 102 101 101 102 102 102 103 100 102 102 103 100 102 102 105 101 102 102 102 103 100 103 100 102 103 100 103 100 101 101 101 101 101 101 101 101 101 101 101 101 10	144	ACT-G-AGRI	227	74		
146 CM-IM-AGRI 3 147 INDR-TAX 2 3 1 148 R-O-WORLD 2 2 149 2 3 1 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 201 152 CM-DM-IND 491 201 201 154 INDR-TAX 29 19 192 155 R-O-WORLD 182 162 156 - 182 162 156 - 182 433 166 CM-DM-SERV CM-EX-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 159 CM-DM-SERV 433 60 160 CM-IM-SERV 26 61 161 INDR-TAX 17 26 163 162 R-O-WORLD 26 61 164 163 + INDR-TAX R-O-WORLD 26 163 + INDR-TA	145	CM-DM-AGRI				229
147 INDR-TAX 2 3 1 148 R-O-WORLD 2 149 2 150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 152 CM-DM-IND 462 59 201 153 CM-IM-IND 201 201 154 INDR-TAX 29 19 201 155 R-O-WORLD 182 156 156 - 182 201 155 R-O-WORLD 182 26 156 - 416 32 33 150 CM-DM-SERV CM-EX-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 26 161 INDR-TAX 17 26 26 163 + INDR-TAX 26 26 163 + INDR-TAX 26 16 164 + INDR-TAX 26 16 165 FOR-C-IND -4	146	CM-IM-AGRI				3
148 R-O-WORLD 2 149 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 152 CM-DM-IND 462 59 491 153 CM-IM-IND 201 201 154 INDR-TAX 29 19 201 155 R-O-WORLD 182 182 156 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 32 33 33 33 33 33 33 33 34 33 33 33 34 33 33 34 33 34 33 34	147	INDR-TAX	2	3	1	
149 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 152 CM-DM-IND 491 201 153 CM-IM-IND 201 201 154 INDR-TAX 29 19 155 R-O-WORLD 182 182 156 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 32 33 160 CM-DM-SERV 416 32 33 33 160 CM-DM-SERV 416 32 33 33 160 CM-DM-SERV 416 32 33 33 34 160 CM-IM-SERV 416 32 33 34	148	R-O-WORLD			2	
150 + CM-DM-IND CM-EX-IND CM-IM-IND CM-CP-IND 151 ACT-G-IND 462 59 491 152 CM-DM-IND 201 201 153 CM-IM-IND 201 153 154 INDR-TAX 29 19 155 R-O-WORLD 182 182 156 - 182 182 156 - 182 183 156 - 182 183 156 - 182 156 - - 182 157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV 158 ACT-G-SERV 416 32 33 160 CM-IM-SERV 26 433 160 CM-DM-SERV 26 163 161 INDR-TAX 17 26 163 162 R-O-WORLD 26 164 11 165 FOR-C-IND -11 165 FOR-C-SERV -11 166 GOVRN-INCM 71 3	149					
151 ACT-G-IND 462 59 152 CM-DM-IND 491 153 CM-IM-IND 201 154 INDR-TAX 29 19 155 R-O-WORLD 182 156 182 157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 33 160 CM-JM-SERV 433 433 33 160 CM-JM-SERV 433 34 160 CM-JM-SERV 26 433 161 INDR-TAX 17 26 163 + INDR-TAX R-O-WORLD 26 163 + INDR-TAX R-O-WORLD 26 163 + INDR-TAX R-O-WORLD 11 165 FOR-C-IND -4 16 16 166 FOR-C-SERV -11 16 16 167 HOUSE-INCM 5 16 16 168 GOVRN-INCM 71 3 <td< td=""><td>150</td><td>+</td><td>CM-DM-IND</td><td>CM-EX-IND</td><td>CM-IM-IND</td><td>CM-CP-IND</td></td<>	150	+	CM-DM-IND	CM-EX-IND	CM-IM-IND	CM-CP-IND
152 CM-DM-IND 491 153 CM-IM-IND 201 154 INDR-TAX 29 19 155 R-O-WORLD 182 156 182 157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 33 160 CM-DM-SERV 433 34 33 33 34 33 34 33 34 36 36 36 36	151	ACT-G-IND	462	59		
153 CM-IM-IND 201 154 INDR-TAX 29 19 155 R-O-WORLD 182 156 157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 33 160 CM-IM-SERV 433 433 33 160 CM-IM-SERV 433 33 160 CM-IM-SERV 26 433 161 INDR-TAX 17 26 163 164 + INDR-TAX 26 163 164 + INDR-TAX 7 165 FOR-C-IND -4 4 166 FOR-C-SERV -11 1 167 HOUSE-INCM 5 1 168 GOVRN-INCM 71 3 1 169 SAVINGS 49 1 1 170 CM-EX-AGRI 77 1 1 171 CM-EX-IND 59 1 1 172 CM-EX-SERV </td <td>152</td> <td>CM-DM-IND</td> <td></td> <td></td> <td></td> <td>491</td>	152	CM-DM-IND				491
154 INDR-TAX 29 19 155 R-O-WORLD 182 156 157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 160 CM-DM-SERV 433 433 160 CM-IM-SERV 433 433 160 CM-IM-SERV 26 433 161 INDR-TAX 17 26 163 164 + INDR-TAX 26 163 164 + INDR-TAX 26 165 FOR-C-IND -4 4 166 FOR-C-SERV -11 16 167 HOUSE-INCM 5 168 60VRN-INCM 71 3 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 77 171 CM-EX-IND 59 172 CM-EX-SERV 32 32 172 172	153	CM-IM-IND				201
155 R-O-WORLD 182 156 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 33 159 CM-DM-SERV 433 433 160 CM-IM-SERV 433 161 INDR-TAX 17 162 R-O-WORLD 26 163 164 + INDR-TAX 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 170 CM-EX-AGRI 77 171 CM-EX-AGRI 77 172 CM-EX-SERV 32	154	INDR-TAX	29		19	
156 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 433 159 CM-DM-SERV 416 32 159 CM-DM-SERV 433 160 CM-IM-SERV 26 161 INDR-TAX 17 162 R-O-WORLD 26 163 + INDR-TAX R-O-WORLD 164 + INDR-TAX R-O-WORLD 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	155	R-O-WORLD			182	
157 + CM-DM-SERV CM-EX-SERV CM-IM-SERV CM-CP-SERV 158 ACT-G-SERV 416 32 433 159 CM-DM-SERV 433 60 CM-IM-SERV 26 161 INDR-TAX 17 26 61 61 100 70 26 61 162 R-O-WORLD 26 26 61	156					
158 ACT-G-SERV 416 32 159 CM-DM-SERV 433 160 CM-IM-SERV 26 161 INDR-TAX 17 162 R-O-WORLD 26 163 164 + INDR-TAX R-O-WORLD 165 FOR-C-IND -4 166 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-SERV 32	157	+	CM-DM-SERV	CM-EX-SERV	CM-IM-SERV	CM-CP-SERV
159 CM-DM-SERV 433 160 CM-IM-SERV 26 161 INDR-TAX 17 162 R-O-WORLD 26 163 164 + 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-SERV 32	158	ACT-G-SERV	416	32		
160 CM-IM-SERV 26 161 INDR-TAX 17 162 R-O-WORLD 26 163	159	CM-DM-SERV				433
161 INDR-TAX 17 162 R-O-WORLD 26 163	160	CM-IM-SERV				26
162 R-O-WORLD 26 163 + INDR-TAX R-O-WORLD 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-SERV 32	161	INDR-TAX	17			1
163 164 + INDR-TAX R-O-WORLD 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	162	R-O-WORLD			26	
164 + INDR-TAX R-O-WORLD 165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	163					
165 FOR-C-IND -4 166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	164 🔅	+	INDR-TAX	R-0-WORLD		
166 FOR-C-SERV -11 167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	165	FOR-C-IND		-4		
167 HOUSE-INCM 5 168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	166	FOR-C-SERV		-11		
168 GOVRN-INCM 71 3 169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	167	HOUSE-INCM		5		
169 SAVINGS 49 170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	168	GOVRN-INCM	71	3		
170 CM-EX-AGRI 77 171 CM-EX-IND 59 172 CM-EX-SERV 32	169	SAVINGS		49		
171 CM-EX-IND 59 172 CM-EX-SERV 32	170	CM-EX-AGRI		77		
172 CM-EX-SERV 32	171	CM-EX-IND		59		
	172	CM-EX-SERV		32		

