An Analysis of the Economy of the Upper Main Stem Sub-basin of the Colorado River Drainage Basin in 1960 with Emphasis on Heavy Water-using Industries

Jay Andersen
University of Colorado
Gilbert W. Bonem
University of Colorado
John H. Chapman Jr.
University of Colorado
William H. Miernyk
University of Colorado
Hollis Price
University of Colorado

See next page for additional authors

Follow this and additional works at: https://researchrepository.wvu.edu/rri_ioapplication

Recommended Citation

Andersen, Jay; Bonem, Gilbert W.; Chapman, John H. Jr.; Miernyk, William H.; Price, Hollis; and Udis, Bernard, "An Analysis of the Economy of the Upper Main Stem Sub-basin of the Colorado River Drainage Basin in 1960 with Emphasis on Heavy Water-using Industries" (1967). Applications. 63.
https://researchrepository.wvu.edu/rri_ioapplication/63

This Article is brought to you for free and open access by the RRI Input-Output Archive at The Research Repository @ WVU. It has been accepted for inclusion in Applications by an authorized administrator of The Research Repository @ WVU. For more information, please contact beau.smith@mail.wvu.edu.

Authors

Jay Andersen, Gilbert W. Bonem, John H. Chapman Jr., William H. Miernyk, Hollis Price, and Bernard Udis

AN ANALYSIS OF THE ECONOMY OF THE UPPER MATN STEM SUB-BASTN

OF THE COLORADO RIVER DRAINAGE BASIN IN 1960

WITH EMPHASIS ON HEAVY WATER-USING INDUSTRIES

```
Edited by
Bernard Udis Associate Professor of Economics University of Colorado Boulder, Colorado
Principal Authors:
Jay Andersen Gilbert W. Bonem
John H. Chapman, Jr. William H. Miernyk
Hollis Price
Bernard Udis
```

Prepared under Contract No. WA 67-4 between
the United States Department of the Interior, Federal Water Pollution Control Administration and the University of Colorado

August, 1967

TABLE OF CONTENTS

Page
ChAPTER ONE
Input-Output Analysis: A Brief Description of the Model 1
CHAPTER TWOThe Economy of the Upper Main Stem Sub-Basin: An Overview17
CHPATER THREE
Interindustry Analysis of the Economy of the Upper Main Stem Sub- Basin of the Colorado River Basin. 63
CHAPTER FOUR
Some Economic Features of Agriculture and Forestry in the Upper Main Stem Sub-Basin. 72
ChAPTER FIVE
The Mining, Manufacturing and Energy Sectors of the Upper Main Stem Sub-Basin. 127
CHAPTER SIX
Interindustry Analysis: Tertiary Industries and Construction.... 163
CHAPTER SEVENProjected Interindustry Relations of the Upper Main Stem Sub-Basin: 1980 and 2010178

)

INPUT-OUTPUT ANALYSIS

A Brief Description of the Model

```
by
Bernard Udis
```

August, 1967

Input-Output Analysis

A Brief Description of the Model

The essence of input-output or interindustry analysis is the explicit recognition that each sector of the economy is dependent upon every other sector, and an effort to determine the degree of quantitative interdependence. ${ }^{1}$ The literature on input-output is replete with references to "structure," "interdependence" or "interrelationship." These terms emphasize that the primary focus of this analysis is not on the particular level of economic activity as measured by Gross National Product, Employment, or Personal Income, but rather on how the typical or representative firm in each industry depends on all other industries, both as suppliers of inputs and customers for output. A substantial and unique advantage of this means of analysis over alternative techniques is that of its capacity to ferret out both direct and indirect effects of a change in the level of output of a particular industry on all other industries.
${ }^{1}$ For a simple introduction to input-output analysis, the reader is referred to William H. Miernyk, The Elements of Input-Output Analysis (New York: Random House, . 1965). A more sophisticated treatment may be found in Hollis B. Chenery and Paul G. Clark, Interindustry Economics (New York: John Wiley \& Sons, Inc., 1959). Detailed and advanced critiques of the method are available in Conference on Research in Income and Wealth, Studies in Income and Wealth, Vol. 18, National Bureau of Economic Research, Input-Output Analysis: An Appraisal (Princeton: Princeton University Press, 1955); and Oskar Morgenstern (ed.), Economic Activity Analysis (New York: John Wiley \& Sons, Inc., 1954). The basic references to inputoutput analysis are those of its modern father, Wassily W. Leontief, The Structure of American Economy, 1919-1939 (New York: Oxford University Press, Second Edition, 1951); and Leontief, et. al., Studies in the Structure of the American Economy (New York: Oxford University Press, 1953). A convenient collection of Leontief's articles has been published as Input-Output Economics (New York: Oxford University Press, 1966). It includes a number of interesting examples of the application of I-O analysis.

Thus a knowledge of the structure of the e2onomy provides the means to trace the implications, industry by industry, and in the aggregate, of e change in the level of economic activity of a particular sector.

The workings of such a table will be illustrated shortly. It should be pointed out here, however, that in a study of this sort where the primary interest is quite particular--what will be the water requirements (both quantitative and qualitative), necessary to support alternative levels of economic activity and population in the future--overall estimates of economic aggregates such as GNP or population are inadequate. The regulatory agency must be concerned with the economic base and how its parts fit together. Officials of the Federal Water Pollution Control Administration, however alert to sharp changes in the level of activity of traditional heavy water users, may be quite unprepared for changes arising elsewhere in the economy, however induced, which may have significant secondary or tertiary effects on the heavy water users. It is our conviction that a knowledge of the structural interrelationships within an economy is a prerequisite to rational and effective measures in the realm of public policy.

The raw material for the analysis is found in the grid or matrix of interindustry transactions. Such a matrix for the Upper Main Stem Sub-Basin is found in Table UMS-S on page 58 of this report. This table shows the detailed disposition of the output of each industry along the horizontal lines or rows. Thus in 1960, the range livestock industry in the Upper Main Stem Sub-Basin kept $\$ 2,780,000$ of its own production for further use while selling $\$ 2.8$ million to feeder livestock, and smaller amounts to other industries. The vertical columns of the table are used to indicate each industry's sources of supply. Again referring to Table UMS-S we see that range livestock was its own most important supplier. This, of course, is simply the other side of the transaction noted above. However, as we read down the column, we can quickly spot $\$ 87,000$ of purchases by range livestock from the dairy industry and other purchases from various suppliers of the industry. We can also identify $\$ 2,573,000$ of imports from outside the Colorado Basin, payments of $\$ 10.3$ million in profits and related payments and $\$ 3.3$ million in wages and salaries.

While a useful method of interindustiy accounting, the transaction; table will not yield the desired answer to the basic question: How will a change in the output output of one industry affect all other industries? For this, additional steps are necessary which involve mathematical manipulations of the figures in the transactions table. The details are cumbersome, but in essence, the task is to solve as many simultaneous linear equations as the number of industrial categories in the so-called processing sector ${ }^{2}$ of the matrix. Linear or matrix algebra is the technique and a high-speed electronic computer the instrument for this operation. Briefly put, the procedure is to adjust the column totals, labeled Total Gross Outlays, by subtracting the row entry identified as inventory change (depletion), and then expressing each remaining number in the column as a percent of the now-adjusted total. To repeat, this is done only for the industries in the processing sector. The resulting table is known as the "A" matrix, or table of direct coefficients. It yields the direct requirements of the regional economy from industries named in row headings at the left per dollar of output sold outside the processing sector by the industry named at the column head. However, this is only a way-station because it fails to take account of secondary, tertiary and other indirect effects. To complete the story, the " A " matrix must be subtracted from an identity matrix, (a series of l's along the diagonal and zeros in all other cells), and then inverted. The resulting inverse matrix shows the direct and indirect effects on all industries of a change in the output level of any one of them. It enables one to specify the level of production required of each industry to sustain any particular level of final demand: ${ }^{3-}$

[^0]The inverse matrix for the Upper Main Stem is shown in Table UMS-U on page 60 of this report. Each entry shows the total dollar production directly and indirectly required from the industry at the top of the table per dollar of deliveries to final cemand by the industry at the left. Again using range livestock as an example, it may be determined that for each dollar of its sales to final demand, this industry must produce \$1.11 of output. Other significant effects are felt in rentals and finance (4.8 cents), agricultural services (2.8 cents), other retail (2.4 cents), and other manufacturing (2.1 cents). In the aggregate, it requires $\$ 1.30$ of production from the processing sector to support each dollar of range livestock sales to the final demand sector. The magnitude of these direct and indirect effects gives range livestock a rank order of fourteen within the processing sector of the Upper Main Stem. (See Table UMS-Z)

Returning for a moment to Table UMS-S showing interindustry transactions, it is assumed that the actual entries will change from year to year but that the relative proportions between industries remain essentially constant over periods of short to intermediate length. This is to say that industrial technology and household consumption patterns change only slowly. ${ }^{4}$
${ }^{4}$ This assumption of. fixed coefficients appears to $f l y$ in the face of popular conceptions of an ever-changing technology and fluid tastes. There is also controversy on the professional level concerning the constancy of coefficients assumption. The resolution of this issue, however, will be found in empirical evidence rather than in theorizing, and on this count, there is evidence which supports the assumption of relative constancy over short periods. In his input-output study of four Southwestern Wyoming counties, Richard Lund found very little change in coefficients between 1953 and 1959, despite drastic changes in the economy of the region during the period. It should be noted that the four counties he studies are all in the Green River Sub-Basin of the Colorado River Basin. See Richard E. Lund, A Study of the Resources, People and Economy of Southwestern Wyoming. (Cheyenne: Wyoming Natural Resource Board, 1962), p. 77. Chenery and Clark have commented that "the results of inputoutput analyses are not sensitive to changes in the great many of the coefficients," and "....the research task of examining the important coefficients for possible modifications of the assumption of constancy is a manageable one." See their Interindustry Economics op. cit., p. 161. In Chapter 6 of the same volume, there is a discussion of various studies which have been conducted to test the validity of the assumptions underlying input-output analysis. Finally, input-output analysis, unlike other methods of analysis, provides an advantage in that it "readily permits introduction of revised coefficients". See Philip M. Ritz, "Comment", in Input-Output Analysis: An Appraisal, op. cit., pp. 181-182.

It cannst be denied, however, that despite some reasonably stable components, the American economy is a dynamic one where change is not a stranger. Nevertheless, the essential point is that the validity of the input-output technique is independent of the degree of constancy of coefficients. As Evans, lioffenberg have noted, interindustry analysis is basically cross-sectional and "The structural interconnections revealed by it should not be considered as immutable or unchanging, but rather as the starting point approximate to the period to which an analysis of input structures is to refer. ${ }^{5}$ Thus, the 1960 tables contained in this report give valuable insights into the structure of the economy of the Upper Main Stem that will probably remain valid for perhaps a decade. However, projections of the structural relationships which will prevail in this region more than ten years: hence must be interpreted with an awareness of their highly tentative nature. Such projections of technical. coefficients have been made however, and appear in the last chapter of this report where the topic of projections is treated in detail.

Implementing the Model in the Upper Main Stem Sub-Basin of Colorado River Basin ${ }^{6}$

The model described briefly above is deceptively simple. The direct coefficients can be computed easily on a desk calculator even for a fairly large table. And programs for the inversion of matrices are readily available. The major work involved is in constructing the basic transactions table. Before this can be done the sectors to be included in the table must be defined. An effort must be made to limit each sector to one with relatively homogeneous inputs and outputs. Care must be exercised to avoid the problem of substitutability. After preliminary

[^1]investigation has shown what sectors are t ") be used the transactions table is constructed in two steps:
(1) The first step is to establish "control totals." For the processing sectors these are usually total sales figures, except for the trade sector where gross margins (operating costs plus net revenues) represent output. 7 In the final demand and payments sectors it is possible to estimate other control totals, such as payments to government and personal consumption expenditures.
(2) Once the control totals have been established, the row and column distributions are worked out. In this study the distributions were based on survey data obtained from a sample of all establishments represented in the processing sectors. The procedure is to fill out each row and the corresponding column separately, then to reconcile differences at the intersections. The entire process is iterative. There is no single method for arriving at the final distribution. Frequently, judgment must be used in making intersection reconciliations.

In constructing the transactions table either producer's or purchaser's prices may be used. The standard practice in the United States, however, has been to use producer's prices, and this was the procedure followed in this study. When this method of valuation is employed, marketing costs are excluded from the output control totals. They are added to the costs of the comsuming sector. Trade margins are registered as purchases by the consumers of specific commodities. Both outputs and inputs are stated in $\mathrm{f} \cdot \mathrm{O} \cdot \mathrm{b}$. prices. The buyer pays transportation costs, and where a firm uses it"s own transportation facilities, transportation costs must be imputed to the transportation sector. ${ }^{8}$

7 The problem of treating the trade sectors so that they reflect only the distribution of the gross margin is complex, but quite important. An illustrative example appears in the appendix to this chapter.

For a discussion of the problems involved in obtaining data, and the reaons for preferring producer's to purchaser's prices, see Chenery and Clark, op. cit., pp. 141-142; and Evans and Hoffenberg, pp. 103104.

For data collection purposes, the prccessing sector of the transactions table for the Upper Main Stem was divided into thirty-one industries. The number of processing sector industries simply reflects the types of economic activity found in the regions. Heavy water using industries were singled out for separate treatment in the processing sector of the transactions table. Also, a number of sub-divisions of the trade and service sectors were closely examined in view of their importance to water-related recreation activities.

It is essential to provide for unallocated inputs and outputs during: the data gathering phase. Chenery and Clark have argued that it is better to eliminate unallocated figures even if this must be done solely on the basis of judgment. ${ }^{9}$

In this study unallocated inputs and outputs were not a particularly serious problem. Reasonably comprehensive surveys of most processing sectors permitted fairly reliable distributions of purchases and sales. ${ }^{10}$ The survey data were also helpful in distributing purchases and sales within the payment and final demand sectors. This is perhaps an advantage which small area input-output analysis has over the construction of national tables. Those.involved in the construction of national tables have available a wealth of statistical information which cannot be obtained on a small-area basis, and thus can estimate more reliable control totals. On the other hand, it would be inordinately costly to conduct nation-wide surveys for all sectors to allocate interindustry flows. In a relafively small and sparsely-populated area, however, such surveys yield a high rate of return. ${ }^{11}$
${ }^{9}$
Chenery and Clark, op. cit., p. 142.
$1_{\text {The extent }}$ of coverage varied from sector to sector. It is. important to emphasize, however, that sample data were not used to estimate control totals. These were derived from secondary sources.

11
In some small-area input-output studies interindustry flows have been estimated by applying national coefficients to regional control totals. As Isard has pointed out, however, such estimates are affected by interregional differences in factor proportions and product mix. The use of survey data to distribute purchases and sales.should result in far more accurate technical coefficients. See Walter Isard, "Regional Commodity Balances and Interregional Comodity Flows", American Economic Review (May, 1953), pp. 170-171.

The construction of the transactions table would be greatly simplified if there werz no interest in imports and exports, i.e., if one were dealing with a closed model. But it is completely unrealistic to treat a small area as a closed economy. In small-area. analysis the import and export flows are among the most important to be considered. More will be said about this presently.

In wholesale and retall trade it is possible to obtain good data on purchases both on an interindustry and geographical basis. On the other hand, however cooperative they might be, retailers are rarely in a position to give an interviewer much information about the final destination of their sales. To a lesser extent this difficulty is also encountered in the wholesale trade sector.

Many services are entirely of a local nature, and these present no serious problems. Some services are highly seasonal, however, such as those provided by firms which cater to the tourist trade. In such cases it is difficult to make an accurate breakdown between services provided to residents of the area and those provided to transients. In lodging facilities, for example, such data could no doubt be obtained by a careful search of records. Indeed, some respondents in our survey provided accurate figures, but others were unwiling to do more than make rough estimates. The transportation sector poses similar problems. There are no major difficulties in measuring intra-area shipments. But there are serious difficulties when shipments to and from other areas are involved. In construction, the major problem is simply one of obtaining accurate information from builders. Even at the national level there are serious data deficiencies in the construction sectors, and in some ways these difficulties are compounded in a small-area study. ${ }^{12}$ Utilities provide another example of measurement difficulties. Utilities do not keep books on a basis which would permit accurate estimates of sales by county. Power and telephone companies typically distinguish among sales to households, and to commercial and industrial users. But they are quite indifferent to county lines, and usually are equally indifferent to
${ }^{12}$ See Evans and Hoffenberg, op. cit., pp. 117-118.
state lines. Hence in estimating the salrs of utilities on a small-area basis it is necessary to rely on various ratios (to population, employment, etc.) in allocating these sales on a county and eventually a regional basis.

One other classification within the processing sector calls for some comment. This is the exclusion of professional services from the service row and column. These were included in households, a decision dictated entirely by data considerations.

All data were expressed in 1960 prices with no attempt to adjust for price changes during the year. The latter adjustment would have been desirable. But there would have been no way of estimating the percentage of transactions at each of a succession of prices without examining all records on a day-to-day basis, something which could not be attempted because of time and money considerations. Thus, we assumed that the volume of transactions in the base year was not affected by price changes. ${ }^{13}$

The Final Demand and Payments Sectors

The autonomous sector represents the "open" part of the inputoutput system. For each component of the processing sector, the sum of the row must equal the sum of the column. That is, total gross output must equal total gross outlays (by definition). This is not so for the final demand and payments sectors, however. In this case, the only constraint is that the sum of all rows in the payments sector must equal the sum of all columns in the final demand sector. Thus when the input-output system is used to analyze changes in final demand the sub-sectors comprising final demand can be collapsed into a single column vector. It is important, however, to examine each of the final demand (and payments) sub-sectors since variations in any one will have an effect on levels of production in the processing sectors.

Final Demand sub-sectors--In this model, there are seven final demand sub-sectors. These are: (1) additions to inventory (no matter

13
Additions to inventory were no doubt affected to some extent by price changes, although there would be some offset from inventory depletions. Price changes in 1960 were not large, however. Consumer prices rose about 1.6 percent and, wholesale prices were virtually stable. See Economic Report of the President (January, 1963), pp. 220-224. Cf. Evans and Hoffenberg, op. c1t., p. 119.
where held)curing the base year, (2) gros; investments, (3) households, (4) state and federal government, (5) local government, and (6) exports. Exports are divided into two classes: (a) exports outside the SubBasin but within the Colorado River Basin, and (b) exports to the rest of the world.

The Payments sub-sectors--These consist of: (1) Inventory depletion during the year, (2) depreciation allowances, (3) households, (4) state and federal government, (5) local government, and (6) imports. As with exports, imports are subdivided into two groups: (a) imports from the rest of the Colorado River Basin, and (b) imports from the rest of the world.

It is probably fair to say that the most difficult data problems in the construction of a transactions table occur in the final demand and payments sectors.

Inventories---Both the inventory column and row measure gross changes. Thus the column vector minus the row vector yields net inventory changes. As Evans and hoffenberg point out, it is difficult to handle inventories within the input-output framework since "they introduce a dynamic element into what is essentially a series of static flows."14 To establish inventory totals in each cell properly it is necessary to obtain data on the amounts sold from stock during the base year (entered in the inventory row), and also to obtain data on the amounts added to stock during the base year (entered in the inventory column). Thus we are concerned only with the flows into and out of inventory, and not the size of the stock itself. Excellent data on inventory changes were obtained from some firms in the survey, but in other cases only rough estimates could be made. ${ }^{15}$

14
Op. cit., p. 118.
15
${ }^{5}$ The inventory problem in some small-area input-output studies has been handled by reporting only net inventory changes. See for example, the transactions table in "The Eighth District Balance of Trade", Monthly Review, Federal Reserve Bank of St. Louis (June, 1952). In others it has been avoided by leaving inventories out of the calculations entirely, See, for example Frederick T. Moore and James W, Peterson, "Regional Analysis: An Interindustry Model of Utah," Review of Economics and Statistics (November, 1955), pp. 368-383, table following page 372; and Richard E. Lund, A Study of the Resources, People and Economy of Southwestern Wyoming Laramie, Wyoming; Division of Business and Economic Research, University of Wyoming (June, 1962), table following page 74.

Househuld \& Government---Control totals for these sectors were built up from published sources of data on income, tax payments, and government purchases. The county data were somewhat uneven from state to s.tate, but there probably are no significant errors in the control totals. Payroll data, obtained from state Divisions of Employment Security, sales tax data, and survey data obtained from business establishments were used to work out the inter-industry flows and some of the allocations within the payments and final demand sectors.

Investment and depreciation--As Chenery and Clark have noted, one of the major gaps in national statistics is the lack of investments by industry cross-classified with investment by type of capital equipment. ${ }^{16}$ Even if good data were available, however, there are some conceptual problems involved in handing capital outlays within the input-output system. The basic transactions table is supposed to show the flow of all goods and services from industry of origin to industry of destination. It might be argued that if all flows are to be recorded, they should include sales on current account for intermediate and final use plus sales of capital equipment. But Evans and Hoffenberg have pointed out that input ratios computed from a generalized flow matrix of this kind would not be stable (since purchases of capital equipment by individual establishments tend to be "lumpy" rather than continuous), and these ratios would not be limited to transactions on current account which are the central focus of input-output analysis. ${ }^{17}$ Thus industry outputs to gross private domestic investment are listed in a separate column, and depreciation allowances in a separate row. In the tables in this study, the first approximations were based on survey data. These were adjusted following successive iterations of the various rows and columns.

Exports---Many activities covered by a small-area input-output table will be purely local in character, and these pose no particular problem. At the other extreme, some industries in a small area

```
16Op. cit., p. 273.
17 Op. cit., pp. 104-105.
```

might produce entirely for export which greatly simplify the allocation of their production. For those that fall in between some estimation is required. In our tables the distinction between local and export sales for such industries was based largely on survey data. Local sales were subtracted from total sales and the difference allocated to the export column for each sector.

Imports--- It is customary in constructing national transactions tables to distinguish between competitive and non-competitive imports. It has also been the practice in constructing national tables to add competitive imports to domestic production in the appropriate sector. Only the non-competitive imports, therefore, are entered in the import row. ${ }^{18}$ In our tables this distinction was not made. With the possible exception of some agricultural products, there are few examples of commodities produced in this area which are also imported for local consumption. This simplified the problem, and the assumption was made that all imports were non-competitive.
${ }^{18}$ See Chenery and Clark, p. 142, and Evans and Hoffenberg, p, 109.

Appendix: Illustrative Example of the Process of Margnning the Trade Sectors

Assumptions

(1) A simple economy with a single processing industry (perhaps mining) with no consumer goods manufacturing in the economy, a single trade sector, a household sector and a link with the outside world through exports and imports-- such as Appendix Table M-1.
(2) All numbers in Appendix Table M-1 represent total dollar sales.
(3) No wholesale sector exists.
(4) The retail trade sector is supplied through imports.
(5) The retail trade margin is twenty percent.

The twenty percent margin is applied to all entries in the trade row which reduces each original entry by eighty percent. The amount by which the trade row is reduced is then added to the import intersection with each of the affected columns as shown in Appendix Table M-2. If we stopped at this point, the import row would be grossly overstated since the processing industry, the household, and exports are all now viewed as importing goods which still appear as trade sector imports. The totals would also be out of balance with the retail trade row total equal to 26 while its column total comes to 130. Further, the sum of the final demand columns (households plus exports) equal 185 while their row totals come to 289 . Hence, it becomes necessary to reduce trade imports by the sum of the additions to the imports of the other three colums ---104 . All row and column totals are now brought back into balance within the processing sector as is the aggregate of the autonomous payments sector and final demand. See Appendix Table M-3.

APPENDIX TABLE M-1

TRANSACTIONS TABLE FOR A HYPOTEETICAL ECONOMY
(Stage 1)

	MINING	RETAIL TRADE	HOUSEHOLDS	EXPORTS	TOTAL GROSS OUTPUT
MINING	0	5	55	0	60
RETAIL TRADE	10	0	90	30	130
HOUSEHOLDS	40	20	0	0	60
IMPORTS	10	105	10	0	125
TOTAL GROSS OUTLAY	60	130	155	30	375

APPENDIX TABLE M-2
TRANSACTIONS TABLE FOR A HYPOTHETICAL ECONOMY
(Stage 2)

	MINING	RETAIL TRADE	HOUSEHOLDS	EXPORTS	$\begin{aligned} & \text { TOTAL } \\ & \text { GROSS } \\ & \text { OUTPUT } \end{aligned}$
MINING	0	5	55	0	60
RETAIL TRADE	2	0	18	6	26
HOUSEHOLDS	40	20	0	0	60
IMPORTS	18	105	82	24	229
TOTAL GROSS OUTLAY	60	130	155	30	375

APPENDIX TABLE M-3

TRANSACIIONS TABLE FOR A HYPOTHETICAL ECONOMY

(Stage 3)

$\left.\begin{array}{lc|c|c|c|c} & & & & & \begin{array}{c}\text { TOTAL } \\ \text { GROS }\end{array} \\ & \text { MINING } & \text { RETAIL TRADE } & \text { HOUSEHOLDS } & \text { EXPORTS } & \text { OUTPUT }\end{array}\right]$

Just why is all of this manipulation aecessary? For one thing the trade sectors differ from other processing sector industries in that their major task is to see that commodities and services are available when and where the consumer requires them. Thus they provide time and place utility but do not alter the physical form of the good. In this analysis an attempt is made to get at "value added" by entering only the gross margins of the trade sectors (the sum of operating expenses plus profit) in the transactions table.

To refer back to the example for a moment, if the trade sector supplies other industries with only twenty percent of the total value of their purchases, who supplies the remaining eighty percent? This example assumes that the missing eighty percent comes in the form of imports from outside the region. It is far from unrealisitc in this part of the country although there are clearly some local producers servicing the domestic market. Thus, instead of assigning the full amount of the difference between total trade sales and the trade margin to imports, some should go to local producers whose product is channeled to local consumers through the trade sector. The simplest case was chosen for the example to make the illustration of the general principle as clear as possible.

Perhaps the rationale for margining the trade sector is best presented by Evans and Hoffenberg when they write:

If output of the trade sectors were defined to cover total sales, it would mean that a great variety of commodities would flow into trade as inputs and then be charged out in some averaged aggregate form to consuming sectors. This procedure would eliminate the direct link between producers and users which is a a main purpose of the tabulations and would substitute instead a heterogeneous trading structure.
${ }^{19}$ Evans and Hoffenberg, 6p. cit., p: 104.

The Economy of the Upper Main Stem Sub-Basin
of the Colorado River Basin: An Overview

Introduction

The Upper Main Stem Sub-basin is the smallest of any of the six sub-basins of the drainage area of the Colorado River Basin. Its 26,097 square miles comprise almost 11% of the overall area of the Colorado Basin. Almost 85% of its area lies within Colorado with the remaining 15% in Utah. ${ }^{1}$ For purposes of this analysis, the Upper Main Stem Sub-basin has been defined to include 13 counties in Colorado and one in Utah. The Colorado counties include the following: Delta, Dolores, Eagle, Garfield, Grand, Gunnison, Hinsdale, Mesa, Montrose, Ouray, Pitkin, San Miguel, and Sumit. Grand County in Utah completes the list of representative counties of the Upper Main Stem. Figures UNS-A and UMS $-B$ show the precise location of the Upper Main Stem, while Table UMS -A lists the representative counties ${ }^{2}$ of each sub-basin of the Colorado River Basin.

The Upper Main Stem Sub-basin covers most of west central Colorado and Grand County's location in east central Utah. The largest city in the subbasin is Grand Junction; Colorsio located in Mesa County. Other communities In the sub-basin include the ski resort of Aspen, and the towns of Glenwood

[^2]
MAJOR SUB-BASINS of THE COLORADO RIVER BASIN

COLORADO RIVER BASIN
WATER QUALITY CONTROL PROJECT U.S. DEPARTMENT OF THE INTERIOR

Federal Water Pollution Control Administration

A LIST OF REPRESENTATIVE COUNTIES IN THE COLORADO RIVER BASIN

Springs, Hot Sulphur Springs, Fraser, Dillon, Red Cliff, Eagle, Rifle, Delta, and Montrose in the State of Colorado, and Moab in Grand County Utah. The sub-basin has long been a center of mining activity, and in recent years uranium has been of particular importance. Garfield County figures prominently In much of the current speculative talk concerning the development of an oil shale industry in Colorado, and pilot plants already exist in the Rifle area. With its excellent ski facilities, outdoor recreation during the winter season also has become important in the economic life of the sub-basin.

Range livestock is by far the most important agricultural industry in the Upper Main Stem Sub-basin, and grazing on federally owned land has always been a key part of this industry. Despite increases in the average size of farm and decreases in the number of farms in this sub-basin in recent years, most of the agricultural establishments are small. Thus, it has been estimated that only about 25% of the farms in the Upper Main Stem could be considered as commercial farms with sales over $\$ 10,000,00$ per year. ${ }^{3}$ Irrigation has always played a significant role in the agricultural life of the sub-basin and some of the earliest projects of the U.S. Bureau of Reclamation are located in the area.

Population

The Upper Main Stem Sub-basin is the third most populous sub-basin of the Colorado River with a 1960 population of 128,079 . Table UMS $-B$ presents a summary of the age and sex distribution of 1960 sub-basin population. In that year the age profile of population in the sub-basin showed a somewhat larger percentage of the population under age 20 and over age 64 and a corresponding
${ }^{3}$ See Jay Andersen, "Agricultural and Forestry Aspects of an Interindustry Analysis of the Upper Main Stem Sub-basin of the Colorado River," Economic Research Service, U.S. Department of Agriculture, Logan, Utah, August, 1967, P. attached.

TABLE UMS-B
 Population by Age and Sex - 1960
 Upper Main-Stem Sub-Basin

Age Group	Male	Female
$0-19$	26,258	25,438
$20-39$	14,784	15,392
$40-64$	17,395	16,349
$65+$	6,245	6,218
TOTAL	64,682	
BOTH SEXES - TOTAL		128,079

Source: U. S. Census of Population, 1960.
smaller proportion between the ages of 20 and 64 than was che case a decade earlier.

The population of the Upper Main Stem has been growing since at least 1930 although the rate of growth slowed appreciably in the decade to 1950 when a growth of only 3.8% was recorded. However, in the 1950 - 1960 period, the population grew 17.4%. In the same decade nine of the fourteen counties which comprise the Upper Main Stem grew in population ranging from an increase of 233% in Grand County, Utah to a gain of 3.4% in Garfield County, Colorado.. Five counties of the Sub-basin lost population in the decade to 1960. These were Ouray (-23.9%), Hinsdale (-20.9%), Grand, Colorado (-10.3%), Delta (-10.2%), and Gunnison (-4.2\%).

Census data permit an analysis of population change in terms of the components of such change. For example, it enables one to determine how much of the difference of population between 1950 and 1960 was due to factors other than the excess of births over deaths (the natural increase). The results of such an analysis in the Upper Main Stem are instructive. During the decade to 1960 the excess of births over deaths in this sub-basin amounted to 18,301. The reported excess of total 1960 population over 1950 was 19,019 . Thus, net inmigration is said to have taken place, and the 718 in-migrants constitute 0.66% of the 1950 population taken as a base. Thus a net migration rate of $+0.66 \%$ is assigned the Upper Main Stem Sub-basin. Similarly calculated rates for the component counties show positive net rates for five counties (Grand Utah, Summit, Pitkin, Mesa, and Montrose, Colorado) and negative rates for nine counties (Ouray, Grand, Hinsdale, Dolores, Gunnison, Eagle, Delta, San Miguel, and Garfield).

In the aggregate, the Upper Main Stem ranked third in population in. 1960 among the $s i x$ sub-basins of the Colorado. Its approximate 7% of total Colorado River Basin population in that year lagged far behind the Lower Main Stem's 12.8% and the Gila's 63.1\%. In relative terms it was only marginally ahead of the San Juan's 5.8\%, the Little Colorado's 5.7\%, and the Green's 5.6\%. In terms of rank, however, the Upper Main Stem had moved up one knotch from its fourthranked position in 1950, although its relative share of total Colorado Basin population has continued to decline from 12.4% in 1940 and 915% in 1950.

Population Density

The 128,079 residents of the Upper Main Stem in 1960 were distributed over a land area of 25,680 square miles in the representative counties, with a rem sulting population density of just about 5 persons per square mile. This figure compares with national density of population of 59 persons per square mile in that year. While sparsity of population relative to land characterizes all the sub-basins of the Colorado, the sub-basin of the Upper Main Stem ranks second among the six, trailing the Gila's "crowded" figure of 18.8 persons per square mile. While population density in the United States in the decade to 1960 increased by 18.4%, that of the Upper Main Stem grew by 17.4%.

Within the sub-basin, 1960 population density ranged from a low of 1.7 persons per square mile in Gunnison County to a high of 15.3 persons per square mile in Mesa County. In ten of the 14 component countles, however, population density did not exceed 4 persons per square mile.

By census definition, 65.3% of the population of the Upper Main Stem was classed as rural in 1960. Of this group, 15.6% were classed as rural farm and
49.8% as rural nonfarm. The changes were from 30.3% and 45.6% respectively of the population of the Upper Main Stem in the year 1950. Thus, it may be noted that the rural farm segment of the population had declined by almost half in relative importance during the decade to 1960. It is interesting to note, how ever, that during this period of relative decline of the rural population, the rural nonfarm population actually increased its importance by a few percentage points reflecting the growing concentration of population in this sub-basin in an essentially small town environment rather than on farms. Nevertheless, the sub-basin of the Upper Main Stem can hardly be considered urban. The 34.6% of its 1960 population considered urban was the second lowest of all six sub-basins with only the Little Colorado Sub-basin showing a smaller urban percentage - -28.4% of the population.

It might also be noted that among the component counties of the Upper Main Stem, Eive are considered 100\% rural nonfarm--Dolores, Hinsdale, Ouray, Pitkin, and Sumit. Grand County Utah's 74.6% urban population qualified it as the most urban of all of the counties of the Upper Main Stem.

Educational Level of the Population (Table C)

The educational attainment of the population 25 years of age and older in the Upper Main Stem Sub-basin was higher among both men and women in 1960 than In the nation at large. The median number of school years completed for these groups was 10.8 and 11.7 respectively in the sub-basin and 10.5 and 11.0 for the U. S. Among sub-basin males in 1960, schooling completed ranged from a low of 9.3 years in Delta County to a high of 12.5 years in Pitkin. Unfortunately, no 1960 data were available for the educational attainment of males in Hinsdale

Table UMS-C
Median School Years Completed (Persons 25 \& Over)

UPPER MAIN STEM SUB-BASIN	Male			Female		
Representative Counties	1950	1960	\%Change	1950	1960	\%Change
COLORADO						
1. Delta	8.9	9.3	4.5	10.7	11.2	4.7\%
2. Dolores	*	9.8	*	*	10.7	*
3. Eagle	9.0	9.8	8.9	11.7	11.5	-1.7
4. Garfield	9.1	10.5	15.4	11.5	12.0	4.3
5. Grand	10.4	11.0	5.8	12.2	12.2	-
6. Gunnison	10.0	12.0	20.0	12.0	12.4	3.3
7. Hinsdale	*	*	*	*	*	*
8. Mesa	9.2	11.4	23.9	11.5	12.1	5.2
9. Montrose	8.8	9.9	12.5	10.2	11.3	10.8
10. Ouray	8.9	10.3	15.7	*	12.2	*
11. Pitkin	*	12.5	*	*	12.7	*
12. San Miguel	8.9	10.5	18.0	10.1	10.8	6.9
13. Summit	*	11.2	*	*	11.4	*
UTAR						
1. Grand	*	11.9	*	*	12.1	*
UPPER MAIN STEM	9.2	10.8	17.4	11.2	11.7	4.5
UNITED STATES	9.0	10.5	17.0	9.6	11.0	15.0

* Not Reported.

Source: U.S.Census of Population, 1950 and 1960.

County. Among women in the sub-basin in the same year, the range of educational attainment extended from a low of 10.7 in Dolores to a high of 12.7 years in Pitkin County. Once again no data were available for Hinsdale County. Women In the Upper Main Stem Sub-basin in the year 1960 had the distinction of showing the highest median number of years of schooling completed in any sub-basin in the Colorado River area.

Income

The Upper Main Stem Sub-basin had the third highest per capita personal income of any sub-basin of the entire Colorado River Basin in 1960 (See Table UMS -D). Our estimate of $\$ 1,695,00$ for the Upper Main Stem trailed the richest sub-basin (Lower Main Stem) by $\$ 417.00$ and trailed the U. S. national average by $\$ 246.00$. By our estimates personal income per capita in the Upper Main Stem was approximately 87% of the national average. ${ }^{4}$ As shown in Table UMS-E, per capita personal income varied widely in the sub-basin ranging from a low of $\$ 1,316.00$ in Delta County Colorado to a high of $\$ 2,635.00$ in Pitkin County.

Labor Force Participation

Labor force participation may be taken to show what proportion of the adult population is employed or considers itself available for work. More
"In Table UMS-D the term "location quotient" appears for the first time in this report. This refers to a convenient device which aids in the study of regions by permitting a simple comparison per head of population between the region and the entire country for whatever particular economic characteristic is under study. A location quotient with a value of 1.0 would indicate equality between region and nation. A value greater than 1.0 indicates the relative excess of the region over the nation, while a quotient less than 1.0 shows the relative magnitude by which the region trails the nation.

Table UMS-D

Personal Income Per Capita

U.S., Colorado River Basin, and Six Sub-Basins, 1960

	Per Capita Personal Income $(1960$ Estimates)	Location Quotient (Sub-Basin Per Capita Personal Income) : (U.S.Per Capita Personal Income)
United States	1,941	$-\ldots$
San Juan Sub-Basin	1,554	0.801
Upper Main Stem Sub-Basin	1,695	0.873
Green Sub-Basin	1,656	0.853
Gila Sub-Basin	1,912	0.985
Lower Main Stem Sub-Basin	2,112	1.088
Little Colorado Sub-Basin	1,022	0.527
Colorado River Basin	1,836	0.946

Source: Our estimates of per capita personal income were derived in the following manner. Personal income for each county was determined by multiplying the mean income from all sources received by income recipients in 1959 by the number of income recipients as reported in Table 86 of various state reports of the 1960 Census of Population, General Social and Economic Characteristics. The personal income from all sources thus derived for 1959 was adjusted to 1960 by the national growth rate in Personal Income between 1959 and 1960 (4.9\%). The resulting total was then divided by 1960 population to arrive at the 1960 per capita personal income figures.

Per Capita: Perpnal Income by Representative

 Countles, Upper Main Stem Sub-Basin(1960)

precisely, the labor force is comprised of those who are employed or who are actively seeking work. This number, when expressed as a percentage of the noninstitutionalized population age 14 or older, yields the labor force participation rate. This concept is a useful indicator of the level of economic development in a region and is particularly valuable when broken down into age and sex categories. For this report, this aggregation into age classes was not posisible, but Table UMS-F does provide labor force participation rates by sex for the continental United States, the entire Colorado River Basin, and for each of its six sub-basins. The participation rate for each region has been divided by the corresponding national figure to obtain a location quotient.

Table UMS $-\mathbb{F}$ indicates that in 1960, the share of the adult population employed or seeking work in the Upper Main Stem ranked third among the sub~ basins of the Colorado. Approximately 78.3% of the men and 31.4% of the women in the normal work phase of their lives were in the labor force. Sub-basin: location quotients of 0.994 and 0.901 for males and females, respectively, indicate a relatively narrow gap between labor force participation rates in the Upper Main Stem and in the United States. The labor force participation patterns of both men and women in the Upper Main Stem moved closer to the national norm between 1950 and 1960.

The wide variation in labor force participation rates within the sub-basin is shown in Table UMS -G. The range of participation rates among men varied from a low of 71.2% in Delta to a high of 90.0% in Grant, Utah. The range among women in 1960 stretched from Hinsdale's low of 20.8 to a high in Pitkin County of 45.6. Interestingly, while labor force participation rates increased for males in seven counties of the region's fourteen between 1950 and 1960, the rate among females increased in every county except Hinsdale.

Table UMS-F
Labor Force Participation Rates

	1950 Male			1960 Male			1950 Female			1960 Female		
	Rate	Location Quotient	Rank									
United States	81.02	1.000		78.75	1.000		29.28	1.000		34.88	1.000	
Colorado River Basin	77.56	0.957		77.88	0.989		25.47	0.870		32.33	0.927	
Lower Main Stem Sub-Basin	82.93	1.024	1	82.84	1.052	1	29.03	0.991		38.01	1.090	1
Gila Sub-Basin	75.78	0.935	5	77.62	0.986	4	25.93	0.886	3	32.63	0.935	2
Little Colorado Sub-Basin	75.72	0.934	6	62.92	0.799	6	28.59	0.976	2	25.22	0.723	6
Upper Main Stem Sub-Basin	78.20	0.965	3	78.31	0.994	3	23.46	0.801	4	31.44	0.901	3
San Juan Sub-Basin	77.77	0.960	4	77.00	0.978	5	21.19	0.724	5	26.36	0.756	5
Green Sub-Basin	82.11	1.013	2	79.75	1.013	2	20.67	0.706	6	28.52	0.818	6

Source: Computed from data in the U.S. Census of Population, 1950 and 1960.

