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I. Introduction 

In the construction of input-output tables basic statistics on the 
cost structure of separate industries and products play an indispensable 
role. When detailed information of this kind is lacking, recourse must 
be had to assumptions. In "A System of National Accounts" (S.N.A.) the 
United Nations propose some mechanical methods, all relating to the 
handling of 'non-characteristic' products of industries, and to be 
combined as far as possible with detailed information about cost 
structures of this subsidiary production. Limiting assumptions behind 
these methods are the assumption of a connnodity technology on the one 
hand, the assumption of an industry technology on the other. These are 
extreme assumptions which "will only give the same results if there is 
no subsidiary production of any kind, that is to say if the problem 
they ar designed to resolve does not exist." 1) 

Besides these problems of the transfer of non-characteristic 
products to other categories, there is the difficulty that an industry 
may have more than one characteristic product, the cost structure of 
each being different. Apparently, the constructor of an input-output 
table faces no problem, when such a heterogeneous industry constitutes 
one row and column in the table to be compiled. Really, however, 
it must be said that in those cases the existing pr,oblem of the unknown 
cost structure per product is passed on to the user of the table. 
As a rule, the latter will solve the problem by the assumption of an 
industry technology, which means "that an industry is assumed to have 
the same input structure whatever its product mix." 2) 

It will be clear that, as far as this assumption is not fulfilled, 
the usefulness of the table for planning purposes is diminished. 
Therefore, the constructor of the table still faces the problem to 
sub-divide, as far as possible, the rows and columns{regarding homogeneous 
groups, so that the user's assumption of a given technology for each 
group is close to reality. 

The most troublesome examples of such heterogeneous industries surely 
are agriculture and construction, for which the International Standard 
Industrial Classification gives a very broad division indeed, even at 
the group level: 3) 
group J110 Agricultural and livestock production 

" J120 Agricultural services 
" Jl 30 Hunting, trapping and game propagation 
" 5000 Construction. 

The reason why a further subdivision of these groups is not given is 
clear enough: no known methods of collection of basic statistics will 
provide information on outputs and related inputs for groups of agricultural 
products or parts of construction. 

In this article regression methods will be described which may be 
useful in efforts to subdivide, in addition to the rows, also the columns 
regarding such heterogeneous industries in the input-output table. In 
essence, the problem here is not different from that which is met when 
the output and related inputs of non-characteristic products must be 
transfered. The possibility of obtaining useful information to this end 
from the individual census records has been indicated already in the 
S.N.A. where it is stated that "census returns may be regrouped to 
show the input structures in various industries of groups of establish
ments which are not much engaged in uncharacteristic production." 4) 

J) United Nations, [ 91 , page 39. 
2) United Nations, [9] page 39. 
3) United Nations, [Jo] , pp. 27-40 
4) United Nations, [ 9] , p. 37. 

rof heterogeneous industries into 
more rows and columns 
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For heterogeneous industries a regrouping of firms into categories 
producing different connnodities will generally be impossible, as the 
output of most firms will be of a mixed character. When, however, the 
product mix is different between firms, regression analysis may be 
applied to the census data of individual firms to estimate the input 
structure for separate products or activities. 

The Netherlands Central Bureau of Statistics applied the method 
formerly in an international comparison of labour productivity, where 
it was neccessary to have estimates of value added per unit of separate 
activities of heterogeneous industries. 5) In chapter 2 the descrip
tion of the method will be extended to comprise the whole input structure 
of separate activities. Furthermore, the consequences for the estimating 

procedure of introducing restrictions that some cost percentages 
should be zero for technological reasons, and no negative percentages 
should occur, will be indicated. 

In chapter 3 a number of limitations of the methods will be discussed 
and illustrated by a description and some numerical results of the 
experience, gained by the Netherlands Central Bureau of Statistics in 
the last few years. The experience relates to applications of the methods 
to census data of firms belonging to the groups 'agricultural and 
livestock production' and 'manufature of furniture and fixtures, except 
primarily of metal' 6). For agriculture the records of the census of 
farming results 1965/'66 have been used, for wooden furniture the data 
have been taken from the census of production 1968 of the manufacture 
of wood products. As an example, the results obtained for the wooden 
furniture industry will be presented in full in chapter 4. 

From the discussions in chaptet6 3 and 4 it will be seen that not all 
problems of estimating cost structures seem to be capable of tackling by 
the methods described. In general, however, the results obtained may be 
regarded as promising for this kind of attack. 

2. Exposition of the methods 

Suppose that the firms within a heterogeneous industry produce, in 
separated production processes, a number of goods in proportions 
which are different between firms. The cost structure of each kind of 
output is assumed to be the same for each firm, except for random 
disturbances. 

The assumption made here with regard to the cost structures is 
less rigid than the assumption of 'a commodity technology', as mentioned 
in the S.N.A. as one method for the transfer of non-characteristic 
products of industries. The latter means •that a commodity is assumed 
to have the same input structure in whichever industry it is produced. "7) 
The assumption in this article only relates to the production of 
commodities within the (part of the) industry under consideration, 
leaving open the possibility that different input structures may 
occur in the production of these connnodities by other industries or 
by the same industry in e.g. other regions or other size classes of firms. 

5) G.J.A. Mensink, [SJ, especially p. 39. 
6) United Natd.ons, [10], pp. 27-40. 
7) United Nations, [9J, p. 39. 
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The main difference, however, lies in the way in which the assumption 
is exercised. For the transfer of non-characteristic products it is 
handled as a mechanical means of effecting transfers, which is applied 
to the commodidies defined in the input and output tables from which 
the input-output table has to be constructed. In our case the product 
groups to be distinguished can, within certain limits set by the assump
tion of separated production processes, be detailed in such a way as to 
make them as homogeneous as possible with regard to cost structure. 
The assumption can therefore be more realistic and opens perspectives 
for just an increase of the number of rows and columns in the input
output table. 

2.J Equation-by-equation ordinary least-squares 

The assumptions made give rise to the following system of linear 
equations for firm k: 

(I) 

ylk = a.11XJk+al2X2k+ .... " ........ +alN¾-k+ulk 

y2k = a.2lxlk+~22x2k+ ....•.....•... +a2N¾-k+u2k 

in which 
Ymk = value of input of item m (m=l,2, ... ,M) by firm k; 

= value of output of item n (n=l,2, .. ,N) by firm k; 

a. 
mn 

= value of input of item m (m=1,2, ... ,M) needed for an output of 
X = 1 (n=l,2, ... ,N); 

n 

u = residual input of item m by firm k. 
mk 

As the items m=J ... M comprise all the inputs inclusive of value added, 
the sum total of the input coefficients a. for output n equals 

mn unity, so 
M 

(2) E a. = 1 
m=1 mn 

(n=l ...• N). 
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For a sample of K firms the equations regarding the input category 
m can be expressed in matrix notation as 

(3) 

where 

X = 

a 
m 

Y = Xa. + u m m m 

rx11-----------~11 

x12-----------~2 
I 

i 

xlK-----------~K I 

L -

u = 
m 

(m = l. ... M) 

y = 
m 

y 
mK .J 

The set of H regression equations (3) can be written as 

= 

, y 
; M L 

XO --------0 

0 X 

X 0 

0 --------o X 

or, compactly, in the familiar form 

(4) y Za. + u 

a_] 

+ 

~ 

where the number of observations is MK and the number of explanatory 
variables is MN. 