- 55 -

10/29/85 11:48:53 PAGE 5

- 56 -

1.1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF CELL SPECIFICATIONS

174	TABLE SPEC(ACC,ACCC)	SPECIFICATION	SFOR THAILA	ND BASE MODE	L
176				FAC. C-TND	EAC-C-SEDV	
177		FAC-LABOR	FAC-C-AGRI	FAL-U-IND	FAC-C-SERV	
170				10121	TOTET	
170	HOUSE THOM	70767	TOTET		10131	
100	COMDANIES	10151	10151			
100	COMPANIES					
101	GOVEN-INCM					
102				TOT 0 100	TOT-0-0501	
103		FOR-C-IND	FUK-C-SERV	IOI-C-IND	IUI-L-SERV	
104	TOT-C-IND	10151	10107			
100	TOT-C-SERV		10121		10107	
100	HUUSE-INCM			IDIST	10151	•
187	CUMPANIES			IDIST	IDIST	
188	GOVRN-INCM			IDIST	IDIST	
189						
190	+	HOUSE-INCM	HOUSE-TCON	HOUSE-COMM	HOUSE-DISC	
191	HOUSE-TCON	IDIST				
192	HOUSE-COMM		UNSPEC			
193	HOUSE-DISC		UNSPEC			
194	COMPANIES	IDIST				
195	GOVRN-INCM	IDIST				
196	SAVINGS	IDIST				
197	CM-CP-AGRI			QEXO	VSHR	
198	CM-CP-IND	64		QEXO	VSHR	
199	CM-CP-SERV			QEXO	VSHR	8
200						
201	+	COMPANIES	GOVRN-INCM	GOVRN-CONS		
202	HOUSE-INCM	IDIST	TEXO			
203	COMPANIES		TEXO			
204	GOVRN-INCM	IDIST				
205	GOVRN-CONS		TEXO			
206	SAVINGS	IDIST	UNSPEC			
207	CM-CP-AGRI					
208	CM-CP-IND	10		QSHR		
209	CM-CP-SERV			QSHR		
210						
211	+	SAVINGS	CAP-F-AGRI	CAP-F-IND	CAP-F-SERV	
212	CAP-F-AGRI	VSHR				
213	CAP-F-IND	VSHR				
214	CAP-F-SERV	VSHR				
215	CM-CP-AGRI		10	10		
216	CM-CP-IND		10	10	10	
217	CM-CP-SERV			23		
218						
219	+	ACT-N-AGRI	ACT-N-IND	ACT-N-SERV		
220	FAC-LABOR	CES	ÇES	CES		
221	FAC-C-AGRI	CES				
222	FAC-C-IND		CES			

.