Labor Force Participation Rates Upper Main Stem Sub-Basin

County	Male		Female	
	1950	1960	1950	1960
Delta, Colorado	77.86	71.24	21.33	26.60
Dolores, Colorado	83.29	78.99	19.07	31.89
Eagle, Colorado	83.43	82.43	20.44	24.96
Garfield, Colorado	80.02	80.22	25.75	33.83
Grand, Colorado	83.96	82.65	28.89	41.24
Gunnison, Colorado	71.88	71.25	23.28	38.23
Hinsdale, Colorado	80.00	89.02	26.88	20.83
Mesa, Colorado	77.29	77.74	24.25	32.88
Montrose, Colorado	79.31	79.39	22.42	27.93
Ouray, Colorado	79.73	75.73	17.42	24.46
Pitkin, Colorado	77.98	83.98	27.18	45.63
San Migue, Colorado	84.66	80.75	20.58	23.79
Summit, Colorado	82.71	88.25	27.50	34.15
Grand, Utah	75.70	90.04	24.92	29.50
Sub-Basin Total	78.58	78.35	23.46	31.45

Source: Computed from data in U.S. Census of Population, 1950 and 1960.

Table UMS-H presents the Census version ${ }^{5}$ of industrial distribution of sub-basin employment Eor 1940, 1950, and 1960. Total adjusted employment of 45,618 in 1960 represented a 17.7% increase during the most recent decade almost matching the sub-basin's employment growth of 19.9% in the 1940-50 period. Growth in sub-basin employment in the decade to 1960 compares Eavorably to national growth in the same period of 15.5%. (See Table UMS -K).

The most significant changes in the pattern of employment since 1950 in the Upper Main Stem have been the following:

1. A sharp decline in agricultural employment-of 37%.
2. An impressive 84.2% gain in mining employment reversing the mild decline of about 4% in the 1940-50 decade.
3. Impressive increases in manufacturing and service employment
--gains of 53.7% and 53.8% respectively.
[^3]
Table UMS-H

Upper Main Stem Employment by Industry

1940
1950

InDUSTRY	Reported Emplayment	Adjusted 	Reported Employment	Adjusted Employment*	Reported Employment	Adjusted Employment*
Agriculture	12,276	12,465	11,304	11,561	7,072	7,290
Mining	2.956	2,993	2,343	2,878	5,138	5,300
Contract Construction	2,061	2,092	3,178	3,236	3,345	3,445
Manufacturing (Total)	1,054	1,065	1,500	1,710	2,541	2,628
Food and kindred products mfg.	352	358	458	466	716	735
Textile mill products mfg.	4	4	6	6	0	0
Apparel mfg.	7	7	4	4	12	12
Lumber, wood products, furniture mfg.	294	296	435	443	477	496
Printing and publishing mfg.	220	222	296	302	446	458
, Chemicals and allied products mfg.	26	26	52	53	162	180
\ldots Electric and other machinery mfg.	34	34	90	91	163	166
Motor vehicles and equipment mfg.	1	1	6	6	13	13
Other transportation equipment mfg.	2	2	4	4	7	7
**Primary metals	5	5	41	42	43	44
**Fabricated metals	8	8	34	34	89	91
Other and miscellaneous mfg.	101	102	254	259	413	426
Transportation	1,844	1,870	2,118	2,159	2,004	2,064
Communication, utilities	615	623	1,252	1,273	1,496	1,539
Wholesale tracue	654	664	951	968	1,387	1,427
Eating and drinking places	629	637	1,145	1,162	1,433	1,477
Other retail trade	3,102	3,150	4,354	4,432	5,860	6,038
Finance, insurance, real estate	444	450	718	730	1,338	1,376
Services (Total)	5,106	3,181	6.324	6,943	10,364	10,681
Hotels and other personal services	1,163	1,152	1,330	1,421	1,255	1,914
Private households	034	296	650	65\%	1,056	1,113
Business and repair services	726	736.	1, 142	1,170	1,017	1,047
Entertainment, recreation services	256	257	$\underset{55}{ }$	361	377	351
Medical, other professional services	2,377	2,110	3,272	2,332	6,025	6,211
Government	1,102	1,115	$\therefore, 672$	1,732	2,282	2,353
Total.	32,543		20,112		44,260	
Industry Not Reported Adjusted Total	465	32,30	635	36,754	1,353	45,618

Table UNS -H (Cont'd)
Upper Main Seem Employwent by Industry

Industry	Industry as percentage of adjusted Sub-Basin employment			Per cent change Based on adjusted employment		
		1950	1560	$\begin{aligned} & 1940 \\ & 1950 \end{aligned}$	$\begin{aligned} & 1940 \\ & 1960 \end{aligned}$	1950
	1540	1950	1560			
Agriculture	38.58\%	29.83\%	15.98\%	-7.30\%	-48.48\%	-37.00\%
Mining	9.26	7.43	11.62	-3.85	77.07	84.15
Contract construction	6.47	8.35	7.55	54.68	64.67	6.45
Manufacturing (total)	3.30	4.41	5.76	60.56	146.76	53.68
Food and kindred products mfg.	1.11	1.20	1.61	30.16	105.30	57.72
Textile mill products mfg.	0.01	0.01	0	50.00		5.72
Appare 1 mfg.	0.02	0.01	0.03	-42.86	71.42	200.00
Lumber, wood products, furniture mfg.	0.92	1.14	1.09	49.66	67.56	11.96
Printing and publishing mfg.	0.69	0.78	1.00	36.03	106.30	51.65
Chemicals and allied products mfg.	0.08	0.14	0.39	103.84	592.30	239.62
Electrical and other machinery mfg.	0.10	0.23	0.36	167.64	388.23	82.41
Motor vehicles and equipment mfg.	0	0.01	0.03	500.00	1200.00	116.66
Other transportation equipment mfg.	0.01	0.01	0.01	100.00	250.00	75.00
Primary metals	0.01	0.10	0.05	720.00	780.00	10.00
Fabricated metale	0.02	0.08	0.19	325.00	1037.50	167.64
Other and miscellaneous mfg.	0.31	0.67	0.93	134.90	317.64	63.84
Transportation	5.79	5.57	4.52	15.45	10.37	-4.41
Communication, utilities	1.93	3.28	3.37	104.33	147.03	20.89
Wholesale trade	2.05	2.50	3.13	45.78	114.90	47.41
kating and dxinking places	1.97	3.00	3.24	82.41	131.86	27.10
Other retail trade	9.75	11.44	13.24	40.69	91.68	36.23
Finance, Insurance, real estate	1.39	1.88	3.02	62.22	205.77	88.49
Services (total)	16.03	17.94	23.41	34.00	106.10	53.80
Hotels and other personal services	3.66	3.67	4.19	20.21	61.92	34.69
Private households	2.77	1.70	2.45	-26.46	24.77	69.65
Business and repair services	2.28	3.02	2.29	58.96	42.25	-10.52
Entertainment, recreation services	0.79	0.93	0.36	40.46	52.14	8.31
Medical, other professional services	6.53	3.60	13.61	57.91	154.36	86.40
Government	3.46	4.39	5.16	52.10	110.27	38.24
Total	100.00	100.00	100.00	19.90	41.19	17.70

Table UMS-H (Cont'd)
Upper Main Stem Imployment by Industry

* The inclusion of an "industry not reported" sector would grossly complicate the projection procedure and hence it was decided to allocate employees so classified among the identified sectors. This was done by a percentage distribution which would leave the original relationships unchanged.

Source: U. S. Deparment of Comerce, Office of Business Economics, Growth Patterns in Employment by County, 1940-1550 and 1950-1960 (Washington, D. C.: U. S. Government Printing Office, 1965).
** U. S. Department of Comerce, Bureau of the Census, U. S. Census of Population, 1260 (Washington, D. C.: U. S. Government Printing Oifice, 1S65).

Adjusted Employment by Industry in Counties of the Upper Main Stem Sub-Basin - 1960

Industry	Delta	Dolores	Eagle	Garfield	Grand	Gunnison	Hinsdale	Mesa	Montrose	Ouray	Pitkin	San Migue 1	Sum \#it	Grand Utah
Agriculture	1,539	102	265	305	176	292	30	2,056	1,518	144	99	91	$4 \rightleftharpoons$	89
Mining	189	128	468	547	4	222	17	1,022	991	124	12	467	$11 \rightleftharpoons$	997
Contract Construction	367	53	97	391	129	86	3	1,395	381	25	89	40	$29 \square$	85
Manufacturing	336	150	71	131	136	93	0	1,242	314	35	25	21	53	66
Food \& Kindred Prods.	203	0	4	44	8	0	0	354	106	0	0	0	\square	12
Textile Mill Prods.	0	0	0	0	0	0	0	0	0	0	0	0	\square	12
Appare1 Mfg.	0	0	0	0	0	0	0	8	4	0	0	0	\square	0
Lumber \& Wood Prods.	72	5	46	16	119	51	0	37	112	18	4	16	\square	0
Printing \& Publishing	25	4	8	37	9	21	0	263	44	17	4	0	\square	26
Chemicals, Etc.	0	126	0	0	0	0	0	42	4	0	0	0	\square	8
Electrical, Etc.	20	0	0	4	0	4	0	123	7	0	0	0	\square	8
Motor Vehicles, Etc.	0	0	0	0	0	0	0	13	0	0	0	0	\square	0
Other Transportation	0	0	0	0	0	0	0	7	0	0	0	0	\square	0
Primary Metals	9	4	0	5	0	5	0	17	0	0	0	0	\square	4
Fabricated Metals	3	5	0	0	0	0	0	71	4	0	0	0	\square	0
Other Miscellaneous Mfg.	4	6	13	25	0	4	0	307	33	0	17	5	\square	8
Transportation	113	20	126	145	77	32	0	1,140	128	4	33	19	$1 \square$	162
Communications \& Utilities	140	24	36	128	93	47	0	650	238	3	11	29	$5 \square$	77
Wholesale Trade	131	16	19	120	25	24	0	853	136	4	9	7	\square	33
Eating \& Drinking Places	152	15	50	192	00	65	8	515	143	29	87	37	53	45
Other Retail Trade	811	62	191	647	161	232	0	2,500	765	54	105	82	$4 \equiv$	252
Fianace, Insurance, Etc.	144	9	22	121	45	36	4	660	171	20	56	31	-	53
Services	1,046	124	259	1,045	443	773	12	4,624	1,398	93	470	152	14%	395
Hotels, Etc.	123	0	33	259	147	137	3	594	205	25	187	10	5 L	82
Private Households	130	25	3	92	42	33	0	540	127	17	48.	11	13	24
Business \& Repair	112	14	10	92	27	38	0	521	113	0	37	29	\square	54
Entertaimment	48	13	0	33	62	14	4	114	33	0	25	0	5	35
Medical \& Other	633	72	158	564	170	551	5	2,847	620	51	173	94	73	200
Government	200	50	65	237	101	124	9	1,074	263	36	44	35	-6D	55
Total	5,101	753	1,662	4,509	1,403	2,126	83	17,854	6,196	576	1,340	1,011	823	2,309

Source: Same as Table H

Table UMS- H_{2}
Adjusted Employment by Industry in Counties
of the Upper Main Stem Sub-Basin - 1950
Industry
Agricultur

Mining

Contract Construction
Manufacturing
Food \& Kindred Prods.
Textile Mill Prods.
Apparel Mfg.
Lumber \& Fiood Prods.
Printing \& Publishing
Chemicals, Etc.
Electrical, Etc.
Motor Vehicles, Etc.
Other Transportation
Primary Metals
Fabricated Metals
Other Miscellaneous Mig. Transportation
Communications \& Utilities Wholesale Trade
Eating \& Drinking Places Other retail Trade
Finance, Insurance, \cdot Etc. Services

Hotels, Etc
Private Households
Business \& Repair
Entertaiment
Medical \& Other.
Government
Total

Source: Sane as Table H .

Table UMS-H3

Adjusted Employment by Industry in Counties
of the Upper Main Stem Sub-Basin - 1940

Industry

Agriculture

Mining

Contract Construction
Manufacturing
Food \& Kindred Prods.
Text ${ }^{\text {¹ }}$ e Mill Prods.
Appare Mfg.
Lumber \& Wcod Prods.
Printing \& Publishing
Chemicals, Eic.
Electrical, Ecc.
Motor Vehicles, Etc.
Other Transportation
Primary Metals
Fabricated Metals
Other Miscellaneous Mfg.
Transportation
Communication \& Utilities
Wholesale Trade
Eating \& Drinking Places
Other Retail Trade
Finance, Insurance, Etc. Services

Ho七els, Etc.
Private How:seholds
Business \& Repais
Entertainment
Medical \& Cther
Government
Tocal

Delta	Dolores	Eagle	Garfield	Grand	Gunnison	Hinsdale	Mesa	Montrose	Ouray	Pitkin	San Miguel	Summit	Grand Utah
2,470	299	591	1,547	411	501	53	3,388	2,236	234	267	237	89	142
162	115	495	82	7	559	4	194	448	123	71	556	103	74
196	18	75	210	150	76	3	606	258	32	17	117	274	60
205	25	59	84	66	80	1	337	141	11	18	23	10	5
117	2.	2	25	1	8	0	147	51	0	0	0	0	1
1	0	0	0	0	1	0	3	2	0	0	0	0	0
1	1	0	1	0	0	\bigcirc	4	0	\bigcirc	0	0	0	0
33	19	53	19	59	22	0	28	22	6	13	19	5	1
32	3	7	23	5	13	0	88	35	4	2	4	3	3
3	0	0	0	0	\bigcirc	0	7	16	0	\bigcirc	0	\bigcirc	0
3	0	0	3	1	1	0	17	7	1	0	0	1	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1	2	0	0	0	1	0
1	0	0	4	0	0	0	3	0	0	0	0	0	0
12	0	0	5	0	35	1	40	6	0	3	0	0	0
107	12	157	123	78	84	1	971	125	49	6	23	6	123
77	1	18	76	22	29	3	230	72	14	16	33	16	16
101	2	7	51	10	10	0	391	83	2	1	5	1	0
65	4	41	85	44	38	0	211	71	10	6	34	8	20
462	27	112	328	101	163	5	1,265	451	55	40	71	34	36
54	0	9	43	6	23	2	226	63	3	7	7	2	5
686	47	242	589	208	337	21	1,818	694	110	84	169	79	97
126	3	55	141	72	73	1	41.3	144	25	23	46	28	17
122	8	45	92	2.6	55	2	324	138	13	21	29	6	11
119	10	30	79	52	29	1	255	114	23	7	17	5	18
24	\bigcirc	11	4.3	16	17	$?$	87	27	9	1	12	6	6
295	21	97	237	62	163	6	739	27\%	43	32	65	34	45
122	14	62	$\underline{33}$	47	75	8	373	128	30	19	42	25	41
4,707	564	1,368	3,351	1,150	1,975	101	10,010	4,770	673	552	1,322	647	619

[^4]Table UMS-K
United States Employment by Industry

INDUSTEY	Reported Employment 1540	Adjusted Employment* 1940	Reported Employment 1850	Adjusted Employment* 1950	$\begin{aligned} & \text { Reported } \\ & \text { Employment } \\ & 1960 \end{aligned}$	Adjusted Employment* 1960
Agriculture	8,538,419	3,670,424	7,042,750	7,147,643	4,349,884	4,527,986
Mining	513,253	932,427	530,657	944,496	654,006	680,643
Contract Construction	2,068,474	2,100,415	3,457,236	3,508, 712	3,815,937	3,972,103
Manufacturing	10,501,465	10,754,920	14,600,903	14,818,148	17,513,086	18,228,893
Food and kindred products mfg.	1,105,275	1,122,954	1,414,009	1,435,022	1,822,477	1,896,504
Textile mill products mfg.	1,151, 005	1,169,574	1,240,283	1,256,764	954,036	992,947
Appare 1 mifg.	799,282	811,595	1,063,921	1,079,701	1,159,163	1,206,430
Lumber, wood products, furnicure mifg.	939,444	353, 964	1,150,176	1,207,850	1,067,252	1,110,264
Princing and puil?shing mig.	632,250	642,346	055, 254	857,996	1, 14?,122	1,187,676
Chemicals and allied products nig.	44, 3,142	44, 517	655,327	65, 116	364,542	c59,797
Electrical and other nachine:y mig.	1,072,424	1, 280,248	2,004,337	2,115,392	3,055,447	3,180,537
Motor vehicl.es and equipuent mfg.	574,360	583,300	360,300	822,300	341,061	876,333
Other t=ansportation	307,133	311,833	432,759	40, 072	576,037	1,016,793
**Prinazy liecals	370,645	-52,230	1,204,975	1,202,612	1,224,922	1,275,062
**Fabricated mesals	620,464	636,121	847,205	853,783	1,251,705	1,344,461
Other and uiscellaneous mig.	2,363,982	2,092,869	2,709,255	2,749,592	3,113,648	3,241,089
Transportation	2,185,775	2,210,50ع	2,954,230	2,588,195	2,735,913	2,851,946
Communication, utilities	938,615	953,135	1,495;077	1,517,271	1,718,234	1, 788,482
Wholesale trade	1,209,449	1,223,113	1,981,827	2,011,278	2,212,984	2,303,603
Eating and drinking places	1,120,571	1,137,357	1,692,005	1,717,952	1,801,667	1,375,311
Ocher retail trade	5,233,332	5,314,305	6,910,018	7,012,632	7,777,984	8,096,324
Finance, insurance and real estate	1,459,681	1,492,550	1,920,691	1,949,298	2,694,630	2,804,334
Services	8,620,252	C,754,248	$10,106,309$	10,256,685	13,549,947	14, 104, 103
Hotels and other personal services	1,689,514	1,715,652	1,361,583	1,809,267	1,941,530	2,020,919
Private Households	2,336,497	2,372,642	1,63s,551	1,663,939	1,916,964	1,995,303
Business and repair services	867,413	800,826	1,313,235	1,332,728	1,610,728	1,676,533
Entertaimsent, recreation services	396,966	403,050	494,720	502,062	502,879	523,249
Medical, other professional services	3,330,562	3,382,073	4,797,215	4,868,609	7,577,846	7,888,039
Government	1,750,086	1,017,744	3,539,859	3,592,602	4,936,292	5,138,421
Total	$44,685,275$		56,632,392		63,764,564	
Industry Nor Reported	650,540		842,520		2,603,085	
Adjusted total		45,375,315		57,474,912		66,372,649

Table UMS-K (Cont'd)
United States Rmployment by Industry

INDUSTTLY	Industry as a percentage of U. S. Employment			$\begin{aligned} & 1540 \\ & 1950 \end{aligned}$	$\begin{array}{r} \text { Percentage } \\ 1940 \\ 1960 \end{array}$	$\begin{aligned} & 1950 \\ & 1960 \end{aligned}$
Agriculture	19.12\%	12.44\%	6.82\%	-17.57\%	-47.78\%	-36.66\%
Mining	2.06	1.64	1.03	1.29	-27.01	-27.94
Contract Construction	4.63	6,11	5.98	67.04	89.11	13.20
Manufacturing	23.65	25.70	27.46	37.78	69.49	23.01
Food and kindred products mfg.	2.47	2.50	2.86	27.78	68.52	32.18
Textile mill products mfg.	2.57	2.18	1.50	7.62	15.11	-21.12
Appare 1 mfg .	1.70	1.30	1.82	33.03	48.64	11.73
Lumber, wood products, furniture mfg.	2.11	2.10	1.67	7.75	16.44	-8.04
Printing and publishing mfg. .	1.41	1.51	1.79	35.15	84.98	36.82
Chemicals and allied products mig.	. 92	1.16	1.36	$49: 71$	101.33	34.47
Electrical and other machinery mfg.	2.39	3,68	4.79	94.25	152.07	50.35
Motor vehicles and equipment mfg.	1. 20	1.54	1.32	51.12	50.10	-0.68
Other transportation	. 68	. 85	1.53	57.12	226.06	107.52
Primaty metals.	1.96	2.09	1.92	34.78	42.90	6.02
Fabricated metals	1.41	1. 50	2.03	34.72	110.67	110.67
Other and miscellaneous mfg.	4.61	4.73	4.80	31.37	54.36	17.87
Transportation	4.90	5.22	4.30	35,08	28.48	-4.88
Communcation, utilities	2.11	2.64	2,69	59.18	- 37.64	17.87
Wholesale trade	2.71	3.50	3.47	63.76	87.57	14.53
Eating and drinking places	2.51	2.99	2.83	50.98	64.81	2.15
Other retail trade	11.72	12.20	12.21	31.95	52.34	15.45
Finance, insurance and real estate	3.29	3.32	4.23	30.60	37.92	43.88
Services	19.30	17.34	21.24	17.16	61.07	37.51
Hotels and other personal services	3.78	3.29	3.04	10.11	17.79	6.96
Private households	5.22	2.90	3.01	-29.87	-15.91	19.91
Business and repair services	1.94	2.32	2.53	51.30	90.33	25.79
Entertainment, recreation services	. 86	. 37	. 75	24.56	29.82	4.21
Medical, other professional services	7.45	8.47	11.88	43.95	133.23	62.01
Goverrment	4.01	6.25	7.74	97.64	182.68	43.02
Total	100.00	100.00	100.00	26.66	46.27	15.48

Table UMS-K (Cont'd.)
Upper Main Stem Employment by Industry

* The inclusion of an "industry not reported" sector would grossly complicate the projection procedure and hence it was decided to allocate employees so classified among the identified sectors. This was done by a percentage distribution which would leave the original relationships unchanged.

Source: U. S. Department of Conmerce, Office of Business Economics, Growth Eatterns in Employment by County, 1540-1550 and 1550-1560 (Washington, D.C.: U. S. Government Printing Ofifice, 1965.)
** U. S. Department of Commerce, Bureau of the Census, U. S. Census of Population, 1960 (Washington, D.C.: U. S. Goverment Printing Office, 1365).
4. An increase os almost 40% in government employment.
5. A decline in the cqncentration of total employment Sound among the leading employing industries.

The details may be zounc in Tatles UMS'H and UMS-J. In 1940 agriculture was the leading employer in the Upper Main Stem, accounting for almost 39% of all jobs. Employment in service industries ranked second with 16% and together with agriculture provided 55% of all sub-basin jobs. By 1960 services employment ranked first and provided 23.4% of total sub-basin employment. Agriculture had dropped to second place accounting for just under 16% of all jobs. Thus, the two top ranking industries together accounted in 1960 for only 39% or total sub-basin employment compared to their combined 55% twenty years earlier. While employment in mining remained the fourth most important employing industry, its percentage of total employment had increased from 9.3% in 1940 to 11.8% in 1960 after declining to 7.4% in 1950 .

Table UMS-I shows the details of manufacturing employment in 1950 and 1960. During the past decade impressive increases in employment took place in food manufacturing, printing, publishing, chemicals, fabricated metals, and in miscellaneous manufacturing industries. During this same decade the relative importance of manufacturing as a provider of jobs inched up from 4.4% of subbasin employment to 5.8%.

There were some significant divergences in employment developments between the Upper Main Stem and the nation during the decade to 1960. A comparison of Tables UMS-J and UMS-L indicates that the concentration of employment in the subbasin in 1960 was less than in the United States at large, reflecting a shift from prior trends observed in the decennial Census years of 1940 and 1950. Table UMS-M shows the relative change in employment in 12 major industry groups for the

Table UMS-I

Manufacturing Employment

	Upper Main Stem	1950
Food and Kindred Products	466	735
Textile Mill Products Mfg.	6	0
Apparel Mfg.	4	12
Lumber, Wood Products	443	496
Printing and Publishing	302	453
Chemicals and Allied Products	53	130
Electrical and Other Machinery	91	166
Primary Metals	42	44
Fabricated Metals	34	91
Motor Vehicles and Equipment	6	13
Other Transportation	4	7
Other Miscellaneous Mfg.	259	426
	1,710	2,623

Source: Table UMS-H

Table UMS-L

Percentage Distribution of Employment by Industry - United States, 1940, 1950, 1960

Table UMS-M

Comparison of Percentage Change in Employment by Industry Between 1950 and 1960 - United States and Upper Main Stem

Industry	United States	Upper Main Stem
Agriculture	- 36.66\%	- 37.00\%
Mining	- 27.94	84.15
Contract Construction	13.20	6.45
Manufacturing:	23.01	53.68
Food \& Kindred Products	32.13	57.72
Textile Mill Products	- 21.12	---
Apparel Mfg.	11.73	200.00
Lumber \& Wood Products, Etc.	- 8.04	11.96
Printing and Publishing	36.82	51.65
Chemicals \& Allied Products	34.47	239.62
Electrical \& Other Machinery	50.35	82.41
Motor Vehicles	- 0.68	116.66
Other Transportation Equipment Mfg.	107.52	75.00
Primary Metals	6.02	10.00
Fabricated Metals	110.67	167.64
Other Miscellaneous Mfg.	17.37	63.84
Transportation	- 4.88	- 4.41
Communications \& Utilities	17.37	20.89
Wholesale Trade	14.53	47.41
Eating \& Drinking Places	9.15	27.10
Other Retail Trade	15.45	36.23
Finance, Insurance \& Real Estate	43.33	88.49
Services:	37.51	53.80
Hotels \& Other Personal Services	6.96	34.69
Private Households	19.91	69.65
Business \& Repair Services	25.79	- 10.52
Entertainment	4.21	8.31
Medical \& Other Professional Services	62.01	86.40
Government	43.02	38.24
Total	15.48	17.70

Source: Table UMS-K and Table UMS-H
two areas. While agricultural employment in the Upper Main Stem declined by 37\% -- almost exactly the relative decline experienced in the U. S. .- mining employment grew appreciably. It's 84.2% increase compares to a national decline of mining employment of 27.9%. Employment growth rates appreciabiy in excess of those experienced nationally were also observed in sub-basin employment in mnaufacturing, wholesale trade, eating and drinking places, finance, insurance. and real estate, and in the service trades.

A more detailed analysis of industry in industry employment changes over time in the sub-basin relative to the nation is made possible by the findings in Table UMS N. Here 27 industries have been ranked in terms of their location quotients. These were calculated by dividing sub-basin employment per capita by the corresponding national figure. Industries with a location quotient grearel than 1.0 may be viewed roughly as the sub-basin's "specialty" industries which export a portion of their output to other regions while those whose quotients Eall below 1.0 may be considered segional industries whose output is probably supplemented by goods imported from other areas.

The number of "specialty" industries has increased steadily between 1940 and 1960 as has the degree of regional specialization. For example, the simple mean value for all regional industries with location quotients greater than 1.0 increased from 1.832 in 1940 to 1.863 in 1950 and to 2.213 in 1960. In the most recent decade the figure has been swamped by the renewed influence of mining in the economy of the Upper Main Stem reflecting the uranium boom of the 1950's. The recent growth of the Upper Main Stem as a resort area is reflected in the growing importance of employment relative to the nation in hotels, eating and drinking places and entertainment.

Location Quotients for Upper Main Stem Sub-Basin**

Rank	$\begin{gathered} 1960 \\ \text { Industry } \\ \hline \end{gathered}$	Location Quotient*	Rank	$\begin{gathered} 1950 \\ \text { Industry } \end{gathered}$	Location Quotient*	Rank	$\begin{gathered} 1940 \\ \text { Industry } \\ \hline \end{gathered}$	Location Quotient*
1	Mining	10.868	1	Mining	4.242	1	Mining	4.000
2	Agriculture	2.249	2	Agriculture	2.246	2	Agriculture	1.808
3	Hotels, Etc.	1.319	3	Contract Construction	1.276	3	Contract Construction	1.253
4	Contrect Construction	1.207	4	Business, Etc.	1.216	4	Transportation	1.054
5	Communications \& Utilities	1.200	5	Communications \& Utilities	1.160	5	Business, Etc.	1.045
6	Medicel, Etc.	1.100	6	Hotels, Etc.	1.040	6	Hotels, Etc.	. 862
7	Eaining \& Drinking	1.095	7	Entertaimment, Etc.	1.000	7	Communications \& Utilities	. 815
8	Other Retail Trade	1.044	8	Transportation	. 995	8	Entertainment, Etc.	. 800
9	Entertaimment, Etc.	1.034	9	Medical, Etc.	. 947	9	Medical, Etc.	. 781
10	Transfortation	1.013	10	Eating \& Drinking	. 930	10	Govermment	. 768
11	Business, Etc.	. 871	11	Other Retail Trade	. 877	11	Other Retail Trade	. 744
12	Wholesale Trade	. 867	12	Wholesale Trade	. 662	12	Eating \& Drinking	. 698
13	Households	. 784	13	Government	. 658	13	Wholesale Trade	. 677
14	Finance, Insurance, Etc.	. 626	14	Households	. 545	14	Households	. 472
15	Govermment	. 636	15	Finance, Insurance, Etc.	. 512	15	Printing \& Publishing	. 429
16	Lumber \& Wood Products	. 613	16	Lumber \& Wood Produces	. 500	16	Food \& Kindred Products	. 400
17	Food \& Kindred Products	. 538	17	Printing \& Publishing	. 474	17	Lumber \& Wood Products	. 389
18	Printing \& Publishing	. 530	18	Food \& Xindred Products	. 442	13	Finance, Insurance, Etc.	. 104
19	Chemicals, Etc.	. 280	19	Other Miscellaneous Mfg.	. 126	19	Chemicals, Etc.	. 059
20	Other Miscellaneous Mfg.	. 182	20	Chemicals, Etc.	. 091	20	Other Miscellaneous Mfg.	. 057
21	Other Transportation	. 100	21	Electrical Energy, Etc.	. 057	21	Electrical Energy, Etc.	. 037
22	Fabricated Metals	. 033	22	Fabricated Metals	. 053	22	Fabricated Metals	. 021
23	Electrical Energy, Etc.	. 068	23	Primary Metals	. 038	23	Primary Metals	. 015
24	Primary Metals	. 042	24	Other Transportation	. 013	24	Apparel Mfg.	. 011
25	Motor Vehicles, Etc.	. 020	25	Motor Vehicles, Etc.	. 009	25	Other Transportation	. 008
26	Apparel Mfg.	. 013	26	Textile Mill Products Mfg.	. 007	26	Textile Mill Products Mfg.	. 005
27	Textile Mill Products Mfg.	---	27	Apparel Mfg.	. 006	27	Motor Vehicles, Etc.	. 002
	ALL INDUSTRIES	. 952		ALL INDUSTRIES	. 536		ALL INDUSTRIES	. 895

Sub-Basin employment in each industry per capita of sub-basin population divided by national employment in each industry per capita of U.S. population
Quotients are based on adjusted sub-basin, and adjusted U. S. employment figures. See Tables UMS-H and UMS-K.

Employment Changes by County

Thus far, our discussion of employment trends has been limited to the Upper Main Stem Sub-basin in the aggregate and to the nation. It is interesting, however, to note developments within the component counties of the sub-basin over the past few decades. These are illustrated in Table UMS $-0_{1}, 0_{2}, 0_{3}$, Even a quick inspection of the tables demonstrates the overwhelming importance of Mesa County as a provider of jobs in almost all industries. It is only on infrequent occasions when in a particular industry or year the top four employing industries are found other than in Mesa, Montrose, Garfield, or Delta Counties. Among the twelve major employing industries, with the exception of mining, Mesa County's employment has lead in the sub-basin with the other three counties competing for second, third, and fourth positions. With its small population and land area, Hinsdale almost invariably shows at the bottom of the list of employing industries Ouray and Dolores Counties also appear frequently near the bottom of the list.

Occupational Distribution of the Labor Force

The occupational make-up of the labor force tells how people earn their living and is another useful guide to the economy of a region. Table UMS -P presents occupational data on the labor force, by sex, in the Upper Main Stem in the years 1950 and 1960. A comparison of the relative magnitude of each occupation for those years both in the Upper Main Stem and the nation appears in Tables $U M S-Q_{1}$ and $U M S-Q_{2}$. While in each year the Upper Main Stem showed a larger proportion of its labor force among white collar jobs and a smaller proportion among blue collar jobs than in the nation at large, the gap had narrowed over the decade between 1950 and 1960.

At the specific occupation level, the proportionate share of total employment represented by six groups -- professional and technical workers, farmers

Percent Distribution of Employment by Industry
In Counties of the Upper Main Stem Sub-Basin - 1960
San
Grand

Delta	Dolores	Eagle	Garfield	Grand	Gunnison	Hinsdale	Mesa	Montrose	Ouray	Pitkin	Migue 1	Summit	Utah
21.11\%	1.39\%	3.63\%	11.04\%	2.41\%	4.00\%	0.41\%	28.77\%	20.32\%	1.97\%	1.35\%	1.24\%	0.57\%	1.22\%
3.56	2.41	8.83	10.32	0.07	4.13	0.32	19.28	10.69	2.33	0.22	8.81	2.11	18.81
10.65	1. 53	2.81	11.34	3.74	2.49	0.23	40.52	11.05	0.72	2.58	1.16	8.65	2.46
12.78	5.71	2.70	4.98	5.13	3.54	--	47.26	11.95	1.33	0.95	0.80	0.30	2.51
27.51	--	0.54	5.98	1.08	--	--	48.16	14.42	--	--	--	0.54	1.63
-*	-*	--	--	--	--	--	--	--	--	--	-	-	--
-"				--	--	--	66.66	33.33	--	-	-	--	
14.51	1.00	9.27	3.22	23.99	10.28	--	7.45	22.53	3.62	4.96	3.22	--	--
5.45	0.87	1.74	8.07	1.96	4.58	-	57.42	9.60	3.71	0.87	--	--	5.67
--	70.00	--	--	--	--	-*	23.33	2.22	--	--	--	--	4.44
12.04	-	--	2.40	-*	2.40	--	74.09	4.21	--	--	--	--	4.81
--	--	--	--	--	--	--	100.00	-..	-	-m.	--	--	--
--	--	--	--	--	--	--	100.00	--	\cdots	--	--	--	--
20.45	8.09	--	11.36	\cdots	11.36	-*	38.63	--	--	--	--	--	9.09
3.29	5.49	--	---	--	8.75	--	78.02	4.39	--	--	-->	--	---
0.53	1.40	3.05	5.86	--	0.93	--	72.06	7.74	--	3.99	1.17	0.53	1.87
5.71	0.55	6.10	7.02	3.73	3.97	--	55.23	6.20	0.19	1.59	0.92	0.48	7.84
9.61	1.55	2.33	3.31	6.04	3.05	--	42.23	15.46	0.51	0.71	1.88	3.24	5.00
9.18	1.12	1.33	8.40	1.75	1.68	-	58.77	13.03	0.28	0.63	0.49	.-m	2.31
10.29	1.01	3.30	12.99	5.95	4.40	0.54	14.77	9.68	1.96	5.89	2.50	3.45	3.04
13.43	1.02	3.16	10.71	2.66	4.67	.	42.72	12.66	0.89	1.73	1.35	0.76	4.17
10.46	0.65	1.59	8.79	3.27	2.61	0.39	47.55	12.42	1. 45	4.06	2.25	0.29	3.85
9.79	1.16	2.42	9.70	4.19	7.24	0.11	43.29	10.28	0.87	4.40	1.42	1.33	3.70
6.42	-m	4.33	13.53	7.68	7.15	0.15	31.03	10.71	1.30	9.77	0.94	2.66	4.28
11.62	2.23	0.71	8.22	3.75	2.95	--	49.01	11.35	1.52	4.29	0.98	1.16	2.14
10.69	1.33	0.95	3.78	2.57	3.62	--	49.76	10.79	-0.	3.53	2.76	--	5.15
12.27	3.32	--	2.71	15.85	3.58	1.02	29.15	8.43	--	6.39	--	1.27	8.95
10.19	1.15	2.54	9.08	2.73	8.37	0.06	45.83	9.93	0.82	2.78	1.51	1.17	3.22
8.49	2.12	2.76	10.07	4.29	5.26	0.38	45.64	11.17	1.52	1.86	1.40	2.54	2.33
11.4	1.7	3.7	9.9	3.3	4.7	. 2	39.1	13.6	1.3	2.3	2.2	1.3	5.1

Source: Computed from Table UMS - H.