Though, for K > N and X having rank N, the application of ordinary 
least-squares to (4) does result in an unbiased estimate of the 
vector q, the estimate is not efficient, 
because the c2variance matrix of the disturbance u does not take the 
simple form cr I. 

In general, when it is assumed besides E(u) = 0 that the covariance 
matrix of u is given by 

(5) E(uu') = V 

where Vis a positive definite matrix the order of which equals the 
number of observations, best linear unbiased estimates will be obtained 



> • 

.. 

'7 
I 

. . 8) 
by the generalized least-squares estimator: 

(6) 

with covariance matrix 

(7) 

For our specific problem we assume that 

(8) E(u u' ) = cr- I mm' mm' (m,m'=l .... M) 

For m=m' this assumption implies that the disturbances of the single 
equation regarding input m have homogeneous variance CT and are 
uncorrelated between firms. Form 1 m' (8) states thatmm the disturbances 
of the equations regarding the inputs m and m' have the same covariance 
cr- , for all firms, whereas for disturbances concerning different firms 
t~se covariances are zero. 

From (8) it follows that in our case 

(9) V = 

o· I 
MM J 

where 

~ ----------(J' 
11 JM 

(JO) L_ = 
a: ----------er.: Ml MM 

1 . 1 · . 9) and~ denotes Kronecker mu tip ication. 

A special feature in our case is that the disturbances are linearly 
dependent and therefore Land V are singular. This is caused by the fact 
that by definition the sum total of a firm's inputs equals the sum total 
of its outputs, so for firm k 

M N 
(JJ) [ Ymk = L xnk 

m=l n=l 

8) See e.g. H. Theil,[8], section 6.1 or J. Johnston,[2], section 7.1. 
Generalized least-squares amounts to ordinary least-squares, applied 
after a transformation of the data in such7way that the covar~ance 
matrix of the transformed disturbance indeed takes the form~ I. 
The transformation is accomplished by pre-multiplying both sides of (4) 
by a nonsingular matrix P defined in such a way that P'P=v-1 • The 
estimator (6) results now from minimizing the sum of transformed 
squares (PY-PZa)'(PY-PZq). 

9) The Kronecker product of two matrices A and B, A being of order m x n 
and B of order p x q, is given by 

r

allB-----------alnB . . 
A~B= . 

. 
a B-----------a B L mJ mn 

The resulting matrix has order mp x nq . 
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As from (1) and (2) it follows that 

M M M M N M 
[ y = xlk t. '\n1 + ..... +¾k L '\nN+ [ umk =r. xnk+ [ umk ' m=l mk m=l m=l m=l n=l m=l 

it is easily seen that, because of (1 J) ' 

This implies that also 

and so, taking expectations of both sides: 

(12) (m' = 1 •••• M). 

When, however, (12) is the only linear dependence between the 
disturbances of the system (4), the generalized least-squares technique 
comes down to deleting from the system the equation regarding one of 
the inputs, as indicated in general by Theil IO). The estimates of the 
parameters of the deleted equation, for which we take the equation 
regarding input number I, can be computed afterwards by 

~In = 1 - L ,.. 
(n = 1 .... N) , 

mrl 
qmn 

its standard errors can be obtained by applying the formula for the 
variance of a sum. 

For this reason, from now onwards the equations (4) through (7) 
will be regarded upon as having reference to the input categories 2 ... M, 
so exclusive of the category 1. 
The covariance matrix of the disturbance now reads 

v = E c uu , ) = r ,, r 
where 

c::r. ------------(j_ 22 2M 

(13) E = 

~ ------------c: 
\.. M2 MM 

is assumed to be positive definite and the unit matrix is of order K. 
The inverse of Vis given by 

(14) V-l = i_ -) a I 

. h h (A B)-l A-l ■ B-1, f ' A dB b . using t e property tat a = or matrices an eing 
both nons~ngular. 

10) H, Theil,[8!, section 6.7. 
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According to (6) and (7) the generalized least-squares estimator 
and its covariance matrix now come to read 

-1 
(15) a= [z'('f.- 1 

a r)zJ ~'(I:- 1 
a I)Y 

and 

(16) var a= [z'(L::-l Ill I)z]-l 

respectively. 

Remembering that the matrix Z has the form 

,fox 0 

(17) "- = I Ill X 

I , X 
'-

where the unit matrix has the order M-1, (15) and (16) can be reducedll) 
by substituting the expressions 

-1 
[z' (1:-l Ill I)z] (I 8) = 

= [ (I III X') (!- 1 a I) (I 

r_ ]-1 
= f?--l Ill X'X = 

and 

(19) 
-I -1 -1 

z I (L, Ill I) y = ( I ia:X I ) CT. Ill I) y = (..[ Ill XI ) y 

Using these expressions (15) comes to read 

(X'X)-JX' 
' ' 

" 
0 

' 
" 

0 ' 
(X'X)-lX, 

and ( J 6) becomes 

JI) The condensed way of deriving the reduction has been taken from 
H.Theil, 8 , pp. 309-310, where use has been made of the properties 
that (A1BB 1)(A2aB2) .... (1\aBN)= (A1 .A2 ••.. 1\)a(B1.B

2 
•.•• BN), 

provided that the products (A1 .A2 .... 1\) and (B 1.B
2 

.••• BN) both 

exist, and that (AIIIB)' = A'ia:B'. 



(21) 
-1 

var q=[~(X'X) = 

- 10 -

-] -1 
o- (X'X) ------------Cf (X'X) 22 2M • 

• -1 
(1'M2 (XIX) -

l 
I -1 1 

----~ (X'X) i 
MM .~ 

From (20) and (21) it can be seen that in this case the generalized 
least-squares estimates and their covariances coincide exactly with 
the results being obtained when the ordinary least-squares method is 
applied to each equation separately. This is caused by the fact that 
the observation matrix Xis the same in all equations, involving that 
the matrix Zin partitioned form has the same matrix X as its main 
diagonal elements. 