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL Definition of Cell Specifications

223	FAC-C-SERV			CES	
224					
225	+	ACT-G-AGRI	ACT-G-IND	ACT-G-SERV	
226	ACT-N-AGRI	10			
227	ACT-N-IND		10		
228	ACT-N-SERV			10	
229	CM-CP-AGRI	10	10	10	
230	CM-CP-IND	10	10	10	
231	CM-CP-SERV	10	10	10	
232					
233	+	CM-DM-AGRI	CM-EX-AGRI	CM-IM-AGRI	CM-CP-AGRI
234	ACT-G-AGRI	10	10		
235	CM-DM-AGRI				CES
236	CM-IM-AGRI				CES
237	INDR-TAX	ITAX	ITAX	ITAX	
238	R-O-WORLD		30 U	IMPORT	
239					
240	+	CM-DM-IND	CM-EX-IND	CM-IM-IND	CM-CP-IND
241	ACT-G-IND	10	10		
242	CM-DM-IND				CES
243	CM-TM-IND				CES
244	INDR-TAX	ITAX		ITAX	
245	R-O-WORLD			IMPORT	
246					
247	+	CM-DM-SERV	CM-EX-SERV	CM-IM-SERV	CM-CP-SERV
248	ACT-G-SERV	10	10		
249	CM-DM-SERV				CES
250	CM-TM-SERV				CES
251	INDR-TAX	ITAX			
252	R-O-WORLD			IMPORT	
253					
254	+	INDR-TAX	R-O-WORLD		
255	FOR-C-IND		FEXO		
256	FOR-C-SERV		FEXO		
267	HOUSE-TNCM		FEXO		
258	GOVEN-INCM	IDIST	FEXO		
259	SAVINGS		UNSPEC		
260	CM-FX-ACDT		EXPORT		
261	CM-FX-IND		EXPORT		
262	CM-FY-SEDV		FXPORT		
404	UM LA JERV				

- 57

1

4

10/29/85 11:48:53 PAGE

.

1 58 1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL Account information table

264	TABLE	AINF(ACC,*)	ACCOUNT	INFORM	ATION	TABLE
265						
266			GROUP	FIX	SIGMA	
267		FAC-LABOR	MF	P		
268		FAC-C-AGRI	ME	Q		
269		FAC-C-IND	MF	Q		
270		FAC-C-SERV	MF	Q		
271		FOR-C-IND	NMF			
272		FOR-C-SERV	NMF			
273		TOT-C-IND	INST			
274		TOT-C-SERV	INST			
275		HOUSE-INCM	INST			
276		HOUSE-TCON	INST			
277		HOUSE-COMM	INSTC			
278		HOUSE-DISC	INSTC			
279		COMPANIES	INST			
280		GOVRN-INCM	INST			
281		GOVRN-CONS	INSTC			
282		SAVINGS	INSTC	Q		
283		CAP-F-AGRI	AC			
284		CAP-F-IND	AC			
285		CAP-F-SERV	AC			
286		ACT-N-AGRI	AC		0.9	
287	•	ACT-G-AGRI	AC			
288		ACT-N-IND	AC		0.6	
289		ACT-G-IND	AC			
290		ACT-N-SERV	AC		0.8	
291		ACT-G-SERV	AC			
292		CM-DM-AGRI	AC			
293		CM-EX-AGRI	AC			
294		CM-IM-AGRI	AC		0.8	
295		CM-CP-AGRI	AC			
296		CM-DM-IND	AC			
297		CM-EX-IND	AC			
298		CM-IM-IND	AC			
299		CM-CP-IND	AC		1.5	
300		CM-DM-SERV	AC			
301		CM-EX-SERV	AC			
302		CM-IM-SERV	AC			
303		CM-CP-SERV	AC		3.0	
304		INDR-TAX	TAX		8	
305		R-O-WORLD	ROW	St P		

GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINITION OF MODEL COMPONENTS AND EXPERIMENT INFORMATION 307 PARAMETER ETA(ACCEX) EXPORT DEMAND ELASTICITIES 308 / CM-EX-AGRI 6.0, CM-EX-IND 2.6, CM-EX-SERV 2.3 / 309 310 PARAMETER CINF(ACC, ACC, *) CELL INFORMATION TABLE; 311 312 CINF(ACC, ACCC, "TBASE") = SAM(ACC, ACCC);CINF(ACC, ACCC, "SPECS") = SPEC(ACC, ACCC); 313 314 CINF(ACCEX, "R-O-WORLD", "ETA") = ETA(ACCEX); 315 DEFINE THE EXPERIMENT INFORMATION 316 317 SCALAR DELTA ABSOLUTE CHANGE IN AGRICULTURAL TAX RATE; 318 319 DELTA = 0.01;320 321 CINF("INDR-TAX", "CM-EX-AGRI", "THETA") = 322 . SAM("INDR-TAX","CM-EX-AGRI")/SUM(ACC,SAM(ACC,"CM-EX-AGRI")) + DELTA; 323 324 DEFINE SETS AND TABLES FOR STORING THE MODEL SOLUTIONS 325 326 SET VERSIONS / BASE BASE CASE 327 LSFB LABOR SURPLUS FREE TO BORROW CASE 328 LABOR SURPLUS BORROWING CONSTRAINED CASE LSBC 329 LCFB LABOR CONSTRAINED FREE TO BORROW CASE 330 LCBC LABOR CONSTRAINED BORROWING CONSTRAINED CASE / 331 332 PARAMETER SAMS(ACC, ACC, VERSIONS) SOLUTION SAMS 333 CSAM(ACC, ACC, VERSIONS) CONSTANT PRICE SOLUTION SAMS 334 PSOL(ACC, VERSIONS) SOLUTION PRICES 335 QSOL(ACC, VERSIONS) SOLUTION QUANTITIES 336 VSOL(ACC, VERSIONS) SOLUTION ACCOUNT TOTALS: 337 338 PSOL(ACC, "BASE") = 1; 339 QSOL(ACC, "BASE") = SUM(ACCC, SAM(ACC, ACCC)); 340 YSOL(ACC, "BASE") = QSOL(ACC, "BASE"); SAMS(ACC, ACCC, "BASE") = SAM(ACC, ACCC);341 CSAM(ACC, ACCC, "BASE") = SAM(ACC, ACCC); 342

GAMS 2.00 IBM CMS

59 -

• •

1

.

δ

õ

1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINE AND SOLVE THE THREE VERSIONS

```
344 * DEFINE AND SOLVE THE LABOR SURPLUS FREE TO BORROW MODEL
345
346
       MODEL THAILAND / ACC, AINF, CINF /;
347
348
       SOLVE THAILAND USING TV:
349
350
       PSOL(ACC,"LSFB")
                               = AINF(ACC, "PSOL");
351
       QSOL(ACC."LSFB")
                               = AINF(ACC, "QSOL");
352
       VSOL(ACC."LSFB")
                               = AINF(ACC, "YSOL");
353
       SAMS(ACC, ACCC, "LSFB") = CINF(ACC. ACCC. "TSOL");
354
       CSAM(ACC, ACCC, "LSFB") = CINF(ACC, ACCC, "QCSOL");
355
356 * DEFINE AND SOLVE LABOR SURPLUS BORROWING CONSTRAINED MODEL
357
358
       AINF("SAVINGS", "FIX") = 0:
359
       CINF("SAVINGS", "R-O-WORLD", "SPECS") = FEXO:
360
361
       SOLVE THAILAND USING TV;
362
                              = AINF(ACC, "PSOL");
363
       PSOL(ACC, "LSBC")
364
       QSOL(ACC, "LSBC")
                              = AINF(ACC, "QSOL");
365
       YSOL(ACC, "LSBC")
                              = AINF(ACC."YSOL"):
366
       SAMS(ACC, ACCC, "LSBC") = CINF(ACC, ACCC, "TSOL");
367
       CSAM(ACC, ACCC, "LSBC") = CINF(ACC, ACCC, "QCSOL");
368
369
       AINF("SAVINGS", "FIX") = Q;
370
       CINF("SAVINGS", "R-O-WORLD", "SPECS") = UNSPEC;
371
     * DEFINE AND SOLVE THE LABOR CONSTRAINED FREE TO BORROW MODEL
372
373
374
       AINF("FAC-LABOR", "FIX") = Q:
375
376
       SOLVE THAILAND USING TV;
377
378
                              = AINF(ACC, "PSOL");
       PSOL(ACC,"LCFB")
379
       QSOL(ACC, "LCFB")
                              = AINF(ACC, "QSOL");
380
       YSOL(ACC, "LCFB")
                              = AINF(ACC, "YSOL");
       SAMS(ACC, ACCC, "LCFB") = CINF(ACC, ACCC, "TSOL");
381
382
       CSAM(ACC, ACCC, "LCFB") = CINF(ACC, ACCC, "QCSOL");
383
384
    * DEFINE AND SOLVE LABOR CONSTRAINED BORROWING CONSTRAINED MODEL
385
386
       AINF("SAVINGS","FIX") = 0;
387
       CINF("SAVINGS", "R-O-WORLD", "SPECS") = FEXO:
388
389
       SOLVE THAILAND USING TV;
390
391
       PSOL(ACC, "LCBC")
                              = AINF(ACC, "PSOL");
392
       QSOL(ACC, "LCBC")
                              = AINF(ACC, "QSOL");
```

22

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL DEFINE AND SOLVE THE THREE VERSIONS

393	YSOL(ACC,"LCBC")	= AINF(ACC, "YSOL");
394	SAMS(ACC, ACCC, "LCBC")	= CINF(ACC, ACCC, "TSOL");
395	CSAM(ACC,ACCC,"LCBC")	= CINF(ACC, ACCC, "QCSOL");