Table UMS $-\mathrm{O}_{2}$
Percent Distribution of Eroployment by Industry In Counties of the Upper Main Stem Sub-Basin - 1950

	De1ta	Dolores	Eagle	Garfield	Grand	Gunnison	Hinsdale	Mesa	Montrose	Ouray	Pitkin	Migue1	Summait	Grand Utah
. Agriculcure	22.64\%	2.43\%	4.71%	11. 56%	2.35\%	3.77\%	0.37\%	26.0c\%	19.38\%	1.57\%	1.58\%.	1.77\%	0.46\%	
Mining	3.23	2.55	12.89	3.20	0.13	12.12	0.24	9.76	16.43	S. 39	0.75	14.07	2.43	1.34\%
Contract Construction	15.08	1.17	2.47	12.45	7.57	3.43	0.61	33.56	10.32	1.14	1.73	1.38	1.51	2.81
Manufacturing	13.26	0.47	4.21	15.30	10.25	5.67	0.12	38.07	6.78	0.53	1.11	1.11	2.05	$\frac{1.63}{0.35}=$
Food \& Kindred poods.	20.75	-	0.21	3.35	2.36	1.71	,	52.36	9.44	0.42	0.85		2.03	0.35
Textile Mill Mrods.	33.33	-	--	15.66	-	-	--	50.00	--	--	--	-	--	
Apparel MEs.	--m	--	25.05	50.30	--	--	-	---	--	--	--	-	25.00	
Lumber \& Wood Prods,	4.51	0.67	10.60	5.10	33.06	13.59	0.45	13.76	4.51	0.22	1.80	3.16	5.95	
Printing \& Fublishing	15.09	1.32	1.65	5.93	1.90	6.29	.	40.57	8.27	1.32	0.59	0.99	0.59	0.22
Chemicals, Etc.	13.20	--	1.30	15.09	3.77	1.30	--	52.83	11.32		.	,	-	1.65
Electric Energy	8.79	1.09	--	2.15	---	5.45	-	6 6. 13	12.08	-*	--	2.15	--	--
Liotor Vehicles, Etc.	--	--	\cdots	16.65	16.66	--	-	65.66	-	--	--	--	- -	
Other Transportation	\cdots	\cdots	-	--	25.00	--	--	75.00	\cdots	-	--	--	-*	
Primary Metzis	-"	--	30.05	2.30	2.38	2.30	--	50.30	2.33	2.30	\cdots	--	\cdots	
Fabricated Metals	5.30	--	--	20.50	2.94	-	--	67.64	2.94	--	--		--	
Other Kiscellaneous Mig.	6.17	--	0.35	65.63	1.15	0.33	--	21.23	3.08	0.33	- ${ }^{-1}$	1.54	--	
Transportation	3.51	0.87	3. 35	7.41	4.32	3.42	0.09	58.70	6.02	1.25	0.60	0.32	0.41	2.17
Communcation \& Utilities	12.56	0.39	1.45	10.63	7.85	2.50	0.07	36.13	15.31	1.64	1.25	3.37	4.32	2.17 1.96
Wholesale Trade	10.72	0.51	1.03	8.67	2.53	1.85	0.10	62.25	11.67	0.10	0.20	0.30	--m	1.96 0.61
Eating \& Drinking Rlace:	10.49	1.46	4.30	14.62	C. 43	5.33	0.25	32.18	10.52	1.72	2.15	3.18	2.06	2.81
Other Retail Trade	15.36	2.21	3.20	11.85	3.05	4.28	0.13	40.13	12.20	1.03	1.35	1.51	0.67	2.83 1.39
Finance, Insurence, Etc.	13.15	0.95	1.54	3.90	2.15	3.6s	--	51.78	12.60	1.23	1.09	1.36	0.27	1.39 1.09
Services	12.50	0.54	2.57	11.72	4.64	7.72	0.16	38.27	11.42	1.47	2.87	1.87	1.15	$\frac{1.09}{1.70}$
Hocels, Ecc.	2.25	2.35	3.35	15.30	3.75	5.75	3.25	34.20	5.37	1.62	5.33	1.75	2.34	$\frac{1.70}{1.63}$
P-ivate Househo..d-	37.63	$\therefore .36$	4.20	71.68	1.56	4.02	0.33	33.03	2. 25	J. 15	1.5.	1.36	0.75	2.42
Businese \&. Feyain	$\because \cdot 4$.	0.76	2. 22	14.35	4.52	5.34	--	37.65	13.67	1.20	1.11	2.92	1.71	-. 2.4
Encerca:nmer:	-5.73	0.55	2.77	21.27	10.55	4.40	--	27.42	-. 65	1.33	7.47	3.32	2.21	1.66
Medical \& Olizez	11.20	0.22	2.37	\%0.11	2.82	12.24	3.15	42.34	11.49	2. 65	1.77	1.50	0.75	1.47
Gove:nment	12.24	1.:2	4.54	13.30	4.45	5.34	2.73	30.30	12.27	1.41	2.75	2.87	1.82	2.76
Tota:	-5.2	$\cdots .7$	4.3	11.5	4.2	5.2	. 3	34.7	士3.2	1.5	$\cdots .7$	2.7	1.2	1.7

[^5]| | Delta | Dolores | Eagle | Garfield | Grand | Gunnison | Hinsdale | Mesa | Montrose | Ouray | PLtkin | San Miguel | Summit | Grand Utah |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Agriculture | 18.81% | 2.39\% | 4.74\% | 12.41\% | 3.29\% | 4.01\% | 0.42\% | 27.18\% | 17.93\% | 1.87\% | 2.14\% | 1.90\% | 0.71% | 1.13\% |
| Mining | 5.41 | 3.34 | 16.53 | 2.73 | 0.23 | 18.67 | 0.13 | 6.48 | 14.96 | 4.10 | 2.37 | 18.57 | 3.44 | 2.47 |
| Contract Construction | 9.36 | 0.86 | 3.58 | 10.03 | 7.17 | 3.63 | 0.14 | 28.96 | 12.33 | 1.52 | 0.81 | 5.59 | 13.09 | 2.86 |
| Manufacturing | 19.41 | 2.37 | 5.59 | 7.89 | 7.10 | 7.58 | 0.09 | 31.91 | 13.35 | 1.04 | 1.70 | 2.18 | 0.95 | 0.47 |
| Food and Kindred Prods. | 32.68 | 0.55 | 0.55 | 8.10 | 0.27 | 2.23 | -- | 41.06 | 14.24 | - | , | 2 | - | 0.27 |
| Textile Mill Prods. | 25.00 | -- | -- | -- | -- | 25.00 | -- | -- | 50.00 | -- | -- | -- | -- | -- |
| Apparel Mig. | 14.23 | 14.28 | -- | 14.28 | -- | --- | -- | 57.14 | -- | -- | -- | -- | -- | -- |
| Lumber \& Wood Prods. | 11.14 | 6.41 | 16.85 | 6.41 | 19.93 | 7.43 | -- | 9.45 | 7.43 | 2.02 | 4.39 | 6.41 | 1.68 | 0.33 |
| Printing \& Publishing | 14.47 | 1.35 | 3.15 | 10.36 | 2.25 | 5.85 | -- | 35.63 | 15.76 | 1.30 | 0.90 | 1.80 | 1.35 | 1.35 |
| Chemicals, Etc. | 11.53 | -- | -- | --- | -- | -- | -- | 26.92 | 61.53 | -- | -- | - | -- | -- |
| Electric Energy | 3.82 | -- | -- | 8.82 | 2.94 | 2.94 | -- | 50.00 | 20.53 | 2.94 | -- | -- | 2.94 | -- |
| Motor Vehicles, Etc. | -- | - | -- | -- | -- | -- | -- | 100.00 | -- | -- | -- | -- | -- | -- |
| Other Transportation | 50.00 | -- | -- | -- | -- | - | -- | 50.00 | -0.00 | - | -- | -- | --- | -- |
| Primary Metals | 20.00 | -- | -- | 50.00 | -- | -- | -- | 20.00 | 40.00 | -- | - - | -- | 20.00 | -- |
| Fabricated Metals | 12.50 | -- | -- | 50.00 | -- | -m | -- | 37.50 | -- | -- | -- | -- | -- | -- |
| Other Misc. Mfg. | 11.76 | -- | -- | 4.90 | - | 34.31 | 0.98 | 39.21 | 5.83 | - | 2.94 | -- | - | -- |
| Transportation | 5.72 | 0.64 | 3.39 | 6.57 | 4.17 | 4.49 | 0.05 | 51.92 | 6.60 | 2.62 | 0.32 | 1.49 | 0.32 | 6.57 |
| Communication \& Utilities | 12.35 | 0.16 | 2.83 | 12.15 | 3.53 | 4.65 | 0.48 | 36.91 | 11.55 | 2.24 | 2.56 | 5.29 | 2.56 | 2.56 |
| Wholesale Trade | 15.21 | 0.30 | 1.05 | 7.68 | 1.50 | 1.50 | -- | 53.88 | 12.50 | 0.30 | 0.15 | 0.75 | 0.15 | -- |
| Eating \& Drinking Places | 10.20 | 0.62 | 6.43 | 13.34 | 6.90 | 5.96 | -- | 33.12 | 11.14 | 1.56 | 0.94 | 5.33 | 1.25 | 3.13 |
| Other Recail Trade | 14.66 | 0.35 | 3.55 | 10.41 | 3.20 | 5.17 | 0.15 | 40.15 | 14.31 | 1.74 | 1.26 | 2.25 | 1.07 | 1.14 |
| Finance, Insurance, Etc. | 12.00 | -- | 2.00 | 9.55 | 1.33 | 5.11 | 0.44 | 50.22 | 14.00 | 0.66 | 1.55 | 1.55 | 0.44 | 1.11 |
| Services | 113.77 | J. 3.95 | 4.36 | 11.32 | 4.15 | 6.77 | 0.42 | 35.09 | 13.93 | 2.21 | 1.69 | 3.39 | 1.59 | 1.95 |
| Hotels, Etc. | 10.65 | 0.67 | 4.65 | 11.92 | 6.05 | 6.17 | 0.93 | 34.94 | 12.18 | 2.11 | 1.94 | 3.85 | 2.36 | 1.43 |
| Private Households | 13.61 | 0.89 | 5.46 | 10.26 | 2.90 | 6.13 | 0.22 | 36.16 | 15.40 | 1.45 | 2.34 | 3.23 | 0.66 | 1.22 |
| Business \& Repair | 16.16 | 1.35 | 4.07 | 10.73 | 4.34 | 3.94 | 0.13 | 34.54 | 15.48 | 2.71 | 0.95 | 2.30 | 0.67 | 2.44 |
| Entertaimment | 9.33 | -- | 4.20 | 15.56 | 6.22 | 6.61 | 0.38 | 33.85 | 10.50 | 3.50 | 0.33 | 4.66 | 2.33 | 2.33 |
| Medical \& Other | 13.93 | 0.99 | 4.59 | 11.23 | 2.93 | 7.72 | 0.23 | 35.02 | 12.34 | 2.03 | 1.51 | 3.08 | 1.61 | 2.13 |
| Government | 10.50 | 1.25 | 5.54 | 11.88 | 4.20 | 6.70 | 0.71 | 33.33 | 11.43 | 2.63 | 1.69 | 3.75 | 2.23 | 3.65 |
| Total. | 14.6 | 1.7 | 5.0 | 10.4 | 3.6 | 6.1 | . 3 | 31.0 | 14.8 | 2.1 | 1.7 | 4.1 | 2.0 | 1.9 |

Source: Computed from Table UMS-H.

Table UMS-P
Employment by Occupational Groups

Total

1. Professions, Technical \& Riadred

1,996	3,158
6,729	4,137
3,201	3,933
997	1,177
1,293	1,515
4,285	5,233
4,327	6,728
30	20
1,270	1,524
2,479	2,110
2,167	2,141
316	854

1,373	2,272
1.55	154
615	361
-, .69	2,243
203	3,390
71	87
383	554
51.3	84
1,502	2,625
74.	262
37	46
33	634

3,275	5,470
6,804	4,301
3,506	4,894
2,365	4,420
2,76	2,617
4,756	5,417
5,210	7,222
543	86%
2,627	4,140
4,320	2,232
2,157	2,137
543	1,583

Source: U.E. Gencus of Pooulacion, 235 and 1960.

Table UMS-C1

Percent Distribution - Occupation Groups for 1960 Male Female Male Only						
	U.S.	UMS	\underline{U} S.	UMS	U.S.	IMS
All Groups	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Predominantly White Collar	45.02	47.60	40.23	42.60	54.80	60.42
Professional, Technical	11.19	12.00	10.30	9.76	13.00	17.74
Farmers \& Farm Managers	8.37	9.43	10.65	12.62	3.68	1.28
Managers, Officials, Proprietors	3.88	10.73	5.49	12.00	0.56	7.51
Clerical	14.40	9.70	6.94	3.59	29.71	25.32
Sales Workers	7.18	5.74	6.85	4.63	7.85	8.57
Predominantly Blue Collar	50.07	48.91	55.20	54.49	39.54	34.63
u Craftsmen \& Foremen	13.52	11.89	19.53	16.26	1.19	0.68
\cdots Operatives	18.41	16.00	19.88	20.52	15.38	4.41
Private Household Workers	8.42	2.12	5.98	0.07	13.44	7.41
Service Workers	4.81	9.10	6.90	4.65	0.52	20.50
Farm Laborers \& Foremen	2.24	5.00	2.77	6.46	1.15	1.27
Laborers (Except farm \& mine)	2.67	4.80	0.14	6.53	7.86	0.36
Occupation Not Reported	4.91	3.49	4.57	2.91	5.66	4.95

Source: Figures have been calculated from Table UMS-G and Table UMS-P.

Table URSmi2
Percent Districution - Occupation Groups for 1250

Kale \& Female		Hale Only		Teuale Cnly	
U.S.	US	U.S.	UMS	U.S.	UMS
100.00\%	100.03\%	100.00\%	100.00\%	100.00\%	100.03\%
44.5?	43.20	41.17	45.25	$5 ¢ .20$	53.70
0.72	8.47	$7 . \% 3$	$6 .: 1$	12.2\%	1.6 .16
8,93.	17.78	10.72	22.27	4.31	1.02
7.64	9.55	10.31	10.15	0.74	7.24
12.32	7.56	6.51	3.30	27.32	23.13
5.92	5.62	6.33	4.20	3.46	10.39
54.15	45.50	57.73	52.60	45.01	35.47
13.35	11.25	12.65	14.17	1.50	0.84
10.01	13.46	20.05	15.97	19.15	4.51
7.61	1.42	5.05	0.10	12.17	6.10
6.05	6.70	2.14	3.70	0.01	17.76
4.23	13.92	4.03	12.51	2.86	8.32
2.50	5.67	0.12	7.15	3.43	0.44
1.32	1.42	1.13	1.05	1.79	2.74

Source: Pigures have been calculated from Tables Unix -G and Uた-P
and farm managers, managers, officials and proprietors, service workers, farm laborers and foremen, and laborers (except farm and mine), was larger in the sub-basin in 1960 than in the United States. One of the most impressive differences is found among managers, officials and proprietors with a much heavier representation in the sub-basin than in the nation. On the other kand, employment among clerical workers, sales workers, craftsmen, foremen, and operatives, and private household workers was relatively less important in the sub-basin than in the country as a whole. Clerical workers and private household workers were appreciably less important in the sub-basin.

There were some sharp changes over time, however, in the relative importance of particular occupations in the sub-basin. Of particular significance is the sharp decline in farm-related employment. Farmers and farm managers declined from a first ranked 17.8% of subobssin employment in 1950 to sixth rank 9.4%, in 1960. Similarly, farm laborers and foremen dropped from a fourth ranking 10.9\% of sub-basin employment in 1950 to a ninth rank of 5% in 1960. Employment of professional and technical workers in the sub-basin increased from a sixth ranking 8.5% of total employment in 1950 ts a second ranking 12% in 1960 .

The location quotients in Table UMS-R facilitate a comparison of per capita employment in the region with the nation in 1950 and 1960. While confirming the decline in the importance of agriculture, they indicate that relative to population, agriculture still must be considered one of the specialty industries of the Upper Main Stem.

Interesting contrasts are seen when the data are disaggregated by sex, as in Table UMS \mathcal{Q}_{1} and $\mathrm{UMS}-Q_{2}$. Employment of women in the Upper Main Stem in white collar jobs is somewhat more concentrated than in the nation at large, and this white collar margin among women has increased slightly between 1950 and 1960.

Table UIS-T.

Location (uotients (Based on Population) Eaployment By Occupation Groups $1850 \& 1560$ In the Upper Main Stem Sububasin

1550

```
Tarm Laborers 2.420
Fazmers, Etc. 2.230
Managers, Etc. 1.044
Professionals, Ftc. 0.030
Laborers (except farm and mine) 0.504
Service Horkers 0.053
Craitsmen, Etc. 0.785
Sales 0.775
Operatives, Etc. 0.652
Clerical 
Household Horkers 0.531
```

1260

Farmers, Etc.	2.352
Farm Laborers	2.195
Mangers, Etc.	1.201
Service Workers	1.062
Prosessionals, Etc.	1.054
Laborers (except farm and mine)	0.001
Craftsmen, Etc,	0.063
Operatives, Etc.	0.054
Sales	0.706
Household Norkers	0.703
Clerical	0.652

Source: Computed from data in the U. S. Census of Population: 1950 and 1960.

Female employment in the sub-basin in occupations described as professional and technical, and managers, officials, and proprietors, were appreciably more important than in the nation at large. While female employment in blue collar occupations remains relatively less important than among women nationally, the magnitude of the gap has declined somewhat in the decade to 1960. Many more women in the Upper Main Stem are employed as service workers than in the nation, On the other hand, a much smaller proportion of women were employed in the subbasin as operatives and as private household workers.

The profile of male employment in the sub-basin was somewhat closer to the national norms, with the gap between predominatly while collar jobs in the region narrowing appreciably in the 1950-60 period. Relatively speaking, employment among men as managers, officials and proprietors was somewhat mere important in the region than in the United States while male employment in clerical occupations and private households jobs was less significant in the region. A larger share of men in the sub-basin were employed as laborers.

Interindustry Analysis of the Economy of the
Upper Main Stem Sub-Basin of the Colorado River Basin -- 1960

The interindustry or input-output method of economic analysis was explained in general terms early in this report. In this and the following sections the actual analysis will be applied to major industrial sectors of the Upper Main Stem Sub-basin in 1960 with the objective of uncovering the patterns of structural interdependence which characterize the sub-basin's economy.

The basic documents for the analysis which follows are the interindustry transactions table for the Upper Main Stem (Table UMS-S), and its derivatives -- the table of direct input requirement coefficients (Table UMS-T), and the table of direct and indirect input requirement coefficients (Table UMS-U). It may be recalled that the table of direct input requirements contains the coefficients indicating the direct additions to output by each industry required to sustain a one-dollar increase in sales to the final demand sector by the particular industry under study. Each entry in Table UMS-\% yields the total dollar production which the sub-basin economy requires from the industry at the top of the table per dollar of deliveries to final demand by the industry at the left, after all rounds of needs (direct and indirect) in the economy had been met. ${ }^{1}$

Each of the processing sector industries will be discussed separately, but certain sumary tables have been prepared to highlight particularly important aspects of these industries in the Upper Main Stem. Tables UMS -V, W, X, Y and
: 1
${ }^{1}$ As explained in the first chapter, this method of reading Table UMS-V results from the fact that the table has been transposed for ease of reading. In the agriculture sector of this report, however, the table of direct and indirect requirements has not been transposed and hence is read in the opposite manner. The resder will be cautioned again of this complication at the appropriate point in the agricultural section.

Z rank processing sector industries according to the magnitude of their total gross output, sales to final demand, and percent of their total gross output which goes to final demand sectors (providing an index of dependence of the particular sector upon customers other than domestic industries), the magnitude of their payments to seb-basin households, and the size of the direct and indirect requirements per dollar of sales to final demand by each procesoing sentor industry. Table UMS-AA shows the number of industries responding directly and indirectly in amounts of $\$ 0.01$ or more to an increase in sales of $\$ 1.00$ by each processing sector industry. This provides an indicator of degree of interdependence existing among sub-basin industries.

A glance at these tables reveals that the same five industries lead, although the rankings shift, in total gross output, sales to final demand, and payments to households. These prominent sectors are contract construction, uranium, transportation, other retail trade, and rentals and finance. Quite a different picture emerges when sectors are ranked in terms of the relative share of their total output which goes to final demand sectors. Here, the zinc industry leads with 100% of its output directed to final demand, the bulk of which is represented by exports. Final demand sales absorb 98.6% of the total gross output of the 011 and gas industry with most of these sales representing sales to gross private capital formation. In this case, this represents drilling and exploration activities conducted in the sub-basin. Lodging follows in third place with 97.8% of its total gross output going to final demand with the largest part of its services provided in the form of export sales to visitors from outside the sub-basin. Eating and drinking places and truck crops. Follow in fourth and fifth place in terms of the importance of final demand sales relative to total output with 97.5% and 94.9% respectively.

Table UMS-V
Total Gross Output of Processing Sector Industries in the Upper Main Stem Submbasin

Mank	Industey.	Total Gross Output
1	Contract Construction	\$53,630,000
2	Uranium	22,422,000
3	Transportation	50,947,000
4	Other Retail	42,300,000
5	Rentals and Finance	36,545,000
6	Range Livestock	28,284,000
7	Wholesale Trade	20,345,000
3	Food and Kindred Products	15,143,000
9	Other Utilities	15,036,000
10	Other Services	13,604,000
11	Other Manuiacturing	17,929,000
12	Eating and Drinling Places	12,573,000
13	Zinc	11,564,000
14	Electric Energy	-, 460,000
15	Lodging	7,646,000
15	Other Mining	6,713,000
17	Fruit	6,243,000
10	Food and Field Crops	5,753,000
19	Coal	5,620,000
20	Lumber and Wood Products	5,033,000
21	Agricultural Services	4,754,000
22	Service Stations	4,530,000
23	Feeder Livestock	4,010,000
24	Dairy	3,155,000
25	Printing and Rublishing	3,049,000
26	Other Agriculture	2,650,000
27	0 ± 1 and Gas	1,565,000
20	Forestry	1,952,000
29	Fabricated Metals	1,663,000
30	Srone, Clay and Glass	1,460,000
31	Truck crops	362,000

Source: Interindustry Transactions Table UMS-S

Processing Sector Industry Sales to Final
Demand in the Upper Hain-Stew Sub-Basin

Rank:

Industry
Sales to Final Demand

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
27
20
25
30
31
Uranium
Contract Construction
Other Retail
Transportation
Rentals and Finance
Range Livestock
Wholesale Trade
Food and Kindred Products
Other Utilities
Eating and Driniking Places
Other Services
Zinc
Other Manufacturing
Lodging
Fruit
Lumber and Wood Products
Coal
Electric Energy
Food and Field Crops
Other Mining
Feeder Livestocli
Service Stations
Oil and Gas
Other Agriculture
Fabiicted Metals
Truck Crops
Dairy
Stone, Clay and Glass Products
Printing and Fublishing
Forestry
Agricultuial Services

75,568,000
63,055,000
40,100,000
33,260,000
27,278,000
19,216,000
17,155,000
16,417,000
15,340,000
12,651,000
12,573,000
11,564,000
3,756,000
7,479,000
5,252,000
4,764,000
4,630,000
4,450,000
4,131,000
3,500,000
3,627,000
2,353,000
1,540,000
1,900,000
324,000
213,000
705,000
315,000
253,000 64,000

Source: Interindustry Transactions Table, URS-S

Sales to Final Demand of Processing Sectors Listed Below as a Percentage of Total Gross Output in the Upper Main Stem SubaBasin

Rank	Industry	Sales to Final Demand T- Total G:oss Outpu
1	Zinc	100.00
2	$0 \dot{1}$ and Gas	¢C. 50
3	Lodging	9.7 .02
4	Eating and Drinling Places	27.40
5	Truck Crops	94.50
6	Lumber and Hood Products	94.66
7	Other Retail	94.60
3	Feeder Livestock	90.45
9	Food and Kindred Products	85.76
10	Wholesale Trade	84.32
11	Fruit	34.13
12	Coal	32.33
13	Uranium	31.76
14	Other Utilities	30.53
15	Rentals and Finance	74.64
16	Contract Construction	72.60
17	Othe: Agriculture	71.73
18	Food and rield Crops	71.31
19	Range Livestock	67.70
20	Other Services	67.61
21	Transportation	65.20
22	Other Mining	50.10
23	Service Stations	52.05
24	Fabricated Metals	45.55
25	Other Manufacturing	40.34
25	Electric Energy	47.04
27	Daizy	22.34
20	Stone, Clay and Glass Products	21.35
22	Printing and Rublisiaing	0.30
30	Forestry	3.28
31	Agricultural Services	0,00

Source: Tables UMS-V and UMS-W

Table UMS-Y

Magnitude of Processing Sector Industry Payments to Upper Main Stem Sub-Easin Households			
Industiy	Weges \& Salaries	Profits	Total Payments
Rentals and rinance	\$ 8,518,000	17,872,000	26,750,00
Uxanitum	12,475,000	3,614,000	23,090,00
Contract Construction	15,630,000	6,176,000	21,864,00
Other Retail Trade	13,577,000	7,303,000	20,885,00
Transportation	14,404,000	4,732,000	19,256,00
Range Livestoc:	3,310,000	10,253,000	13,553,00
Wholesale Trade	4,245,000	2,062,000	6,907,00
Other Services	5,245,000	1,301,000	6,626,00
Other Utilities	4,302,000	1,904,000	6,365,03
Zinc	4,037,000	636,000	4,723,00
Food \& Kindzed Products	3,110,000	1,425,000	4,543,00
Other lijning	2,344,000	1,451,000	3,755,00
Eating \& Drinking Places	3,043,000	641,000	3,684,00
Other Manufacturing	2,731,000	642,000	3,373,00
Food \& Field Jrops	225,000	2,753,000	3,005,00
Coal	2,360,000	625,000	2,503,00
Lodging	1,605,000	1,256,000	2,541,00
Service Stations	1.369,000	1,475,000	2,040,00
Electric Energy	2,141,000	472,000	2,613,00
Fruit	42,000	1,954,000	2,006,00
Agriculture Services	1,103,000	792,000	1,855,00
Lumber \& Wood Products	1,125,000	163,000	1,350,00
Printing \& Publishing	1.014,000	183,000	1,157,00
Forestry	589,000	454,000	1,053,00
Dairy	123,000	044,000	567,00
Other Agriculture	213,000	534,000	747,00
Fabricated Metals	350,000	107,000	457,00
Stone, Clay \& Glass Products	323,000	26,000	354,00
Truck Crops	111,000	172,000	233, 00
Oil \& Gas	235,000	27,000	262,00
Feeder Livestocle	11,000	77,000	20,00

Households

Ran'

1 2

Wages $\&$
\$ $2,518,000$ 17,872,000
15,475,000 3,614,000
15,636,000
7,303,000
4,732,000
10,253,000
2,062,000
1,301,000
1,904,000
636,000
1,425,000
1,451,000
641,000
642,000
625,000
1,256,000
1,475,000
1, 254,000
792,000 163,000 1,350,00 183,000 1,157,00 464,000 1,053,00 844,000 567,00 534,000 747,00 107,000 457,00 26,000 354,00 172,000 203,00
262,00 80,00

Source: Interindustry Transactions Table UMS-S, 1960.

Processing Sector Industries of the Upper Main Stem Submasin Ranked by the Magnitude of the Total Dollar Production Directily and Indirectly Required by the Sub-Basin Economy to sustain a $\$ 1.00$ Increase in Deliveries to Final Demand by the Industries ilamed

Rank
1 2

3
4
5
6
7
©
3
10
11
12
13
14
15
16
17
10
15
20
21
22
23
24
25
25
27
20
25
30
31

Industry

Feeder Livestoc:-
Food and Kindzed Products
Other Agriculture
Lumber and Wood Products
Truc: Czops
Direct and Indirect Requirements Per Dollar of Sales
Fruit t 1.59 C043

Contract jonstruction 1.570377
Dairy
1.447576

Sione, Clay and Glass Peducts
1.44:4531

Uranium
1.422057

Eating and Driniting Places
Othe:- Retail
1.305507

Lodging
1.313331

Range Livestock 1.304454
Electric Energy 1.257252
011 and Gas 1.270260
Food and Field Czops 1.273203
Transporcation 1.272653
Wholesale Trade 1.220551
Othe: Services 1.105043
Service Stations 1.10004.5
Agriculiture Services 1.146805
Other Utilities 1.120425
Fabricaced lietals 1.10905
Other Mining 1.103597
Coal 1.101203
Printing and Iublishing $\quad 1.050975$
Rentals and Finance 1.005281
Zinc 1.000175
Forestry
1.070607

Other IIanufacturing
1.074521

Source: Table of Direct and Indirect Input Requirement Coeszicients, UME-U, 1:50.

Table UMS - AA

Number of Processing Sector Industries Responding in Amounts of at least $\$ 0.01$ per Dollar of Sales to Final Demand by the Industríes Listed Below

Industry
Food and kindred 15
Feeder livestock
13
All other agriculture 12
Dairy
11
Eating and drinking 11
Food and field crops
8
$0 i 1$ and Gas 8
All other retail 8
Range livestock 7
Lumber and wood 7
Lodging • 7
Trucl: crops 6
Fruit 6
Stone, clay and glass . 6
Service stations 6
Contract construction 6
Transportation 5
All other mining 5
Wholesale trade 5
Agricultural services 5
Coal 4
All other services 4
Electric energy 4
Printing and publishing 3
Forestry 3
Uranium 3
Fabricated metals 3
All other manufacturing 3
Other utilities 3
Zinc 2
Rentals and finance 2
Source: Table of Direct and Indirect Input Requirement Coefficients, UMS-U, 1960

As generators of additional economic activity in the sub-basin, three new industries appear as highly important -- feeder livestock, food and kindred producte.manufacturing, and other agriculture. These three sectors are important both when measured in terms of the magnitude of the direct and indirect economic activity resulting from their sales to final demand and also in terms of the number of processing sector industries reacting directly and indirectly in amounts larger than one penny per dollar of sales to final demand. When measured against the first of these two criteria of interdependence, lumber and wood products manufacture and truck crops occupy fourth and fifth place. . By the second measure, dairy farming and eating and drinking places occupy fourth and fifth place.

It is interesting to note that two of the three industries which consistently lead in measures of interindustry interdependence (Tables UMS -2 and UMS-AA) -- the feeder livestock and other agriculture industries -- are consistently found near the bottom of all the other tables which measure industry importance. This illustrates dramatically the unique capacity of input-output analysis to ferret out structural interrelationships not otherwise evident.

We now turn to an industry-by-industry review based upon the findings of the input-output analysis.

AGRICULTURAL AND FORESTRY ASPECTS OF AN INTERINDUSTRY ANALYSIS OF THE UPPER MAIN STEM SUB-BASIN OF THE COLORADO RIVER

by
Jay Andersen

Natural Resources Economics Division
Economic Research Service United States Department of Agriculture Logan, Utah
August, 1967
(revision of September, 1965 report)

Abstract

 divestock ot to factio . Domation serde Cut ins beconing less so.

Forws anc side of xaten

 1952. his proportion wee up to 42 peroont.

 $\because \quad$ yent as weil.
\because Smpigyevormen

 in the $2850^{\circ} \mathrm{c}$ (See vabla 3)

Pest	Crarand hary ${ }^{\text {atach }}$	Inndintigetod
:	Acpes	Acses
+500 *		
2590-0000000t	19	339,408
1900 000000000:	He	227.281
$1910000000000:$	NA	437:292
$1920-10006000:$	時	548.546
$199000000000:$	436.594	569.966
1939000000000 *	429.244	483.933
254, =00000000:	${ }^{4} 79.068$	NA
1949000000000 :	497.188	558,404
$\underline{195400000000 \%}$	428,357	513,509
$2959=00000000$	475.45%	518,534

 cent) es total ind in fartas

Woter cotax orvent


```
The mand Walloy puobect was bogmo th 1922o whess two prosocts have bogh
```

man dovelogments in the basino As intimatod th toble 3 , thigetion was

In the Sontbusst. Thes reatiancion ent semma3 domelonnents led to tha

purpocos, have vested and meamed, whe the samo is rocounisad wne aclmontoriget

 Hot all of th nat "o fron conceynec systems is het lose atre moh

Hep yok, 920

Not ell of the whor debivored or irrigetion is used up in

The proport of water used in semped 1 ands, phreatophtes and othem

 gataon in the lower yojeys.

Ecomonte clageon eatra
 shom in a previous tabie: oniy 10.6 perchat of the feums in the 14 pounty
 tndiceses thet for 1959 gross shles were less that 60,000 on nexuty 90

 \$10,000 (Sce table 6.)

[^6]Table 40 -Acreage Irrigaged and Water Diversion axd Use by Drainge Beatn, Upper Mahn Sucin Drainage Area, Colondlo riar Bosin, 1959 I/

Drotnage Bastin	$\begin{gathered} \text { Land } \\ 1959 \end{gathered}$	$\begin{aligned} & \text { Lend } \\ & \text { irrigeted } \\ & 1949 \end{aligned}$	Woun convoved by treituin owntateson- 295				
			$\begin{aligned} & \text { Comvayaze } \\ & \text { lose int } \\ & \text { bagin } \end{aligned}$	Conveyed to anothar drainage bacin	Detives is to Carm jrrigacion weter nocers	$\begin{aligned} & \text { Du1 aned } \\ & \text { Nor othe } \\ & \text { unes } \end{aligned}$	trenter dozevery of 1rexgowater por scra irimada
:	Actes	Ac) ${ }^{\text {a }}$	Ac. 5.	Scofto	An fito	Ac. ${ }^{4}$	Ac,
Colo, River Dreeto	145,000	156,35]	21.8 .839	287.181	538.055	173,012	3.5
Dolowes Miveru...0.:	29,000	36,145	12,200	9,000	66,093	3.200	2.8
Platas Greckano.or	25,000	29,325	8,912	1.292	56.331	4.213	2.6
Roaring Porko......0:	38,000	31.369	26.037	145.528	159.220	78.49	5.2
Bagle fiver.........s:	34,000	15,425	3.379	\cdots	38.18%	23	5.3
Blue River \& Mucdy Croprounoun.....	22,000	21.090	3.421	--	37.069	--	6.4
Fresen Rivawoonoioc:	10,000	10,172	2,547	-	21.363	--	4.1
Gunnison River.o.0.0:	2:8,000	269.397	29\%,536	-	945.046	7.720	4.0
Totalow.ennomos:	532,000	569,064	459.872	323.001	2,842,866	133.592	-m

Source: 11 S. Dumen of the Conens - Irrigation of Agriculturel Inds. VoI. 3, 1959.
 in thte toblo are for crainaga aross rather than for reprosentative countes es is the dace for most data presentodin ins report.

Draineso area	Average anount of eator used in net exop cons suaptive wes	Estrmated concump tion on seepd? lands. ron-beneftcial phratom Fhytic planta, amd cther areas incidental to irei ction \qquad	Tobal vise aturubudble to incotgatio:
	Ace fest	Acre fent	Acre fegt
Colo, Piver kain Stemo:	358.550	59,277	427.827
Onnnison Riveres.0.0.0	312,251	77.183	389.334
Other arcas (Dolores. Little Dolores: and Cram County, Utah):	43.097	5,935	49.832
Totajou000000000:	724.593	142,395	866,993

 Colorefo River Easin Compet. Vol. ITT, Fual Drafit of Exghecring Aivisury

 Ensin in Colowado." Denver. Coloo. Way 1965.
Us So Dept. of Agriculture. "Water and Ralatac Lard Rasources-annison River Easin, Colowelo." Denyers Coloracio, Nownber lob2.
Persorel commication thithombers of UoS. Dento of Agmeuture Fielo Party River Rasin Suryays, Denver, Coloredo.
 CoZaraco River Bacin, 1959

Note: If Inclutes part-itme, patbrettrancity ard abnorms 2
Source: 0, O. Cener.3.

Farms in tis area do tend to be smallor tian in way pleces. For instances in the Lo er Main Sten Subbesto of the Coloracio Miven Eefn apgos mately 12 pereent of all ferme were in the closs I group with salcs ower 440,000 . Snain fay whet provide only part-time omployment and subsistance units there a IIving can braly be cked out are very comion th this area of wost eentro? Colorado.

Eara topurs

 operitors on cheir farms. Only aoout 10 rerent of the fams mere operatad by full tenants in 1959. Table 7 hows numb of farms, farm acrace, ent croplard acroage by tenure groung

 1959

urce: E.S. Census.

Hart chars have the kergest same, both in town or eropland and

 headumbens and hay hand end soma pature is omed, but gratimg is often leased.

Pertyitsen use

 Sternataz (table 8) 。
z

Table 8. -- Use of Commercial Fertilizer, Upper Main Stem Sub-Basin, Colorado River Basin, 1954 and 1959

Year	Total farms	Farms using commercial fertilizer	Total area fertilized	Quantity of fertilizex applied
1954	$\frac{\text { Number }}{7,053}$	$\frac{\text { Number }}{2,434}$	Acres	Acres
1959	5,721	2,365	65,487	7,594
			96,556	11,573

SOURCE: Census of Agriculture

For 1959 , data have been assembled for application of fertilizer to various crops in each of the agricultural subregions in the United States. Subregion 90 in Colorado includes approximately the western half of the state. These data then include some acreage for northwestern and southern and southwestern Colorado which is not in the Upper Main Stem area. Nevertheless, some major crop areas are in the Upper Main Stem.

According to the subregion data (western half of Colorado) fertilizer was applied on 39 percent of row crops, only about 4 or 5 percent of small grains, less than 1 percent of wild hay, and about 6 percent of tame hay and cropland pasture (see Table 9). The amount of improved permanent pasture fertilized was about 1 percent of irrigated acreage of this crop. None of the non-irrigated pasture was fertilized. As would be expected, the major part of the fertilizer is used on high-valued crops.

No data on use of comercial fertilizer are available for the area in years since 1959. But, for the State of Colorado, expenditures on fertilizer and lime are estimated to have increased from 6.8 to 10.0 million dollars in. the period 1959 to 1963. This is a rate of increase of over 10 percent per year.
 in Westara Colos tio. 1939

$\mathrm{Cr}^{2} \mathrm{Op}$	Acreace harvested	Acreage itrageted	ncresee fe. tilined with arralkole			OHantity per zop 2vactoble		
				$\mathrm{P}_{2} \mathrm{O}_{5}$	${ }_{2}{ }^{\circ}$	\%	$\frac{5^{4}+3}{50}$	${ }^{\mathrm{E}_{2}}$
	Asmes	Acrss	S02es	Acres	Aoses	Lrgo	105:	Us.
Corkeou000000000	36.417	35.35	22, 273	--m	\ldots	93	--	--
Dry begnscoooco	102.323	10,854	-	5,686	--4	-	22	-
Susty bestsoo	5.950	55990	5.439	5.439	…"	99	127	\cdots
Vagetablsa.0000	12.525	20,761	20.760	10.760	20.398	366	141	45
Pothtoceorooouc	34.859	34.415	23.95	2395	23.951	43	85	18
Tree frititsocoo	16.828	16,264	12.753	5	51	18	78	118
Wiscellangousoo:	13.512	1NA	\cdots	--*	\cdots	…-	\cdots	\cdots
Intertilled cropsonoosoos	$223=453$	11.3 .803	74.074	45.887	34.420	76	95	26
Whereterueaconooo	118,520	18,826	2,326	2.27	\cdots	14	46	\cdots
EY000000000000	2,646	WA	--	\cdots	\cdots	--	-*	\cdots
	50,651:	寝	\cdots	\cdots	-*	\cdots	****	- \times
Eatilevoe0000000	76,151	52.973	15.002	9,000	-	55	15	\cdots
P30500000000000:	34	NA	-	..-	- -	mo	--	-
	213,788	202.570	2.369	3.369	-*	25	12	-->
Close-gytoring c:2p500000000	$460,800$	274.371	18,697	21,546	\cdots	51	29	\cdots
$\begin{aligned} & \text { Tare hay ano : } \\ & \text { croplend peat } \\ & \text { ure.000000000 } 2,041 \end{aligned}$		4,3.804	55.716	62,992	\cdots	39	63	\cdots
Impored pemmo 		326.956	3.873	3,873	373	3^{4}	27	5
Pay and pastures:	$8,712,163$	770.870	59,589	65.865	373	20	62	5
Tota	9.394 .421	153.64	1.52 .360	123,298	334.773	52	70	26

 Office, Washangton, D.Ge 1964.

Investment in jortoliture
The value of lax and buthangs on Ramis has bean hateasing rapidy in recent years (table 10 \%
 Colorado River Basin, Crizus Years 1939-1.959

Leat	Total yalue of Iand and buildings	Yalue of land and per fatu	Vaine of land and buildings ner 3cre
	1.000 do11965	Dollats	bolars
193900000	52,444	6,039	19
1244.	73,976	8.955	22
3989	240,622	38.137	41
1954.	172204	25,84	49
1959.0	230,624	40,240	59

Source: S. Cysex.

A bie chare of the thorese in velue has beend oto inflation of values. For the same period, the inder muber of fara real estate yalue per acpe (has incressed from 37 to $193\left(104 \boldsymbol{q}^{2} 40=100\right)$ for the state of Colorado. This 3.7 thea somease is likely mostiy due to inflation but also to some
 Thines of real estate have increasec (table 10); but walue per are hae not ancreased as madyy as for the state o? Colorado. The reason for this. relationstip is aparenizy found in tho increase in land in farms from 2.8 million aces in 1939 to 2.9 million aces in 1959 , but the same the a cecrase in cropand harestec from 42,000 anes to 43,000 acres. Thus, move Land of lown valne is pulling dom the swerage value per acre.

Investment per farm has increased over six times in the 20 -year period. This reflects a tripling*in value per acre. and a doubling of farm size.

In 1959, farm investment in equipment was substantial. For instance, 16 percent of the farms had combines, even though small grain crops are not too widely grown. Hay crops are prevalent enough so that in 1959 , 26 percent of the farms had pick-up balers. Eighty-one percent of the farms had trucks and 40 percent of the farms had more than one tractor.

Livestock trends

Investment in livestock has been increasing, too. Total number of cows in the Upper Main Stem area has increased by about 21 percent from 1940 to 1959 (see Table 11). This overall change represents a fairly large increase in beef cows (about 39 percent) but a decrease in number of milk cows from about 24,000 to about 14,000 . Changes in enumeration dates and cattle cycles make analysis of trends difficult, however. Some of the changes in cattle and sheep numbers may be due only to change in dates of inventory. The October and November dates of enumeration for the last two census years would likely cause more livestock on feed to be reported than might otherwise be the case. Too, the April 1 date used in 1950 could have been at a time when a year's calves had not been born yet and last year's crop already sold. Other possibilities of actual trends being obscured by changes in reporting are also evident.

Annual series of data are available for all cattle and calves and for milk cows by county. These data are available only for the 13 counties in Colorado, since these annual statistics are not available for Utah counties. Thus, Grand County, Utah, is not included in the following data.
 Hyer Basing Cunsua pears 1940-2959

Note: I/ Comptes by subtraction of mak cows fron all comso
Turce: Census on pormonthe

Figure 1. Inventories of Livestock as of January 1 for Upper Main 3tem Sub-Basial and Other Areas, 1945-64.

As shown in Figure 1, the tendency has been for numbers of cattle and calves in west central Colorado to follow the national pattern for cattle and calves very closely. In general, the trend has been upward. As shown in the preceding paragraphs pertaining to census data, the trend upward is even more marked if the effect of the sharply decreasing numbers of dairy cows is removed from the all-cattle and calves trend.

Cropping trends

There have been some significant changes in the cropping pattern in the Upper Main Stem area in the past 20 years (see Table 12). There have been small increases in a few crops despite a decrease in cropland harvested. Among the crops with an apparent increase in acreage is corn, particularly in the amount cut for silage. Clover, timothy and grass mixtures cut for hay have also increased in acreage with an associated drop in acreage of wild hay and other hay cut. This change is apparently the result of improving mountain meadow haylands. Average yields per acre on the clover, timothy and clover and grass mixtures are about $1 \frac{1}{2}$ tons per acre, while wild hay and other hay are barely better than a ton per acre. In addition, nutritive value is certainly better for the improved varieties. Hay crops account for about 58 percent of cropland harvested in 1959, and a similar proportion in earlier years.

Winter wheat acreage increased sharply up to the 1950's but the government programs then brought about a reduction. Dry beans increased in acreage until the $1954-1959$ period when acreage was sharply reduced. Fruit acreage increased then decreased -- due, at least partially, to severe freezing winterkill in the late 1950's.