This result is independent from the circumstance that just the 
equation regarding the inpµt category 1 has been deleted from the calcula
tions. The same result would have been obtained when another input 
instead of the input 1 were excluded. This fact, together with the 
result that the parameter estimates for the deleted equation regarding 
input i are obtained as 1 - i a (n=l ... N), implies that, when in 

..J.• mn mri 
this case ordinary least-squares is applied separately to all equations, 

M this 
the sum total J;

1 
c\n-i must be equal to unity for all n. That/is true 

indeed can be shown as follows. 
Summation of the equation-by-equation least-squares estimates 

c\n = (X 1X)- 1X1Y 
m 

over all m = I •••• M yields 

M M 
(22) [ Q' = (X 1X)- 1X' 2 y 

m=l m m=l m 

From ( 1 1) it follows that 

r[ 
yml L xnl J 

m n 

LYm2 Z:.. xn2 1 
m n 

(23) t_ Y 
m 

= = =X 
m 

. 
:r ymK L xnK 1 
m n 

where the unit column vector has order N x I. 

Substituting (23) in (22) gives 

E O\n = (X'X)- 1X'X 
m 



' . 
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and so 
[ 

~l 
m 

(24) L & = = m 
m 

[ & inN 
l 

~m ~ 

The conclusion has been reached in this section that, when in the model 
discussed the observation matrix Xis the same in all equations, 
best linear unbiased estimates of the C(__ are obtained by applying 
ordinary least-squares equation-by-equaflon, and these estimates 
fulfil the criterion (24). 

Unfortunately, the application of this simple method is often 
hampered by two practical problems. 

At first it may happen that a certain type of input cannot be, 
for technical reasons, an input factor for one or more of the distinguished 
types of output. In agriculture and livestock production for instance 
we know that fertilizers are not used up in poultry farming and feeding
stuffs do not constitute a direct input for the output of cereals. 
Those input coefficients have to be put zero beforehand, which problem 
necessitates to follow the joint estimating procedure, to be described 
further in section 2.2. 

Secondly, neither the equation-by-equation least-squares estimator, 
nor the joint estimator to be discussed in section 2.2, will ensure the 
estimates of all q to be non-negative, as they should be. J2) 
Introduction of th~e inequalities as restrictions renders the problem 
into a case of quadratic programming, the solution of which will be 
indicated in section 2.3. 

2.2 Joint generalized least-squares 

When one or more of the ct have to be put equal to zero for technical 
reasons, the estimate of the mn vector~ can be required to satisfy 
these restrictions. The generalized least-squares (g.l.s.) estimator 
satisfying the constraints will be denoted by a, as opposed to the 
unconstrained g.l.s. estimator~ in section 2.1. 

In our case the constraints may be of two kinds, dependent from 
whether the restriction regards a parameter of the equation which has 
been deleted from the direct application of g.l.s. (input number 1), or 
a parameter of one of the other equations. In the latter case a constraint 
can be expressed directly as e.g. a

23 
= 0 or, in matrix notation: 

(25) (0010 •.••. 0J a= 0 

12) Only for profits, when taken as a separate input category, negative 
percentages might occur. 



where the row vector of (M-J)N elements has unity in the position 
corresponding to the position of a23 in a and zero's elsewhere. 
A constraint,however, as e.g. a

12
=o has to be expressed in terms of 

the coefficients occurring in the vector a (which is exclusive of the 
coefficients of the equation 1) and therefore comes to read 

M 
La =l 
m~l m2 

or,in matrix notation: 

(26) ro10 .•.• 010 .... 010 ••.• o]a = l 

where the row 
corresponding 
elsewhere. 

vector of (M-1)N elements now haSunity in the positions 
to the positions of a

22 
, a

32 
, ... ~

2 
in a , and zero's 

The difference is important because in general a restriction 
that a parameter estimate should be zero, can be imposed as well by 
introducing the restriction explicitly in the estimating procedure, as 
by deleting the variable associated with that parameter from the set 
of explanatory variables 13). In our case the latter procedure can be 
followed only as far as no regression coefficients of the first 
(deleted) equation have to be put equal to zero, because a constraint 
of the type (26) has to be introduced always explicitly. Both procedures 
will be described here,starting with the explicit introduction of all 
the constraints. 

In matrix notation all constraints of the type (25) and (26) can 
be combined t:o 

R a = r 

where matrix R has the order g x (M-l)N and r is a column vector of g 
elements, g being the number of constraints, 14 ) 
The constrained g.l.s. estimator is usually expressed as 

(27) 

and has the covariance matrix 

(28) 

where 

(29) 

-1 
var a= C - CR'(RCR 1 ) RC 

and~ is the unconstrained estimator (6). 
Though this article is concerned with the application, not with the 
derivation of these formulae it is necessary, i n view of the problem 
to be discussed in section 2.3, to indicate the way in which formula (27) 
is obtained. 

13) See e.g. J. Johnston,[2], pp.158-159. For generalized least-squares 
this holds true as well as for ordinary least-squares, since the 
former is equivalent to ordinary least-squares applied to trans
formed data. 

14) See e.g. H. Theil,[8], sections 6.8 and 7.3. .. 
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The aim of the procedure is to minimize, instead of 

(PY-PZq) 1 (PY-PZ&) 

as in the unconstrained case (see footnote 8), the expression 

(30) ~ (PY-PZa) 1 (PY-PZa) - ),._, (Ra-r) 

where A is a column vector of g Lagrange multipliers and the factor½ 
before the left-hand term has been introduced for convenience. The 
system of formal equations obtained from differentiating (30) with respect 
to a and /\ and equating to zero, now comes to read 

•-;;-1 R' l -a: = l'-z•v-14 
I i ' 

R O i _,, ' r I 
~ j ~ ◄ J 

from which it 

(31) u 
i- ..I 

follows that -, ; -J -J 
, C R 

1 R 0 
' j 

I r ,_ 

with C as defined in (29). 
The inverse matrix in (3J) is given by 

(32) lcR-J OR ·1- 1 

= rC-CR' (RCR I) -J RC 
CR' (RCR' ) - l 

L 
(RCR 1)-

1RC -(RCR')-l 

After substitution of (32) in (31), the subestimator a according to 
(31) can be reduced to(27), using~= cz•v-ly from (6). 

I 
..J 

-J 
In our case, with V and Z as given by (14) and (17) respectively, 

C reduces to 
-1 

C = [a (X'X) 

from (18). As the covariance matrix [ is unknown, its elements are 
replaced by the estimates 

(33) 
e' e 
m m1 

srrnn' = K-N (m,m 1 =2, ... M), 

the e'e , indicating the sums of squares and cross-products of residuals 
from 1bi: equation-by-equation least-squares application described in 
section 2.1. 

