An Analysis of the Economy of the Gila River Sub-basin of the Colorado River Drainage Basin in 1960 with Emphasis on Heavy Water-using Industries

Gilbert W. Bonem
University of Colorado
John H. Chapman Jr.
University of Colorado
Dean Jansma
University of Colorado
William H. Miernyk
University of Colorado
Clyde Stewart
University of Colorado

See next page for additional authors

Follow this and additional works at: https://researchrepository.wvu.edu/rri_ioapplication

Recommended Citation

Bonem, Gilbert W.; Chapman, John H. J.; Jansma, Dean; Miernyk, William H.; Stewart, Clyde; and Udis, Bernard, "An Analysis of the Economy of the Gila River Sub-basin of the Colorado River Drainage Basin in 1960 with Emphasis on Heavy Water-using Industries" (1967). Applications. 57.
https://researchrepository.wvu.edu/rri_ioapplication/57

This Article is brought to you for free and open access by the RRI Input-Output Archive at The Research Repository @ WVU. It has been accepted for inclusion in Applications by an authorized administrator of The Research Repository @ WVU. For more information, please contact beau.smith@mail.wvu.edu.

Authors

Gilbert W. Bonem, John H. Chapman Jr., Dean Jansma, William H. Miernyk, Clyde Stewart, and Bernard Udis

AN ANALYSIS OF THE ECONOM OE THE GIZA RJVER SUB-BASIN OF THE COIORADO RIVFR DRGYAGE BASIN IN 1960 WITA EMHHASIS ON HEAVY WATRR-USTNG TNJUSTRIES

Edited by
Bernard Udis Associate Professor of Economies
University of Colorado
Boulder, Colorado

:
Principal Authors:
Gilbert W. Bonem
John H. Chapman, Jr. Deán Janema
-WiJ.ian H. Miernyk
Clyde E. Stewart Bemmard Udis

Prepared under Contract No. WA 67-4 between
the United States nepartment of the Interior, Federal Water Pollution Control Administration and
the University of Colorado

August, 1967

TABLE OF COHTEWSS
Pase
CLAPTER OWEInput-Output Analysis: A Brief Description of the Model............
CHAPTHRTHOThe Econory of the
Basfin: An Overrien 17
CHPATER THEDEInterdndustay Analysis of the Economy of the Gila River Sub-Basin of the Colorado RIver basin.................................. 65
CHAPTER FOUTSome Economic Eatures of Agriculture and Forcstry in theGila River Sub-Basin.. 78
ChAPTER FIVEThe Minimg, lanufactuxing and Energy Sectors of the GilaRiver Sub-Basir.. 117
CHAPTER SIXInterindustry Analysis: Tertiary Industries and Construction... 180
CHPTER SEVLE
Projected Interfndustry Relations of the Gila River Sub- Basin: 1980 and 2010 205

A Brief Description of the Model

by

Bernard Udis

August, 1967

Input-Output Analysis

A Brief Description of the Model

The essence of input-output or interindustry analysis is the explicit recognition that each sector of the economy is dependent upon every other sector, and an effort to determine the degree of quantitative interdependence. ${ }^{1}$ The literature on input-output is replete with references to "structure," "interdependence" or "interrelationship." These terms emphasize that the primary focus of this analysis is not on the particular level of economic activity as measured by Gross National Product, Employment, or Personal Income, but rather on how the typical or representative firn in each industry depends on all other industries, both as suppliers of inputs and customers for output. A substantial and unique advantage of this means of analysis over alternative techniques is that of its capacity to ferret out both direct and indirect effects of a change in the level of output of a particular industry on all other industries.
$1_{\text {For a simple introduction to input-output analysis, the reader is }}$ referred to William H. Miernyk, The Elements of Input-Output Analysis (New York: Random House, 1965). A more sophisticated treatment may be found in Hollis B. Chenery and Paul G. Clark, Interindustry Economics (New York: John Wiley \& Sons, Inc., 1959). Detailed and advanced critiques of the method are available in Conference on Research in Income and Wealth, Studies in Income and Wealth, Vol. 18, National Bureau of Economic Research, Input-Output Analysjs: An Appraisal (Princeton: Princeton University Press, 1955); and Oskar Morgenstern (ed.), Economic Activity Analysis (New York: John Wiley \& Sons, Inc., 1954). The basic references to inputoutput analysis are those of its modern father, Wassily W. Leontief, The Structure of American Fconomy, 1919-1939 (New York: Oxford University Press, Second Edition, 1951); and Leontief, et. al., Studies in the Structure of the American Economy (New York: Oxford University Press, 1953). A convenient collection of Leontief's articles has been published as Input-Output Economics (New York: Oxford University Press, 1966). It includes a number of interesting examples of the application of I-O analysis.

Thus a knoriledre of the structure of the economy provides the means to trace the implications, incustry by industry, and in tine aggregate, of a change in the level of economic activity of a particular sector.

The workings of such a table will be illustrated shortly. It should be pointed out here, nowever, that in a study of this sort where the prinary interest is quite particular--what will be the water requirements (both quantitative and qualitative), necessary to supnort alternative levels of economic activity and population la the furure-overall estimates of economic aggregates such as Gip or population are inadequate. The regulatory agency must be concerned with the econonic base and how its parts fit tofetier. Officials of tie Fecieral Water Pollution Control Aaninistration, however alert to sinerp changes ir the level of activity of traditional heavy water users, may be quite unprenared for changes arising elsermore in the economy however induced, whic: may have significant secondary or tertiary effects on the heavy vater users. It is our conviction thet a knowledge of the structural interrelationshins witlin an econony is a prerequisite to rational and effective measure in the realra of public policy.

The ram material for the analysis is found in the rid or matrix of interindustry transactions. Such a matrix for the Gila Sub-jasin is found in Table C-S of this report. This table shows the detailed cisposition of the output of cach incustry along the horizontal lines or rovs. Thus in 1960, the range livestoch incustry ia the Gila Sub-Basin kept none of its own froduction for further use while selling \$31,933,000 to fecder livestock, and 5332,000 to the food and kindred products incustries. The vertical colums of tite table are used to inaicate each industry's sources of supply.
 ($\$ 3,741,000$) was the largest supplier to range livestoci. This, of course, is sinpiy the other sice of the type of transaction noted above. Ife can quickly spot other purchases by rane livestoci: from forace, feec ari food crops ($\$ 2,085,200$) anc othex various suppliers to the incustry. Fe can also icentify $\$ 0,\{43,000$ of imorts from outsice the Coloraco 3 asin, payments of $\$ 5.54$ million in profits and related payments depreciation allowances ($\$ 4,747,000$), and wages and salaries ($\$ 965,006$).

While a useful method of interindustry accounting, the transactions table will not yield the desired answer to the basic question: How will a change in the output output of one industry affect all other industries? For this, additional steps are necessary which involve mathematical manipulations of the figures in the transactions table. The details are cumbersome, but in essence, the task is to solve as many simultaneous linear equations as the number of industrial categories in the so-called processing sector ${ }^{2}$ of the matrix. Linear or matrix algebra is the toclminmos and a high-speed electronic computer the instrument for this opcration. Briefly put, the procedure is to adjust the column totals, labeled Total Gross Outlays, by subtracting the row entry identifiod as incentory change (depletion), and then expressing each remaining number in the column as a percent of the now-adjusted total. To repeat, this is done only for the industries in the processing sector. The resulting table is known as the "A" matrix, or table of direct coefficients. It yields the direct requirements of the regional economy from industries named in row headings at the left per dollar of output sold outsicle the processing sector by the industry naned at the colum head. However, this is only a way-station because it fails to take account of secondary, tertiary and other indirect effects. To complete the story, the " A " matrix must be subtracted from an identity matrix, (a series of l's along the diagonal and zeros in all other cells), and then inverted. The resulting inverse matrix shows the direct and indirect effects on all industries of a change in the output level of any one of them. It enables one to specify the level of production required of each industry to sustain any particular level of final demand. ${ }^{3}$

[^0]The inverse natrix for the Gilc. is shom: in lable G.U of this report. Eacl entry shows the total dollar production directly and indirectly required from the irdustry at the top of the table per dollar of deliveries to final demand by the industry at the left. Again using range livestock as an expmple, it nay be deterninec that for each dollar of its sales to final demand, this industry must proiuce $\$ 1.00$ of output. Cther significant effects are felt in rentals and finence (11.9 cents), forage, feed and food crops (6.4 cents), food and kindred products and service stations with 1.4 cents each. In the agrregate, it reguires $\$ 1.27$ of production from the processing sector to support each dollar of rance livestock salea to the final demand sector. The nagnitude of these direct and incifect effects gives range livestock 25 th rank ritain the processing sector of the Cila (See rable G-Z).

Zeturniñ for a roment to Table G-S showirs interindustry transactions, it is assumed that the actual entries vill change fron year to year out that the relative roportions wetveen industries remain essentially constant over periods of short to intermeciate length. This is to say that industrial technology and household consumption patterns chanoe only slowly. ${ }^{4}$

[^1]It cannot be denied, however, that despite some reasonably stable components, the American economy is a dynamic one where change is not a stranger. Nevertheless, the essential point is that the validity of the input--output technique is independent of the degree of constancy of coefficients. As Evans, Hoffenberg have noted, interindustry analysis is basically cross-sectional and "The structural interconnections revealed by it should not be considered as immutable or unchanging, but rather as the starting point approximate to the period to which an analysis of input structures is to refer." ${ }^{5}$ Thus, the 1960 tables contained in this report give valuable insights into the structure of the economy of the Gila that will probably remain valid for perhaps a decade. However, projections of the structural relationships which will prevail in this region more than ten years hence must be interpreted with an awareness of their highly tentative nature. Such projections of technical coefficients have been made, however, and appear in the last chapter of this report where the topic of projections is treated in detail.
$\frac{\text { Implementing the Model in the Gila Sub-Basin of the }}{\text { Colorado River Basin }{ }^{6}}$
The model described briefly above is deceptively simple. The direct coefficients can be computed easily on a desk calculator even for a fairly large table. And prograns for the inversion of matrices are readily available. The major work involved is in constructing the basic transactions table. Before this can be done the sectors to be included in the table must be defined. An effort must be made to limit each sector to one with relatively honogeneous inputs and outputs. Care must be exercised to avoid the problem of substitutability. After preliminary

[^2]investigation has shown what sectors are to be used the tiansactions table is constructed in two steps:
(1) The first step is to establish "control totals." For the processing sectors these are usually total sales figures, except for the trade sector where gross margins (operating costs plus net revenues) represent output. ${ }^{7}$ In the final demand and payments sectors it is possible to estimate other control totals, such as payments to government and personal consumption expenditures.
(2) Once the control totals have been established, the row and column distributions are worked out. In this study the distributions were based on survey data obtained fron a sample of all establishments represented in the processing sectors. The procedure is to fill out each row and the corresponding column separately, then to reconcije differences at the intersections. The entire process is iterative. There is no single method for arriving at the final distribution. Frequently, judgment must be used in making intersection reconciliations.

In constructing the transactions table either producer's or purchaser's prices may be used. The standard practice in the United States, however, has been to use producer's prices, and this was the procedure followed in this study. When this method of valuation is employed, marketing costs are excluded from the output contral totals. They are added to the costs of the consuming sector. Trade margins are registered as purchases by the consumers of specific comnodities. Both outputs and inputs are stated in f.o.b. prices. The buyer pays transportation costs, and where a firm uses its own transportation facilities, transportation costs must be imputed to the transportation sector. ${ }^{8}$
${ }^{7}$ The problem of treating the trade sectors so that they reflect only the distribution of the gross margin is complex, but quite important. An illustrative example appears in the appendix to this chaptex.
${ }^{8}$ For a discussion of the problems involved in obtaining data, and the reaons for preferring producer's to purchaser's prices, see Chenery and Clark, op. cit., pp. 141-142; and Evans and Hoffenberg, pp. 103104.

For data collection purposes, the processing sector of the transactions table for the Gila wes diviced into thざ: 5 -six industries. The number of processing sector industries simply reflects the types of economic activity found in the regions. Heavy water using industries were singled out for separate treatnent in the processing sector of the transactions table. Also, a number of sub-divisions of the trade and service sectors vere closely examined in viev of their importance to water-related recreation activities.

It is essential to provide for unallocated fnputs and outputs during! the data gathering phase. Chencry and Clark have argued that it is better to eliminate unallocated figures even if this must be done solely on the basis of judgnent. ${ }^{9}$

In this study unallocated inputs and outputs were not a particularly sertous problem. Reasonably comprehensive surveys of most processing sectors permitted fairly reliable distributions of purchases and sales. ${ }^{10}$ The survey data were also helpful in distributing purchases and sales within the payment and final demand sectors. This is perhaps an advantage which small area input-output analysis has over the construction of national tables. Those involved in the construction of national tables have available a wealth of statistical information which cannot be obtained on a small-area basis, and thus can estinate more reliable control totals. On the other hand, it would be inordinately costly to conduct nation-wide surveys for all sectors to allocate interindustry flows. Jn a relafively small and sparsely-populated area, however, such surveys yield a high rate of return. ${ }^{11}$
${ }^{9}$ Chenery and Clark, op. cit., p. 142.
10 The extent of coverage varied fron sector to sector. It is. important to emphasize, however, that sample data were not used to estimate control totals. These vere derived from secondary sources.
${ }^{11}$ In some small-area input-output. studies interindustry flows have been estimated by applying national coefficients to regional control totals. As Isard has pointed out, however, such estimates are affected by interregional differences in factor proportions and product mix. The use of survey data to distribute purchases and sales should result in far more accurate technical coefficients. See Walter Isard, "Regional Commodity Balances and Intercegional Comodity Flows", American Economic Review (May, 1953), pp. 170-171.

The construction of the transactions table would be greatly simplified if there were no interest in imports and exports, $1 . e .$, if one were dealing with a closed model. But it is completely uncealistic to treat a sraall area as a closed economy. In small-area analysis the import and export flows are among the most important to be considered. More will be said about this presently.

In wholesale and retail trade it is possible to obtaln good data on purchases both on an interindustry and geographical basis. On the other hand, however cooperative they might be, retailers are rarely in a position to give an interviewer much information about the final destination of their sales. To a lesser extent this dffficulty is also encountered in the wholesale trade sector.

Many services are entirely of a local nature, and these present no serious problems. Sone services are highly seasonal, however, such as those provided by firms which cater to the tourist trade. In such cases it is difficult to make an accurate breakdown between services provided to residents of the area and those provided to transients. In lodging facilities, for example, such data could no doubt be obtained by a careful search of records. Indeed, some respondents in our survey provided accurate figures, but others were unwilling to do more than make rough estimates. The transportation sector poses similar problems. There are no major difficulties in measuring intra-area shipments. But there are serious difficulties when shipnents to and from other areas are involved. In construction, the major problem is simply one of obtaining accurate information from builders. Even at the national level there are serious data deficiencies in the construction sectors, and in some ways these difficulties are compounded in a small-area study. ${ }^{12}$ Utilities provide another example of measurement difficulties. Utilities do not keep books on a basis which would perait accurate estimates of sales by county. Power and telephone companies typically distinguish among sales to households, and to commercial and industrial users. But they are quite indifferent to county lines, and usually are equally indifferent to
${ }^{12}$ See Evars and Hoffenberg, op. cit., pp. 117-118.
state lines. Hence in estimating the sales of utilities on a small-area basis it is necessary to rely on various ratios (to population, employment, etc.) In allocating these sales on a county and eventually a regional basis.

One other classification within the processing sector calls for some comment. This is the exclusion of professional services from the service row and column. These were included in households, a decision dictated entirely by data considerations.

All data were expressed in 1960 prices with no attempt to adjust for price changes during the year. The latter adjustment would have been desirable. But there would have been no way of estimating the percentage of transactions at each of a succession of prices withont examining all records on a day-to-day basis, something which could not be attempted because of time and money considerations. Thus, we assumed that the volume of transactions in the base year was not affected by price changes. 13

The Final Demand and Payments Sectors
The autonomous sector represents the "open" part of the inputoutput system. For each component of the processing sector, the sum of the row must equal the sum of the column. That is, total gross output must. equal total gross outlays (by definition). This is not so for the final demand and payments sectors, however. In this case, the only constraint Is that the sum of all rows in the payments sector must equal the sum of all columns in the final demand sector. Thus when the input-output system is used to analyze changes in final demand the sub-sectors comprising final demand can be collapsed into a single column vector. It is important, however, to examine each of the final demand (and payments) sub-sectors since variations in any one will have an effect on levels of production in the processing sectors.

Final Demand sub-sectors---In this model, there are seven final demand sub-sectors. These are: (l) additions to inventory (no matter

[^3]where heldeduring the base year, (2) gross investments, (3) households, (4) state and federal government, (5) local government, and (6) exports. Exports are divided into two classes: (a) exports outside the SubBasin but within the Colorado River Basin, and (b) exports to the rest of the world.

The Payments sub-sectors---These consist of: (1) inventory depletion during the year, (2) depreciation allowances, (3) households, (4) state and federal govermment, (5) local government, and (6) imports. As with exports, imports are subdivided into two groups: (a) imports from the rest of the Colorado River Basin, and (b) imports from the rest of the world.

It is probably falr to say that the most difficult data problems in the construction of a transactions table occur in the final demand and payments sectors.

Inventories----Both the inventory column and row measure gross changes. Thus the column vector minus the row vector yields net inventory changes. As Evans ard hoffenberg point out, it is difficult to handle inventories within the input-output framework since "they introduce a dynamic element into what is essentially a series of static flows." ${ }^{14}$ To establish inventory totals in each cell properly it is necessary to obtain data on the amounts sold from stock during the base year (entered in the inventory row), and also to obtain data on the amounts added to stock during the base year (entered in the inventory column). Thus we are concerned only with the flows into and out of inventory, and not the size of the stock itself. Excellent data on inventory changes were obtained from some firms in the survey, but in other cases only rough estimates could be made. ${ }^{15}$

[^4]Household \& Government----Control totals for these sectors were built up from published sources of data on income, tax payments, and government purchases. The county data were somewhat uneven from state to state, but there probably are no significant errors in the control totals. Payroll data, obtained from state Divisions of Employment Security, sales tax data, and survey data obtained from business establishments were used to work out the inter-industry flows and some of the allocations within the payments and final demand sectors.

Investment and depreclation---As Chenery and Clark have noted, one of the major gaps in national statistics is the lack of investments by industry cross-classified with investment by type of capftal equipment. ${ }^{16}$ Even if good data were available, however, there are some conceptual problems involved in handing capital outlays within the input-output system. The basic transactions table is supposed to show the flow of all goods and services from industry of origin to industry of destination. It might be argued that if all flows are to be recorded, they should include sales on current account for intermedfate and final use plus sales of capital equipment. But Evans and Hoffenberg have pointed out that input ratios computed from a generalized flow matrix of this kind would not be stable (since purchases of capital equipment by individual establishments tend to be "lumpy" rather than continuous), and these ratios would not be limited to transactions on current account which are the central focus of input-output analysis. ${ }^{17}$ Thus industry outputs to gross private domestic investment are listed in a separate column, and depreciation allowances in a separate row. In the tables in this study, the first approxinations were based on survey data. These were adjusted following successive iterations of the various rows and columns.

Exports---Many activitjes covered by a small-area input-output table will be purely local in character, and these pose no particular problem. At the other extreme, some industries in a small area
${ }^{16} \underline{O p p_{p}}$ cit., p. 273.
17 Op. cit., pp. 104-105.
might produce entirely for export which greatly simplfy the allocation of their production. For those that fall in between some estimation is required. In our tables the distinction between local and export sales for such industries was based largely on survey data. Local sales were subtracted from total sales and the difference allocated to the export column for each sector.

Imports - - It is customary in constructing national transactions tables to distinguish between competitive and non-competitive imports. It has also been the practice in constructing national tables to add competitive imports to domestic production in the appropriate sector. Only the non-competitive imports, therefore, are entered in the import row. ${ }^{18}$ In our tables this distinction was not made. With the possible exception of some agricultural products, there are few examples of comodities produced in this area which are also imported for local consumption. This simplified the problem, and the assumption was made that all jmports were non-competitive.

18 See Chenery and Clark, p. 142, and Evans and Hoffenberg, p, 109.

Appendix: Illustrative Example of the Process of
 Margnning the Trade Sectors

Assumptions

(1) A simple economy with a single processing industry (perhaps mining) with no consumer goods manufacturing in the economy, a single trade sector, a household sector and a link with the outside world through exports and imports--- such as Appendix Table $\mathrm{M}-1$.
(2) All numbers in Appendix Table K-1 represent total dollar sales.
(3) No wholesale sector exists.
(4) The retail trade sector is supplied through imports.
(5) The retail trade margin is twenty percent.

The twenty percent margin is applied to all entries in the trade row which reduces each original entry by eighty percent. The amount by which the trade row is reduced is then added to the import intersection with each of the affected columns as shown in Appendix Table $\mathrm{M}-2$. If we stopped at this point, the import row would be grossly overstated since the processing industry, the household, and exports are all now viewed as importing goods which still appear as trade sector inports. The totals would also be out of balance with the retail trade row total equal to 26 while its column total comes to 130. Further, the sum of the final denand columns (households plus exports) equal 185 while their row totals come to 289. Hence, it becomes necessary to reduce trade imports by the sum of the additions to the inports of the other three columns---104. All row and column totals are now brought back into balance within the processing sector as is the aggregate of the autonomous paynents sector and final demand. See Appendix Table M-3.

APPENDIX TABLE M-1

TRANSACTIONS TABLE FOR A HYPOTHETICAL ECONOMY
(Stage 1)
$\left.\begin{array}{lc|c|c|c|c} & & & & & \begin{array}{c}\text { TOTAL } \\ \text { GROSS } \\ \text { OUTPUT }\end{array} \\ & \text { MINING } & \text { RETAIL TRADE } & \text { HOUSEHOLDS } & \text { EXPORTS }\end{array}\right]$

APPENDIX TABLE M-2
TRANSACTIONS TABLE FOR A HYPOTHETJCAL ECONOMY
(Stage 2)

	MINING	RETAIL TRADE	HOUSEHOLDS	EXPORTS	TOTAL GROSS output
MINING	0	5	55	0	60
RETAIL TRADE	2	0	18	6	26
HOUSEHOLDS	40	20	0	0	60
IMPORTS	18	105	82	24	229
TOTAL GROSS OUTLAY	60	130	155	30	375

- APPENDIX TABLE M-3

TRANSACIIONS TABLE FOR A HYPOTHETICAL ECONOMY
(Stage 3)
$\left.\begin{array}{lc|c|c|c|c} & & & & & \begin{array}{c}\text { TOTAL } \\ \text { GROSS }\end{array} \\ & \text { MONING } & \text { RETAIL TRADE } & \text { HOUSEHOIDS } & \text { EXPORTS } \\ \text { OUTPUT }\end{array}\right]$

Just why is all of this manupuiation mecesoafy? Fur une hifng the trade sectors differ from other processing sector industries in that their major task is to see that comodities and services are available when and where the consumer requires them. Thus they provide time and place utility but do not alter the physical form of the good. In this analysis an attempt is made to get at "value added" by entering only the gross margins of the trade sectors (the sum of operating expenses plus profit) in the transactions table.

To refer back to the example for a moment, if the trade sector supplies other industries with only twenty percent of the total value of their purchases, who supplies the remaining eighty percent? This exanple assunes that the missing eighty percent comes in the form of imports fron outside the region. It is far from unrealisitc in this part of the country although there are clearly some local producers servicing the domestic market. Thus, instead of assigning the full anount of the difference between total trade sales and the trade margin to imports, some should go to local producers whose product is channeled to local consumers through the trade sector. The simplest case was chosen for the example to make the illustration of the general principle as clear as possible.

Perhaps the rationale for margining the trade sector is best presented by Evans and Hoffenberg when they write:

If output of the trade sectors were defined to cover total sales, it would mean that a great variety of commodities would flow into trade as inputs and then be charged out in some averaged aggregate form to consuming sectors. This procedure would eliminate the direct link between producers and users which is a a main purpose of the tabulations and would substitute instead a heterogeneous trading structure.
${ }^{19}$ Evans and Hoffenberg, op. cit., p.riot.

THE ZCONOSY OF THE GILA RIVER SUB-BASIN OF THE COLORADO RIVER BASIN: AN OVERVIEW

```
    by
    Bernard Udis
```

Revised

August, 1967

THE ECONOHY OF THE GILA SUB-BASIN OF
THE COLORADO RIVER BASIN: AN OVERVIEW
by
Bernard Udis

Introduction

The Gila Sub-Basin is the largest of any of the six sub-basins of the dralnage area of the Colorado River Basin. Its 55,317 square miles comprise almost 23 percent of the overall Colorado Basin. Ninety percent of its area lies within Arizona with the remaining tenth in New Mexico. ${ }^{1}$ For purposes of this analysis, the Gila Sub-Basin has been defined to include nine counties in Arizona--Cochise, Gila, Graham, Greenlee, Maricopa, Pina, Pinal, Santa Cruz, and Yavapai--and two in New Mexico--Catron and Grant. Figures G-A and G-B show the precise location of the Gila, while Table G-A lists the representative counties ${ }^{2}$ of each sub-basin of the Colorado River Basin.
${ }^{1}$ See U.S. Department of Health, Education and Welfare, Public Health Service, Bureau of State Services, Division of Water Supply and Pollution Control, Region VIII, Colorado River Basin Water Quality Control Project, State and County Area Tabulations for the Colorado River Basin (Denver: Colorado River Basin Water Quality Control Project, January, 1962), p. 7.

2
${ }^{2}$ The Public Health Service has designated as "representative" certain counties of the Colorado Basin in which most of the economic activity occurs. This was necessary because the boundaries of the Colorado River Basin and its sub-basins follow natural drainage divisions and rarely conform to county.borders while most statistical data are available only for entire counties. Ibid., p. 12.

Table G-A

Sub Basin
I. Upper Main Stem

State and County
Colorado

1. Delta
2. Dolores
3. Eagle
4. Garfield
5. Grand
6. Gunnison
7. Hinsdale
8. Mesa
9. Montrose
10. Ouray
11. Pitkin
12. San Miguel
13. Summit

Utah

1. Grand
\therefore
II. Green
III. San Juan

Colorado

1. Moffat
2. Rio Blanco
3. Routt

Utah

1. Carbon
2. Daggett
3. Duchesne
4. Emery
5. Uintah

Wyoming

1. Lincoln
2. Sublette
3. Sweetwater
4. Uinta

Colorado

1. Archuleta
2. La Plata
3. Montezuma
4. San Juan

New Mexico

1. San Juan

Sub-Basin State and County
III. San Juan. Utah
(cont'd.) I. Garfield
2. Kane
3. San Juan
4. Wayne
IV. Little

Colorado Arizona

1. Apache
2. Navajo

New Mexico

1. McKinley
V. Gila Arizona
2. Cochise
3. Gila
4. Graham
5. Greenlee
6. Maricopa
7. Pima
8. Pinal
9. Santa Cruz
10. Yavapai

New Mexico

1. Catron
2. Grant
IV. Lower Arizona

Main Stem 1. Coconino
2. Mohave
3. Yuma

Nevada

1. Clark
2. Lincoln

Utah

1. Washington

MAJOR SUB-BASINS OF THE COLORADO RIVER BASIN

COLORADO RIVER BASIN WATER QUALITY CONTROL PROJECT U. S. DEPT. OF HEALTH, EDUCATION, a WELFARE PUBLIC HEALTH SERVICE REGION VIII DENVER, COLORADO

The Gila Sub~Basin encompasses practically all of central and southern Arizona and a portion of southwestern New Mexico. U.S. Highways 60-70 and 80 cut across the Gila, providing the major southern routes to Calfformia. It is an area of many contrasts from small mining towns in a state of decline to the major metropolitan areas of Phoenix and Tucson which have grown more rapldly in recent years than any other part of the country. The concentration of manufacturing in these cities frparts more of the flavor of the industrialized United States (morern version), than any other portion of the Colorado River Basin.

The agriculture of the sub-basin is extremely diverse. Crop production provided 60 percent of the gross value of agricultural output in the Gila in 1960 with livestock and its products accounting for the remaining two-fifths. Harvested acreage was largely concentratkid In Maricopa and Pinal Counties, which accounted for somewhat over 50 percent and 28 percent of the total, respectively. ${ }^{\mathbf{l}}$ Virtually all crops produced in the Gila are grown under irrigation.

About 40 percent of all Jand area in the Gila is administered by the U.S. Forest Service, with substantial acreages of six national forests - - the Apache, Cibola, Coronado, Gila, Prescott, and Tonto--. within the sub-basin's borders. ${ }^{2}$
${ }^{1}$ See Lynn Wilkes, "An Analysis of the Agricultural and Forestry Economy of the Gila Sub-Basin for 1960," (revision of June, 1964 Report by J. Dean Jansma), p. 100 of this report.
${ }^{2}$ Ibid., p. 87, and pp. 102, 103.

Populatior:

The Gila is the most populous sub-basin of the Colorado River Basin, and its 1960 population of $1,159,374$ was almost five times that of the second ranking sub-basin in population, the Lower Main Stem, Table G-B presents a sumary of the age and sex distribution of 1960 sub-basin population. The age profile of the population of the Gila more closely approximates that of the United States than that of any of the other sub-basins of the Colorado, although it is somewhat more heavily concentrated in the group under 40 years of age.

The Gila's population has grown for at least 40 years, and the 76.4 percent increase in the $1950-60$ period was the largest gain in this period and probably in history. Eight of the eleven countles which comprise the Gila grew in population in the $1950-60$ period ranging from a doubling in Maricopa and +88.1 percent in Pima (reflecting the surge forward of Phoenix and Tucson) to Gila County's +6.6 percent. Three counties of the sub-basin lost population. These were Greenlee (-10.1%), Grant (-15.8%), and Catron (-21.5%).

Census data permit an analysis of population change in terms of the components of such change. For example, it enables one to determine how much of the difference in population between 1950 and 1960 was due to factors other than the excess of births over deaths (the natural increase). The results of such an analysis in the Gila are instructive. During the decade to 1960 the excess of births over deaths in this sub-basin amounted to 186,730. The reported excess of total 1960

Table G-B

Population by Age and Sex: 1960
Gila Sub-Basin

Age Group	Male	Female
$0-19$	244,874	238,779
$20-39$	154,621	154,202
$40-64$	140,703	142,393
$65 \cdots 65+$	41,380	42,422
	Total	581,578
	Total-Both Sexes	$1,159,374$

Source: U.S. Census of Population, 1960.
over 1950, however, was 500,244 . Thus net in-migration is said to have taken place, and the 313,514 in-migrants constitute 47.7 percent of the 1950 population taken as a base. Thus, a net migration rate of +47.7 is assigned the Gila. This was the largest positive net migration rate found an any sub-basin of the Colorado. Similarly calculated rates for the component counties show positive net rates for five counties (Cochise, Maricopa, Pima, Pinal and Yavapai) and negative rates for six (Greenlec, Gila, Graham, Santa Cruz, Catron and Grant). The positive change in the first five counties so far exceeded the others however, that the net migration rate for the sub-basin was able to attain its level of +47.7 for the decade. ${ }^{3}$

In the aggregate, the Gila retained its historic rank as first in population among the six sub-basins of the Colorado. Indeed, its relative share of the total population of the Colorado River Basin has increased from the $47-48$ percent range in 1930 and 1940 to 54.4 percent in 1950 and 60.7 percent in 1960 .
${ }^{3}$ For a detailej discussion of population and migration, see the chapter by J. W. Leasure which appears in the final report. The basic data source here is Bureau of the Census, "Components of Population Change, 1950 to 1960, for Counties, Standard Metropolitan Statistical Areas, State Economic Areas, and Economic Subregions," Current Population Renozts, Series $\mathrm{P}-23$, No. 7, November, 1962.

Population Density

The $1,159,374$ residents of the Gila Sub-Easin in 1960 were distributed over a land area of 58,539 square miles, with a resulting population density of 19.8 persons per square mile. While, from a statistical point of view they were living in the most crowded of all six sub-basins, this population density was only about a third as large as the national figure of 59.0 persons per square mile. Nevertheless, the increase in population density in the Glla of 76.4 percent over the 1950 level was the largest such gain in the entixe Colorado River Basin and sonething more than four times as fast as the national rate of growth in density of population.

Within the counties of the sub-basin, however, Maricopa with its metropolitan center of Phoenix was already more crowded relatively than the nation. Thus in 1960, the national population density of 59.0 people per square mile compared with 71.9 in Maricopa. At the other extreme, Catron County, New Mexico with 0.4 persons per square mile was the least densely settled of any county of the Gila and was also the third least densely populated county in the entire Colorado River Basin. Catron, Grant, and Greenlee Counties all having lost population in the decade to 1960 also showed declines in population density.

A related matter is the classification of the population into rural and urban categories. By Census definition 21.6 percent of the population of the Gila was classed as rural in 1960. Of this total, only three percent were identified as rural-farm with the remainder of 18.6 percent considered rural-nonfara. The urban group comprised 78.4 percent
of the population of the Gila, making it the most urban of all six sub-basins of the Colorado. The trend toward urbanization is show by the data in Table $G-B_{1}$. It is noteworthy that in the span of one decade

Table $G-B_{1}$
Rural-Urban Distribution of the Population of the Gila Sub-Basin

1950 \&1960
19601950

Total	U.S.	Gila	U.S.	Gila
Urbal Non-farm	22.9%	78.4%	18.6	64.0%
Rural	59.7%			
Rural Farm	7.5	3.0	20.7	31.1
			15.3	9.2

Source: U.S. Census of Population: 1950 and 1960.
the Gila has shifted from a position where its population was more rural than was the case in the nation at large, to one where its rural population was smaller than the national figures and its urban class larger.

Within the sub-basin, the most rural county was Catron, New Mexico which was classed as 78.7 percent rural-nonfarm and 21.2 percent rural-farm by the Census Bureau. Pima County, which contains Tucson, was the least rural with only 10.6 percent classed as rural-nonfarm and 1.0 percent as rural-farm and the remaining 88.4 percent considered urban.

Educational Jevel of the Population

In 1950 the educational attainment of the population 25 years of age and older in the Gila had been on a par with the nation as measured
by the median number of years of school completed. This applied to both sexes. However, by 1960, the Gila figures of 10.1 for males and 10.6 for females each lagged behind the corresponding national figures of 10.5 and 11.0. Measured by this criterion, only the Little Colorado Sub-Basin had a lower level of educational attainment among its population.

Within the counties of the sub-basin, Pima's residents reported the largest number of years of schooling--12.0 for males and 12.1 for females. Pima also had led the list in 1950. Neighboring Pinal Count: was at the low end of the list in the most recent censal year with 8.6 years of schooling among males and 9.1 years for females. During the decade to 1960 the most rapid growth in average educational attain ment was found among males in Cochise County ($\uparrow 23$ percent) and females in Grahan County (+20 percent). Those and additional details are presented in Table G-C.

Table $G-C$

Median School Completed for Persons 25 Years and Over In the Gila Sub-Basin

	Male		Female			
County	1950	1960	Percent Change	1950	1960	Percent Change
Catron, N. M.	8.1	8.6	6\%	8.8	10.4	18\%
Cochise, Arizona	9.0	11.1	23	9.5	11.2	18
Gila, Arizona	8.8	9.7	10	9.6	10.2	6
Graham, Arizona	8.8	10.1	15	9.0	10.8	20
Grant, N. M.	8.8	9.0	2	8.9	9.9	11
Greenlee, Arizona	8.9	9.7	9	9.3	10.1	5
Maricopa, Arizona	10.1	11.3	12	11.1	12.0	8
Pima, Arizona	10.8	12.0	11	11.5	12.1	5
Pinal, Arizona	8.2	8.6	5	8.6	9.1	6
Santa Cruz, Arizona	8.9	10.6	19	8.7	9.2	6
Yavapai, Arizona	9.6	10.4	8	10.8	11.5	6
Gila Sub-Basin Average	9.0	10.1	12\%	9.6	10.6	10\%
United States	9.0	10.5	17\%	9.6	11.0	15\%

Source: U.S.Census of Population, 1950 and 1960.

Incone ${ }^{4}$

The Gila Sub-Basin had the second largest per capita personal fncome of any sub-basin of the entire Colorado River Basin in 1960 . (See Table G-D) ${ }^{5}$. Our estinate of $\$ 1,912$ for the Gila was second only to the Lower Main Stem and represented 98.5 percent of the national figure. As might have been expected Maricopa and Pima Counties led the sub-basin with $\$ 2,014$ and $\$ 1,979$, respectively. (See Table G-E) Pinal County trailed the list with $\$ 1,340$.

Labor Force Participation

Labor force participation indicates what proportion of the adult population is employed or considers itself avallable for work. More precisely, the labor force is comprised of those who are employed or
${ }^{4}$ Our estimates of per capita personal income were derived in the following manner. Personal income for each county was determined by multiplying the mean income from all sources received by income rectpients in 1959 by the number of income recipients as reported in Table 86 of various state reports of the 1960 Census of Population, General Social \& Economic Characteristics. The personal income from all sources thus derived for 1959 was adjusted to 1960 by the national growth rate in personal income between 1959 and 1960 (4.9%). The resulting total was then divided by 1960 population to arrive at the 1960 per capita personal income figures shown in Tables G-D and G-E.
${ }^{5}$ In Table G-D the term "location quotient" appears for the first time in this report. This refers to a convenient device which aids in the study of regions by permitting a simple comparison per head of population between the region and the entire country for whatever particular economic characteristic is under study. A location quotient with a value of 1.0 would indicate equality between region and nation. A value greater than 1.0 indicates the relative excess of the region over the nation, while a quotient less than 1.0 shows the relative magnitude by which the region trails the nation.