- 61 -

1

6

Ñ

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL CREATE AND DISPLAY REPORT

397 SET LINCU LINE ITEMS FOR CURRENT PRICE SUMMARY TABLES 398 / CONSUMPTN , INVESTMENT, EXPORT , IMPORT GDP-MARKET. 399 , GOVRN-REVN, BOP-DEFICT/ GDP-FACTOR, LABOR 400 LINES(LINCU) LINE ITEMS FOR PRICE AND CONSTANT PRICE SUMMARY TABLES 401 / CONSUMPTN , INVESTMENT, EXPORT . IMPORT , GDP-MARKET. 402 GDP-FACTOR, LABOR 403 404 PARAMETER AGGCUR(LINCU, VERSIONS) NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES 405 AGGCON(LINES, VERSIONS) NATIONAL ACCOUNT AGGREGATES IN CONSTANT PRICES 406 PRICES(LINES.VERSIONS) PRICE INDICES OF NATIONAL ACCOUNT AGGREGATES 407 ELASTCU(LINCU, VERSIONS) ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES 408 ELASTCO(LINES, VERSIONS) ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CONSTANT PRICES 409 ELASTPR(LINES, VERSIONS) ELASTICITIES OF PRICES; 410 411 AGGCUR("CONSUMPTN", VERSIONS) = SUM(CONS, YSOL(CONS, VERSIONS)); 412 AGGCUR("INVESTMENT", VERSIONS) = YSOL("SAVINGS", VERSIONS); 413 AGGCUR("EXPORT", VERSIONS) = SUM(ACCEX, SAMS(ACCEX, "R-O-WORLD", VERSIONS)); 414 AGGCUR("IMPORT", VERSIONS) = SUM(ACCIM, SAMS("R-O-WORLD", ACCIM, VERSIONS)); 415 AGGCUR("GDP-MARKET", VERSIONS) = AGGCUR("CONSUMPTN", VERSIONS) + 416 AGGCUR("INVESTMENT", VERSIONS) + 417 AGGCUR("EXPORT", VERSIONS) -418 AGGCUR("IMPORT", VERSIONS); 419 AGGCUR("GDP-FACTOR".VERSIONS) = SUM(ACCFAC, VSOL(ACCFAC, VERSIONS)); 420 AGGCUR ("LABOR", VERSIONS) = VSOL("FAC-LABOR", VERSIONS); 421 AGGCUR("GOVRN-REVN", VERSIONS) = YSOL("GOVRN-INCM", VERSIONS); 422 AGGCUR("BOP-DEFICT", VERSIONS) = SAMS("SAVINGS", "R-O-WORLD", VERSIONS): 423 424 AGGCON("CONSUMPTN", VERSIONS) = SUM(CONS,QSOL(CONS,VERSIONS)); 425 AGGCON("INVESTMENT", VERSIONS) = QSOL("SAVINGS", VERSIONS); 426 AGGCON("EXPORT", VERSIONS) = SUM(ACCEX,CSAM(ACCEX,"R-O-WORLD",VERSIONS)); 427 AGGCON("IMPORT", VERSIONS) = SUM(ACCIM,CSAM("R-O-WORLD",ACCIM,VERSIONS)); 428 AGGCON("GDP-MARKET", VERSIONS) = AGGCON("CONSUMPTN", VERSIONS) + 429 AGGCON("INVESTMENT", VERSIONS) + 430 AGGCON("EXPORT", VERSIONS) -431 AGGCON("IMPORT", VERSIONS): 432 AGGCON("GDP-FACTOR", VERSIONS) = SUM(ACCFAC, QSOL(ACCFAC, VERSIONS)); 433 AGGCON("LABOR", VERSIONS) = QSOL("FAC-LABOR", VERSIONS); 434 435 PRICES(LINES, VERSIONS) = AGGCUR(LINES, VERSIONS) / AGGCON(LINES, VERSIONS); 436 437 ELASTCU(LINCU, VERSIONS) = (AGGCUR(LINCU, VERSIONS)/AGGCUR(LINCU, "BASE") -1)/DELTA: 438 ELASTCO(LINES, VERSIONS) = (AGGCON(LINES, VERSIONS)/AGGCON(LINES, "BASE") ~1)/DELTA: 439 ELASTPR(LINES, VERSIONS) = (PRICES(LINES, VERSIONS)/PRICES(LINES, "BASE") -1)/DELTA; 440