The alternative procedure of deleting an explanatory variable from 
an equation whenever its regression coefficient has to be put equal to 
zero, has the advantage that the constraints have not to be introduced 
explicitly. However, this can only happen at the cos t of the matrix Z 
taking no longer the form (17), since not all output categories will 
appear now as explaining variable s in all equat i ons . 
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This implies that the reduction of (15) and (16) to (20) and (21) 
respectively, does not hold any longer. The former have to be applied 
with 

(34) z = 

the submatrices X (m=2 ... M) now being different from X in that the 
columns regardingmoutputs for which the commodity m cannot be an input 
factor, have been deleted. Wth Z as given in (34), the equations (15) 
and (16) result in the constrained estimator 

(35) a= 

M2~,X _ 
-._er -"M 2 

-1 

with covariance matrix 

(36) var lo-2 2x 1x- - - - - - - - - - o-2~ 1x 
, 2 2 ,2 M 

I 
I I 
I I 

a= : ' 

I M2: 1 ~Iv L(j ~2 - - - - - - - - - o- ~ 

M 

[" illjc.2 Y m 
m=2 

M~ ~ 'Y 
"- m 
m=2 

-) 

mm' 
where the cr- (m,m'=2 ... M) indicate the elements of the inverse of 
(13)(so not of (10)!). 

The results of (35) and (36) coincide exactly with those of (27) 
and (28L respectively, provided that the same estimate of the covariance 
matrix l will be used in both cases. Minor differences may occur when, 
in the last alternative, the elements of E have been estimated from 
equation-by-equation least-squares after deletion of the explanatory 
variables associated with zero coefficients. 

It may be repeated in the end, that the procedure of (35) and (36) can 
be followed only when no constraints of the type (26) have to be introduced. 

2.3 The quadratic programming case 

When non-negativity restrictions are imposed, the solution of the 
estimating procedure has to be obtained by quadratic programming. For 
a full discussion of the methods used in these problems of maximizing 
(or minimizing) a quadratic function subject to linear inequality 
constraints, reference must be made to the specific literature. 15) 

15) See e.g. J.C.G. Boot,[1]. 
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In this section only the way is indicated in which the optimal solution 
is obtained according to the Theil-Van de Panne procedure 16), which 
has been followed in the example of the wooden furniture industry in 
chapter 4. 

In our case the inequality restrictions take the form 

(37) a"' } 0 
nm 

(m=l •••• M; n=l •••• N), 

denoting by a"' the g.l.s. estimator satisfying not only the equality 
restrictions discussed in section 2.2 (if any), but also the non
negativity restrictions. The sign"' will be dropped for intermediate 
results, satisfying only part of the inequality constraints or satis
fying them without being optimal. (Of course the fulfilment of the 
equality restrictions of section 2.2 implies that the corresponding 
constraints of (37) are satisfied with the strict equality sign.) 

The principles underlying the Theil-Van de Panne procedure are the 
following. When estimates have been obtained according to the methods 
described before, i.e. without regard to any inequality constraint, 
some of these constraints may be violated by the solution obtained. 
In that case, as Theil and Van de Panne show, at least one of these 
violated constraints will be binding (i.e. fulfilled in equality form) 
in the optimal solution. Theil and Van de Panne concentrate on the 
way in which the set of constraints binding in the optimal solution can 
be found, thereby reducing the programming problem to a maximization 
problem with only equality constraints such as discussed in section 2.2. 

The procedure they proved to be leading to the optimal solution, if 
it exists, runs as follows. As a starting point take the solution 
obtained with due regard to equality constraints, if any, but without 
observance of any inequality constraint. So in our case the starting 
point is either the solution (20), viz when no regression coefficients 
have been put equal to zero beforehand, or the solution (27) (or (35)), 
when one or more of such equality constraints had to be imposed. 

If this solution is feasible, i.e. satisfies all the inequality 
constraints too, it is the optimal solution. If, however, one or more 
of the inequality constraints are violated by this solution, which means 
in our case that one or more coefficients a are found to be negative, 
further steps have to be made. mn 

First, each of the violated constraints is successively taken as 
binding. This means in our case that the estimating procedure according 
to (27) or (35) is repeatedly applied, each time with one of the violated 
constraints taken in equality form. 17) So when the solution of the 
starting round includes a number of, say, 3 negative coefficients, 

J 6) 

17) 

H. Theil and C. van de Panne,[7}. We used the description of 
their solution technique by J.C.G. Boot,[1], chapter 5. 
It must be emphasized that the application of (35) can be repeated 
only as far as no coefficient of the first (deleted) equation 
has to be put equal to zero; see section 2.2. 
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a22 ( 0 

a34 < 0 

a35 (. 0 

the procedure according to (27) or (35) has to be repeated three times 
in this step, each time taking one of the equalities a

22 
= 0 a

34 
= 0 

and a
35 

= 0 as a constraint (in addition to the equality constraints 

which eventually have been imposed in the starting round for technological 
reasons already). 

If still no feasible solution is obtained in this step, a next round 
of calculations according to (27) or (35) is necessary, every time with 
two inequality constraints taken in equality form, viz one found 
violated in the starting round, combined with one of those, violated in 
the former round when the first one was taken as binding. Continuing 
our example, say that with a22=o we find two negative coefficients, 
for instance 

a24 < 0 

a35 < 0 

Supposing that the other trials in this round, viz a
34

=o and a
35

=o 
do not result in a feasible solution either, the following combinations 
of two binding constraints have to be tried: 

= 0 and ( 1) 

a
22 

= 0 and a
35 

= 0 (2) 

and accordingly with a
34 

respectively a
15 

taken as the first one in a 
number of combinations of two equality ~onstraints. 

If none of these combinations of two binding constraints gives a 
feasible solution either, a next round of calculations is necessary, 
each time with three inequality constraints taken as binding, and so on JS). 

When,in a round, a feasible solution is obtained, this is the optimal 
solution provided that it is the only feasible solution in this round. 
When more than one feasible solution is obtained in a round, one of them 
is optimal and Theil and Van de Panne give the following rule to decide 
which one it is. A feasible solution is optimal if and only if for each 
inequality constraint h taken as binding in this solution holds that 
his violated when it is deleted from the set of binding constraints. 

Boot, considering as the criterion for decisions the signs of the 
Lagrange multipliers associated with the binding constraints, proves that 
a feasible solution is optimal if and only if the Lagrange multipliers 
associated with the inequality constraints taken as binding, are all 

18) The fact that an inequality constraint taken as binding may be 
violated itself when one of the other constraints is taken as binding 
in its stead, reduces the number of calculations. In the example 
above e.g. a 35 was found to be negative with a

22 
taken as zero. 

When it is also found that a
22 

is negative witfi a taken zero, 
h . h . f h . 1 . 35 · d w ic is one o t e necessary tria sin the example, this oes 

not give rise to two, but to only one combination of two binding 
constraints in the next round. 
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. . 19) 
pos1.t1.ve . 

In both our formulae (27) and (35) the Lagrange multipliers are 
suppressed and therefore the Theil- Van de Panne criterion will have to 
be applied when one of these formulae is used. Boot's criterion can 
be applied only when calculations are made according to the extended 
form (31). 