Table G-D

Personal Income Per Capita

U.S., Colorado River Basin, and Six Sub-Easins, 1960

	Per Capita Eersonal Income (1960 Estimates)	Location Quotient (Sub-Basin Per Capita Personal Income) (U.S. Per Capita Personal Income)
United States	1,941	--
San Juan Sub-Basin	1,554	0.801
Upper Main Stem Sub-Basin	I,695	0.873
Green Sub-Basin	1,656	0.853
Gila Sub-Basin	1,912	0.985
Lower Main Stem Sub-Basin	2,112	1.088
Little Colorado Sub-Basin	1,022	0.527
Colorado River Basin	1,836	0.946

United States

San Juan Sub-Basin.
Upper Main Stem Sub-Basin
Green Sub-Basin
Gila Sub-Basin
Lower Main Stem Sub-Basin
Little Colorado Sub-Basin
Colorado River Basin

1,941
$1,554 \quad 0.801$
I, 695

$$
0.873
$$

1, 656
0.853

1,912
0.985

2,112
1,022
1,836
(Sub-Basin Per Capita Personal Income) -
(U.S. Per Capita Personal Income)

Source: Our estimates of per capita personal income were derived in the following manner. Personal income for each county was determined by multipIying the mean income from all sources received by income recipients in 1959 by the number of income recipients as reported in Table 86 of various state reports of the 1960 Census of Population, General Social and Economic Characteristics. The personal income from all sources thus derived for 1959 was adjusted to 1960 by the national growth rate in Personal Income betwecin 1959 and $1960(4.9 \%)$. The resulting total was then divided by 1960 population to arrive at the 1960 per capita personal income figures,

Table G-E
1960 Per Capita Personal Income by Representative Counties of the Gila Sub-Basin

County
Per Capita Personal Income

Maricopa, Arizona	$\$ 2,014$
Pima, Arizona	1,979
Yavapai, Arizona	1,867
Cochise, Arizona	1,648
Santa Cruz, Arizona	1,630
Greenlee, Arizona	1,536
Gila, Arizona	1,516
Catron, New Mexico	1,467
Grant, New Mexico	1,453
Graham, Arizona	1,428
Pinal, Arizona	:

Source: Our estimates of per capita personal income were derived in the following manner. Personal income for each county was determined by multiplying the mean income from all sources received by income recipients in 1959 by the number of income recipients as reported in Table 86 of various state reports of the 1960 Census of Population, General Social and Economic Characteristics. The personal income from all sources thus derived for 1959 was adjusted to 1960 by the national growth rate in Personal Income between 1959 and 1960 (4.9%). The resulting total was then divided by 1960 population to arrive at the 1960 per capita personal income figures.
actively seeking work. This number, when expressed as a percentage of the noninstitutionalized population aged 14 or older ylelds the labor force participation rate. This concept is a useful indicator of the level of economic developnent in a region and is particularly valuable when broken dom into age and sex categories. For this report, disaggregation into age classes vas not possible, but Table G-F does provide labor force participation rates by sex for the continental United States, for the entire Colorado River Basin, and for each of its six sub-basins. The participation rate for each region has been divided by the corresponding national figure to obtain a "location quotient:"

Table G-F indicates that in 1960 the share of the adult population in the Gila employed or seeking work was lower than in the nation at large. The labor force participation rate among sub-basin males of 77.6 nercent ranked fourth among the six sub-basins. A third of the females were similarly engaged in employment or the search for it. While this was somewhat below the U.S. rate for women of 34.88 percent, it was exceeded in the Colorado River Basin only by the Lower Main Stem. The proportion of Gila residents of both sexes in the labor force has increased in the decade to 1960 , and among males, this represents a movement counter to the national trend. Sub-basin location quotients of 0.986 and 0.935 for males and females, respectively, indicate the relatively small gap which separates labor force participation in the Gila from the national level.

Table G-F
Labor Force Participation Rates

\qquad

United States	81.02	1.000		78.75	1.000		29.28
Colorado River Basin	77.56	0.957		77.88	0.989		25.47
Lower Main Stem Sub-Easin	. 82.93	1.024	1	82.84	1.052	1	29.03
Gila Sub-Basin	75.78	0.935	5	77.62	0.986	4	25.93
Iittle Colorado Sub-Basin	75.72	0.934	6	62.92	0.799	6	28.59
Upper Main Stem Sub-Basin	.78.20	0.965	3	.78.31	0.994	3	23.46
San Juan Sub-Basin	77.77	0.960	4	77.06	0.978	5	21.19
Green Sub-Basin	82.11	1.013	2	79.75	1.013	2	20.67

Source: Computed from data in the U, S. Census of Population, 1950 and 1960.

The variation in labor force participation rates within the sub-basin Is shown in Table G-G. Cochise County led in labor force particlpation rates among men with its 83.2 percent in 1960. Yavapai was found at the low end of the list with 69.7 percent. Among females, Maricopa ranked first with 34 percent while Catron's very low 15.2 percent provided the floor.

The width of the range separating the high county participation rate from the low widened during the 1950-1960 decade. In the case of males, the range increased from 11.83 percentage points in 1950 to 13.49 in 1960. The range in labor force participation rates among fenales widened even more from 13.02 to 18.78. Despite substantial variation from county to county, both in the magnitude of participation rates and their changes over time there appeared to be some stability in the rank order of specific counties, particularly among women. If female participation rates are ranked in 1960 , every county is found to be within one rank of its 1950 position while five counties retained their exact rank over the decade. Among male participation rates, two counties retained their 1950 ranks and five counties did not vary their positions by more than one rank. (See Table G-G)

Table G-G

Labor Force Participation Rates In the Gila Sub-basin

County	Male		Female	
	1950	1960	1950	1960
Catron, Nev Mexico	79.24	79.29	15.96	15.18
Cochise, Arizona	74.81	83.22	22.85	29.82
Gila, Arizona	77.06	73.76	18.48	25.60
Graham, Arizona	74.23	73.83	21.69	29.72
Grant, New Mexico	79.09	74.83	22.12	30.12
Greenlee, Arizona	84.07	30.07	18.45	23.81
Maricopa, Arizona	76.22	73.76	28.07	33.96
Pima, Arizona	72.24	75.29	26.18	32.89
Pinal, Arizona	81.20	76.81	18.36	25.33
Santa Cruz, Arizona	77.82	77.57	28.98	32.97
Yavapai, Arizona	74.53	69.73	26.23	32.17
Gila Sub-basin Mean	75.78	77.62	25.93	32.63

Source: Computed from data in the U.S. Census of Population, 1950 and 1960.

Employment

Table G-H presents the Census version ${ }^{6}$ of industrial distribution of sub-basin employment for 1940,1950 and 1960 . In the twenty years from 1940 to 1960 , employment in the Gila increased by 221 percent. Further, the increase of 88.2 percent in the most recent decade represents an increased rate of growth over the gain of 70.7 percent in the decade to 1950. These employment increases in the Gila are significantly more rapid than those in the nation at large of 26.7 percent in the first decade, and 15.5 percent in the more recent one. U.S. employment increased by 46.3 percent in the twenty years between 1940 and 1950 . (See Table G-K).

Tables G-H and G-J indicate the growing diversity of employment in the sub-basin. The concentration of sub-basin employment among the top few industries has been decreasing since 1940. Service employment has

[^5]Table G-H
Gila Employment by Industry
1940

INDUSTRY	1940		Reported Employment
	Reported Employment	Adjusted Employment	
Agriculture	23,367	23,704	26,092
Mining	13,311	13,516	11,314
Contract Construction	7,277	7,385	17,685
Manufacturing (Total)	[8,869	9,093	16,971
Food and kindred products mfg.	2,132	2,161	3,714
Textile mill products mfg.	58	59	81
Apparel mfg.	47	47	344
Lumber, wood products, furniture mfg.	904	920	1,343
Printing and publishing mfg.	1,292	1,309	2,338
Chemicals and allied products mfg.	386	391	833
Electrical and other machinery mfg.	349	353	1,099
Motor vehicles and equipment mfg.	65	66	113
**Other transportation equipment mfg.	29	29	135
**Primary metals	335	339	4,767
*Fabricated metals	2,631	2,770	1,073
Other and miscellaneous mfg.	641	649	1,475
Transportation	5,788	5,879	9,679
Comunication, utilities	2,820	2,861	7,647
Wholesale trade	4,388	4,447	8,333
Eating and drinking places	3,991	4,046	8,525
Other retail trade	16,298	16,533	30,731
Finance, insurance, real estate	2,836	2,877	6,999
Services (Total)	28,989	29,426	49,199
Hotels and other personal services	6,580	6,677	10,790
Private houscholds	6,372	6,471	7,031
Business and repair services	2,914	2,956	6,380
Entertainment, recreation services	1,512	1,534	2,282
Medical, other professional services	11,611	11,788	22,716
Government	6,254	6,343	18,156
Total	124,188	126,010	211,675
Industry Not Reported	1,822		3,409

Table G-H (Cont'd)
Gila Employment by Industry

INDUSTRY	Industry as percentage of adjusted Sub-basin employment		
	1940	1950	1960
Agriculture	18.81\%	12.33\%	7.65\%
Mining	10.72	5.33	4.04
Contract construction	5.86	8.35	8.92
Manufacturing (Total)	7.21	8.18	13.87
Food and kindred products mfg.	1.71	1.75	1.84
Textilc mill products mfg.	0.04	0.03	0.03
Apparel meg.	0.03	0.16	0.64
Lumber, wood products, furniture mfg.	0.73	0.63	0.51
Printing and publishing mfg.	1.03	1.10	1. 29
Chemicals and allied products mfg.	0.31	0.39	0.37
, Electrical and other machincry mfg.	0.28	-0.51	2.74
Motor vehicles and equipment mfg.	0.05	0.05	0.09
Other transportation equipment mfg.	0.02	0.06	1.44
Primary metals	0.26	2.25	1.66
Fabricated metals	2.19	0.50	1.73
Other and miscellaneous mfg,	0.51	0.69	1.53
Transportation	4.66	4.56	2.98
Communication, utilities	2.27	3.61	3.29
Wholesale trade	3.52	3.94	3.61
Earing and drinking places	3.21	4.02	3.34
Other retail trade	13.12	14.52	13.53
Finance, insurance, real estate	2.28	3.30	5.25
Services (Total)	23.35	23.24	24.32
Hotels and other personal services	5.29	5.09	4.12
Private houscholds	5.13	3.32	3.08
Business and repair services	2.34	3.01	3.04
Entertainment, recreation scrvices	1.21	1.07	0.93
Medical, other professional services	9.35	10.72	13.14
Government	5.03	8.57	9.52
Total	100.00	100.00	100.00

```
    Table G-H (Cont'd)
Gila Employment by Industry
```

* The inclusion of an "industry not reported" sector would grossly complicate the projection procedure and hence, it was decided to allocate employees so classified among the identified manufacturing sectors. This was done by a percentage distribution which would leave the original relationships unchanged.

Source: U.S. Department of Commerce, Office of Business Economics, Growth Patterns in Employment by County, 1940-1950 and 1950-1960 (Washington, D.C.: U.S. Goverment Printing Office, 1965).
** U.S. Department of Comerce, Bureau of the Census, U.S. Census of Population, 1960 (Washington, D.C.: U.S. Government Printing Office, 1965).

Adjusted Employment by Industry in Counties
of the Gila Sub-Basin
1960

Industry	Cochise	Gila	Graham	Greenlee	Maricopa	Pima	Pinal	Cruz	Yavapai	Catron	Grant
Agriculture	1,441	285	847	206	20,085	2,300	3,982	288	810	403	344
Mining	1,841	2,130	116	1,756	587	3,566	3,519	51	749	5	2,065
Contract Construction	1,092	615	265	107	22,754	8,559	1,083	224	1,162	56	$\bigcirc 06$
Manufacturing	1,195	972	240	181	38,705	10,716	805	114	912	202	373
Food \& Kindred Prods.	113	36	108	26	5,358	1,528	162	28	41	0	72
Textile Mill Prods.	0	0	0	0	106	20	24	0	0	0	0
Apparel Mfg.	12	0	4	0	1,993	276	80	9	195	0	40
Lumber \& Wood Prods.	4	94	19	4	1,378	288	29	0	62	198	8
Printing \& Publishing	153	66	27	25	3,649	972	142	13	120	4	54
Chemicals, Etc.	246	0	0	0	879	168	36	5	0	0	0
Electrical, Etc.	87	12	15	7	9,948	968	46	0	31	0	4
Motor Vehicles, Etc.	16	0	0	0	328	37	0	0	0	0	0
Other Transportation	12	8	9	0	5,631	192	15	0	0	0	0
Primary Metals	672	736	11	115	3,073	175	205	13	9	0	162
Fabricated Metals	16	0	4	0	1,979	4,991	4	0	16	0	0
Other Miscellaneous Mfg.	64	20	43	. 4	4,383	1,101	62	46	438	0	33
Transportation	653	106	46	18	6,254	3,758	350	167	549	18	146
Communication \& Utilities	468	159	177	61	8,945	2,546	415	87	331	13	153
Wholesale Trade	288	105	95	28	10,723	2,594	219	325	184	0	70
Eating \& Drinking Places	585	355	184	128	7,779	2,941	679	174	499	35	170
Other Retail Trade	2,036	1,042	723	349	32,894	13,029	1,902	735	1,291	104	679
Finance, Insurance, Etc.	431	206	92	43	14,746	4,711	440	89	392	0	114
Services	3,442	1,391	1,133	568	56,950	26,369	2,343	948	2,468	67	1,609
Hotels, Etc.	615	275	188	61	9,639	4,563	467	223	453	17	181
Private Households	649	169	184	96	6,460	3,502	670	205	330	0	215
Business \& Repair	309	112	119	27	8,150	2,934	342	49	200	10	74
Entertainment	77	43	47	26	2,390	907	132	25	82	0	46
Medical \& Other	1,792	792	595	358	30,311	14,463	1,732	446	1,603	40	1,093
Government	6,459	391	263	83	18,500	10,790	919	374	529	33	233
Total	20,131	7,757	4,181	3,528	238,922	91,879	17,656	3,576	10,076	936	6,162

Table G-H 2

Adjusted Employment by Industry in Counties of the Gila Sub-Basin

1950

Industry	Cochise	Gila	Graham	Greenlee	Maricopa	Pima	Pinal	Santa Cruz	Yavapai	Catron	Grant
Agriculture	1,286	459	1,143	259	14,064	2,269	4,383	363	1,035	567	709
Mining	885	2,380	57	1,493	479	1,629	1,848	219	1,106	11	1,357
Contract Construction	628	366	286	124	9,604	4,720	854	209	562	122	494
Manufacturing	920	1,009	174	971	9,273	2,125	280	179	520	193	1,058
Food \& Kindred Prods.	99	46	96	21	2,730	533	83	85	45	0	43
Textile Mill Prods.	3	0	0	0	61	14	1	1	0	0	2
Apparel Mfg.	14	4	5	0	169	113	2	23	18	0	0
Lumber \& Wood Prods.	14	108	15	5	729	196	13	7	68	187	22
Printing \& Publishing	108	40	26	1	1,475	533	38	32	79	0	44
Chemicals, Etc.	220	4	9	0	522	68	14	2	3	0	4
Electrical, Etc.	10	2	12	1	942	97	29	3	14	0	8
Motor Vehicles, Etc:	0	0	0	0	107	7	0	0	1	0	0
Other Transportation	9	0	0	0	100	20	1	3	3	0	1
Primary Metals	371	787	1	937	1,451	58	73	1	248	0	921
Fabricated Metals	3.	3	0	3	973	85	7	3	10	1	1
Other Miscellaneous Mfg.	69°	15	- 10	3	$\therefore 914$	401	19	19	31	5	12
Transportation	642	161	81	45	4,013	3,604	365	153	539	13	207
Communication \& Utilities	362	201	165	100	4,809	1,260	337	124	276	13	± 28
Wholesale Trade	129	103	75	16	6,442	1,214	108	138	. 170	1	84
Eating \& Drinking Places	406	258	151	109	4,589	1,915	476	104	437	39	178
Other Retail Trade	1,384	891	559	413	17,023	7,134	1,399	558	1,068	64	739
Finance, Insurance, Etc.	217	104	44	16	4,628	1,624	140	81	171	2	87
Services	2,017	1,206	812	490	26,195	13,012	1,766	656	2,197	128	1,509
Hotels, Etc.	460	291	157	78	5,722	2,901	374	163	581	25	213
Private Households	353	140	151	78	3,738	1,913	242	151	179	13	.. 84
Business \& Repair	264	137	120	59	3,816	1,371	244	70	241	16	148
Entertainment	121	87	32	32	1,227	571	86	16	76	1	68
Medical \& Other	819	551	352	243	11,692	6,256	820	256	1,120	73	896
Government	507	264	160	81	9,655	6,341	469	273	426	44	218
Total	9,383	7,399	3,707	4,117	111,678	46,847	$\overline{12,425}$	3,057	8,507	1,197	$\overline{6,767}$

Source: Same as Table H.

Table $\mathrm{G}-\mathrm{H}_{3}$
Adjusted Employment by Industry in Counties
of the Gila Sub-Basin

Industry

Agriculture
Mining
Contract Construction Manufacturing

Food \& Kindred Prods.
Textile Mill Prods.
Apparel Mfg.
Lumber \& Wood Prods. Printing \& Publishing Chemicals, Etc.
Electrical, Etc.
Motor Vehicles, Etc. Other Transportation
Primary Metals
Fabricated Metals
Other Miscellaneous Mfg.
Transportation
Communication \& Utilities
Wholesale Trade
Eating \& Drinking Places
Other Retail Trade
Finance, Insurance, Etc. Services

Hotels, Etc.
Private Households
Business \& Repair
Entertainment
Medical \& Other
Government
Total

Cochise	Gila	Graham	Greenlee	Maricopa	Pima	Pinal	Santa Cruz	Yavapai	Catron	Grant
1,184	582	1,214	317	12,312	2,201	2,783	376	1,146	783	806
2,066	2,475	58	1,225	520	1,387	1,631	589	1,700	168	1,697
566	298	265	137	3,244	1,631	326	101	452	119	246
1,385	738	67	33	3,986	1,190	306	67	610	119	592
48	36	36	11	1,603	313	33	14	44	0	23
0	0	0	0	51	7	0	0	0	0	1
4	3	0	0	23	7	1	2	2	0	5
42	45	9	9	339	248	35	11	34	115	33
97	37	17	4	724	286	33	23	. 70	1	17
143	0	1	0	205	38	0	1	2	0	1
10	6	0	1	269	29	17	1	8	2	10
0	1	0	0	54	8	1	0	2	0	0
0	1	0	1	6	17	0	0	2	1	1
5	11	0	0	274	39	0	0	7	0	3
933	583	1	1	109	34	184	13	419	0	493
103	15	3	6	329	164	2	2	20	0	5
571	137	. 52	44	I, 960,	2,106	190	95	539	11	174
231	155	61	22	1,395	525	125	50	207	1	89
136	87	46	17	3,256	549	57	91	152	2	54
260	200	73	62	2,042	774	222	54	241	22	96
1,215	726	336	284	8,063	3,255	662	427	949	78	538
129	63	20	14	1,814	565	47	62	120	3	40
1,891	1,075	531	350	13,236	7,429	1,054	622	1,886	115	1,237
390	243	- 104	88	3,198	'1,642	216	159	449	14	174
549	201	92	70	2,710	1,834	247	195	273	13	287
166	98	81	36	1,540	541	87	68	185	18	136
77	68	27	16	746	351	61	17	121	1	49
709	465	227	140	5,042	3,061	443	183	858	69	591
1,455	216	147	53	2,668	891	258	181	269	53	152
11,089	6,652	2,870	2,558	54,496	22,503	$\overline{7,661}$	2,715	8,271	1,474	5,721

Source: Same as Table H

Source: Table G-H.

Table G-J

Percentage Distribution of Employment by Industry in the Gila Sub-Basin

Sector	$\% \frac{1940}{\text { of Total Employment }}$	Cumulative Percent
Services	23.35%	23.35%
Agriculture	18.81	42.16
Other Retail	13.12	55.28
Mining	10.72	66.00
Manufacturing	7.21	73.21
Construction	5.86	79.07
Government	5.03	84.10
Transportation	4.66	88.76
Wholesale Trade	3.52	92.28
Eating and Drinking	3.21	95.49
Finance, Insurance, Etc.	2.28	97.77
Communications and		
Utilities	2.27	100.04

1950

Services	23.24%	23.24%
Other Retail	14.52	37.76
Agriculture	12.33	50.09
Government	8.57	58.66
Construction	8.35	67.01
Manufacturing	8.18	75.19
Mining	5.33	80.52
Transportation	4.56	85.08
Eating and Drinking	4.02	89.10
Wholesale Trade	3.94	93.04
Communications, Etc.	3.61	96.65
Finance, Insurance, Etc.	3.30	99.95

1960

Services	24.32%	24.32%
Manufacturing	13.87	38.19
Other Retail	13.53	51.72
Government	9.52	61.24
Construction	8.92	70.16
Agriculture	7.56	77.72
Finance, Insurance, Etc.	5.25	82.97
Mining	4.04	87.01
Whalesale Tracle	3.61	90.62
Eating and Drinking	3.34	93.96
Communications, Etc.	3.29	97.25
Transportation	2.98	100.23

Source: Computed from data in Table G-H 1960.

Table $G-K$
Inited States Employment by Industry

INDUSTRY	Reported Employment 1940	Adjusted * Employment 1940	Reported Employment 1950	Adjusted Employment* 1950	$\begin{aligned} & \text { Reported } \\ & \text { Employment } \\ & 1960 \end{aligned}$	Adjusted Employment* 1960
Agriculture	8,538,419	8,670,494	7,042,750	7,147,643	4,349,884	4,527,986
Mining	918,253	932,427	930,657	944,496	654,006	680,64?
Contract Construction	2,068,474	2,100,419	3,457,236	3,508,712	3,815,937	3,912,103
Manufacturing	10,591,468	10,754,920	14,600,903	14, 818,148	17,513,086	18,228, 393
Food and kindred products mfg.	1,105,875	1,122,954	1,414,009	1,435,022	1,822,477	1,896,904
Textile mill products mfg.	1,151,805	1,169,574	1,240,283	1,2.:3,764	954,036	992,947
Apparel mfg.	799,288	811,595	1,063,921	1,0\%9,701	1,159,163	1,206,430
Lumber, wood products, furniture mfg.	- 939,444	953,964	1,190,176	1,207,898	1,067,252	1,110,864
Printing and publishing mfg.	632,298	642,046	855,254	867,996	1,141,192	1,187,676
Chemicals and allied products mfg.	440,142	446,917	659,327	669,116	864,542	899,797
Electrical and other machinery mfg.	1,072;424	1,088,949	2,084,337	2,115,392	3,055,447	3,180,537
Motor vehicles and equipment mfg.	574.960	583,808	869,388	882,300	841,861	376,333
Dther transportation	307,133	311,833	:482,799	489,972	976,837	1,016,793
\%rPrimary Metals	878,643	892,230	1,184,975	1,202,612	1,224,922	1,275,062
Fabricated metals	628,464	638,181	847,209	859,783	1,291,709	1,344,461
Other and miscellancous mfg.	2,060,992	2,092,869	2,709,255	2,749,592	3,113,648	3,241,189
Transportation	2,185,775	2,219,588	2,954,230	2,998,195	2,735,913	2,851,346
Communcation, utilities	938,615	953,135	1,495,077	1,517,271	1,718,234	1,788,482
Wholesale trade	1,209,449	1,228,118	1,981,827	2,011,278	2,212,984	2,303,603
Eating and drinking places	1,120,571	1,137,857	1,692,805	1,717,952	1,801,667	1,875,311
Other retail trade	5,233,332	5,314,305	6,910,018	7,012.632	7,777,984	8,096,324
Finance, insurance and real estate	1,469,881	$1,492,560$	1,920,691	1,949,298	2,694,650	2,804,834
Services	8,620,952	8,754,248	10,106,309	10,256,685	13,549,947	$14,104,103$
Hotels and other personal services	1,689,514	1,715,652	1,861,588	1,889,267	1,941,530	2,020,919
Private households	2,336,497	2,372,642	1,639,551	1,663,939	1,916,964	1,995,308
Business and repair services	867,413	880,826	1,313,235	1,332,728	1,610,723	1,676,538
Entertainment, recreation services	396,966	403,050	494;720	502,062	502,879	523,249
Medical, other professional services	3,330,562	3,382,078	4,797,215	4,868,689	7,577,846	7,888,089
Government	1,790,086	1,817,744	3,539,859	3,592,602	4,936,292	5,138,421
Total	44,685,275		56,632,392		63,764,564	
Industry Not Reported	690,540		842,520		2,608,085	
Adjusted total		45,375,815		57,474,912	,	$66,372,649$

Table G-K (Cont'd)
United States Employment by Industry

INDUSTRY	Industry as a percentage of U. S. Employment			Percentage Change		
				1940	1940	1950
	1940	1950	1960	1950	1960	1960
Agriculture	19.12\%	12.44\%	6.82\%	-17.57\%	-47.78\%	-36.66\%
Mining	2.06	1.64	1.03	1.29	-27.01	-27.94
Contract construction	4.63	6.11	5.98	67.04	89.11	13.20
Manufacturing	23.65	25.78	27.46	37.78	69.49	23.01
, Food and kindred products mfg.	2.47	2.50	2.86	27.78	68.92	32.18
Textile mill products mfg.	2.57	2.19	1.50	7.62	15.11	- -21.12
Apparel mfg.	1.78	1.88	1.82	33.03	48.64	11.73
Lumber, wood products, furniture mfg.	2.11	2.10	1.67	7.75	16.44	-8.04
Printing and publishing mfg.	1.41	1.51	1.79	35.19	84.98	36.82
Chemicals and allicd products mfg.	. 98	1.16	1.36	49.71	101.33	34.47
Electrical and other machinery mfg.	2.39	3.68	l. 79	94.25	192.07	50.35
Motor vehicles and equipment mfg.	1.28	1. 54.	1.32	51.12	50.10	-0.68
Other transportation	. 68	. 85	1.53	57.12	226.06	107.52
Primary metals	1.96	2.09	1.92	34.78	42.90	6.02
Fabricated metals	1.41	1.50	2.03	34.72	110.67	110.67
Other and miscellancous mfg.	4.61	4.78	4.88	31.37	54.86	17.87
Transportation	4.90	5.22	4.30	35.08	28.48	-4.88
Communcation, utilities	2.11	2.64	2.69	59.18	87.64	17.87
Wholesale trade	2.71	3.50	3.47	63.76	87.57	14.53
Eating and drinking places	2.51	2.99	2.83	50.98	64.81	9.15
Other retail trade	11.72	12.20	12.21	31.95	52.34	15.45
Finance, insurance and real estate	3.29	3.39	4.23	30.60	87.92	43.88
Services	19.30	17.84	21.24	17.16	61.07	37.51
Hotels and other personal services	3.78	3.29	3.04	10.11	17.79	6.96
Private houscholds	5.22	2.90	3.01	-29.87	-15.91	19.91
Business and repair services	1.94	2.32	2.53	51.30	90.33	25.79
Entertainment, recreation services	. 88	. 87	. 79	24.56	29.82	4.21
Medical, other professional services	7.45	8.47	11.88	43.95	133.23	62.01
Government	4.01	6.25	7.74	97.64	182.68	43.02
Total	100.00	100.00	100.00	26.66	46.27	15.48

TabIe G-K (Cont'd)

Gila Employment by Industry

* The inclusion of an "industry not reported" sector would grossly complicate the projection procedure and hence, it was decided to allocate employees so classified among the identified manufacturing sectors. This was done by a percentage distribution which would leave the original relationships unchanged.

Source: U. S. Department of Comerce, Office of Business Economics, Growth Patterns in Employment by County, 1940 - 1950 and 1950-1960. (Washington, D.C.: U.S. Government Printing Office, 1965)
** U.S. Department of Commerce, Bureau of the Census, U.S. Census of Population, 1960 (Washington, D.C.: U.S. Government Printing Office, 1965).
retained its lead as the major employing industry in the Gila, and its share of total employment has increased slightly from 23.35 percent in 1940 to 24.32 in 1960.

The pattern of employment changes shows sharp gains for manufacturing, whose relative share of total employment has almost doubled since 1940; finance has more than doubled. Government employment's share increased 70 percent in the decade to 1950 with a much slower growth rate in the more recent period.

Sharp declines have occurred in agriculture's relative share of sub-basin employment. It tumbled from a second ranking 18.81 percent in 1940 to a sixth rank of 7.56 in 1960. Mining has also experienced a significan. drop in relattve importance -- from 10.72 percent of sub-basin employment in 1940 to 4.04 percent twenty years later.

The details of manufacturing's move into prominence as a sub-basin employer since 1950 are set forth in Table G-I. The picture is one of uninterrupted growth with increases in employment of five or six or even seven times not uncomon, as for example in transportation equipment, apparel manufacturing, electrical and "other" machinery, miscellaneous manufacturing and fabricated metals.

Some significant divergences in the magnitude and direction of employment change between the Gila and the nation appear during the decade to 1960. Table G-íi shows the relative change in employment in twelve major industry groups for the two areas. A difference in direction of change was found in mining, which despite its loss of relative position noted above, aded to its employment rolls by 42.92 percent in the
sub-basin, while reducing employment by almost 30 percent nationally. During the same period, agricultural employment in the Gila grew by 16.78 percent while declining in the nation by 36.66 percent. Transportation employment also demonstrated contrary directions of change, growing by more than a fifth in the sub-basin as a 4.88 percent decline was recorded in the U.S. While the other industries with the exception of 3 subdivisions of manufacturing shown in Table G-M all added to their employment at both levels, the increases in the Gila far outdistanced those In the parent industries, nationally. Manufacturing, the finance group, and governnent are outstanding examples of the burgeoning growth rates in this sub-basin.

A more detailed analysis of industry-by-industry employment changes over time in the Gila relative to the mation is made possible by the findings in Table G-N. Here, 27 industries have been ranked in terms of their location quotients. These were calculated by dividing subbasin employment per capita in the Gila by the corresponding national figures. Industries with a location quotient greater than 1.0 may be viewed roughly as the sub-basin's "specialty" industries which export a portion of their output to other regions while those whose quotients fall below 1.0 may be considered regional industries whose output is probably supplemented by goods imported from other areas.

The number of "specialty" industries has increased from 10 in 1940 and 1950 to 12 in 1960. However, the degree of regional specialization has shrunk as the mean value for all regional industries with location quotients greater than 1.0 has declined from 1.467 in 1940 to 1.316

Table G-L
Percentage Distribution of Employment by Industry - United States, 1940, 1950, 1960

INDUSTRY	$\begin{gathered} \% \\ 1940 \\ \hline \end{gathered}$	Cumulative Total	INDUSTRY	$\begin{gathered} \% \\ 1950 \\ \hline \end{gathered}$	Cumulative Total	INDUSTRY	$\begin{gathered} \% \\ 1960 \\ \hline \end{gathered}$	Cumulative Total
Manufacturing	23.65\%	\% 23.65\%	Manufacturing	25.78\%	25.78%	, Manufacturing	27.46\%	27.46\%
Services	19.30	42.95	Services	17.84	43.62	Services	21.24	48.70
Agriculture	19.12	62.07	Agriculture	12.44	56.06	Other Retail Trade	12.21	60.91
Other Retail Trade	11.72	73.79	Other Retail Trade	12.20	68.26	Government	7.74	68.65
Transportation	4.90	78.69	Government	6.25	74.51	Agriculture	6.82	75.47
Contract Construction	4.63	83.32	Contract Construction	6.11	80.62	Contract Construction	5.98	81.45
Government	4.01	87.33	Transportation	5.22	85.84	Transportation	4.30	85.75
Finance, Insurance; Etc.	3.29	90.62	Wholesale Trade	3.50	89.34	Finance, Insurance Etc.	4.23	89.98
Wholesale Trade	2.71	93.33	Finance, Insurance, Etc.	3.39	92.73	Wholesale Trade	3.47	93.45
Eating \& Drinking Places	2.51	95.84	Eating \& Drinking Places	2.99	95.72	Eating \& Drinking Places	2.83	96.28
Communications \& Utilities	2.10	97.94	Communciations \& Utilities	2.64	98.36	Communciations \& Utilities	2.69	98.97
Mining	2.06	100.00	Mining	1.64	100.00	Mining	1.03	100.00

Table G-M
Comparison Of Percentage Change In Employment
By Industry Between 1950 and 1960 - United States and Gila

Industry	United States	Gila Sub-Basin
Agriculture	- 36.66%	16.78\%
Mining	- 27.94	42.92
Contract Construction	13.20	101.02
Manufacturing:	23.01	219.15
Food \& Kindred Products	32.18	27.61
Textile Mill Products	- 21.12	82.92
Appare1 Mfg.	11.73	649.71
Lunber \& Wood Products, Etc.	- 8.04	52.78
Printing \& Publishing	36.82	119.90
Chemicals \& Allied Products	34.47	57.68
Electrical \& Other Machinery	50.35	894.45
Motor Vehicles	- 0.68	231.30
Other Transportation Equipment Mfg.	107.52	4182.48
Primary Metals	6.02	38.88
Fabricated Metals	110.67	543.70
Other Miscellaneous Mfg.	17.87	313.48
Transportation	- 4.88	22.82
Communications \& Utilities	17.87	71.76
Wholesale Trade	14.53	72.53
Eating \& Drinking Places	9.15	56.18
Other Retail Trade	15.45	75.40
Finance, Insurance \& Real Estate	43.88	198.90
Services:	37.51	97.02
Hotels \& Other Personal Serives	6.96	52.13
Private Households	19.91	74.74
Business \& Repair Services	25.79	90.04
Entertainment	4.21	62.92
Medica1 \& Other Professiona1 Services	62.01	130.62
Government	43.02	109.20
Tota1	15.48	88.20

Source: Table G-K and Table G-H.

Table G-N
Employment by Industry
Location Quotients for Gila Sub-Basin**

		1960			1950			1940	
	Rank	Industry	Location Quotient*	Rank	Industry	Location Quotient*	Rank	Industry	Lecation Quotient*
	1	Mining	3.718	1.	Mining	2.815	. 1	Mining	4.446
	2	Contract Construction	1.404	2	Hotels, Etc.	1.335	2.	Fabricated Metals	1.348
	3.	Hotels, Etc.	1.273	3	Government	1.184	3	Hotels, Etc.	1.200
	4	Finance, Insurance, Etc.	1.176	4	Communications \&		4	Entertainment	1.193
	5	Government	1.159		Utilities	1.183	5	Wholesale Trade	1.117
	6	Communications \&		5	Contract Construction	1.179	6	Eating \& Drinking	1.099
		Utilities	1.152	6	Eating \& Drinking	1.156	7	Contract Construction	1.085
	7	Business, Etc.	1.143	7	Business, Etc.	1.122	8	Medical, Etc.	1.076
	8	Entertainment	1.124	8	Medical, Etc.	1.091	9	Government	1.074
	9	Eating \& Drinking	1.111	9	Entertainment	1.070	10	Business, Etc.	1.031
	10	Agriculture	1.057	10	Other Retail Trade	1.027	11	Other Retail Trade	. 961
	11	Other Retail Trade	1.048	11	Households	. 988	12	Communications \&	
	12	Medical, Etc.	1.043	12	Wholesale Trade	. 971		Utilities	. 928
ω	13	Wholesale Trade	. 986	13	Primary Metals	. 934	13	Agriculture	. 844
	14	Households	. 969	14	Agriculture	. 856	14	Households	. 840
	15	Other Transportation	. 888	15	Finance, Insurance, Etc.	. 840	15	Transportation	. 817
	16	Primary Metals	. 818	16	Transportation	. 755	16	Printing \& Publishing	. 624
	17	Fabricated Metals	. 807	17	Printing \& Publishing ${ }^{\text {P }}$. 635	17	Finance, Insurance, Etc.	. 595
	18	Printing \& Publishing	. 683	18	Food \& Kindred Products	. 605	18	Food \& Kindred Products	. 594
	19	Transportation	. 655	19	Fabricated Metals	. 291	19	Lumber \& Wood Products Mfg.	. 299
	20	Food \& Kindred Products	. 608	20	Lumber \& Wood Products Mfg	g . . 260	20	Chemicals, Etc.	. 268
	21	Electric Energy, Etc.	. 542	21	Chemicals, Etc.	. 293	21	Primary Metals	. 116
	22	Apparel Mfg.	. 336	22	Other Miscellaneous Mfg.	. 125	22	Electric Energy, Etc.	. 101
	23	Other Miscellaneous Mfg.	. 295	23	Electric Energy, Etc.	. 121	23	Other Miscellaneous Mfg.	. 096
	24	Lumber \& Wood Products Mfg.	. . 290	24	Apparel Mfg.	. 075	24	Motor Vehicles, Etc.	. 036
	25	Chemicals, Etc.	. 230	25	Other Transportation	. 066	25	Other Transportation	. 029
	26	Motor V̇ehicles, Etc.	. 067	26	Motor Vehicles, Etc.	. 031	26	Apparel Mfg.	. 018
	27	Textile Mill Products Mfg. ALI INDUSTRIES	$\begin{aligned} & .024 \\ & .943 \end{aligned}$	27	Textile Mill Products Mfg ALL INDUSTRIES	$\begin{array}{r} .016 \\ .862 \end{array}$	27	Textile Mill Products Mfg. ALL INDUSTRIES	$.016$

* Sub-Basin employment in each industry per capita of sub-basin population divided by national employment in each industry per capita of U.S. population.
** Quotients are based on adjusted sub-basin, and, adjusted U. S. employment figures. See Tables G-H and G-K.
in 1950 and to 1.367 in 1960. Such a development, of course, is to be expected as the region increasingly begins to resemble the nation in the variety of economic activity found within its borders.

Within specific industries, notable increases relative to the nation have been registered in the finance group, government and communications. Mining has retained its leading role as a "specialty" industry but its rise from 1950 has thus far been Inadequate to the task of regaining its 1940 coefficient of 4.44 .