441 DISPLAY AGGCUR, AGGCON, PRICES, ELASTCU, ELASTCO, ELASTPR;

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL Symbol Listing

SYMBOL	TYPE	REFERENCES								
AC	ACRNM	DECLARED	76	DEFINED	76	REF	283	284	285	286
		287	288	289	290	291	292	293	294	295
		296	297	298	299	300	301	302	303	
104	SET		3	DEFINED	3	IMPL-ASN	348	361	376	389
ACC	361	DECEMBES	56	312	313	322	339	340	341	342
		346	360	351	352	353	354	363	364	365
		366	367	378	379	380	381	382	391	392
		300	307	305	CONTROL	312	313	322	338	339
		383	341	342	350	351	352	353	354	363
		340	341	342	367	379	370	380	381	382
		364	305	300	307	305	575	000		001
		391	392	022	394	. 919	220	241	242	353
ACCC	SET	DECLARED	56	REF	312	313	339	341	CONTROL	312
		354	366	367	381	382	394	393	CONTROL	201
		313	339	341	342	353	354	300	307	301
<i>t</i> :		382	394	395						
ACCCP	SET	DECLARED	45	DEFINED	46					
ACCEX	SET	DECLARED	49	DEFINED	50	REF	314	413	426	
		CONTROL	314	413	426		_			
ACCFAC	SET	DECLARED	47	DEFINED	48	REF	419	432	CONTROL	419
ACCTM	CET		51	DEEINED	52	REE	414	427	CONTROL	414
ALLIM	361	427	3,							40.0
AGGCON	PARAM	DECLARED	405	ASSIGNED	424	425	426	427	428	432
		433	REF	428	429	430	431	435	2*438	441
AGGCUR	PARAM	DECLARED	404	ASSIGNED	411	412	413	414	415	419
		420	421	422	REF	415	416	417	418	435
		2*437	441							
AINE	PARAM	DECLARED	264	DEFINED	264	IMPL-ASN	348	361	376	389
		ASSIGNED	358	369	374	386	REF	346	350	351
		352	363	364	365	378	379	380	391	392
CES			58	DEEINED	58	REE	3*220	221	222	223
LES	ACTIM	235	236	242	243	249	250			
CINE	DADAM		200		349	361	376	389	ASSIGNED	312
CINF	FARAM	212	214	1000	260	370	397	DEE	346	353
		313	314	367	305	300	304	305	040	000
		354	300	307	301	302	354	395	CONTROL	411
LONS	SET	JECLARED 424	53	DEFINED	34	REF	411	724	CONTROL	
CSAM	PARAM	DECLARED	333	ASSIGNED	342	354	367	382	395	
CDAM	1 ALLAW	REF	426	427	• • •		•••			
	DADAM		318	ASSTONED	319	REF	322	437	438	439
	DADAM		400	ASSTGNED	438	REE	441			
ELASILU			400	ASSIGNED	430	REF	441			
ELASILU	DADAM		407	ASSIGNED	430	DEE	441			
ELASIPH	PAKAM		409	ASSIGNED	300	NCF DEE	314			
EIA	PARAM		307	DELINED	308		260	261	262	
EXPORT	ACRNM	DECLARED	59	DEFINED	59	KEP	200	201	202	250
FEXO	ACRNM	DECLARED	60	DEFINED	60	REF	255	256	25/	200

. 97

- 63 -

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL SYMBOL LISTING

SYMBOL	TYPE	REFERENCES								
		359	387							
IDIST	ACRNM	DECLARED	61	DEFINED	61	REF	177	178	2*179	184
		185	2*186	2*187	2*188	191	194	195	196	202
		204	206	258						
IMPORT	ACRNM	DECLARED	62	DEFINED	62	REF	238	245	252	
INST	ACRNM	DECLARED	ं 74	DEFINED	74	REF	273	274	275	276
		279	280							
INSTC	ACRNM	DECLARED	75	DEFINED	75	REF	277	278	281	282
10	ACRNM	DECLARED	63	DEFINED	63	REF	2*215	3+216	226	227
		228	3*229	3+230	3*231	2*234	2*241	2*248	7 2	
ITAX	ACRNM	DECLARED	64	DEFINED	64	REF	3+237	2*244	251	
LINCU	SET	DECLARED	397	DEFINED	398	REF	2*437	CONTROL	437	
LINES	SET	DECLARED	400	DEFINED	401	REF	2*435	2+438	2*439	
		CONTROL	435	438	439					
MF	ACRNM	DECLARED	72	DEFINED	72	REF	267	268	269	270
NMF	ACRNM	DECLARED	73	DEFINED	73	REF	27,1	272		
P	ACRNM	DECLARED	82	DEFINED	82	REF	267	305		
PQ	ACRNM	DECLARED	80	DEFINED	80		2			
PRICES	PARAM	DECLARED	406	ASSIGNED	435	REF	2*43 9	441		
PSOL	PARAM	DECLARED	334	ASSIGNED	338	350	363	378	391	
Q	ACRNM	DECLARED	81	DËFINED	81	REF	268	269	270	282
		369	374							
QEXO	ACRNM	DECLARED	65	DEFINED	65	REF	197	198	199	
QSHR	ACRNM	DECLARED	66	DEFINED	66	REF	208	209		
QSOL	PARAM	DECLARED	335	ASSIGNED	339	351	364	379	392	
		REF	340	424	425	432	433			
ROW	ACRNM	DECLARED	78	DEFINED	78	REF	305			
SAM	PARAM	DECLARED 342	84	DEFINED	84	REF	312	2*322	339	341
SAMS .	PARAM	DECLARED	332	ASSIGNED	341	353	366	381	394	
		REF	413	414	422					
SPEC	PARAM	DECLARED	174	DEFINED	174	REF	313			
TAX	ACRNM	DECLARED	77	DEFINED	77	REF	304			
TEXO	ACRNM	DECLARED	67	DEFINED	67	REF	202	203	205	
THAILAND	MODEL	DECLARED	346	DEFINED	346	REF	348	361	376	389
UNSPEC	ACRNM	DECLARED 370	70	DEFINED	70	REF	192	193	206	259
VERSIONS	SET	DECLARED	326	DEFINED	326	REF	411	° 412	413	414
		415	416	417	418	419	420	421	422	424
		425	426	427	428	429	430	431	432	433
		2*435	437	438	439	CONTROL	411	412	413	414
		415	419	420	421	422	424	425	426	427
		428	432	433	435	437	438	439		
VEXO	ACRNM	DECLARED	68	DEFINED	68					
VSHR	ACRNM	DECLARED	69	DEFINED	69	REF	197	198	199	212
		213	214							
YSOL	PARAM	DECLARED	336	ASSIGNED	340	352	365	380	393	

t. 64

....