The quadratic programming procedure of introducing an ever-increasing 
number of equality constraints until the optimal solution has been 
obtained, has different implications for the equations (27) (or (31)) 
and (35). When (27) or (31) is applied, the order of the square matrix 
to be inverted is rising by one in each following step. An inverse 
needed in one step can be obtained from the corresponding inverse of 
the preceding step by applying the general rule20) that the inverse of 
a positive definite symmetric matrix E, bordered by a column vector e, 
a row vector e' and an additional element E equals 

-1 

el 
-1 

E: -e'E e E: -e'E- 1e 

E:j 

L 
-1 

E: -e'E e 

When applying (35), where the vector a consists of less elements 
according as the number of coefficients put equal to zero rises in each 
following step, the right-hand matrix (and vector) have correspondingly 
diminishing order. Here the inverse of the matrix of lower order can 
be obtained from the corres~onding inverse of the preceding step by 
applying the following rule 0). When the matrix E_d is obtained by 
deleting row and column d from E , the elements of (E d)-1 can be 

-1 -expressed 1.n the corresponding elements of E as 

(39) ij 
e-:d = 

ij 
e -

id d. 
e e J 

dd 
e 

(i,j /: d) 

Instead of writing (35) with matrix and vectors of diminishing order 
in successive rounds, one may as well maintain both vectors as in the 
starting round, giving on the other hand a suitable extension to the 
inverse matrix. This is accomplished by inserting in the inverse, 
computed for each trial, rows and columns of zero's in the pos1.t1.ons 
corresponding to the a which have been put equal to zero in addition 
to the situation of thwi1starting round. The multiplication of these 
rows withf1Holumn vector results in zero as it should be, whereas 
the product of each other row and the column vector is not influenced 
by the extension. It can be verified easily that inverse matrices of 

J9) 

20) 

J,C.G. Boot,[JJ, section 5.~. Of course, the 'positivity' criterion 
holds for the particular way in which Boot introduced the restrictions 
and Lagrange multipliers. When our inequality restrictions are written 
in the form Ra+~ r (this means that e.g. the constraint 
M 
L. a~~ 1 is expressed as [o-10 ... 0-10 .•• ]a+? -1), the minus sign 
m/:l before~' in (30) ascertains that in our formulation too the 
positivity criterion holds. The criterion has no reference to the 
Lagrange multipliers associated with the equality restrictions of 
section 2.2, which mai be positive or negative in the optimal solution. 
See e.g. J.C.G. Boot, l).J, pp. 19-20. 
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this extended form result automatically when, in successive rounds, 
the principle of rule (39) is applied unrestrictedly, i.e. inclusive of 
i=d and j=d. 

Which of the formulae (27), (31) and (35) will be preferred is 
merely a question of computer programming. 21) Formula (27) has the 
advantage that the matrix (RCR') to be inverted has the lower order 
g x g, but the inversion is only part of the computations. The applica
tion of the formula (31) seems to be the most elegant way and offers 
the opportunity of using Boot's criterion for decisions on the optimal 
solution. The matrix to be inverted has much higher order here, but the 
inversion in the starting round can be accomplished by applying equation 
(32). In formula (35) the order of the matrix to be inverted is lower 
than in (31) and the inversion in the starting round may be simplified 
by a suitable partition. Furthermore the application of rule (39) in 
subsequent steps seems to be easier in operation than rule (38), which 
has to be applied when (27) or (31) are used. A disadvantage of applying 
(35) is the eventuality that in one or more of the trials it will be 
necessary to impose constraints of the type (26), which have to be 
introduced explicitly along the same lines as in (27) or (31). 

In our example of the wooden furniture industry we applied formula (35). 
To reduce the probability of being necessitated to introduce constraints 
of the type (26), we chose the input category 'value added' as the 
input number 1 to be excluded from the application of (35) and were 
successful in finding ultimately none of the aTn (n=1 ... N) to be zero. 

3. Limitations and special features 

The linear form of the equations (1) is implied by the assumption 
of a cost structure for each kind of output which is the same for each 
firm. In view of the practical use of the results the advantages of 
this assumption are clear: the division by output category of total inputs 
of the regarded firms (whether these constitute a whole industry or 
a sample of it) can be estimated simply by applying the estimated cost 
percentages to the total value of output by product. In case of a sample, 
expansion of the detailed input estimates to the industry as a whole 
does not find more difficulties than does the raising of total output 
itself. 

Of course, however, these advantages can be enjoyed only when the 
underlying assumption is close to reaiity. In this chapter some problems 
associated with the assumption of .equal cost structures will be discussed 
and illustrated from the experience gained up till now by the Nether
lands Central Bureau of Statistics. 

21) As indicated in the beginning of section 2.3, the Theil-Van de Panne 
procedure is only one of the techniques available for solving 
quadratic programming problems. Other algorithms, e.g. those based 
on the Simplex technique, have been progrannned for computers too. 
Reference must be made to Boot [1]. 
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3.1 Differences in cost structure between sub-populations 

It may happen that cost structures differ systematically according 
to one or more characteristics of the firms in an industry. To allow 
for such differences without giving up the advantages of the linear 
system, stratification by these aspects might be applied in order to 
arrive at sub-populations with homogeneous cost structures for each output 
category. In all those cases the methods of chapter 2 should be applied 
separately to each of the sub-populations distinguished. Aggregation 
to the national level can, for each output category, be achieved by 
adding up the estimated total values of each input category in all 
sub-populations. 

It should be stressed that estimates of the national average cost 
structure for each output category cannot be obtained in such a case 
by applying regression techniques directly to the data of (a proportionally 
stratified sample of) all the firms in the industry. The regression 
coefficients would be 'averages' of the coefficients in the particular 
strata inde~2, but essentially different from the concept which is 
needed here • 23) 

In our calculations for agriculture we had a distinction by type 
and size of farms. Four types were distinguished, viz. arable farms, 
pasture farms, mixed holdings on sandy soils and mixed holdings outside 
sandy soils. (The sample for 1965/'66 consisted of 6,142 farms having 
a size of at least 4 ha.) For arable farms the estimated cost percentages 
for one of the major output categories, viz. cereals, were as follows 
(standard errors in brackets): 

Arable farms 
Size class (ha) 4- < JS 15-(30 I 30-<'.50 I S0-<100 

cost percenta es for cerea s: 

Seeds 8.7 (1. 3) J 1.5 (I. I) 11.6 (1.0) IO. I 
Fertilizers 21.1 (2.2) 19.6 (1.5) 18.7 (I. 2) 17.6 
Other material inputs 15.4 (7. 4) 11. 3 (3.3) 17.9 (3.5) 18, 1 
Contract work 27.7 (6.6) 19.5 (3.9) 12.6 (2. 6) 12.0 
Value added 24.7 15.9 39.5 4.6 41.8 3.6 42.3 

T o t a 1 97 .6 101. 4 i 102.6 100.2 

These figure.s suggest that the relative importance of contract work 
and fertilizers diminishes and the value added percentage rises with 
an increase of the agricultural area. 