Employment Changes by County

Thus far, our discussion of employment trends has been limited to the Gila sub-basin in the aggregate and to the nation. The intra-sub-basin distribution of employment is provided in Tables $G-0$, where each county's share of sub-basin employment in a number of major industries is shom in 1940, 1950 and 1960. If one were to write the percentage figure representing the leading county in terms of employment in each of the industries shown in the table, one thing becomes imediately clear -the historic precominance of Maricopa County. At least since 1940, the pattern is one of Maricopa widening the magnitude of its lead over the other counties of the Gila. Only in mining in 1950 and mining and fabricated metals manufacture in 1960 is the leading employing county not Maricopa. Pima led in mining in 1960 replacing Gila County in that position, as well as in fabricated metals marufacturing where it succeed. in displacing Maricopa County. With the exception of agriculture and mining, Maricopa and Pina Counties together accounted for at least fourfifths of employment in all other major industries. By and large,
therefore, what happens in the home counties of Phoendx and Tucson will determine the future economic course of the Gila Sub-Basin.

Occupational Distribution of the Labor Force
The occupational makeup of the labor force tells how people earn their livelihoods and is another useful guide to the econony of a region. Table $G-P$ presents occupational data on the labor force, by sex, in the Gila for the years 1950 and 1960. A comparison of the relative magnitude of each occupation for those years both in the Gila and in the nation appears in Table $G-Q_{1}$ and $G-Q_{2}$.

As was the case in certain other comparisons, the Gila appears to be a closer approximation to the nation than the other sub-basins of the Colorado. In terms of predominantly white-collar and blue-collar occupations, both regions are very close to each other. This was also true in 1950. In interesting contrast to certain other sub-basins, in the Gila it was the occupational distribution anong males which brought the sub-basin so close to the nation. Among women incidence of whitecollar employment was greater in the sub-basin than in the U.S., while in the case of blue-collar occupations, sub-basin women have trailed the nation. In the decade to 1960, however, there has been some evidence of a tendency toward convergence of the wo groups.

At the specific occupational level, the proportionate share of total employment represented by four groups -- farmers and farm managers, clerical workers, private household workers, and operatives -.. was smaller In the sub-basin in 1960 than in the nation at large. The magnitude of the differences however, was not large, except among operatives, and

Table $\mathrm{G}^{-0} 1$
Percent Distribution of Employment by Industry In Counties of the Gila Sub-Basin - 1960

Agriculture
Mining
Contract Construction
Manufacturing
Food \& Kindred Products Textile Mill Products Apparel Mfg. Lumber \& Wood Products Printing \& Publishing Chemicals, Etc Electric Energy
Motor Vehicles, Etc. Other Transportation Primary Metals
Fabricated Metals
Other Miscellaneous Mfg. Transportation
Conmunications \& Utilities
Wholesale Trade
Eat:ing \& Drinking Places
Other Retail Trade
Finance, Insurance, Etc. Services

Hotels, Etc.
Private Households
Business \& Repair Entertainment
Medical \& Other
Government
Total

Percent Distribution of Employment by Industry In Counties of the Gila Sub-Basin - 1960										
Cochise	Gila	Graham	Greenlee	Maricopa	Pima	Pinal	$\begin{aligned} & \text { Santa } \\ & \text { Cruz } \\ & \hline \end{aligned}$	Yavapai	Catron	Grant
4.64\%	. 91%	2.73\%	. 66%	64.80\%	7.42\%	12.84\%	. 92%	2.61\%	1.30\%	1.10\%
11.23	12.99	. 70	10.71	3.58	21.76	21.47	. 31	4.57	. 03	12.60
3.02	1.70	. 73	. 29	62.99	23.69	2.99	. 62	3.21	. 15	. 57
2.20	1.79	0.44	. 33	71.13	19.69	1.48	0.21	1.68	0,37	0.69
1.51	. 48	1.44	. 34	71.70	20.44	2.16	. 37	. 54	--	. 96
--	--	--	--	70.66	13.33	16.00	--	--	--	--
. 45	--	. 15	--	76.38	10.57	3.06	. 34	7.47	--	1.53
. 19	4.51 !	. . 91	. 19	66.12	13.81	1.39	--	2.97.	9.50	. 38
2.92	1.26	. 51	. 47	69.83	18.60	2.71	. 24	2.29	. 07	1.03
18.44	--	--	--	65.89	12.59	2.69	. 37	--	--	--
. 78	. 10	. 13	. 06	89.47	8.70	. 41	--	. 27	--	. 03
4.19	--	--	--	86.08	9.71	--	--	--	--	--
. 20	. 13	. 15	--	95.97	3.27	. 25	--	--	--	--
12.99	14.23	. 21	2.22	59.42	3.38	3.96	. 25	. 17	--	3.13
. 22	--	. 05	--	28.23	71.19	. 05	--	. 22	--	--
1.03	. 32	. 69	. 06	70.76	17.77	1.00	. 74	7.07	--	. 53
5.41	. 87	. 38	. 14	51.83	31.14	2.90	1.38	4.55	. 14	1.21
3.50	1.19	1.32	. 45	66.97	19.06	3.10	. 65	2.47	. 09	1.14
1.96	. 71	. 64	. 19	73.28	17.72	1.49	2.22	1.25	--	. 47
4.32	2.62	1.36	. 94	57.49	21.73	5.01	1.28	3.68	. 25	1.25
3.71	1.90	1.31	. 63	60.04	23.78	3.47	1.34	2.35	. 18	1.23
2.02	. 96	. 43	. 20	69.34	22.15	2.06	41	1.84	--	53
3.54	1.43	1.16	0.58	58.54	27.10	2.41	0.97	2.54	0.07	1.65
3.68	1.64	1.12	. 36	57.78	27.35	2.79	1.33	2.71	. 10	1.08
5.20	1.35	1.47	. 76	51.76	28.06	5.36	1.64	2.64	--	1.72
2.50	. 90	. 96	. 21	66.12	23.80	2.77	. 39	1.62	. 08	. 60
2.03	1.13	1.24	. 68	63.31	24.02	3.49	. 66	2.17	--	1.21
3.36	1.48	1.11	. 67	56.94	27.17	3.25	. 83	3.01	. 07	2.05
16.74	1.01	. 68	. 21	47.95	$\underline{27.97}$	2.38	. 96	1.37	. 08.	. 60
8.8	5.3	2.3	2.0	43.2	17.9	6.1	2.2	6.6	1.2	4.5

Table $\mathrm{G}-\mathrm{O}_{2}$

Percent Distribution of Employment by Industry
In Counties of the Gila Sub-Basin - 1950
Agriculture
Mining
Contract Construction

Manufacturing
Food \& Kindred Products Textile Mill Products Apparel Mfg.
Lumber \& Wood Products
Printing \& Publishing
Chemicals, Etc.
Notor Vehicles, Etc.

Cochise	Gila	Graham	Greenlee	Maricopa	Pima	PinaI	Santa Cruz	Yavapai	Catron	Grant
4.84\%	1.72\%	4.30\%	. 97%	52.99\%	8.55\%	16.51\%	1.36\%	3.90\%	2.13\%	2.67\%
7.71	20.76	. 49	13.02	4.17	14.20	16.12	1.91	9.64	. 09	11.83
3.49	2.03	1.59	. 69	53.44	26.26	4.75	1.16	3.12	. 67	2.74
5.51	6.04	1.04	5.81	55.52	12.72	1.68	1.07	3.11	1.16	6.33
2.61	1.21	2.53	. 55	72.20	14.09	2.19	2.24	1.19	--	1.13
3.65	--	--	--	74.39	17.07	1.21	1.21	--	--	2.43
4.02	1.14	1.43	--	48.56	32.47	. 57	6.60	5.17	--	.
1.02	7.91	1. 09	.36	53.44	14.36	. 95	. 51	4.98	13.70	1.61
4.54	1.68	1.09	. 04	62.07	22.43	1.59	1.34	3.32	13.70	1.85
26.00	. 47	1.06	--	61.70	8.03	1. 65	. 23	. 35	--	. 47
. 89	. 17	1.07	. 08	84.25	8.67	2.59	. 26	1.25	--	. 71
--	--	--	--	93.04	6.08	--	--	. 86	--	--
6.56	--	--	--	72.99	14.59	. 72	2.18	2.18	--	. 72
7.65	16.23	. 02	19.32	29.92	1.19	1.50	. 02	5.11	--	18.99
. 27	. 27	--	. 27	89.34	7.80	. 64	. 27	. 91	. 09	. 09
4.60	1.00	. 66	. 20	61.01	26.76	1.26	1.26	2.06	. 33	. 80
6.53	1.63	. 82	. 45	40.85	36.68	3.71	1.55	5.48	. 13	2.10
4.65	2.58	2.12	1.28	61.85	16.20	4.33	1.59	3.54	. 16	1.64
1.52	1.21	. 88	. 18	75.96	14.31	1.27	1.62	2.00	. 01	. 99
4.68	2.97	1.74	1.25	52.97	22.10	5.49	1.20	5.04	. 45	2.05
4.43	2.85	1.78	1.32	54.50	22.84	4.47	1.78	3.41	. 20	2.36
3.05	1.46	. 61	. 22	65.05	22.82	1.96	1.13	2.40	. 02	1.22
4.03	2.41	1.62	0.98	52.40	26.03	3.53	1.31	4.40	0.26	3.02
4.19	2.65	1.43	. 71	52.18	26.45	3.41	1.48	5.29	. 22	1.94
4.94	1.96	2.11	1.09	52.33	26.78	3.38	2.11	2.50	. 18	2.57
4.07	2.11	1.85	. 90	58.83	21.13	3.76	1.07	3.71	. 24	2.28
5.22	3.75	1.38	1.38	52.95	24.64	3.71	. 69	3.28	. 04	2.93
3.54	2.38	1. 52	1.05	50.66	27.10	3.55	1.10	4.85	. 31	3.88
2.74	1.43	. 86	. 43	$\underline{52.36}$	34.39	2.54	1.48	2.31	. 23	1.18
4.4	3.4	1.7	1.9	51.9	21.8	5.8	1.4	4.0	. 6	3.1

Percent Distribution of Employment by Industry In Counties of the Gila Sub-Basin - 1940

Agriculture
Mining
Contract Construction
Manufacturing
Food \& Kindred Products
Textile Mill Products
Apparel Mfg.
Lumber \& Wood Products Printing \& Publishing
Chemicals, Etc.
Electric Energy
Motor Vehicles, Etc
Other Transportation
Frimary Metals
Fabricated Metals
Other Miscellaneous Mfg.
Transportation
Communications \& Utilities
Wholesale Trade
Eating \& Drinking Places
Other Retail Trade
Finance, Insurance, Etc. Services

Hotels, Etc.
Private Households
Business \& Repair
Entertainment
Medical \& Other
Government
Total

Cochise	Gila	Graham	Greenlee	Maricopa	Pima	Pinal	Santa Cruz	Yavapai	Catron	Grant
4.99\%	2.45\%	5.12\%	1.33\%	51.94\%	9.28\%	11.74\%	1. 58%	4.83\%	3.30\%	3.40\%
15.28	18.31	. 42	9.06	3.84	10.26	12.06	4.35	12.57	1.24	i2. 55
7.66	4.03	3.58	1.85	43.92	22.08	4.41	1.36	6.12	1.61	3.33
15.23	8.12	0.74	0.36	43.84	13.09	3.37	0.74	6.71	1.31	6.51
2.22	1.66	1.66	. 50	74.17	14.48	1.52	. 64	2.03	--	1.06
--	--	--	--	86.44	11.86	--	--	--.	--	1.69
8.51	6.38	--	--	48.93	14.89	2.12	4.25	4.25	--	10.63
4.56	4.89	$\therefore 97$. 97	36:84	26.95	3.80	1.19	3.69	12.50	3.58
7.41	2.82	1.29	. 30	55.30	21.84	2.52	1.75	5.34	. 07	1.29
36.57	--	. 25	--	52.42	9.71	--	. 25	. 51	--	. 25
2.83	1.69	--	. 28	76.20	8.21	4.81	. 28	2.26	. 56	2.83
-	1.51	--	--	81.81	12.12	1. 51	--	3.03	--	--
--	3.44	--	3.44	20.68	58.62	--	--	6.89	3.44	3.44
1.47	3.24	--	--	80.82	11.50	--	--	2.06	--	. 88
33.68	21.04	. 03	. 03	3.93	1.22	6.64	. 46	15.12	--	17.79
15.87	2.31	. 46	. 92	50.69	25.26	. 30	. 30	3.08	--	. 77
9.71	2.33	. 88	. 74	33.33	35.82	3.23	1.61	9.16	. 18	2.95
8.07	5.41	2.13	. 76	48.75	18.35	4.36	1.74	7.23	. 03	3.11
3.05	1.95	1.03	. 38	73.21	12.34	1.28	2.04	3.41	. 04	1.21
6.42	4.94	1.80	1.53	50.46	19.13	5.48	1.33	5.95	. 54	2.37
7.34	4.39	2.03	1.71	48.76	19.68	4.00	2.58	5.74	. 47	3.25
4.48	2.18	. 69	. 48	63.05	19.63	1.63	2.15	4.17	10	1.39
6.43	3.65	1.80	1.19	44.98	25.25	3.58	2.11	6.40	0.39	4.21
5.84	3.63	1.55	1.31	47.89	24.59	3.23	2.38	6.72	. 20	2.60
8.48	3.10	1.42	1.08	41.87	28.34	3.81	3.01	4.21	. 20	4.43
5.61	3.31	2.74	1.21	52.09	18.30	2.94	2.30	6.25	. 60	4.60
5.01	4.43	1.76	1.04	48.63	22.88	3.97	1.10	7.88	. 06	3.19
6.01	3.94	1.92	1.18	42.77	25.96	3.75	1.55	7.27	. 58	5.01
$\underline{22.93}$	3.40	2.31	. 83	42.06	14.04	4.06	2.85	4.24	. 83	2.39
5.0	1.9	1.0	. 9	59.0	22.7	4.4	. 9	2.3	. 2	1.5

Table G-P

Employment by Occupation Groups
In The Gila Sub-Basin

	Male		Female		Total	
	1950	1960	1950	1960	1950	1960
Professiona1, Technical \& Kindred	12,171	29,253	9,038	17,956	21,209	47,209
Farmers \& Farm Managers	7,600	-5,480	346	261	7,946	5,741
Managers; Officials \& Proprietors	19,719	33,279	4,211	6,392	23,930	39,671
Clerical	7,948	14,319	14,157	37,734	22,105	52,053
Sales Workers	10,994	20,162	5,352	10,511	16,346	30,673
Craftsmen	28,627	54,249	504	1,154	29,131	55,403
Operatives	26,782	43,826	4,124	10,043	30,906	53,869
Private Household Horkers	284	320	5,484	9,832	5,768	10,152
Service Workers (Except Househo1d)	9,707	15,947	9,544	18,697	19,251	34,644
Farm Laborers \& Foremen	14,688	13,950	1,133	958	15,821	19,908
Laborers (Except Farm \& Mine)	12,256	13,864	202	430	12,458	19,294
Not Reported	1,582	13,702	1.378	7,189	2,960	20,891
Total	152,358	268,351	55,473	121,157	207,831	389,508

Source: U. S. Census of Population, 1960.

Table $G-Q_{2}$
Percentage Distribution - Occupation Groups for 1950 In the Gila Sub-Basin

	Male \& Female		Male OnIy		Female Only	
	U.S.	Giia	U.S.	Gila	U.S.	Gila
All Groups	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%	100.00\%
Predominantly White Collar	44.53	44.04	41.17	33.36	53.20	59.67
Professional, Technical	8.72	10.20	7.30	7.99	12.37	16.29
Farmers \& Farm Managers	7.64 .	3.82	10.31	4.99	0.74	0.62
Managers, Officials \& proprietors	8.93	11.51	10.72	12.94	4.31	7.59
Clerical	12.32	10.64	6.51	5.22	27.32	25.52
Saies Workers	6.92	7.87	6.33	7.22	8.46	9.65
Predominantly Giue Collar	54.15	54.53	57.70	60.61	45.01	37.82
Craftsmen \& Foremen	13.86	14.02	28.65	13.79	1.50	0.91
Operatives	19.81	14.87	20.05	17.58	19.19	7.43
Private Household Workers	2.50	2.78	0.18	0.19	8.48	9.38
Service Norkers	7.61	9.26	5.85	6.37	12.17	17.20
Farm Laborers \& Foremen	4.28	7.61	4.83	9.64	2.36	2.04
Laborers (Except Farm \& Mine)) 6.09	5.99	8.14	8.04	0.81	0.36
Occupation Not Reported	1. 32	1.43	1.13	1.03	1.79	2. 51

Source: Table G-P.
farmers and farm managers. All other occupational groups accounted for larger shares of total employment in the sub-basin than in the nation, although here again, the magnitude of the differences was quite small.

Over the 1950-1960 decade the share of sub-basin employment represented by professional and technical workers, clerical workers, craftsmen, foremen and kindred workers, and the vague occupation not reported group increased while all other occupational groups accounted for smaller shares of the total than they had in 1950. The increasingly familiar pattern of only moderate changes in this sub-basin was duplicated here also. This is to say that over the past decade, the occupational profile of the labor force has remained largely unchanged.

The location quotients in Table G-R facilitate a comparison of per capita employment of specific occupations in the region with the nation in the years 1950 and 1960. The number of regional specialty occupations appears to have grown appreciably not only in number (from 3 to 6) but also in the lead over the nation. For example, the simple mean of the groups with location quotients in excess of 1.0 increased from 1. 210 to 1.562 in the decade to 1960. Service workers in the subbasin were more than three times as numexous relative to population than in the nation, and their lead over the U.S. had grown since 1950. Other regional occupations which are more numerous relative to population in the Gila are laborers (except farm and mine), managers, officials and proprietors, sales workers, occupation not reported, and professional and technical workers. All of these groups except the managerial broke through the 1.0 barrier between 1950 and 1960. Almost as dramatic as

> Table G-I
> Location Quotients for Occupation Groups Of the Labor Force in the Gila Sub-basin

1950

Rank	Occupation Group	Location Quotient
1.	Farm Laborers \& Foremen	1.506
2.	Managers, Officials \& Proprietors	1.093
3.	Service Workers	1.032
4.	Professional, Technical, Etc.	. 994
5.	Sales Workers	. 965
6.	Private Household Workers	.957
7.	Not Reported	. 918
8.	Craftsmen	. 857
9.	Laborers (Except Farm \& Mine)	. 837
10.	Clerical	. 730
11.	Operatives	.636
12.	Farmers \& Farm Managers	. 424
	- 1960	
Rank	Occupation Group	Location Quotient
1.	Service Norkers	3.114
2.	Laborers (Except Farm \& Mine)	2.075
3.	Managers, Officials \& Proprietors	1.136
4.	Sales Workers	1.023
5.	Not Reported	1.017
6.	Professional, Technical, Etc.	1.012
7.	Craftsmen	. 984
8.	Operatives	. 957
9.	Clerical	. 868
10.	Private Household Workers	. 737
11.	Farm Laborers \& Foremen	. 570
12.	Farmers \& Farm Managers	. 360

Source: Computed from data in the U.S. Census of Population, 1950 and 1960.
the growth in service workers relative to population was the sharp decline in farm laborers and foremen. From the head of the 1950 list of coefficlents with 1.506 they fell to eleventh place out of 12 occupations with a quotient of .570 .

Table $G-Q_{1}$ and $G-Q_{2}$ permit an analysis of regional and national occupations by ser. As noted earlier, sub-basin women are more heavily represented among white--collar jobs and less readily found in bluecollar jobs than is generally true of fenale enployment in the U.S. The exceptions are found among farmers and farm managers where subbasin women are somewhat less prevalent than are their sisters in the national labor force, and private household workers and service workers where the reverse pattern prevails. Once again, the magnitude of these observed differences is quite small.

INTERINDUSTRY ANALYSIS OF THE ECONOIY OF THE
GILA RIVER SUB-BASIN OF THE
COLORADO RIVER BASIN - 1960:
A Summary Analysis
by
. Bernard Udis

Revised
August, 1967

INTERINDUSTRY ANALYSIS OF THE ECONOMY OF THE GILA RIVER SUB-BASIN OF THE

COLORADO RIVER BASIN - 1960:

A Summary Analysis

The interindustry or inputmoutput method of econonic analysis was explained in general terms early in this report. In this and the following sections the actual analysis will bc applied to major industrial sectors of the Gila Sub-Basin in 1960 with the objective of uncovering the patterns of structural interdependence which characterize the sub-basin's economy.

The basic documents for the analysis which follows are the interindustry transactions table for the Gila (Table G-S) and its derivatives -- the table of direct input requirement coefficients (Table G-T) and the table of direct and indirect input requirement coefficients (Table G-U). It may be recalled that the table of direct input requirements contains the coefficients indicating the direct additions to the sub-basin economy's input by each industry, required to sustain a one dollar increase in sales to the final demand sector by the particular industry listed at the left of the table. Each entry in Table G-U yields the total dollar production which the sub-basin economy requires from the industry at the top of the table per dollar of deliveries to final demand by the industry at the left after all rounds of needs (direct and indirect) in the economy have been met.

Each of the processing sector industries will be discussed separately but certain summery tables have been prepared to highlight particularly important aspects of these industries in the Gila. Tables $G-V, W, X, Y$ and Z rank processing sector industries according to the magnitude of their total gross output, sales to final demand, and percent of their total gross output which goes to final demand sectors (providing an index of the dependence of the particular sector upon customers outside the processing sector), the magnitude of their payments to sub-basin households, and the size of the economy's direct and indirect requirements per dollar of sales to final demand by each processing sector industry. Table G-AA shows the number of industries responding in amounts of $\$ 0.01$ or more to an increase in sales of $\$ 1.00$ by each processing sector industry. This provides an indicator of the degree of interdependence existing between sub-basin industries.

An examination of these sumary tables reveals that almost without exception, the same twelve industries dominate the upper third of all subbasin industries in total gross output, sales to final demand, and payments to households. These industries are construction, primary metals, "other" retail trade, copper, rentals and finance, "other" manufacturing, wholesale trade, food and kindred products manufacturing, "other" services, "othex" utilities, cotton, and eating and drinking places. When subbasin industries are ranked in terms of percent of gross output going to final demand (Table G-X) and magnitude of the direct and indirect reaction of all industries per dollar of sales to final demand (Table G-Z), the rank order of industries shifts dramatically. For example,

Table G-V
 Total Gross Output of Processing Sector
 Industries in the Gila Sub-Basin

Rank	Industry	Total Gross Output
1	Contract Construction	\$520,431,000
2	"All Other" Retail	415,783,000
3	Primary Metals	389,571,000
4	Copper	308,838,000
5	Rentals \& Finance	301,885,000
6	"Other" Manufacturing	293,930,000
7	Wholesale Trade	231,783,000
8	Food \& Kindred Products	190,301,000
9	"All Other" Services	189,324,000
10	"Other" Utilities	166,106,000
11	Cotton	141,244,000
12	Eating \& Drinking Places	117,728,000
13	Electric Energy	111,644,000
14	Transportation	99,414,000
15	Feeder Livestock	87,069,000
16	"Other" Mining	67,567,000
17	Vegetables	48,388,000
18	Lodging	46,936,000
19	Printing \& Publishing	42,870,000
20	Fabricated Metals	39,614,000
21	Forage, Feed \& Food Crops	37,209,000
22	Stone, Clay \& Glass	34,764,000
23	Service Stations	33,797,000
24	Range Livestock	33,652,000
25	Agricultural Services	31,982,000
26	Lumber \& Wood Products	28,428,000
27	Dairy	27,371,000
28	Chemicals	18,337,000
29	Textiles \& Apparel	14,583,000
30	Furniture \& Fixtures	13,698,000
31	"Other" Agriculture	9,357,000
32	Citrus Crops	6,788,000
33	Paper \& Pulp	4,990,000
34	Forestry	1,645,000
35	Uranium	563,000
36	Leather \& Leather Goods	350,000

Source: Table G-S, 1960.

Table G-W

Processing Sector Industry Sales to Final Demand in the Gila Sub-Basin

Rank	Industry	Sales to Final Dem
1	Primary Metals	\$386,300,000
2	"A11 Other" Retail	373, 304,000
3	Contract Construction	354,308,000
4	"Other" Manufacturing	236,526,000
5	Rentals \& Finance	202,129,000
6	Wholesale Trade	176,236,000
7	Food \& Kindred Products	160,945,000
8	Cottor	127,272,000
9	"All Other" Services	126,126,000
10	"Other" Utilities	122,015,000
11	Eating \& Drinking Places	112,042,000
12	Feeder Livestock	57,913,000
13	Electric Energy	49,181,000
14	Vegetables	48,001,000
15	Lodging	43,675,000
16	"Other" Mining	31,913,000
17	Printing \& Publishing	22,591,000
18	Transportation	21,603,000
19	Service Stations	19,838,000
20	Lumber \& Wood Products	18,161,000
21	Fabricated Metals	17,359,000
22	Textiles \& Apparel	14,583,000
23	Furniture \& Fixtures	12,848,000
24	Stone, Clay \& Glass	8,898,000
25	"Other" Agriculture	7,218,000
26	Citrus Crops	6,338,000
27	Forage, Feed \& Food Crops	4,856,000
28	Chemicals	4,053,000
29	Paper \& Pulp	3,260,000
30	Dairy	3,212,000
31.	Copper	2,568,000
32	Range Livestock	1,137,000
33	Uranium	563,000
34	Leather \& Leather Goods	350,000
35	Agricultural Services	140,000
36	Forestry	000,000

Source: Table G-S, 1960.

> Table G-X
> Sales to Final Demand of Processing Sector Industries as a Percent of Total Gross
> Output in the Gila Sub-Basin

	Sales to Final Demand
Rank	Sndustry
Total Gross Output	

Uranium
Textiles \& Apparel
Leather \& Leather Goods
Vegetables
100.00\%
100.00
99.20

Primary Metals
99.16

Eating \& Drinking Places
95.17

Furniture \& Fixtures 93.79
Citrus Crops 93.37
Lodging 93.05
Cotton 90.11
"All Other" Retajil 89.78
Food \& Kindred Products 84.57
"Other" Manufacturing 80.47
"Other" Agriculture 77.14
Wholesale Trade 76.03
"Other" Utilities 73.46
Contract Construction
Rentals \& Finance
"All Other" Services
Feeder Livestock
68.0
66.96
66.51

Paper \& Pulp 65.33
Lumber \& Wood Products 63.88
Service Stations 58.70
Printing \& Publishing 52.70
"Other" Mining 47.23
Electric Energy 44.05
Fabricated Metals 43.82
Stone, Clay \& Glaco 25.60
Chemicals
22.10

Transportation
Forage, Food \& Feeci Crops
Dairy
21.73

31
32
33
34
35
36
Range Livestock
13.05
$\longrightarrow \quad 3.38$
Copper 0.83
Agricultural Services 0.44
Forestry 0.00
Source: Table G-S, 1960.

Magnitude of Processing Sector Industry Payments to Households - Gila Sub-Basin

Rank	Industry	Wages δ Salaries	Profits	Total Payments
1	Rentals \& Finance	\$ 70,447,000	\$167,738,000	\$238,185,000
2	"Other" Retail	188,964,000	22,699,000	211,663,000
3	Contract Construction	152,855,000	6,964,000	159,819,000
4	"Other" Manufacturing	138,821,000	9,236,000	148,057,000
5	Copper	93,100,000	8,400,000	101,500,000
6	Wholesale Trade	82,874,000	11,938,000	94,812,000
7	"Other" Services	53,629,000	13,987,000	67,616,000
8	"Other" Utilities	45,358,000	4,312,000	49,670,000
9	Cotton	12,749,000	31,647,000	44,396,000
10	Electric Energy	25,004,000	13,560,000	38,564,000
11	Eating \& Drinking	29,318,000	8,122,000	37,440,000
12	Food \& Kindred	32,416,000	4,262,000	36,678,000
13	Transportation	27,249,000	2,005,000	29,254,000
14	Primary Metals	26,471,000	1,137,000	27,608,000
15	Printing \& Publishing	16,661,000	5,055,000	21,716,000
16	"Other" Mining	16,480,000	3,286,000	19,766,000
17	Vegetables	8,839,000	7,366,000	16,205,000
18	Lodging	13,467,000	1,811,000	15,278,000
19	Service Stations	12,402,000	2,864,000	15,266,000
20	Feeder Livestock	1,660,000	11,853,000	13,513,000
21	Stone, Clay \& Glass	10,619,000	1,900,000	12,519,000
22	Fabricated Metals	11,052,000	- 917,000	11,969,000
23	Range Livestock	965,000	9,536,000	10,501,000
24	Forage, Feed \& Food	4,311,000	5,098,000	9,409,000
25	Lumber \& Wood Products	7,893,000	956,000	8,849,000
26	Agricultural Services	4,878,000	3,540,000	8,418,000
27	Dairy	1,524,000	6,176,000	7,700,000
28	Textiles \& Apparel	6,730,000.	241,000	6,971,000
29	Furniture \& Fixtures	3,377,000	659,000	4,036,000
30	Chemicals	3,681,000	260,000	3,941,000
31	"Other" Agriculture	605,000	1,814,000	2,419,000
32	Paper \& Pulp	892,000	99,000	991,000
33	Forestry	496,000	480,000	976,000
34	Citrus Crops	347,000	516,000	863,000
35	Uranium	185,000	43,000	228,000
36	Leather \& Leather Goods	121,000	34,000	155,000

Source: Table G-S, 1960.

Table G-2
Processing Sector Industries of the Gila Sub-Basin Ranked by the Magnitude of the Total Dollar Production Directly and Indirectly Required by the Sub-Basin Economy to Sustain a $\$ 1.00$ Increase in Deliveries to Final Demand by the Industries Named Below

Rank	Industry	Direct \& Indirect Requirements per Dollar of Sales
1	Primary Metals	2.084678
2	Feeder Livestock	1.915450
3	Paper \& Pulp	1.845525
4	Food \& Kindred Products	1.816380
5	Citrus Crops	1.814381
6	Dairy	1.792347
7	Contract Construction	1.688948
8	"Other:" Agriculture	1.635727
9	Stone, Clay \& Glass	1.571620
10	Leather \& Leather Goods	1.514311
11	"Other" Mining	1.487808
12	Eating \& Drinking Places	1.482858
13	Cotton	1.425902
14	Forage, Feed \& Food Crops	1.389355
15	Transportation	1.376017
16	Lodging	1.375973
17	Furniture \& Fixtures	1.374402
18	Wholesale Trade	1.365833
19	Lumber \& Wood Products	1.353248
20	Vegetables	1.340530
21	Chemicals	1.332912
22	Electric Energy	1.323990
23	Service Stations	1.323732
24	Agricultural Services	1.299681
25	Range Livestock	1.271416
26	"All Other" Services	1.267591
27	"Other" Manufacturing	1.257354
28	Uranium	1.248968
29	"Other" Retail Trade	1.245223
30	Copper	1.217413
31	Printing \& Publishing	1.205948
32	Fabricated Metals	1.179777
33	"Other" Utilities	1.177101
34	Rentals \& Finance	1.141217
. 35	Textiles \& Apparel	1.089611
36	Forestry	1.061657

Table G-AA

> Number of Processing Sector Industries Responding in Amounts of at Least $\$ 0.01$ per Dollar of Sales to Final Demand by the Industries Listed Below

Industry

Intersections $>\$ 0.01$
"Other" Agriculture 16
Food \& Kindred Products 13
"Other" Mining 13
Citrus Crops 12
Leather \& Leather Goods 12
Eating \& Drinking Places 12
"All Other" Services 11
Forage, Feed \& Food Crops 11
Prinary Metals 11
Lodging 11
Dairy 10
Furniture \& Fixtures 10
Contract Construction 10
Feeder Livestock 9
Lumber \& Wood Products 9
Paper \& Pulp 9
Service Stations 9
Transportation 9
Wholesale Trade 8
"All Other" Retail 8
Cotton 8
Uranium 8
Printing \& Publishing 8
Stone, Clay \& Glass 8
Agricultural Services 8
Vegetables 7
Fabricated Metals 7
"Other" Utilities 7
Copper 6
Chemicals 6
Range Livestock 4
Textile \& Apparel 3
"Other" Manufacturing 3
Electric Energy 3
Forestry 2
Rentals \& Finance 2

Source: Table G-U, 1960.
one-half of the 12 leading industries in Table G-X are newcomers to the head of the list. Indeed, many of them are found close to the bottom of the order of gross output, sales to final demand, and payments to houscholds. Uranium and leather goods which lead the list showing relative share of gross output going to final demand (Table G-X) rank 35 and 36 in terms of gross output (Table G-V) and payments to households (Table G-Y). Also, when industries are ranked as generators of economic activity in the sub-basin (Table G-Z), only four industries out of the top twelve seem at home in that company -- primary metals, food and kindred products manufacturing, construction, and eating and drinking places. Table G-AA also lends support to the proposition that the magnitude of an industry's operations is not an adequate guide to its importance as a generator of economic activity in other regional industries; that the structural interdependence of a regional economy is not selfevident.

The desire to uncover such structural interrelationships prompted the use of input-output analysis in this study. We now turn to an industrym by-industry review of such structural interrelations in the Gila Sub-Basin based on the results of the input output analysis.

AN ANALYSIS OF THE AGRICULTURAL AND FORESIRY ECONOMY

 OF THE GILA SUB-BASIN 1960By
Lynn Wilkes
A Revision of June, 1964 Report by J. Dean Jansma
:

Natural Resources Economics Division Economic Research Service United States Department of Agriculture

Salt Lake City, Utah

August, 1967

AN ANALYSIS OF THE AGRICULTURAL AND FORESTRY ECONOMY

 OF THE GILA SUB-BASIN 1960By
Lynn Wilkes
A Revision of June, 1964 Report by J. Dean Jansma

 procained fos seandy as iong a tama

 operate the largest cattle company in the Southwest in Pima County.

 Guble

 sanm vestora

 waters of these two rivers.

Graud water has besa deyeloped by botis priveta indivituals anc asbrciations

 ment.

 only cecasional large fleodz ecntribute to tie zlowo

Extremas in temperature and prechitation occur pation sone of che
 chracterized by tcoperatues wach seldom fall batow rreezting and precipin bion

 mate, 8.95 tmehes.

 Esio sy county。

$\stackrel{\infty}{\circ}$

[^6]

Coctinse	33.9	1． 2		479．3	－504000000	9.6	－	－00．．．．．	100.0
cila	58.9	\％		1.9	3.6	－－－－	39．6	21	1000.0
Oceham	28.8	－momem	\cdots		－100menom	退	数，		300.0
6rematec	$7 \% 1$	－ッロバい		2 E 。9	－xumay	，	－	＂momemom	1469，${ }^{4}$
Mamateopa	4．7．5	～．．ancowero		35．5	0.2	20.3	6.6	0.1	150．0
yefat	190．63	9.4		9.3	－－ 0.0 .0	120000	59．3	09.3	100． 0^{3}
	17.8	2		34．303	B． 8	0.7	6，碞， 2	－0－＊－．．．．	200.0
Sbatacters	95．8	2		0.2	－	－＊	－0．		100.0
yswepat	76.6	21		23．2	2.0	0.2	0.1		809.0
Catron	$7 \% 00$	21		28.5	0.5	－ 0 －come	－m－mer	－－－－	200.0
59010	暒其。禹	3．8		25.3	0.7	＊，		60\％	100.0

[^7]

 extent, to the phenomenal growth of whenis and Tueson. in 1950 , these two
 tlon, whereas by 1960 they scconnted sor over 50 peraent of the cotal population. 1/

The ciotilia habor force fat she subanda cotaled nasiy boh chouand in 1960 (table 5). Employnent scedrditg to occapartoras grcups indieated ther

 of 22.3 percent in Catron county.
 Fationde are ongloyed in agrisuiturei acivities. A hiseoriens gattern of their empleguent is abom thente 6.

- Ihes introductor was astigied to provide a gematal deseription of the
 exsmintion of tia agriceltural economy in 5960 .

Bank, Proenix, 1963 .

Catretses	1260	295		1030	1823
Tocia ocyuitatigu		635 494	4980.5		
60efitis	55，039	31．${ }^{\text {das }}$	34， 627	40.398	46.465
	23.745	24.35	23．067	$3{ }^{3} \mathrm{O} 016$	3385
Cramem	14， 085	12．935	12．3要	10， 273	13，${ }^{4} 8$
Cacemise	12．509	12， 205	\％\％ 58	9，589	35， 38.8
\％iectisoma		33.870	1364．89	150．970	89.376
Ping	24．3．630	148．246	72.85	59， 576	$33^{4} 580$
P2atis．	62， $0^{2} 9$			2020．032	24． 3 \％
3ayce crusm	10．808	9， $3^{3}{ }^{\text {a }}$	9．8．8\％	谷，683	158．538
		26.981	22， 51	$23^{3.10}$	
Sactum，	2.783	3.538		3.292	
Weqge poputation	295， 39	850．390	258， 674	295．290	，68x 370
Cocturse ${ }^{\text {a }}$	30．074	15.835	20.159	23.14%	27，346
（6x） $\mathrm{R}^{\text {a }}$	1.3 .673	23，320		16．195	12．030 ${ }^{\text {a }}$
Gramm	9．394	9.220	928．${ }^{\text {P }}$	20．373	
ctentice	7.38	2，706	6,050	9.836	15． 198
2raticema	89． 308	93.787	105．794	95.856	54.750
Praa	31．38	62.909	36.080		34．3\％${ }^{3}$
［8409	35.074	32， 285	28，84，	28.931	
	3，222	3.301	4.387		7.690
\％aversi	16；951	25， 254	20，402	19，03	24.976
Catcras	2， 273	会， 353	6．882	3.238	

䠉•S．Senctis

Councy	 				
6ochise	16.850	1.806	836	2, bis	13.7
G13	8.239	786	64.4	12.293	14.9
Grahain	40482	495	43	(1923	20.8
cremmies	3,759	278	26	3 尔	3.9
	246, 751	2.65 .3	\% 038	16.683	6.8
	93.670	5%	963	2.590\%	2.7
	19.023	761	2.663	3.404	17.3
\%aste 0 Oum	3.781	112	22	$2{ }^{2}$	6.2
	10.865	323	355	689	8.5
catron	940	57	452	204	22.8
Total	403.928	7,358	20.092	27.298	6.9

 :

Table 7.- Intra- and Interindustry transactions made by the agricultural and forestry sectors, Gila Subbasin, 1960 /ㅢ $2 /$

[^8]3/ Agricultural services sector (29) is listed out of numerical order go that it is adjacent to other agricultural sectors.

pange vivertock

The major enterprises in trie range liveatoct sastor re the prosusefor

 revenues. $\$ 1.2$ mitilon; (3) welme of houe consmption, 30.5 million; and (4) certain government payamt auch ay wol incentive pryments, $\$ 0.2$ mallion.