Among the crops for which decreases in acreage were evident was

Table 12. -- Harvested Crop Acreages in the Upper Main Stem Sub-Basin, Colorado River Basin, Census Years 1939-1959

Crop	1939	1944	1949	1954	1959
	-.- - -	- - -	Acres	- - . -	- - -
All corn	27,081	23,482	25,802	27,678	31,427
Irrigated	ITA	NA	24,068	26,924	30,782
All sorghum	1,376	972	326	NA	1,381
Irrigated	NA	iIA	293	275	1,187
Swall grains:					
Winter wheat	6,718	21,273	35,515	30,884	26,553
Irrigated	NA	NA	6,189	3,212	3,198
Spriag wheat	16,529	14,643	15,236	7,945	6,633
Irrigated	NA	NA	12,985	6,835	5,452
Oats	17,235	2¢,374	24,856	16,630	17,052
Irrigated	NA	H:A	23,144	15,086	15,991
Barley	12,237	20,204	21,656	14,206	18,421
Irrigated	NA	NA	18,664	12,199	16,234
Rye	601	595	621	465	347
Irrigated	NA	HA	1NA	iNA	244
Dry beans	39,789	42,163	56,759	60,162	45,029
Irrigated	NA	NA	14,501	15,134	9,984
hay crops:					
Alfalfa \& alfalía mixtures	135,886	138,863	188,412	127,150	122,514
Irrigated	NA	NA	115,532	120,519	115,705
Clover, timotis \& mixtures	54,290	47,538	77,096	87,519	89,788
Irrigated	1, 4	NA	72,686	81,559	82,370
Small grains cut for hay	7,338	3,368	5,467	6,649	4,110
Irrigated	NA	NA	4,347	5,504	3,745
Wild hay cut	32,502	74,539	47,054	18,037	18,305
Irrigated	NA	NA	44,617	17,161	15,352
Other hay cut	33,498	10,105	7,206	1,766	4,292
Irrigated	NA	HA	6,409	1,662	3,975
Field crops:					
Potatoes	9,977	9,523	4,672	2,079	1,498
Irrigated	NA	HA	4,333	2,013	1,469
Sugar beets	6,170	5,007	3,405	6,090	5,511
Irrigated	NA	WA	3,357	6,075	5,511
Vegetables	NA	6,969	3,294	2,095	2,102
Irrigated	NA	NA	NA	2,062	2,102
Fruit orchards \& vineyards	15,532	16,059	19,330	18,426	15,726
Irrigated	NA	NA	18,733	15,819	15,098
Qats cut for feeding					
uathreshed	2,163	5,509	2,010	NA	NTA
Irrigated	HA	WA	1,862	NA	NA

spring wheat, potatoes and vegetables, in addition to the unimproved hay crops mentioned earlier. Finding of better crops and varieties, labor problems, and increased competition from other areas are mainly responsible for the acreage decreases.

Grazing on Federal Lands

Grazing on federally owned lands is an important part of the economy of the sub-basin. Range livestock is the foremost agricultural enterprise and grazing on federally owned lands has always been a key part of the industry. As an indication of the importance of public grazing, notice that in the period of 1950 to 1959, the number of beef cows is estimated to have fluctuated from 100,000 to about 120,000 (Table 11). In Tables 13 and 14, approximately 100,000 head of cattle and horses are shown to have used 3 BLM lands for grazing, Most of these animals listed as cattle and horses would be beef cows. Very: few horses and some yearling cattle would comprise the remainder of the number permitted.

The data of Table 13 show a tendency for more BLM grazing capacity to be used by big game animals and less by domestic animals; also there is the tendency for permits to bë held by a smaller number of operators.

Data of Table 15 show a downward tendency in use of BLM lands in the Utah portion of the sub-basin. These data for Grand County, Utah, reflect an increase in cattle numbers using BLM lands, but a more than compensating decrease in sheep use of this range.

[^7]Table 13. -- Use of BLM Grazing District Lands in Colorado Portion of Upper Main Stem Sub-Basin, 1955 and 1960

Yeas:	: Total authors sec use			goats: Es	cimateci	bigacicy	Opexato:s	
	ifunier	AUS ${ }^{1 /}$	Number	AUM	AUM	AUM	Nunber	Number
1955	...95,550	208,515	257,703	125,657	271,900	105,600	343	232
1960	...93,932	182,579.	253,071	116,553	257,200	121,200	733	223

SOURCE: Unpublished cata in BLM State Office, Denver, Colorado
Note: I/ "AUM" indicates animal unit months.

Taile 1!. -- Use of BLM Section 15 (leased) Lands in Colorado Portion of Upper Main Stern Sub-Basia, 1960

Acres land	: Annual - rencal	Operators :	Catcle horses	Sheep \& : Estinated : Escimared goats : use capacity		
	Dollars	Hunber	Nunicex	i, unioer	AUM	AUS
73,623	2,453	127	2,871	2,600	13,009	14,200

SOURCE: Unpuilisinec data za BLM State Office, Denver, Coloracio

Table 15. -- Number of Operators and Livestock Use of BLM Lands in Utah Portion of the Upper Main Stem Sub-Basin, 1550, 1955, and 1900

SOURCE: Unpublished data in BLM Scate Office, Salt Lake City, Utah

Forest Service Grazing

Numbers of livestock permits for grazing on portions of national forests lying in the sub-basin have been estimated for the past 20 years (Table 16). The estimate is based on all permitted grazing on all national forests that have any acreage within the 14 county area and on the proportion of acreage (and assumed grazing) that is within the 14 counties.

Table 16. -- Estimated Pernitted Livestock Grazing on National Forests, Upper Main Stem Sub-Basin, Colorado River Basin, 1945-1964

 to the adyatumen in permithot Invertork. it is apparemt that shoop

 percert as shomin the last columa of table 36.

 range.

 saveral gears, and in fact io still wary much a Eactors poutro and

 Foret offies.
and consolidation of the poultry incustery.
Data or form exonoes hron cansul tablations ave not veny helpar

 taros on labor- ow minambing.

Table 17. -- Products Sold From Farms, Upper Main Stem Sub-Basin, Colorallo River Basin, Census Years 1939-1959

Item Sold	Apr. 1939	$\begin{gathered} \text { Jan. }{ }^{1} \\ 1944 \\ \hline \end{gathered}$	Apr. 1 1949	1954	1959
Field crops other than vegetables \& Eruits \& nuts sold	NA	WA	NA	7,777	7,516
Vegetables sold	NA	NA	NA	503	530
Fruit \& nuts sold	NA	NA	NA	9,068	6,579
Forest products ε. horticultural specialty products sold	HA	NA	NA	347	365
Total crops sold ${ }^{1 /}$	5,364	13,856	12,775	17,697	15,094
Cattle \& calves sold alive	NA	HA	NA	11,810	22,224
Hogs \& pigs sold alive	NA	NA	1,962	837	1,221
Sheep \& lambs sold alive	NA	NA	6,917	5,326	5,787
Poultry \& poultry products sold	361	935	881	876	584
Milk or cream sold	890	1,666	1,941	2,209	2,351
Value of sales or livestock and/or livestock productsl/	9,552	18,457	28,890	22,888	34,041
Total products sold ${ }^{1 /}$	14,920	32,212	41,668	40,585	49,137

Source: U. S. Census
1/ Totals do not necessarily equal parts due to lack of itemizing minor items and rounding individual crop and livestock items.

Table 18. -- Selected Expense Items, Upper Main Stem Sub-Basin, Colorado River Basin, Census Years 1949-1959

Expense item	1949	1954	1959
	- . - Thousand of dollars . . . -		
Machine hire	1,082	1,154	1,017
Hired labor	5,891	5,380	5,593
Gasoline \& petroleum products	1,851	2,227	2,659
Feed for livestock \& poultry	3,848	3,382	4,060

Source: U. S. Census

Forestry trends
In recent years it is evident that timber cut on national forests and output of forest products has been declining for the Upper Main Stem area (Table 19).

Table 19. -- Roundwood Products Output, National Forests within the Upper Main Sten Sub-Basin, Colorado River Basin, Fiscal Years 1957-62
(Thousand boaid feet)

Year	\cdots	Total			Saw logs	Other roundwood
1957	$\cdots, 352$	112,621	11,731			
1958	NA	NA	NA			
1959	108,002	99,237	8,765			
1960	103,099	96,271	6,828			
1961	77,057	73,925	3,132			
1962	68,873	65,300	3,573			

Note: Compiled by Alvin K. Wilson, Interm:ountain Forest \& Range Experiment Station, U.S. Forest Service, Ogden, Utah, from Forest Service Region 2 timber cut and sold reports.

 pore incticetive of ran thentiob

A recent repozt of a net latge stur mill at Montrose whan begon

Sear	Luthat groctotion $3 /$	
	coloremo	Utah
19570000000	$\begin{gathered} \cdots \\ 389 \end{gathered}$	M
1958 800.0.0.	200	3 A
1959000000	227	NA
1960 040.0.0me	E1.	69
1961 00000000	297	66
1962 0.000000	203	6%
1963 -60.0eco	239	82

5 Fozest Endustxy $91(1,0)$ Segt $1964.30 .92-930$
r

wolls on, tha remox.

FORESTRY AND AGRICULTURE IN 1960

One of the main purposes of this study was the development of a transactions table for Agricultural and Forestry sectors for the base year, 1960.

Agricultural sectors have been defined for Range Livestock, Feeder Livestock, Dairy, Food and Field Crops, Truck Crops, Fruit, and All Other Agriculture. Since an Agricultural Services sector is so closely related to Agriculture, this sector was also given to Economic Research Service for detailed study.

The Transactions Table

In the transactions table which follows (table 22), the magnitude of the inputs and outputs for each of the agriculture and forestry sectors are specified. Sources of input are shown in columns and disposition of products is given in rows. These data have have now been reconciled with data from non-agricultural sectors, and integrated to make a complete table for the subbasin. Reconciliation is necessary because of the practice of accounting for both purchases and sales. For instance, those dealing with government sectors had indications of the receipts and disbursements from and to agricultural sectors. At the same time, the work in agriculture developed quantities for the same transactions. Since sampling variations and other factors enter, the differences had to be resolved. Reasons

Table $\underset{\text {-Interin }}{22}$
--Interinductry transactions of the agriculture and forestry sectors, Upper Main Stem Subbasin, Colorado Kiver Besin, $1960 \frac{1}{2} / 2 /$

1/ All transactions among nonagricultural sectors are not shown in this table.
2) Columns have been deleted where there were no purchases from agriculture and forestry sectors.
$3 /$ Sector 24 is listed out of numerical order so that it is adjacent to other agriculture and forestry sectors.

 of ath eapton thens bonght by all private wotore In tabla 22, the

 process emplatied beloz

 Tholesaley Twancontation, Nanu
 and "usturg goctorso

Agricutere and Ropetry Setge

 Feod erops. Other farms wight produce oniona, potatobs, even wathong baxtey and baef, hoge on sheep in addition to feed crops. In ower to
 developed on the besis of farm and zench types there tye ts deventiter by matn enternesses Thus, all activites comected with a dainy farm, where feed is produed in addition to mikg are repored in the jotry
 the farm trancetions. The description of eech seator folloming theludes detatis of the enterpxiaes oncompages by the sector.

Rage Hivestrel

 Gheep for sale ate inctued in this sectoro Foun types of farms are

 monn in the trasactions table (tabla 2g) range fivestock is by fan the

 to Trade, Sanfanturing, Sarvice Stations and others for suppliss and
 selling services crop spraying, stcan to transportathon For livestack
 area. In the final payments somoss, major payments ape to Stese and sederal Goverrment, rostly for graging tees, to focal Goverment for propenty ban and water costs, to Houscholds ior hined labor, to Forit
and ther" Thoone as peturn to onrator and famizy lan and omed captan. Deprectation is jraratent also, as are Tractis from Ontside the Colorado Raver Basin.

 Ked salss. Sales to the Fpod and Kinured sector are over 10 peremt on oubph whel is masty oull be bediag stock. Sales af a small emount of
 sector whith in bum sills serviteg to darisuldura

 outside the coloxado Ruxar Basino

Esede Jivestosk

By fer the largent empendatar of the reator Jivectock seator is to
the सane Whostock sector. About 69 pertent of the total product goes. for purchese of livestoverithin the abbogin and for a limited amomb of fepd. An aditional 16 percent of the toted for the sector is path to
 midely distributed.

Sales of the sector ars amost mbinet in expors Very litule
 Test of the enles are exported prinaridy to Denver, Gegen, and Califoratas Esixy

Both grede A deny and oreannmoducing datry fame are incuded in this sector along with assoctated other entermises on predominntiy debuy

 primejily to the Donvernolonedo Speings area. Cull lyootock and foeder Divestock along wh the of a lithle feed end some govermant paymenta for agriculumat conserration (paments) prectioes ake up the renatider of the value of sezese purchases of this sector are thaty distributed

Togdend fjeld erops

Suger beetsmalting berloy, dry beans, potetoes, and theat mae mp a

by farms in parts of the area. Value of taese crops which were sold is listed in table 23.

Reets are all processed within the sub-basin and some of the potatoes are processed into chips, at a small plant in Montrose. Dry beans are cleaned in the area and prepared for shipment. They are not actually sold by the grower until after they have been cleaned, processed, and bagged-almost entirely for export. Malting barley is shipped out of the sub-basin to the Coors plant on the eastern slope. About $2 \hat{0}$ percent of sales of this sector goes to Food and Rindred products and 55 percent to Exporis Outside the Colorado River Basin. Other receipts are mainly from the federal government for agricultural programs, especially for sugar beet payments and the wheat program and also payments for the Conservation Reserve Progiam which vas widely used in the diryland wheat and bean areas of Western Colorado in 1960.

Fertilizer costs are important in this sector and are reflected mainly
in All Other Manufacturing or Imports rovs which represent the imnediate or ultimate source of the fertilizer. Payments to Households are important also, since these crops have high labor and capital requirements.

Truck crops

Onions, lettuce and tomatoes are the crops used to represent this sector. There are minor acreages of numerous other crops, but all were similar to one of the above. Onions are by far the mosi important of the group. Total acreage for all crops in this sector was estimated to be 1550 acres. In addition to the crops mentioned, there were minor acreages of beans, cabbage, cantaloup, carrots, celery, sweet corn, peas, and spinach. With the exception of onions which are shipped out of the axea, most of these crops are grow to partially supply local consumption. Onions would have less than 5 percent use in the sub-basin and about 5 percent more in other paits of the Colorado River Basin. Majoi marlets for the onions are in the eastern and southern parts of the United States. Storage, soring and packing costs for onions are a major expense at $\$ 1.00$ or more per cwt. Labor, fertilizer, and other supplies are also major items of cose. Over three-iourths of the output of this sector goes to export.

Fruit

Fruit production is a major enterprise in the lower parts of the subm basin. Mild clinate and other factors make this a favorable location for orchard crops. In the past 15 years about 05 percent of Colorado's commercial peaches have been produced in Mesa County. Just prior to the 1560 and 1863 seasons two disastrous freezes had a serious effect on the fruit crops, particularly peaches. Permanent damage was done to a substantial proportion of the trees. In 1560,1062 , and 1064 the crop was
particularly light due to winter freezing. During these three years, fresh shipments of peaches amounted to 411,759 bushels, 197,513 bushels, and 471,325 bushels, respectively. A "normal" Exesh shipment is just over 1 million bushels. A crop of about two-thirds or three-fourths normal is expected in 1965. Crops for 1961 and 1962 were near normal.

Fox the Fruit sector", the quantities produced were "noxmalized" for the input-output analysis, since use of the 1960 actual production would show an abnormal situation, including negative returns to House~ holds for operator's labor and capital earnings.

For the Fruit sector major sales are to exports as show in Table 22. Local use by Households and processors are also fairly important. By far the largest expenditure is to Agricultural Services sector for processing and marketing as well as for some migrant labor and spraying and dusting.

Since much of the labor is done by operator and family, a large portion of the inputs are allocated to Profit and Other Income of Households. Average size of the orchards is only about 10 acres, making it almost the only commerial fruit-growing area with such small enterprises. Over 90 percent of the producers are believed to have other employment outsido agriculture.

Foresiry

Volume of tirnex cur was shom in the previous aection on forestry trends. Cost allocations in the Forestry sector are difficult to estimate. Data on five broad-cost areas are available from the Forest Service. Costs in these categories aite estimated as follows in Table 24.

Table 24.--Costs for the Forestry Sector, Upper Main Stem Sub-Basin, Colorado River Basin 1960

İe:	Cost
	Dollars
Stumpage fees........................	515,000
Felling and bucking..................	369,000
Slidding and loading..................	606,000
Logging administration................	204,000
Profit and other income.	254, 000
Total.........................	1,552,000

Transportation costs for bringing logs from the loaded trucks in the forest to the sammils are allocated to the Lumber and Nood Products sector. Allocation was made to the various sectors $\dot{\text { en }}$ sales and costs as show in Table 22.

A11 other agriculture

iiiscellaneous agricultural products vere included in this sector. Those included were: seed products, horses and mules sold, hogs, poultry, and nursery and greenhouse products. Half of the total sales for this sector are hogs. Sales for the sectoz are relatively greater to Housem holds than for most other sectors. Local sales oif horses, hogs, and nursery and greenhouse products make up the major portion. hajor purchases are from renches and fams for feed and from households for labor as shown in Table 22.

Agricultural services

Entries for this sector are shom as column 24 and rov 24 in Table 22. The Agricultural Services sector serves each of the agricultural sectors in some ray. Receipts fron the Range Livestocl sector are for sheep shearing, livestock handling end selling, and crop spraying. Receipts from the leede: Livestock sales are for a variety of things including some work on the crops and livestock handing and selling. Food and Field Crops pay Agricultural Services for processing beans and other crops for sale es well as some field work. 'Fruiti and Trucl: Crops pay a very large portion of total receipts to the Agriculcural Services for storage, sorting, packing, and so forth. Other Agriculture buys services for handling hogs and also storage, cleaning, and so $\dot{\text { Lor }}$ th for other items. \&llocation of cosis are widely dispersed for this sector, Dut labor costs from Households and various sources (mainly imports) for the supplies for packing produce are major items

Direct Cofficients

The direct coefficients or technical coefficients are defined as the amount of output of sector i required to produce a unit of output of sector 1. O_{z}, it najr be defined as the required amount of output of the sectors listed as rows per unit of output by the sectors listed in colunns. In the context of input-output analysis, the technical coefficient repiesents the flow of goods from one local industry to produce a unit of ounput of another local industry. Tous, the technical coefíicients do not represent total input recquiremenis. Imporis and other inputs from the final payments sector may be more or less important, depending on the size of area for which the table is made and other factors. National economies may be nearly selfosuxiacient, but some regional econonies may receive the major portion
of their input requirements from sources other than the local industries.
Table 25 is a matris of part of the direct coefficients for the Upper Main Stem. Only the agricultural sectors and the sectors rhich buy from Agriculture are listed as colums (purchasers) in Table 25. The direct coefficients may be interpreted as the percentage of inputs from a given source. The coeftscients in Table 25 range From zero (ilanks) to . 65 for purchases by the Feeder Livestock sector from the Range Livestock sector. Totals for the colums rerlect total local purchases other than operator's laboz and capital and hired labor.

Range Livestoc: obtains 25 percent of inputs from local sectors, Feeder Lovestock obtains 55 percent, and so forth. The Forestry sector in obtaining only 7 percent from local processing sectors is lowest of the group.

Os. ©hose sectors purchasing Frota Agriculture and Forestry, Food and Kindred obtains 47 percent of \because tis inputs from agricultural sectors, Lumper and Hood Products receives 30 percent of its inputs from Forestry and Agricultural Services receives about 1 percent from the Range Livestock sector.

One other interpretation of the direct coefixicients is the direct Enpact unon each sector ois the econory resulting from an addition to outw put of any of the secto:s listed as a column in Table 25. By the same tolien, increases in sectors not listed as a column in Table 25 are implied to have no direct effect on the Agriculture and Fozestry sectozs. As will be shom in the nert section, however, indirect effects are important and videspzead throughout the economy.

Table 25.--Direct Purchases per Dollar of Output For Sectors Relating to Agriculture and Forestry, Upper lain Stem Sub-Basin

Coloaado River Basin, 1560

NOTE: $\frac{1 /}{2}$ Less than .0005
2/ Totals are based on unrounded data.

Table 25 (continued)

NOTE: $\frac{1}{2} /$ Less than 0005

Direct and Indirect Coefficients

One of the main purposes of the interindustry analysis method is for "structural analysis." Some interesting structural insights can be obtained by examining the transactions table and the table of direct coefficients, but the real structural analysis can only be based on the inverse matrix. The inverse matrix gives the direct and indirect demands on industry 1 generated by a undt of final demand for industry 1 . The ultimate impact of demand for a commodity on all industries can be obtained by reading all the way down a column.

Table 26 shows the direct and indirect requirements per dollar of delivery to final demand by each of the 31 processing sectors. Here, each column shows the direct and indixect requirements from the sectors at left to support a delivery of a dollar of output to final demand by the sector Listed at the top. ${ }^{6}$ In Table 26 the "chain reaction" of successive rounds of purchases are reflected.

It should be pointed out that the direct requirements coefficients in Table 25 relate to a change in total output, whether it goes to processing or final demand sectors. The direct and indirect or interdependence coefficients of Table 26 relate solely to a dollar change in final demand for the products of the endogenous sector.

The total of direct and indirect effects for each sector at the top of Table 26 are shown as the total at the bottom of the table. This total shows that for each dollar increase in final demand for a sector, total sales by processing sectors go up by varying amounts greater than a dollar. For instance, for Range Livestock, an increase of $\$ 1.00$ in sales to final

6
Editors Note: In this chapter, Dr. Andersen has used the untransposed form of the table of Direct and Indirect Coefficients. Throughout the remainder of this sub-basin report, however, the transposed form of the table is used. Per the chapter describing the input-output mode, a transposed table is read in reverse: the columns in Dr. Andersen's table become rows.