1

5

1

1

65 -

14

5090 a

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL Symbol Listing

SYMBOL TYPE REFERENCES

REF 411 412 419 420 421

SETS

ACC	ACCOUNT SET FOR THE THREE SECTOR THAILAND DEMONSTRATION	MODEL
ACCC	ALIASED WITH ACC	
ACCCP	SET OF COMPOSITE COMMODITY ACCOUNTS	
ACCEX	SET OF EXPORT COMMODITY ACCOUNTS	•
ACCFAC	SET OF FACTOR ACCOUNTS	
ACCIM	SET OF IMPORT COMMODITY ACCOUNTS	<u>8</u>
CONS	SET OF CONSUMPTION ACCOUNTS	
LINCU	LINE ITEMS FOR CURRENT PRICE SUMMARY TABLES	
LINES	LINE ITEMS FOR PRICE AND CONSTANT PRICE SUMMARY TABLES	
VERSIONS		

ACRONYMS

AC	ACTIVITY OR COMMODITY ACCOUNT
CES	CONSTANT ELASTICITY OF SUBSTITUTION FUNCTION
EXPORT	EXPORT SPECIFICATION
FEX0 .	FIXED IN FOREIGN EXCHANGE
IDIST	INCOME DISTRIBUTION
IMPORT	IMPORT SPECIFICATION
INST	INSTITUTIONS INCOME AND TRANSFER ACCOUNT
INSTC	INSTITUTIONS CONSUMPTION ACCOUNT
10	LEONTIEF PRODUCTION FUNCTION
ITAX	INDIRECT TAX SPECIFICATION
MF	MARKET FACTOR ACCOUNT
NMF	NON MARKET FACTOR ACCOUNT
P	PRICE EXOGENOUS
PQ	PRICE AND QUANTITY EXOGENOUS
0	QUANTITY EXOGENOUS
QEXO	EXOGENOUS QUANTITY CONSUMPTION SYSTEM
QSHR	FIXED QUANTITY SHARES CONSUMPTION SYSTEM
ROW	REST OF THE WORLD ACCOUNT
TAX	TAX ACCOUNT
TEXO	EXOGENOUS VALUE TRANSFER
UNSPEC	UNSPECIFIED
VEXO	EXOGENOUS VALUE CONSUMPTION SYSTEM
VSHR	FIXED VALUE SHARES CONSUMPTION SYSTEM

10/29/85 11:48:53 PAGE 15

- 66

1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL Symbol Listing

PARAMETERS

AGGCON	NATIONAL ACCOUNT AGGREGATES IN CONSTANT PRICES
AGGCUR	NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES
AINF	ACCOUNT INFORMATION TABLE
CINF -	CELL INFORMATION TABLE
CSAM	CONSTANT PRICE SOLUTION SAMS
DELTA	ABSOLUTE CHANGE IN AGRICULTURAL TAX RATE
ELASTCO	ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CONSTANT PRICES
ELASTCU	ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES
ELASTPR	ELASTICITIES OF PRICES
ETA	EXPORT DEMAND ELASTICITIES
PRICES	PRICE INDICES OF NATIONAL ACCOUNT AGGREGATES
PSOL	SOLUTION PRICES
QSOL	SOLUTION QUANTITIES
SAM	SOCIAL ACCOUNTING MATRIX FOR THAILAND IN 1980
SAMS	SOLUTION SAMS
SPEC	SPECIFICATIONS FOR THAILAND BASE MODEL
YSOL	SOLUTION ACCOUNT TOTALS

.

MODELS

THAILAND

COMPILATION TIME = 1.182 SECONDS

1

GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL E X E C U T I N G

.

(=) (*****

---- 441 PARAMETER AGGCUR NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES

	BASE	LSF8	LSBC	LCFB	LCBC
CONSUMPTN	526.000	522.543	522.096	523.656	523.769
INVESTMENT	189.000	188.753	187.667	188.535	188.953
EXPORT	168.000	166.095	166.252	167.407	167.286
IMPORT	210.000	208.785	208.252	209.101	209.286
GDP-MARKET	673.000	668.605	667.763	670.497	670.722
GDP-FACTOR	602.000	597.457	596.748	599.132	599.317
LABOR	424,000	420.834	420,431	421.724	421.831
GOVRN-REVN	97.000	96.995	96.819	97.300	97.351
BOP-DEFICT	49.000	49.690	49.000	48.694	49.000