(1.4) 
(2 .0) 
(3. 1) 
(4 .4) 
6.8 

An example of differences by type of farm is formed by the cost structures 
of the output category 'dairy farming'. For mixed holdings on sandy 
soils and pasture farms the estimates were as follows: 

Mixed holdings on sanb soils 
Size class (ha) 4 <7 I 7 < 

Feeding-stuffs 
Fertilizers 
Seeds 
Other material inputs 
Contract work 
Value added 
T o t a 1 

-

32.8 
6. l 
I.I 
3.2 
2.0 

55.9 
101.0 

- 15 
cost percentages 

(O. 8) 32.6 (0.3) 
(0. 4) 7.3 (0. 4) 
(0.2) 0.4 (0.2) 
(2. 2) 7.6 (1.6) 
(l.O) 3.2 (0.5) 
(7. 8) 47.3 · (3.0) 

98.2 

22)See for discussions on this point e.g. H. Theil,[6J. 

15- <3 0 30-<100 
for 'dairy farming' 
32.2 (0. 3) 31.4 (0. 8) 
8.3 (0.5) l 1.0 (0. 7) 
0. I (0. 3) -0 .1 (0.4) 

11. 8 ( 1. 8) 9.6 ( 1. 7) 
2.8 (0.5) 5.4 (0. 8) 

44.4 (2.0) 39.9 (2. 2) 
99.5 97.3 

23)0ur experience on agriculture relates to the a~plication of ordinary equation-by
equation least squares only, though some coefficients have been put equal to zero 
beforehand for technological reasons. This implies that the estimates of the cost 
percentages need not total up to 100 exactly here. 
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Size class (ha) 

Feeding-stuffs 
Fertilizers 
Seeds 
Other material inputs 
Contract work 
Value added 
T o t a 1 

- 20 -

Pasture farms 
4-".7 I 7-< 15 I 15-<30 I 30-< 100 

cost percentages for 'dairy farming' 
34. 6 (I. l) 30.9 (0. 6) 27.4 (0.5) 23.5 (0. 8) 
6.2 (0.3) 6.5 (0.2) 6.8 (0.2) 6.6 (0. 3) 
0.30(0.06) 0.05 (0.05) 0. I 0 (0.02) 0.07 (0 .03 ) 

11.3 (1.7) 13.0 (0. 3) 12.4 (0. 2) 12 .5 (0. 3) 
1.6 (0.3) 2.4 (0. I) 2.2 (0. I) 2.5 (0.2) 

48.3 (2.5) 50.8 (0. 7) 53.8 (0.5) 52.2 (0. 9) 
102.2 · 103.6 102.7 100.5 

In the middle-size class 15-(30 ha the input percentages for feeding
stuffs and fertilizers are higher on mixed holdings than on pasture farms, 
at the cost of a lower value added percentage. 
Moreover, the percentage of feeding-stuffs is falling on mixed holdings more 
slowly and the input of fertilizers rising more sharply with an increase 
of size than on pasture farms. Complementary the value added percentage 
is falling on mixed holdings as opposed to a rise on pasture farms, 
when size increases. 

It is noteworthy that in our applications of regression analysis to 
agricultural data the firms were arranged in a regional order. In this 
way the Durbin-Watson test for positively autocorrelated disturbances 
might throw light on regional differences in cost structure. A striking 
example is the regressio~

4
Jf feeding-stuffs input on 'dairy farming' 

output for pasture farms . By size class of farms the resulting cost 
percentages were, as mentioned before: 

4- < 7 ha 
7- < 15 ha 

15-( 30 ha 
30-<l00 ha 

34.6 
30.9 
27.4 
23.5 

(I.I) 
(0. 6) 
(0. 5) 
(O. 8) 

The low values of the "d"-statistic, found in some of these cases, 
gave rise to a distinction between two regional strata, brought about 
with the help of agricultural experts. (Of course a distinction between 
regions should find a base in real differences in cost structure, 
caused by quality of soil, market conditions or other factors.) Estimates 
of the feeding--stuffs percentages for each of these regions separately 
were as follows: 

region 1 region 2 
4-< 7 ha 38.0 (l .0) 30.0 (1.6) 
7-< 15 ha 34.7 (0.4) 24.6 (0.5) 

15- < 30 ha 33.5 (0. 4) 23.4 (0. 3) 
30-<100 ha 33.9 (2. 3) 22.3 (0.4) 

As our calculations had a preliminary character, we did not come to separate 
regressions by region for the other input categories in this case. 

The assumption of a cost structure for each kind of output which is 
the same for all firms may be less realistic as regards the division of 
value added between (roughly) 'compensation to employees' and 'operating 
surplus'. Possibilities to substitute capital for labour, and differences 
in profit-earning capacity between firms raise problems for which it 
remains to be seen whether they can be overcome by a suitable stratifica
tion. As yet our experience is restricted to the handling of value added 
as one input cate9ory. 
The input of feeding-stuffs used for 'dairy farming' was separately 
known for each pasture farm, and consequently the output of 'dairy farming' 
was the only explanatory variable in this case. 
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3.2 The problem of vertical integration 

When the degree of vertical integration differs between firms, 
the cost structure for a final output category will also be different. 
In several ways the application of the methods of chapter 2 can be secured 
in those cases. 

A simple device is to make separate estimates for sub-populations by 
degree oflvertical integration, if such a classification can be brought 
about from the available data. So in our analysis of the manufacture of 
wooden furniture we might have estimated cost structures separately 
for firms using (besides veneers, plywood and the like) roundwood as their 
main input of timber and firms using mainly sawn wood. 

According to another device the whole production process is sub-
divided in a number of successive activities, the output of each constituting 
(part of) the input of one or more of the following stages, or being sold. 
In order that the methods of chapter 2 will be applicable in this case, 
output data of each of the distinguished stages must be known for each 
firm, which will not be the case very often. These data are necessary 
because intermediate outputs have to be comprised in the inputs as well 
as in het outputs. An example is the agricultural production on mixed 
holdings, where feeding-stuffs for cattle can be produced on the own farm 
or purchased from outside. In our calculations the value of own-produced 
feeding-stuffs was included in the outputs as well as, together with 
purchased feeding-stuffs, in the inputs. For the manufacture of wooden 
furniture this method would imply that sawing timber be distinguished as 
a separate activity, which could not be performed as separate data on 
the output of this activity were not known. 

This difficulty might have been overcome by still another method 
which assumes a 'connnodity-technology'. This assumption implies that the 
cost structure for working up round wood into sawn wood by the wooden 
furniture industry equals the cost structure for these activities by 
proper sawing-mills. When the latter is known, the inputs for these 
sawing-mill activities by a furniture firm can be estimated from its input 
of round wood. After deducting, for each firm, these inputs from total 
inputs by category and putting the output of sawing-mill activities (as 
far as used as an input for furniture making) in its stead, the resulting 
data represent the inputs needed for the proper furniture making. So 
these data can be combined with the data of firms having only sawn wood 
as their input of timber, to estimate the cost structures of the activities 
of working up sawn wood into the distinguished kinds of furniture. 