Table 26. -- Direct and Indirect Requirements Per Dollar of Delivery to Final Demand, Agriculture, Forestry, and Closely Related Sectors Upper Main Stem Sub-Basin, Colorado River Basin, 1969 -

```Sector purchasing Sector producing```	Range live. stock 1	Feeder   live-   stock   2	$\begin{gathered} \text { Dairy } \\ 3 \\ \hline \end{gathered}$	Food \& field crops 4	Truck crops 5	$\begin{gathered} \text { Fruit } \\ 6 \end{gathered}$	$\begin{gathered} \text { Forestry } \\ 7 \end{gathered}$
1. Range livestock	1.111	. 800	. 033	. 001	. 004	. 005	$2 /$
2. Feeder livestock	2/	1.003	. 001	2/	2/	$2 /$	$\underline{2}$
3. Dairy	. 004	. 040	1.005	$2 /$	$2 /$	$2 /$	2/
4. Food \& field crops	2/	. 025	. 004	1.000	2/	2/	2/
5. Truck crops	$\underline{2}$	2/	2/	$2 /$	1.000	2/	
6. Fruit	. 003	. 011	. 019	$\underline{2}$	$2 /$	1.000	2/
7. Forestry	$2 /$	2/	2/	21	21	$2 /$	1.000
8. All other agric.	$2 /$	. 007	. 002	$\underline{2} /$	2/	2/	$2 /$
9. Coal	.001	. 001	. 002	. 001	. 002	. 002	2/
10. Oil \& gas	- -	- -	- -	- -	- -	- -	- -
11. Uranium		- -	- -	- -			
12. Zinc				- -	- -	- -	
13. All other mining	2/	2/	2/	2/	2/	2/	2/
14. Food \& kindred products	$2 /$	. 166	. 044	2/	. 002	. 002	2/
15. Lumber \& wood	. 0101	$2 /$	2/	2/	2/	. 001	
16. Printing \& publ.	. 002	. 002	. 003	. 002	. 004	. 005	. 001
17. Fabricated metals	$2 /$	$2 /$	$2 /$	$2 /$	$2 /$	$2 /$	$2 /$
18. Stone, clay \& glass	2/	$\underline{2} 1$	2/	2/	2/	2/	2/
19. All other mifg.	. 021	. 026	. 034	. 073	. 045	. 020	.021
20. Wholesale trade	. 012	. 012	. 014	. 014	. 014	. 013	. 007
21. Service stations	. 011	. 012	. 013	. 023	. 007	. 009	. 012
22. A11 other retail	. 024	. 021	. 027	. 017	. 034	. 022	. 007
23. Eating \& drinking	. 001	. 001	. 001	$2 /$	2/	2/	$2 /$
24. Agric. services	. 028	. 046	. 115	. 073	. 429	. 453	2/
25. Lodging	21	. 001	2/	2/	2/	2/	2/
26. A11 other services	. 005	. 010	. 007	. 014	. 007	. 010	. 003
7. Transportation	. 017	. 044	. 064	. 022	. 007	. 006	. 002
28. Electric energy	. 007	. 010	. 021	. 008	. 018	. 018	. 001
29. Other utilities	. 005	. 006	. 005	. 004	. 005	. 005	. 001
30. Contract constr.	. 001	. 002	. 002	. 002	. 001	. 001	. 001
31. Rentals \& finance	. 048	. 055	. 032	. 012	. 026	. 016	. 023
Total 3/	1.304	2.364	1.443	1.273	1.605	1.593	1.079

Note: $1 /$ This table is from an untransposed inverse of an identity matrix minus the table of direct coefficients. Each columin shows the direct and indirect requirements from sectors at the left to support a delivery of one dollar to final demand by the sector at the top. 2/Less than . 0005 .
//Output multipliers. These multipliers are calculated as the sum of the interdependence coefficients for sectors.

Toble 2. (contanued)

demand would generate a total of $\$ 1.30$ output in the processing sectors. The biggest share of the increased output would be in the Range Livestock sector itself, but some increase would also be noticed in All Other Manufacturing (fertilizer, etc.), trade sectors, Agricultural Services, and in Rentals and Finance.

The Feeder Livestock sector has the largest total of the direct and indirect coefficients for any of the 31 sectors (Table 26). This total of $\$ 2.30$ means that from a delivery of $\$ 1.00$ to final demand in the Feeder Livestock sector, $\$ 2.30$ is the total impact in terms of output for the sub-basin area. The largest interdependence coefficient except for the sector itself is for the Range Livestock sector which shows $\$ 0.80$ required from that sector. Caution should be used in use of this coefficient in a regional development plan.

If livestock feeding were expanded sharply, alternative sources of supply of feeder cattle would certainly replace the very high proportion purchased from local ranchers. Eastern Colorado cattle feeders in a rather large feeding area obtain many of their cattle from sources far from Colorado. Therefore, the interdependence of Range Livestock on Feeder Livestock would likely not be so high if livestock feeding were to be increased several times. On the other side of the picture, an increase in final demand for the Feeder Livestock sector has an impact of about $\$ 0.17$ on the Food and Kindred Products sector output. At present, very little slaughter of fed cattle is done in the Basin (notice sales of the Feeder Livestock sector to Food and Kindred in Table 22). But it seems apparent that external economies would become important so that local slaughter would be expanded more rapidly than livestock feeding. Therefore, under an expansion program for livestock
feeding, the interdependence coefficient fcr Food and Kindred on Feeder Livestock would almost certainly become higher.

A $\$ 1.00$ increase in final demand for dairy output would ultimately result in $\$ 1.45$ in total output for all sectors. Food and Kindred, A11 Other Manufacturing, Trade, Agricultural Services, Transportation, Electric Energy, and Rental and Finance sectors would be affected most.

The Food and Field Crops sector has the lowest total of direct and indirect coefficients of any of the agriculture sectors. Most of the effects of an increase in final demand would be evident in the sector itself, All Other Manufacturing (fertilizer), Trade, Agricultural Services, Transportation, and Rental and Finance.

Truck Crops and Fruit sectors both have output multipliers (Table 26) of about 1.60. Almost all of the impact from an increase in final demands for these sectors would be on the sectors themselves and on the Agricultural Services sector. This relationship is due to the very high requirements for packing and processing the products of these sectors.

Forestry would develop only $\$ 1.08$ activity per dollar increase in final demand. However, the associated Lumber and Wood Products sector from which eventual consumers would ordinarily buy, has a fairly high total (sector 15 in Table 26). An increase in this sector's final demand would increase total activity by 1.63 times. Particularly strong impacts would be evident in the Forestry and Transportation sectors.

All Other Agriculture has a high degree of interdependence with other sectors. Total requirements would be felt through the economy, but particularly in the Range Livestock sector (for feed, etc.), the Dairy sector (for
skit mijn and other fect), and the Fook am Kindred Froducts secton (fuc fesd).
The Foon and Kincrect Products sector is not an eghombure sector, but is haluder beatuse of the 主macts on agriculturan sectoratelatod to changes



 prets of thereased rinal denef for thas sector are th the agmouthral sectoro, partumbary Renge Ihpestock and Dakry

Impocts from the Agricultwol Services sector are rathor Iow. As





 tidite to the reods.

It is interasting to note that there are fer faver raro ention in



 buan in theme sotors, there would be soas theraction dug to coaptition for


## BIBLIOGRAPHY

1. Agricultu:al Economics Department, Utah State University. "Utah Agricultural Statistics - Revised 1920-1962." Utah Resources Series 16, Utah Agr. Expt. Sta., Logan. June 1963.
2. Bevan, Roland. "Costs and Returns to Mountain-type Cattle Ranches in Central Idaho in 1962." Progress Report No. 85. Idaho Agr. Expt. Sta. Moscow, Idaho. January 1964.
3. Capener, William N. and Raymond A. Marquardt. 'Marketing Information Available from Colorado Brand Inspection Records for July, 1956 to June 30, 1957." General Series 788, Colorado Agr. Expt. Sta., Ft. Collins, Colorado. March 1963.
4. Caton, Douglas D. "Western Livestock Ranching and Federal Rangeland." Economic Research Service, U.S. Dept. Agr. (mimeo) 1963.
5. Chenery, Hollis B. and Paul G. Clark. "Interindustry Economics." John Wiley and Sons, Inc., New York. 1959.
6. Colorado Tax Commission. "Forty-Ninth Annual Report." State of Colorado, Denver, Colorado. 1960.
7. Colorado Water Conservation Board. "Federal-State Water Resource Planning Development in Colorado." Vol. 1. Colorado Water Conservation Board, Denver, Colorado. 1959.
8. Colorado Crop and Livestock Reporting Service. "Colorado Agricultural Statistics." Colorado Dept. of Agriculture and U.S. Dept. of Agr., Denver, Colorado. Annual issues 1948-1964.
9. Colorado Crop and Livestock Reporting Service. "The Colorado Cattleman's Handbook." Bull. 64-3. Culorado Dept. of Agriculture and U.S. Dept. of Agr. cooperating. Denver, Colorado. October 1964.
10. Cosper, William H. "Marketing - 1950 Crop Colorado Potatoes." FederalState Market News Service. Agr. Marketing Service, U.S. Dept. Agr. Denver, Colorado. 1961.
11. Davan, D. F.; Jr., W. R. Schmehl and W. G. Stewart. "Fertilizer Use and Trends for Principal Crops in Colorado." General Series 771, Colorado State University, Ft. Collins, Colorado. January 1962.
12. Davis, Lynn H. "Marketing Aspects of Fattening Lambs in the Mountain States, 1954-55." Bulletin 402, Utah Agr. Expt. Sta., Logan, Utah November 1957.
13. Davis, Lynn H. and Clyon Phillips. "Cost of Operating Machines for Seedbed Preparation and Planting on Irrigated Farms in Utah, 1960." Utah Resources Series 13, Utah Agr. Expt. Sta., Logan, Utah, June 1962.
14. Evans, W. Duane and Marvin HoEfenberg. "The Interindustry Relations Study for 1947," The Review of Economics and Statistics, Vol. XXXIV, No. 2 (May 1952), pp. 97-142.
15. Gray, James R. and H. Z. Rosenberg. "Farm Marketing of Hays and Feed Grains - Western States." Bull. 455, New Mexico Agr. Expt. Sta., University Park, New Mexico. May 1961.
16. Hughes, Jay M. "Pulp and Papermaking Opportunities in West Central Colorado." Station Paper No. 73, Rocky Mountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. of Agr., Ft. Collins, Colorado. November 1962.
17. Hunter, Elmer C. "Economics of Forage Production in the Mountain Meadow Acres of Colorado." ARS 43-99. Agr. Res. Service, U.S. Dept. of Agr. and Colorado Agr. Expt. Sta., Washington. September 1959.
18. Hutchinson, S.Blair. "Economic Problems in Developing and Utilizing the Lodgepole Pine Resource." Proceedings, Society of American Foresters Denver, Colorado. 1964.
19. 

"Market Prospects for Mountain States Timer." Research Paper 50, Intermountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. Agr., Ogden, Utah. June 1957.
20. Arfect Mountain States Lumber Producers." Research Paper 59, Intermountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. of Agr., Ogden, Utah. August 1959.
21. Ibach, D. B., J. R. Adams, and Esther I. Fox. "Commercial Fertilizer Used on Crops and Pasture in the United States - 1959 Estimates." Statistical Bulletin No. 348, U. S. Dept. of Agr., U.S. Govt. Printing Office. July 1964.
22. Kearl, W. G. "Cattle Ranching in the Northern Plains Area of Wyoming." Mimeo Circular No. i:. Wyoming Agr. Expt. Sta., Laramie, Wyoming. June 1961.
23. Lofting, E. M. and P. H. McGauhey. "Economic Evaluation of Water Part III: An Interindustry Analysis of the California Water Economy." Contribution No. 67, Water Resources Center, University of California, Berkeley. January 1963.
23. Lund, Richard E. "A Study of the Resources, People and Economy of Southwestern Wyoming." Wyoming Natural Resources Board, Cheyenne, Wyoming. 1962.
24. -Martin, Jilliam E. And Harold O. Carter. "A California Interindustry Analysis Emphasizing Agriculture, Parts I and II." Gianninj Foundation Research Report No. 250, California Agr. Expt. Sta. February 1962.
25. Miernyk, William H. "The Elements of Input-Output Analysis. Random House, New York. 1965.
26. Miller, Robert L. "Lumber Production in Colorado, 1957." Forest Survey Release 非1. Rocky Mountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. of Agr., Ft. Collins, Colorado. 1962.
27.
and Alvin K. Wilson. "Saw Log Production in Colorado and Wyoming. 1957." Forest Survey Release No. 3, Rocky Mountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. of Agr., Ft. Collins, Colorado. April 1960.
28. Miller, Robert L. and Grover A. Choate. "The Forest Resource of Colorado." Bull. INT-3 Intermountain Forest and Range Expt. Sta., Forest Service, U.S. Dept: of Agr., Ogden, Utah. 1964.
29. Moore, Frederick and James W. Petersen. "Regional Analysis: An Intem industry Model of Uwah." The Review of Economics and Statistics, Vol. XXXVII, No. 4 (November 1955), pp. 368-383.
30. Morrison, Earnest M. "Cost and Return in Grade A and Manufacturing Milk Production, Selected Areas of Utah, 1956." Bull. 401, Utah Agr. Expt. Sta., Logan, Utah. November 1957.
31. 1963." Utah Resources Series 21, Utah Agr. Expt. Sta., Logan, Utah, (no date).
32. Morrison, Earnest M. and Bruce E. Nielsen. "Farm Flock Sheep Production, Northern Utah, 1959, Cost and Return." Bull. 428, Utah Agr, Expt. Sta. Logan, Utah. (no date).
33. Morrison, Earnest M. and Leon G. Ciark. 'Handling of Milk on Grade A Farms in Utah. Bull. 412, Utah Agr. Expt. Sta., Logan, Utah. April 1959.
34. Myles, George A. "Costs and Returns on Livestock Ranches in Northeastern Nevada in 1961." Mimeo Circular No. 166, Nevada Agr. Expt. Sta., Reno, Nevada. September 1962.
35. Nobe, K. C. and G. Collins. "A Preliminary Economic Base Survey of the Animas-La Plata Pilot Project Watersheds in the Four Corners Area of the Colorado River Basin." Public Health Service, U.S. Dept. of Health, Education, and Welfare, Denver, Colorado. July 1962.
36. Norman, Tarry N. and Donald F. Jones. 'Movement of Colorado Cattle, 1947-1955." Tech. Bull. 65, Colorado Agr. Expt. Sta., Fe. Collins, Colorado. January 1959.
37. Outdoor Recreation Resources Review Commission. "Projections to the Years 1976 and 2000: Economic Growth, Population, Labor Force and Leisure, and Transportation." ORRRC Study Report 23, USGPO, Washington. 1962.
38. Poli, Adon. "Long-Term Production Prospects for Western Agriculture." Economic Research Service, U.S. Dept. of Agri., Agricultural Economic Report No. 33, 1963.
39. Poli, Adon. "Detailed Tabulations by States, Supplementing Data in Long-Term Production Prospects for Western Agriculture." Economic Research Service, U.S. Dept. of Agr. July 1963.
40. Rao, Ananda S. and David J. Allee. "An Application of Interindustry Analysis to San Benito County, Calisornia." Giannini Foundation Research Report No. 278, California Agr. Expt. Sta. September 1964.
41. Purvis, George, Paul O'Conne11, W. E. Snyder and E. K. McKellar. "Cost Analysis of Dairy Farming in Colorado." Tech. Bull. 75, Colorado Agr. Expt. Sta., Ft. Collins, Colorado. November 1963.
42. Seltzer, R.E. and T. M. Stubblefield. 'Marketing Mexican Cattle in the United States." Tech. Bull. 142, Arizona Agr. Expt. Sta., Tucson, Arizona. November 1960.
43. Spencer, John S., Jr., and Thomas O. Farrenkopf. "Timer Products Output in Colorado, Wyoming, and Western South Dakota, 1962." Research Paper INT-14, Intermountain Forest and Range Expt. Sta., Forest Service, U.S. Dept. of Agr., Ogden, Utah. 1964.
44. Stevens, Delwin M. and Douglas Agee. "Mountain Valley Cattle Ranching in Wyoming: Investments, Earnings, and Management Practices." Bull. 386, Wyoming Agr. Expt, Sta., Laramie, Wyoming. June 1962.
45. Upper Colorado River Basin Compact Commission. "Ofsicial Record: Volume III, Final Draft of Engineerin il ivisory Committee Report and Inflow-Outflow Manual." Denver, Coloreis. November 1948.
46. U.S. Bureau of Reclamation. "Dolores Project, Colorado: Feasibility Report." U.S. Dept. of the Interior. November 1963.
47. U.S. Bureau of Reclamation. "Report of the Commissioner - 1960." U.S. Dept. of the Interior, 1960.
48. U.S. Bureau of Reclamation. "Report of the Commissioner - 1964, Statistical Appendix, Parts I --III." U.S. Dept. of the Interior. 1964.
49. U.S. Bureat of Reclamation. "Report of the Commissioner - 1964, Statis a tical Apperdix, Part IV: Project Data." U.S. Dept. of the Interior, 1964.
50. U.S. Bureau of Reclamation. "The Colorado River." U.S. Dept. of the Interior. March 1946.
51. U.S. Dept. of Agriculture. "A 50-Year Look Ahead at U.S. Agriculture." Washington. June 1959.
52. U.S. Dept. of Agriculture. "Water and Related Land Resources: Colorado River Basin in Colorado." Colorado Water Conservation Board and U.S. Dept. of Agr., Denver, Colorado. May 1965.
53. U.S. Dept. of Agriculture. 'Water and Related Land Resources: Gunnison River Basin - Colorado." Colorado Water Conservation Board and U.S. Dept. of Agr., Salt Lake City, Utah. November 1962.
54. USDA Field Advisory Committee and USDA Field Party. "Report of Reappraisal of Direct Agricultural Benefits and Praject Impacts - Paonic: Project, Colorado, Colorado River Storage Project." U.S. Dept. of Agr., Salt Lake City, Utah. April 1957.
55. USDA Field Advisory Committee and USDA Field Party. "Report of Reappraisal of Direct Agricultural Benefits and Project Impacts, Silt Project, Colorado, Colorado River Storage Project." U.S. Dept. of Agr., Salt Lake City, Utah. Agusut 1961.
56. USDA Field Advisory Committee and USDA Field Party. "Report of Reappraisal of Direct Agricultural Benefits and Project Impacts - Smith Fork Project, Colorado, Colorado River Storage Project." U.S. Dept. of Agr., Salt Lake City, Utah. May 1958.
57. U.S. Economic Research Service. "Economic Relationship of Grazing Fees and Permitted Use of Public Rangelands to Net Income of Western Livestock Ranches: A Regional Analysis." Administrative Report to Bureau of Land Managemeriz and U.S. Forest Service. U.S. Dept. of Agr. 1962.
58. U.S. Forest Service. "Timber Trends in the United States." Forest Resource Report No. 17, U.S. Gov't. Printing Office, Washington, D.C. February 1965.
59. U.S. Forest Service. "Timber Resources for America's Future." Forest Resource Report No. 14, U.S. Gov't. Printing OEfice, Washington, D.C. January 1958.
60. U.S. Senate Select Committee on National Water Resources. "Water Resource Activities in the United States: Estimated Water Requirements for Agricultural Purposes and their tffects on Water Supplies." Committee Print No. 13, 86th Congress, 1st Sess., USGPO, Washington, 1960.

THE MINING, MANUFACTURING AND ENERGY SECTORS OF THE UPPER MAIN STEM SUB-BASIN

BY
John H. Chapman, Jr.
and
Hollis Price

August, 1967

## MINING

## Introduction

Mining has been a source of income and employment in the Upper Main Stem Sub-Basin since the earliest recorded settlement of the area. Sixteenth century Spaniards extracted gold and silver ores. The first American settlers continued to mine these metals and mined lead and zinc in addition. While the significance of gold and silver mining has diminished in recent times, lead and zinc mining have retained their importance and additional minerals have broadened the economic base. Starting in the early 1900's coal mining became an important activity which grew until about 1953 when the major western railroads began their massive switch from coal to diesel oil as a fuel. About the same time, however, large uranium deposits were located in the sub-basin, and the locus of heavy mining activity changed from coal to the new mineral. The emphasis on uranium extraction has grown steadily, so that by 1960, according to the Mineral Yearbook, the uranium sector accounted for almost one-half the total value of output for all sub-basin extractive activities.

The value of all mining production in the Upper Main Stem from 1930 through 1960 is shown in Table UMS-I. Uranium, coal, lead and zinc together made up almost. 92 percent of the 1960 value of mineral production. The range in value of mineral output extends from a low in 1932 of $\$ 1.1$ millions to a high in 1960 of approximately $\$ 38.3$ millions. (Table UMS-I). The most significant increases were recorded between the years 1955 and 1956, for it was in the latter year when the value of uranium production was first reported by the United States Bureau of Mines. Prior to the mid-fifties, the growth in tonnage and value of mineral output had been fairly steady except for 1932 and 1933 when production fell precipitously. Over the 30 -year period reported in Table UMS-I, however, there has been a ninefold increase in the value of production.

Table UMS-II shows total household payments by all mining sectors in the sub-basin. These payments consist of wages and salaries and profits and other income (professional services, etc.) as reported in the 1960 Upper Main Stem Transactions Table, Table UMS-S. Mining wage and salary

Table UMS-I

Value of Upper Main Stem Sub-Basin Mineral Production, 1930-1960 (in Current Dollars)

Utah   County	Year	Total.	Colorado Counties	Utah   County
: \$1,211,689	194.4		---	---
1,236,500	1943	\$10,781,115	\$10,781,115	- --:
1,329,511	1942	8,548,958	8,432,165	\$116,793b
836, 984	1941	10,599,139	10,426,729	172,410c
708,157	1940	11,945,330	11,320,001	125,379b
30,531	19.39	10,358,142	10,355,679	2,463a
23,039	1938	8,543,365	8,542,977	888a
30,142	1937	7,835,729	7,835,029	700a
38,64:5	1936	6,639,937	6,638,034	1,953a
23,752	1935	5,411,193	5,283,289	127,904b
43,689a	1934	3,539,820	3,537,138	2,682c
53,390b	1933	1,694,627	1,693,938	689c
86,979b	1932	1,123,193	1,123,193	---
108,534b.	1931	3,029,700	2,757,618	27 $2,082 \mathrm{~b}$
---	1930	4,244,002	4,212,702	313,000a

[^8]Table UMS-II

RANK	SECTOR	WAGES \& SALARIES	$\begin{gathered} \text { PROFITS \& } \\ \text { OTHER } \\ \text { INCOME } \end{gathered}$	TOTAL   PAYMENTS
1.	Uranium	\$19,476	\$3,614	\$23,090
2.	Zinc	4,087	636	4,723
3.	All Other Mining	2,344	1,451	3,795
4.	Coal	2,360	628	2,988
5.	Oil \& Gas	235	27	262
	Totals	\$28,502	\$6,356	\$34,858

Source: Table UMS-Y; n
payments of $\$ 28.5$ miliion represent approximately 16 percent of total subbasin wage and salary payments for $1960 .^{1}$ Employment in the extractive Industries was 4,593--almost twenty-three percent of total employment within the sub-basin. Average annual earnings per mining employee come to $\$ 6,206$. Table UMS-III shows partial mining wage and employment data by county. These data are incomplete because of disclosure and classification problems.

## Interindustry Relations

Coal---The total gross output of the coal sector was $\$ 5,620,000$ in 1960 which represents production slightly in excess of one million short tons. Historical tonnage and value data on sub-basin coal production from 1945 through 1960 are presented in Table UMS-IV. The most significant fact about this series is that, as of 1960 production had not yet recovered to the 1945 level of slightly more than 1.3 million tons. The national decline in coal production in the post Wor1d War II period, coupled with the decline of the regional railroad market starting in 1953, caused coal production by 1954 to slip to only slightly more than one-fourth of the 1945 level. Because of a rise in the price of coal, the value of 1954 production was almost 60 percent of the 1945 figure.

Coal sales to final demand amounted to 82 percent of 1960 total gross output. This gave coal the 12 th highest rank among the 31 processing sectors in terms of this measure. Among extractive activities, only zinc and oil and gas ranked higher. Exports outside the Colorado Basin of approximately $\$ 3.4$ million accounted for nearly three-fourths of total final demand sales. Of the sales to other sub-basin processing sector industries 91 percent ( $\$ 902,000$ ) were to electric energy producers.
${ }^{1}$ This compares with $\$ 20,006,907$ reported by the Colorado and Utah State Departments of Employment. The Colorado agency is restricted in its collection of data to establishments employing more than three persons, not including active proprietors and their relatives, so that there is large underreporting in the mining sector as well as in manufacturing, trade, and services. Also, sector classifications do not exactly correspond to those listed in the 1957 Standard Industrial Classification Manual. For these reasons it was decided to utilize wage and salary totals derived from the sample data collected specifically for this study.

Mining Wages and Employment, by County and Sector, 1960 Upper Main Stem Sub-Basin

County	Wages	Employment
Delta		
Coal	\$150,022	36
011 \& Gas	17,423	4
All Other Mining	a	a
Total	\$167,445	40
Dolores		
Lead \& Zinc	c	c
All Other Mining	a	a
Eagle		
Lead \& Zinc	c	c
All Other Mining	a	a
Garfield		
Coal	14,000	4
011* \& Gas .	a	a
All Other Mining	a	a
Total	14,000	$4 b$
Grand	a	a
Gunnison		
Coal	944,540	189
Lead \& Zinc	c	c
Uraniun	c	c
All Other Mining	a	a
Total	944,540	189
Hinsdale a a		
Mesa		
Coal	330,999	55
011 \& Gas	663,396	125
Uranium	c	c
All Other Mining	429,350	52
Total	1,423,745	232 b

County

## Montrose

Coal Gas		$a$
Oil Gas	$\$ 330,224$	$a$
Uranium	$c$	55
All Other Mining		c
		Total
		330,224

Ouray
Lead \& Zinc c c
All Other Mining a
Pitkin

## Coal

Uranium
Lead \& Zinc
All Other Mining
Total

San Miguel
$011 \&$ Gas 29,315 6
Uranium : c c
Lead \& Zinc
All Other Mining.
Total

Summit
Grand

Oil \& Gas	$3,441,283$	1,673
Uranium	$c$	$c$
All Other Mining		a
	Total	$\frac{a}{3,441,283}$

Withheld to avoid disclosing figures for individual firms.
$b_{\text {rotal }}$ exclusive of data witheld for disclosure reasons or because of classification problems.
$c_{\text {Because }}$ all wage and employment information for metal mining in the subject ccunty was grouped into one general classification, it is not possible to report the wage and employment data by particular type of metal mining.

Source: Colorado State Department of Employment.

Table UMS-IV
Annual Tonnage and Value of Upper Main Stem Sub-Basin Coal Production, 1945-1960
(Current Dollars)

Year	Sub-Basin Totals.		Colorado Counties '. ' $\because$		Utah County	
	Tons	Dollar Value	Tons	Dollar Value	Tons	Dollar Value
1960	1,000,870	5,619,908	1,000,870	5,619,908		
1959	437,923	2,498,272	437,923	2,498,270 ${ }^{\text {a }}$		
1958	439,727	2,559,511	439,727	2,559,511a		
1957	469,664	2,815,240	469,664.	2,815,240 ${ }^{\text {a }}$		
1956	612,176	3,643,508	612,176	3,643,508		
1955	555,703	3,150,084	555,703	3,150,084		
1954	375,961	2,056,796	375,961	2,056,793		
1953	512,908	2,737,365	510,925	2,727,450	1,983	9,915
1952	561,268	2,995,891	555,295	2,989,900	5,991	28,936
1951	559,784	2,939,242	554,201	2,900,490	5,583	28,752
1950	746,616	3,784,701	737,913	3,741,012	8,703	43,689
1949	855,751	4,084,042	843,866	4,025,687	11,885	58,355
1948	912,254	4,013,597	890,220	3,927,003	22,034	86,594
1947	881,087	3,166,811	850,749	3,058,326	30,338	108,485
1946	1,101,438	3,772,381	1,101,438	3,772,381		
1945	1,309,147	3,579,200	1,271,826	3,541,879	37,321	120,174

${ }^{a}$ Coal production for Montrose and Pitkin counties was combined with production from Moffat and El Paso counties to avoid disclosure, and, for this reason coal production for the former two counties could not be reported.

Source: Minerals Yearbook Annuals, 1945-1960, U. S. Department of the Interior, Bureau of Mines (Washington, D. C.: U. S. Government Printing Office)

Most of the inputs to coal mining--92 percent of total gross outlays-came from outside the processing sector, with wage and salary payments, and imports from outside the Colorado River Basin, accounting for $46 \%$ and $23 \%$ respectively. Purchases of electric energy ( $\$ 144,000$ ) constituted the only important processing sector input.

Table UMS-Z (p. 65) shows the sum of the direct and indirect output requirements from all processing sector industries called forth by the sales to final demand of one dollar by each of the industries at the left of the table. The coal mining sector had a very low degree of interdependence with other processing sector industries as shown in this table. The sum of the direct and indirect effects for the coal industry is only $\$ 1.10$. This is the second smallest expansionary effect of all the mining sectors and ranks 26 th among all processing sector industries. The larg est sectional direct and indirect effect was in electric energy--a three cent output increase for every dollar of coal sold to final demand. (Table UMS-U, p. 60).

011 and Gas---Annual petroleum production for the years 1955 through 1960 is shown in Table:UMS-V. The 1960 production was 14 thousand barrels at an average price of $\$ 2.80$ per well-head barrel-a total value of $\$ 39,200$. In addition, almost $1.9 \mathrm{million} m \mathrm{mf}$ 's (thousands of cubic feet) of natural gas were produced at an average price per.mef of twelve cents --a total value of $\$ 228,000$. Thus the total value of production of petroleum and natural gas combined was $\$ 267,200$.

The total"gross output for the oil and gas sector of the transactions table was $\$ 1,968,000-$-much larger than the value of production of petroleum and natural gas combined, computed above. The reason for this wide disparity is that in the transactions table we included, in addition to petroleum and gas production, ofl field service activities which accounted for nearly $\$ 1.7$ million of the total. Even with the inclusion of oil field service activities, the oil and gas sector has the lowest total gross output of any of the mining sectors. As shown in Table UMS-X (p. 63) oil and gas sales to final demand ( 99 percent of total gross output) is the second highest of all deliveries to final demand ranking

Annual Petroleum Production of Upper Main Stem Sub-Basin 1955-1960 (Number of 42 Gallon Barrels)

Year	Total	Utah County
1960	14,000	14,000
1959	9,000	9,000
1958	11,000	11,000
1957	18,000	18,000
1956	2,000	2,000
1955	6,000	6,000

Source: Minerals Yearbook, Annuals, 1953-1960, Vol. II, Area Statistics, U. S. Department of the Interior, Bureau of Mineo (Washington, D. C.: U. S. Government Printing Office;

## Table UMS-VI

Value and Tonnage of Upper Main Stem Sub-Basin Uranium Production, 1956-1960

Year	Upper Main Stem Sub-: Basin Total		$\frac{\text { Colorado Sub-Basin }}{\text { Counties }}$		$\frac{\text { Utah Sub-Basin }}{\text { Counties }}$	
	Short Tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$	Short Tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$	Short Tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$
1960	856,467	18,389,852	812,715	17,455,775	43,752	934,077
1959	797,580	17,836,811	756,383	16,923,109	41,197	913,702
1958	749,411	17,190,602	714,773	16,281,281	35,138	909,321
1957	667,973	14,520,965	635,872	13,870,868	32,101	650,097
1956	475,444	11,740,115	449,170	11,153,777	26,274	586,338

Source: Minerals Yearbook, Annuals, 1956-1960, V̇ol. III., Area Statistics,
U. S. Department of Interior, Bureau of Mines Washington, D. C.:
U. S. Govermment Printing Office,
immediately behind zinc. Most of these sales (86\%) were to capital account --gross private capital formation--representing drilling and exploration activities conducted in the sub-basin in 1960. Intraindustry transactions of $\$ 28,000$ were the only processing sectors sales.

Approximately seventy-seven percent of the oil and gas industries' total gross outlays were made in the payments sector with imports from outside the Colorado River Basin, and wage and salary payments accounting for $70 \%$ and $16 \%$, respectively, of imports. Of the inputs from processing sector industries the largest purchase ( $35 \%$ ) was from rentals and finance$\$ 159,000$ - with the bulk of these payments representing lease and royalty payments to local land owners of producing properties.

Table UMS-Z ( $p .65$ ) shows that the sum of direct and indirect effects of the oil and gas sector on processing sector industries is $\$ 1.28$ which is the median of the rank order distribution of all processing sector industries. The only mining sector which ranks above oil and gas in the sum of its direct and indirect effects is uranium. The largest sectoral output increase was the nine cents called forth from rentals and finance. In addition, the "all other services" sector experienced output increases of approximately five cents for every dollar of sales to final demand by the ofl and gas sector, (Table UMS-U, p. 60).

Uranium---Table UMS-VI shows the current dollar value and tonnage of sub-basin uranium production in 1960 and prior years through 1956-when uranium production data were first published. The $\$ 18.4$ millions of raw uranium ore mined in 1960 is a very much lower value than the $\$ 92.4$ million total gross output reported for the uranium sector in the transactions table. Because of the heavy concentration of uranium mining in the Upper Main Stem and contiguous sub-basins, a large uranium ore processing industry has grown up in the area to separate the $\mathrm{U}_{3} \mathrm{O}_{8}$ (yellowcake) from the raw ore. It consists primarily of milling and flotation operations that are properly classified as "mining" activities in the Standard Industrial Classification Manual. ${ }^{2}$

2 Manual - 1957, U. S. Government Printing Office, Washington, D. C. (1957).

To preserve this classification, all local mining and processing were included in the single uranium row and column of the transactions table. Thus, the uranium sector is a vertically structured industry with locally mined raw ore showing as a uranium row to uranium column sale (intraindustry) which is then further processed in the same column, Not only does this procedure cause double-counting of the value of ore mined locally (and not all of it was since over $\$ 1.5$ million went to the San Juan Sub-Basin) but it also causes inclusion of both mining and further processing expenses in one table column. For this reason the uranium sector's total gross output is slightly more than five-times the value of the locally mined ores. The vertical combination of separate input structures is an accepted procedure where the output of one activity is consumed as an input to another in the same geographical area (i.e., sub-* basin). ${ }^{3}$

Almost 82 percent of the uranium sector's total gross output was sold to final demand, the largest portion of which ( $\$ 67$ million) represented "yellow-cake" sales to the federal government. Uranium's total final demand sales twice tied with coal; for third place among the five mining sectors and for twelfth place among all processing sector industries. (Table UMS-X, p. 63). Intraindustry sales of almost $\$ 16.9$ million represented the only processing sector transaction, and the entire amount consisted of sales of unprocessed uranium ores to concentrating mills.

Almost seventy percent of uranium's inputs came from the payments sector with imports from outside the Colorado River Basin and wages and salaries accounting for over two-thirds of the total. Intraindustry transactions and purchases from transportation and all other mining accounted for ninety-two percent of uranium processing sector purchases, with $58 \%, 30 \%$ and $4 \%$, respectively, of imports to the processing sectors.

[^9]Table UMS-Z, (p.65) shows uranium to have the largest sum of direct and indirect effects ( $\$ 1.42$ ) of all cub-basin mining activities. This sector stands tenth highest among all processing sector industries. Most of these effects are accointed for by intraindustry transactions and transportation.

Lead and Zinc---The total value of sub-basin lead and zinc production In 1960 came to $\$ 11.1$ million, and this production was restricted to Colorado counties. Table UMS VII shows the annual dollar value of lead and zinc production from 1945 through 1960. The largest production year was 1951 ( $\$ 22$ million) almost twice the value of 1960 production. Lead and zinc sales were entirely to final demand, and $96 \%$ of these were exports to destinations outside the Colorado River Basin. Over ninety-three percent of lead and zinc's total gross outlays went to the payments sector with imports from outside the Colorado River Basin and wage and salary payments accounting for the greatest share, $40 \%$ and $38 \%$, respectively. Inputs from two processing sector industries--electric energy and fabricated metals-accounted for almost three-fourths the total gross outlays of the processing sector:

Lead and zinc had the lowest expansionary effect of all mining sectors. For every additional dollar of sales to final demand barely $\$ 1.09$ in additional outputs by all processing sector industries was generated. Only three processing sector industries had lower values for the sum of the direct and indirect effects in the sub-basin economy than zinc and lead as shown in Table UMS-Z.

All Other Mining---The total gross output of the "all otherimining sector ( $\$ 6.7$ million) includes the production value of gold, silver, copper, stone, sand and gravel and other mining activities which individually account for a very small proportion of total sub-basin extractive activities. Annual production data of gold, silver, and copper from 1952 through 1960 are shown in Table UMS-VIII. Approximately 58 percent of this sector's output was delivered to final demand in 1960--the lowest percentage of all mining sectors and 22nd among all sub-basin processing

Annual Dollar Value of Sub-Basin Lead and Zinc Production by State, 1945-1960

Year

Upper Main Stem
Sub-Basin Total

Colorado Sub-
Basin Counties
Lead Zinc
7,09.1,799 8,159,842 $10,402,609 \quad 2,859,130$ $15,398,664 \quad 5,579,072 \quad 9,819,574$ 14,372,142 $\quad 4,954,430 \quad 9,417,712$ $14,092,722 \quad 3,991,410 \quad 10,101,312$ $\begin{array}{lll}22,012,370 & 6,070,262 & 15,942,108\end{array}$ $\begin{array}{lll}19,539,212 & 5,753,818 & 13,785,394\end{array}$ $\begin{array}{lll}10,708,362 & 3,897,250 & 6,811,112 \\ 10,386,012 & 3,608,580 & 6,777,432\end{array}$ $11,715,630 \quad 3,677,916 \quad 8,037,714$ $14,808,062 \quad 4,806,649 \quad 10,001,397$. $12,795,279 \quad 3,925,908 \quad 8,869,371$ $\begin{array}{rll}9,852,845 & 2,588,894 & 7,263,951\end{array}$ $\begin{array}{lll}10,198,580 & 2,382,973 & 7,815,607\end{array}$ $11,106,716 \quad 3,548,399 \quad 7,558,317$

$\frac{$|  Utah Sub-Basin  |
| :---: |
|  Counties  |}{Lead Zinc}

Source: Minerals Yearbook, Annuals, 1945-1960, U. S. Department of the Interior, Bureau of Mines (Washington D. C., U. S. Government Printing Office)

Table UMS-VIII
Annual Dollar Value of Upper Main Stem Sub-Basin Gold, Silver, and Copper Production, 1952-1960

Year
1952
1953
1954
1955
1956
1957
1958
1959
1960

S Value
4,220,898
5,222,463
6,516,151
6,039,742
6,206,726
5,514,135
4,844,756
3,575,641
3,918,741

Source: Minerals Yearbook, Annuals, 1952-1960, Vol. III, Area Statistics, U. S. Department of the Interior, Bureau of Mines (Vashington, D. C.: U. S. Government Printing Office)
sector industries. The largest final demand sales were exports outside the Colorado River Basin. Within the processing sector, "other mining", sales were highly concentrated and limited to three industries - construction ( $47 \%$ ), uranium ( $40 \%$ ), and stone, clay and glass ( $13 \%$ ). The first two of these accounted for 87 percent of all sales to processing sector purchasers.

As with all previous mining sectors, inputs from the payments sectors accounted for the largest proportion (92\%) of total gross outlays. Wage and salary payments ( $38 \%$ ), and profits and other income ( $24 \%$ ), were the largest payments and together accounted for three-fifths of inputs from the payments sector. The only processing sector purchase in excess of $\$ 100,000$ was from electric energy.

Although output increases of one cent or greater were generated in five processing sector industries, "all other mining" had a very low degree of structural interdependence in the sub-basin economy. For every additional dollar of sales to final demand, production increases of only \$1. 10 were generated. This tied with coal as the lowest of the mining sectors, and only five other industries in the sub-basin processing sector ranked lower, as shown in Table UMS-Z.

## Introduction

Manufacturing has not yet become a major economic activity in the counties of the Upper Main Stem Sub-Basin. The economy has always been classified as an agricultural and extractive one, and the only manufacturing which has taken place has been in those activities oriented towards the basic resources of the area such as lumber and wood products, stone, clay and glass products, and those activities oriented towards small local markets such as dairies, bakeries, and printing and publishing establishments.

Table UMS-IX shows some selected characteristics of sub-basin manufacturing, by county, for the United States census years 1939,1947 , 1954 and 1958. Over this time the number of establishments has more than doubled, while the number of production employees has increased by 136 percent. The value added by manufacture however, has increased from about $\$ 1.5$ million in 1939 to almost $\$ 13.5$ miliion in 1958.

By 1960 the number of firms, as reported by the University of Colorade Bureau of Business Research and the U. S. Public Health Service, had increased to 314. (Table UMS-X). This might be misleading since many of the manufacturing establishments listed by these two reporting agencies were not included in the 1958 United States Census of Manufacturers even though these establishments were operating in 1958. Much of the difficulty occurs in the lumber and wood products sector where many of the firms are small contract loggers who cut and deliver logs to the sawmills. While the Standard Industrial Classification Manual considers logging camps and logging contractors as manufacturers--under Code 2411--many of these logging operations are conducted on a seasonal basis by men who practice other occupations, such as farming, for the remainder of the calendar year. Because of casual and seasonal nature of these firms, many of them are not picked up in the Federal census statistics. The

Table UMS-IX
Selected Statistics on Manufacturing by County
In the Upper Main Stem Sub-Basin
(Average Annual Employment)

Year


1947
1939 Delta, Colorado

Sub-Basin Totals

Number of	Total	Production Value :
Establishments	Employees	Employees



* Not available.
** Withheld to avoid disclosing figures for individual companies.
a Total less value added for counties where data not released because of disclosure, for subject year.

Source: U. S. Bureau of the Census, U.S. Census of Manufactures: 1958, 1954, 1947 and 1939, Volume III, Area Statistics (Washington, D.C.: U.S. Government Printinf Office, ippiopriate states' data).

Number of Manufacturing Firms by Sector and County In the Upper Main Stem Sub-Basin, 1960
County
Delta
Food \& Kindred Products ..... 22
Lumber \& Vood Products ..... 15
Printinj \& Publishing ..... 4
Leather \& Leather Goods ..... 2
Fabricateu Metals ..... 3
Stone, Clay \& Glass Products ..... 1
Other Manufacturing ..... 3
Total ..... 50
Dolores
Food \& Kindred Pzoducts ..... 4
Lumber \& Wood Prociucts ..... 2
Printing \& Publishing ..... 1
Other Manufacturing3
Total ..... 10
Eagle
Food \& Kindred Products ..... 2
Lumber \& Wood Products ..... 9
Primary lifetals ..... 1
Printing \& Publishing ..... 0
Stone, Clay \& Glass Products ..... 2
Other Manufacturing ..... Total ..... $\frac{2}{14}$
Garficld
Food \& Kindred Products ..... 6
Lumber \& Vood Products ..... 14
Oil \& Gas ..... 1
Printiñ \& Puolishing ..... 5
Stone, Clay \& Glass Products ..... 4
Fabricated Metals ..... 2
Otier Manufacturing ..... 7
Total ..... 39
Grand
Lumber \& Wood Products ..... 23
Printing \& Publisizing
Total ..... 30

## Gunnison

Food \& Kindred Products ..... 1
Lumber \& Vood Products ..... 29
Primary Metals ..... 1
Printing \& Publishing ..... 3
Stone, Clay \& Glass ProductsOther Manufacturinf
Hinsdale
Lumber \& Hood Products ..... 2
Mesa
Food \& Kindred Products ..... 21
Lumber \& Vood Products ..... 17
Chemicals ..... 2
Oil \& Gas ..... 1
Primary Mctals ..... 5
Printing \& Publishinz ..... 13
Fabricated Metals ..... 12
Textile Mill Products ..... 2
Other Manufacturing
Total ..... 99
Montrose
Food \& Kindred Products ..... 10
Lumber \& Vood Products ..... 23
Printing \& Publishing ..... 4
Primary Metals ..... 1
Stone, Clay \& Glass Products ..... 1
Leather \& Leather GoodsOther ManufacturinsOuray
Food \& Kindred Products ..... 1
Lumber \& Wood Products ..... 4
Primary Metals ..... 1
Printing \& Publishing ..... Total ..... $-\frac{1}{7}$
Pitkin
Lumber \& Wood Products ..... 3
Printing \& Publishing ..... 1
Stone, Clay \& Glass Products ..... 2
Other Manufacturing
San Mizuel
Food \& Kindred Products ..... 1
Lumber \& Nood Products ..... 14
Piimary Metals1
Stone, Clay \& Glass Products ..... 1
Other Manufacturing
Total ..... $\frac{3}{38}$

## Table UMS-X (Cont'd)

Summit
Lumber \& Wood Pioducts 7
Primary Metals 1
Printing \& Publishing Total $\frac{1}{9}$
Grand (Utah)
Food \& Kindred Products I
Lumber \& Hood Products 2
Printing \& Publishing
Total
1
2
$\frac{1}{4}$
Sources: 1960 Directory of Colorado Hanufactures,, Bureau of Business Research, University of Colorado, Boulder, Colorado.
1950 Directory of Manufactures for the Colorado River Basin, U. S. Department of Health, Education And llelfare, Public Health Service, Bureau of State Services, Division of Vater Supply and Pollution Control, Resion VIII, Denver, Colorado.
seasonal nature of lumber and wood products creates an additional problem in connection with calculating average annual wage payments to employees. Since many of the employees are on the payroll for only a portion of the year, their average wage payments calculated on a full year basis are quite low. The only way to correct this is to utilize "man-years" when discussing employment in heavily seasonal industries.

The total gross output of all sub-basin manufacturing sectors came to $\$ 48.3$ million in 1960 , which represents only four percent of the total gross output of all processing sector industries. The largest manufacturing sectors were food and kindred products and "all other" manufacturing, Wage and salary payments for all manufacturing came to $\$ 8,736,000$ in 1960 , roughly five percent of total sub-basin wage and salary payments. ${ }^{4}$ Sectoral: wages and salary, and other household payments, are shown in Table UMS-XI. The largest payments were made by the food and kindred products and "all other" manufacturing sectors.

County employment and wages by industrial classification are shown in Table UMS-XII. The total manufacturing employment in 1960 was 2,009 , and the average annual wage was $\$ 4,289 .{ }^{5}$

Food and Kindred Products---The major kinds of food and kindred products establishments in 1960 were fruit and vegetable canners, dairies, beet sugar manufacturers, meat packing plants and establishments engaged in manufacturing animal feeds. Table UMS-X shows food and kindred products final demand deliveries of 86 percent of gross output to be ninth highest of all sub-basin processing sector industries - exceeded only by one manufacturing sector--lumber and wood products. The largest final demand deliveries were to sub-basin residents, and of the $\$ 2.7$ million sold to processing sector industries, eating and drinking places took almost half. Only 49 percent of food and kindred products inputs came

[^10]RANK ORDER DISTRIBUTION OF MANUFACTURING SECTOR PAYMENTS TO HOUSEHOLDS IN THE UPPER MAIN STEM SUB-BASIN
(In Thousands of Dollars)


Source: Table UMS-Y.

Table UMS-XII

Manufacturing Wages and Employment, by Sector and County, 1960 - Upper Main Stem Sub-Basin

## County

Delta
Food \& Kindred Products
Lumber \& Wood Products