On the inpat eide, the range livostock sector purchased ferd Eroin the fegi, food, and forage sector in the amwn of f2.1 milino some sezd wa also impored into the oubosino Arother fmport ltem of aignificanee wen breeding stock. An ssthated 97.8 millisn was expencad for this faput for the sector.
 machinery purchase and maninery expenses and repasio Ranch baidin s
 and inuurance wars itemgex leaser importance。

A depenaience on Federil and state grazing land charactertzes the range Livestock seator. One fundred and sorty-nine mouscad certle and 33,000

 total of $\$ 510,000$ wes pay to the Foteral Treasury for these grating privileges. In addition, an eguiveleat of 34, 293 catcie obisined ati, 000
 forage avallable on reservarions vas utilized by sheapo. Fraceu of indian Afinite data reports all usazge in cosmonth equivaisncs homevai.
$\underline{2 /}$ AMU's represents animal units months.
 were paid to sute government for these grazing prisilegea.

Edvestork Pegdins

 output fescluding forcery and agriculcizal services) An ecefmact 470,000
 head (69.5 percent) wase shipped out of Ariann for wiumgiter. fite largest clanghter market for Arizonin ixestock is ion Angeles. A higin degree of interdependance betwen the ramge livearock and fasdar liweshet mentors is ludicated by the fact chat $\$ 32$ militon of che livestores feculag in una
 of rectur atock to the subbssin.
 from feed, food wat forsge sector wirt the excytion of cetcon hils sud
 use of ratione contaning a higher percentage of conseatraces, the percmen age of concentrates in the average feediot ration fin ariuma incersed frow 48.2 percent in 2957 to 6.8 percent in 1951.

Para Dairy

 excluder the proceasing and distribution of these prodmes

Dafig production has been highy gpectalized ta tobs subbesia, Eat in wilk production per herd hes more then doubled between 1950 and 1960 arace has reauled fron more producing animals per herd and greater peoduction

 Exom 9.100 pounds in 1960 to 10,310 pounce in 1960 .

Rearly ail the milk produced in the subseisin is suder the ceatrat

 consuaption and 30.7 mallion mer delivered to manu facturapo

Hine grose receipts farm driry prounces and animis within the gubbernn

 (2) aule ct colvas and cull cora, 12.9 percenc: nad (3) nome sonsumtion ans mincellancous, 6. 2 pratcus.
whe largeb single itpa on the fnput bida is the purchase of feca snd
 stlage and ereenchop accopnted for 11 percent and concontrates about 15 parcent of the total feed illo it was extimated that labor, hired and Ewnily, claimed 19 percant of coral input allocations in the dairy centor: Interest and depreciation ere also ltam or impormince

Yorsad, Eeed ni rood cropla

Grains and formge cupg are inciuded in this 3a:tcr. Thair value in 1960 was estimated at 37 a million dollars. Ovar 430,000 -merea mare dewnte to grain and forge prodation in 1960. Alfaifs, barley and gratn goxamen wre the major crops in this group: 165,900 seres produced sifsisa, 161,900 barley, and from 124,700 scres various 3 rghur cropa were hatvested. Sosn and wheat were of lesser importance. Table 8 shows the total ecyoge and value of production for thes crops.
 2eatex. 1950

csop	feresge	
	16.9.900	17.300
Rarleza	165.900	12,000
Coxa	99.700	900
	120, 700	7.000
䡙起	17.900	1.000
70tal	480.100	37.200

cotedn

 produced in 1930. About 91 percent of Arizens's upiand cotcon and 99 pere
 :
 Figneythrea percent of the reymbes sexa obendied frow the gaie of uplend custon, 6 percent sgyptan and 11 percent Excm cottensodd.

Acreage devored to cocton in 1960 coteled 39104 theasend ectes, 88

 such services an Rertizzer, incecticher, ciefoltant grolfozting ani foz
 and machine picking $\$ 7$ milion. There hes oucurred a netsble ahzag: frem hand to mashine plekingo yn acdition to application cezte, matariale such ts ingenticides, weedicider, defolianse and ferchizer were fiputs the cost of which approached $\hat{1} 6.6$ million in 1960.

Yegetable Crops

Wegetabic crope in the gin cubbesin mere valued at fos. 4 militer in 1760. Tegatables rank third (folloning cotcon and feader livestocli) in terma of value of production in the aubbasin。 Rudget d ta were dey iepea
 economic importance and the pexcentage ach crop is of cotal vegetable production: (1) Early fipring lettuce--42.5 parcent; (2) late fall

 percent. ghe diversity of the vagatable inderexy is fraiegeta by the fact
 cash yesr.

 fmportanca. eqen though there wire only 350 acreg of this arop fn tine gubbasino alsto

 is in the gils subbatho

Centons end packing meneriale veze an inportant smput foen, amomeing

 Citgus Ryops

 In Artrona. A xanking of the fitiue protucts produced is as follows: (2)

 citrus production axa neatiy as complex as for vegetabjes, including axemen: fluctuations in procuction and prices, gor aiample, the lewon acteege fr the G1la desxased from 1,510 aeres in 1960 to 1,100 seres in 1961 . Buring this eame period, production more than doubled, thzt is, from 540 thougsred
 experiemed batyan plencing ani macyatingo It trines y yexs and an

 OChar

Athough this zestor tneludes eaveral presucts on watemtises, the

 henz. Arizons zileck provide lass than 30 percent of zhe lecal dentrd for egsa and move chan 20 millica comen egge are shipped ia ceek yant to mot this deficit. It secua that there wash be mate rogm for expasion of Axizona:s poultry indusexy.

Sumpaxio of dagic argicultural Sactors

 About 40 percent of tla velwe of gross patput is facm livestock and invercoct products, and 50 pexcent from crop productich Wable 3 shows the getege of cropland hervested in eath comnty by mamdiny gicup. maricope comaty
 Enel Connty account for en aditional 23 percent of the harwestoc acreage.

crop	: Rochtse	ctc	:Gxaham	:Sreenkes	:	Piga	: exna	 	: givuspe	- Getron : \% 엥․	$\because \cos 8$: 8 Rexes $: 0 \mathrm{Et}$ to
	- ${ }^{\circ}$ -	" 0	- -	\cdots - -	- - 000	gexee	- \quad -	- - -	- $-\cdots$	$\cdots \cdots$	- - -	
Mratsk hay	2300	0.93	. $\$ 00$	2.6	109.0	204	29.0	209	10.9	0.6	165.9	$2{ }^{2}$
coseors	17.0	- $-\infty$	28.7	2.1	157.7	29.2	168.8	3.9	-*-*	$\cdots \cdots$		\%愛,
gartey	5.0	0.48	8.0	0.3	79.8	8.9	59.9	1.3	3.1	0.8	重680	15. ${ }^{\text {d }}$
Corn	2.0	- \% \%	0.5	0.3	10.0	0.2	O. ${ }^{4}$	1.5	5.9	-***	29.7	E. ${ }^{\text {g }}$
6xatn sorghum I/	36.0	0 OL	5.5	1.9	50.0	8.0	28.6	2.0	0.5	0.2	124.7	
Whent	0.5	0.1	-***********)	0.2	9.0	0.8	7.0	-0.	2.0	--**	17.9	T. ${ }^{\text {P }}$
7egmtabled	4.5	-	0.3	0.2	59.0	0.5	3.2	0.1	0.2	---*	68.0	6.5
Grapefruit	"	\cdots	- - -	----	4.5	- - - -	- \times -	-mom	-***	$\cdots \cdots$	4.3	0.4
Orewem	00000	Omome		$\infty \times$	3.5	\cdots	5080	-000.0	-m"	----	3023	tho
Lexons		-	".n-*		8.5	cmom	\%omom	- - -	¢00\%	¢00**	2.5	0.6
	2.0	0.2	2.0	0.3	35.0	3.0	1500	0.5	3.6	0.2	82.0	6.0
- 20tat	80.0	1.0	63.0	7.0	52\%.0	52.0	283.0	3.0	23.0	1.0	1025.0	100.0

 Ect the katy

 sectar led all agricultural sectors in the percentage of its inputs

 (Etgure 2\%

(1) Apacter Bitiona? gereat
(2) sracsen mationnt yount
(3) Sonsy manamal Reraes

6 Qughad Fivional fosere

	Cunt 1960	Amy cent
	19024．	
Cormexex	2， 308,540	\％ 90 \％
69130		27.300 .690
Premgett		3．900．093
Ctesk	I，180809t	If 0
20890	5． $5^{488} 8003$	7.4000000
	3.838 .360	$3^{3} 818000$
		46，48\％，以解

 2．S \＆

	Fexemat
Scumpas cost	2\％${ }^{\text {\％}}$
	洼。 9
Stu mixarge	45.9
Locdtag cm titagk	
	$2{ }_{6} 0$
Leag cm xnilrowt cesw	4.0
	5.0
	3.3
Exoctic and dignes	35.0
	209.0

 to

 in oum technical coefficient is simple, and has been explained in the chapter of this report dealing with the I-O model. By way of brief review, after adjusting the sector gross output for inventory depletions, each entry in each industry column is divided by the adjusted gross output for that industry. Thus, we obtain a measure of the increased direct activity in a.ll sectors when output of a given industry increased by one dollar.

 of cha Galomem

 outper of a sesedr.

 represented by arbbain incerinduetay trancanchoms.

 from the fecder livestack and facm diry sectoren The lumbrx and wasi sector purchssed samlogs from the foresery sactor for manderure

1
Direct and Inctreet Activity

 pending in industry A_{2} demand for the produar of inturtry is ineressano

 trereseat anand will be feit by all other incustrial th the prosessing
 round of purchasez aze reflected.

Thta walwaticn is usumily obtainet thaugh the use ct ciectronic cwnputere which rapidy take the disiexemce betozen an isontily metr x and the input coefixtent motrix and fuom this compurge in fnverse mexix.
 3 sbbosen， 2960 It

Sector putaitanaiag Sector prounctus	： \＆Rarge ：1180＂ ospock	： ：2ccedax ： 5600 k			： ： ： scotcon		$\begin{aligned} & : \\ & : \\ & : \\ & : C \operatorname{cotg} 8 \end{aligned}$		： ：セ世x 	
	$\cdots \times$	\cdots－${ }^{-\infty}$	c＊＊	－－－	Hesers	\cdots－	－－－	＂＊－	－m－－	
Rance Pivastomit		． 3673		－0004－4	－momos		－－＞0）	－－－－	－－x．－s．	－mano
Eeceder Livewccok	momom	00．0．0．as	－0mo	．0279	－900．－	－momom	． 0269	－．．．．．	－mosom	－0．00．m
90amemasty	－momo．	900mencu	． 0150	－0226	－- －－－	－＂－－－	.0076	－－－－－	－0．．．0．	00000
Porage，sead mad fooci	－006	－ 2988	．4305．	mom		momem	－	－239\％	＂，－－－－	－－mo．
	－	－016\％	－－xas	.0960	． 2787		． 359	－2238	－4emos	9000\％
foratacy	． 00002	\％ownom	－6momo	－600cosom	－uamom	100600000	－	－－00m	－600000	－mom
	．0229	－ 0462	．0320	－\times asom	－＊－＊＊	－＂－＞＞	－006\％	－ 8936	－\times－mom	－00゙い
Cremscals	$\cdots \cdots$	－－mo．．	－－＊－＊	． 0193	－ 0146	－ 035	－044 等安	． 00064	－－mmom	
Wholesale trade	． 0037	． 0068	． 0085	． 0337	． 0457	． 0427	－0092	－0才4 ${ }^{4} 5$	． 0036	． 0028
Wamice ututions	． 0120	． 0042	－ 00078	．0151	． 0249	． 0118	－0093．	－0049	－ 040808	． 098
A 1 other yecate	－0cas	．0258	$.028{ }^{\circ}$	－Dasty	－034	－ 0282	． 08.88	－1338	． 0096	.0692
All ocher serwines	－－0．0soum		－－mom	－－mom	－－．．．．．．．	－nmum	Mosem	－0．0．0．	－0985，	－momos
Trarepoztatison	．	－000－mos	． 0278	－ 32 嘘	． 0095	． 1070	\cdots	． 0053	． 0230	－－－0．0
\％lestric enszgy	．00Am	． 0013	． 0060	－0038	． 0028	． 0023	． 0269	－0012	． 0070	－000coso
ADI．Other utidituce	－ 0022	． 0009	． 0022		－0028	－mom	－0＊30．4	． 0022	． 0253	－0－00
Renears amd Einance	－ 9188	－0886	． 01518	00257	－0eger	.0250	－ 1285	． 0245	． 0595	－6962
Tocter ${ }^{\text {g }}$	－ 2×3	． 6833	． 5680	． 28.8	0.33 .33	－253	－ 69.95	－ 48.8	－235 5	－0496

[^9]This expression is the Leontief matrix -- a table of direct and indirect coefficients.

Sector	per doller to fimel demand
	Dol 2 as
	1.271
Feeder livastock	1.925
乡acm dsiry	1.792
Fiowages seat mit ficci	1.333
Cotera	1.425
Tragerazieu	[. 360
Cutcsi exopy	1.814
Furestry	1.06?
All other egxiculatau	1.635
Agriculteraj scryice\%	1.299
	1.269
Copper	1.217
All cinex mining	1. 6.89
Foce amd kincres prowucte	1.81\%
Kambex mme se predueta	1. 35.3
Fuxruture and Eisturen	I. 374
Eapar sad perp	- 1.885
Ch*mix ${ }^{\text {cla }}$	1.332
Primezy metais	2.034
Feiriting and Fabliehtng	1.203
Fabricelca motels	1.179
Textiles zns 3pparez	1.053
Leetumer and leacheg goocis	1.514
Stcne clay and gi.egs	1,571
	1. 257
- Whateste trats	1. 355
Sarvines etaclons	1.323
	1.68\%
A15 other adtsil trasa	1.845
Hodstrg	1.973
ALt ethgr eexweces	1.26\%
Traneportation	3.375
Elestric ensegy	1.323
A11 cthez ntilitutec	1.177
Conszace cot trietion	1.638
Fonsoli sad fxnamee	

"

 manticper

 fam reauixemants wese mat。
 underground watari punped in 1960 fren ebsut 20 grannd water acese maz

	Evaractanapivabion 5equireannes	Tocol regntrenent ac fam I/
		$\cdots-0.0$
Feed and food graing aud fosaya	1,706,000	2,624,000
curcea	18343,000	2,067,000
Citrue crops	52.000	78,000
Fegtebles and mators	71,000	174.000
All other exeps	153.000	235.000.
Total	3, 385,050	5.178000
I/ EnEm intigation La only 3.5 facken tut inereace tot x sequire	ency was assinncet inn use by letuca, 	11 3e.torr és - yegetn? ferous g dathyg batreat

 1960

1/ Cencur of Prigatient 1959. E.3sumed seas quantity for 1960.
2/ bsuppaet conveyance ericiency oz be pacent.
 organizations. Conveyonce exticiency 75 percent.

4/ fittle on no sfetam conveynase losu.
 major ground water arres, stie aybbaia, 19

Sait mivar ifalley	
Rast of \&sua Eita Reper	
Queen Creak-gitgiey-Magma	403: 000
Phoenix-Glendala-Tolleson	353, 000
Tempe-ings-Chandler	5i3, 000
Haradise Yalley	67.00
Total Enst of Agta Iris River	1,350,000
Witchifeld yark- Baxdskeymigninetw	481,000
Libertymuckeye-inaseasana	42\%.600
Lower Centennis! Hash	78,000
Toral west of Agus iria	-81,600
Total salt River lolley	2,331,000
Hower Sante crus	
Eloy Area	273,(100
Casa Grande-7lorenee	316, 000
Staniteld-tericopa	480, 00
0) ¢her	20.000
cocal Loner Sanca crug	1,089,100
ypuer Sante crue	197.000
Avre-darana Area	126:000
Milcox [illey	
Ransas Setilement	- 14.4000
Steivart Area	¢8,000
Pearecepochise	24,000
Totel Wilcos Falley	12,6,000
San Siron Yalley	
Bowie mres	37,300
San Simon	2, 5,306
Redro-Cienoga	$\cdots 2.800$
Fotal Sen Simon Palley	70, 0
Herquhaig plains	2:9,000
Douglas matley	115,000
Duscan yalley.	35,004
Safiord Ares	133,000
cila Eend	36,050
Qcher	2.7,000
Weal	23200
111	s com ${ }^{\text {ane }}$

 1969 report.

Mysesfeek
 By ETMA。

 1937.

部至重 196．

 194. 80\%. 1960.

Crops

 A-1.5, (resent-no date).
 USEA and untwo of Arteorno (recent - no date).
 Lead letince, ysie and finivo of Arigora, frecent-no datel.

 232, Junie 1950.
 Teras, PRED, RES, USDA, ERS-115, June 1963.
13. Ganetr, \mathcal{Z}_{0}, gruck Crop production prectices: Imertal Eosnty Calffornia. FTED, R2S. -123, EQpt. 1863.
 Rope. 163, Novemper 2957.
15. Faw, Wo Do, Grouns Cole Crops in Arizona, Arizowa Ag. Rypt. Sta. A-5 (recent).

 Crop Reporting wonrd，fiso 2．2（60）。

Cenexel

1．Annul Heport on Ground Eatez in Arizons，published antubly by

 Anmadily frem 1953 co 1953.
 Arizona and hem tersico．

 Msy 1962。

 1960
 もうに，
 f Spechel Report：Jeano 1033.

 224：ApE21 1958。

THE MINING, MANUFACTURING AND ENERGY SECTORS

OF THE GILA SUB-BASIN

by
John H. Chapman, Jr. with the assistance of Lee Megli, Hollis Price and John Sikora

Revised August, 1967

Introduction

Mining has been one of the most important economic activities of the Gila Sub-Basin since Territorial days. Even before the Gadsden Purchase in 1853, Spanish camps had been established to mine gold, silver, copper and lead ores. United States citizens, who resided in the Arizona Territory, continued to mine gold and silver only until about 1875 , when the establishment of reliable transpertation facilities led to interest in the exploitation of nonprecious minerals. $1 /$ The most abundant of these ores, and the one receiving the most attention, was copper.

Copper mining has been, and continues to be, one of the major sources of income and employment in the Gila Sub-Basin. "For more than eighty years the copper mines of Arizona have poured a ceaseless streain of metal inco the nation's industries. "2/ For over fifty years the state of Arizona has ranked as the leading copper producer in the United States, and the greatest share of this output has come from the Gila Sub-Basin. In fact, the record of steady growth in Arizona (and the Gils Sub-Basin) is closely linked with the development of copper mining there.
"All of the Gila Sub-Basin copper mining regions occur within a belt where intense faulting, folding and igneous intrusions have occurred. "3/ "Bonanza" or high grade ore mines were predominant
$1 /$ This and much that follows comes from T. G. Chapman, The Mineral Industries of Arizona - A Brief History of the Development of Arizona ${ }^{\text {'s }}$ Mineral Resources, Arizona Bureau of Mines, Bulletin No. 169, Tucson, Arizona: University of Arizona Press (1962).

2/Frank P. Kright and Frank J. Tuck, Mining in Arizona, Its Past - Its Present - Its Future, Arizona Department of Mineral Resources (April 1961), p. 11.

3/T. G. Chapman, of. cit., p. 6 .
fron about 1880 to 1910 , and such properties as the 01d Dominion at Globe, the Copper Queen at Bisbee, and the Clifton-Horenci mines were the major producers. Since 1910, the low grade "porphyries" have been the major copper ores mined.

We have estimated that the total value of Gila Sub-Basin copper production in the first sixty years of the twentieth century exceeds $\$ 7.3$ bjillion. 4/ $^{(1960}$ reported value of copper production was $\$ 387.1$ million, which accounted for slightly more than 85 per cent of the value of all sub-basin mining output that year. The role of the copper mining sector as the single most important branch of mining activity in the Gila Sub-Basin is evident. Copper mining alone accounted for over 7 per cent of the $\$ 4.2$ billion of total gross output of all processing sector industries.

While copper is central in the mining story of the Gila SubBasin, other metals -- notably gold, silver, lead and zinc -- have also been important in the historical developuent of the sub-basin economy. The roles of gold and silver have been mentioned above.

The production of lead was first reported in 1894, and that of zinc in 1905. However, historlcal records indicate that there was some production of both metals prior to those years. The value of sub-basin lead production in 1960 was $\$ 2.1$ million, $\$ 1.6$ million of which came from Yavapai County, Arizona. Zinc production in 1960 was was worth $\$ 12.2$ million, 83 per cent of it coming from two counties -- Yavapai County, Axizona and Grant County, New Mexico. These two metals, as well as molybdenum, are most frequently produced in cono junction with the mining of copper ores.

Some additional metals, such as manganese, tungsten, mercury, and "rare metals," (exclusive of gold and silver) have been, or are curcently being mined in the Gila Sub-Basin.

Non-metalife mineral output includes asbestos, lime, clays, sand, gravel, stone, mica, perlite, pumice, gemstones, barite, feldspar, gypsun, and several others. The Gila Submasin reported

4/ See Table G-1 of this report.
no production of mineral fuels (coal, ciude petroleum, or natural gas) in 1960.

There have been comercial uranium operations in the sub-basin since as early as 1956, and these operations are classified as metal mining. The value of uranium output is a small percentage of the state's total output, and production data for the counties of the Gila Sub-Basin are not available. The total gross output in the transactions table was derived by a fairly simple ratio method and a process of elimination from more aggregated data.

The total value of mineral production in the Gila Sub-Basin in 1960 was $\$ 447$ million, almost 24 percent of which came from one county -Pinal County, Arizona. The total gross output of all mining activities in 1960, as shown in the Gila Sub-Basin table of transactions, was $\$ 376.9$ million, more than 9 percent of the aggregate total gross output of all processing sector industries in the Gila. The $\$ 70$ million discrepancy between the value of mineral production reported by the Minerals Yearbook (Table G-1) and the combined gross output of three mining sectors of the Gila transactions table reflects the inclusion of the value of anode copper in the first case. In the Gila I-O table, anode copper is considered to be part of the output of the primary metals industry.

Wage and salary payments to persons employed in the mining industry amounted to $\$ 109.8$ million, and the 16,940 persons employed received an average annual wage of $\$ 6,482$. 5/ The sub-basin's mining industries employed slightly over 7 percent of all persons employed.

The total values of mineral production in the sub-basin's Arizona counties in 1960, by county, were as follows: Cochise County -- $\$ 44,255,697$;
Gila -- \$47,186,532; Graham -- \$150,596; Greenlee -- \$70,413,650;
Maricopa -- $\$ 6,384,838$; Pima -- $\$ 98,271,821$; Pinal -- $\$ 106,722,094$; Santa Cruz -- $\$ 816,087$; and Yavapai -- $\$ 26,710,885$. 6/ Catron County, New Mexico produced $\$ 38,422$ in 1960, and New Mexico's Grant County produced $\$ 46,093,287$.

5/ Employment and wage data are from unpublished records of the State of Arizona and State of New Mexico Employment Security Commissions.

6/ 1960 Minerals Yearbook, Volume III, Area Reports, U.S. Department of the Interior, Bureau of Mines, Washington, D.C.: U.S. Government Printing Office (1961), p. 16.

Uranium

Historical review -- Uraniun mining is not a major part of total mining activity in the Gila Sub-Basin. While all Arizona counties in the Gila have deposits of uraniun ore, only a few have been opened to commercial exploit:ation. In 1957, uraniun ore production was reported in several of the Arizona counties in the sub-basin -- Gila, Maricopa, Pima, Santa Cruz and Yavapai. By 1960, however, only three sub-basin Arizona counties were producing -.. Cochisc, Gila and Yavapai. Neither of the New Mexico counties in the sub-basin have a record of uranium production.

Interinclustry relations -- The 1960 total gross output of uranium in the Gila was $\$ 563,000$ (slightly more than one-tenth of one per cent of all mining total gross outputs), and the entire anount was exported to other sulb-basins of the Colorado River Basin since there were no uranium processing mills located in the Gila.

Uranium inputs -- The extent of the uranium industry's dependence upor other processing sector industries for its inputs is modest. Only 17 per cent of total gross outlays .- $\$ 97,000$.-. vere purchased from within the processing scctor in 1960, and the largest of these was $\$ 31,000$ of electric energy, followed by $\$ 13,000$ of stone, clay and glass products and $\$ 17,000$ of contract construction purchases. Inputs from the remaininf processing sectors were less than $\$ 7,000$ each. The largest single outlay to an autonomous sector was $\$ 185,000$ in wages and salaries to resident sub-basin employees. Imports fron outside the Colorado River Basin amounted to $\$ 104,000$. Federal, state and local tax labilitics were $\$ 66,000$, and depletion allotrances and depreciation together accounted for $\$ 65,000$.

Direct and indirect effects of the uranium industry on the subbesin economy .- Uranium mining in the Gila Sub-Basin is neither the strongest nor the weakest case of interdependence within the mining sector. On the one hand, there is greater interdependence between uraniun mining and other sectors of the sub-basin economy than is true in the much larger copper mining industry, but there is less interdependence than is found in "all other mining." Each time
the uraniurn industry adds $\$ 1.00$ to deliveries outside the processing sector, total sales within the processing sector go up \$1.25.
Uranium mining in the Gila Sub-Easin is rather unusual in that there are no intraindustry transactions. And only eight other industries in the processing sector are affected to any significant ertent by changes in the final demand for the output of uranium mines.

The largest interindustry effect involves the electric energy industry. For each additional dollar of uxanium sales to final demand, the output of the electric utilities increases \$.07. Two other sectors .on contract construction and stone, clay and glass ... add $\$.04$ to sales when uraniun deliveries to final demand go up $\$ 1.00$. Payments to rentals and finance increase $\$.02$. The remaine ing gains of $\$.01$ each are in the lumber and rood products industry, the retail, and services and utilities sectors.

Water inputs ${ }^{--}$

Since the number of mines is small and total output is barely one-half million dollars, it is doubtful that water inputs are significant enough to merit further invesifgation. Gilkey and Beckman make the following statement about the one uranium mine they investigated: "rhis mine, like other uranium mines in the state, uses relatively small amounts of water . . (and) requizes four gallons per minute of new water." "// No gallon/ton water use figures could be calculated from the data presented by the authors but it is of a very 10 w order of magnitule. There are no uranium mills in the Gila, and it is not anticipated that mills will be located there in the near future since the output of uranium ores is small and is not expected to increase.

Copper

Historical reviev -- Copper mining was the mainstay of the Gila Sub-Basin econony vell before the turn of the present century, and

I/M. M. Gilkey and Robert T. Beckman, Water Requirements and Uses jn Arizona Mineral Industrios, U. S Department of the Interior, Buienu of Mines, Washington, D. C.: U. S. Government Printing Office, (1963), p. 56.
it has had a substantial and far reaching effect on the grovth and development of the region. While copper production in the Gila was knom to have occurred in the Spanish period (primarily the sixteenth century), it was not until the early 1870's that the major discoveries of copper ores were made. Many Arizona mining camps wexe established during this decade that are still yielding great mineral wealth. Among the mines are the Globemiami, Silver King, Superior, Bisbee, Tombstone and Clifton-Morenci.

Exploitation of these deposits proceeded at a rapid rate, stimulated by improvement in transportation facilities with the coming of railroads. Production increased quickly, and by 1904 the Gila accounted for over 24 per cent of total U . S. copper tonnage. $8 /$ Output reached a level of almost 430,000 tons by 1918 , but there was a postrar slump and by 1921 there had been a 77 per cent decline to 100,000 tons.

Production recovered after 1921, and by 1926 the previous peaks had almost been reached. By 1929, the output level was almost 460,000 tons. But during the next four years there was another exencadous drap to slightly less than 70,000 tons - an 85 per cent decline from the 1929 peak.

It should be noted that copper production has varied almost directly with major price changes. Copper anodes (the pure copper refined from copper ores) are a homogeneous product which has been sold on a relatively free world market. While minor price fluctuations have had little effect on production, najor price changes have always caused a rapid expansion or contraction of mining activity. Both the rapid declines in production described above were preceded by significant declines (between $\$.02$ and $\$.03$ per 1b.) in the price of finished copper. With copper presently selling at prices between $\$.31$ and $\$.32$ per $1 b$., it is evident that price decreases of this amount would cause copper producers to sell out of

8/See Table G-1. Complete sub-basin production figures prior to 1904 could not be obtained.

VALUE AND TONNAGE OF GILA SUb-bASIN AND TOTAL U. S. COPPER PRODUCTION, 1874-1960 (value in current dollars)

	Gila Total		Arizona Sub-Basin Counties		New Mexico Basin Counties		$\begin{aligned} & \text { Total U.S. } \\ & \text { production } \\ & \text { (short tons) } \end{aligned}$	Gila as per cent of U.S. tonnage	Total U.S. value (thousands of dollars)	Gila as per cent U.S. valu
	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$				
1960	603,160	\$387,136,689	538;356	\$345,624,712	64,660	\$41,511;977	1,080,169	55.8\%	\$693,468	55.8\%
. 1959	468,522	287,672,447	430;101	264,081,984	38,421 ${ }^{\text {a }}$	23;590;463	824,846	56.8	506,455	56.8
1958	540,871	284,481,887	485,766	255;512,253	55,075	28,969,634	979,329	55.2	515,127	55.2
1957	581,160	349,860,059	515,782	310,502,744	65,378	39,357,315	1,086,859	53.5	654,289	53.5
1956	571,729	490,224,197	500,501	429,680,567	71,228	60,543,630	1,104,156	51.8	938,532	52.2
1955	517,971	386,447,396	453,879	338,634,764	64,092	47,812;632	998,570	51.9	744,933	51.9
1954	436;051	257,270,090	377,867	222,941,530	58,184	34,328,560	835,468	52.2	492,927	52.2
1953	463,119	265,824,566	393,248	225,718,612	69,871	40;105,954	926,448	50.0	531,781	50.0
1952	469,306	. 227,144,104	395;262	191; 306,808	74,044.	35;837,296	925,359	50.7	447,874	50.7
1951	486,957	235,687,188	415;369	201,038,596	71;588	34;648,592	928,329	52.5	449,311	52.5
1950	466,151	194,127,835	402,448	167;627;387	63,703	26;500,448	909,337	51.3	378,284	51.3
1949	412,050	162,346,109	358,761	141,350,243	53,289	20;995;866	752,746	54.7	296,582	54.7
1948	447,285	194,179,564	374,465	162;575,684	72,820	31,603,880	834,797	53.6	362,302	53.6
1947	424,107	178,124;499	365,872	153,665,904	58,235	24,458,595	862,872	49.2	360,860	49.4
1946	337,5y	109,381,428	288,741	93;552,894	48;854	15;828,534	599,656	56.3	172,701	63.3
1945	341,535	92,323,586	286,213	77,386,646	55,322	14,936,940	782,726	43.6	184,723	50.0
1944	327,224	114,332,445	260,317	96,267,420	66;907 ${ }^{\text {a/ }}$	18,065,025	1,003,379	32.6	236,797	48.3
1943	475,566	123,619;536	402,696	104,673,310	72;870 ${ }^{\text {a/ }}$	18,946,226	1,092,939	43.5	257,934	47.9
1942	469,468	113,612,164	393,054	95,118;681	76,414 ${ }^{\text {a }}$	18,493,483	1,087,991	43.1	256,766	44.3
1941	395;009	93,221,900	326,102	76;959;777	68;907 ${ }^{\text {a }}$	16,262;123	966,072	40.9	227,993	40.9
1940	345,931	78,180,146	280;906	63,484,304	65,025a/	14,695,842	909,084	38.1	205,453	38.1
1939	304,294	\$ 63,257,402	261,930	\$ 54,445,596	42,364 ${ }^{\text {a }}$	\$ 8,811,806	712,675	42.7\%	\$148,236	42.7\%