In our experimental calculations for wooden furniture we did not 
apply this last method either, but followed a way which can be seen as a 
partial application of the first method. From our calculations we 
excluded eight firms employing mainly roundwood and also three firms 
whose input of timber consisted of further processed wooden parts of 
furniture. So the results, reported on in chapter 4, only refer to the 
cost structuresof firms working up sawn wood into furniture. 

3.3 Joint products 

The production of two or more of the output items of a heterogeneous 
industry may be related to each other. In those cases the methods described 
in this article cannot be of help in estimating the cost structure for each 
of these related products separately. Several situations can be distinguished. 

In case of a very close relationship as in the often cited example of 
coke and gas, the output-ratio is (almost) the same for each firm involving 
that, because of multicollinearity, regression coefficients for each of these 
outputs separately cannot be obtained at all or will be very unreliable. 
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Therefore, coke and gas should not be handled as separate outputs, but 
the commodity group of coke and gas should be seen as the output of the 
coke making procesi, When this process is only one of the activities of 
the regarded industry, the cost structure of this process can be estimated 
by taking the output of the commodity group coke and gas as one of the 
explanatory variables in the methods of chapter 2. When, in the input-
output table to be constructed, coke and gas should yet have to be separated, 
the necessary transfer of inputs and outputs has to be effected by making 
complementary assumptions. 

In cases as in the livestock industry, where the relationship between 
the output items milk and meat is less closely, the output-ratio of these 
products may be different between firms indeed, but the assumptions 
underlying the methods of chapter 2 cannot be fulfilled then. 
For differences in the ratio of the outputs can be brought about only by 
differences in the ratios of the inputs, implying different cost structures 
contrary to the assumptions of chapter 2. When, however, it is expected 
that each firm aims at the same ratio of the outputs (e.g. because the 
prevailing market conditions are the same for each firm), the situation 
turns into the case of coke and gasA enabling the estimation of the cost 
structure of the process as a wholeL 5). In other cases sub-divisions by 
size, region or other criteria may perhaps be helpful in obtaining strata, 
in each of which the output-ratio of the process is approximately the same 
for all firms. In our calculations for dairy farming the additional regional 
stratification as mentioned in section 3.2 has partly been suggested by 
this aspect. 

3.4 Distribution of imported inputs over output categories. 

In "A System of National Accounts" a distinction has been made 
between competitive and complementary commodities. Competitive commodities 
are those for which there is a domestic industry and which may, therefore, 
be either home produced or imported. Complementary connnodities can be 
obtained only from imports26), 

The methods proposed in this study, may be helpful for estimating the 
distribution of complementary inputs of a heterogeneous industry over 
separate output categories. For the imported part of competitive inputs 
separately this opportunity is lacking, because in the application of these 
methods the imported part and the home produced part of a competitive input 
cannot be taken as separate input categories. A practical reason is that, 
as a rule, the available data on the inputs of individual firms are 
distinguished by kind but not by origin (imported or home produced). 
However, the theoretical assumptions underlying these methods prevent 
from doing so even when the proportion of imports in a competitive input 
would be known for each firm. For the assumption of equal cost-structures 
for all firms would include in this case that for each output separately 
the share which imports constitute from a competitive input category, 
should be the same for all firms. It is very difficult to find arguments 
in favour of such an assumption. Only for the total of imports and domestic 
production of a competitive input category the assumption may be realistic. 

25) In this case the circumstance that the ratio of the outputs of the process 
may change in the future, entails an additional problem in prediction by 
input-output techniques. 

26) United Nations,[9], paragraphs 3.5 and 3.32. 
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4. A complete example: results obtained for the wooden furniture industry. 

As mentioned in the Introduction, our calculations for the wooden 
furniture industry have been based on data taken from the census of produc
tion 1968. Though the census included all firms employing at least 
10 persons and producing mainly wooden furniture, only the firms employing 
50 or more persons furnished detailed data on inputs and outputs and could 
therefore be taken in account. Within the population of these larger firms 
no further sub-divisions have been introduced, 

In defining the input- and output-categories to be distinguished in 
the analysis we were bound by the limits set by the questionnaire of the 
census. Seven output categories were distinguished, viz. 

cupboards, sideboards, book-cases, etc.; 
chairs and other seats; 
bedroom furniture; 
fancy tables, hat-racks, umbrella-stands and other small furniture; 
other furniture (including component parts of wooden furniture); 
other products; 
work done on commission. 

After exclusion of the eight firms employing mainly roundwood (see 
section 3.2), six input categories were left, viz. 

sawn wood; 
veneers, panelwood, chipboard, flaxboard, plywood, etc.; 
component parts of wooden furniture; 
other materials; 
fuel; 
value added27) and payments for work done on materials given out. 

Value added and payments for work done were combined in order to place more 
reliance on the assumption of equal coststructures for all firms. After 
further exclusion of three firms whose input of timber only consisted of 
component parts of wooden furniture, and one firm mainly producing a 
special kind of furniture viz. laboratory furniture, the assumption was 
considered fulfilled for the specification of inputs and outputs as mentioned 
above. 

Table I presents the results obtained by the ordinary least-squares 
method, applied to the data of the remaining 73 firms. Each row shows 
the estimates of the regression coefficients obtained by taking a separate 
kind of input as the dependent variable. All estimates have been multiplied 
by 100 in order that the figures can be interpreted as cost percentages 
(instead of perunages). 

As four of the input categories do not constitute cost factors for the 
output category 'work done on commission', this output had to be excluded 
from the set of explanatory variables in these four equations. As a 
consequence the property that the estimates of the cost percentages per 
product group should exactly total up to 100 (see section 2.1), is not 
necessarily fulfilled in this case. Indeed there are deviations from JOO, 
especially for the output category 'work done on commission'. 

27) Value added comprises all factors included in what is usually described 
as 'net output according to the census of production'. 
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Cost percentages per product group of wooden furniture industry in the Netherlands, 1968, resulting from 
equation-by-equation least squares (standard errors in brackets). 