Printing \& Publishing
Fabricated Metals
Stone, Clay \& Glass
All Other Manufacturing
Total

Dolores
Eagle
Food \& Kindred Products
Lumber \& Wood Products Stone, Clay \& Glass
All Other Manufacturing Total

Garfield
Food \& Kindred Products
Lumber \& Wood Products
Printing \& Publishing
Stone, Clay \& Glass
All Other Manufacturing Total

Grand
Lumber \& Wood Products
Printing \& Publishing Total

Gunnison
Food \& Kindred Products
Lumber \& Wood Products
Printing \& Publishing
Stone, Clay \& Glass
Total
Hinsdale
a
a

Table UMS-XII (Cont'd)

County
Mesa
Food \& Kindred Products
Lumber \& Wood Products
Printing \& Publishing
Fabricated Metals
Stone, Clay \& Glass
All Other Manufacturing Total

Wages
\$1,570,886
413
102,998
30
674,762
154
328,865 63
163,010
33
$\frac{1,580,620}{4,421,141} \quad \frac{223}{916}$
Montrose
Food \& Kindred Products
Lumber \& Wood Products
Printing \& Publishing
Stone, Clay \& Glass
A11 Other Manufacturing
Total

Ouray

Food \& Kindred Products	35,247	9
Lumber \& Wood Products	3,477	1
Printing \& Publishing	$a$	$\frac{a}{10}$
	38,724	

## Pitkin

Lumber \& Wood Products
Printing \& Publishing
Stone, Clay \& Glass
All Other Manufacturing Total

San Miguel
Food \& Kindred Products
Lumber \& Wood Products
Stone, Clay \& Glass
All Other Manufacturing
Total
Suminit
Lumber \& Wood Products
Printing \& Publishing Total

68,946

## 16

34,858
10
a
46,168
149,972
$\frac{11}{37}$

$a$	$a$
33,526	9
$a$	$a$
$1,046,371$	190
$1,079,897$	199

4,223

4,223 $\quad$| 3 |
| :--- |
| $-\frac{a}{3}$ |

Grand
Grand Totals
${ }^{\text {a }}$ Witheld to avoid disclosing figures for individual companies.
$b_{T}$
Total less wage and employment data not released because of disclosure for subject year.
Source: Colorado State Department of Employment.
from the payments sector, the largest of which was for wages and salaries. About $\$ 9.8$ million of purchases were made from processing sector industries, and 89 percent of these purchases came from the agricultural sectors.

The sum of the direct and indirect effects of the food and kindred product industries was $\$ 1.76$, second only to feeder livestock as shown in Table UMS-Z. It had the largest intraindustry expansion effect of any of the manufacturing sectors. $/ \$ 1.02$. The largest individual production increases were range livestock and dairy farming, with 21¢ and 11¢ increases respecively.

Lumber and Wood Products---The major producers for this sector included logging camps, sawmills and planing mills. The 1960 total gross output was $\$ 5$ million, of which 95 percent represented deliveries to final demand as shown in Table UMS-X. This table shows that no other manufacturing sector had final demand deliveries of this relative magnitude and that only five other processing sector industries exceeded this percentage. Almost $90 \%$ of lumber and wood products deliveries consisted of exports outside the Colorado River Basin. The only significant delivery to other processing sector industries was the $\$ 195,000$ sale of mine shaft timbers to the uranium sector.

Inputs from the payment sector accounted for only 45 percent of the total gross outlays of this sector--the smallest percentage of any subbasin manufacturing sector. The major portion of this ( $\$ 1.2$ million) or $53 \%$ was for wages and salaries. Most of the processing sector purchases were for rough timber supplied by the forestry sector.

Table UMS-Z shows that lumber and wood products created $\$ 1.63$ of additional output for every additional dollar of deliveries to final demand. It ranked fourth among all processing sector industries and was the second largest of the manufacturing sectors--exceeded only by food and kindred products. The largest of the seven individual production increases generated by additional final demand deliveries come from the forestry and transportation sectors with $38 \&$ and $12 ¢$ increases, respectively.

Printing and Publishing---Most of the activity in this sector in 1960 consisted of publishing local and county newspapers. The final demand deliveries for this sector were a smaller percentage of total gross output than any of the other sub-basin manufacturing industries and third lowest of all processing sector industries (Table UMS-X). Only eight percent of the total gross output of $\$ 3,049,000$ found its way to final demand and $49 \%$ of these sales were accounted for by the households sector. Sales were made to 25 of the 31 processing sector industries, but the largest part of these--73 percent--were to the "other retail" sector.

The greatest share of input purchases ( 92 percent) came from the final payments sector, primarily for imports from outside the Colorado River Basin and wage and salary payments. The largest processing sector purchase came from intraindustry transactions - $20 \%$ of the total, while other utilities and rentals and finance followed with $18 \%$ and $15 \%$ respectively.

For every dollar of additional sales to final demand printing and publishing generated only $\$ 1.09$ in additional output from all processing industries. Only one manufacturing industry - the conglomerate "other" manufacturing - had a lower sum of direct and indirect effects.

Fabricated Metals---Structural steel fabricators and boiler shops were the major types of producers in this sector. The sector's total gross output was the second smallest for all the manufacturing sectors amounting to only $\$ 1,633,000$. Fifty percent of this amount went to final demand, the third lowest for all sub-basin manufacturing sectors and the 24 th in rank among all processing sector industries. Exports outside the Colorado River Basin accounted for the major final demand deliveries - $62 \%$. The largest processing sectors sales were to the mining sectors, the bulk of which was the $\$ 422,000$ of sales to uranium.

Payment sector inputs of $\$ 1.5$ million accounted for approximately 91 percent of this industry's total gross outlays and the largest (48\%) were for imports from outside the Colorado River Basin and wages and salaries (23\%). The only significant processing sector purchase was from "all other" manufacturing.

The sum of the direct and indirect effects is shown in Table UiS-Z. The $\$ 1.11$ of output so generated was the fourth largest of all manufacturing sectors but eighth lowest for all processing industries. The largest single output increase was experienced in "all other" manufacturing with a 6 ¢ increase.

Stone, Clay and Glass Products--The major activity of this sector was the manufacture of ready-mix concrete. Total gross output came to $\$ 1,460,000$ for 1960 --the smallest of any manufacturing sector. The 22 percent of output to final demand ranked fourth lowest of all processing sector industries while among manufacturing industries, only printing and publishing had smaller relative final demand deliveries. Slightly less than half the final demand deliveries went to governmental units, and 45\% went to households in the form of wages.

Input purchases from the payment sector came to 61 percent of total gross outlays, and the largest expenditures were for wage and salary payments, and imports froin outside the Colorado River Basin. Of the remaining purchases from the processing sectors 66 percent ( $\$ 374,000$ ) were supplied by the "all other" mining sector.

This sector had a reasonably high degree of interdependence with all other processing sector industries. Total production in the processing sector was increased by $\$ 1.44$ for every dollar of this sector's sales to final demand. This represents the third largest sum of the direct and indirect effects of the manufacturing sectors and ranks 9th among all processing sector industries. The largest individual output increases were experienced in the "all other" mining and "all other" manufacturing sectors.
"All Other" Manufacturing--The establishments comprising this sector are a very heterogeneous group and are included together under one heading to eliminate the possibility of disclosure where there are fewer than three firms of a given type operating in the sub-basin. Included in this classification are rolling mills, furniture manufacture, leather products
manufacturers, one large petroleum refinery operated by the American Gilsonite Company at Fruita and several other small and varied establishments.
"All other" manufacturing total gross output in 1960 came to $\$ 17.9$ million of which 49 percent was sold to final demand. This was the third smallest percentage for all manufacturing sectors and seventh lowest for all sub-basin processing sector industries. The largest component of final demand sales was exports which accounted for $58 \%$ of sales to final demand. Eighty-six percent of these went outside the Colorado River Basin. Since the petroleum refinery was included in this sector, "all other" manufacturing sold its output to all of the 31 processing industries. In most cases these are gasoline sales which pass through the margined service station sector. The largest of these sales (62\%)--almost \$5.7 million--went to the transportation sector.

Almost all inputs for this sector came from the final payment sector of the transactions table--94\%. Of these purchases imports from other sub-basins and from outside the Colorado River Basin represented the largest shares constituting 49 and 17 percent respectively. The large inflow from other sub-basins of the overall Colorado River Basin is due to the importation of almost $\$ 6.3$ million of gilsonite from the Green SubBasin. Wages and salaries paid to sub-basin households also represented an important outlay accounting for 16 percent of purchases from the final payments sector.

Because of "the almost total dependence on payment sector inputs, Table UMS-Z shows that the "all other" manufacturing sector had the lowest sum of direct and indirect requirements ( $\$ 1.07$ ) of all processing sector industries.

## ELECTRIC ENERGY

## Introduction

The Upper Main Stem electric energy sector contained 15 operating establishments in 1960. The largest, Public Service Company of Colorado, served users over a wide area but had fairly concentrated operations in Mesa County. At the time of the study Public Service was constructing the Cameo producing plant which was operating in 1965 and exporting energy out of the sub-basin.

Eleven power establishments were borrowers from the Rural Electrification Association, and each served only relatively small areas except for the Colorado-Ute Power Association, which is a producing cooperative with most of the Western slope R. E. A.'s as members. Some of the single R. E. A.'s overlap into other sub-basins as, for example, the Yampa Valley and White River Associations which extend into the Green and the Western Colorado Power Company whose service area includes portions of the San Juan.

The operating statistics for the sub-basin R. E. A.'s are presented in Table UMS XIII. The establishment with the largest sub-basin sales was the San Miguel Power Association which had large energy sales to the uranium mill at Nucla. Unfortunately the time series data for the Public Service Company are for its entire state-wide operations, not just those in the sub-basin. The 1960 sub-basin energy sales of Public Service Company were larger than any of the other local producers, however. Another private energy company, the Utah Power and Light Company, operated in Grand County, Utah, but its sales there were not as large as those of some of the local R. E. A.'s. Finally, two small municipalities--the cities of Aspen and Glenwood Springs--purchased power for local distribution.

Interindustry Transactions--The total gross output for the electric energy sector was $\$ 9,460,000$ in 1960. Forty-seven percent of this amount was sold to final demand, placing electric energy sixth from the bottom
of the list among sub-basin processing sector industries. Sixty-seven percent of these sales were to resident households. Sales were made to thirty of the thirty-one processing sector industries. The largest delivery . to processing sector industries was the $\$ 1,052,000$ sold to all the mining sectors combined. Intraindustry transactions of $\$ 990,000$ constituted the largest delivery to any single processing sector.

Seventy-five percent $(\$ 7,109,000)$ of the electric energy industry's total gross outlays were allocated to the payments sector with wage and salary payments and imports from outside the Colorado River Basin comprising the largest share--55\% combined. Intraindustry transactions and coal constituted the only significant processing sector purchases accounting for $42 \%$ and $38 \%$, respectively, of the total.

Each dollar of electric energy sales to final demand generated $\$ 1.30$ of additional output within the processing sector. Fourteen other processing sector industries had an equal or larger expansionary effect. (See Table UMS-Z). Intraindustry transactions totaled \$1. 12 ranking 3rd among all processing sector industries. Coal mining increased its output by $\$ 0.11$ for every dollar of electricity sales to $f i n a l$ demand placing it in second place.

Table UMS-XV
Selected Operating Statistics of Sub-Basin Electric Energ Producing Firms, 1941-1960 Upper Main Stem Sub-Basin

Year	Sangre.De Cristo Electric Assn.			-Grand Valley"Rural Power Assn.		
	Miles Energized	Consumers $\qquad$	Operating Revenue	Miles   Energized	Consumers $\qquad$	Operating Revenue
1960	507	1,463	\$ 221,065	753	3,424	\$ 473,024
1959	498	1,415	209,238	747	3,310	472,066
1058	491	1,380	196,819	737	3,287	407,008
1957	480	1,322	181,973	731	3,339	363,624
1956	469	1,184	- 162,392	724	3,649	341,738
1955	458	1,053	142,537	716	3,526	304,416
1954	455	1,163	129,640	695	3,085	258,471
1953	455	1,121	118,803	692	3,002	238,244
1952	441	998	96,473	680	2,902	217,475
1951	441	a	88,775	625	a	197,824
1950	364	a	83,585	534	a	172,847
1949	' a	a	- a	a.	, ${ }^{\text {a }}$	a
1948	232	a	62,692	378	a	128,098
1947	226	a	70,169	376	a	108,657
1946	130	a	63,718	367	a	91,694
1945	122	a	48,673	366	a	. 68,586
1944	17	a	30,974	326	a	57,343
1943	16	a	33,370	321	a	49,243
1942	.-	a	-	a	a	a
1941	-	-	-	320	a	41,841


$\begin{gathered} \text { Miles } \\ \text { Energized } \\ \hline \end{gathered}$	consumers Served	Ope?: ting   Rers que
190	12,309	\$1,11\{,826
126	9,831	144,211
-	-	-
-	-	. -
-	-	-
-	-	-
-	-	-
-	. -	-
-	-	-
-	- -	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
. -	-	$\cdots$
-	-	-
-	-	-

[^11]Table UMS-XV (Cont'd.)

	Year	San	uel Power	ssn.	Utah	wer and Lid	ht Co.	Delta-Mon	Se Rural	wer Assn.
		Miles   Energized	Consumers $\qquad$	Operating Revenue	$\begin{gathered} \text { Miles } \\ \text { Energized } \end{gathered}$	Consumers Served	Operating Revenue.	$\begin{gathered} \text { Miles } \\ \text { Energized } \end{gathered}$	Consumers $\qquad$	Operating Revenue
	1960	713	2,208	\$ 929,340	3,363	212,011	\$48,899,340	844	2,393	\$ 304,012
	1959	654	2,070	884,294	3,112	205,857	45,190,189	781	2,344	280,646
	1958	639	2,073	812,013	3,092	199.,943	41,371,365	789	2,322	257,29.
	1957	583	2,047	751,719	2,988	194,835	40,261,913	788	2,228	237,46!
	1956	544	1,870	597,101	a	189,128	38,386,602	775	2,215	223,10:
	1955	513	1,727	493,193.	3,616	182,277	34,831,016	769	2,188	209,165
	205\%	334	1,432	394,568	3,382	176,213	29,689,512	757	2,049	194,41\%
	1953	326	1,287	312,485	3,353	171,932	27,716,213	754	2,010	185,098
	1952	310	1,210	245,489	3,275	167,483	24,050,758	750	2,001	174,875
	1951	292	1,2	179,792	3,191	162,948	21,789,466	733	a	166,997
$\stackrel{H}{4}$	1950	218	a	32,357	2,648	156,639	19,367,939	690	a	136,263
	1949	a	a	$\cdots$.a	2,802	151,137	18,373,103	a	a	a
	1948	211	a	75,590	2,848	145,210	17,035,763	641	a	102, 653
	1947	205	a	57,622	2,635	138,318	15,543,060	565	a	80,598
	1946	140	a	36,443	2,541	131,690	13,745,575	530	a	66,209
	1945	133	a	31,451	2,470	126,738	13,074,842	530	a	57,554
	1944	127	a	31;764	2,508	131,841	13,120,741	530	a	52,587
	1943	120	a	27,662	2,445	130,837	15,586,262	530	a	45,330
	1942		a	-	2,411	126,604	14,319,283	a	a	-
	1941	113	a	18,386	2,460	112,944	13,095,909	503	a	31,724

${ }^{\text {a }}$ Data not available for these years.

Western Colorado Power Co.

Year	Miles   Energized	Consumers Served	Operating   Revenue
1960	197	12,198	\$2,506,395
1959	196	12,095	3,359,032
1958	196	11,847	3,125,529
1957	195	11,627	2,807,720
1956	195	11,383	2,665,604
1955	195	11,106	2,423,052
1954	195	10,802	2,200,041
1953	192	10,562	2,111,922
1952	192	10,496	1,863,510
1951	191	10,533	1,670,628
1950	191	10,438	1,514,188
1949	191	10,093	1,385,178
1948	191	9,741	1,264,487
1947	191	9,242	1,122,078
1946	191	8,630	938,819
1945	768	8,051	818,931
1944	160	7,707	779,379
1943	141	7,502	742,676
1942	141	7,714	719,568
1941	141	7,386	743,987

holy Cross Electric Assn.

Miles   Energized	Consumers $\qquad$	Operating   Revenue
643	2,032	\$ 296,683
625	1,905	267,039
608	1,834	239,652
599	1,696	224,088
554	1,610	229,518
538	2,034	261,499
533	1,947	240,457
529	1,845	163,742
450	1,255	126,495
450	a	116,269
327	a	97,125
- a	a	a
259	a	67,695
152	a	51,681
152	a	43,986
137	a	35,631
137	a	32,385
112	a	11,906
a	a	a
112	a	10,647

Public Sërvice Co of Colorado

Miles   Energized	Consumers   Served	Operating   Revenue
908	318,721	
908	$30,614,755$	
887	2198,475	
801	290,772	$49,063,437$
784	281,132	$42,51,762$
784,407		
680	266,492	$38,830,794$
667	248,940	$32,739,429$
644	233,317	$29,451,027$
602	222,533	$26,633,771$
589	210,905	$25,011,904$
589	198,951	$22,395,032$
513	167,483	$20,119,473$
497	177,071	$18,744,844$
473	$166 ; 924$	$16,851,936$
470	157,869	$16,009,464$
470	$151 ; 685$	$14,718,775$
469	149,842	$14,206,417$
469	147,485	$14,033,534$
440	146,662	$12,96=, 493$
441	144,061	$12,165,166$

${ }^{\text {a }}$ Data not available for these years.

Table UMS-XV (Cont ${ }^{\text {d. }}$.)

a Data not available for these years.

Table UMS-XV (Cont'd.)


## INTERINDUSTRY ANALYSIS

## TERTIARY INDUSTRIES AND CONSTRUCTION

UPPER MAIN STEM SUB-BASIN

## BY <br> BERNARD UDIS

August, 1967

The tertiary industries are usually viewed as consisting of the trade and service sectors, transportation, utilities, government and finance. Since government is not considered a processing. sector in this report it is excluded from the following analysis.

Generally, trade sectors primarily depend upon local income and population. They also reflect the particular trade channels which have evolved in the region for the distribution of goods and services. Typically they cater to the needs of the local population, ${ }^{1}$ and mirror changes in the economy which have originated elsewhere in the "basic" industries whose level of operations are determined outside the region. These basic industries are usually the "specialty." industries of the region which export a significant portion of their output to the rest of the country or to customers located abroad.

As noted earlier, the trade categories are treated differently from other industries in input-output analysis. Since they are conceived of as providing essentially place utility without changing the basic physical form of the goods, an attempt is made to get at "value added" by entering only their gross:margins into the transactions table. Gross margins are defined to be the sum of operating expenses plus profit. On the basis of intensive study the following margins were used in the Upper Main Stem Sub-Basin: $22.1 \%$ for wholesale trade, $24.4 \%$ for gas service stations, and $32.5 \%$ for other retail trade.
${ }^{1}$ In those sections of the country which draw visitors from outside their own regions, the trade and service sectors clearly do not depend primarily on local population. This complicates any atterapt at projecting future levels of output for these industries. For a further discussion of this see the final chapter of this report dealing with projections and also the section entitled "Outdoor Recreation" by Professor Paul T. Therkildsen which will appear as a part of the final report of this study.

Wholesale Trade ${ }^{2}$
Interindustry Relations---Total gross output of the wholesale sector amounted to $\$ 20,345,000.00$ in 1960 , the seventh largest of the thirty-one processing sector industries in the Upper Main Stem. Although sales of the wholesale industry were made to every other processing sector industry the overwhelming share of its output-- $84.3 \%$-was destined for the final demand sectors. Among processing sector industries, transportation, and eating and drinking places absorbed the largest outputs from wholesaling. Among final demand sector transactions, wages of slightly more than $\$ 5.5 \mathrm{million}$ and combined exports of $\$ 5.7$ million accounted for the major activities. Something over a fifth of wholesaling's TGO--\$4.3 million --was accounted for by inventory accumulation,

Inputs of the Wholesale Sector---Eighty-four percent of the total outlays of this industry went to the autonomous or payments sector with the largest outlay-- $\$ 5.5$ million-representing imports from outside the subbasin, the bulk of these from outside the Colorado River Basin. These imports constituted one-third of total purchases from the payments sector and about $27 \%$ of total gross outlays. Wage payments of $\$ 4.8 \mathrm{million}$ ranked next in magnitude, accounting for $28 \%$ of wholesalers' purchases from the payments sector.

Within the processing sector, only two industries--transportation and rentals and finance-were significant suppliers to the wholesaling industry, and together accounted for only $13 \%$ of wholesalers total outlays.

Direct and Indirect Effects of the Wholesale Trade Sector on the SubBasin Economy---Total sales of $\$ 1.23$ are generated in the regional economy for each sale of $\$ 1.00$ to final demand sectors by wholesalers. Thus, this industry ranked 19 th among the 31 processing sector industries in
${ }^{2}$ According to the Census of Business for 1958 there were 3,325 wholesaling establishments in the counties comprising the Upper Main Stem of which the largest number (99) were found in Mesa County, 1963 figures of total number of wholesaling establishments were 3,720 while Mesa County increased to 118.
the Upper fiafin Stem fil temm of its influence on the outpui of other industries. Intraindustry transactions (\$1.004) ranked sixteenth among processing sector industries. Only five other processing sector industries responded in amounts of at least $\$ 0.01$ for each wholesaling dollar of sales to final demand. Transportation with $\$ 0.10$ and rentals and finance with $\$ 0.05$, led the 11st. "All other"services ( $\$ 0.02$ ), and contract construction and"all other"manufacturing with $\$ 0.01$ each completed the list.

## Service Stations ${ }^{3}$

Interindustry Relations--Among the thirty-one processing sector Industries in the Upper Main Stem, gas service stations with a total gross output of $\$ 4.5 \mathrm{mill}$ ion had a rank of twenty-two. Just over half of these gross sales went to the final demand sector-- $\$ 2.4$ miliion. Among sales to final demand sectors, purchases by households of $\$ 1.1$ million and export sales of $\$ 891,000$ were the most significant. Of total export sales it was estimated that approximately $77 \%$ went outside the Colorado River Basin.

Of service station sales to the processing sectors, the transportation industry and contract construction were the most important customers, together absorbing $56 \%$ of total service station sales to other processing sector industries.

Inputs to the Gas Serviae Station Sector---Of the $\$ 4.5$ million of total gross outlays of this industry, $86 \%$ of $\$ 3.9$ million represented purchases frou the autonomous or payments sector. Eayments to.sub-basin households, both in the form of profit and wages and salaries, together nccounted for $62 \%$ of total outlays of the industry. Inputs from outside the Colorado River Basin of $\$ 347,000$ was the next most significant purchase to the industry--but in magnitude appreciably less than the income paymerts roted above.
${ }^{3}$ The 1958 Census of Business shows 204 service stations in the Uppei Main Sten with the largest number (63) located in Mesa County. The 1963 Census shows a total of 255 service stations in.the sub-basin with the largest number (95) still located in Mesa County.

The most significant processing sector "customers" of the service station industry in this sub-basin were the transportation industry, rentals and finance, electric energy, and contract construction. No other industries purchased as much as $\$ 1,000$ from service stations.

Direct and Indirect Effects of the Gas Service Station Sector on the Sub-Basin Economy---Service stations ranked twenty-first in importance as a generator of economic activity in the Upper Main Stem with each dollar of their sales to final demand giving rise to total sales of $\$ 1.18$ in the sub-basin economy, Only six processing sector industries responded by at least $\$ 0.01$ of sales, and these were lead by the transportation industries ( $\$ 0.04$ ). In order the remaining five were electric energy ( $\$ 0.03$ ), rentals and finance $(\$ 0.03)$, other services $(\$ 0.02)$, and contract construction and other utilities with $\$ 0.01$ each. Intraindustry transactions were just $\$ 1.00$ or 19 th in magnitude among processing sector industries.
"All Other"Retail Trade ${ }^{4}$
Interindustry Relations---The:"all other retail" group is a residual category within which new and used car dealers occupy an important position. It's 1960 total gross output of $\$ 42.4$ million placed this industry in fourth rank in the sub-bașin. Almost $95 \%$ of its gross output was destined for the final demand sector. Of its $\$ 40.1$ million of sales to final demand, households took $69 \%$. Combined, inventory accumulation and exports accounted for an additional $28 \%$ of sales to final demand.

The major processing sector outlets for the sales of "all other"retail trade are range livestock which purchased one-fourth of all processing sector sales by this industry. Eating and drinking places and contract construction ranked second and third but with appreciably smaller absolute amounts.
$\qquad$
In 1958, the Census of Business classified 258 establishments in the Upper Main Stem as "other retail" trade. The largest number of these (91) were found in Mesa County. In 1963, "other retail" trade establishments numbered 265; Mesa County accounted for 84.

Inputs of the "All Other"Retail Group---The payments sector accounted for $77 \%$ of this industry's gross outlays or $\$ 32.8$ million. Households alone provided $\$ 10.9$ million combined, both in the form of labor services renumerated by wages, salaries and profits. This represented. $63 \%$ of total outlays to the autonomous payments sector. Inventory depletion of $\$ 6.4$ million and imports--almost entirely from outside the Colorado River Basin-of $\$ 2.0$ million were also significant. Within the processing sectors, rentals and finance, trarsportation, and printing and publishing each accounted for approximately $6 \%$ of gross outlays of the "other retail"trade industry.

Direct and Indirect Effects of "Other Retail"Trade Industry on the Sub-Basin Econoray---Processing sector industries of the Upper Main Stem responded with $\$ 1.31$ of output for each $\$ 1.00$ of final demand sales by the "other retail" group. This reaction ranked twelfth in the sub-basin.

Eight industries responded in amounts of at least $\$ 0.01$ for each dollar of final demand sales by the "other retail" group. The most pronounced reaction was rentals and finance ( $\$ 0.08$ ) . Both transportation, and printing and publishing followed with $\$ 0.06$ each. Other utilities and electric energy showed responses of $\$ 0.02$ each, all other services $\$ 0.03$, and contract construction and all other manufacturing $\$ 0.01$ each. Eating and Drinking Places ${ }^{5}$

## Introduction

A few words are in order concerning this industry before we examine the findings of the input-output analysis. While classified as a retail trade sector in the Census of Business, for purposes of interindustry analysis, eating and drinking places are not treated in the same fashion as other trade sectors. The margining of sales found in the trade sectors

[^12]reflects the fact that there is no physical transformation of the commodity in this phase of its movement to the consumer. This, of course, is not true of restaurants where, for better or worse, the food is cooked, baked, broiled, fried, or what have you. Thus, no margining is applied to the transactions of this industry.

Interindustry Relations---The almost $\$ 13$ million of gross output of the eating and drinking group earned twelfth rank for the industry among the processing sector industries of the Upper Main Stem. It's \$12.7 million of sales to final demand represented $97.5 \%$ of its gross output, giving it a fourth ranking position in the sub-basin in terms of its share of output going to other than domestic processing industries. Sales to exports and to sub-basin households constituted $96 \%$ of its total final demand output. Exports outside the Colorado River Basin were a full $98 \%$ of total export sales.

The remaining $2.5 \%$ of its gross output was directed to the processing sector. All other manufacturing, contract construction, and rentals and finance each accounted for approximately $\$ 50,000$ of sales. Most of its other row intersections were quite insfgnificant.

Inputs of Eating and Drinking Places---These establishments spent $\$ 9.6$ million, or approximately $73 \%$ of their total outlays, on the output of the payments sector. Almost four-fifths of these purchases came in the form of imports. from outside the Colorado River Basin, and labor services provided by sub-basin households.

Almost $63 \%$ of this industries purchases from other processing sector industries came from the food and lindred products group, wholesale trade, and other utilities. As is quite natural with this industry, with the exception of its logical tie to the food and products industries manufacturing group, most of its other suppliers are found in the tertiary group of industries.

Direct and Indirect Effects of the Eating and Drinking Industry on the Sub-Basin Economy--The regional economy responded in the amount of $\$ 1.39$ for each dollar of final demand sales by the eating and drinking group.

This ranked eleventh among the processing sector's thirty-one industries. A total of eleven other industries responded in amounts of at least $\$ 0.01$ each time eating and drinking places experienced a $\$ 1.00$ increase in its sales to final demand. With the exception of the food and kindred industries \$0.10 reaction, the other responding industries showed relatively small amounts, none exceeding wholesale trade (\$0.04).

## Lodging

Interindustry Relations---Lodging held fifteenth place among the Upper Main Stems' thirty-one processing sector industries when ranked by magnitude of gross output. Almost $98 \%$ of its total gross output ( $\$ 7.6$ million) was accounted for in sales to final demand, and of this $88 \%$ represented exports, most of which to tourists from outside the Colorado River Basin. All other manufacturings $(\$ 36,000)$ and contract constructions ( $\$ 33,000$ ) accounted for the largest shares of lodgings' modest sales to processing sector industries.

Inputs of the Lodging Industry---Slightly over three-fourths of lodging outlays-- $\$ 5.9$ million--went to the payments sector. A full half of these inputs came from sub-basin households with $\$ 1.7$ million representing wage and salary payments, and $\$ 1.3$ million--profits and other income. Imports from outside the Colorado River Basin of $\$ 1.6$ million accounted for $27 \%$ of inputs from the payments sector. Among suppliers to the lodging industry in the sub-basin, five industries were moderately significant. These were" other utilities" ( $\$ 360,000$ or $21 \%$ of processing sector inputs),"all other"services ( $\$ 296,000$ or $17 \%$ of processing sector inputs), electric energy $(\$ 249,000)$, rentals and finance ( $\$ 237,000$ ), and food and kindred products manufacturing $(\$ 220,000)$. These last three supplying industries each accounted for approximately $14 \%$ of processing sector inputs to the lodging industry.

Direct and Indirect Effects of the Lodging Industry on the Sub-Basin Economy--The direct and indirect effect in the sub-basin economy of \$1.31 per dollar of lodging sales to final demand ranked thirteenth in
the Upper Main Stem. In terms of selfmstimulation, lodgings' intraindustry coefficient of $\$ 1.00$ was quite low, and ranked nineteenth among the thirty-one processing sector industries in the sub-basin.

Each dollar of lodging sales to the final demand sector did evoke a response of at least $\$ 0.01$ in seven other sub-basin processing industries. The largest of these reactions was other utilities ( $\$ 0.05$ ), followed by $\$ 0.04$ each $1 n^{\prime \prime}$ all other"services, electric energy, and rentals and finance. Contract construction, and food and kindred industries showed a response of $\$ 0.03$, followed by"all other"retall trade (\$0.01).

## "All Other"Services

This sector includes all services not shown separately on the tables with the exception of professional services which have been included in the "profits and other income" row.

Interindustry Relations---The "other services" group produced a total gross output of $\$ 18.6$ million in 1960 to earn loth place among the thirtyone processing sector industries in the Upper Hain Stem. Of this amount, $\$ 12.6$ million or $68 \%$ was accounted for as sales to final demand. The major final demand customers of "other services" were households ( $\$ 4.9$ million or almost $40 \%$ of final demand sales), state and federal government ( $\$ 2.5$ million or one-fifth of final demand sales), inventory accumulation (\$2.1 million or $17 \%$ of final demand sales). More than four-fifths of the export sales were destined for outside the Colorado River Basin.

Of $\$ 6$ million worth of sales to the processing sector by other services, the most important single buying industries were transportation,"all other" retail trade, contract construction, rentals and finance, and lodging. Togerher these five industries accounted for $67 \%$ of sales to the processing sector by the other services industry.

Inputs of the "All Other"Services Industry---Purchases from the autonomous payments sector ( $\$ 16.3$ million) accounted for almost $90 \%$ of gross outlays of the"all other"services industry. A full. $60 \%$ of these
purchases were made from sub-basin households, with $\$ 5.2$ million in the form of wáges and salaries, and $\$ 4.6$ million in the form of profit and income. Of total imports of $\$ 4.2$ million, $87 \%$ represented imports from outside the Colorado River Basin.

Within the processing sector, intraindustry purchases of \$459,000 were the largest single item and represented one-fifth of inputs from processing sectors. Electric energy, other utilities, and rentals and finance followed close behind. These four industries together accounted for $72 \%$ of total inputs from processing sector industries to the "all other"services industry.

Direct and Indirect Effects of the "Other Services" Group on the SubBasin Econony---The sub-basin economy experienced an addition of \$1.19 to its output for each dollar of sales to final demand by the "other services" group. This was a modest reaction and ranked twentieth among all thirty-one sub-basin processing sector industries. Only four other processing sector industries evoked a response of at least $\$ 0.01$ for each dollar of final demand sales by the 'bther services"group. The responding Industries were electric energy ( $\$ 0.04$ ), rentals and finance and "other utilities"(each showing a $\$ 0.03$ reaction), and wholesale trade (a $\$ 0.01$ reaction). The intraindustry coefficient (\$1.03) ranked sixth among all processing sector industries.

## Transportation

Interindustry Relations---Transportations' $\$ 50.9$ million of total gross output ranked third in the sub-basin economy. More than was the case with the other tertiary sector industries discussed in this section, transportation output was directed toward serving the processing sector industries of the Upper Main Stem. Sixty-five percent of its gross output ( $\$ 33.3$ million) represented sales to final demand. Two final demand sectors: exports, and wage payments to sub-basin households, together accounted for $94 \%$ of transportation sales to final demand sectors and a full 61\% of transportation total gross output. Ninety percent of transportation exports represented those to destinations outside the Colorado River Basin.

Five processing sector industries accounted for $88 \%$ of transportation sales to the processing sector in.general. These were, in order of their importance, uranium ( $\$ 8.6$ million or $49 \%$ of processing sector sales), "other retail" trade ( $\$ 2.0 \mathrm{million}$ or $12 \%$ of sales to processing sector), wholesale trade ( $\$ 1.7$ million or $10 \%$ of processing sector sales), transportation ( $\$ 1.8$ million or $10 \%$ of sales to processing sectors), and contract construction ( $\$ 1.2$ million or $7 \%$ of processing sector sales).

Inputs of the Transportation Industry--- Seventy-six percent of gross outlays of the transportation group ( $\$ 38.9$ million) went for purchases from the payments sector. Wages of $\$ 14.5 \mathrm{million}$ ( $37 \%$ of purchases from the autononous sectors) and imports of $\$ 12.4$ million ( $32 \%$ of autonomous sector purchases) led the list of significant supplying industries to transportation.

WIthin the processing sector group, no industry approached the "all other" manufacturing group in importance as a supplier to transportation with its $\$ 5.7$ million ( $47 \%$ of gross outlays) of transportation. Other services and intraindustry purchases each represented approximately $15 \%$ of processing sector inputs.

Direct and Indirect Effects of Transportation Industry on the SubBasin Economy---Transportation sales to final demand of $\$ 1.00$ gave rise to an accumulative effect of $\$ 1.27$ from the processing sector of the subbasin. This ranked eighteenth out of the thirty-one industries in the Upper Main Stem.

Nine of these industries responded by at least $\$ 0.01$ for every such dollar of final demand sales by the transportation group. The largest .. response was found in"all other" manufacturing which reported $\$ 0.12$. This . was followed by $\$ 0.04$ in "all other" services, $\$ 0.02$ each in rentals and finance, and service stations, and $\$ 0.01$ in wholesaling. The intraindustry coefficient of $\$ 1.04$ ranked fifth among all industries in the sub-basin.

## "All Other"Utilities

Interindustry Relations---The utilities group, excluding electric power, ranked ninth in the sub-basin with total gross output of $\$ 19$ million. Eighty-one percent of this amount ( $\$ 15.3$ million) represented sales to final demand. Sub-basin households were the major customer in the final demand sector, and their purchases of $\$ 7.1$ million accounted for $37 \%$ of the gross output of the industry, and $46 \%$ of its sales to the final demand group. Inventory accumulation and exports to other Colorado River SubBasins were also significant as final demand sources for the output of the other utilities group.

Within the processing sector industries, at least $10 \%$ of such processing sector sales were accounted for all other retail trade, rentals and finance, all other services, and lodging. Eating and drinking places and uranium were close behind, each approaching $10 \%$ of other utility sales to processing sector industries.

Inputs of "All Other"Utilities --This industi" $V^{\prime}$ purchases from the payments sector of $\$ 17.9$ million represented $94 \%$ of its gross outlays. Inventory depletion, payments to sub-basin households both in the form of wages and profits and other income, and imports in the aggregate accounted for $84 \%$ of the"other utilities"group purchases from the payments sector.

Contract construction,"all other"services, and rentals and finance were the three most important supplying industries to the "other utilities" group within the processing sector.

Direct and Indirect Effects of the "All Other"Utilities Group on the Sub-Basin Economy---This industry was a rather weak generator of economic activity in the Upper Main Stem, giving rise to a total reaction of \$1.12 for each dollar of its sales to the final demand sector among the regions' processing industries. This figure ranked twenty-third out of the Upper Main Stem's thirty-one processing sector industries. Only three industries-contract construction, rentals and finance and"all other"services responded
in amounts of at least $\$ 0.01$ per dollar of the "other utilities"group final demand sales. The responses: were respectively, \$0.04, \$0.02 and $\$ 0.02$.

## Contract Construction

Interindustry Relations---Contract constructions' gross output of $\$ 93.6$ million led all thirty-one industries in the processing sector of the Upper Main Stem Sub-Basin in 1960. Seventy-two percent of this total ( $\$ 68.1$ million) represented sales to final demand. Almost $91 \%$ of construction sales to final demand were accounted for by four groups: gross private capital formation, inventory accumulation, exports to other sub-basins in the Colorado River Basin, and payments to sub-basin households in the form of wages and salaries. Intraindustry sales of $\$ 23.8$ million was by far the most significant single processing sector transaction, and represented $25 \%$ of the construction industry's total gross output.

Inputs of Contract Construction---Construction's $\$ 62.4$ million purchases from the payments sector accounted for $67 \%$ of its gross outlays. Fully $88 \%$ of inputs from the autonomous sector were accounted for by imports (most of these from outside the Colorado River Basin), wage payments, and inventory depletion. The largest single source of supply from the processing sector was accounted for in the form of intraindustry transactions of $\$ 23.8$ million. The next three ranking industries, "all other"mining; stone, clay and glass; and transportation did not singly amount to $\$ 1.5$ miliion. In aggregate these three industries accounted only for $12 \%$ of inputs from processing sectors to contract construction.

Direct and Indirect Effects of the Contract Construction Industry on the Sub-Basin Economy---Construction ranks seventh among the Upper Main Stem's thirty-one processing sector industries, generating $\$ 1.57$ accumulative effects in the sub-basin economy for every dollar of its sales to final demand. Six industries responded in amounts of at least $\$ 0.01$. The largest was the $\$ 0.03$ reaction of"all other"mining. Stone, clay and glass,
"all other"manufacturing, transportation, and rentals and finance each reacted in the amount of $\$ 0.02$, and"all other"services reacted with $\$ 0.01$. Intraindustry effects already noted as being rather significant were particularly noticable in terms of direct and indirect effects. Here, the construction industry (\$1.41) ranked first in intraindustry reaction in the sub-basin.

## Rentals and Finance

Interindustry Relations---Rentals and finance ranked fifth in the subbasin economy with total gross output of $\$ 36.5 \mathrm{million}$. It's sales to final demand ( $\$ 27.3$ million) accounted for $75 \%$ of its gross output. The overwhelming share of these sales- $-97 \%$--were due to sales to three sectors, sub-basin households ( $\$ 15.9 \mathrm{million}$ ), exports of $\$ 5.3 \mathrm{million}$ ( $97 \%$ went to destinations outside the Colorado River Basin), and sales to local, state, and federal government which in aggregate total $\$ 5.4$ million.

Of the $\$ 9.3$ million of sales of the rentals and finance sector to processing sector industries, only two sectors accounted for at least \$l million of sales: "all other"retail trade ( $\$ 2.7 \mathrm{million}$ ), and range livestock (\$1.1 million). Sales to wholesale trade, intraindustry transactions, and coffract construction each absorbed between $\$ 847,000$ and $\$ 888,000$ or approximately $9 \%$ of processing sector sales by rentals and finance.

Inputs of Rentals and Finance--Ninety-three percent of finance industry outlays represented purchases from the payments sector. Of this substantial figure, $\$ 34$ million, the largest share ( $53 \%$ or $\$ 17.9 \mathrm{million}$ ) represented payments to households as profits and related income. This large entry reflects the convention of channeling property and related income through the rentals and finance sector. Payments to sub-basin households for labor services amounted to $\$ 8.9 \mathrm{million}(26 \%$ of inputs from the autonomous or payments sector). The combined payments by the rentals and finance industry to households ( $\$ 26.8$ million) ranked first among all thirty-one processing sectors in the sub-basin. Imports and purchases from the state and local governments-largely in the form of tax payments--were also significant inputs to rentals and finance.

Intraindustry transactions were the most. significant among processing sector inputs of rentals and finance. "All other"services and"other utilities"were also moderately important as supplying industries.

Direct and Indirect Effects of the Rentals and Finance Industry on the Sub-Basin Economy---The rentals and finance sector was not a powerful generator of additional economic activity in the region. Its $\$ 1.08$ of direct and indirect effect accompanying each dollar of final demand sales ranked twenty-eighth among thirty-one processing sector industries in the Upper Main Stem. Only two other industries responded by at least \$0.01 to each dollar increase in finance sales to final demand. These were other utilities and all other services. The intraindustry coefficlent of $\$ 1.02$ ranked seventh among sub-basin processing industries.

August, 1967

Principal Authors
Jay Andersen Gilbert W. Bonem John H. Chapman, Jr. William H. Mierryk
Bernard Lidis

## PROJECTIONS

We are striving for long-range consistent projections for the Colorado Piver Basin in addition to a model of the region's structural interdependence in the base year - 1960. It is true, of course, that the quality of any attempt to forecast the future structure of a region's economy through the input-output technique will be no better than the independently determined estimates of final demand used and the validity of the input coefficients. Nevertheless, we believe that the automatic internal consistency feature of input-output analysis will impose useful limits on the range of our forecasts of final demand, assuming that we have knovledge of factor productivity and of resource constraints within the region. As Evans \& Hoffenberg have noted,