	441	PARAMETER	AGGCON	NATIONAL	ACCOUNT	AGGREGATES	IN CONSTANT	PRICES
		BASE	E LS	FB	LSBC	LCFB	LCBC	
CONSUMP	TN	526.000	523.4	21 52	3.151	525.526	525.527	
INVESTM	ENT	189.000) 189.0	00 18	8.001	189.000	189.375	
EXPORT		168.000) 165.8	31 16	6.055	167.511	167.348	
IMPORT		210.000	208.7	85 20	8.252	209.101	209.286	
GDP-MAR	КЕТ	673.000) 669.4	67 . 66	8.954	672.937	672.963	
GDP-FAC	TOR	602.000) 598.8	34 59	8.431	602.000	602.000	
LABOR		424.000	420.8	34 42	0.431	424.000	424.000	

441	PARAMETER PRICES	PRICE	INDICES	OF NATIONAL	ACCOUNT AGGREGATES
	BASE	LSFB	LSBC	LCFB	LCBC
CONSUMPTN INVESTMENT Export Import GDP-Market GDP-factor Labor	1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.998 0.999 1.002 1.000 0.999 0.998 1.000	0.998 0.998 1.001 1.000 0.998 0.997 1.000	0.996 0.998 0.999 1.000 0.995 0.995	0.997 0.998 1.000 1.000 0.997 0.996 0.995

---- 441 PARAMETER ELASTCU ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES

	LSFB	LSBC	LCFB	LCBÇ
CONSUMPTN	~0.657 -0.131	-0.742 -0.705	-0.446	-0.424
EXPORT	-1.134	-1.040	-0.353	-0.425
IMPORT	-0.578	-0.832	-0.428	-0.340

- 67 -
GAMS 2.00 IBM CMS GAMS-TV IMPLEMENTATION OF A SAM BASED MODEL E X E C U T I N G

.

441 PARAMETER ELASTCU ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CURRENT PRICES

	LSFB	LSBC	LCFB	LCBC
GDP-MARKET	-0.653	-0.778	-0.372	-0.338
GDP-FACTOR	-0.755	-0.872	-0.476	-0.446
LABOR	-0.747	-0.842	-0.537	-0.511
GOVRN-REVN	-0.005	-0.186	0.309	0.362
BOP-DEFICT	1.409		-0.624	

---- 441 PARAMETER ELASTCO ELASTICITIES OF NATIONAL ACCOUNT AGGREGATES IN CONSTANT PRICES

	LSFB	LSBC	LCFB	LCBC
CONSUMPTN	-0.490	-0.542	-0.090	-0.090
INVESTMENT		-0.529		0.198
EXPORT	-1.291	-1.158	-0.291	-0.388
IMPORT	-0.578	-0.832	-0.428	-0.340
GDP-MARKET	-0.525	-0.601	-0.009	-0.005
GDP-FACTOR	-0.526	-0.593		
LABOR	-0.747	-0.842		

---- 441 PARAMETER ELASTPR ELASTICITIES OF PRICES

	LSFB	LSBC	LCFB	LCBC
CONSUMPTN	-0.168	-0.202	-0.356	-0.334
INVESTMENT	-0.131	-0.178	-0.246	-0.223
EXPORT	0.159	0.119	-0.062	-0.037
GDP-MARKET	-0.129	-0.178	-0.363	-0.333
GDP-FACTOR	-0.230	-0.281	-0.476	-0.446
LABOR			-0.537	-0.511

EXECUTION	TIME	= 2.210	SECONDS

- 134. The Tree-Grop Problem by Richard E. Bellman, University of Southern California and Michael J. Hartley, World Bank, October 1985.
- 135. Are Oil Windfalls a Blessing or a Curse? Policy Exercises with an Indonesia-Like Model by Alan H. Celb, November 1985.
- 136. Neoclassical Econometrics: The Kernel by Michael J. Hartley, October 1985.
- 137. Neoclassical Econometrics: Non-Negativity Constraints by Michael J. Hartley, October 1985.
- 138. Financial Reforms, Stabilization and Growth under High Capital Mobility: Uruguay 1974-83 by Jaime de Melo, October 1985.
- 139. A Firm-Level Chronicle of Financial Crises in the Southern Cone by James Tybout, Georgetown University and Development Research Department, World Bank. October 1985.
- 140. A Systems Approach to the Calibration of Economy-Wide Models with Incomplete Data by Michael J. Bartley, October 1985.
- 141. Explaining the Trade Balance: A General Equilibrium Approach by Ricardo Caballero and Vittorio Corbo, November 1985.
- 142. Maximum Likelihood Estimation of the Truncated and Censored Normal Regression Models by Michael J. Hartley and Eric V. Swanson, November 1985.
- 143. Adverse Selection, Competitive Rationing and Government Policy in Credit Markets by Arvind Virmani, December 1985.
- 144. The Political Economy of Industrial Regulations: A Survey with Implications for Regulation Studies in Developing Countries by Pablo T. Spiller, Senior Research Fellow, Hoover Institution, Stanford University, January 1986.
- 145. The Role of the Real Exchange Rate in Macroeconomic Adjustment: The Case of Chile, 1973-82 by Vittorio Corbo, November 1985.
- 146. Exchange Rate Responses to Exogenous Shocks in Developing Countries by Mohsin S. Khan, January 1986.
- 147. Adjustment Policies in Socialist and Private Market Economies by Bela Balassa, October 1985.
- 148. Outward Orientation by Bela Balassa, July 1985.
- 149. Developing Country Debt: Policies and Prospects by Bela Balassa, July 1985.