--7·---·•-· -·· ----- .... ···------·------- ··------••·-·•---·· .. -·-· --- -· ·-· . ·- ·· --· -· ····· ·-··--····--·· ---·-··-·----···-· .. . ...... . 
P r o d u \,,;. L. ~J..UULJ 

Cupboards, Chairs and Bedroom Fancy tables Other furni tm e 
side-boards, other seats furniture hat-racks and incl.component Other 

Input category 
book-cases, other small parts of wood- products 
etc. furniture en furniture 

Sawn wood 4.39 (0.98) 4. 77 (0. 76) 5.49 (2.39) 8.51 (4.12) 4.69 (1.26) -4.50 (9.75) 

Veneers, panelwood, chipboard, 
flaxboard, plywood, etc. 15 • 35 ( I. 31 ) -0. 09 ( l . 0 l ) 14.72 (3.18) 9.44 (5.52) 14.22 (1.67) -28. 88 ( 12. 96) 

Component parts of wooden 
furniture 5. 86 (I. 40) 3.06 (1.09) -0 . l 7 ( 3 • 4 I ) 11.96 (5.92) l. 00 ( l . 79) 5.12(13.90) 

Other materials 7 .89 (2. 70) 35.86 (2.09) 16.12 (6.54) -4 . 2 3 ( l l . 3 7) 20.02 (3.44) 29.80(26.68) 
: ◄ 

Fuel 1.68 (0.12) 0.92 (0.10) l. 75 (0. 30) 1.28 co.52) I 1 .08 (0. 17) -o . 0 8 ( I. 2 4) 
' Value added and payments for worki ' l 

done on materials given out · 64.95 (2.12) 55.42 (1.64) 62.02 (5.13) 73.38 (8.93) : 57.68 (2.97) 100. 72(21.04) 

100. 12 99.94 
I ' T o t a 1 I 99.93 100.34 · 98.69 102. 18 
I I 

-·- -~--• .. -

Work done o 
commission 

---------- -

2.74(2.33) 

39. 35 (39 .68 

;142.09 

n 

I\.) 

~ 

I 
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Idem, estimated by joint generalized least squares, without non-negativity restrictions (standard errors in brackets) 

. 
P r o d u c t g r o u p --; I I Work done 

' I 

Input category Cupboards, Chairs and Bedroom : Fancy tables ~Other 1 Other on 
etc. other seats furniture 

j . • 
products commission ' etc. ]furniture 

-
Sawn wood 4.39 (0 9 99) 4. 77 (0.76) 5.49 (2. 39) 8.51 (4.16) 4.69 (1 .26) -4.50 (9.75) 

Veneers, etc. 15. 35 ( 1. 30) --0.09 (1 .01) 14. 72 (3.15) 9.44 (5. 48) 14.22 (1.66) -28.88(12.87) 

Component parts 5,86 ( 1. 40) 3.06 (1.09) -0.17 (3.41) 11. 96 (5. 92) 1.00 (1. 79) 5.12(13.90) 

Other materials 7.89 (2.67) 35. 86 (2.07) 16. 12 (6. 48) -4.23 (11.27' 20.02 (3.40) 29.80(26.44) 

Fuel 1.68 (O. 12) 0.92 (0.10) 1. 75 (0.30) 1.28 (0.52) 1.08 (0.17) -0 . 0 8 ( 1 • 2 3) 2.75 (2.19) 

Value added, etc. 64.83 (2 .11) 55.48 (1.64) 62.09 (5. 12) 73.04 (8.91) 58.99 (2.69) 9 8. 54 (20. 91) 97.25 (2.19) 

T o t a 1 JOO 100 100 100 100 100 100 

·- --------·-·-- -

f'v 
V, 



Table 3 

Idem, estimated by joint generalized least squares, subject to non-negativity restrictions 

P T" n r1 11 r- t- tr r o 11 n . I 

I 
Input category Cupboards, Chairs and Bedroom 1 Fancy tables, 

etc. other seats furniture etc. 

Sawn wood 4.44 4.79 5.52 7.48 

Veneers, etc. 15.52 0 14. 76 8.6_4 

Component parts 5.87 3.08 0 11 . 15 

Other materials 7 .67 35. 72 16.00 0 

Fuel 1.69 0.92 l. 74 1.28 

Value added, etc. 64.81 55.49 61.98 71. 45 

T o t a 1 100 100 100 100 

Other Other 
furniture products 

4.51 0 

12.92 0 

1.09 3.46 

20.70 12.92 

1.07 0. 18 

59.71 83.44 

JOO 100 

Work done on 
commission 

2.75 

97.25 

100 

1 
,. 

-

i\) 

O'\ 
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Another feature is that no less than six of the estimates have got a 
negative value, though the standard errors of those estimates are 
relatively very high. 

The residuals of the least squares applications of Table 1 have been 
used to estimate the covariances of the disturbances according to formula 
(33). (The denominator K-N has been put invariably equal to 73-6 = 67.) 
The resulting covariance matrix has been employed in the applications of 
joint generalized least squares. 

In Table 2 the results are presented of the joint g.l.s. method 
(formulae (35) and (36)) without imposing non-negativity-restrictions. 
Besides the fact that this procedure ascertains the sum total of the 
estimates to be equal to 100, the only important difference as compared 
with Table 1 is the lower value added percentage for 'work done on 
connnission'. The number of negative coefficients remains 6. As a matter 
of fact the percentage estimates on the first four rows are exactly the 
same in both tables. This is a consequence of the circumstance that in 
this particular case one and the same explanatory variable has been ex
cluded from these four equations. 

The results of Table 2 formed the starting point for the application 
of quadratic progrannning as described in section 2.3. The ultimate results, 
in which all negative coefficients have vanished, are presented in Table 3. 
Standard errors could not be given in this case because the unequality 
constrained estimator

2
~j biased and it is very difficult to obtain its 

sampling distribution . 
Comparison with the former results shows that 5 coefficients having a 

negative sign in Table 2, have turned into zero values; one has got a 
positive sign. 

The results of Table 3 don't look unrealistic. E.g. the high percentage 
of 'veneers, etc.' in the production of 'cupboards, etc.' as opposed to 
the low percentage for the product group 1fancy tables, etc.' and a 
zero percentage for 'chairs and other seats' don't disagree with what 
might be expected. The importance of 1other materials' for the production 
of chairs is to be explained from the fact that this input category 
includes fabrics and the like for upholstering. The low share of wooden 
materials in the inputs for 'other products' might indicate that this product 
group h~ little to do with proper furnittre making. In Tables J and 2, 
however, the estimates for this product group all have high standard 
errors, which might raise the question whether this product group 
indeed has a uniform cost structure for all firms. 

In conclusion .it may be stated that the results obtained hitherto 
demonstrate the usefulness of the methods described. Ar the same time, 
however, the examples underline that the methods should not be applied auto
matically in each case. The fact that in the example of the wooden furniture 
industry a number of firms had to be excluded from the calculations, 
demonstrates the necessity of looking after the fulfilment of the assump
tions underlying the methods. In each case the classification of inputs 
and outputs and(eventual) stratification of firms by size, region, etc. s 
should be brought about in such a way as to ascertain the assumptions to 
be approximately fulfilled. Attempts in this field might reveal necessary 
adaptations in the classifications as they have been used up till then in 
the collection of data. 

28) See e.g. G.G. Judge and T. Takayama, (3], and M.C. Lovell and E. Prescott,[4}. 
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