```
. . . a reasonable structural relationship that accounts
directly and positively for demand should give sensible
results regardless of the values of the independent
variables in the estinating equation. A regression
relationship based on historical data, on the contrary,
may in some instances yield estimates that contradict
physical possibilities. The degree to which past
variation is "explained" by the equation as judged by
the coefficient of correlation, is not evidence in
determining whether a representation of the underlying
structural situation has been obtained. 1
```

This advantage of iniput-output technique is especially valuable in our study since one of our major tasks will be to determine the feasibility of alternative growth patterns in the Colorado Basin in terms of anticipated resource availability -- particularly water. Thus, once the water requirements, both quantitative and qualitative, which match alternative demand structures have been ascertained, we should be able to render a judgment on the ability of the region to sustain a particular development path.
$1_{\text {W. Luane Evans and Marvin Hoffenberg, "The Nature and Uses of }}$ Interindustry-Relations Lata and Zethods," In Conference on Research Income and Wealth, Input-Output Analysis: An Appraisal (Princeton: Princeton University Press, 1955), pp. 53-123, especially p. 112.

## The Stability of Technical Coefficients

There is evidence that for relatively short periods input coefficients are quite stable. Also, given the relatively weak interdependence anong many sectors of the sub-basin economies, some of the direct input coefficients are quite swall. Even fairly large changes in these coefficients would not have a serious impact upon the interindustry projections. One can be equally sure, however, that for long-term projections regional input-output coefficients will not be stable. These coefficients can be affected by: (a) changes in relative prices with possible substitucion among factors of production, (b) technological change, and (c) changes in interregional trade patterns. Each of these might have an important effect upon the regional coefficients and hence upon the accuracy (or even the "reasonableness") of the projected transactions tables.

It should also be mentioned that the projections of gross output, and hence the new transactions tables, can also be affected by errors in projection of final demand. There is no fixed formula for projecting final demand. Different methods have been employed in making the projections for agriculture; for the mining, manufacturing and energy sectors; and for the trade, service and construction sectors. The assumptions on which the final demand projections are based, and the projection methods used, are discussed in a later section of this chapter

## Long-Run Change in Input-Output Coefficients

The static, open input-output model used in the Colorado river Basin Economic Study is"based upon three fundamental assumptions. These are that:
(1) Each group of commodities is supplied by a single producing sector.
(2) The inputs to each sector are a unique function of the level of output of that sector.
(3) There are no external economies or diseconomies. ${ }^{2}$

It is assumed that the demand for part of the output of one nonautonomous sector $\left(x_{1}\right)$ by another nonautonomous sector $\left(x_{j}\right)$ is a direct
${ }^{2}$ Chenery and Clark, op. cit., pp. 33-34.
function of the level of production in $x_{j}$. This is expressed symbolically in equation (1):
(1)

$$
x_{i j}=a_{i j} x_{j}
$$

The transactions table may then be described by equation (2):

$$
\begin{equation*}
x_{i}=\sum_{j=1}^{n} a_{i j}\left(x_{j}\right)+x_{i a} \quad(i=1 . . . n) \tag{2}
\end{equation*}
$$

where $x_{j}$ is the amount demanded by the $j$-th sector from the $i-$ th sector, and $x_{1 a}$ is the end product demand of the autonomous sector.

The direct input coefficients in equation (1) may be rewritten as

and it is the stability (or lack of stability) of these input coefficients that we wish to examine.

The Effects of Changes in Prices and Technology on the Direct Input

## Coefficients

The trend of some prices can be projected with reasonable accuracy. The "price" of labor (wages plus fringe benefits) has been steadily rising, and it is relatively safe to assume that this rise will continae. It is less easy to forecast future changes in the prices of some of the other factors of production. In making consistent projections, hovever, it is not absolute price changes but relative price changes that matter since it is the latter which are likely to induce substitution among the factors of production. This raises some questions: What will be the direction. and rate of changes in prices for the various factors of production? And how are these relative changes likely to affect the demand for different factors of production?

These are not simple questions to answer, but it might not be necessary to answer thew directly since the effects of relative price changes are
not completely independent of technological change. This can be illustrated by a simple example. If labor costs rise more rapidly than the cost of capital, nanagement will have an inducement to substitute machinery for labor. This substitution is not a continuous process since it is partly dependent upon discovery and innovation. It also depends upon the extent to which existing machinery has been depreciated, the state of the market, and a number of other variables. But in many industries there has been a long-run substitution of capital for labor, and it is reasonable to suppose that this is at least partly a function of relative changes in labor and capital costs. ${ }^{3}$ Thus, if it is possible to adjust the $a_{i j}$ 's for long-run technological change, some of the effects of relative price changes will be included. If these changes can be projected, the resulting coefficients will have been "adjusted" to some extent at least for anticipated changes in relative prices and technology.

In an effort to adjust for suci changes a simple "dynamic" model has been constructed. ${ }^{4}$ The input coefficients in the 1960 tables represent averages based on the sample establishments included in the various subbasin surveys. Within each industry and sector, however, there are variations around these averages, and to a large extent the different input patterns are the result of variations in productivity among the establishments in each industry and sector. These variations in productivity in turn are primarily a function of the combinations of capital and labor in the sample establishments. ${ }^{5}$
$3^{3}$ See, for example, U.S. Department of Labor, Bureau of Labor Statistics, Technological Trends in Thirty-Six Major Anerican Industries (Washington, D.C.: Uffice of Productivity and Technological Developments, 1964).
${ }^{4}$ The general outline of this technique for adjusting input coefficients was suggested by Professor Wassily Leontief of llarvard University. The prom cedure is a simplified version of methods used by others for projecting technical coefficients for specific industries. See, for example, Anne P. Carter, "Increwental Flow Coefficients for a Dynamic Input-Output Model with Changing Technologys" in Tibor Barna (ed.), Structural Interdependence and Economic Developnent (New York: St. Martin's Press, 1963), pp. 277-302; and Per Sevaldson, "Changes in Input-Output Coefficients," idem., pp. 303-328.
${ }^{5}$ It is important to stress that notall variations in productivity are the result of different capital/output ratios. An example of another influm ence, which complicates the statistical analysis, is given in a later section.

The measurement of productivity is not a simple process. The following formulas were used to estimate productivity in the sample establishments in the lover suì-basins:
(4) $\quad P=\frac{0}{(L)}$ :
and
(5) $\quad P^{\prime}=\frac{0}{(C)+(L)}$
where $P$ and $P$ ' equal "productivity," $O$ is the gross output of the establishment measured in dollars, $C$ represents capital inputs, and $L$ represents labor inputs. Ideally, the labor inputs would be measured in terms of manhours or man-years. Data were not available on this basis, however, and in our computations $L$ measures the annual average number of production workers in each establishment. Also, ideally $C$ should measure the stock of capital in the establishment in 1960. Since this figure could not be obtained for each establisiment, that year's depreciation allowance was used as a substitute. In effect, the depreciation allowance was used to weight the labor input to give an approximation of output per unit of capital plus labor inputs: This is admittedly a rough measure, but it would have been useless to employ a more refined formula given the data limitations.

The use of two formulas to estimate "productivity" requires an explanation. It has long been custorary to measure productivity in terms of labor inputs, and this practice has been followed in the present study by using formula (4) above. It is possible, however, for two establishnents In the same industry to produce the same number of units of output in a given tive period, and yet have wldely different labor inputs. If this occurs, examination will generally reveal that the establishment with smaller lajor inputs has correspondingly higher capital inputs. For this reascn, a second measure of productivity -- the one represented by formula (5) -- was also computed for each industry and sector. ${ }^{6}$ The two productivity

[^13]Indexes computad for sample establishments ia the lower sub-basins were used to identify the more "advanced" establishments in each industry and sector. In general, it was assumed that the establishments with the highest capital/output ratios fell in this category. Thus primary rellance was on the measures computed by formula (5). The measures computed by (4) were used largely as a check to help spot unusual sample establishments in each industry or sector.

If we assume for the moment that there are a large number of establishments in each industry and sector surveyed, a frequency distriburion of $\mathrm{P}^{\prime} \mathrm{s}$ might look sonething like Figure P-1.

Figure P-1


The $\bar{x}$ represents the mean, and the interval $a$ to $b$ represents the mean plus or minus one standard deviation. In a normal distribution this would inclucie about 68 per cent of the firms. In this study, the $a_{i j}$ 's are approxinately representative of the firms with average productivity, or $\overline{\mathrm{x}}$ in this distribution.

Consider for a moment the firms in the shaded interval (b - c) of Figure P-1. These are establishments with relatively high levels of productivity. In general, although this is not necessarily true, these will be newer firms with more advanced equipment than those in the interval (a - b). They will also be "better managed" than those which fall in the range of the mean plus or minus one standard deviation. Let us assurne that the firms in the interval ( $b-c$ ) are about twenty years "newer" on the
average than those which fall in the interval ( $a-b$ ). We can make the further assumption that competitive pressures will force the finvs in the interval $(a-b)$ to try to emulate those in the interval (b-c), and that new firms coming into the industry will more closely resemble the newer firns than those in the interval $(a-b)$. That is, we are assuming that there will be steady improvement in industry-wide productivity. If these assumptions are at all realistic the "average" firm in 1980 will roughly approximate the "superior" firms in 1960, and we can estimate the average input coefficients for 1980 from those of the establishments in the interval ( $b-c$ ) in 1960. From these, a new table of $a_{i j}$ 's can be constructed and used to make the 1980 projections. The input coefficients can then be extrapolated to 2010. This procedure is illustrated by the hypothetical example of Figure $\mathrm{P}-2$.

Figure $\mathrm{P}-2$
INPUT COEFFICIEITS FOR A HYPOTHETICAL ITDUSTRY as a pea cent of total isputs


[^14]For purposes of this illustration assure that intraindustry transactions and the rav material coefficient in this industry remain unchanged. Assume, however, that there will be a substitution of capital for labor. The input coefficients for 1980 are the average coefficients for establishments in the 1960 interval (b - c) in Figure P-1. If we assune that this substitution will continue, the changes can be projected to 2010 to give the input coefficients shown by the third bar of Figure P.-2. ${ }^{7}$

The question tuight be raised: Why select the firms in the interval ( $b-c$ ) of Figure P-1? Why not take the "best" firm to the right of $c$ in this Figure?

The answer is that an effort is being made to project a "representative" firm in 1980, and this is not necessarily the "best" firm in 1960. The Office of Productivity and Technological Developraents of the U.S. Department of Labor at one time considered using the "best" (i.e. highest-productivity) firm in its surveys in making national projections of technological change. Upon investigation, however, it was found that the "best" firm in many cases was often so atypical that it would be unsafe to use it for projection purposes. Such firms may be relatively suall, fanilly-owned operations; and the persons wh:o run the firm are highly motivated. They do not necessarily have the latest equipment, and are not necessarily the "best" firm in the industry in a technological sense. Hence, a safer assumption is that average productivity in some future year will be more nearly approximated by that found in a small sample of "representative" superior firms in the base period. ${ }^{8}$

Some Practical Considerations Involved In Applying the Simple Dynamic lodel to the Sub-Basins

The simple model sketched above was based upon a number of assumptions, and few of these assumptions apply to this study. The major problem is that in only a few sectors -- and these are largely nonmanufacturing -- are there enough establishments in the sample to provide a
${ }^{7}$ Such projections must be made cautiously rather than mechanically and would not necessarily be the linear extrapolations suggested by Figure P-2.
$8_{\text {This paragraph is based on coments made by ifr. LeonGreenberg, }}$ is Bureai of Labor Statistics, at the Conference on Manpower Projections held at the Brooi:irgs Institution, Washingtor, D. C., June 25-26, 1964.
frequency distribution which even begins to approximate that sketched in Figure P-1. In the cases where there are enough establishments in the sample -- say twenty or more ... variations similar to those assumed in the model were founc. Unfortunately, even in these cases not all of the questionnalres were complete enough to permit the mechanical calculation of new "average" coefficients for 1980. Some approximation was required, and here it became necessary to rely upon the extrapolation of national productivity trends to round out the picture. Also, there is no way of knowing even in these cases whether the superior establishments in the sample are "twenty years ahead of the times" when compared with the average establishments in 1960. In spite of these problem, it appears that the best estimates of $a_{1 j}$ 's for 1980 will be those computed from a small sample of superior establishments operating in 1960.

The problem is even more acute in the case of other sectors where our survey was limited to a small number of firms. Equally wide variations in "productivity" were found in these sectors, but it required discussion with the individual interviewers in most cases before a decision could be made about using one or two of the superior firms in 1960 as prototypes of the "average" firm in 1980. Again it was necessary to supplement the survey data with projections of national trends to estimate the input coefficients for these industries and sectors in 1980. The problem of extrapolation to 2010 was also a serious one, but if one assumes that "reasonable" input coefficients ware projected to 1980 the latter problem may be viewed as manageable.

The Effects of Changing Patterns of Trade on Regional Input Coefficients
In regional input-output analysis particular attention must be directed to the influences of changing trade patterns on the region's input coefficients In his recent book, Miernyk gives a lucid example of this problem'which might well have been drawn from the Colorado River Basin:

Assume that in a base period, a region relies heavily upon some extractive activity -- say the mining of coal and various minerals. At one stage of the region's development, both the coal and ore might be shipped to other regions. Since
or $\epsilon$ is in general a "weight-losing" material, however, at some point it will become economical to locate a concentrating mill close to the mines. The minerals will then become an input to the concentrating mill, and only the metal concentrate will be exported. If the production of this ore expands, however, it might soon become economical to locate a smelter in the region. The concentrate will then no longer be an export but will become an input to the smelter. The smelter, in turn, could stimulate the growth of various types of fabricating operations in the area, and these wight attract satellite activities. The location of a smelter and of fabricating activities in the region would change the distribution pattern of coal mined in the area. The smelter would use coal as inputs, and this might also be true of some of the fabricating plants, so that relatively less coal would show up in the export column as some part of ragional production becane inputs to establishments in the area. 16

The high degree of specialization found in regions of the country make such changes in trade patterns a potential threat to the stability of technical coefficients. Even if similar technology were assumed for all parts of the country, questions of interregional trade patterns and sector composition would someho: have to be hancled in any effort to project through the use of input-output analysis.

Locational theory and empirical location studies have been helpful in making projections of structural changes in the sub-basin economies to 1380 and 2010. The first step was to determine the kinds of economic activities not now represented in the sub-basins which might locate there between now and 1980. Following this, it was necessary to estimate their total purchases and sales on the basis of population projections, and prom jected changes in the outputs of existing Industries. National demand for the output of these incustries (as well as of existing industries) was estiruated. Then the share of national demand which will be supplied by industries in the sub-basins was determined. Probable changes in import and export patterns for each of the industries and sectors currently operating in the sub-basins was also estimated. ilone of this was easy, but it was necessary in order to anticipate changes in the structure of the sub-basin economies and to make the projected inputoutput tables operationally significant.

9Willam H. Biernyk, The Elements of Input-Qutput Analysis, op. cit. pp. 71-72.

After projecting the activities that are most likely to appear in the sub-basins between now and 1980, the final step was to estimate their input coefficients (as well as their impacts on imports and exports). Here we were forced to rely upon preliminary input coefficients from other regional studies and on national coefficients which could be used as a first approximation to the regional coefficients. These were then adjusted to take into account differences in the characteristics of the regional economies and the national economy.

The many adjustments necessary to allow for structural change, and changes in trade patterns, required a number of assumptions and a certain amount of judgment. It must be emphasized that the end result is a series of projections, based upon probability or likelihood, rather than predictions. It is probably safer, however, to use the tools of location theory, and the experience of earlier location studies, in projecting the sub-basin economies to 1980 and 2010 than to make the assumptions that their present structures will remain unchanged, and that the input coefficients for 1960 will still apply in 1980 and 2010.

## PROJECTIONS OF INTERINCUSTRY RELATIONS

IN THE UPPER HAIN STE:. SUB-BESIH, 1980 AND $2010^{10}$

A summary of the projections of final demand for each industry included in the processing sectors of the 1960 transactions table for the Upper iifain Stem Sub--Basin appears in Table P-1. Following it, projected interindustry transactions tables and their derivitive tables of direct, and direct and indirect coefficients appear as Tables UiS-1900a,b,c and UNS $2010 a, b, c$. The projections of final demand for each sector were made by the individuals responsible for that particular industry group. ${ }^{11}$ Lirect input coefficients for 1980 and 2010 for all processing industry sectors were initially made by Professor Wlliam H. Alernyk, Director, Regional Research Institute, West Virginia University. They were checked by the individuals primarily responsible for individual sectors. ${ }^{11}$

## Projections of Final Demand for the <br> Agricultural and Forestry Sectors

Projected outputs in agriculture are based on land in cultivation, cropping pattern, yield projections, and livestock productivity expectations.

10
The projections which follow have been cescribed in various staff memoranda as "unconstrained." What is meant by this is that the quantity and quality of water is expected to be avallable for economic activity in the Upper Iiain Stem Sub-Basin in 1930 and 2010 is assumed to be at least equal to the 1960 water supply. In a final report on the economic study of the Colorado Rive Basin to be forthcoming shortly, this artificial constraint will be r\&laxed and the economic consequences of reduced water availability and deteriorating water quality will be considered.

11
Projections of agricultural activity vere made by Dr. Jay Andersen of the Economic l.esearch Service, Department of Agriculture, Logan, Utah. The manufacturing, mining and electrical energy section projections were done by Dr. John H. Chapman, Jr., Assistant Professor of Economics at West Virginia University. Projections for the tertiary industries (trade, services, construction, government, etc.) were made under the direction of Dr. Bernard Udis, Director of the Bureau of Economic Research, University of Colorado, Boulder.

Table UMS-P-1
1950 Final Demand, and Final Demand Projected to 1980 and 2010, by Sectors In the Upper Main Stem Sub-Basin (thousands of dollars)

Industry Sectors	$\begin{gathered} 1950 \\ \text { Final Demand } \\ \hline \end{gathered}$	$\begin{gathered} 1980 \\ \text { Final Demand } \end{gathered}$	$\begin{gathered} 1960-1980 \\ \% \text { Chanre } \\ \hline \end{gathered}$	$\begin{aligned} & 2010 \\ & \text { Final Demand } \\ & \hline \end{aligned}$	$\begin{array}{r} 1960-2010 \\ \% \text { Change } \\ \hline \end{array}$
Range Livestock	\$19,216	\$ 6,942	- $63.9 \%$	\$ 7,901	- 58.9\%
Feeder Livestock	3,627	18,149	400.4	31,862	778.5
Dairy	705	680	- 3.0	655	- 7.1
Food \& Field Crops	4,131	4,396	6.4	4,758	15.2
Truck Crops	818	1,140	39.4	1,729	111.4
Fruit	5,252	7,682	46.3	12,900	145.6
Forestry	: 64	1,291	1,917.2	2,118.	3,209.4
Other Agriculture	1,908	1,400	- 26.6	1,180	- 38.2
Coal	4,6こ0	6,380	37.8	5,891	27. 2
Oil \& Gas	1,940	1,000	- 48.5	1,000	- 48.5
Uranium	75,568	72,640	- 3.9	70,000	- 7.4
Zinc	11,564	16,317	41.1	22,431	94.0
Other Mining	3,900	4,613	18.3	5,233	34.2
Food \& Kindred Products	16,417	25,625	56.1	30,815	87.7
Lumber \& Wood Products	4,764	5,868	23.2	9,770	105.1
Printing \& Publishing	253	341	34.3	419	65.E
Fabricated Metals	824	1,418	72.1	2,328	182.5
Stone, Clay \& Glass Products	319	384	20.4	406	27.3
Other Manufacturing	8,756	5,341	- 39.0	21,235	142.5
Wholesale Trade	17,155	37,038	116.2	83,567	387.1
Service Stations	2,353	5,706	142.0	12,857	445.3
Other Retail Trade	40,100	87,015	117.0	196,052	388.9
Eating \& Drinking Places	12,651	28,530	125.5	64,283	408.1
Agricultural Services	- 0 -	28	*	116	\%
Lodging	7,479	17,291	131.2	47,977	541.5
Other Services	12,578	35,105	179.1	111,946	790.0
Transportation	33,260	38,668	16.3	39,016	17.3
Electric Energy	4,450	5,341	20.0	3,561	92.4
Other Utilities	15,340	21,670	41.3	35,651	132.4
Contract Construction	68,055	96,423	41.7	133,494	96.2
Rentals \& Finance	27,273	65,745	141.0	160,598	488.7

[^15]|  | $\longrightarrow{ }^{\substack{\text { Iratesty } \\ \text { ruxchasese }}}$ |  |  | ${ }^{3}{ }_{\text {party }}$ |  |  | \％rut | esty |  | ${ }^{\text {coar }}$ |  |  | ${ }_{\text {lnec }}^{12}$ |  |  |  |  | cita |  |  |  |  |  |  |  | ${ }_{\text {Logtieg }}^{25}$ |  | ${ }_{\text {a }}^{\text {a }}$ |  |  | $\substack{\begin{subarray}{c}{\text { concreate } \\ \text { concrect } \\ \text { troic }} }} \end{subarray}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| teut |  | 2，918 | ${ }^{15,269}$ | ${ }_{32}$ | $\div$ | $\bigcirc$ | $\bigcirc$ | $\div$ | $\stackrel{318}{ }$ | $\bigcirc$ | $\bigcirc$ | $\div$ | $\div$ | $\bigcirc$ | ${ }_{\text {L，} 53,}^{8,73}$ | $\bigcirc$ | $\bigcirc$ | $\div$ | $\bigcirc$ | $\div$ | $\bigcirc$ | 앙 |  | $\div$ | $6_{0}^{6}$ | $\div$ | － | － |  |  |  |  |  | $\underbrace{\text { 20，}}_{\substack{30,033 \\ 26,682}}$ |
|  |  | $\bigcirc$ |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |  | $\bigcirc$ | ${ }_{\text {L }}^{1,7,05}$ |  | $\div$ |  | $\bigcirc$ |  | $\bigcirc$ |  |  |  | $\bigcirc$ |  | $\bigcirc$ |  | － |  | $\bigcirc$ |  | ${ }_{\text {2，}}^{18,29}$ | ${ }^{2,5,92}$ |
|  |  | $\bigcirc$ | ． | $\div$ | $\bigcirc$ | $\div$ | － | $\div$ | $\bigcirc$ | $\div$ | $\div$ | $\bigcirc$ | $\bigcirc$ | $\div$ | ${ }_{\text {2，}}^{2,09}$ | $\div$ | $\vdots$ | $\div$ | $\div$ | $\div$ | $\div$ | $\bigcirc$ | $\div$ | $\div$ | $\bigcirc$ | $\div$ | ！ | $\div$ |  |  | $\div$ |  | ${ }_{\text {c，}}^{4,366}$ |  |
|  |  | $\cdots$ | $\bigcirc$ | ！ | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | 。 | － | 2， | 2,56 | － | － | $\bigcirc$ | $\div$ | － | $\div$ | $\bigcirc$ | － | \％ | $\div$ | $\bigcirc$ | $\bigcirc$ | 。 | ． | － |  | ${ }_{\text {L }}^{2,692}$ |  |
|  | \％． | $\bigcirc$ | － | 。 | － | $\div$ | $\div$ | ． |  | － | $\div$ | $\therefore$ | $\div$ | $\bigcirc$ | 1，009 | ： | ！ | $\stackrel{3}{3}$ | $\div$ | － | $\div$ | 잉 | 。 | ！ | 。 | $\stackrel{\square}{17}$ | $\stackrel{\square}{6}$ | ： | $\stackrel{\text { i，}{ }^{\text {c／6 }}}{ }$ | ${ }^{150}$ | － |  |  |  |
|  | 10．0．als cose | $\bigcirc$ | $\div$ | $\div$ | ！ | $\bigcirc$ | ！ | ！ | ： | $\div$ | ${ }^{15}$ | 16，211 | $\bigcirc$ | ： | $\div$ | $\bigcirc$ | 。 |  | $\bigcirc$ | $\because$ | － | \％ | 。 | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 。 | 。 | － |  | ${ }_{\text {L }}^{\text {L，000 }}$ |  |
| manatacurso－ |  | $\bigcirc$ | $\bigcirc$ | $\div$ | $\div$ | $\bigcirc$ | $\bigcirc$ | 0 |  | $\bigcirc$ |  |  | 16 | $\div$ |  | $\bigcirc$ | ， |  | $\bigcirc$ |  | $\bigcirc$ | － | $\bigcirc$ | － | ${ }^{\text {a }}$ | ${ }_{\text {8，}}^{16,93}$ |
|  |  | $\bigcirc$ | 4.355 | ${ }^{115}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ${ }_{24}^{24}$ | $\bigcirc$ | $\bigcirc$ | ${ }^{\text {L，06\％}}$ | －${ }^{16}$ | $\bigcirc$ | ${ }^{209}$ | $\bigcirc$ | － | 。 | $\stackrel{13}{\circ}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 3， 36 | 2 | ${ }^{54}$ | ${ }_{121}$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ${ }^{2,446}$ | $\div$ | ${ }_{\substack{4,6135 \\ 2,525}}^{\substack{\text { a }}}$ |  |
|  |  | 30 | － | ． | $\bigcirc$ | $\bigcirc$ | $\stackrel{3}{9}$ | $\bigcirc$ | $\bigcirc$ | $\div$ | $\stackrel{\square}{\square}$ | －1780 | $\div$ | $\stackrel{\square}{62}$ | ${ }_{10}$ | $\bigcirc$ | $\stackrel{\square}{125}$ | $\stackrel{3}{3}$ | $\stackrel{\circ}{12}$ | $\stackrel{\circ}{13}$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{5}{5,384}$ | ${ }^{263}$ | $\stackrel{\circ}{34}$ | ${ }_{35}{ }^{\circ}$ | $\stackrel{\square}{32}$ | ${ }_{6}$ | $\stackrel{\circ}{15}$ | $\stackrel{\square}{20}$ | ${ }^{-144}$ | ${ }^{32}$ | ${ }_{\text {S，} 5 \text { ，} 68}$ | ${ }_{6}^{6,296}$ |
|  |  | $\bigcirc$ | ： | $\div$ | $\div$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ． | $\stackrel{\text { in }}{1 .}$ | $\bigcirc$ | ${ }^{445}$ | ${ }^{278}$ | ${ }^{107}$ | 。 | $\bigcirc$ | $\bigcirc$ | ． | － | ${ }^{18}$ | ． | $\bigcirc$ | $\bigcirc$ | $\div$ | $\div$ | $\div$ | $\div$ | ． | ${ }^{15}$ | － | ${ }_{2}^{288}$ |  | $\xrightarrow{2,488}$ | ， |
|  | $\frac{10}{19 .}$ | $\underbrace{}_{\substack{511 \\ 301}}$ | 2） | ${ }_{28}$ |  | $\frac{38}{18}$ | ${ }_{\substack{122 \\ 68}}$ | ${ }_{26}$ | $\frac{12}{14}$ | ${ }_{8}^{82}$ | $\stackrel{15}{14}$ |  | $\frac{127}{18}$ |  |  | 56 | $\stackrel{29}{ }$ | ${ }^{162}$ | ${ }^{147}$ | ${ }^{110}$ | ${ }_{4}^{4}$ | ， | ${ }_{2}^{22}$ | $-{ }^{-29}$ | ${ }_{1}^{19}$ | ${ }^{35}$ | $\stackrel{4}{47}$ | $\stackrel{7,25}{2,26}$ | $\bigcirc$ | 270 | ${ }_{\substack{2,582 \\ 1,58}}$ | ${ }^{175}$ |  | $\underbrace{\substack{\text { a }}}_{\substack{2,923 \\ 1,23}}$ |
|  | （e） |  | ${ }_{54}^{27}$ | $\stackrel{26}{4}$ | $\frac{157}{140}$ | $\stackrel{4}{4}$ | ${ }^{40}$ | ${ }_{46}^{46}$ | ${ }_{26}^{26}$ | $\div$ | ${ }_{6}$ |  | $\bigcirc$ | $\stackrel{9}{9}$ | ${ }^{209}$ | $\stackrel{31}{12}$ | $\stackrel{3}{3}$ | $\stackrel{3}{5}$ | $\stackrel{17}{17}$ | $\stackrel{18}{18}$ |  | $\bigcirc$ | 9 | ${ }_{29}$ | ${ }_{5}$ | $\stackrel{1}{\circ}$ | \％ | $\stackrel{1,29}{ }$ | 15 | \％ | ${ }_{\text {cis }}^{4.5}$ | ${ }^{88}$ | ${ }^{\frac{3}{5,206}}$ | ${ }_{\text {l2，}}^{3,27}$ |
| swicee－ |  | ${ }^{30}$ | $\bigcirc$ | － | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\stackrel{\square}{0}$ | ${ }^{12}$ | － |  | \％ | $\because$ | ${ }^{\circ}$ | ${ }^{35}$ | ${ }^{12}$ | $\stackrel{3}{7}$ | $\bigcirc$ | $\stackrel{\circ}{0}$ | ${ }_{35}$ | $\stackrel{4}{63}$ | $\stackrel{20}{9}$ | ${ }^{20}$ | $\stackrel{0}{6}$ | $\stackrel{21}{0}$ | ${ }^{245}$ | ${ }^{\frac{328}{47}}$ | ${ }^{\frac{198}{69}}$ | ${ }_{30}^{30}$ | ${ }_{0}^{0}$ |  | ${ }_{\substack{268 \\ 88}}$ | $\underbrace{}_{\substack{8,0,055 \\ 2,350}}$ | ${ }_{\substack{\text { a，} 2,28 \\ 2,91}}$ |
|  | （2） | ${ }^{122}$ | 4. | $-\frac{27}{0}$ | ${ }_{5}^{50}$ | ${ }_{50}^{50}$ | 4,29 | $\bigcirc$ | ${ }_{58}{ }_{5}$ | $\div$ | $\stackrel{\square}{\circ}$ | $\bigcirc$ | ： | $\bigcirc$ | $\stackrel{\circ}{35}$ | $\bigcirc$ | $\div$ | $\div$ | $\cdots$ | $\stackrel{\square}{37}$ | $\stackrel{\circ}{63}$ | $\div$ | $\bigcirc$ | $\bigcirc$ |  | $\stackrel{\circ}{35}$ | $\bigcirc$ | $\bigcirc$ | － | $\stackrel{\square}{30}$ | $\bigcirc$ |  | ${ }^{20}$ |  |
| $\underbrace{\text { Seviceom－}}$ |  | ¢ | ${ }_{\text {\％}}^{69}$ | ${ }_{14}{ }^{3}$ | －${ }^{16}$ | $\stackrel{1}{1}$ | $\stackrel{38}{9}$ | $!$ | ${ }_{15}^{19}$ | $\stackrel{\square}{0}$ | ${ }_{23}^{43}$ | $)^{17,36}$ | 48 | $\stackrel{36}{0}$ | $\stackrel{20}{20}$ | － 32 | $\stackrel{4}{4}$ | ${ }^{26}$ | ${ }_{18}$ | ${ }_{2}^{13}$ | ${ }_{4}^{513}$ | $\frac{140}{186}$ | $\frac{2,29}{2,19}$ | ${ }^{26}$ | $\stackrel{35}{28}$ | ${ }^{138}$ |  | ${ }_{2,162}^{2,16}$ | ${ }_{-152}^{152}$ | 60 | 1，150 | L，，0，92 | ${ }^{3,2,05}$ |  |
| vuniteer | 20．Electrit feersy | ${ }_{120}^{120}$ | ${ }^{27}$ | ${ }^{36}$ | $\stackrel{29}{14}$ | s | ${ }^{36}$ | $\bigcirc$ | ${ }_{17}^{17}$ | $\stackrel{23}{89}$ | ${ }_{10}$ | ${ }_{4}^{465}$ | Stic | ${ }^{-189}$ |  |  | ${ }_{88}$ | ${ }^{\frac{28}{15}}$ | ${ }_{6}^{68}$ | ${ }^{249}$ | $\xrightarrow{2.14}$ | － | ${ }^{1,5,61}$ | － | $\underset{164}{\substack{20 \\ 40}}$ | － | ${ }_{\text {2，}}^{1,621}$ | \％ 6 | ${ }_{2}^{2,96}$ | － | $\stackrel{\substack{2,31 \\ 142}}{14}$ |  | ${ }_{\substack{3,68 \\ 5,362}}$ | ${ }_{\text {cha }}^{6,205}$ |
|  | $\xrightarrow{\text { 30．Contract Construction }}$ | 0 | $\bigcirc$ | $\because$ | ${ }^{16}$ | $-69$ | －${ }^{16}$ | $\bigcirc$ | ${ }_{35}$ | \％ | ${ }_{15}^{15}$ | ${ }^{3}$ | $\stackrel{3}{0}$ | －128 | －268 | ${ }_{52}$ | ${ }_{126}^{120}$ | ${ }^{612}$ | $\stackrel{\square}{0}$ | ${ }^{36}$ | ${ }_{201}$ | ${ }^{-15}$ | ${ }^{1.12}$ | $\stackrel{1}{1,200}$ | ${ }^{6,9,94}$ | ${ }_{263}$ | ${ }_{\text {2，}}^{2,680}$ | 22，991 |
|  |  | $\frac{1,03}{2,624}$ | 5，106 | ${ }^{2,666}$ | $\frac{5}{5,23}$ | $\frac{34}{54}$ | 4，566 | $\stackrel{3,96}{ }$ | ${ }_{1,3,52}$ | ${ }^{\text {B，}, \text { ，}}$ | $\frac{62}{275}$ | \％\％，$\frac{69}{69}$ | $\frac{15}{15,56}$ | \％，021 | $\stackrel{139}{12,62}$ | ${ }_{\text {L }}^{1026}$ | ＋ $\begin{array}{r}\text { 6，39 } \\ \hline 6.14 \\ \hline\end{array}$ | $\frac{5}{2,301}$ | $\frac{.62}{2,04}$ |  | ${ }_{\text {2，}}^{36,265}$ | $\frac{.29}{7,49}$ |  | $\frac{201}{20,36}$ | $\stackrel{\text { ¢，} 5.90}{ }$ | ${ }_{\text {B，} 3,14}$ |  |  |  |  |  | ${ }_{\substack{2,192}}^{\substack{\text { a，} 19}}$ | 65，74， | 8， 8,68 |
|  |  | 00，03 |  | ， 91 | 6，844 | 1，210 | ，4，51 | 3，688 | 2，409 | 8，177 | ${ }_{1}^{1,015}$ | 83，911 | 6，33 | 8，839 | 34，94 | ${ }_{6,29}$ | ${ }_{2}^{2,66}$ | 2，50 | 2,382 | 8， 8,23 | 6，274 | 8，22 | ${ }^{\text {0，} 289}$ | 20，92 | 5，929 | 21，41 | 6，977 | 6,180 |  |  |  |  |  |  |


$\underset{\substack{\text { Iradaery } \\ \text { trouctrys }}}{ }$		$\underset{\substack{\text { Ranseck } \\ \text { Lutacock }}}{1}$		${ }_{\text {onty }}{ }^{3}$	$\begin{gathered} \text { cood } \\ \text { coice } \\ \text { coid } \end{gathered}$	$\begin{gathered} \text { fruck } \\ \text { cruct } \end{gathered}$	$\underset{\text { rrute }}{\substack{\text { gre }}}$	${ }_{\text {Procerty }}$		${ }_{\text {coal }}$	${ }_{018}^{10} 6$ cas	$\underbrace{\text { a }}_{\substack{11 \\ \text { Urantim }}}$	${ }_{\substack{12 \\ \text { 2lac }}}^{\text {cher }}$								$\underset{\substack{\text { mioneaele } \\ \text { Trase }}}{\substack{20 \\ \hline}}$	$\begin{gathered} 21 \\ \substack{\text { serite } \\ \text { seation }} \end{gathered}$			$24$	${ }_{\text {2 }}^{2}$ 2stig							
${ }_{\text {asticutua }}$	1．Range Livestock   2．Feeder Livestock   3．Dairy   4．Food and Field Crops   5．Truck Crops   6．   Fruit   8．   Forestry	． 90	${ }^{568}$	． 20	． 000	． 0.00	． 000	．000	$\frac{.132}{.02}$	． 000	．000	．000	． 000	．000	${ }^{.200}$	． 000	． 0.00	．	．	．000	．000	．	． 000	． 000	．09	．000	\％oo	． 000	． 0.00	．000	． 0	．000	
		．000	．．000	． 0.000	． 0.000	．	$\stackrel{.000}{.000}$	－	$\stackrel{.000}{.020}$	$\stackrel{.000}{.000}$	．00	．000	．000	－000		－．000	－．000	（．000	（000	${ }_{0} 000$	（．000	－000	$\stackrel{.000}{.000}$	．	．	（．000	年．000	－000	－．000	－．000	．000	－．000	
		－000	．012	． 0.00	－000	． 000	．000	．000	．000	$\bigcirc$	．000	．000	．000	．000	．033	．000	$\stackrel{0}{0}$	．000	．000	．000	．000	．000	－000	．000	．000	．000	．000	．000	． 0.00	$\stackrel{\text { O }}{ }$	．000	．000	
		$\xrightarrow{\text { a }}$	－．000	． 017	－000	． 000	－000	（．000	－．000	－	（．000	－	．000	，000	（002	－	（．000	（．000	－000	（1000	（100	（．000	．000	．000	．00	－	．000	（．000	$\xrightarrow{\text { c．000 }}$	（1．00	（．000	－	
		．000	．000	． 000	．000	． 000	．000	$\stackrel{0}{0}$	．000	－000	．000	．000	．000	．000	．000	${ }^{\text {c }}$	．000	．000	．000	．000	1.000	．000	．000	．00	（000	．000	．000	\％	＋．000	年．000	－．000	－000	
		． 000	$\xrightarrow{\text { ．000 }}$	．	－	．	． 000	．000	－．000	－．00		（0，	－000	0	（1029	．000	（000	（000	．000	（100	（000	（000	（000	．000	．000	．000	．000	－000	．000	．000	－．000	． 0.00	
	9．Coal   10． 011 and Gas   11．Uranium   11．Uranium	－000	．000	．000	．000	． 000	． 000	． 000	．000	－000	．015	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	．000	
Mrans		－．000	－．000	－	．	．000	．000	．000   .000   .00	－			${ }_{\text {L }}^{1.03}$	$\stackrel{.000}{.001}$	（．000	－	－．000	（．000	（．000	（．000	（．000	（．000	（．000	（．000	${ }_{\text {L }}^{\text {：000 }}$	－．000	（．000		－	（．000	－		－	
		． 000	．000	．000	．000	－000	． 000	．000	．000	－000	．000	． 012	．001	．001	．000	．000	．000	．000	${ }^{239}$	．000	．000	．000	．000	． 000	．000	．000	．000	．000	．000	．000	：017	．000	
		． 0.00   .001	$\stackrel{.162}{.000}$	$\stackrel{.043}{.000}$	－000	． 0000	－．000	$\xrightarrow{\text { c．000 }}$	－	－	－	．000	$\stackrel{.000}{.000}$	－．000	－．006	－．000	（．00	－000	－000	（o．00	－	（000	$\stackrel{.000}{.000}$	．	－009	（0．00	－	（000	（．000	－000	－000	（．000	
		．000	．000	．000	．000	． 000	．001	．000	．000	． 001	． 001	000	000	${ }^{007}$	． 0.02	．000	．017	． 017	${ }_{0}^{004}$	．064	．000	． 01	．099	．09	．05	． 022	．007	002	． 01	．007	000	． 04	
${ }^{\text {manfecturarse }}$		．000	\％000	．000	\％oos	－000	．000	－	－．000	－0．000	－	．00	．	$\stackrel{0}{0}$	＋．000	－．000	．000	．01	．000	$\stackrel{.001}{.000}$	（．000	．000	．000	． 0.000	．000	．	－	．000	－	（000	．002	－000	
		－． 017	．01	． 022	． 023	$\stackrel{0}{0}$	$\stackrel{0}{0}$	． 0.02	． 0.005	$\bigcirc$	－0， 0	． 004	$\stackrel{\text { O．}}{ }$	．006	．012	－009	－004	$\stackrel{.003}{ }$	－092	．006	． 000	－001	－003	．	．000	．000	．001	：000	－．006	．009	．011	．002	
	20．	－．0010	．	$\stackrel{.011}{.010}$	$\stackrel{.013}{.022}$	．009	${ }^{\text {．} 0007}$	$\stackrel{.007}{-.02}$	－．006	－		$\xrightarrow{.004}$	．	．		－．002	$\stackrel{.002}{.002}$	$\stackrel{.001}{.001}$	（．038	－0， 0.01	－	$\stackrel{.001}{.000}$		$\stackrel{.047}{.01}$	．008	－ 0.007	． 000	．019	$\stackrel{.001}{.001}$	$\stackrel{.004}{\substack{\text { a }}}$	． 0.03	． 001	
serrsee		．	． 0.002	．	$\stackrel{.016}{.00}$	．	$\stackrel{.019}{.000}$	$\stackrel{.000}{.000}$	$\xrightarrow{\text { ．} 0.005}$	－	（012	$\stackrel{.001}{.000}$	－	$\stackrel{.006}{.000}$	－	．002	${ }^{\text {¢ }}$	－002	．001	${ }^{\text {O }}$	．002	． 0.03	－004	． 015	－004	． 014	．007	${ }^{\text {cose }}$	． 020	． 03	． 02	－03	
	23．Eating and Drinking Places   24．Agricultural Services	． 224	． 016	． 105	$\stackrel{0}{0}$	$\stackrel{4}{4 .} 40$	． 4.45	－000	－0024	．000	－000	．000	$\stackrel{\text { coob }}{ }$	．000	$\pm$	－000	－000	．000	．000	．000	．000	．000	．000	．	（．000	．000	．000	．000	．000	．000	－	．	
	25．Lodging   26．All Other Services（Except Professional）	－．000	．000	$\xrightarrow{\text { c．000 }}$	．000	$\stackrel{.000}{.00}$	$\stackrel{1000}{\text { ．004 }}$	$\stackrel{.000}{.002}$	$\xrightarrow{\text { O．000 }}$	．	（001	$\stackrel{.000}{.002}$		－000	（．001	$\stackrel{.000}{.005}$	（．006	－000	（．006	（0．024	． 0.012	－000	－000	．000	（．000	．002	$\stackrel{.000}{.086}$	$\stackrel{.000}{.034}$	－．000	．020	（．000	－000	
vetirteer		${ }^{\text {O }}$ ．012	${ }^{\text {．} 026}$	． 0.56	． 016	． 001	． 02	． 000	． 021	－000	${ }^{.023}$	${ }^{.094}$	． 000	．000	．002	$\stackrel{1.14}{ }$	\％ 0.005	$\stackrel{011}{ }$	${ }_{\text {．}}$	．015	．098	．042	．0．02	．009	．003	．005	．006	${ }_{0} 036$	． 004	．001	．015	．001	
		$\stackrel{.004}{+.002}$	－．000	$\stackrel{0}{02}$	． 0.02	． 0.004	． 2004	（．000	$\stackrel{.007}{.005}$	－	－0，00	－003	．	．010	－．006	$\stackrel{.007}{-.007}$	．015	．005	\％	$\stackrel{.006}{.006}$	．008	． 0.13	$\stackrel{0}{0.08}$	．026	． 0.05	．098	．031	．003	．010	．012	－003	．010	
		．000	－000	． 0.000	：000	$\stackrel{.000}{.014}$	$\stackrel{\text { O．00 }}{\text { O }}$	－000	$\stackrel{.000}{.004}$	－	－0，	$\stackrel{.001}{.001}$	$\stackrel{.001}{.001}$	$\xrightarrow{\text { ．000 }}$	$\xrightarrow{\text { coil }}$	$\stackrel{.000}{.00}$	${ }_{\text {－}}$	$\stackrel{.000}{.002}$		${ }^{\text {．} 007}$	$\stackrel{.006}{.050}$	$\stackrel{.006}{.034}$	$\stackrel{.008}{.005}$	$\stackrel{\text { ¢ }}{\text { O22 }}$	$\stackrel{.000}{.007}$	． 0.027	$\stackrel{.006}{.027}$	$\stackrel{.006}{.016}$	${ }^{\text {．} 0.02}$	号．000	$\frac{.129}{.020}$	$\stackrel{.003}{ }$	
	Prodere one ooliarts borthe oiteut by the																														creme		


				${ }^{3}$	$\underset{\substack{\text { Poceand } \\ \text { crops } \\ \text { chop }}}{4}$		${ }_{\text {ruout }}$	Sorest		${ }_{\text {coal }}$	$\underset{\substack{10 \\ \text { and cos }}}{ }$	${ }_{\text {usanium }}^{\text {und }}$	${ }_{\substack{12 \\ \text { 2tac }}}^{\text {d }}$									Sters			$\begin{gathered} \text { anctul- } \\ \substack{\text { serfol- } \\ \text { sericeses }} \end{gathered}$						cose	
	1. Range Livestock   2. Feeder Livestock   3. Dairy   4. Food and Field Crops   5. Truck Crops    6. Fruit   7. Forestry   8. All Other Agriculture	$\frac{1.1099}{1.692}$	1.06	.0336	.00030			.00023	+		Oomono	.oovon	Oomono	.00033	.000662	O	.002014		(00037	.0224		1					.066	,07	.007730	.004	.01390	
		-	${ }^{1.095014}$		. 0202298	-.0009	.003917	$\xrightarrow{\text {.002264 }}$		.0022e			.000	.0000	$\frac{.17269}{.0 .6047}$	.0009	$\stackrel{\text { a }}{\text { O2024 }}$	.oon	:000	.	.1426		. 027376	\%oile	. 215	(000	\%os	O,	.021	\%	\%oint	
		-	.oo	.oo			(.000	-		${ }_{\text {a }}^{\text {a }}$	(omono				$\xrightarrow{\text { O20atese }}$	.000027		.00093	(00029			${ }_{\text {a }}^{\text {O2315s }}$	${ }_{\text {a }}^{\text {O20,96 }}$		.07311		(012	.006	.018,		.00122	. 103846
		-.03139	(00936		.00130	.0.00004	1.000110	.009322	-	.0099	.00000				. 02	.onoor		-	.0003s 6	${ }^{0.20876}$		.009894	. 023837	.00019	.000		O2m	Oomes	.018520	.0063		${ }_{\text {a }}$
		+10091	-02006	. 0000 c	.00002	.ococoe	. 0 .0000		.0000	${ }_{\substack{\text { a } \\ .0001386}}^{.00136}$	.00000	00000	.00000	,omols																		.025
		.0000	.000	.000	O		.0000	.00000	:00000	1.00454	.00000	.0000	O.000000	.00671	.00022	.0000	.00120	.00020	.01899	.0115	${ }^{\text {.003 }}$	.00021	.00237	0002	.000	-000	. 020	:000	. 03	.0114		
		O,000	\%oos		O.000		O00	(.0009	.000	. 002		${ }_{\text {Lomone }}^{1.23990}$		.0,4	$\xrightarrow{\text {.0033 }}$	$\stackrel{\text {-.0022 }}{\text {-024s }}$	.00s	.00093		.0.029]	(0.066	-0,068	.022	.000	.000	\%oole	-007		.0082	.0054	.023]	
			${ }_{\text {OTOOOO }}$		. 0 (0002	$\stackrel{\text { cooon }}{\text {.0000 }}$	.0000	.onion	.0000		.00000	.o.0000	1.00000	1.00	(0002	.omoen	.00722	.	(.0021	.0.0966	(006	.00011	cose	.0012	(.000	(.00)	.	\%oile	. 0.024	.00619	,002988	.022
			. 2604	. 0.03	.09933	. 02021	.0542	-	. 0.03929	.00097	.00000	-0000	:00000	.00007	1.050			.00036	-		.024	.013	${ }^{\text {O21233 }}$	OOL6	.0678	$\ldots$	,	. 022	.018	.096		(00022
	16. Printing and Publishing   17. Fabricated Metal   18. Stone, Clay and Class Products	.0003	-0002		.00		-.00000	. 5 .000022	.0000	(00159	(00000	.omooo	:00000		.00066			-00003	O000	.0036	(0062	.0012	.00351	O2n	.000	\%oom	Omi	${ }^{\text {cosem }}$	${ }^{\text {a }}$	.00924	.00220	
		-.0002	.000	(.00000	-0000	.	- .0000	-.0000)	$\xrightarrow{\text { couove }}$		$\stackrel{\text { couood }}{\text {.0000 }}$	.0000	.0000	(0002	$\xrightarrow{\text {.0000 }}$	$\stackrel{\text { c.oood }}{\text {.0000 }}$	.066	. 00320	${ }^{1.0001}$			(0039	$\stackrel{\text { O202 }}{\text { O20 }}$	(000	$\xrightarrow{\text { O200 }}$	$\xrightarrow{\text {.000 }}$	$\stackrel{\text { O213 }}{\text { a }}$	.027			.0012	.0021
	$\qquad$	-..002	$\xrightarrow{.00}$	.0003	.00032	.oom	.	.0000	.00024	.001223	,omon	2000	2000	0022	.0006	.0000	(0043	O0104		${ }^{1.0083}$		.0024		:032	.00	, 02020	. 0.05	.0660		.0072	.010	. 019
		-.0006	.000	.00001	.0002	. 000	-00001	-.0000	-0000	.00359		.000	.0000	.0023	.00226	.00021	.0073s	.00064	.0023	.0067	.0020	1.00098		.0019	.000	.000	.01988	.046	.0393	.01400	O00	.
		\%0363	${ }_{\text {L }}^{0.00032}$	$\stackrel{\text { O.OOS65 }}{ }$	.00076	${ }_{\text {cose }}^{\text {c.onoers }}$	.	-.00003		$\stackrel{\text { O20266 }}{\text {.0200 }}$	.000000	.ocoooc	-	.	.	\%.00028	${ }_{\text {a }}$	\%ooner	(0006e	$\stackrel{.0003}{.003}$	\%osem	${ }_{\text {a }}$	. 012128	(0003	$\xrightarrow{\text { coses }}$	(0002	.04031	$\xrightarrow{.0589}$			$\stackrel{.049}{.034}$	.004598
		$\stackrel{.01293}{.00915}$	$\xrightarrow{\text { coiole }}$	-	.00022	.0000	.00220	.o.0009		-0.023s		.o.ooon	(omoon	Oomose	${ }_{\text {a }}^{\text {.00296 }}$	(0001	(0035	(0000	(.0000			${ }^{\text {cosen }}$	.0064	.003	$\xrightarrow{1.001}$	(.000	.00920	.005		${ }_{\text {a }}^{\text {O206399 }}$	, .002	${ }_{\text {a }}^{0}$
		$\xrightarrow{.001066}$	.00986	.00016	.	-.0000	.000168	-	. 000	.005316	.00000	.00000	.00000	.00270	.00249	(omone	.00333	.00027			O2,	.000	.000	.00221	.00	.oom	L.03	.002		.039366	O1133	
		$\bigcirc$			.00013	.00000	.000010	. 000002		.135766	.00000		.ono	.00066s		.0000	.00179	.000152	.00280	.0090	0	.0031	.00236		\%00		.012	.00463	\%	(0,4668	.0060	.22650
				.000013	0.6	Omon	-.00012	Stis		.00032			.o.0000	${ }^{\text {OOO232 }}$	${ }^{\text {O200239 }}$	(000122	\%ome	.0023	.022	\%over	Oose	.oss	.0036	(ools	Noom			,	\%			0,09788
																														firlo		



				${ }^{\text {oastr }}$		$\underbrace{5}_{\substack{\text { cruede } \\ \text { cropa }}}$	$\stackrel{\substack{\text { erut }}}{\text { er }}$	roreotry		${ }_{\text {coar }}$	${ }_{\text {a }}^{10} 40$	${ }_{\text {Trantum }}^{\text {LI }}$	$\underbrace{\text { cher }}_{\substack{12 \\ \text { zince }}}$	and ${ }_{\text {and }}^{\text {andiner }}$							come							aty					
	1. Range Livestock    2. Feeder Livestock   3. Dairy   4. Food \& Field Crops   5. Truck Crops   6. Fruit   7. Forestry   8. All Other Agriculture		-000	.	.	.	-.000	.	$\frac{.152}{.000}$	-	.	$\xrightarrow{\text {.000 }}$	.000	-0,	${ }_{\text {c. }}^{.126}$	-	$\stackrel{\text {.000 }}{\text { O.00 }}$	$\stackrel{.000}{.000}$	-	$\xrightarrow{\text { c.000 }}$	$\xrightarrow{\text {. } 000}$	.	.000	(.000	-	$\underset{\substack{\text {.000 } \\ .000}}{ }$	.	(oom	$\xrightarrow{\text {.000 }}$	¢	.omo	$\xrightarrow{\text {. } 000}$	
		-0, 03	-.022	.000	$\stackrel{000}{ }$	. 0.00	.000	.000	${ }^{020}$	.000	.000	.000	.000	\%oo		.000	\%oom	:000	.000	.000	\%oom	.000	.000	.000	\%000	.000	.000	.000	.000	.000	.000		
		-.000	.011	-000	(100	$\xrightarrow{.000}$	-0,	(.000	-	(000	(.000	-	(000	$\stackrel{\text { and }}{\text { O.000 }}$	$\stackrel{.056}{.003}$	-	:000	(000	(000	\%oo	.000	.000	(.000	$\xrightarrow{\text { a }} \mathrm{l}$.000	(000	(.000	(000	(.000	(.000	.000	\%omo	$\stackrel{.000}{.000}$	
		(.009	.000	-018	.000	$\stackrel{.000}{.000}$	$\xrightarrow{.001}$	$\stackrel{.000}{.000}$	$\stackrel{.000}{.000}$	.	-	(000	-.000	(.000	-0,99		:000	.000	.000	.000	.000	.000	\%00	\%	-00	-000	-000	-000	-	.000	-	$\stackrel{.000}{.000}$	
			$\ldots$	$\xrightarrow{\text { and }}$	(000	-	-	(.000	-000	.000	(0.00	(0.00	. 0.000	-000	-0.006	$\xrightarrow{\text {. } 300}$	(.000	(.000	(.000	,	(.000	(.000	\%oom	.000	(0.00	(0.00	(0.00	.000	(000	(0.000	(100	(000	
		-000	$\bigcirc$	.000	\%00	.000	-.000	-.000	$\xrightarrow{\text {.000 }}$	.	(0.000	.000	.	(.000	$\stackrel{.000}{.000}$	-	-.00	-.000	-000	-000	(.00	$\stackrel{.000}{.000}$	-.000	-.000	\%.000	-000	.000	-.000	$\frac{.100}{.00}$	.000	.000	.000	
Mining ——ernufacturing-		-.	-.000	-.000	(.000	-.000	-.000	-.000	.000	-000	-	(1060	$\stackrel{.000}{.001}$	$\stackrel{.000}{\substack{\text { O.00 }}}$	-.000	-.000	(000	-.000	,	-	$\stackrel{.000}{\substack{\text { O.00 }}}$	$\xrightarrow{\text {.000 }}$	-.000	(.000	$\stackrel{\text { and }}{\text { O.00 }}$	(.000	.000	(.000	(.000	.000	(.000	(.000	
		-0.000	. 0.000	$\xrightarrow{\text { O.000 }}$	-000	.000	-.000	-	:000	. 0.000	-	-013	$\stackrel{.002}{.000}$	$\stackrel{.001}{\text {. } 000}$	-.000	-0.00	-000	.000	${ }_{\text {¢ }}^{\text {. } 239}$	-.00	-.000	-000	. 0.00	. 0.00		.000	.00	.0.00	(.000	-.000	(017	(oion	
	$\begin{array}{ll} \hline \text { 14. } & \text { Food \& Kindred Product } \\ \hline \text { 15. } & \text { Pumber \& Wood Product } \\ \hline \text { 17. } & \text { Frinting \& Publishing } \\ \hline \text { 18. } & \text { Stone, Clay \& Glass } \end{array}$	-	.	.000	. 000	.000	. 0.01	.000	.000	-00	-	$\stackrel{\text { and }}{\substack{\text {.002 }}}$	-000	-000	-000	-000	.000	.000	$\stackrel{.000}{\substack{\text {.00 }}}$	.014	-.000	. 0.00	-000	$\stackrel{\text { a }}{\text { - }}$	-000	\%020	$\xrightarrow{\text { c.000 }}$	-000	-	-	-	(000	
		-	$\stackrel{100}{ }$	.000	$\bigcirc$	.000	.	-	\%oiol	-000	\%ois		- 0.008	.007	-000	-000	(0,	$\stackrel{.001}{.002}$	.000		(000	,	.000	\%oin	.000	\%oo	.000	.000	.001	-000	.002	:000	-
		-018	$\stackrel{0}{0}$	. 0.024		$\stackrel{.000}{.03}$	.000	-0.020	-000	$\stackrel{10}{\text { On }}$	(0,	$\stackrel{.00}{\text {.0. }}$	-.000	-.000	-.000	.000	(000	(0064	.000		.006	.000	-	(.002	-0,	-0.02	号.004	.100	.009	:011	.012	:020	
		-010	$\stackrel{.002}{.002}$	(011	. 0.014	(0,00	-.	$\stackrel{.007}{.007}$	$\stackrel{.006}{.0 .014}$	.	${ }_{\text {\% }}^{\text {.015 }}$	$\stackrel{.004}{.004}$	$\xrightarrow{.006}$	.016	(ione	$\stackrel{.002}{.006}$			(006	(ios	(.002		-	. 001	(0.008	(0.088	(0,	(012	(0,		$\stackrel{.008}{.003}$	.002	
		.	$\stackrel{.003}{-.000}$	-. 0.026	. 0.017	-0.022	.020	. 0.008	-.006	-		. 002	. 0.00	.005	. 0.02	$O$	$\stackrel{.005}{.005}$	-0,	$\stackrel{.001}{.000}$	$\stackrel{\text { cos }}{\text { ion }}$	.002	${ }_{\text {cose }}^{.000}$	-.064	.0,	$\stackrel{.04}{1004}$	. 0.15	.007	.003		$\stackrel{.003}{.001}$	(102	$\stackrel{.03}{.0 .0}$	
	23.   24. Agricultural Services   26.	-. 0.026	. 0.00	$\stackrel{.106}{.000}$	. 0.024	-	$\stackrel{4}{4}$	-000	-006	\%oom	.000	:000	.	.000	-000	-000	.000	.000	-000		-000	\%00	\%oor	:000	.000	.000	.000	.000	.000	.000		${ }^{000}$	
		$\bigcirc$	$\stackrel{.002}{ }$	.001	.000	.000	$\stackrel{\text { O00 }}{\text {.00 }}$	-.000	-007	.000	-0,	(000	-.003	${ }_{\text {coiol }}^{\text {.000 }}$	-.007	.005	.0.06	.000	.000	-002	$\stackrel{.013}{.013}$	.000	-.000	$\stackrel{.000}{.008}$	-.008		-.000	-009	.012	.022	:008	${ }_{0} 0$	
		-.012	$\stackrel{.026}{.000}$	.	(004	$\stackrel{.002}{\text {.005 }}$	.	$\xrightarrow{\text {.000 }}$	(022	.000	-0.024	-0.095	.	(.001	$\stackrel{.009}{.012}$	(1144	$\stackrel{.005}{\text { :0, }}$	.000	-	$\stackrel{.0 .04}{.0 .4}$		$\stackrel{.002}{.012}$	. 0.18	-0,09	$\stackrel{.003}{.024}$		$\stackrel{.006}{.0 .2}$	$\stackrel{.037}{.007}$	$\stackrel{.005}{.011}$	$\stackrel{.002}{\text {.005 }}$	.0.06	(007	
		-	¢oom	. 002	(om	$c$	001		-	(012	(002	-		$\stackrel{.010}{.000}$			:013	:008		${ }^{\text {O, } 18}$	(.008		-0,08			(.050	$\xrightarrow{\text { cos }}$	$\stackrel{.003}{.005}$			.	$\stackrel{.010}{.003}$	
					.008		¢08		.015	. 021	${ }_{0} 08$	,02	${ }_{0} 02$	.000	.006	${ }_{0}^{018}$	.016		.016	${ }_{0} 06$	. 081	. 036	. 0.06	. 028	. 019	04	. 029		. 024	. 020			



Nost projections indicate a continued drop in number of farmers and farm laborers through the end of this century. This quite consistent with past trends in number of farms. In Table 2 (p. 71 of the agricultural chapter) the number of farms in the Upper :iain Stem Sub-basin was show to have fallen from 8,685 in 1939 to 5,731 in 1959. There is no reason to believe that this downward trend will cease until farms are much larger than at present.

Projected output from the farm sector would seem to have little relationship to the number of farms or farmers, however. If any relationship exists it would seem that as faria numbers go down and farms become larger and more comercialized, farm output may be expected to increase. The large farms tend to use modern technology and be more consistent in producing high yields. Subsistence and part-time farmers have particularly low production.

## Projected Irrigation Development

The projections of acreage in agricultural production in an arid area such as the Upper Main Stem are dependent almost solely on the development of irrigated land. Projections made are based on the compacts in force for the Colorado River vater allocation. Nater quality is assumed to be no worse than at present.

As shown in Table 3 -ip. 73 of agriculture chapter) earlier, acreage of land irrigated has fluctuated rather widely. The peak occurred in 1930. In many areas, the question of whether a field is irrigated or not is difficult to answer. Irrigations are sometimes just overflooding, or it may depend from year to year on crop prospects or water availability. Future developments in the area will stabllize irrigation practices as new lands and supplemental water for presently irrigated lands are developed. The Bureau of Reclamation's Upper Colorado Rtver Storage Project is expected to be instrumental in development of the area. Projected acreages are shown in Table P-2.

Table UMS-P-3

Present and Projected Cropping Pattern on Irrigated Lands In the Upper Main Stem Sub-Basin, 1960, 1980 and 2010

Crop Harvested	1960		1980		2010	
	Acreare	Proportion of Irrigated Land	Acreage	Proportion of Irrisated Land	Acreage	Proportion of Irrigated Land
Corn	30,782	$5.9 \%$	39,744	$7.0 \%$	58,955	9.0\%
Sorghums	1,187	0.2	5,673	1.0	13,101	2.0
Small Grains:						
Winter Wheat	3,193	0.6	1,703	0.3	655	0.1
Spring Wheat	5,452	1.1	2,839	0.5	1,310	0.2
Oats	15,991	3.1	13,059	2.3	11,791	1.8
Barley	16,234	3.1 .	17,033	- 3.0	18,997	2.9
Rye	244	0.1	--	0.0	--	0.0
Dry Beans	9,984	1.9	10,220	1.8	11,136	1.7
Hay Crops:						
Alfalfa \& Mixtures	115,705	22.3	127,749	22.5	150,662	23.0
Clover, Timothy, Etc.	88,370	17.0	107,877	19.0	137,561	21.0
Small Grains for Hay	3,745	0.7	2,839	0.5	1,965	0.3
Wild Hay	16,352	3.2	11,355	2.0	6,551	1.0
Other Hay	3,475	0.8	2,839	0.5	1,965	0.3
Potatoes	1,469	0.3	1,136	0.2	655	0.1
Sugar Beets	5,611	1.1	6,245	1.1	7,206	1.1
Vegetables	2,103	0.4	2, 271	0.4	2,620	0.4
Fruit	15,093	2.9	17,601	3.1	21,617	3.3
Other Crops Harvested	7,834	1.5	8,516	1.5	9,826	1.5
Pasture \& Other ${ }^{\text {a }}$	175,200	33.8	189,069	33.3	193,481	30.3
TOTAL	513,534	100.0	577,774	100.0	655,054	100.0

[^16]situations on yields so these were not used directly. The procedure used was to p..ot out yields for the sub-bas in for major crops for periods varying from a few up to 15 or 20 years, depending on data availability. A trend line was fitted (by inspection) to the yearly yield data. The 1960 normalized yield was then read from the graphs and used as the base for projections.

Fost of the projections were based on estimates by Poli. ${ }^{12}$ Adjustments from Poli's work are noted.

Yields projectea are shown in Table P-4.

Table P-4. -- Base and Projected Yields for Selected Crops, Upper ifain Stem Sub-Basin, Colorado River Basin, 1960, 1980 and 2010 (per acre yields)

Crop		Year		
		1960	1980	2010
Corn	Bu .	67	84	111
All wheat ${ }^{\text {a }}$	Bu.	17	21	27
Oats	Bu.	48	52	53
barley	Eu.	48	55	63
Potatoes	Ciwt.	194	234	295
Ury beans (irrig.)	Ont.	16	20	26
Dry beans (nonirrigated)	Cwt.	3.7	4.7	6.1
Sugar Beets	Ton.-	18	22	27
Alfalfa ${ }^{\text {b }}$	Ton	2.5	3.1	4.1
A.ll other hay ${ }^{\text {b }}$	Ton	1.5	2.1	3.0

Note: ${ }^{\text {A Adjusted }}$ upward from Poli's state projections to reflect the differences from Eastern Colorado's major wheat area.
${ }^{\mathrm{b}}$ Adjusted downard froil Poli's state projections to reflect local conditiors.

The greatest proportional increases in yields are in other hay, alfalfa, dry beans, and corn. Eain reasons for increases in these crops are:

[^17](1) improvemeat in irrigation practices on these crops which have received inadequate water in the past, (2) lack of concentration on improvement ir. the past, leaving a larger potential increase.

For other crops such as fruit and vegetables, individual yield changes were not estinated. For the following table (Table P-5) which shows projected total output by sectors. yield increases have been estimated for some groups of crops in total.

Table P-5. --- Present and Projected Total Gross Output for Agricultural and Forestry Sectors, Upper i.ain Sten Sub-Basin, Colorado Fiver Basin, 1960, 1980, 2010

Sector	Year		
	1960	1980	2010
	. . . . . - 1,000 do11ars . . . . . .		
Range livestock	28,284	30,083	44,377
Feecier livestock	4,010	26,882.	45,141
Dairy	3,155	2,577	3,324
Food and field crops	5,793	6,884	8,061
Truc\% crops	852	1,210	1,879
Fruit	6,243	9,451	15,653
Forestry	1,952	3,658	8,011
All other agriculture	2,650	2,409	1,997
Agricultural services	4,754	6,829	10,816

## Projected Total Gross Output and Final Demands for Sectors

Gross product projections for 1980 and 2010 were made from the acreage and yield projections for crops and from assumed continuation of upward trends in efficiency in livestock production. Prices do not contribute to changes in value of production, since 1960 prices were assumed for all periods.

Present and projected gross output for agriculture and forestry sectors are presented in Table P-5.

Kange Livestock. Livestock projections were based primarily on a fead balance for the sub-basin and the persistent idea of many in the sub-basin that cattle feeaing will increase greatly. riange livestock projected total output in Tajle p. 5 is made up of a decline in sheep production and an increase in cattle production with an increased proportion of feed coming from farms and slightly less feed in total originating on Federal range lands. Sheep are projected to continue their downward trend except that use of specialized year--long range lands primarily useful for sheep will slow the trend. Thus, cattle are projected to increase in numbers at the expense of sheep and with more farm-produced feed to support then. A smaller share of the sales is projected into exports in coming years, primarily due to increased sales to feeders ratier than exporting feeder cattle and lambs.

Feeder Livestock, Changes in this sector are the most pronounced of any projected. Continued availability of feeder stock, decreases in dairy cov numbers, and good increases in acreages and yields of feed crops suitable for fattening rations are main bases for the increase. Fairly large feed lots are operating now in the Grand Junction and Delta areas. Availability of municiple water in the Grand Junction area now is also an important factor in a build-up of the feeder industrv.
A.much smaller proportion of sales is projected for final demand sectors (mainly export) due to the expected external economics of local packing and processing as the industry develops. At present, mejor meat packers do little slaughtering of fattened livestock in the area because of limited avaflability of stock.

Lairy. Dairy projections are based on a complete transition to Grade A eligible milk and continuing at about the same number of cows as are presently producing Grade A milk. A good increase in production per cory is expected. Continued dependence on need for export outlets is assumed.

Food and Field Crops. Increases in acreage of sugar beets, malting barley and irrigated dry beans are expected. The acreage increases are about proportional to total cropland acreage increases. Acreazes of dry land beans and all wheat are expected to decline, for the most part due to irrigation development on dry lands. Potato acreage is expected to continue
to decline as a result of a poor comparatire advantage position relative to other potato-producing aresas. Yeld increases play a major part in increased output.

Truck Crops. Vegetable acreage is projected to increase in proportion to increase in total acreage. Yields increases projected were about the uean of all those projected. Acreage and importance of this sector will remain fairly small.

Fruit. Recent cutbacks in fruit acreage have been mostly due to severe winter freezing. It is anticipated that more careful selection of areas which have best water and air drainage will result in a moderate rate of growth in fruit acreage. Yield Increases are projected at fairly high levels. Export sales of quantities that are not consumed locally will remain high.

Forestry. Frojections of forestry activity are the most difficult to make. Current timber cut or roundwood production has been estimated to be about one-third of allowable cut. ${ }^{13}$ Fuller utilization will depend on development of access roads and harvesting methods for sparse stands and difficult geography as well as development of narket outlets for some of the less desiraile sizes and species. Though forestry activity apparently contracted somerthat in the $1950^{\prime}$ s on national forests in the area, the high level of demand for wood products is projected to have an impact on this area.

At present the timber industry is mainly samills with little or no integrated processing. ..Profitable conversion of residues to chips for pulp making would strengthen the Coloraco lumber industry and encourage a bigger timber cut. The large amount of lov-grade and small-diameter material standing in the woods represents another very important source of supply for a wood-fiber industry. A market for pulpwood offers the best possibilities for using mill residues as vell as small dimension and low-grade roundwood. A recent study reports adeauate supplies and

13
Robert L. Niller and Grover A. Choate, "The Forest Sesource of Colorado." Forest Service, U.S. Sept. of Agriculture, U.S. Forest Service Resource Bull. INT-3. Personal commication with A. F. Caparosa, Grover Choate, and Alvin K. Wilson, Intermountain Forest \& Pange Exp. Sta., Ogden, L:
facilities for a paper inill in Western Cololado. ${ }^{14}$
Projections for 1980. are based on a gradual increase in sawmilling. The stud mill which began operation in November 1963 in i!ontrose has a capacity of 140,000 board feet daily in two shifts. Other mills are expected to come into production in the next 15 years to satisfy lumber demands.

Projections for 2010 assume developinent of a 350 -ton per day kraft pulp mill in the vicinity of Kremling. This activity would substantially enhance the sawoilling industry as it would provide a profitable outlet for milling residue. f.bout one-fifth of the chips for pulping could be provided by savimills. The value of these sammill residue chips would be about $\$ 600,000^{15}$ ifuch of the pulprood supplies could be developed from pole timber and dead, but standing timber so that even with the necessary large increase in timber cut projected for 2010 the cut would still ve witinin allowable limits.
${ }^{14}$ Jay :i. Hughes, "Pulp and Paper-making Opportunities in West-Central Colorado.: U.S. Forest Service, Rocky : Paper 73.

15
Ibid., p. 22.

## Notes on the Projection of Final Demand for the Kining, Ganufacturing and Electric Utility Industries

By and large, profections of final demand for the mining, manufacturing and electric utility industries foilowed the general procedures outlined earlier in this chapter. In several cases, however, the projected values show extremely slow or rapid growth, and these require the specific explanations which follow.

Oil and Gas. A decline in exploration activities is anticipated in the Upper iain Stem. Such activities constituted a major portion of final demand sales in 1960.

Uranium. An increase in final denand sales is expected until about 1969, after which tine the anticipated end of the Governcent support program and uncertainties as to the future requirements for peaceful uses of atomic energy is seen contributing to a modest decline in final demand sales.
"All Other' ianufacturing. A decline resulted to 1985 because of anticipated closing of the gilsonite refinery in "esa County due to the depletion of gilsonite deposits (See Green Sub-Basin report). This projection is based on the assumption that potential ofl shale development will not use these facilities. Hovever, the subsecuent anticipated development of pulping operations should contribute to a reversal of the decline by 2010.

## Projection of Final Demanc for "A11 Other" Sectors

With the exception of the expcrt segments of the tourist-oriented sectors, the following procedure was followed. ${ }^{15}$

The projections are based on a comparison of per capita final demand in each sector in the United States $\left(\frac{\mathrm{FD}_{i}^{\text {US }}}{\mathrm{P}^{\text {us }}}\right)$ with per capita final demand in th.e sub-basin $\left(\frac{\mathrm{FD}^{\mathrm{sb}}}{\mathrm{Pb}}\right)$.
${ }^{15}$ The special considerations that were taken into account in the touristoriented sectors are discussed in the concluding paragraphs of this section.
$\mathrm{FD}_{i}^{\text {us }}$ was derived from data in the ORRRC Report $\# 23$, pages 280-283. $\mathrm{p}^{\text {us }}$ was obtained from Resources for the Future, Inc. Using these data we were able to obtain a national per capita final demand expenditure estimate for both historical years (1950 and 1960) and for the projected years.

To obtain a sub-basin value for final demand in 1950, it was assumed that fincil demand constituted the same portjon of TGO in 1950 that it did in 1960. Thus, having 1950 and 1960 final demand, it was possible to obtain $\left(\frac{\mathrm{FD}^{\mathrm{Sb}}}{\mathrm{P}^{\mathrm{Sb}}}\right)$ comparable to the U.S. Eigures derived earlier. It was assumed that that the area's per capita final demand for a given industry would converge towards that of the national counterpart industry at a steady rate of compound growth (logrithmic). By employing this annual growtin rate, the 1960 ratio (K) can be projected to 1980 and 2010. Given the various values of $K_{t}$, final demand expenditures for industry " 1 " in a sub-basin may be found by:

$$
F \nu_{i}^{s b}=k \cdot\left(\frac{F_{i}^{u s}}{p^{u s}}\right)\left(p^{s b}\right)
$$

From the medium projection of population we are aile to obtain the medium projection of final demand for each sector.

One of the basic problems encountered in this method was that of projecting $K$. In most cases $K$ converged towards the national mean in the 1950 to 1960 period. In such cases, $K$ vas projected at its 1950-1960 growth rate until a value of 1.00 was reached. From that time on; it was assumed that $K$ would remain at 1.00 to 2010 . There was a problem when $K$ was diverging from the national average in the $1950-1960$ period. In such cases, it . was assumed that 1960 represented the point of greatest divergence, and that the growth trend of $K$ would reverse itself towards eventual convergence with $K$ equal to 1.00 . iost of the time, it was assumed that $K$ would reach 1.00 in 2010 and appropriate growth rates were employed in the 1960 to 2010 period to supply intermediate values for 1965 and 1980. This divergence pattern can be demonstrated graphically.


The divergence is greatest ( K is the smallest) at 1960 , slowly K recovers to an arbitrary 2010 value of 1.00 .

In addition, a tourism variable, or weight, was introduced in the projections of several sectors, where applicable, as follows:

$$
T_{1}^{s b}=\dot{X} \cdot K_{t}\left(\frac{\sum_{i} \cdot Y_{1}^{d}}{Y_{u s}^{d}}\right)
$$

where

$$
\begin{aligned}
& \begin{aligned}
T_{1}^{s b}= & \text { the tourism "weighti" to be applied to the } \\
& \text { final demand data. }
\end{aligned} \\
& X=1960 \text { exports from the input-output table. } \\
& \begin{aligned}
K_{t}= & \text { U.S. projected increase in tourist and recreation } \\
& \text { expenditures (ORPRC). }
\end{aligned} \\
& W_{1}=\text { per cent of total tourists entering suib-bastins } \\
& \text { that originated in state } 1 \text {, therefore } \\
& \sum W_{1}=\text { all tourists for a given year. } \\
& \mathbf{Y}_{1}^{\mathrm{d}}=\text { disposable personal income in state } 1 . \\
& Y_{\text {us }}^{\mathrm{d}}=\text { disposable personal incone in U.S. }
\end{aligned}
$$

$p$


The service sectors presented another problem. Since the RPRric projections of final demand for the U.S. were made only for total services, it was decided that we should do the same. Lodging and Other Services were aggregated, projected as a wiole, and disaggregated in a ratio sindlar to that of 1960 but with small allowances for projected changes in the distribution of total services.

The same procedure vas used in the projections of total trade; however, another problem presented itself in the trade sectors. In this. report, final demand for Eatinc; and Lrinking is shown as gross sales in the input-output table. The ORRRC projections of total trade included Eating and Drinking as part of their projections of margin sales; thus, it was necessary to convert our gross sales figure to margin sales for purposes of projecting. Once the projections were complete, the margin sales of Eating and Drinking were reconverted to gross sales.

## Appendix

## Sumnary Analysis of Projected I-0 Tables

In order to facilitate analysis of the projected tables of inputoutput relations and coefficients which appeared above (Tables ViLS 1980 a,b,c and $\operatorname{UNS} 2010_{a, b, c}$ ) a series of sumnary tables have been prepared which follow:

Table UMS-1980-d

Total Gross Output of Processing Sector Industries in the Upper Main Stem Sub-Basin

Industry

1. Contract Construction
2. Other Retail
3. Uranium
4. Rentals \& Finance
5. Transportation
6. Other Services (Except Professiona1)
7. Wholesale Trade.
8. Food \& Kindred Products
9. Range Livestock
10. Other Utilities
11. Eating \& Drinking Places
12. Feeder Livestock
13. Other Manufacturing
14. Lodging
15. Zinc
16. Electric Energy
17. Fruit
18. Other Mining
19. Service Stations
20. Coal
21. Printing \& Publishing
22. Food \& Field Crops
23. Agricultural Services
24. Lumber \& Wood Products
25. Forestry
26. Stone, Clay \& Glas̈s Products
27. Dairy
28. Fabricated Metals
29. Other Agriculture
30. Truck Crops
31. Oil \& Gas

Total Gross Output

\$143,811,000<br>90,788,000<br>88,911,000<br>87,678,000<br>64,180,000<br>46,897,000<br>42,724,000<br>34,794, 000<br>30,083,000<br>29,997,000<br>29,191,000<br>26,882,000<br>18,253,000<br>17,471,000<br>16,333,000<br>15,205,000<br>9,451,000<br>8,883,000<br>8,722,000<br>8,177,000<br>7,366,000<br>6,884,000<br>6,829,000<br>6,229,000<br>3,658,000<br>2,832,000<br>2,577,000<br>2,570,000<br>2,409,000<br>1,210,000<br>1,015,000

Source: Table UNS-1980-a.

Table UNS-1980-e

Processing Sector Industry Sales to Final Demand in the Upper Main Stem Sub-Basin

Industry

1. Contract Construction
2. Other Retail
3. Uranium
4. Rentals \& Finance
5. Transportation
6. Wholesale Trade
7. Other Services (Except Professiona1)
8. Eating \& Drinking Places
9. Food \& Kindred Products
10. Other Utilities
11. Feeder Livestock
12. Lodging
13. Zinc
14. Fruit
15. Range Livestock
16. Coal
17. Lumber \& Wood Products
18. Service Stations
19. Other Manufacturing
20. Electric Energy
21. Other Mining
22. Food \& Field Crops
23. Fabricated Metals
24. Other Agriculture.
25. Forestry
26. Truck Crops
27. Oil \& Gas
28. Dairy
29. Stone, Clay \& Glass Products
30. Printing \& Publishing
31. Agricu1tural Services

Sales to Final Demand
$\$ 96,428,000$
87,015,000
72,640,000
65,745,000
38,668,000
37,088,000
35,105,000
28,530,000
25,625,000
21,670,000
18,149,000
17,291,000
16,317,000
7,682,000
6,942,000
6,380,000
5,868,000
5,706,000
5,341,000
5,341,000
4,613,000
4,396,000
1,418,000
1,400,000
1,291,000
1,140,000
1,000,000
680,000
384,000
341,000
28,000

Source: Interindustry Transactions Table, IMS-1980-a.

Table UMS-1980-f

Sales to Final Demand by Processi:1g Sectors Listed Below As a Percentage of Total Gross Output in the Upper Main Stem Sub-Basin

## Industry

Sales to Final Demand Divided by Total Gross Output

1. Zinc
99.90
2. Lodging
98.97
3. Oil \& Gas
98.52
4. Eating \& Drinking Places
97.74
5. Other Retail
95.84
6. Truck Crops
94.21
7. Lumber \& Wood Products
94.20
8. Wholesale Trade
86.81
9. Uranium
81.70
10. Fruit
81.28
11. Coal
78.02
12. Rentals \& Finance
13. Other Services (Except Professional)
74.98
74.86
14. 73.65
15. Other Utilities
72.24
16. Feeder Livestock
67.51
17. Contract Construction
67.05
18. Service Stations . . . . 65.42
19. Food \& Field Crops
63.86
20. Transportation
21. Other Agriculture
60.25
22. Fabricated Metals.
58.12
23. Other Mining
55.18
24. Forestry
51.93
25. Electric Energy
35.29
26. Other Manufacturing
35.13
27. Dairy
28. Range Livestock
29.26
29. Stone, Clay \& Glass Products
26.39
30. Printing \& Publishing
23.08
31. Agricultural Services
13.56
4.63
0.41

Source: Tables UNS-1980-d and UNS-1980-e.

Processing Sector Industries of the Upper Main-Stem Sub-Basin Ranked by the Magnitude of the Total Dollar Production Directly and Indirectly Required by the Sub-Basin Economy to Sustain a \$1.00 Increase in Deliveries to Final Demand by the Industries Named.

## Industry

## Direct \& Indirect Requirements Per Dollar of Sales



Source: Table of Direct and Indirect Requirement Coefficients UMS-1980-c.

Table UMS-1980-i


#### Abstract

Number of Processing Sector Industries Responding in Amounts of at least $\$ 0.01$ per dollar of Sales to Final Demand by the Industries Listed Below.


Industry

> | Intersections |
| :--- |
| greater than $\$ 0.01$ |

Food \& Kindred Products ..... 15
Other Agriculture ..... 13
Eating \& Drinking Places ..... 12
Dairy ..... 12
Feeder Livestock ..... 12
All Other Retail ..... 8
Oil \& Gas ..... 8
Food \& Field Crops ..... 8
Range Livestock ..... 7
Lumber \& Wood Products ..... 7
Lodging ..... 7
Contract Construction ..... 6
Service Stations ..... 6
Stone, Clay and Glass Products ..... 6
Fruit ..... 6
Truck Crops ..... 6
Coal ..... 5
All Other Mining ..... 5
Wholesale Trade ..... 5
Agricultural Services. ..... 5
All Other Services ..... 5
Transportation ..... 5
Electric Energy ..... 4
Other Utilities ..... 4
Other Manufacturing ..... 4
Uranium ..... 3
Forestry ..... 3
Printing \& Publishing ..... 3
Fabricated Metals ..... 3
Rentals and Finance ..... 2
Zinc ..... 2

Source: Table of Direct and Indirect Requirements per dollar of Final Demand, UMS-1980-c.

Table UMS-2010-d

Total Gross Output of Processing Sector Industries in the Upper Main Stem Sub-i:asin

Industry

1. Rentals \& Finance
2. Contract Construction
3. Other Retail
4. Other Services (Except Professional)
5. Wholesale Trade
6. Uranium
7. Transportation
8. Eating \& Drinking Places
9. Other Utilities
10. Food \& Kindred Products
11. Lodging
12. Feeder Livestock
13. Range Livestock
14. Other Manufacturing
15. Electric Energy
16. Zinc
17. Printing \& Publishing
18. Service Stations :
19. Fruit
20. Other Mining
21. Agricultural Services
22. Lumber \& Wood Products
23. Coal
24. Food \& Field Crops
25. Forestry
26. Stone, Clay \& Glass Products
27. Fabricated Metals
28. Dairy
29. Other Agriculture
30. Truck Crops
31. Oil \& Gas

Total Gross Output

$$
\$ 210,436,000
$$

$$
207,745,000
$$

$$
203,686,000
$$

$$
136,948,000
$$

$$
95,487,000
$$

$$
85,784,000
$$

$$
81,385,000
$$

$$
65,612,000
$$

$$
56,173,000
$$

$$
50,110,000
$$

$$
48,812,000
$$

$$
45,141,000
$$

$$
44,377,000
$$

$$
42 ; 555,000
$$

$$
31,331,000
$$

$$
22,453,000
$$

$$
17,491,000
$$

$$
17,423,000
$$

$$
15,653,000
$$

$$
11,001,000
$$

$$
10,816,000
$$

$$
10,805,000
$$

$$
9,954,000
$$

$$
8,061,000
$$

8,011,000

$$
4,116,000
$$

$$
3,876,000
$$

$$
3,324,000
$$

$$
1,997,000
$$

$$
1,879,000
$$

$$
1,016,000
$$

Source: Table UNS-2010-a.

Table UMS-2010-e

Processing Sector Industry Sales to Final Demand in the Upper Main Stem Sub-Basin

## Industry

1; Other Retail
2. Rentals \& Finance
3. Contract Construction
4. Other Services (Except Professional)
5. Wholesale Trade.
6. Uranium
7. Eating \& Drinking Places
8. Lodging
9. Transportation
10. Other Utilities
11. Feeder Livestock
12. Food \& Kindred Products
13. Zinc
14. Other Manufacturing
15. Fruit
16. Service Stations
17. Lumber \& Wood Products
18. Electric Energy
19. Range Livestock
20. Coa1
21. Other Mining
22. Food \& Field Crops
23. Fabricated Metals
24. Forestry
25. Other Agriculture
26. Oil \& Gas
27. Truck Crops
28. Dairy
29. Printing \& Publishing
30. Stone, Clay \& Glass Products
31. Agricultural Services

Sales to Final Demand
\$196,062,000
160,598,000
133,494,000
111,946,000
83,567,000
70,000,000
64,283,000
47,977,000
39,016,000
35,651,000
31,862,000
30,815, 000
22,431,000
21,235,000
12,900,000
12,857,000
9,770,000
8,561,000
7,901,000
5,891,000
5,233,000
4,758,000
2,328,000
2,118,000
1,180,000
1,000,000
1,729,000
655,000
419,000
406,000
116,000

Source: Interindustry Transactions Table, UMS-2010-a.

Table UMS -2010-f

Sales to Final Demand by Processi:ig Sectors Listed Below As a Percentage of Total Gross Output in the

Upper Main Stem Sub-Basin

## Industry

1. Zinc
99.90
2. Oil \& Gas 98.43
3. Lodging
4. Eating \& Drinking Places
98.29
97.97
5. Other Retail
6. Truck Crops
7. Lumber \& Wood Products
8. Wholesale Trade
9. Fruit
10. Other Services (Except Professiona1)
11. Uranium
12. Rentals \& Finance
13. Service Stations
14. Feeder Livestock
15. Contract Construction
16. Other Utilities
17. Food \& Kindred Products
96.26
92.02
90.42
87.52
82.41
81.74
81.60
76.32
73.79

70,58
64.26
63.47
18.
18. Fabricated Metals
61.49
19. Coal
60.06
20. Other Agriculture. . 59.09
21. Food \& Field Crops
59.02
22. Other Manufacturing $\quad 49.90$
23. Transportation 47.94

24: Other Mining 47.57
25. Electric Energy 27.32
26. Forestry . 26.44
27. Dairy 19.71
28. Range Livestock 17.80
29. Stone, Clay \& Glass Products 9.86
30. Printing \& Publishing $\quad 2.40$
31. Agricultural Services 1.07

Source: Tables URIS-2010-d and UMS-2010-e.

Processing Sector Industries of the Upper Main Stem Sub-Basin Ranked by the Magnitude of the Total Dollar Production Directly and Indirectly Required by the Sub-Basin Economy to Sustain a \$1.00 Increase in Deliveries to Final Demand by the Industries Named.

Direct and Indirect Requirements
Industry
Per Dollar of Sales

1. Contract Construction
1.446588
2. Uranium 1.225490
3. Electric Energy
1.130526
4. Range Livestock
1.105556
5. Food \& Kindred Products
1.057346
6. Transportation
1.047238
7. Feeder Livestock
1.045520
8. Other Services (Except Professiona1)
1.041692
9. Rentals \& Finance
1.029516
10. Printing \& Publishing
1.020131
11. Other Utilities
1.016519
12. Oil \& Gas
1.016260
13. Other Manufacturing
1.014877
14. Coa1
1.005885
15. Other Retail Trade
1.005206
16. Wholesale Trade
1.003872
17. Other Agriculture
1.002763
18. Dairy
1.002450
19. Lodging
1.002249
20. Fabricated Metals.
21. Agricultural Services
1.002112
22. Fruit
1.001518
23. Service Stations
1.001127
24. Forestry
1.001097
25. Other Mining
1.001077
26. Zinc
1.001047
27. Eating \& Drinking Places 1.000489
28. Lumber \& Wood Products . 1.000470
29. Stone, Clay \& Glass Products 1.000101
30. Food \& Field Crops . 1.000031
31. Truck Crops 1.000006

Source: Table of Direct and Indirect Requirement Coefficients, UMS-2010-c.