	Gila Total		Arizona Sub-Basin Counties		New Mexico Sub-Basin Counties	
	3 nort tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$	Short tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$
1938	304, 172	\$ 72,846,172	287;591	\$ 69,596,306	16,5811 ${ }^{\text {a/ }}$	\$ 3;249;866
1937	240,674	45,995,705	211,163	. 38,854,067	29,511	7,141;638
1936	271,996	39,263,957	269;767	38;853,977	2,229	409;980
1935	140,548	23,331,086	138;974	23,069,719	1,574-	261;367
1934	99,929	15,988,682	89,014	14,242,210	10,915	1,746;472
1933	69,595	8;908,031	57,013	7,297,599	12,582	1;610;432
1932.	104,505	13,167,550	91,241	11;496;286	13;264 ${ }^{\text {a }}$	1;671,264
1931	228,819	41,645,260	200,655	36;519,312	28,164 ${ }^{\text {a }}$	5;125;948
1930	316,439	82,274,431	287;636	74,785,521	28,803	7;488;910
1929	459,310	161,676,569	415,033	146,091,166	44,277	15;585;403
1928	406,640	117,112,298	366,065	105,426,973	40,575	11;685;325
1927	374,579	98,139,421	340,960	89;331,259	33,619	8;808;162
1926	399,539	111,871,345	361,572	101,240,585	37;967	10,630,760
1925	391,979	111,322,065	356,625	101,281,557	35,354	10;040;508
1924	373,524	97,863,474	338,775	88,759;225	34,749	9;104;249
1923	334,553	108;358;955	306,140	100,005,546	28,413	8,353;409
1922	212,357	56,336,490	198,138	52;497;239	14,219	3;839;251
1921	99;232	25,602,330	92;415	23;843;471	6,817	1;758;859
1920	307,416	111,432,644	281;908	102,045;725	25,508	9;386;919
1919	313,465	109,168;437	288,427	99,854;318	25,038	9;314;119
1918	429,441	212,143,769	380,971	188,199,742	48;470	23;944;027
1917	404;360	218,780,124	353,673	193,105,120	50,687	25,675;004
1916	401,989	197,735,485	358,007	176;140;487	43;982	21;594,998
1915	264,217	92,650,697	227,973	79,965;437	36,244	12;685;260
1914	225,188	59;900,115	196,058	52;151,653	29,130	7,748,462
1913	229,909	71,272,011	203,191	62,989,404	26,718	8,282,607
1912	198,421	\$ 65,479,104	181,945	\$ 60,042,002	16,476	\$ 5,437,102


```Total U.S. production (short tons)```	Gila as per cent of U.S. tonnage	Total   U.S. value (thousands of dollars)	Gila as   per cent   U.S. val?
562,328	54.1\%	\$110,216	66.1\%
834,161	28.9	201,993	22.8
611,410	44.5	112,499	34.9
381,294	36.9	63,295	36.9
244,227	40.9	39,076	40.9
225,000	30.9	28,800	30.9
272,005	38.4	34,273	38.4
521,356	43.9	- 94,887	43.9
697,200	45.4	181,271	45.4
1,001,432	45.9	352,504	45.9
912,950	44.5	262, 930.	44.5
842,020	44.5	220,609	44.5
869,811	45.9	243,547	45.9
837,435	46.8	237,832	46.8
817,125	45.7	214,087	45.7
717,500	46.6	210,945	51.4
475,143	44.7	128,289	43.9
252,793	39.3	65,211	39.3
604,531	50.9	222,467	50.1
643,210	48.7	239,274	45.6
954,267	45.0	471,408	45.0
943,060	42.9	514,911	42.5
963,925	41.7	474,288	41.7
694,005	38.1	242,902	38.1
575,069	39.2	152,968	39.2
612,242	37.6	189,795	37.6
621,634	31.9\%	\$205,139	31.9\%

TABLE G＂I（cont．）

	Gila Total		Arizona   Sub－Basin Counties		New Mexico   Sub－Basin Counties		$\begin{aligned} & \text { Total U.S. } \\ & \text { production } \\ & \text { (short tons) } \end{aligned}$	Gila as per cent of U．S．tonnage	Total U．S．value （thousanus of dollars）	Gila a   per cent   U．S．val
	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$				
1911	154，691	\＄38，673，203	152，732	\＄38，183，337	1；959	\＄489，866	548，616	28．2\％	\＄137，154	28．2\％
1910	150，469	38，219，231	148，267	37，659，873	2，202	．．559；358	540，080	27.9	．137，180	27.9
1909	154，306	40，119，971	151，718	39，447，015	2；538	672，956	546，476	28.2	142，084	28.2
1908	145，334	38，368，254	142，713	37，676，209	2；621	692，045	471，285	30.8	124，419	30.8
1907	130，891	52，356，777	126，868	50，747，514	4；023	1，609，263	434，498	30.1	173，799	30.1
1906	136，321	52，620，573	133，127	51，387，529	3；194	1，233，044	458，903	29.7	177，596	29.6
1905	116，835	36，453，948	114，194	35，628，517	2，641	825，431	450，954	25.9	139，796	26.1
1904	101，787	\＄25，468，153	99，573	24，893；077	2，214	\＄575，076	406，269	25．1\％	105，630	24．1\％
1903		d／	73，974 ${ }^{\text {59 }}$	20，416， 821 b／		．${ }^{\text {e／}}$	349，022		91，506	
1902			59，972	14，633，283－			329，754		76，569	
1901			65，389	21，840，028			301，036		87，301	
1900			59；159	19，640，749			303，059		98，494	
1899			66，527	22，752；381			284，333		ごミアニス̃	
1893			55，579	13；733，622			263，256		61，826	
1897			40，765	9，783，688			247，039		54，080	
1896			36，467	7，876，972			230，031		54,080 49,457	
1895			23，977	4，795，355			192，957		38，012	
1894			22，257	4，228，915			182，433		33，141	
1893		：	21，951	4，741，505			169，893		32，055	
1892			19，218	4，458，587			176，486		37，977	
1891			19，937	5，103，780			147，906		38，455	
1890			17，398	5，428，283			132，558		30，849	
1889			15，793	4，264，135			115，623	I	26，908	
1888			15，990	5，341，946			115，635		33，834	
1887			8，860	2，445，424		．	92，614		21，116	
1886 1885			$\begin{array}{r}7,829 \\ \hline 11,353\end{array}$	\％1，737，928			80，618		16，528	
1885			11，353	\＄2，452，287			85，481		\＄18，293	

TABLE G-1 (cont.)

	Gila Total		Arizona   Sub-Basin Counties		New Mexico   Sub-Basin Counties		Total U.S. production (short tons)	Gila as per cent of U.S. tonnage	Total   U.S. value (thousands of dollars)	$\begin{array}{r} \text { Gila a } \\ \text { per cent } \\ \text { U.S. val } \\ \hline \end{array}$
	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$	Short tons	$\begin{aligned} & \text { Value } \\ & \text { (dollars) } \end{aligned}$	Short tons	$\begin{gathered} \text { Value } \\ \text { (dollars) } \end{gathered}$				
1884		d/	13,367	\$3,475,465		e/	- 72,611		\$17,790	
1883			11,937	3,939,369			58,576		18,065	
1882			8,992 c/	3,435,023 c/			45,823		16,038	
1881			5,000 ${ }^{\text {c/ }}$	1,820,000 ${ }^{\text {c/ }}$			35,840		12,176	
1880			1,000	428,000			30,240		\$11,491	
N 1879			875	325,500					\$11,491	
$\checkmark .1878$			750	249,000						
1877			625	237,500						
1876			500	210,000						
1875			450	204,300						
1874			400	\$ 90,000						
a/ Less than one ton produced in other counties, value included.										
b/Arizona data prior to 1903 are for entire state.										
c/Arizona.data prior to 1882 are estimated data taken from Arizona Metal Production.										
${ }^{\text {e }}$. New	Sexico counti	data not av	able prior to	1904.						

SOURCES: Minerals Yearbook, Annuals, 1883-1961, U. S. Department of the Interior, Bureau of Mines, Washington, D.C.: U. S. Government Printing Office. Arizona Metal Production, M. J. Elsing and R. E. S. Heineman, Arizona Bureau of Mines, Economic Series No. 19, Bulletin No. 140, Tucson, Arizona: Uaiversity of Arizona (1936), pp. 14-17.
inventory rather thar current production. Thus, production always takes a more severe dip than a price cut might appear to warrant when there are available inventories, and this is the usual inventory condition in the copper industry.

Chart G-2 shows a trend line of production since the carly 1900's. $2 /$ Dips in production are always followed by a rather rapid recovery to levels near previous peaks. This is due to the virtual depletion of inventories before production is resumed after the initial price drop.

Production recovered quickly fron the 1933 lows, and by 1936 had reached a level of slightly more than 270,000 tons. The war years of 1941 through 1945 saw copper production reach a new peak -- alnost 476,000 tons in 1943. In the carly postwar years production dipped slightly but it had exceeded the 1943 peak by 1951. Since that time, with intermittent dips due primarily to labor problens, production has climbed steadily, and in $1260,603,000$ tons of copper worth $\$ 337$ million were mined in the Gila. The value of sub-basin copper production since 1904 is pictured in Chart G-4. Additional charts (G-3 and G-5) show the production figures in tons and dollars, respectively, for the counties, by state, of the Gila Sub-Basin.

Of particular interest is the role of Gila copper production in the U. S. output of copper ores. Chart G-6 is a belt diagram showing Giaa Sub-Basin production of copper ores as a per cent of total U. S. production for 1904 through 1960 inclusive. By 1905, Gila production was alnost 26 per cent of the U. S. total, and it reached a level of slightly over 50 per cent by 1920. In the three decades fron 1920 to 1950, Gila production varied between 30 and 50 per cent of the U. S. Lotal, but from 1950 to the present it has not fallen below 50 per cent. In 1960 , almost 56 per cent of all U. S. copper ores mined came fron the Gila Sub-Basin. Not only does

9/ The period from 1874-1903 has been estinated by backward extrapolation for the sub-basin total, even though data for some Arizona countics go back as far as 1874 on Table G-l.

## CIMAR G-2

GILA SUB-DASTA COMER RRODUKIC: 1874-1962 (shost tons)


SOURGS: Minoras Yearbook, Amme1s, 1883-1961, U. S. Department of the Interior, Dureau of Nines, Washington, D.G.: U. S. Govermment printing office.

Arizona IVtal Production, M. J. Elsing and R.E. S. Heineman, Arizona Rurcau of lhines, Economic Serioo Wo. 19, Bulletin No. 140, Tucson, Arizona: University of Arizoma (1936): pp. 14-17.

CHARE G-3

OE THE CRUA SUB-DASMI, $1.874-1962$
(short tons)


SOURES: Mrarals Yearbok, Anquals, 1883-1961, U. S. Deparment of the Interior, Burear of Kines, Washington, D.C.: U. S. Government Rrinting office.
Arizona Votal Erohuction, 1r. J. Elsing and R. E. S. Heincran, Arizma Lurean of Kines, Leonomic Series No, 19, Dulletin No. 140, Rucson, Arizons: Univencity of Arizena (1935), pp. 14~1\%.

## CHAET G-4

 (current dollars)


Souncus: Mromels Yeamook, Ampu1s, 1883-1961, U. S. Department of the Interiot, Euncau of lines, Washington, D.C.: U. S. Government Printing Office.
 Ariam Pumeau of lines, fonomic Series No. 19, Fulletin No. 140, fiveson, hrizona: University of Arizona (1936), pp. 14-17.
 OF THE CBLA SU1-WISIA, 1874-1962


Arizon Heth Frouction, If J. Eleirg and R. F. S. Heincon,


Pex
Sounces:

Whers1s Yoarbook, Anve1s, 1883-1961, 11. S. Dopartment of the Interion, buzeau of kines, Wabhigton, D. C.: U. S. Govemmant Printing office.
Arjzon: Mot Etoduction, H. J. Elsing and R. E. E. Heineman, Arizona Buacau of Rines, Hobunic Sexies Mo. 19, Bulletin No. 140, fucson, Arizona: Univenstity of Arizona (1936), pp. 14-17.
copper mining provide a major source of incone and employnent for: sub-basin residents, it also represents a wajor proportion of narional production. The two other western copper mining compleses... one in Utah and the other in Montana $\cdots$ account for almost all of the remanm ing production of U. S. copper ore. The major Axizona copper mines in 1960, classified as both open pit and undergrowd mines, are show in Table G-7. All of them lie entirely within the Gila Subo Basin.

Interindustry relations - Aside from inventory accumulation of $\$ 2,568,000$, and intrandustry transactions of $\$ 5.5$ milion, the entite output of the copper mining industry ( $\$ 308,838,000$ ) went to the subbasin primaxy metals industry. Aftor the copper ores are astracted they are concontrated, generally by a flotaciou process: "The concentrate, so obtained, is further treated by melting and refining nethods, resulting in the production or essentially pure coppar and the recovery of gold and silver and other economic componds present in such ores. ${ }^{110 /}$

Copper inputs ... The largese single input to the copper industry from another processing sector in 1960 wes $\$ 8,314,000$ of tranoportation services. Four million dollars of chemicals purchases were primaxily explosives used in the minnge operations. Several ather large interindustry purchases were made: other utilities ... $\$ 5,621,000$; electric energy -- $\$ 4,185,000 ;$ "all other services" .... \$4,051,000; and contract construction .... $\$ 3,017,000$. Inputs from no other processing sector exceeded $\$ 7,400,000$.

The autononous sectors contributed $\$ 260,328 \mathrm{million}$ of inputs, 84 per cent of total gross outlays, in 1960. The laxgest was wage and salary payments $(\$ 93,100,000)$ followed by imports $(\$ 74,366,000)$. Additional household payments of $\$ 8,400,000$ were made through the "profits and other" income sector. These three purchases accounted for over 68 per cent of purchases firm all autonomous sectors. Total

$$
10 / \text { T. G. Chapunn, op. cit. , p. } 8 .
$$

MAJOR ARTZONA COPPER MINES, 1960

## Open Pit



[^10]tax liability amounted to nearly $\$ 45$ million, and depletion allonances on current production (as well as depreciation expense) was \$32,057,000.

Direct and indirect effects of the copper industry on the subbasin econony -. The copper mining industry, despite its importance in the Arizona economy, represents the wealest case of interdependence of the three mining sectors in the Gila Sub-basin. Coppex minint derives relatively few inputs from other industries in the processing sector. Intraindustry transactions are relatively small. Each time copper deliveries to final denand are increased by $\$ 1.00$, intraindus. try transactions go up about $\$ .02$. The larcest interindustry transw action involves transportation. When copper sales to final demand are increased $\$ 1.00$, the transportation industry sells an additional $\$ .03$ wheth of its services to other finco. Electric energy, "all other services" and "all other utilities" add about \$.02 to sules when copper output is expanded. The "chemicals" sector, and contract construction, also benefit to the extent of additional sales of $\$ .01$ for each addjtional \$1.00 delivery of copper to final demand. The sum of all interindustry transactions is relatively small at \$1.22

Watcr inputs .- The sub-basin copper industry is a major con. sumer of water, both for processing and domestic purposes. It has been estimated that neiv water intake in 1960 was'nearly 23.1 billion gallons, most of which was used in the flotation concentrating process. 11/ Water needs in the mining operations are small, and the flotation concentrating process accounts for over 96 per cent of total intake water.

Tables G-8 and G-9 give some ides of the magnitude and patterns of water use in the sub-basin copper industry. The data in Table G.8 -

1I/For a compehensive study or water input requirenents of the copper inductry in Arizona, see M. M. Gilkey and Robert T. Becknan, op. cit., pp. 12-50. The following discussion depends heavily on this somec.

TABLE G-8
average amounts of water required and consumed in producing copper in artzona, $1960^{2} /$

Process		Total intake		Consumption	
		Gallons pex pound of copper	Pex cent	callons per sound of concer	Per cent
" $\Lambda^{\prime \prime}$	Mining   Flotation concentrating   Smelting	. 1.15	1.9\%	$1.0{ }^{3 /}$	11.1\%
		$56.0^{1}$	96.2	7.51	83.3
		$1.1{ }^{\text {d/ }}$	1.9	.51/	5.6
		58.2	100.0\%	9.0	100.0\%
"B"	Leaching Smelting Totel	29.7	96.4\%	15.1	96.8\%
		1.1-d/	3.6	.5d	3.2
		30.8	100.0\%	15.6	100.0\%

${ }^{2}$ Excluces water required for powerplants, and for domestic anc miscellaneous purposes.
b/Based on average grade of ore mined.
E/Based on average grade of feed at concentrators.
d/Eased on smelter output.
SOURCE: M. M. Gilkey and Robert T. Beckman, Water Requirements and Uses in Arizona Mineral Tndustries, U. S. Department of the Interior, Bureau of Kines, Washington, D.C.:
U. S. Covernment Panting ofrice (1963), p. 14.

TABLE G-G

WATER BALANCE, COPPER INDUSTRY OF ARIZONA, $1960^{\text {a/ }}$

	Subtotal, gha/	Total, $\mathrm{gma}^{\mathrm{b} /}$	Million gpy $/$
Total new water in	-	47,513	23,098
Evaporation	29,073	-	13,562
Seepage	1.7,405	-	9,032
Discharge to stream	1,035	-	$50 \%$
Total water out	-	47,513	23,098
Recirculated	325,903	-	158,62.4
Transferred	4,979	-	2,423

a/ Covers all users of appreciable quanticies of water and inclures all operationl and domestic uses.
b/operating rates.
c/Adjusted to number of working days per year at individual operations. d/Includes approxinately 120 billion gallons of water recirculated at powerplants.

SOURCE: M. M. Gilkey and Robert ri. Becknan, Water Requirements and Uses in Arizona Mineral Indistries, U. S. Department of the Interiox, Bureat of Mines, Fiashington, D.C.: U. S. Govexnment Printing Office (1963), p. 14.

## "A11 Qcher Mang"