```
Table UMS-2010-i
```



```
Rentals & Finance
```

Source: Table of Direct \& Indirect Requirements per Dollar of Final Demand, UMS-2010-c.


[^0]:    2 autonomous sector which responds largely to forces external to this regional economy, and a non-autonomous sector which is responsive to changes originating within the.regional economy. To unearth structural interrelationships within the non-autonomous sectors is the goal of the analysis. These non-autonomous categories are classified as constituting the "processing" sector'. The autonomous categories are labeled the "Payments" sector along the rows and the "final demand" sector along the columns. For a detailed discussion of this point together with a diagrammatic and symbolic exposition, see Miernyk, op. cit., Chapter 2.
    ${ }^{3}$ Ibid.

[^1]:    ${ }^{5}$ W. Duane Evans and Marvin Hoffenberg, "The Interindustry Relations Study for 1947", Review of Economics and Statistics (May, 1952), pp. 97142. See especially p. 126.

    6
    'This section borrows heavily from Miernyk's excellent paper, "Small-Area Interindustry Analysis", Bureau of Economic Research, University of Colorado, (Mimeographed, 1963), pp. 8-17.

[^2]:    ${ }^{1}$ See U.S. Department of Health, Education, and Welfare, Public Health Service, Bureau of State Services, Division of Water Supply and Pollution Control, Region VIII, Colorado River Basin Water quality Control Project, State and County Area Tabulations for the Colorado River Basin: (Denver: Colorado River Basin Water Quality Control Project, January, 1962), p. 7.
    ${ }^{2}$ The Public Health Service has designated as "representative" certain counties of the Colorado Basin in which most of the economic activity occurs. This was necessary because the boundaries of the Colorado River Basin and its sub-basins follow natural drainage divisions and rarely conform to county borders while most statistical data are available only for entire counties. Tbid., p. 12.

[^3]:    5
    The two major sources of data on the industrial distribution of employment by county are the Emplayment Security Comission (ESC's of the various states which gather statistics on covered employment, i.e., employment in industries not exempted from the law, and in establishments large enough to nualify for coverage under the law; and the U.S. Bureau of the Census. The Census enumeration of county employment by industry usually produces larger figures than those reported by the ESC's. This is partly due to the much more inclusive derinition used by Census which includes agricultural employment, for example, but also reflects various other methodological dinferences. Thus, the two sets of data are not strictly comparable. A major virtue of the Census data (available in this detail only for the years of the decennial censuses) is that they do provide a detailed historical record of employment for a group of industries which are derined in a generally consistent mannez. For this reason in this general historical review of the economy of the Upper Main Stem, and in the same section of the reports on the other sub-basins of the Colorado River Basin, Census data have been selected for analysis. However, in the aetailed study of particular industries sor 1960 which follows, ESC data have been utilized.

[^4]:    Source: Same as Table H

[^5]:    fowse: Compuied fino Taile UM-H

[^6]:    
     and dose not womb ofs the form more than 100 day par year, and (e) incoms
     the value of all farm products solo

[^7]:    3
    Bureau of Land Management is abbreviated by the letters "BLM"

[^8]:    a Figure represents only value of coal production.
    b Figure represents only value of gold, silver, copper, lead and zinc production.
    c Figure represents only the valuc of coal, gold, silver, copper, lead and zinc production.
    Sources: Mincrals Yearbook Annuals, 1930-1961, U.S. Department of the Interior, Bureau of Mines (Washington, D.C.: U.S. Government Printinj Office), and

    Colorado Bureau of Mines' Annual Statistics, 1930-1950. (Denver, Colorado).

[^9]:    ${ }^{3}$ W. Duane Evans and Marvin Hoffenberg, "The Nature and Uses of Interindustry Relations Data and Methods," Input-Output Analysis: An Appraisal (Princeton, New Jersey: Frinceton University Press, 1955), p. 75.

[^10]:    4The wage figure compares with $\$ 8,617,504$ reported by the Colorado and Utah State Departments of Lmploynent. (Table UNS-XII)
    ${ }^{5}$ Source: Colorado State Department of Employment.

[^11]:    ${ }^{\text {a }}$ Data not available for these years.

[^12]:    ${ }^{5}$ By Census enumeration in 1958, there were 286 eating and drinking establishments in the Upper Main Stem. Mesa's 68.again led the list. In 1963, 283 eating and drinking establishments were counted; Mesa county accounted for 60.

[^13]:    ${ }^{6}$ For a detailed discussion of the two types of productivity measure see Solomon Fabricant, Basic Facts on Productivity Change (New York: National Bureau of Economic Mesearch, Inc., Occasional Paper 63, 1959), pp. 3-13.

[^14]:    ${ }^{3}$ Based on 1960 interview data. Figures at bottom of each column show years for which these input patterns will be used.

[^15]:    * Percentages are mathematically undefineable. Source: Tables UMS-S, 1990-a and 2010-a.

[^16]:    ${ }^{\text {a }}$ These totals include pasture, for the most part. Cropland used only for pasture on irrigated farms totaled 168,37 acres. Some farms are only partially irrigated; other portions may be improved dry pasture.

[^17]:    12 Adon Poli, "Long-term production prospects for Western agriculture.: Agricultural Economic Report 1 No 33 , U.S. Departwent of Agriculture, :'ay, 1963.