```
Historical revich -a. There wero several other extractive indus. tries operating in the Gilo Suburasin in 1960 , producing sand and gravel, stone, pumice, conl, gemstones, nolybdemun, asbestos, lime, mercuiy, mics, clays, nantanese ore and concentrate, mangmiferous ore and concentrate, cenert, gypsun, pyiftes, perlite, beryllium concentrate, silver, gold, lead and zinc, The 1960 Hinerals Yearbok reports the aggregate value of output of those minerals to be \(\$ 59.9\) nillion, and as a group compised alnost15.5pex cent of the \(\$ 387\) million total mining output in the sub-basin. The Arizona countics in the sububasin provided the greatest share.
Natallic minerals have been the most important historically, and they reprosent the gieatest share of the 1960 output of this sector. Most imporiant in value was zine production, followed by gole, silver and lead. These fow metals are gencially byproducts
```

of the copper ores mined in the sub-basin, and therefore have a prow duction histoxy in recent times which parallels that of copper ores. The value of sand and gravel production was also a significant portion of the rotal value of the "all other mining" sector.

Prior to 1951, the U. S. Bureau of Mines Mnerals Yearbook did not include its Area Eeports, and the value of mineral output by county was not generally revealed. Thus, the historical data for the above mining activities are not availeble. Table G-10 is a brief but complete resume of "all other mining" outputs (from which the value of uranium production has not been removed) foi the years 1951. through 1960. These data have been estimated as residuals from the more aggregated county data in Area Reports.

Interincustry relations -. The majo: share of total gross outputs go to other procescing se for industries within the sub-basin (53 pex cent). Total processing sector sales were $\$ 35,654,000$, and half ( $\$ 17,924,000$ ) vent to primary metals manufacturers. Most of this is the value of the gold, lead, silver, and zinc by-products of the copper ore concentrates. In addition, stone, clay and glass mant. facturers bought $\$ 3,553,000$ (primerily gypsun, 1 ine, and sand and gravel). Other sales were made to contract constuction ... $\$ 3,200,000$; chemicals ... $\$ 2,431,000$; and smaller anounts to the coppor sector, "all other manufacturing," and transportation. Intra. industry transactions wexe $\$ 6,800,000$.

Frinal demand deliverics amounted to $\$ 31,913,000$, of which 73 per cent twas exported outside the Colorado River Basin. All governmental agencies purchased $\$ 6.8$ million, and the remainder went to households and inventory additions.
"A11 other minins" inputs -- This sector is more dependent than the other mintig sectors on sub-besin processing industries for inputs, prinarily because of large intraindustry transactions of $\$ 6,800,000$. Other large intexinchotry purchases vexe from transpor. taidion -.. \$3,381,000; rentals and finence ... \$2,612,000; ciectric energy … \$1,859,000; "aII other xetail" ... \$1,302,000; "all othex

VALUE OE GILA SUB-BASGN MINERAL PRODUCTIOA, LESS COPPER, 1952-1960

Year:	Tota 1	Arizona Counties	New Mexico Counties
1960	\$59,907,220	\$55,287,488	\$ 4,619,732
1959	$51,535,839$	$48,393,714$	3,142,125
1958	$49,803,868^{\frac{a /}{/}}$	46,349,828	3,454,040 ${ }^{\text {a/ }}$
1957	$59,318,675$	48,649,926	10,658,749
1956	$56,508,183$	43,464,454	13,043,729
1955	$40,882,612$	34,838,534	6,044,078
1954	$30,303,394^{\frac{a /}{1}}$	29, 144, 071	1,159,323 ${ }^{\text {a/ }}$
1953	33, 359,780	29,021, 1.73	$4,338,607$
1952	\$58,015,872 ${ }^{\text {a/ }}$	\$38,709,408	\$19,306,464 $\mathrm{c}^{\text {a/ }}$
$\underline{a} / \mathrm{Pa}$	ca only - excl	E Cotron Cou	

SOURCE: Minerals Yearbock, Annuals, 1952-1960, Volume III, Area Reports, U. S. Department of the Interior, Bureau of Mines, Washington, D.C.: U. S. Goverment printing office.
services ${ }^{11}$.- - $\$ 1,022,000$; and other utilities - - $\$ 1,003,000$. Inputs from other sub-basin processing industries were less than $\$ 1$ million each.

Autonomous sector purchases of $\$ 43,968,000$ amounted to a1most 65 per cent of total gross ontlays. Wages ant salaries represent the largest payments ( $\$ 16,480,000$ ). Imporis from outside the Colorado River hasin total\$15,912,000. These two accounted for alnost 74 per cent of all imputs from the autonomous sectous. Total tax liability was $\$ 3.9$ million, depletion and depreciation conbined amounted to $\$ 4.4$ million, and payments to resident submbasin households through the "profits and other" sector were $\$ 3.3$ milion.

Direct and indisect effects of the "all other mining" industry on the sub-basin economy -- As noted in an earlier section mining in the Gila economy is quite diversified. There is also a higher dogree of interdependence in the case of the "all other mining" sector than in uraniun and copper. For each additional delivery of $\$ 1.00$ to final demand from this scctor there is a total increase in output of $\$ 1.49$ among the industries included in the processing scetor of the transactions table the stroncest link is between the "all other mining" and transportation sectors. Each time sales from this sector to final demand are increased $\$ 1.00$ there are sales by the transpoztation industry to all sectors of more that \$.06. Following closely behind transportation is the rentals and finance sccior to which payments of slightly less than \$.06 are made for each $\$ 1.00$ increase in sales to final denand, and electric energy … $\$ .04$. Seven other scotors have increased sales of approxio mately $\$ .02$; these are: tholesale trade and the "all other" sectors in manufacturing, utilities, retail trade and the senvices. There were five other industries whose sales increased more than $\$ .01$ but less than $\$ .02$. These are: copper mining, chemicals, primary metals, fabifcated metals, and the stone, clay and glass inclustiy.

Water inputs - - The heterogeneous products in the "all other mining" sector require that water inputs be evalunted by individual
types of mining activity where vaten use is significant. Gilkey and Beckman discuss leadmzinc operations, one zinc-copper operation, and several sand and gravel. washing operations. $12 /$

The lead-zinc and zinc-copper operations reguire significant quantitites of intake water, and the magnitude and nature of theix pollution loadings might be a useful object of study by the F.W.P.C.A. While the authors' data on quantity are quite good, there are no data on pollution levels and this information mast be developed independently. "If it is assumod that the average of 350 gallons per ton washed . . (sand and gravel operations) . . is applied to all other sand and gravel washing operations in the state, the total water required for this purpose in 1960 amounted to 4.4 billion galloms."13/ If this average rate is apried to the $10,148,000$ short tons of sand and gravel produced in the Gila Subw Basin in 1960, water use mould amount to nearly 3.6 billion gallons in that year. It is characteristic of send and gravel washing operations that more than four-fifths of all water intake on the average is retumed to ground weter via settling, ponds, with little or no resulting pollution.

MNUFACIUETIG

## Introduction

Manufactuming in the Gila Sub-Basin is more diversicied thon in the other Colorado sub-basins. In 1960, total gaoss output of a11 manufacturing sectors in this sub-basin vas \$1,071,436,000 This represented over 26 per cent of the total gross output of all processing sector industries in that ycar. The sector with the largest total gross output nas primary metals -w \$389,571,000 followed by "all other manufacturing" -- $\$ 293,930,000$. The only other monfacturing sector with totel gross outputs in excess of $\$ 100$ million wes food and kindred products at $\$ 190,301,000$.

12/Ibid., pp. $50 \cdots 68$.
13/Ibid., p. 61.

Total wage and salary payments to sub-basin households amounted to $\$ 258,734,000$. With 44,587 persons employed in manufacturing, the average anual wage was $\$ 5,803$. Manufacturing employnent represented 19 per cent of total sub-basin employment.

The sub-basin manufacturing industries are combined into twelve sectors. In addition to those montioned above these include: lumber and wood products, furniture and fixtures, paper and pulp products, chemicals, printing and publishing, fabricated metals, textiles and apparel, leather and leather goods, and stone, clay and glass products.

The number of manufacturing establishments has increased almost four-fold since 1939, the first year for which data are presented on Table G-11. While data on the total number of employees in manufacturing are not presented in the table, we have estimbted that 1939 manufacturing employment was 6,400. If this estimate is at all close, manufacturing employment in the Gila increased by about 700 per cent from 1939 to 1960.

Data on value added by manfacturing axe available only for selected years. The Census of Menufactures shows that value added in 1939 was slightly more than $\$ 10$ million. By 1958 it amounted to more than $\$ 325$ milion -.. an unadusted amual growth rate of 150 per cent.

Two Arizona counties, Maricopa and Pima, dominate manufacturing in this sub-ubasin. In 1939, for example, 70 per cent of the manufacturing entablishments were located in these two counties. This had increased to 85 per cent by 1958. These data suggest that agglomeration forces ... a well-trained labor supply, market potential, industrial specialization, and external economies of scale ... have contributed much to the growth of manfacturing in this region since 1939.

The United States Pubiic Health Service reported 796 manfactur.w ing firms in the Gila in 1960. $14 /$ This would be a decrease of nearly

14/1960 Directory of Manufactures for the Cologado Biver Basin, U. S, Departnent of Healeh, Education and Welfare, Fublic Health Service, Bureau of State Sorvices, Division of Water Supply and Pollution Control, Region VIIt, Denver, Colorado. Colorado River Basin Water Control Project (January 1902), p. 83.

SELECTED STAITSTICS ON GILA SUB~RASIN MANUFACIURTNG, BY COUNYY

	Number of establishments	Average   al employment		Value   adiled	
		Total. employees	Production employces		
1939					
Catron, New liexico	7	п.a.	74	\$	78,000
Grant, New Mexico	7	n.a.	114		d**
Cochise, Arjzona	19	n.a.	1,060		d
Gila, Arizona	15	n.a.	448		d
Grahan, Arizona	9	n.a.	40		180,000
Greenlee, Arizona	3	n.a.	2		d
Maricopa, Arizona	145	n.a.	1,934		8,350,000
Pima, Arizona	51	n.a.	423		1,591,000
Pinal, Arizona	5	n.a.	145		d
Santa Cruz, Arizona	3	n.a.	8		d
Yavapai, Arizona	17	n.a.	580		$\mathrm{d}_{\mathrm{a}}$
Sub-Basin Totals	281	n.a.	4,828		10,199,000
1947					
Catron, New Mexico	7	61	60	\$	227,000
Grant, New lexjco	10	371	344		d
Cochise, Arizona	21	1, 100	901		d
Gila, Arizona	16	826	719		15,475,000
Grahan, Arizona	6	61	49		502,000
Greenlee, Arizona	4	430	407		d
Maxjcopa, Axizona	284	7,449	5,635		41,425,000
Pina, Arizona	97	1,174	911		6,015,000
Pinal, Axizona	8	231	191		d
Santa Cruz, Arizona	4	26	20		91,000
Yavapai, Arizona	19	457	373		d
Sub-basin Totals	476	12,186	9,610		63,735,000
1954 ( 10					
Catron, New Mexico	13	139	133	\$	- 687,000
Grant, New Mexico	12	463	394		5,051,000
Cochise, Arizona	26	1,104	896		6,818,000
Gila, Arizona	21	939	792		6,873,000
Graham, Arizona	9	89	63		572,000
Greenlee, Arizona	5	396	357		d
Maricopa, Arizona	461	15,717	11,935		115,281,000
Pina, Asizona	150	4,548	3,340		37,438,000
Pinal, Arizona	21	407	357		3,053,000
Santa Cruz, Azizona	5	64	58		208,000
Yavapaj, Arizona	22	299	274		1,550,000
Sub-Lasin Totels	745	24, 170	18,599		177,531,000 ${ }^{\text {a/ }}$


	Average			
	Number of	Total	Production	Value
	establishments	employses	emplovees.	added
1958				
Catron, New Mexico	11	139	127	\$ 637,000
Grant, New Mexico	13	322	271	d
Cochise, Arizona	35	1,274	997	d
Gila, Axizona	22	1,009	843	5,288,000
Graham, Axizona	15	101	77	958,000
Greenlee, Arizona	3	335	312	d
Maricops, Arizona	698	25,850	18,387	227,710,000
Pima, Arizona	202	8,102.	5,992	83,898,000
Pinal, Axjzona	27	440	368	3,782,000
Santa Cruz, Arizona	6	32	26	164,000
Yavapai, Arizona	26	565	519	3,007,000
Sub-Iasin Totals	1,058	38,1.69	27,919	\$325,444,000

* Not available.
** Witheld to avoid disclosing figures for indvidual companies.
a/ Total less value added for countics vhere data not releascd becauç of disclosure, for subject year.

Source: U. S. Bureau of the Census, U. S. Comsus of lompoctucs: 1958, 1954, 1947, Volume TIT, Are? Staistics, Washintion, D.C.: U. S. Government Printing Office, Appropriate states' data.

25 per cent from the number of firms in the sub-basin given in Table G-11. Other data indicate that there wore only 881 fims in the Arizona counties of the sub-basin in 1962, a drop of 15 per cent from the number reported in 195s. 15 / It is possible that the Public. Health Service data understate the actual number of establishments located in the Gila in 1960. For purposes of this report, however, the 1960 Public Health Service data have been utilized.

On this basis, the largest nuber of establishments in any single industry were in food and kindred products .... 154, followed by $13 \%$ printing and publishing finms. Next vere stone, clay and glass products firms … 78, then fabricated matals .... 77 firms, and 54 Iunber and wood products establishments. Firms from every other major manfacturing classification were found in the sub-basin in 1960.

## Food and Kindred Products

Food and kindred products had the third largest total gross output ( $\$ 190,301,000$ ) of any single manufacturing sector: in the Gila transactions table. This represented over 17 per cent of all manfacturing outputs. Total employnent in this industry was 6,349 ... over 1/t per cent of all manufacturing employment. Wage and salary payments totaled $\$ 32,416,000$, yielding an average annual wage of $\$ 5,106$.

The largent numox of firms within this industrial classification consisted of soft drink bottlers (30), followed by 23 bakerics, 25 dairies, 17 meat paclers, 14 cotonsecd oil mills, and 13 specielty food caming firms. Other fixms jnclude breweries, candy, manfactured ice, vegetable and fruit caming, pickled vegetable canning, frozen foods, and one firm not elsewhere classified. Except for the
$15 /$ Womufacturino Establishones jn Arizoma, 1962, Industry Repoit No. 3, Tompe, Arizona: Bureau of Business Sorvices, College of Busimess Administrocion, Arjzond State University (1962), Table 1, pp. 4-5.
few specialty operations, and the cottonseed oil mills, these firms are entirely oriented to local markets.

Interindustry relations -.. The largest share ( $\$ 160,945,000$ or 85 per cent) of food and kindred outputs was delivered to the final demand sector. The largest part ... $\$ 116,673,000$... went to subbasin houscholds. A11 government units combined purchased $\$ 3,854,000$, and exports toteled $\$ 33,451,000$. Inventory additions were almost $\$ 7$ millions

The largest sales within the processing sector vere made to eating and drinking places -- $\$ 12,078,000$-. and these sales accounted for over 6 per cent of total gros: output. Other large processing sector seles were to feeder livestock ( $\$ 4,024,000$ ); copper ( $\$ 2,351,000$ ); other agriculture $(\$ 1,793,000)$ and transportation
( $\$ 1,841,000$ ). Intraindustry trancactions were $\$ 4,623,000$. Additional sales to other processing sector incustries did not exceed $\$ 900,000$ each.

Food and kindred products inputs - Only 4 per cent of total gross outlays, or $\$ 89,732,000$, was spent: on inputs from other prow cessing sector industries. Almost 76 per cent of this amount - $\$ 68,063,000 \sim$... cane from the agricultural scctors. The three largest agricultural suppliers vere feeder livestock --- $\$ 28,000,000$; dairy farms -... $\$ 23,222,000$; and cotion -.. $\$ 13,972,000$. Inputs from rental.s and finance vere $\$ 5,421,000$; from transportation -.. $\$ 4,698,000$; "all. other services" .-. $\$ 2,314,000$; and contract construction -- $\$ 1,334,000$.

The largest jinputs from all autonomous sectors were nearly $\$ 50,000,000$ of imports, followed by wage and salary payments of $\$ 32,416,000$. Total tax líability vas approximately $\$ 6.2$ million, and depreciation was $\$ 2,139,000$. Additional payments to sub-basin households aromed to $\$ 4,262,000$ goine to the "profits ard other" incom: sector.

Direct and indrect effects of the food and kindred products. inlustry on the subobasin economy -- This industry rants third among the sub-bosin's twelve manufacturing sectors in terms of interdependw ence. Each time the industry increases its sales to final. demand by $\$ 1.00$, total sties within the processing sector go up \$1.82. The largest increases axe fron agriculture. For each increase in sales to final demand of $\$ 1.00$ by food and kindred products, feeder livestock salcs increased $\$ .16$, datiry sales go up $\$ .13$, the sale of forage, feed and food crops goes up $\$ .09$, cotton sales rise $\$ .03$, and the sales from the range livestock sector go up $\$ .06$. There is, clearly, strong jonterdepondence between the food and kindred prow ducts jndustry and the agriculcural sectors of the Gila Sub-inasin. The transactions just sumarized agajn indicate the principle of intordependonce at work. Increased demend for food and kindred products stimulates the demnen for livestook, both range and feedex. This, in tum, increases purchases from the forace, feed and food crops, and the cotcon scctors. There are sinilar interconmections betwen the food and kincired products industry and the dairy indus. try. The latter steps up its purchases of feeds when food products sales go up.

Wetcr inputs ... Data are not available on water inputs to the food and kindred products industry. While the thirty soft dxink bottling firms in the axea no doube consume a substantial amount of process water, they account foz only a small part of total vatcr: consumpéjor.

The weste-disposal techaquss of the seventen mat packers in the submbasin constitute a potential problem for vater quality conm trol objectives. The 25 sub-basin dairies probably use lerge quantities of vatcr for cooling milk and mill products after pastemizam tion. Whether the water intake is large or held co a minimun by uprodate recycling mothods is unlonown at the present time. Alco unkown is whether the ennasted warm water is returned to the source before cooliate, or whether it goes through a cooling pond
first. This friformation is essential in evaluating the effects of these oposations on the total water use pattern of the sub-basin.

The only othex types of establichments mich probably use watex in wubetantial quantivies vould be the brewery end the nenwectured ice fixn, for which data are not available. It is doubteul that the Elour mills, cottongeed oil fixms, the tallory roxks, or the other submbesin food and kindyed products fimms usc mich water either in process os for coolines.

Irmbor nod Vocd Products
The Iumber and wood moducts sector is one of the smoner manw facturing activities in the Gila Subw Basin, both in temo of employm mant and value of output. Stightly moxe than 3 pex cent of total wage and salayy payments wexe made by this industry group wheh omyoged I, tst people in 1960 mo Jess than 4 per cent of the maníacm twing labor Eorce. Total woge and selaxy payments were $\$ 7,893,000$, Giving ma enaral average vage of $\$ 5,391$.

In the Gida ingtioncput table, logsing operations axe peri: of the forestry sectos, wheh is one or the agriculturn sectore. Over SS per cent of the forestry sector's outputs go to the Iumber and rood pioducte industiny thich consists of all operations processing fimbea. .

Internoustyy Edinivoms ... The 1960 total. gross output of the Iunbsi and wood padtucts sectar wao $\$ 23,428,000$. Of this, \$10, 16s,000, on G4 per cent, wont to fixal duand. The largest diem In finel demphd ws celes to houscholds - - $\$ 5,443,000$, followed by invonbay addinions ... $\$ 6,916,000$, and gioss pitivate capirel forram. tion - $\$ 4,739,000$. Espores and government puschases represened a relatively suall portion of final sales.

Processing sector sales ( $\$ 10,267,000$ ) accoune ed for 36 per cent OE tonel groen outrut. Over hate went to cortzact construction - $\$ 5,23 \%, 000$. Gnles to paper and pulp were $\$ 1,998,000$, and to copper

furniture and fixtures, primary metals, "all other mnofacturing," trenmottation, and electric energy. Intraindustry transactions were $\$ 248,000$.

Lumber and yood poolucs inpucs -.. Only $\$ 6,766,000$ (slighty less than on fourth of total gross outlays) was used to purchase inputs from othex processing sector industries. The largose came from forestry -... $\$ 1,633,000$. Other significant purchases were from trancpoxtation - - $\$ 958,000 ;$ rentals and finance ..." \$842,000; "all other sexvices" ... \$711,000; and "all other recail" ... \$636,000. Remejning purchases from other processing sector industries were less than $\$ 1: 00,000$ each.

Autonomots scctor outlays amomted to $\$ 21,662,000$. The najos pertion ( $67,893,000$ ) vant to wages and ealnies. Inports totaled $\$ 7,162,000$ and over here came from othei sub-basins of the colomado River Basin … mostly timber cut in the Lithle Colorado. Thses represcned one of the $\mathfrak{f c}$ instances of interwsub-basin dependence uncovencd. Demecjacion was \$616,000, and total tam 1 ia. bilities cane to \$450,000. Sububesin houselolds received \$956,000 thongh "pozits and other" income.

Disect ond jndixest effects of the lymon ond wood products Ingestry on he sub-bacin comem ... This inductoy tepresmats another cace of relatively wak intradependence. For each fncrease in sales to final denan, the incustry gencrates total seles within the procossing sectoz of $\$ 1.35$. In cems of interdependence, luber and wood products ranks seromeh ju the Gila sub-Bastir manfecturing econong. Only mina other processing sectors have sales of \$.01 or note due to an expansion of $\$ 1.00$ tin the final sates of Iumber and rood proctucte. The etrongest limks are with foreatry ( $\$ .07$ ), transprotation ( $\$ .05$ ), and rentals and finbuce ( $\$ .05$ ). Other signvicant gains axe in "all other sexvices" ( $\$ .04$ ) and "all other retail" (

Wetry jruts -o the jumber and wood pouncts sector xequires lithle or no watcr. Firms in this sector are pimatily engaged in the fowing and grabing of raw luber, and would hove lith? occomion to be hoavy water ue.es.

## Fumiture and Vixtmos

The furniture and fixtures industry is the thind smallest of the manfacturing sectors individually reported in the Gila transactions table. Its total gross output vas $\$ 13,698,000$, slightly in ezcess of 1 per cent of all manfacturing total gross outputs. Average armund employment in 1960 was 754 persone, and total wage and salary payments anounted to $\$ 3,377,000$, for an average amunl vage of $\$ 4,479$. Employment: vas less than 2 per cent of all sub-basin manfacturing emplojnot, and wage and salary payments wero slighty in excess of 1. per cont of total manufacturing wage and salary payments.

Inierindustry relations ... Defiveries to final demand acconted for $\$ 12,348,000$, almost 94 per cent of the $\$ 13,698,000$ total gross output in 1960. The largest sales vere exports ... $\$ 6,496,000$, foJlowed by houschold purcheses of $\$ 3,145,000$. Inventory additione and gross private captal fomation each accomated for about \$l.f million of final sales, and the remainder ( $\$ 423,000$ ) was sold to govemant unjts commed. The only processing suctor entry vas intwaindustry transactions of $\$ 850,000$.

Fumbure and fixture inouts ... Slishty less than one- Sourth of total gross out has were purcheses from other processing sector industxics. The largest of these care from Iumber and wood prontucts -. $\$ 611,000$, followed by transportation -. $\$ 4 t_{4}, 000$; papcr and pulp - - $\$ 293,000$; rentals and finance -. $\$ 265,000$ o In addition, purchases wore made from printing and publishing, "other mantectur" ing: " all of the trade sectors, eloctric encrgy and other utilities.

Furchases from autonomos sectors totaled $\$ 10,335,000$, almose 42 per cent of which were impores. Inputs from sub-basin honscholeds totaled $\$ 4,036,000$, most of vhich vere direct wage and salary paye ments. Total tax liabilities were slighty in excess of onequastor of a million dollars, and depreciation of capital. assets anomed t. $\$ 334,000$.

Direct and indirect effects of the fumsture and fintures industry on the subwasin econome -- This sector stends in sirth place, in tems of intordendence, in the Gila monfocturing coboby.

A total of $\$ 1.37$ in sales is generated within the processing sector each tine the fumture and fixtures industry increases its output to final demmd by $\$ 1.00$. The strongest linl ( $\$ .07$ ) is with the lumber and wood products industyy. Transportation sales go up $\$ .04$ with each addition to final salcs of fumiture and fixtures. Except for the rentals and finame sector, which experionces output gatns slighty more chen $\$ .03$ for each $\$ 1.00$ of final sales by furniture and fintures, only seven other sectors show increeses in sales rang" iat from shighty mote than $\$ .01$ to less than $\$ .03$.

Water intes - - This sector requires little or no vater. These firms are primaty engeged in cutting end shaping lumber (or metal) into uninished or finished fumbure, and the only wator used, aside from samitaxy purposes, would be for blending selfmade glues.

Papor and FuIp Products
Thene are only four poper and pulp firme in this sub-hasin, and all but onc fabricate nanfactwod paper into corrugated and solid fiber boses. The remaning fim is a paper pulp operation that convexts wood inputs (chips, bark and lumbor) into finishod poper.

This was the second smallest of the individually teported wamw facturing sectors in the cila in 1960, and it employed ciny los persons. The ammal paycoll was $\$ 322,000$, and the avexoge ammat wage was $\$ 5,439$. Employment repesontcd onjy fometenths of one pot cont of all manfacturing employment: in the aububasin, and wage and salay paymons were onjy three tombs of one pen cont of the manufacturing tutal.

Thal gross output in this sector was $\$ 4,090,000$ in 1960. Alnost two-thirds … $\$ 3,260,000$ … were final sales. The largest component consisted of exports outside the Colorado River Baein valued at $\$ 2,654,000$, wile inventory additions accounted for the remaining $\$ 606,000$.

Sales vere made to seven processing sector incustries: \$665,000 to printixg and publishing, folloned by $\$ 293,000$ to furature and fixmures, and $\$ 179,000$ to food and kindnce promets. Sales mode to
other processing scctor industries include "all other monufacturing," "all othor retai," and transportation. Intraindustry sales vere $\$ 209,000$.

Paper: and yip inputs … Tearly 55 per cent of paper and pulp ovelays were purchases from processing sector industries. The Iargest of these was $\$ 1,998,000$ from lumber and mood products, followed by transportation … $\$ 199,000$. Other processing sector supply ints industries include printing and publishing, eatind and drinking places, "all other scrvices," clectric energy, other utilities, and rentals and finance.

Athonomous sectox purcheses verc $\$ 2,268,000$ distributed as follows: wages and salaries ... $\$ 992,000$; inventory depletions ... $\$ 485,000$; imports from outside the Colozedo Rives Easin ..- $\$ 465,000$; taz payments to all govemmental units .... \$194,000; deprectation ... $\$ 133,000$, and $\$ 99,000$ to "profits and other" income.

Direct and indirect effects of the reper and pulp industry on the sububsin economy -.. This industry represcnts a case of stronz interdependence. Each tine its output to finel domand goes up by $\$ 1.00$, lotal sales within the pacessing secicos increase $\$ 1.85$. Only nime other processing sectors show increases in sales of more than $\$ .01$, but some of these are quite large. The largest sales, by fax, are those from lumber and nood products to the paper and puip industry. These so up $\$ 0.8$ each time paper and pulp sales to final derand increase $\$ 1.00$. This accounts for a substantiol fraction of the indirect effects. The next largest increase is reported by twanspostation ( $\$ .07$ ), followed by rentals and finence ( $\$ .04$ ) and forestry ( $\$ .03$ ). All remaning inereases jn sales are less then $\$ .03$.

Water inguts - - The threc firms fabricating papar boxes have no significant water inputs. The only water uscd by these firm vould be for samitary purposes and, possibly, for blending glue. The pulp fiza is another mater. Firns converting raw wood impus to finished paper customaily use lange amounts of weter as part of the proluction process. Not only is the wate. intole high, pos
dollar of output, but effluonts contain many impritico.

## Chemicals

There were 21 chemial firns in the Gila Sub-Easin in 1960. Average anmal ermployment in the industry was 641 persons, total wage and salaty payments were $\$ 3,681,000$, and average anual wages were $\$ 5,743$. This sector accounted for 1.4 per cent of both total sub-basin manfacturing wage and selary paymonts and employnent.

The firms in this industrial classification include those engaged in manfacturing and mixing fertilizers, insecticide firms, one caplosive firm, one industial inorganic chemical firm, four paint firns, and one firm producing deterents and sanitary chomicale. The largest of the chemical firms in the submbesin was the explosives producer.

Interingusty relations ... Total grocs output in 1960 was $\$ 18,337,000$, of wich- $\$ 14,284,000$ ( 78 per cent) was sold vithio the processing sector to other subbusin firms. Copper was the prime customer, absorbjog $\$ 4$ milion of chemicals mon mosty cxplosives. Fertilizer purchases by the vefetable sector came to $\$ 2.73 \%, 000$, and "eill other souvices" purchoged $2,2,12,000$. Cotton purchased almost $\$ 2.1$ million. Additional processing sector sales were made to citrus agriculture, other mining, primary metals, and contract construction. Intraindustry transaclions were $\$ 105,000$.

Siles to final demmetutaled $\$ 4,053,000$ the greatest shate of which $(\$ 2,802,000)$ represented inventory additions. Exports were $\$ 518,000$ and houscholds purchased $\$ 733,000$. There were no other sales to final denand.

Chemical inouts -- Less than one- fourth of total gross outlays by this sector were purchases from sub-basin firms within the processing sector. "All other mining" supplice $\$ 2,431,000$, and purchases from other sectors include rentals and finance .... $\$ 466,000$;
transportation -.. \$210,000; and "a11 other services" ... \$205,000. The input from "all other mining" consisted primarily of lime which was used as a rab materjal by the fextilizer and insecticide finms.

The autonowous sectors were the major suppliars to this indus" try … \$14,465,000 … and accounted for 79 per cent of total gross outlays. The largest was imports -- $\$ 6,756,000$ followed by wace and salary payments -.. $\$ 3,681,000$, and inventory depletions ... $\$ 2,08 \%, 000$. Total tax payments weze $\$ 116,000$, and depreciation amounted to \$1,565,000.

Direct and indirect effects of the chouical industry on the sub-basin econony ... This is another case of weak interdependence. The chemical industry xanks eighth anong the manfacturing sectozs. Only size other processing sectors shov sales of \$.01 or more for each increase in deliveries to final demme of $\$ 1.00$ by the chemical industry. The largest sales induced by the chemical industay wore those of "ail other mining" -.. \$.17, much of which represenes direct rav waterial imputs to chenicals itself. This is followed by $\$ 0 / 0$ in the rentals and finance sector, and others range below this figure. The total adition to sales within the pacessing sector of the transections table amounts to only $\$ 1.33$ for cach additional delivery of $\$ 1.00$ worth of chemical products to final demand.

Water inputs ... No deta have been fomd on the water needs of the sub-basin chemicals industry, either for processing or cooling. However, various components of this industay on a national basis axe known to be heavy vater users, and their discharge contains high levels of orgenic and inorganic waste materials. Whether the fims located in the sulb-basin are anong those which follow this use pattern is not kown, and plant data must be obtained for furthex analysis.

## Primory Mrals

The primey motals industry has the lergest total gross output or any manfacturine sector in the sub-basin -- \$389,571,000 in 1960. This output represcats about 36 per cent of total gross output from
all sub-basin manufacturing firms, and cver 9 per cont of the total of all processing sector industrics vithin the sub-basin.

There were fifteen primary matals firms in the sub-basin in 1960 .... nost of them processing coppex concentrate. In addition, there vere several fountrics and one rolling mill. Average ammal employnent was 4,320 persons who received wages and salaries of $\$ 26,471,000$.... an annual average wage of $\$ 6,120$. Nearly 10 per cent of all subbbasin manufacturing employment was in this industry, and wage and salary payments slighty exceeded 10 per cent of all subbasin manufacturing payrolls.

Interindustry relations … Over 29 per cent of the outputs of this sector go to final derand. Final sales amonnted to $\$ 386,300,000$ and of these deliveries $\$ 325,478,000$ were eaponied outside the Colo. rado River Basin. Staite and federal. governments purchased \$23,461,000 (primarily gold, silver, and lead by-products of copper: ares) and inventory aditions vere $\$ 5,361,000$. Frimary metals outputs vere sold to only foum processing sector industaies: other manuracturing ... \$1, 351,000; "all other mining" ... \$346, 000; fabricetect metale .... $\$ 734,000$ and copper - $\$ 340,000$. There were no intraindustry transactions.

Prinery petis imputs -o. Of all mandacturing sectors in the Gila Sub-jasin, the primay metals industry had the largest decree of inturdependence with other processing sectors. This is due primorily to the avalability in the sub-basin of raw material inputs -- coppor ores from the coppes mining sector, and lead, gold and silver ores from the "all other niming" sector. Purchases fron these tho sectors combined total $\$ 318,644,000$, almost 82 per cent of total gross ontlays. Purchases from other processing sectoi industries included electric cnergy .... $\$ 6,131,000$; transpontation ... \$7,622,000; "a11 other manufacturing" ... \$1,473,000; and othei utilities -- $\$ 1,003,000$. Most of the remajning nonagricultural. procesting sectors had sales to primary metals, but none individual. 3 creeaded \$1 milion.

Inputs from all autononous sectors totaled $\$ 49,371,000$. Wage and salary pagments were the largest .- $\$ 26,471,000$, followed by
imports -.. $\$ 11,623,000$. Tax payments to all govemment units vere in excess of $\$ 5.4$ million, deprecintion excected $\$ 3.8$ million, and paynents to sub-basin households though the "profits and other" income sector vere $\$ 1,137,000$.

Direct and indirect effects of the pimery metals industry on the sub-basin econony -. This is the strongest case of interdepend. ence in the Gila Sub-basin. Fox each additional delivexy of $\$ 1.00$ to final demas, this industry generates $\$ 2.08$ of sales within the processing sector of the txansactions table. The largest sales increases are by copper mining, and these amount to $\$ .79$. In second place, but with a wide gap between, is the "all other mining" sectox which sells an additions \$.06 worth of output when primary metals increases its deliveries to final demand by $\$ 1.00$. Fight other industries have interindustry transactions ranging betveen $\$ .04$ and \$.01. Intratindustry transactions are quite smil jn this sector, amounting to less than $\$ .01$.

Water inputs - - Process watcr use by the prinary metals manu" facturers in this sububsin is not hich. Table G-3 shors veter consumption of smelting operations to vary between 3.2 and 5.6 per cent of total consumption for both mining and smelting, depending upon which ore concentration method is uscd. Table G-9 shows almost 23.1 billion gallons of water intake the entire Arizona copper industry in 1960. Assuming that primary metals firms use approxinately 5 per cent of this water, less than 1.2 billion gallons of water would have been used by this industry in 1960.

While the quantity consumed is a minor part of the total for the copper industry, no data are available on the pollution level of the discharge water, and they must be obtained before an analysis can be made. The water inputs to foundries and rolling mill are small enourh to wanant no further investigation, although Gilkey and Beckian provide some data on them. $16 /$

16/Gilkey and Becknan, op. cit., pp. 71-72.

## Printins aud Pubijshing

The printing and publiching industay was second in number of firms, with 137 establishonts, anong the manfacturine sectors of the sub-basin. Unlike the printing and publishing cetablishames studicd in odher Colorado Rivex submbsins, these fims are almose evenly divided between those specializing in printing on a job basis, or publishing newspapers and periodicals. AImost: 82 per cent of the total number of firms in this sector are located in two Axizona countices .... Maricopa and Pima.

Wage and salary payments to the 3,292 persons omployed wate $\$ 16,66 \%, 000$. They represented over 7 per cent of all subebasin manm facturing employees and thage paments were over 6 per cent of total manufacturing wages in that year. The aversge anmal vage vas $\$ 5,061$.

Interindustry reletions we Tho 1960 total gross output of thes industry was $\$ 42,870,000$, less than 4 poe cent of manuracturdng total grose outputs. Almost 53 per cent went to final denand, The $\$ 22,591,000$ of final sales were mone mimasily to households ( $\$ 10,64,000$ ) and caports $(\$ 9,117,000)$. Sales to all government units totaled $\$ 1,325,000$, and firventomy adjtions amounced to almose \$1 mijtion.

Total sales to processing sector industries vere $\$ 20,279,000$, and alnost every sububsin industay within the processing sector had purchanes from promthe and polishine the larest sales vere to the trade sectors o.. \$11,252,000, " 111 other services" purchascd $\$ 1,758,000$, rentals and finnce $\cdot \$ 1,146,000$, and lodging purchases were $\$ 1,10 \%, 000$. Sales to remining processing sector industries were lecs than $\$ 1$ rillion each.

Frinting and putishing inputs $\cdots$ The printing and publishing sector of the Gila does not rely heavily on purchases from other processing sector induetries. A little more than 15 percent of total gross outloys, or $\$ 6,510,000$, vere processing sccior purchases. The largest was frou zentals and finance $\because \$ 1,164,000$, followed by
transpontation -. $\$ 874,000$, "a11 other services" $-. . \$ 606,000$, and paper and pulp -- $\$ 665,000$. Additional purchases from nonacricultural processing sector industries vere $16 s$ than $\$ 600,000$ each. Intraindustry transacions vexe $\$ 726,000$.

Autonomous sectoz inputs amounted to $\$ 36,360,000$. These came prinarily from houscholds --- $\$ 21,716,000$ (rages and salaties and "profits and other" income combined), imponts ... $\$ 8,849,000$, and tax payments to all government unitis ... \$2,939,000.

Direct and indirect effects of the printine end rublishing industry on the sub-bosin economy ... This is one of the veakest cases of intordependence among the Gila Submasin manfacturimg sectors. A total of \$1.2] in sales are generated for each aditional delivery to final denand of $\$ 1.00$ by printing and publishing. The stangest link, and this means only an additionsl $\$ .03$ in sales, is with rentals and finance. There are seven other sectors whose sales ine creased by amounts ranging fron $\$ .01$ to $\$ .03$; all remaining inter. industry conections axe quite veak.

Water invu:s ... The printing and publishing industry is not dependent on water as a processing input. The only vater use is for sanitary purposes, and jit is doubeful that further jnvestigation of water use by this industiy would be justified.

## Fabricated Metals

Thore wase 77 fabricnted meths ostoblishames in the Gila Subw Rasin in 1960. Average annual. employnent was 2,074 persons; total wages and salarics were $\$ 11,052,000$, and average annual wages were $\$ 5,329$. These firms employed nearly 5 percent of the sub-basin manufacturing labor force and paid slightly more than 4 percent of all sub-basin manufacturing wages. The sector ranked fifth in total gross output ( $\$ 39,614,000$ ), and accounted for more than 3 percent of all manfacturing outputs.

There were soveral different types of firms within the sectos, including cutlory, shect metal shops, fabwioated structural steel, electropleting, and metal conting. Host, honever, were sheet metal shops and electroplating establishments.

Interindustug relations - over half of the $\$ 39,614$, 000 total gross output (56 per cent) weat to other sububasin fima within the processing sector. The laryest of the $\$ 22 ; 255,000$ processting sector sales vas to contract construction $(\$ 12,825,000)$, wich included the output of both shect metal shops and fabiocated steel establishments. Otinet lemge sales were made to coppor mining $-\infty, \$ 2,372,000$; trans. portation $-\cdots \$ 1,518,000$; and other manfacturing - an $\$ 1,21,2,000$. Sales to processing soctor industries not montioned above were less than $\$ 900,000$ ench, except for intraindustry transactions which arounted to $\$ 1,102,000$.

The largest of the $\$ 17,359,000$ of final sales was exports $(\$ 8,177,000), 31$ percentof which went to other submasins. Invenm tory additions were $\$ 4,143,000$, and sales to houscholds $\$ 2,530,000$. Govemment purchases totaled \$516,000, and \$l,993,000 went to gross private capital fomation.

Fabricated metcls innuts $\quad$ Only $\$ 4,743,000$ of total gross outhays represented purchases from other submbasin processing sector industrios. In addition to intrainductry transactions of $\$ 1,102,000$, the najor supplying scctors wore primaty metals ( $\$ 734,000$ ), whole sale trade ( $\$ 575,000$ ), rentals and finance $(\$ 553,000)$, and "all other services" ( $\$ 523,000$ ). Remaining purchases fron other processing sector industries were less than $\$ 500,000$ each.

Outlays to autonomous sectors wexe $\$ 34,871,000$, over 88 per cent of total gross outlays. The largest was imports ( $817,985,000$ ), followed by almost $\$ 1 J .1$ million of wage and salay payments. Federal, state and local tox peyments totaled $\$ 893,000$, ard deprecio. ation vas move than onewhelf million dollays. Sub-basin houscholds received an additional $\$ 917,000$ through the "profits and other" income sector. Inventory deplecions were $\$ 3.4$ million.

Direct and indirect effects of the fabricated metals industey on the sub-basin economy -- This is an even weaker case of interdependence than printing and publishing. Total sales generated within the processing sectors arount to only $\$ 1.18$ for each additional sale of $\$ 1.00$ to final demand by fabricated metals. The strongest link, and this anounts to only $\$ .02$, is with primary
 sale ward "all other" services, rentals and finance and copper. Intraindustry transactions amount to $\$ 0.03$.

Watex innots -- Gilkey and Bockmon report that in the electroplating firms, "ercopt for rinsing, all operations involving the usc of water axe conlucted on a batch haois, with water being added only to renlace evaporative losses. Cleaning and plating baths are used as long as possible to consexve contajed chemicals. All recoverable materials are salvaged, and the solution is neutralized before it is discarded. "Il From their data, collected from eleven electroplating plants in the thomix area, it appears that about 10 per cent of dajly intake water is used to maintain the plating solutions, and the remainder (except for that used for samitary purposes) is used in cleaning monal sumfaces before plating, and in rinsing solution from the plated products.

Total water intake for thege plants avoraged 1,112 gallons per day. There is no recirculation of cleaning and rinsing vater, and approximately 20 per cent of this arount is returned to city serrer systeras, scpeic tanks or cesspools, or to evaporation from seepage pits. In almost every plant surveyed, water returned to city sewer systems was noutralized ly addry the proper chemeals to remove cyanide, chromic acid, and other soluble chemicals collected in the washing and rinsing process.

One structural steel fabricating plant was intervieved, and its water intalce was 250,000 gallons per day … used primarily for compressor cooling and for makeup the the picking and rinse solutions. In thas case, most of the cooling watar is discharged directly into
an irrigation systen except for a smiller amount returned to the city sewer syston. "No quality problems have been encountered, and none of the water is treated by the company. $18 /$ It appears that the water needs of the fabricated motals industry do not represent a major problem --. either with respect to daily quantities consumed or to contamination of exhaust fluids.

Teztiles and Apprrel
This industry had 39 fimas operating in the sub-basin in 1960. None produced cextile miJl produets; they vere all producers of men's and women's ready-tomeax apparel.

There vere 2,320 persons employed in this industry (slightly more than 5 per cent of total sub-basin nanfacturing employment) who recerved $\$ 6,730,000$, less than 3 per cent of all sub-basin mantfacturing vage and salary payments. Average ammal wage in this industry was $\$ 2, y 01$.

Interindustry relations ... Total apparel output in 1960 was $\$ 14,583,000$, s1ightly more than 1 . per cent of all manfacturing total gross outputs. All of this was sold to fimal demand. Exports vere $\$ 10,972,000$ (over 75 per cent of totaj gross output), householis purchased $\$ 2,093,000$, and the rematring $\$ 1,518,000$ went to inventory additions.

Textiles and epparel inpues $\cdots$ Almost 94 per cent of total outlays were made in the antomomous sectors. The largest item thes wage and salary paymonis which represented over 46 per cent of total gross outlays. Additional household payments to the "profits and other" income secton werc $\$ 241,000$, and total tex payments vere $\$ 101,000$. Noxt to wages and salayjes, inports ( $\$ 4,908,000$ ) reper sented the most important autonomons sectoz purchase, and accounts. for alnost 34 per cont of tocal gross outlays.

This industry is probably located in the sub-basin because of specialized styles which have become assuctated with the region. The

18/Ibid., p. 75 .
major input is labor -- which is characteristic of this industry nationally .. and the raw materials inpuis (cloth, thread, etc.) must be imported from outsjue the region.

Direc: and indirect effects of the gextiles and apparel fuchaty on the sub-basin economy ... This is the weakcot case of interdependcnce anong the manfacturing sectors of the sub-basin economy. Additional sajes within the pocessing sector gencrated by an increase in sales to final demand of $\$ 1.00$ amount to only $\$ .09$. The largest of these ( $\$ .03$ ) is by rentals and finence, followed by additional sales of less than $\$ .02$ by contract construction and electric energy. A11. other interindustry effects anome to less than $\$ 01$.

Water jrmits - This industay requires no processing vater inputs, and the only water usc is for sonitary purposes. No futher investigation of this industry is varearied.

Jenther End Leather Coods
The leather and leather grode industay is the smallest of the findividually repored sub-basin mantacturing sectors. There were only 37 persons employed who estard $\$ 121,000$ in 1960 , for an average anmal wage of 83,270 . Neither vage and salary payments nor cmploy. mont represented as nuch as 1 por cont of the total of all manacm tuofing sectors.

Intecindurty relations * Fhe cntino tote 1 gross output of this industry -- $\$ 350,000 \ldots$ was delisvered to final demand. The largest sales were exports ( $\$ 185,000$ ) and houscholds purchesed $\$ 92,000$. Additional outputs were dolivered to gross private capital fonntion -... $\$ 36,000$, and to inventory additions ... $\$ 37,000$.

Leather and leather goods inouts - - The only sisnificant purchase by the leather and leather goods industry from other process. fing sector industries was fxom food and kindred products ...- \$77,000, which reprosented 2.2 per cont of total gross outlays. These were hides used as a ravi material imput. Much sualler purchases were mane from other processing sectos frduetries including printing and publishing, rentals and finance, contact constanction, clectric energy, other viflitits, transponation, and "all other serviecs."

The largest autonomus sector purchase (almost 35 per cent of total gross outlays) was from housholds which received wage and salary payments of $\$ 121,000$. An additiona $\$ 34,000$ was paid to subbasin households througls the "profits and other" income sector. Imporits were $\$: 6,000$, and taxes amounted to $\$ 15,000$.

Direct and indirect effects of the leather and leather foods industy on the sub-basin economy ... These is rather strong interdependence between this industry and other sectors os the Gila econor. AIthough there are no intraindustry transactions, total sales of \$1.5] are genemated for each delivery to final donand of $\$ 1.00$. The closest link is with the food and kindred products industry, representing the salc of hides. Food and kindred products sales increased $\$ .25$ for each increase in final sales of leather and leathor goods of $\$ 1.00$. Second in rank is the feeder livestock sector with $\$ 04$ of induced sales. The rentals and finance sector also increases its sales by sliqhely lese than $\$ .04$. There are nine other sectors whose sajes increased by anounts ranging from $\$ .01$ to slightly more than $\$ 03$.

Hater inputs ... This sector requires no process water inputs, and since the 1260 total gross output was so low further jnvestiga. tion would be mamanted.

Stone, Clay and Gyass Products
In 1960, there were 78 finms in this industrial classification in the Gila Submasin - - the third henest muber in the individually reported manufacturing sectors. Included were brick and strucm tural clay tile firtis, concrete brick and block, ocher concrete products, readmmix concrete, cenent, gypsum products, and the cut stone and stone products finms. They employed 1,889 people, and had total wage and sajary payments of $\$ 10,619,000$. The average anmal wage was $\$ 5,621$, and these firms accounted for slighty nore than 4 per cent of both total manufacturing empoynent and wage and salary paynonts.

Interndustry relarions ... This industry had a total gross out. put of $\$ 34,764,000$ in 1960, more than 3 percent of all manufacturing outputs. About three-fourths of total gross outputs ( $\$ 25,866,000$ ) were comum by other sulmbasin processim sector industries. The largest sales were to contract construction .... \$17, 299,000 (nearly 50 per ceat of total gross output), followed by copper mining ... $\$ 1,423,000$, "all other mining" -... $\$ 073,000$, primazy metals $-\mathbf{- k} \$ 502,000$, and lumber and wood producis -- \$38i,000. Adintional processing sec. tor sales were made to umeniun, food and lindred products, printins and publishing, "all other manufactwing," and others. Intrasinduty transactions were $\$ 4,888,000$.

Stone, clay and gless jwoducts inmets - Inputs from afl piom cessing sector industries anomed to $\$ 12,779,000$, the lamest of which was inmanducty thmsactions. Onex significant inputs came from "all other mining" ( $\$ 3,553,000$ ), and transportation ( $\$ 2,059,000$ ). These three inntis together account for slightly more than 30 per cent of total grose outlays.

Purcheses from atonomeve sectors amounted to $\$ 21,985,000$, the largest of these beag $\$ 10,619,000$ in ware and salaxy payments. An adifitional $\$ 1.9$ million was prit to sub-basin houcholds through the "profits and other" incons soctor, Additions inputs from autono. mous sectors inclule impores .... $\$ 3,554,000$, total tas payments ... $\$ 1,499,000$, depreciation … $\$ 2,314,000$, and inventony depletions of nearly \$2.1 milion。

Direct ad indroct cffots of the stone, clay end gioss industry on the sub-bosin eops. ... This indotry ramb fourth in reas of interdependence among manfacturing sectors. Total sales of $\$ 1.57$ are generated by each sale of $\$ 1.00$ to final demand. The intraindustry transactions are high, amounting to $\$ .18$. This is followed by " all other" mining sales of $\$ 0.14$. The transportation industry is next, with an increase in sales of $\$ 0.09$ for each additional $\$ 1.00$ delivery of stone, clay and glass products to final demand. There are six other sectors whose sales increase by amounts ranging from $\$ 0.01$ to alnost $\$ 0.04$, as the final demand for stone, clay and glass products goes up by $\$ 1.00$

Water inputs -.. Cenent manfacturiret firms in this sector require water for cooling kilns and lubricants -. in addition to normal sanitary uses. Gilkey and Becknan discuss two Arizona cenent plants. 19/ One plant, the Arizona Portland Cement Company in Pina County, Arizona, requires a water intake of only 179 gallons per minute. The other cement plant, the American Cement Corporation in Yavapai County, Arizona, requires almost the same amount -- 180 gallons per minute. Except for the evaporation losses in both plants, exhanst water is returned to ground water by seepage from cesspools and dump pits.

Readymix concrete plonts require relatively large anounts of process water to combine with powdered cenent and aggregate (sand, gravel, or the new lightweight aggregates) to produce a pourable product. All water used cvaporates after the cenent has been poured and hatdons. Gilley and Pecknan give no data on woter gallons per cubic yaxd of concrete, but one firm reported inputs of $15,000 \mathrm{gal}$. lons per day for this purpose. $20 /$

## "Al1 othe: Manufartuxing"

This sector is made up of firms which are not included in the previously discussed manfacturing sectors. Establishments in this sector operating in the Gila Sub-basin in 1960 were: petroleun and coal products, machincry (except electrical), electrical machinery, transportation, professionci and scientific instruments, rubber and plastic products, and all others not elsewhere classified. Most of these firms are located in the two Arizona counties which contain standard metropolitan areas ... Phoenix, in Maricopa County, and Tucson, in Pina County. The largest firms in this sector are Air Research Hanufacturing Conpany, Hughes Aircraft Company, Sperry-Rand, Motorola, and the General Electric Company.

Rows and colums could not be constructed for the industries to which these companies belong for two reasons. First, most of the

19/Ibid., pp. 62-64.
20/Ibid. pp. 65-68.
larger firas did not cooperate with our field intervievers, either because federal security regulations prevented them firom doing so, or because they did not wish to participate. The second roason is the Consus rule prohibiting the publications of data about estabm lishments unless there are three or more establishments in the sector. As a result, the "all other manfachuring" sector is made up of firms with widely varyine characteristics. This is a deficiency, but it could be overcome only by a higher degree of business cooperation then was found in the three lower sub-basins.

Total employment in this sector was 21,543 in 1960 . Total wage and salary payments vere $\$ 138,821,000$, and the avelage amntal vage was $\$ 6,4 t h$. These establishments accounted for oves 48 per cent of all manfacturing employment in the sub-basin, and almost 54 per cent of total monufacturing wage and salary payments.

Incerindustry relations m Total gross output was \$293,930,000 in 1960, twentymseven percent of all nanufacluring total gross outputs. Four-fifths of this $(\$ 236,526,000)$ were delivertes to final demend, and the lemest sales (\$8t, 330, 000) were to stete and fedonal govermme A substantial proportion of these sales consisted of military and defense hardware manfacturcd in the sububasin. All exports conbjnes totaled $\$ 87,808,000$, most of which vent outside the Colorado River Besin. Almost \$3l nillion nent to gross puivate capital fommtion; $\$ 29.9$ million represented inventoms additions, and the remender vent to houscholds and local govennment.

Processing sector sales totaled $\$ 57,404,000$, and represcneded onewfifth of total gross outputs. The man share of these ( $\$ 36,482,000$ ) vere intwaindustry transactions. other large sajes
 $\$ 3,464,000$; "all other" services -- \$2, 667,000; and wholesale trade -... $\$ 2,141,000$. Sales to all other processing sector industries were less than $\$ 2$ million each.
"All other" manufacturing jnputs … Almost 82 percent of the $\$ 293,930,000$ of total gross outlays went to the autonomons sectors.

Wage and salary payments accounted for $\$ 138,821,000$-- over half of autonomous sector outlays. They represented more than 47 percent of total gross outlays, reflecting the labor intensive nature of these heterogeneous firms.

Total Federal, state and local tax payments were $\$ 13,414,000$; impores totaled $\$ 40,700,000$; depreciation was almost $\$ 13.5$ million; and resident sub-basin houscholds received $\$ 9,236,000$ through the "profits and other" income sector.

Inputs from all processing sector inductries were dominated by move than $\$ 36$ million woth of intrandustry transactions. Purchases of over \$1. million were made fron only six other mocessing sector industries: primay metals, falmated motals, transportation, electric energy, contract construction, and rentals and finance.

Direct and incirect effects of the "all other menufacturing" industry on the subbesin economy ... This sector, as is true of a number of other heterogencous sectors, eahibits a rather low derree of interdcpendence. Each time the final sales of the composite firms in this sector go up $\$ 1.00$, total sales within the processing sectons increase $\$ 1.26$. A large proporton of these are intraindus~ try transactions which amount to alnost \$.16. The largest interm industry txansaction, end this amones to less than $\$ .02$, is with the tranmotation rector. Ony two other sectors, elcotric energy and contract construction, leport sales of mowe than $\$ .01$ (but less than \$.02) each time "all other matacturing" increases its deliv. eries to final demnd by $\$ 1.00$.

Wator imputs - Gilloy and Beckman diecuss watei use at the Hughes Aircraft Comany, Motorola (both plants), and the Sperrymand operation at Phomix. The daily vatcr intale of the three plants is slighty in eacess of 1.1 million callons per day, and is used patm marily for cooling (both in the monfacturing process and for atr conditioning), nakeup solucions for chenical batches, rinsing, and sanitary purposes. At all the plates listed above, most of the water exhast is accounted for by evepontion of seepage to ground water
fron cooling ponds. Very little is discharged to strears or sewers, and all vacer disposed of is treated so that industrial maste has been removed almost entirely. 21/ no data heve been collected on the other: types of mamfacturing activities aggregated into this sector.

## ELECRTE EWBGY

Historical reviey - - The majon portion of the electic energ needs of the Gila Sub-Basin, from 1940 thongh 1960, have bean provided by three large establishments: The Arizona Public Service Compay, The Tucson Gas, Electric Lisht \& Power Co. ... which are privately owned, and the publicly-omed Salt River Paject. th has been estim mated that these thee fimn elone accome for mote than 60 per cemt of the clectrit porter produced in the state of Arizons. $22 /$ If sales, rather than energy gencration, are the criterion, their per cent of total sales is much higher since these firms purchase additional porer for resale.

There were five Rural Electrification Association cooperatives oporating in the subrbasin in 1060. They include the Sulphur Springs Valley Electric Coop, Duncan Vallcy Flectric Cowop, Grahan County Electric Comop, Trico Electric Cowop, and the WeltonsPhowt Irvigation and Drainace Distxict. Other R.E.A. establishments have reported activities in earliey years $-\infty$ such as the Mryu Electric Comp, the Verde Electicic Cowop, and the Stonowall Electric Co, These firms rem ported no sales in 1960, however.

In addition to the publicly owned Salt River Project, the enaller San Carlos Irrigation bistrict hes been operated for a number of yerrs by the bureau of Jndian Affairs. Also, there are a fot swall publicig* owned Clase "C" micipal estabiashonte in the submbsins and thay
$\qquad$
21/ $\mathrm{Ibid} .=\mathrm{pp} .75=80$.



rely prinarily on purchased poner for redistaibution, rather than self-genezated power.

Table G-12 shows selected data ... including operating revenues ... for many sub-basin electric onergy firms for the years 1940 through 1960. 23/ These data are partial for several reasons. One is that there were several years in which data for the largest private firm -- the Arizone Public Service Company ... were not available beowse prior to 1952 the company was three separate fimm (Axizona Edison Company, Doxthern Arizona Light and Dower Company, and Central Axisona Light and Power Comany), not all reporind complete enough information. Further, Axizona Public Service Comany data include enercy sales to portions of Axizona counties locaced in other sububsins of the lower basin, and therofore are overstatemonts of actual revenues occurfint fron within the Gila Sub-basin itself.

Another major difficulty is with the Rumi Electrification Ansoci" ation data. Its Anmal Statistical Ronott jucludes data on only those cooperatives still having outstanding loans with the Administration. Since many of the R.E.A. firms did not repot jn 1960 ... evon though they had reported in ewrifer yeaxs -- we can only assume that their loans have been entixely repaid and that they were no longer obligated to repozt operating data to the Adrinistration.

Total 1940 operating revenues for all reporting companies (except Arizona Public Service Company), in fable G-12, rere slightly in ex cess of $\$ 1.4$ nillion. However, it seens reasonable to assume, from Table G-12, that its reventies appoeched $\$ 5$ million in that your. The sum -.. $\$ 6.4$ milion -- will be taken as the 1940 operating revenue base. By 1950 , total operating reventes were in axcess of $\$ 18.2$ million, an almost threc-fold increase over 1940. Wuch of this increase can be attributed to the rapidiy expanding copper industry ... a large usez of electric energy ... and to some population growh.

23/Data for: Class "C" municipal establichnsate, as derined by the Fedaral Power Comassion, are not available for this report.

## TABLE G-12

 Selected data for gita sub-basin electric utilities, 1940-1960^/| Arizona Pubiic Service Miles energized |  | 1,640 ${ }^{\text {a/ }}$ | 1,603a/ | 1,573 ${ }^{\text {a/ }}$ | 1,364 ${ }^{\text {a/ }}$ | 1,317 ${ }^{\text {a/ }}$ | 1,154 ${ }^{\text {a/ }}$ | 1,086 ${ }^{\text {a/ }}$ | 1,047츠i | 916 ${ }^{\text {a/ }}$ | $908 \xrightarrow{\text { a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Consumers connected |  | 13,543 | 165,313 | 156,490 | 149,800 | 141,369 | 133,789 | 127,476 | 122;022 | 116,132 | 108,818 |
| Operating revenues. (thousands of dollars) |  | 53,752 | 47,274 | 42,152 | 37,539 | 34,692 | 28,579 | 25,034 | 22,427 | 19,441 | 15,961 |
| Tucson Gas, Electric, Light \& Pover Company Miles energized |  | $645^{\text {a/ }}$ | 619/ | 598ㄹ. | $553{ }^{\text {a/ }}$ | 448 ${ }^{\text {a/ }}$ | 409 ${ }^{\text {a/ }}$ | $400^{\text {a/ }}$ | 388 ${ }^{\text {a/ }}$ | 326 ${ }^{\text {a/ }}$ | 312 a/ |
| Consumers connected |  | 75,413 | 70,751 | 66,452 | 63,870 | 60,815 | 57,027 | 53,405 | 51;030 | 47,205 | 42,316 |
| Operating revenues (thousands of dollars) |  | 16,215 | 14,063 | 11,934 | 10,599 | 9,494 | 8,181 | 7,188 | 6,427 | 5,575 | 4,529 |
| Sulphur Springs Valley Electric Cooperative |  |  |  |  |  |  |  |  |  |  |  |
| Miles energized |  | 2,081 | 1,974 | 1,881 | 1,793 | 1,501 | 1,466 | 1,414 | 1;331 | 755 | 713 |
| Consumers connected |  | 7,772 | 7,200 | 6,813 | 6,313 | 6,250 | 4;789 | 4,001 | 3,648 | 3,337 | 2,979 |
| Operating revenues (thousands of dollars) | \$ | 2,164 | 1,954 | 1,634 | 1,334 | 1,277 | 1,104 | 902 | 753 | 562 | 434 |
| Duncan Valloy Electric Cooperative |  |  |  |  |  |  |  |  |  |  |  |
| Miles ene 'rized |  | 256 | 254 | 251 | 255 | 255 | 255 | 255 | n.a.* | n.a. | n.a. |
| Consumers :onnected |  | 876 | 870 | 845 | 313 | 816 | 820 | 818 |  |  |  |
| Operating evenues (thousands of dollars) | \$ | 159 | 153 | 131 | 127 | 135 | 126 | 123 |  |  |  |
| Graham Coun : Electric Cooperative |  |  |  |  |  |  |  |  |  |  |  |
| Miles energized |  | 652 | 643 | 636 | 629 | 623 | 619 | 606 | 587 | 557 | 382 |
| Consumers connected |  | 2,592 | 2,563 | 2,497 | 2,435 | 2,353 | 2,337 | 2,360 | 2,323 | 2,189 | 2,020 |
| Operating revenues (thousands of dollars) | \$ | 582 | 568 | 453 | 490 | 526 | 477 | 452 | 444 | 341 | 347 |
| Morenci Water \& Electric Company Miles energized |  | n. $\mathrm{x} . * *$ | n.r. | n.r. | n.r. | n.d.p. \%row |  |  |  | \% |  |
| Consumers connected |  | 2,512 | 2,539 | 2,643 | 2,705 |  |  |  | , |  |  |
| Operating revenues (thousands of dollars) | \$ | 320 | 309 | 309 | 305 |  |  |  |  |  |  |
| Trico Electric Cooperative |  |  |  |  |  |  |  |  |  |  |  |
| Miles energized |  | 853 | 728 | 708 | 691 | 732 | 694 | 620 | 174 | 144 | 100 |
| Consumers connected |  | 1,506 | 1,316 | 1,233 | 1,135 | 1.046 | 978 | 883 | 372 | 349 | 306 |
| Operating revenues (thousands of dollars) | \$ | 700 | 539 | 501 | 513 | 549 | 453 | 487 | 40 | 33 | 28 |


		1950	1959	1958	1957	1956	1955	1954	1953	1952	1951
Wellton-Mohavk Irrigation \& Drainage											
Miles energized		346	346	346	346	311	n.d.p.				
Consumers connected		393	829	752	714	564					
Operating revenues (thousands of dollars)		221	197	203	178	139					
Ma-Yu Electric Cooperative											
Miles energized						-		n.d.s.thr*	$\cdots \quad 466$	491	446
Consumers connected									771	714	572
Operating revenues (thousands of dollars)									\$ 554	427	203
Verde Electric Cooperative											
Miles e sreizod			n.d.s.	219	219	216	214	188	262	212	176
Consumers connected				520	480	464	433	402	443	380	333
Operating revenues (thousands of dollars)				\$. 79	72	66	60	53	76	62	48
Stonewall Electric Company											
Miles energized							n.d.s.	1,414	116	116	116
Consumers connected								4,001	200	200	200
Operatinf revenues (thousands of dollars)								n.r.	n.r	n.r	n.r
Salt River Project											
Consumers connected		86,163	74,528	63,971	55,626	49,982	43,815	37,156	32,253	27,389	n.d.p.
Operating revenues (thousands of dollars)		29,926	26,822	22,192	18,303	15,297	13,363	11,573	10,164	3,59:	
San Carlos'Irrigation \& Drainage District											
Consumers conmecred		2,938	2,880		2,576	2,247	2,222	2,037	1,899	1,62;	331
Operating revenues (thousands of dollars)		368	777		841	941	744	723	794	764	n.r.
TOTAL ${ }^{\text {E/ }}$											
Miles energized		7,313	7,024	6,833	6,617	6,134	5,574	5,330	4,230	4,173	3,275
Consumers connected		354,213	328,789	302,216	285,467	265,906	246,210	232,589	214,961	199,514	157,875
Operating revenues (thousands of dollars)		104,906	92,665	79,590	70,312	63,115	53,086	46,634	41,678	35,300	21,549



```
Male G-12 (cont.)
```

Jellton-Mohavk Irrigation \& Drainage

## Miles ener;ized

Consumers :onnected
Operating evenues (thousands of dollars)
Ma-Yu Elect: c Cooperative
Miles ene ized
Consumers snnected
Operating sevenues (thousands of dollars)
Verde Elect::ic Cooperative

```
Miles ene:gized 100
```

Consumers connected 290

Operating revenues (thousands of dollars) \$ 21 Stonevall E.ectric Company

Miles ene:gized
Consumers connected
Consumers connected
Operating revenues (thousands of dollars)
Salt River jroject
Milcs ene: gized
Consumers connected
Operating revenues (thousands of dollars)
San Carlos Irrigation \& Drainage District
Miles enelgized
Consumers connected
Operating revenues (thousands of dollars) :OTAL

Milès enerzized	2,834	1,239	1,339	1,905	1,721	899	1,488	878	827	925	597
Consumers =onnected	147,493	136,348	36,947	111,810	99,934	23,995	86,671	21,159	20,216	18,909	16,84!
Operating - evenues (thousands of dollars)	\$ 18,223	15,667	3,563	12,369	10,246	2,222	9,116	2,112	1,792	1,562	1,41:

## TABLE G-12 (cont.)

* Not available.
** Not reported.
*** No data prior to this year.
whtr No data since this year.
a/Circuit miles.
b/suurce cianges from R.E.A. to F.P.C. data.
c/Citizens Utilities Company has offices in Kingman (Lower Main Stem) and Nogales (Gila) data included in the Lower Main Stem summary,
d/Data calculated from individual company data - Arizona Edison, Northern Arizona Light \& Power and Central Arizona Light \& Power mers, ed in 1952 to form Arizona Public Service.
e/ Incomplete data - combined total not figured.
E/Total is partial data only.
 U. S. Government Printing Office.

Statistics of Electric Utilities in the United States, Publicly Owned, Annuals, 1940-1960, Federal Pover Commission, Washington D. C.: U. S. Government Printing Office.

Annual Statistical Report, 1940-1960, Rural Electrification Borrowers, U. S. Department of Agriculture; Rural Electrificatioa Administration, Washington, D.C.: U. S. Govermment Printing Office.

The 1950-1960 decade witnessed tremendous growth in electric energy operating revemes. The 1960 value ( $\$ 104.2$ milion) was over five and one-half tines the 1950 revemes. Host of this growth can be atributed to two major causes -- the rapid net inmicmation of population to the Gila Sub-basin (and more particularly to the Phomiz and Tucson metropolitan areas), and the tremendous expansion of manufacturing activity in the sub-basin. The concomitant growth in boch number of circuit miles energized and the number of consumers conected for the twembene yoar period is shown in Table G-12. It is interesting to note that the three lareest firms referred to above had over 335,000 consuners in 1960, almost 95 per cent of the total ... 354,213.

The exact number of persons employed in this sector is unknow, but an estimate has been derived. Wage and salary data for the electric, gas, and sanitary sexvices industry (standard Industrial Classification sector number 49) tocaled $534,005,000$ in 1960. 24/ This sector employed 5,834 persons, earning an average amual wage of $\$ 5,329$. Wage and salary payments of only the electric energy firms amounted to $\$ 25,004,000$ in 1960; simple division by the avarage anmul wage indicates electric energy emiloynent of approzinately 4,290. This represents but a small fraction of total sububasin nonagricultural employment.

Interindustry zolations -- The 1960 electric energy total gross output of $\$ 111,644_{4}, 000$ vas slightly less then 3 por cent of the total of all sububasin processing sector industaics. Sales to final demand accounted for 44 per cent of the total -- $\$ 49,181,000$, and households purchased the largest share ( $\$ 35,132,000$ ). Sales to all governmontal units totaled $\$ 7,576,000$, exports wore $\$ 4,472,000$ (Much of which represented sales of power to contiguous Arizona counties located in the Little Colorado and Lower Main Sten Sub-Basins), and sales to gross private capital formation and inventory additions taken togecher were slightly in excess of $\$ 2$ million.

24/Employinent and wage data are from unpublished records of the Arizona and New Hozico Employment Scurity Comissions.

Energy sales were made to almost every puocessing sector indus. try within the sub-basin. The largest purchase -- \$11,730,000 -- vas by wholesale trade, and the remajning trade sectors (including eating and drinking places) fogether had purchases of $\$ 10,733,000$. Other significant energy sales were to primary metals $-\$ 6,131,000$; copper mining -- $\$ 4,185,000$; 2entals and finance -.. $\$ 2,244,000$; and "all othet manufacturing" -- almost $\$ 2$ million. Sales to other processing sectors were los's than $\$ 2$ mjllion each, and jntraindustry transactions anounted to $\$ 15,850,000$.

Electric energy inputs -. Purchases from all processing sector industries totaled $\$ 27,753,000$ in 1960,57 per cent of which were intraindustxy transactions. The only infuts in excess of $\$ 1$ million from other processing sector industries vere supplied by rentals and finance -.. $\$ 5,016,000$, and other utilitics ... $\$ 3,225,000$.

Thec-fourths of total gross outlays wore autonomous sector purchases ... $\$ 83,891,000$. The largest was wages and salarjes .-$\$ 25,004,000$, followed by tax payments to all govemmental units -.. $\$ 15,971,000$; impots - - $\$ 15,356,000$ and payments to resicent subbasin households through the "profits and other" incone sector -$\$ 13,560,000$. Remaning autonomous sector outlays vere for capital depreciation and inventory depletion.

Direct and indirect effects of the plectric cuers industry on the sub-basin econony … The electric encrey industry does not show a significant degree of intexdependence vithin processing sectors. For each new dollar of electric energy soles to final demand, only $\$ 1.32$ of transactions are generated within the sub-basin conomy. The basic reason for this lack of intordependence is that the value of imports of clertric energy for redistribution is significant, and energy generatod within the subwasin relies on natural gas for fuel -- all of vhich must be imported into the Gila.

Intraindustry transactions were \$1.17 ... primarily a result of the intra-company purchase and sale of electric power. Only three other processing sector industries experience output increases of
\$.01 or mo:e when final demand sales of electric cnetgy a:e increased by $\$ 1.00$. They are: rentals and finance -. \$. 06 ; "all other utili~ ties" -- \$.04; and "all other mamfacturing" --. \$.01.

Water inmats -- While some porver sold in this sub-basin is imported, the greatest share is locally generated. Steam-electric generation, with its attendant heat pollution potential, is the major process used for sub-basin energy gencration. It is possible that water used for this purpose will become an important factor in the total water use requirements of the sub-basin.

Gilley and Beckman estinate that, for the state as a whole, alnost 3.5 billion gallons of intake water vas supplied to the nine electric enerey producing plants in 1960. Ali but 10.5 million gallons of purchased watex cane from companyomed wells. "io data are available regarding the quantities of water consumed or the amounts retumed to supply. "25/ 1 so, no data are reported on the condition of exhaust water -- either as to waste loadings or temperature.

25/Gilkey and Beclman, op. cit., pp. 31.-82.

TERTTARY TMDUSTRTES AND CONSTRUCSTOA
OF THE GILA SUB-TASIN

By
Bernard Tdis

Revised
August, 1967

The tertiary industries are usually viewed as consisting of the trade and service sectors, transportation, utilitjos, governent and finance. Since goverment is not considered a processing sector in this report, it is excluded from this autysis.

The trade sectors depend primanily upon local income and population. They also reflect the particular trade chancls which have evoled in the region for the distribution of goods and services. Typically they cater to the needs of the local population ${ }^{2}$ and mirrox changes in the econony which have originated elsewhere in the "basic" industries whose level.s of operations are deternined outside the region. These basic industries are usually the "specialty" industries of the region which export a significant portion of their output to the rest of the country or to customers abroad.

As noted earlier, the trade categories are treated differently from other industries in inputwoutput analysis. Since they are conceived of as providing time and place utility without changing the basic physical form of the goods, an attemp' is made to get at "value added" by these sectors by entering only their gross margins into the transactions table. Gross margins are defined as the sum of operating expenses plus profit. On the basis of the findings of our field juvestigations, the following margins were used in the Gila Sub-Besin: 16.7 percent for wholesale trade, 22.7 percent for gas service stations, and 34.5 percent for "all other:" retail trade.
$\qquad$
${ }^{1}$ In those sections of the country which draw large numbers of visitors from outside their om population, the trode and service sectors clearly no longer depend priwarily upon the local population. This complicates any attenpt at projecting future levels of output for these industries. For a discussion of this problem, see $p$. 108 in the chapter on projections and the portions of the final report which deal with outdoor recreation.

Whoterale Trede ${ }^{2}$
 sector monted to 622.8 minion in 1960 , the seventh lorecst of the thator aix processiog eootor industrise in the Gila. Roughy threc guarters of this anomet ( $\$ 176.2$ ) went to the final demand sector. The remaining quarter of the gross output of wholesalers vent to the domestic procossing sector industries. Of these sales to the processing sector two industries - - contract construction ( $\$ 21.8$ million) and eating and drinking places ( $\$ 7.1$ milijon) accounted for 52.2 percent. The remainder of wholesaling outputs was widely distributed anong other processing sector industries.

The threw-quaters of grous ontput going to the final demand sector ves lengen concontrated in donestioninvermont, inventony acomala... tion ead houscholdr. Together, these three absorbed more than four-fifths of wholesale sales to final denand.

Irpus of the mholese sector..... Appoximately three-quarters ( 172.8 milaion of the gross outlays of whotesalers represented
${ }^{2}$ Acconding to the Congus of 㿟siness for 1950 , there vere 1563 wholostine osterntamentis in the counties comprising the Cila subbasin of whon the lergeat momo (rozd) weye foum in hajocopa combty. Pime comty roibored with 275 and then Pinal and Cochise comties with 51 end 56, respectively. In 1963 there were 2,005 wholesaling establishnents in the Gila with the largest number (1,371) in Maxicopa County.
purchases from tho antonoms or payments sector. Indor services accounted for forby five percent of these and the $882,874,000$ wage bill gove the 17,72 , mployeos of sul bosin wholoselons an avenage
 households from this industry in the form of profits and related payments. Thponts from ontsido the Colonedo River Pasin on $\$ 42.6$ million repmesonted an adetitonal 24.7 peacent of violesole pur.. cheses from the final paymons sector.

Within the processing sectox, transpartation transactions of \& 13.4 million led the way wh 22.7 percont of wholeraling's gross outleys to the proceasing soctor irdustries. Electric energy, and rentals and finance accounted for 19.9 percent and 16.5 percent respectively. The tertiary industries and construction accounted for almost all remaining wholesale inputs from the processing sector.

Direct and indrect efrects of the wholesale trade sector on the subbesin comory.....Total sates of $\$ 1.37$ are gencrated in the regional economy by each mholesale sale of $\$ 1.00$ to fincil demend. This fieure put tholesaling in eighteenth place and barely in the top half of processing sector indurifico. Triraimustry tronsentions of $\$ 1.02$ were recorded. The largest interactions with wholesale trade were experinced by electric encrey and transportation --- $\$ 0.07$ each. Six other judustries responded in amonts greater than $\$ 0.01$ to a dollar of
wholesaling sales to final demand. These were rintals and finance (\$0.06), "e11 other" services (\$0.04), "all other" retail (\$0.03), "other" utilities ( $\$ 0.02$ ), "other" manufacturing ( $\$ 0.02$ ), and contract construction (\$0.02).

Gos arn Anto Service Stations ${ }^{3}$
Interincustry repotions..... Auto service stations rancu twenty ther in total gross outpre with figum of 333.8 miluon.

Sales to final demand of $\$ 19.8$ million accounted for 58.7 percent of this industry's gross output, and sales to households of $\$ 16.8$ mili.ion alone accounted for nearly eighty-five percent of this lotal. The only other sector taking over a million dollars of this industry's output was exports to the outside world.

A2.7 but five proceothe scetom induetses botht sow of the output of senvice stations. Because of this wine distribution of gross output to the processing sector, the lecdirg custoners of ser. vice stations acoumed for modest sheres of the total. The leading outhets for: service station salos vere "other scavices" (\%.l mintion or 15.7 percent.), "other utilitics ( 31.9 million or 13.7 percent), cotto : ( $\$ 1.7$ million on twelve pereent) and contwect construotion (6I.6 miluion or 17.8 percent).
$3_{\text {The Cemena of Bainese shows } 3 / 34 \text { service stadions in the Gilla }}$ in 195 with wricom and Pine learirg with $75 \%$ and 323 , rospectively. pind. and yevpai followec with op eroh. In 1963 there were 1,828 service stations in the Cila. Maricopa County led with 974.

Inputs to the gas and auto service station sector---Almost $\$ 26.3$ million or over two-thirds of the gross outlays of service stations represented purchases from the payments sector. Firty-five percent of the total was remuneration for labor services. The industry's wage bill of $\$ 12.4$ million provided its 9753 employees with an average annual vage of $\$ 4_{4}^{77} 7$. Sub-besin households also received profits and related payments of $\$ 2.9$ million from this industry. accounting for another 12.8 percent of payments sector inputs to The only other sizeable figures were for inventory depletion (\$3.9 million) and imports from outside the Colorado River Basin ( $\$ 3.6$ million).

With respect to processing sector suppliers, auto service stations received their largest deliveries from rentals and finance and transportation, each providing something over twelve percent of service station purchases from the processing sector, electric energy eleven percent, and "other utilities" a bit more than 8.5 percent. Again, the great bulk of service station suppliers among processing industries were in the tertiary group and construction.

Direct and indirect effects of the gas and auto service station sector on the sub-basin economy----Service stations ranked 23rd in interdependence, giving rise to $\$ 1.32$ of total sales in the subbasin economy for every service station sale of one dollar to final demand. Rentals and finance showed the
groatest response -- $\$ 0.06$. Eight other processing sector jndustrios showed a response of at jeast $\$ 0.01$ per dollar of final denend sales by regional scrvice stations. These were elcetric energy ( $\$ 0.05$ ), transportation ( $\$ 0.05$ ) "other" utilitics $(\$ 0.04)$, "other" services ( $\$ 0.03$ ), contract construction ( $\$ 0.03$ ), printing and pub1ishing ( $\$ 0.02$ ), lodeing ( $\$ 0.02$ ) and "alj other" retail ( $\$ 0.01$ ). The intraindustry coefficient of $\$ 1.005$ was quite small and ranked twenty-fourth among the thirty-six pioccesing sector industries.

Eating ard mintine places ${ }^{4}$
A fer words are in onder conceming thes industry before vo cxamme the rindings of the imput-output matysis. mille classifted as a retal trede sector in the sonsur of Husimess, for purposes of interindustay malysis; cating and drinking places ane not treated in the same fashion as the other trade sectors. The margining of sales fourd in the trabe sectors rerlects the fact that there is no physical transfomation of the comodity in this phase of its movemont to the consumer. This, of course, is not true of resteur.ants where, for better or for wome, the food is cooled, baled, broiled, fried, or whet have you. Thus no margintrg is aplied to the tronsactions of this industry.

[^11]Thterinastry retations... - The $\$ 77.7$ mition on gross output of the eatinc and arinding grow emmod wenth rom for the induoty among the poocossing seetor industries of the Gila. This berety put j.t in the top thind of these industacs. Its 812.0 mituion of setes to fiad den mepresentad 95.2 mexchit of its gross output for a sixth anking position in the sub-acin th texas of the share of its output gong to other then domatic phoessing incurtres. Sales to nomehons ma exports to the outsido mond constituted nind temths of an scies to find domand by oting and dronting places. These tro sectons abombed 859 million and 844 mithon, respectivczy. Fyports to other sub-besins of 55.6 million acoomted for another 4.97 parecnt of setos to final demond.

The remsining 4 \& pucent of gross oxtput of coting and dringong places was dinected to the provessing sectox. Jntwaindusty tronseo. tions of $\$ 7.2$ milition mankec finst here, accomting for a fiftin of gil processing sector purheses fron eating and drinking. Rentols fad finance and "othor retail trade" each accomted for between fourten ang cighteen poreent of the total. All remaining pro. cessing secton customen tow less then ten percent of the total senes to theire gioup.

 on the oujprt of the permets sector. Alwort heif ( 44.8 pecent) of cuch purbhes can in the form of impores fown ontride the Colonedo Fivar Basth. An aditionn 47.0 penent eme fron househotdo. Jabor sevices wene in the notghomood on 530 milion and
a. Wage bint oi $\$ 29.3$ minior provided the industry's 8597 empioyees an avenage amruan wage of $\$ 340$. Whine hogher then its counterparts in the Jower Majn Sten and the Iittie Colorado, this anma wage was nelatively low among the processing sectom industries of the Gile, ranking twentietin among the swenty four industries for which evailable data permetted the saluatetion of suck a figure. Agair, a. lerge mumbe: of part-time workers and a reliance upon gratuities and payment in kind (free meals) contribute to e relatively Iow wage. Sub-basin househoids also received profits and releted pay.. ments of $\$ 8, I$ milion from the eeting and drinking group, accounting for an additioneI ten percent of outleys to the payments sector.

The most irportant processing sector suppiiers of eating and drinking places were food and kindred products manufacturing (\$12.1 million or 32.7 percent, ${ }^{\text {m }}$ other services" ( $\$ 7.2$ million on 18.95 percent), wholesale trade ( $\$ 7.1$ million or 18.7 percent) and rentals and finance (\$3.I minlion or: 8.1 percent). Once again, almost all piocessing sector suppliers to eating and drinking places were found in the tertiary group of industries.

Disect and indirect effects of the eating and drinking industry on the sub.basin economy--- The regional economy responded in the amount of $\$ \ldots .48$ for each dollar of fonal demand sales by the eating and dminking group. This earned the industry a twelfth rank among the prosessing scctor's thinty six industries. A total of twenve other industries responded in amounts of at least $\$ 0.01$ each time eating and drinising places experienced a $\$ 1.00$ increase in its
sales to final domand. Only three other industries - other agriculture and food and kindred products manufacturing and other mining --- evoled a response of that magnitude in a larger number of industifes, sjxteenjandeen thirten thirteen respectively. Thus, retail distribution of food and drink had a high degree of interdependence with the other processing sector: industries of the sub-ubesin.
 and rindred products mamfecturage mbolesale wanc and all othor servicesi came next vith cumlative effechs of eo. OT plus. Rentals and finance ( 00.04 ), thanpontation ( 90.03 ), and 'other utilities (50.02) responted in anounts jn excoss of 80.02 , mile electric
 dairy operations (io.01), fojoge, feed ans food crope (00.0.1) ant construction ( 90.01 ) all reacted by at least $\$ 0.07$. The jntratudus. try coarficient of m.0L mantod in twenty-first plece among pro. cessing sector jnaustries.
"A11 Other"Retati 5
Interindusty relatjons.....The "all othon" mati group is a residual catagoxy withan whon nev and used cer dealons ocoupy an importent position. Total gross output of g4ty. 8 miztion pleced

5 as "other retail. wade. the two mejon metropolitan couttes, Hanicopa anci Pima, lect abuin with 782 and 304 estoblishonts, wespectively. In 1.963 there were 1,834 "other" retail establishments in the Gila. Maricopa County Jed with $1,090$.
this iudust:ny in a secondinanting position in the suo basin. ATmost ninety percent on its ontput on $\$ 373.3$ million was destined for the fine denman sector. Househonds tow almost seventy percent of thjs amomt with invontory accumatam and ceports out of the Colorado Fiver Pasin each acoombing for an aditional thirteen
plus percent. The cutput of this industry was widely distributed anong processing sector industries. However, the only processing industries taking more than ten percent of "other" retail's sales to their sector were cotton ( $\$ 7.8$ million or 18.2 percent), wholesale trade ( $\$ 5.7$ million or 13.3 percent), and contract construction ( $\$ 5.3$ million or 12.6 percent).

## Jmpts of the other yetrit.. fow o... The payments sector

 accounted for eighty-three percent of this industry's gross outlays On 344.2milim. Householos provided $\$ 189$ milion of lebon services or almost three fifths of all purchases fron the paments sector by the "othen retail. group. This amount yionded an average annal wage of 55925 when distributed to the industry's 37,894 employees. Householis receivod $\$ 22.7$ miliion as profits and reated incone fron "other retail fims. Total payments to houscho.is of $\$ 211.7$ miluton from "othex retail: establish. ments ranked second in tho sububasin. Inventory depletion of $\$ 3$ million and imports from outside the Colorado Miver Basin of 872.6 million accounted fon 12.4 and 21.1 percent, respectively of inputs to the "other retal." group fion the paments sector"Purchases by "other" retail from the processing sector were as follows: rentals and finance $\$ 12$ million or 16.7 percent; other services $\$ 11.2$ million or 15.6 percent; printing and publishing, $\$ 10.3$ million or 14.4 percent; transportation, "othor" utilities, and electric energy followed with between 1.3 percent and 11 percent each.

Direct and indrect effects of the othen netat" ingustry on the sun begin economumprocessing sectoz incustries of the cila responded mith 6.. 25 on output for each 1.00 of finkl cemand seles by the "othan rotain: grove mhis reaction manked twenty-ninth in the sumbasth. The intmatimustry coenticient of gh. ol mas in twenty-seconc place.

Eight industries responded in amounts of at least \$0.01 for each dollar of sales to final demand by the "other" retail group. The most pronounced reaction was rentals and finaince's $\$ 0.04$. Reactions of $\$ 0.04$ also werc found in "all other" services. Printing and publisking, transportation and "all other" utilities and electric emergy followed with $3 ¢$ reactions. The remainder of the prominently reacting group were contract construction ( $\$ 0.02$ ), "other" manufacturing ( $\$ 0.01$ ), and wholesale trade (\$0.01).

Ioveline
Intorimgetmy metating - Iodeing hela eighoenth phece amone the Gile's thirty siy processing sectom incustuics men janked by megntude of gross output. Wintw thmee perectu of its total gross
output of $\$ 46.9$ milnion repesented sales to the finel derand sector, and of this, over eighty-six percent or $\$ 38$ million went to tourists from outside the Colorado River Basin. Another 43 milion or seven percent vere exports to the resicents of other sulb-basins. These tro classes of expont sajes tocether acomoded for 88 percent of the total. gross outint of the lodging industag. tholesaling purchases of $\overline{\mathrm{B}}$. 8 million ecounted for the largest share of lodging's modest siles to processing sector industries....-finty four percent. Tramportation took another 9.5 percent and "other utilities and "other retain trade" 8.8 percent and 7.2 percent, respectively. Impute of the Iodeng jndustrve- Anost three fourths of lodging outlays-a.-333.6 mindion wnent to the payments sector. Households accombed for over fonty peacent and imports from outside the Colorado River Easin, $\$ 10.6$ million or hinty two percent of paymats sector sales to lodering. Depreciation allonances of $\$ 2.6$ miliion represented another 13.6 percent. The industry's wage bill of $\$ 13.5$ million providen its 5367 cmployees with the less than arflumble average amul waze of 52606 . This was the lovest ambal vage amone the wenty foum processing industries for which we had data. A low level of howly and weekly mages and parti-tine employment of the iadustay's predoninently fomale vork force help explain this low amal race. Householde in the sub-basin also received in mintion as profits and related pay. ments.

Within the processing sector, "ouns servieos" 63.2 millam accounted for a fombi of longing purchese follone by rentals
 miluion ( 12.8 percont), and controct construction's 3 million (70. 3 percent.).

Direct and indiget orrects of the loncine ing ury on the sub-bonin cemomy- Iodeje in the Gita sub-basin hald the sixteenth position as a cenemator of economic activity. The direct and findirect offect in the sub-basin econom of 31.35 per dollar of locige seles to final demand ocupted sixtemth place in the list of thity six processing sector inlustries. In terms of self.stimulation, however, Jodging's intraindustry coefficient of $\$ 1.0005$ was very low ard ranked wenty-fifth jn the sub-basin.

Each dollax of lodging sales to the finot nomon sector did evole a response of at least 80.01 in in eleven other sub-basin processing industries. Only six other industries triggered a res. ponse of that nagnitude in a laver moner of industries. Reactions of at loast a nichol vere observed in "all othen sewvices" ( $\$ 0.08$ ),
 construction ( 8.04 ), other ubitities ( $\$ 0.04$ ), wholesale trade ( 60.03 ), and priming and phatishing ( $\$ 0.03$ ). The renaining res. porses of at least so. 01 vore found in "all other retail: ( 50.02 ), food and rinded pochets mandacturn ( 0.02 , auto service stetions (30.02, and eating and drink places ( 80.03 ), and transportation ( $\$ 0.01$ ).
"All Other Scrvicos.
Tinis section includes all sevvices not shom scparately on the tebles rith the exception of professional services which hevo been included in the "pronts and other" row

Intorindustry petations-...The "ohno semvices" group produced a total grose output on G1s\%. 3 militon in 1960 to eam ninth place
 Sixty seven percent of this amoun or 426.7 million repersented sales to the final denend sector. The majos final domand customere of other services: mere houscholds (58\%.5 mitaion on 65.4 ponemt) and all exports (s25.5milion or 20 peromt).

The entes of "other services" vere rathor vidicly distributed in the processing sector. Ony thee industries acoomtod fon moze than ten percent of total processine sector purchases.... "other retat twade" ( 17.8 percent on \$1l. 2 mition), intrandustry transections ( 11.7 percent or 67.4 milion), and eating and drinkine phaces (11.t percent on $\$ 7.2$ million

Inpus of the all other services. incustur - Fow firths of the total gross outhay of this industry or 151.6 million represented purchsob from the paments sector. Treorts fiom the outside monle of sob million and houshote seles to "othen services" of 53.6 mition acombed for 11.1 ant 35.4 percent, rospectively of parments socion frymets to othen semvices. profts and ralated parants bdea enother gly million to hursehold incomes and conscituted ainost tem poreent more of paymonts secton ontlay by othen survices".

Within the processing sector, intraninatry tamsactions of 67.4 minhon reat the largest item and repescmed one firth of total deliveries to aother services from proeessing sector in...
 of sales. Other industries providing more then five percent of such deliveries ware "other" utilities, wholesale trade, "other" manufacturing, chemjcals, service stations; transportation, and "other" retaj.1.

Diret and indreat efects of the notwo servcos broe on the sub-besin eoonmy--..-The sub-basin comony experienced ar addition of $\$ 1.27$ to its output for each dollar of sales to final demand by the "other servicos" group. This was a rather noderate reaction and ranked trenty sixth emone the Gila's thinty six processing eector industrics. Despite the rether small stre of the aggregate activity generated in the sub basin by othex services, " eleven other industries felt a nudge of at least 80.01 when its firal demand sales increased by a dollar. Only six othex industries evoled a response of that magnitude in a larger number of processing sector industrics. The responding industries vice reatals and fimence (so.05), vholesale trade (so.03), iothen utilities" ( 6.0 on construction ( $\$ 0.02$ ), electric energy ( $\$ 0.02$ ), "other" retail ( $\$ 0.01$ ), transportation ( $\$ 0.02$ ), and "other" manufacturing (\$0.02).
chemicols ( 90.02 ), service stations (so.01), and priming and publishine ( 90.07 ). The intrinhustry coefficient of $\$ 1.05$ yas moderately lange and wated 7 th in the procesting sector.

Transmortotion
 in the top thind of industries with its tota gross output of G习9.4 miluion. It is an indurwy when primatily senvices othen sub-masin processing sector industries ank only 21.7 percent of its gross output.-. - 21.6 mintion.mant to final deman sectox. Of this ichatively small amont, domostic investmont and exports to the outside world each tool: about a third. Exports to other sub basins of the Colorado ansomed closo to 8.4 poreent and householos another 15.7 percent.

Since trancport sales to the processing sector were so videly distributed, only thee pocessing industrien took as much as ten percent of the sales of the transportation group. These were Wholesale trede ( 13.5 percent), "other" retail trade ( 9.7 percent), and copper ( 8.4 percent).

Inouts of the trensportation industru.... Seventy one percent of gross outlays of the transportation group on 970.7 minlion went for purchases fron the paments seeton. Tmports from out.. sice the Colorato Eiver Lesin of 331.4 milion mas the largest paymis sector supplier and accounted for 31.6 percent of the total. Jmports fron other sum-basins of 8.0 mation added
another 1.98 percent. Purchases of labor services from households of $\$ 27.2$ millinn provided an average annual wage of 55,063 to the industry's 5,382 employces. Profits and related payments of $\$ 2$ million were also paid to sub-wasin houscholds by the transportation industry.
 procossing rector, "Othen mennacturimg's" 5.7 milyion of deliveries to tranmontation conotibuted one rirth of all such processing sector delivenies. It vas followed by the finance Eroup's ל́, 5 militon mich represontod anothen 15.7 percent. The only othes processting sccton industries whoe selew to transport excecded con percent of the total rene "othor utilities" (h3.? milion ou 11.3 percent) and intraindustry transactions of $\$ 2.9$ million (lo.1 percent).

Direat and inginect efrectu of the trangotution inustiry on the sub-bssin econom .... Transpotation sales to rinal domand of Si. OO gave rise to a cumlative effect of 3.38 from the prow cessing secton of the sub-basin. This randed fifteenth out of the thinty six industmies of the processing sector of the Gina.

Winc of these inhutrios resporded by at Jeast so.01 for every such doller of thnol doment seles by the thanoport group. Two industries reacted by more than inve cents.....iothon marufac.. turine: (30.07), chno rentals end firense (30.06). Four othens
experienced ropercussions in their on cpertions of at least tro cents.....nother ubiditics ( 0.04 ), "all other scrvicesi (\%.01), wholesale trade ( 0.02 ), and food and rindred products menvacturing ( 0.02 ). The remanting theo whose onorations Werc incroased by close to a penay voro fabricated metals ( 90.017 ), electric encry ( 60.016 ), and "othen mininc ( 50.01 ).

The intrameustry cueffachent of $\$ 1.04$ renhec tenth in the subunasin.
"All Other Utilities:
Interindustay relations--..The utilities grow; excluding electric pomer, ranked tentin in the sub-hasin vith total grose output of S166. million. Jits seles to the final cemand sector of S 3122 million constituted 73.5 percerit of gross output. Households wore the major customer in the final demand secton, and their purcheses of 86.5 milition accouted for seventy one pex. cent of the total. Exports of $\$ 22$ minion took another eighteen percent. There was little concontration
anons a for majon cuctoms in the processing sector. The ony processing motutries which absorbed rore than ten percent of the total were "othce retail with 97.9 million on 17.8 percent, and copper with 6.6 million o: 12.17 percent. Wholesaling, transportation, rontajs and finmoe, and electric energy cach accouted for between scven \& eightpereent of "other utility sales to the processing sector.

Imputs of sall oticentifitics .....This industre's purchases fron the paymonts sector of $\$ 14.6$ mintion repesented eighty six percent of tits gross outaysu-n-a retio erocence by only four other imustries. Imorts of 964.6 million provioed 45 per. cent of the total, mine howeholes, supplying 45 , hillion in labor servicus acoumbed fon anothor 31.6 percemt.
 another three percent. The other payments soctor industries supplied the rominime fifth.

Helf of the fourteen porcent of gross outlays mich come from the processing sector wes supplied by rentele and finence and "ther services", each of minch provided abouts. 5 million or one fourth of processing sector sales to the other utilities: group. Sexvice stations and "other manfacturing provided 8.5 percent and 7.9 percent, respectively, of the total. Intraincustry trans.. actions of $\$ 1.5 \mathrm{milli} \mathrm{m}$ occounted for another seven percent. Direct and indirect effects of the iothe utilities proup on the sub insin econow ....This industay was rather veak as a generator of econone activity in the sububsin, giving rise to a total reaction of 1.18 anong the region's processing industries for each collar or its sales to the finsl demand sector. Thes figure ranked thirw thire out of the Gila's thrtw six processing sector industries. Seven othex jndustries reacted ire anomts of at least $\$ 0.01$ for each dolnan of such soles ing other utilities:.

Horever, the degree of intordenenence was rather small. The largest reation, for examle, vas rentals and finance's $\$ 0.04$. HII other sexvices also experienced a mage of that magmitude. The remining intustries in the group all reconded reactions mith hovesed aroms so.01...- construction (\$0.02), "other menurecturng ( 0.01 ), whiesale trade ( 50.01 ), service stations ( $\$ 0.01$ ), and transportation ( $\$ 0.01$ ). The intraindustry coefficient of 81.01 maned niteteonth in the processing sector.

Gontact Comstration
Interinustar relations .....Contract construction's gross out... put of $\$ 520.4$ mintion led ant thinty six industries in the processing sector of the file sub-besin. Sixty-eight percent of this tote? ( $335 \% 3$ mition) went to the final denand sector. As minh be expected, the tro major customens of the construction Anwstay then mector were donestic investment mich took \$168.a milion or forty seven percent of final demond purchases from consturuin, ane state and feneral govemnent which took \$82.1 minion or twnty thee pencent of the total. Inventory accurnation cosowted another elevan percent, wite houscholds, exports outuide the CoIoredo River. Basin, and Iocal govomment each accomten foe woriy six peremt of the total.

Ls ves tius in the oher 5 sub-basins of the Colorado, here c.l.so intrantustry transactious led all other processing secton induetries. Construction's seles to fitself of 136.5 million
remesented eqghty wo percent of the industry's total sales to the wrire processing soctor. The only othen outlets fon construction sales in this soctor which amombed mone than tro percent of the totel vere rentals ond fimene ( 6.7 percent or M1. 1 million) and "other rebal trade" ( 2.2 percent on 03.7 million).

Impts of entrac constraction- Constuction's \$293 million of pumenes fern the parments sector amomted to 56.3 percent of juts total cuture. Howeholds provided just over half of these purchases vith 52.9 milita. This vage bill yieldod an average enmal wage on 5594 to the industiy's 25,696 omployees. Households alao mecived 87.0 million in the fom of profits and related phments. Over thirty-eight percent of construction inputs from the parmens sectoa come faom imports.

Three finthn on conetruction's purcheses from processing somen indutries wene fntraindusty, with construction suplyjng Etsent flst. million of impts. The ony other processing sector indurtate providug more than five percent of construction's inputs frem the suctor wore whosale tredo ( 9.6 percent or $\$ 21.8$ mition), stone clay and glass products (7.6 percent 0in 937.3 milion): and foblated metols ( 5.6 pereent or 972.8 minion). Direct and foriect offects of the contrect constuction
 aromg the gicis thaty otz procosing sector industries generating \$? 69 of curictive effects in the sub-anin conomy for every dollon of tis sates to fingl domad. Fen industries"responced in
amounts of at leest \$0.01. Wholesale trade's reaction of 90.06 was the largest, follored by stone, clay and glass (so.06), rentals and fincme ( 90.04 ), fabricated metals ( 50.04 ), "all other servicos" (so.02), 'all other retail: ( 50.02 ), traneportation ( 50.02 ), 'other minine' ( 50.02 ), Iumber ane wood products manuracturing ( 90.01 ), and "other manacturing: ( 90.01 ). In toms of interdepentence, only ten other industrice evolec reactions of at least 90.01 in a larger number of incustries than did construction. The intraintustay coefficient of $\$ 1.37$ ws tho largest anong the processing sector industries of the Gila.

Rentals and Binnce.
Interinguty robtrons.... Rontals and finonce lanked fifth jin the processing sector of the sub-bacin with total gross output of \$301.9 miliion. Its sales to final denand of $\$ 202.1$ million accounted for sixty-seven percent of gross output. The $\$ 145.1$ million going to houscholds constituted seventy-two percent of final demand sales of the finance group. Exports took another 13.4 percent ( $\$ 27.1$ million) and state and foderal govermment 11.5 pe:icont ( $\$ 23.3$ million).

The rentals am finance imustry wes the most pervaive in terns of the numbex of its trading partners. Every processing secton industry had sone dealings with it. As a resuli there mas little concentration of finonce outputs to a fory majow customars in the processin: soctor. Only one intusiry accounted for more then ten percent of the total-....."otwor retail:
trade with twelve percent ( $\$ 12$ million). The purchases of eight other ind tries exceeded five percent of the total. In descending order, these were construction ( $\$ 9.9$ million), wholesale trade ( $\$ 2.7$ million), intraindustry transactions ( $\$ 7.3$ niliius), cotton ( $\$ 7.0$ million), "other" services ( $\$ 6.8$ million), "other" utilities ( $\$ 5.6$ million), food and kindred products ( $\$ 5.4$ million), and electric energy ( $\$ 5.0$ million).

Inots of rental and finges-a-mincty poreent of finence industry outlays representod purchases from the pawnents sector. Of this substantial figure of gat million, the largest share (sixty two percent on $316 \% .7$ miliion) remesented paynents to households as profits and related income. This larse entry re.. flects the comvention of chameling property and related income through the rentals and finance sector. Paymonts to houscholds fon labor sorvices amouted to 370.4 milnion. This yielded an averege ammal income of 85049 to the industry's 13,953 employees. As indicatod in Table G-Y, total payments to households by the rentals and finance industyy of $\$ 235,185,000$ was the largest in the sub-basin. This ficure reprosented amost eighty eight per.. cent of paments sector purcheses by renvels and finance. Imports of 13.4 minion accounted for another five percent vith deprecia. tion and state and federal govemment each providing beween two and thee peroent ( 8.1 million and 6.6 mintion, respectively).

The man processing secton sumplien of the finance group was contract construction. Its \$1. I million of sales to the finsme group acconted for 36.2 percent of all such finence inputs. Next in impotonce vere intwanastiny transections of 97.3
million which equalled one fourth of procassing sector sales to the finance group. Oher villities: accounted for 13.6 percent (33.2 milion). Gectricenergy and other services rese the only other processing sector industries providing nore then five percent or finance imputs with 7.4 percent ( $\$ 2.2$ mithion) and 6.2 percont (\$1.9 milion), respectivoly.

Direct and indirect effects of the rontals and finence industry on the sub basin conome...The rentals and rinance sector vas not a poremf generator of aditional econome activity in the region. The 31.1/ of direct and indirect effects accompaning each dojlar of final demand sales by the finance gromp ranked thixty fourth anone the Gla's thisty six processing secton inclustries. only two other industries responded by at least 90.02 to ench dollar inorease in finence sates to final dennc. They wore contraet constuction ( 0.05 ) and othor utinties ( 0.01 ). The intran industry coefficient of $\$ 1.03$ ranced tristeenth among sub-basin processing indusiries.

PROJECTED INTERTNDUSJRY RELATIONS
GILA SUB--BASIN: 1980 and 2010

August, 1967

Principal Authors

Gilbert W. Bonem
John H. Chapman, Jr. Willian H. Miernyk
Bernard Udis
Lynn Wilkes

## PROJFGLTONS

We are strivthg for long-range conefseent projections for the Colorado Fiver Basin in addition to a model of the region's structural Intersepandence in the base year -... 1960. It is true, of course, that the qualiay of any atempt to forcoast the future structure of a region's economy through the finputwounput techricque will be no better then the independently detcmined estimates of final demand used and the validfty of the input coefficients. Hevertholess, wo believe that the antonatic intonel consistengy feature of inputwoutput analysts will impose useful limits on the range of our forecasts of final denand, assuming that we have knomledge of factor productivity and of resource cousiraints withtn the region. As Evans \& Hoffenbexg inave noted,

- . a reasonable structural relationship thet acconnts directly and positively for demand should give sensible results regardless of the values of the independent variables in the estluating equation. f refrossion relationship based on histozical deta, on the contrery, may in some instances yield estimates that contradict physical possibijities. Line degree to which oest vaxiation is "expladned" by the equation as judged by the coefficient of correlation, fs not evidence in determining whether a representation of the underlying structural situation has been obtained. 1

This advantage of input-output techniquc is especjally valuable jn our stuay sitice one of our major tasks will be to determine the feasi-m bility of alternative growh patterns in the Colorado Basin in torms of antscipated resource availabiity ... particularly water. Thus, once the water requixements, both quautitative and qualitative, wich match alternative demand structures have been ascertained, we should be able to rencier a judgmont on the ability of the reglon to sustafin a paxim cular develoment path.
$1_{\text {W. Luane Evans and Marvin Hoffenberg, "The iiature and Uses of }}$ Interindustrymelations "ata and Lethods," In Conference on Research Incone and wolth, Input-Output Analvisis: An Appraisal (princeton: Princetun University Press, 1955): pp. 53-123, espectal1g p. 1.12.

There is evidence that for relatively shot pexiods input coeficients are quite stable. Also, given the relatively weak fiterdapeńdonce auong many sectors of the sub-basin economes, some of the direct infut coeffi-m cients are quite small. Even fairly large chanes in these coefficteries would not have a serious impact upon the incerindustry projections. One can be equally sure, horever, that for long-tern projections regional input-output cofficionts will not be steble. These cooffictents can be affectod by: (a) changes in relative prices wich possible substitution among factors of production; (b) techoological change, and (c) changes in interregional trade patterns. Each of these maght have an irportant effect upon the regtoncl coefficfents and hence upon the accuracy (on even the "reasonableness") of the projected transactions tables.

It should also be racntioned that the projections of gioss outptse, and hence the nev transectiono tables, can also be affected by erruss in projaction of final demand. There is no fixed foimula for projecting final demand. Diffexent methods have been enployed in natioe the piojections for agriculture; for the mining mantiacturing and emergy sectozs: and for the trade, service end construction sectors. fhe assmations on which the final demand projections are based, and the projection methods used, are discussed in a later section of this chapter

Long.when Change in Input-outout Coefficients
The static open input-output rodel used in the Colowado River Bastn Economic Study is based upor three fundanental assumptons, These are that:
(1) Each group of comodities is supplied by a sincle producing sector.
(2) The inputs to each sector are a unique function of the level of outpue of that sector.
(3) There are no extennal economies ox disecononies. ${ }^{2}$

It is assumed that the deman for part of the output of one nonautononous sectio: $\left(x_{i}\right)$ by another noneutononous sector $\left(x_{j}\right)$ is a direct
${ }^{2}$ Chenery and C1axk, op, cit., pp. $33 \cdots 34$.
function of the level of production in $x_{j}$. inis is expressed eymolically in equation (J):
(1)

$$
x_{i j}=a_{i j}{ }_{j}
$$

The transactions tanle may then be described by equation (2):
(2)

$$
x_{1}=\sum_{j=1}^{n} a_{i j}\left(x_{j}\right)+x_{j a} \quad(1=1 . . . n)
$$

where $x_{j}$ ts the anome denended by the $j$-th sector from the 1 -th sector, and $x_{1 a}$ is the end product demend of the autononous sector.

The direct input coefficients in equation (1) nay be rematem as
(3)

$$
a_{i j}=\frac{x_{i j}}{x_{j}},
$$

and it is tho stability (or lack of stability) of these fmput coefficients that we visi to examine.

The pfects of Chanes in Prices and Techolocy on the Dtrect Triput Coefficients

The trend of some prices can be projectcd with reasonable accuracy. The "price" of labor (wage plus fringe benefits) hes been steadty rising, and it is relatively aafe to assume that this rise will contince. It is less easy to foreast future chages in the prices of sonc of the other factors of production. In makhe consistent projections, however, it is not absolute price chanes but relaitive price changes that mattex since it is the latter whith are likely to induce substituricn amon the factors of production. This raises sone guestions: That will be the dipection and rate of changes in prices for the various factors of production? And how are these relative changes likely to affect the demand for different factore of production?

These are not simple quostions to ancher, but it might not we necessary to answer them directly sjnce the effects of relative prace chancs axe
not completely indepenent of techological change. Thjs can be illustrated by a simple eample. If labor costs rise mone raplely than the cost of capital, management will have an inducement to substitute machinexy for labor. Jhts substitution is not a conctruow process since it is partly dependent upon discovery and imovation. It also depende upon the extent to which oisting machinery hes been deprecjeted, the state of tho naret, and a muber of other variables. But in neny fodustries there has been a long-rua subctitution of captial for labor, and it fs reasonable to suppose that this js at leart partly a function of relative changes jn Jabor and ceptel cosis. ${ }^{3}$ Thus, if it is possible to adust the a ${ }_{i j}$ 's for long-run techological chonge, sme of the difects of relative price changes will be included. If these changes can be projected, the resuling coefflcients wlll have been "adjusted" to some extent at last for antion cipated cinages in relative prices and technology.

In an effort to ajuset for such changes a simple "dynamic" rodel has been constructed. ${ }^{4}$ The input coeffictents in the 1960 tables ropresent avemanes based on the sample establimhents included in the various sub-. basin surveys. Within each industry and sector, homevot, there are varfations around these avereges, and to a large extent the different input patcers are the result of vartations in productivity anorg the estaidishaents theach incustry and sector. These variations in producfivity in tum are primarijy a function of the conbinations of capital and labor ta the santio establishments. ${ }^{5}$
-
${ }^{3}$ See, for emathe, U. $\mathcal{S}$. Dopartment of Lavor, Dureat of Labor Statistics,
 U.C.: Gffice of productivity and Techaological Devclopments, 1264).

4The genctal oulfine of thas technicue for adjusting irput coerficients Was suggested by piofossor fassily Leontinf of farvard Gaversity. The prom cedure is a simplified version of methods used by others for projecting technical coefficients for specific industutes. See, for examle, the P. Carter, "Incremental Plov Gooficients for a iynamic Input-Gutput wod vith Changine Techology," in Tibor Barma (ed.), Structural Interacondence and Economic Development (Wow Yow: St. Martin's Press; 1063), pp. 277-302; and per Sevalason, "Chenges in Inputoontput Coceficients," Lien., pp. 303-328.
${ }^{5} \mathrm{It}$ is important to stress that notall variations in procuctivity axe the result of diferent captel/output ratios. An exame of another infiuence, which complicates the statistacel analysis, is given the later section.

The measurement of productivity is not a simple process. The followirg fomulas were used to estimate productivity in the semple establichments ir. the Iover sububasins:
(4) $\quad E=\frac{0}{(I)}$
and
(5) $\quad P^{\prime}=\frac{0}{(\mathrm{C})+(\mathrm{L})}$

Where $F$ and $E$ ' equal "productivity," 0 is the gross output of the estebieskment measured in doljars, $C$ represents captital finputs, and $L$ represcnes Iabor inputs. Idedly, the labor inputs would be nessured in toms of romhours or ramyears, Data vere not avallable on thje basis, homeven, and In oux computations I, seasures the amval average nenter of probuction workers in each establishment. Also, ideally a should masure the stocl of ceptital in the cotablishant in 1960 . Since this figure could not be obtained for each establishment, that year's deprectation allownce was used as a substitute. In effect, the denrectition allonence wes use to veight the labor input to give an apporitation of output per unit of capical plus labor inpuls. This is admittody a roush measure, but it would have been useless to employ a more refined fomula given the data limitations.

The use of two fomulas to estimate "mocuctivity" requices an explan ation. It has lone been customary to measure productivity in texm of labor inputs, and this practice hos been followed in the present study by using fomma (4) above. It is possinle, however, for tro establishments In the sane industigy to produce the sare numer of units of output in a given thee period, and yet have widely different labor inputs. If this occurs, examination will gensrally reveel that the estabjeshment whth swaller labon inputs has comespondingly higher capital inputs. For this reason, a second measure of productivity … the one represented by formia (5) .... was also computed for ench industry and secton. $\hat{6}$ The tro productivity

[^12]indexes computec for sample establishments in the lower sub-basins were used to identify the more 'advanced" establishments in each industry and sector. In general, it was assumed that the establishments with the highest capital/output. ratios fell in this category. Thus primary reliance was on the neasures computed by formula (5). The measures computed by (4) were used largely as a check to help spot unusual sample establishnents in each industry or sector.

If ve assume for the monent that there are a large number of establishments in each industry and sector surveyed, a frequency distribution of $P^{\prime}$ s might look sorething like Ftgure P-1.

Figure $P-1$


The $\bar{x}$ represents the pean, ana the interval a to $b$ represents the mean plus or minus one stendard deviation. In a nomal distribution this would include about 68 per cent of the firms. In this stucy, the $a_{i j}$ 's are approxinateiy representative of the finas with average productivity, or $\bar{x}$ in tiis distribution.

Consider for a moment the firms in the shaded interval (b-c) of Figure P-1. These are establiohments with relatively high levels of productivity. In general, although this is not necessarily true, these vill be newer firms with more advanced equipment than those in the interval ( $\mathrm{a}-\mathrm{b}$ ). They vill also be "better managct" than those whol fall in the range of the mean plus or minus one standard deviation. Let us assume that the firrs in the interval (b-c) are about twenty years "never" on the
average than those which fall in the interval (a-b). We can take the further assurption that competitive pressures will force the firms in the interval ( $a$ - b) to try to enulate those fin the intervel (b - c), and that new firms coming into the industry will more closely resemble the newer fims than those in the interval (a - V). That is, we are assuning that there wlll be steady faprovenent fin industrymide productivity. If these assumptions are at all realistlc the "averace" firn in 1980 will roughly approximate the "superjor" firms in 1960, and we can estimate the average input coefficients for 1980 fron those of the establisiments in the interval ( $b-c$ ) in 1960. From these, a new table of $a_{1 j}$ 's can be constincted and used to make the 1980 projections. The input coefficients can then be extrapolated to 2010. This procedure is illustrated by the hypothetical example of Figure p-2.

## Figure P-2

hivput coepricieits for a myporhetical moustiv AS A per cent or total raputs

$a_{\text {Based on }} 1960$ interview data. Figures at bottom of each column show years for which these input patterns will be used.

For purposes of this illustration assure that intraindustry transactions and the ran material coefficieat in this industry remain unchangen. Assune, however, that there will be a substitution of cepital for labor. The input cocfficients for 1980 are the average coefficients for establishments in the 1960 interval ( $b-\mathrm{c}$ ) in Figure $\mathrm{P} \cdot \mathrm{l}$. If we assume that this substitution will continue, the cariges can be projected to 2010 to give the input coefficients shom by the thixd bar of Figure pr-2.

The question mifich be raised: Why select the firms in the interval ( $b-c$ ) of Figure $p \cdots 1$ ? Why not take the "best" firm to the right of $c$ in this Figure?

The answer is that an effort is being made to project a "representative" flrm in 1900, and this is not nccessatily the "best" fira in 1960. The Office of roductivity and Tecinological Developnents of the U.S. i) pertment of Labor at one time considered usins the "best" (i.e. highestwproductivity) firm in its suivcys in making natjonal projections of technological change. Upon investigation, lowever, it was fomd that the "best" firm in many cases was oftea so atypical that it vould be unsafe to use it for projection purposes. Such firms may be relatively shall, fanlly-owned operations, and the persons who run the firm are highly motivated. They do not necessarily have the latest equipment, ani are not necessarily the "best" firm fic the industry in a technological sense. Hence, a safer assumption is that average productivity in some future year will be more nearly aproximated by that found in a small sample of "representativc" supexior firms in the base perfod. 8

Some Practical Considerations Involved in Applying the Simple Dynaic Bodel to the Sub Easins

The simple model sketched above was based upon a numer of assump tions, and few of these assumptions apply to this study. The major problen is that in only a few sectors .-. and these are largely nomanufacturing -- are there enough establishants in the sample to provide a
${ }^{7}$ Such projections nust be made cautiously tather than mechanically and vould not necessarily be the linear extrapolations sugsested by Figure p-2.
${ }^{8}$ This paragraph is based on comenes made by ir. LeonGrembere; Buren of Labor Statistfes, at the Conference on lanporrcr Frojections beld at the Brooilites Institution, Weshington, D. C., June 25-25, 1964.
frequency distribution which even begins to approximate that sketched in Figure P-1. In tile cases where tiere are encugh establichnents in the sainple ... say twenty or more .... variations similar to those assumed in the model were founc. Liffortunately, even in these cases not all of the questionafres were compete enough to pemit the mechanical calculation of new "average" coefficients for 1980 . Some aproximation was required, and here it became necessary to rely upon the extrapolation of national productivity trends to round out the picture. Also, there is no way of knowing even in these cases whether the superior establishments in the sample are "twenty years ahead of the thes" wher compared with the averace establishnents in 1960. In spite of these probleri, it appears that the best estimates of $a_{i j}$ 's for 1930 will be those computed from a small sample of superior establishaents operating in 1960.

The problen is even wore acute in the case of other sectors where our survey was linited to a small number of fims. Lqually wide variations in "productivity" weie found in thess sectons, but it required discussion with the indiviual interviewers in most cases before a decision could be mede above ustar one or two of the sureriox firme in 1960 as prototypes of the "averace" fim in 1980. Again it was necessaxy to supplement the survey data uith projections of national trends to estimate the input coefficients for these finustries and sectors in 1980 . The problem of extrapolation to 2010 was also a serious one, but if one assumes that "reasonable" juput coefficients were projected to 1980 the latter problem may be viene己 as manaeable.

The Effects of Chancing Fatterns of Irade on Regional Input Coefficients
In regional jnput-output analysjs particular attention must be directed to the influences of changhig trade patterns on the region's input cocffictents In his recent book, liernyk gives a lucicl example of this problem which might well have been dyam fyom the Colorado Eiver Basin:

> Assume that in a base period, a region relies heavily upon sonc extractive activity - say the mining of coal and various minerals. At one stage of the region's developaent, both the coal and ore night be shipped to other regions. Since
ore is in general a "veight-losing" material, however, at some point it vill become economical to locate a concentrating rifl. close to tie mines. The winerals; will then iecone an input to the concentrating mill, and only the metal concentrate will be exported. If the production of this ore expands. hovever, it night soon becomo ecomonical to locate a smelter In the rebion. The concentrate will then no longer te an export but will beconcen anput to the smelter. The smelter, In turn, could stimulate the growth of various types of fabricating operations in the arca, and these might atrract satcllite uctivitics. Tine location of a smelter and of fabricating activities in the region would change the distribution pattern of coal mined jn the area. The smelter would use conl as inputs, and this might also be the of some of the fabicacing plants; so that relatively less coal would show up in the export colum as some pert of ragional production becane jnputs to establishments in the area. 16

The hich degree of spccialization found in regions of the country make such chanes frime patems a potential threat to the stability of technical coefficients. Even if similar technology were assumod for all parts of the country, questione of interregional trade pattems and sector composition would sonchow have to be hanciled in any effort to project through the use of input-output andysis.

Locational theory ard empirical location studies have been helpful in making projections of structural changes in the sub-basin economies to 1980 and 2010. The first step vas to detemine the kinds of economic activties not now represented in the sub-basins which might locate there between nov and 1930. Following this, it was necessaxy to estimate their total purchases and sales on the basis of population projections, and prow jected changes in the outputs of existing industries. National demand for the output of these incustries (as vell as of existing induetries) was estimated. Then the share of national demand which will be supplied by Industries in the sub-basins was detemined. Probable changes in import and export pateerns for each of the industries and sectors currently operating in the sub-basjus was also estirated. inone of this was easy, but it was necessery in order to anticirate changes in the structure of the sub-basin econonies and to take the projected inputoutput tablee operationally sionificant.
${ }^{9}$ Willan H. Bernyk, The Elements of Input-output Enalysis, op cit. pp. 71-72.

After projecting the activities that are most likely $t$ appear in the sububasirs between now and 1980 , the final step was to estimate their input coefficients (as woll as their impacts on Lrports and exports). Here we vere forced to rely upon preliminary input coefficients from other regional studies and on national coefficjents which could be used as a first apposfmation to the reaional coefficients. These vere then adjusted to take into account. differences in the characteristics of the regional conmies and the nationail economy.

The many adjustmente necessary to allow for structural change, and changes in trade pattoms, required a number of assumptions and a certain arount of judgrot. Jt must be cmpasized that the end result is a series of projectione, based upon probability or likelihood, rather than predictions. It is probebly safer, however, to use the tonls of location theory, and the experience of earlier location studies, in projecting the sub-basin econouics to 1980 and 2010 than to make the assumptions that their present structures will renain unchanged, and thet the input coefficients for 1960 will stiJl apply in 2900 end 20.10.

A sumnary of the projections of final demand for each industry included in the processing sectors of the 1.960 transactions table for the Gila Sub--Basin appears in Table P--1. Following it, projected interindustry transactions tables and their derivitive tables of direct, and direct and indirect coefficients appear as Tables G-1980a, $\mathrm{b}, \mathrm{c}$ and G-2010 $a, b, c$. The projections of final denand for each sector were made by the individuals responsible for that particular industry group. ${ }^{11}$ Direct input coefficients for 1980 and 20.10 for all processimg industry sectors were initially made by Professor William fi Miernyk, Director, Regional Research Institute, West Virginia University. They were checked by the individuals primarily responsible for individual sectors. 11
${ }^{10}$ The projections which follow have been described in various staff memoranda as "unconstrained." What is meant by this is that the quantity and quality of water is expected to be available for economic activity in the Gila Sub-Basin in 1980 and 2010 is assumed to be at least equal to the 1960 water supply. In a final report on the economic study of the Colorado River Basin to be forthcoming shortly, this artificial constraint will be relaxed and the economic consequences of reduced water availability and deteriorating water quality will be considered.

11
Projections of agricul.tural activity were made by Mr. Lynn Wilkes of the Economic Research Service, Department of Agriculture, Salt Lake City, Utah. The manufacturing, mining and electrical energy section projections were done by Dr. John ll. Chapman, Jr., Assistant Professor of Economics.at West Virginia University. Projections for the tertiary industries (trade, service, construction, govement, etc.) bere made under the direction of Bernard Udis, Bureau of Econonic Research, University of Colonado, Boulder and Gilbert W. Bonem, Department of Economics, University of New Mexico, Albuquerque.

Table $G-P-1$

1960 Final Demand, and Final Demand Projected to 1980 and 2010, by Sectors In the Gila Sub-Basin
(thousands of dollars)


	1960 Final Demand, and	Table G-P-1 (Cont'   Final Demand Project In the Gile Suj-Gas (thousands of dolla	to 1980 and	by Sectors	
Industry Sectors	$\begin{gathered} 1960 \\ \text { Final Demand } \end{gathered}$	$\begin{gathered} 1980 \\ \text { Fine? Demand } \\ \hline \end{gathered}$	$\begin{gathered} 1960-1980 \\ \% \text { Change } \\ \hline \end{gathered}$	$\begin{gathered} 2010 \\ \text { Final Demand } \\ \hline \end{gathered}$	$\begin{array}{r} 1960-2010 \\ \% \text { Change } \\ \hline \end{array}$
Transportation	\$21,603	\$71,516	231.0\%	\$156,664	671.5\%
EJectric Enersy	49,181	151,428	214.0	327,545	566.0
OEner Ufiltties	$122,015$	. 464,200	280.5	124,365	1.0
Contrect Construction	$354,308$	1,731,315	$383.6$	4,185,393	1,081.3
Rentais \& Rirance	$202,129$	$933,033$	$36 \pm .6$	3,775,377	1,768.3

[^13]|  |  | $\xrightarrow{\text { Reme }}$ | $\underbrace{\text { Pebeder }}$ | ${ }_{\text {para }}$ |  | ${ }^{\text {a }}$ | ${ }^{\text {ectabee }}$ | $\begin{gathered} \text { citur } \\ \text { citase } \end{gathered}$ | ${ }_{\text {coser }}^{\text {orety }}$ |  | ${ }_{\substack{10 \\ \text { Uratimu }}}$ | ${ }_{\text {coper }}^{\text {ctit }}$ |  |  |  | $\begin{array}{\|c\|} \hline 15 \\ \text { Furuiture } \\ \text { pixturues } \end{array}$ |  | ${ }_{\text {meitats }}^{17}$ |  | Printing \＆ Publishing | Metals Metaled |  | $\begin{aligned} & \text { Leather \& } \\ & \text { Leather } \\ & \text { Goods } \end{aligned}$ |  |  |  |  |  | $\underset{\substack{28 \\ \text { ander } \\ \text { netar }}}{ }$ |  |  |  | $\begin{array}{\|c\|} \hline \text { rameorer } \\ \substack{\text { Traterer }} \\ \hline \end{array}$ |  |  | ${ }^{35} \text { cortras }$ | $\begin{gathered} 36 \\ \substack{3 \text { Rataris } \\ \text { Butare }} \\ \hline \end{gathered}$ | $\begin{gathered} 37 \\ \text { ziand } \\ \text { piand } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 4， 4,5 |  |  |  |  |  |  |  |  |  |  | ${ }^{1,062}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{ll} \hline \text { 3. } & \text { Dairy } \\ \hline \text { 4. } & \text { Forage, Feed \& Food Crops } \\ \hline \text { 5. } & \text { Cotton } \\ \hline \end{array}$ |  |  |  | ${ }_{\text {2，}}^{515}$ |  |  | －192 |  |  |  |  |  | ${ }_{8}^{8,7,46}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 5， | ${ }^{414,59}$ |
|  |  | 2,76 | 20，088 |  |  |  |  |  |  | 2，99 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ！ | ${ }_{\substack{3,8,81 \\ 1,171}}$ | （en |
|  |  |  |  |  |  |  | ${ }^{18}$ | $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ， |
|  |  |  |  |  |  |  |  | 1 |  |  |  |  |  | 3，76 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{\text {l }}^{1,595}$ |  |
|  | 3．Fosestry |  |  |  |  |  |  | － | 。 | 6 |  |  |  | $\stackrel{0}{4}$ | 2，100 |  |  |  |  | $\bigcirc$ |  |  | $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{2,200}$ |
|  |  | 12 |  |  |  |  | 。 | 。 | $\bigcirc$ | 。 | 12 |  | 164 | － | － | － |  | － |  | $\bigcirc$ | 。 | － | $\bigcirc$ |  |  |  |  | ， |  |  |  |  |  |  |  |  |  | ${ }_{\text {1，031 }}^{14}$ | ， |
|  |  |  |  |  |  |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |  | ${ }^{13,18}$ | ${ }^{2,687}$ | ： | $\bigcirc$ | ： |  | 8，977 |  | ！ | ¢，6，9 | $\bigcirc$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  | － | 3，${ }^{\text {，} 22}$ | 2 49,22 |
| ${ }^{3}$ |  | ${ }^{3} 8$ | ${ }_{5,88}$ | ${ }^{2,665}$ |  | 3.638 |  | 102 | $\bigcirc$ | 4，455 | $\bigcirc$ | ${ }_{4}^{4,389}$ |  | 20，170 |  | $\bigcirc$ |  |  | ${ }_{68} 63$ | 104 | 5，0 | $\bigcirc$ | ${ }^{24}$ |  | ， |  |  | 52，49 |  |  | 2,465 | 715 | 6，488 | 48 |  | ， 2,22 |  | ${ }_{\substack{4,211 \\ 4.6,12}}^{4.6}$ |  |
|  | $\begin{aligned} & \text { 13. Food \& Kindred Products } \\ & \text { 14. Lumber \& Wood Products } \\ & \text { 15. Furniture \& Fixtures } \end{aligned}$ | $\div$ |  |  | ！ |  | － |  | ！ |  | $\div$ | L，318 | 82 |  | \％ | ${ }_{\substack{\text { L，32 }}}^{\text {2，}}$ | 1，69 | ！ | 1，205 |  |  | ， | \％ |  | ${ }^{13}$ |  |  |  |  |  |  |  |  | ${ }^{468}$ |  | 11，27 |  | 33，599 | ${ }^{6,4,47}$ |
| \％ |  | $\bigcirc$ |  |  | 2,87 | 8，46 | 5,97 | 68 | $\bigcirc$ | ${ }^{20}$ | 4 | 8，85 | 3，21 | 5，923 | \％ | ${ }^{807}$ | ${ }^{1,688}$ | ${ }^{7} 86$ | ， | 8,29 | $\bigcirc$ |  | 1 |  | 1， 2,27 |  |  |  | 1.49 | － | 1.5 |  | 22 |  | － |  |  | ${ }_{\substack{20,522}}^{\substack{\text { 2，26 }}}$ | ${ }_{2}^{2,2,}$ |
|  |  | 0 |  |  |  |  | 。 | ． | 。 |  | 。 | 43 |  |  |  | ． |  | － | 6，027 | $\bigcirc$ | 2，093 | ． | ！ |  | ${ }_{\substack{\text { c，} \\ 8,5621}}^{\text {c，}}$ |  |  |  |  |  |  |  |  |  |  | 945 | $\bigcirc$ |  |  |
|  |  |  |  |  |  |  | ！ | ${ }^{23}$ | $\bigcirc$ |  | ${ }_{12}$ | ${ }_{\substack{3,54 \\ 3,95}}$ |  | 4，771 | ${ }_{30}^{175}$ | ${ }^{202}$ | ${ }^{134}$ | ${ }^{37}$ | ${ }^{3,466}$ | ${ }^{1,900}$ | ${ }_{8}^{688}$ | ${ }^{3}$ | 5 | ${ }^{203}$ | 5，07 | ${ }^{23}$ | 2，422 | 1，906 |  | ${ }_{6}$ | 4,12 | 0，24 | 2,163 | ${ }^{115}$ | ${ }_{1}^{1,922}$ | 2，, 12 | \％， 5 |  |  |
|  |  | $\bigcirc$ |  |  | ． |  | $\bigcirc$ | ． | － |  | ． |  |  | $\bigcirc$ | 。 | － | 。 | － | － | － | $\bigcirc$ | ${ }^{12}$ | ${ }^{18}$ |  | 。 |  |  |  | ， | ， |  | ${ }^{2,24}$ | ${ }_{6,128}$ | 1，61 | 1，268 | ${ }^{2}, 0,02$ |  |  |  |
|  |  | $\bigcirc$ |  |  |  |  | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | ， | 32 | 2，196 | 3，285 | $\stackrel{i}{511}$ | 92 | $\bigcirc$ |  | － | ${ }^{1,2,08}$ | $\stackrel{0}{10}$ |  | ${ }^{37}$ | $\bigcirc$ |  | $\bigcirc$ |  |  |  |  |  |  |  | 。 | － |  |  |  | ${ }_{87}$ | \％ |
| 部豆 |  | $\bigcirc$ |  |  | ${ }_{6} 8$ | 1，984 | ${ }^{136}$ | ${ }_{36}$ | $\bigcirc$ | 4 | － | 3，939 | ${ }^{1,6,62}$ | 4,71 | ${ }^{23}$ | 22 | 45 | $4{ }^{49}$ | 1，233 | ， | 3，946 | 16 | 2 | ${ }^{37}$ | 10，448 | 1015,63 |  |  | ${ }^{2,9,97}$ | － |  | 13，67 | 22,34 | 5，072 | 10，24 |  |  | ${ }_{\text {ce，}}^{18,083}$ | （19，939 |
| 令 |  | ${ }_{847} 37$ | ${ }_{21}$ | ${ }_{5} 5$ | ${ }_{86} 8$ | ${ }^{3,2,36}$ | ${ }_{1}^{1,01}$ | ${ }_{9}$ | 4 | ${ }_{\text {III }}$ | 2 | ${ }^{3,9,95}$ | ${ }^{2,684}$ | ${ }_{\frac{15,93}{53}}^{51}$ | ${ }_{\text {L }}^{\text {2，}} 1$ | ${ }^{64}$ | ${ }_{22}$ |  |  | ${ }_{\text {2，}}^{1,69}$ | ${ }_{\text {3，783 }}^{3,0}$ | ${ }_{2}$ | ！ |  | ${ }_{2}^{2,245}$ |  | ${ }_{\text {L }}^{1,06}$ | 20，50 | ${ }_{46,54 .}$ | ${ }_{4}^{43}$ | ${ }_{4,688}$ | 12，5e | 6，488 | 1，223 | 8.96 | 120,34 | 4，081 | ， | $\frac{1,0,4}{1,0,3,32}$ |
|  |  | 182 |  |  | $\stackrel{0}{0}$ | 1123 | 128 | 46 | $\bigcirc$ |  | 1 |  | ${ }^{82}$ | ${ }_{3 n}$ | ${ }_{58}$ | ${ }_{20} 2$ | 20 | 12 | 60 | ${ }^{207}$ | ${ }^{39}$ | ${ }^{37}$ | － | 176 | ${ }^{13}$ | 1，987 | 42 | 4，70 | 4，466 | 9 | 2,46 | ${ }_{\text {L，}}^{1,59}$ | ${ }_{2,16}$ | ${ }^{1,612}$ | ${ }^{2,066}$ | ${ }^{2}$ |  | ${ }_{\text {coser }}^{61,160}$ | ${ }_{\text {cke }}^{123}$ |
|  |  |  | 2,50 | 1，376 | ${ }_{4,8,5}^{4,4}$ | ${ }_{3,562}$ | 3,288 <br> 156 | ${ }^{3,862}$ | ${ }_{2}^{21}$ | ${ }_{\substack{\text { 2，32 } \\ 443}}$ | ． | 2,196 | 3，25 | ${ }_{2,123}$ | ${ }^{2,088}$ | $\stackrel{1}{0}$ | $\bigcirc$ | ${ }^{235}$ | ${ }_{6} 6$ | ${ }^{1,246}$ | ${ }^{1,316}$ | ${ }^{23}$ | $\bigcirc$ | ${ }^{2}, 465$ | 2.584 | ${ }^{28,022}$ | ${ }^{274}$ | 4，700 | 14，955 | 43 | 2，860 | 11，618 | ${ }^{2,864}$ | 5 5，29 | ${ }_{5}^{4,066}$ | 22，32 | 8,12 | ， 22,507 |  |
|  |  |  |  |  | $\bigcirc$ |  |  | $\bigcirc$ | － |  | 1 | 2， 296 | 1，488 | 51 | 8 | 20 | ${ }^{45}$ | 56 | 693 | 31 | 329 | 18 | $\bigcirc$ |  | ${ }^{13}$ | 11，000 | 2 |  | 1，469 |  |  |  | 1，081 | ${ }^{68}$ | 3，100 | $\div$ | ${ }^{1,360}$ | 13，30 |  |
| 磁然 |  | －39 | 2，011 | 2,12 | ${ }_{2}^{1,611}$ | ${ }_{2,588}^{24}$ | 2，480 | ${ }_{11}^{23}$ | ${ }_{36}$ | ${ }^{20}$ | ${ }_{1}{ }^{8}$ |  |  | ${ }_{10}^{1,2924}$ | ${ }_{\text {l }}^{\substack{1,268 \\ 3,28}}$ | ${ }_{\substack{187}}^{\substack{10 \\ \hline 18}}$ | ${ }_{2}^{2,32}$ | ${ }_{\substack{1,260}}^{1,20}$ | ， | ${ }_{\text {2，}}^{2,202}$ | ${ }_{\text {a }}^{\text {3，} 2,98}$ | $\underbrace{168}_{168}$ | 4 | ${ }_{\text {S }}^{\text {S，201 }}$ | ${ }_{\text {c，}}^{\substack{\text { ，} 2,28 \\ 1,28}}$ | ${ }_{\text {2，}}^{6,699}$ | ${ }_{\substack{2,56 \\ 2,65}}$ | 3， 3 ， 6.58 | 4，9， 4 | ${ }_{\substack{134 \\ 3,36}}$ |  | 3，3， |  | ${ }^{1,233}$ | 22，165 | ${ }^{2,2,22}$ ． |  |  |  |
|  | 为 | ${ }^{214}$ |  | ${ }_{62} 6$ | $\frac{18}{88}$ | ${ }_{2,58}$ | ${ }^{1,29}$ | ${ }^{217}$ | $\bigcirc$ | ${ }^{118}$ | 4 | ${ }^{8,346}$ | 9，084 | 4，n7\％ | ${ }^{1,488}$ | ${ }^{464}$ | ${ }^{336}$ | ${ }^{89}$ | ${ }^{16,273}$ | 1， 1,66 | 2，961 | $2{ }^{20}$ | ， | 2，966 | 11,4 | 5 5，32 | 4,784 | ${ }_{\text {c，}}^{5,24}$ | 3， 3 3，62 | ${ }_{3} 36$ | ${ }_{62}$ | （0，0， | $\frac{11.19}{3,04}$ |  | ${ }^{\text {c，}} \mathrm{i}, 170$ | ${ }^{21,36}$ | ${ }^{1,535}$ | ${ }^{2,1,565}$ |  |
|  |  |  |  |  | － |  |  |  | － |  | ${ }^{0}$ | 4，4，39 | 1，911 | 4,7 | 467 | 。 | － | ${ }_{56}$ | 4， 422 | 2，62 | ${ }^{29}$ | ${ }_{208}^{208}$ | 10 | $\xrightarrow{2,1081}$ | ${ }_{\substack{\text { c，927 } \\ 5,077}}^{0.07}$ |  | ${ }^{3,1,42}$ | ${ }_{\substack{\text { a，} \\ 3,560}}$ |  | ${ }^{1,47}$ |  | ${ }_{\substack{13,67 \\ 6,971}}^{1,}$ | 11， | ${ }^{13,660}$ | ${ }_{\text {c，}}^{8,96}$ |  | ${ }^{1,4,95}$ | ${ }_{4}^{4}$ 4， 20 | （49 |
| \％ |  | 5，971 | ， | 1．520 | 1，726 | 0，743 | 2,185 | 45 | 5 | ${ }_{\text {3 }}^{35}$ | ${ }^{20}$ | 2，196 | 2，2，92 | 10，96 | 2,65 | ${ }_{6}^{65}$ | 59 | 2，24 | 12，57 | ${ }^{3,688}$ | 4，065 |  | 20 | 2,284 | \％， | 4，012 | 6，081 | 14，30 | 5，964 | 2，799 | 6，771 | 30，80 | ${ }_{18,02}$ | 21，28 | ${ }_{2}^{2,561}$ | \％s， | ${ }_{3}^{3,3,064}$ | ， | ${ }_{1,266,36}$ |
|  |  | ${ }_{\text {a }}^{6,5696}$ | H1，599 | ${ }^{2} 2,099$ | 3， 3,5 | ${ }_{24,61}$ | ${ }_{8,500}$ | ${ }^{11,268}$ | ${ }_{2}$ | ${ }_{2}^{2,26}$ | ${ }^{20}$ | ${ }^{3129,22}$ | ， | $\underbrace{20,045}$ | 6， 6 | 2， 2,49 | ${ }^{2,2,23}$ | ${ }^{4,5,49} 8$ |  |  | $\frac{20,139}{73,63}$ | （18，43 | $\xrightarrow{884}$ | ${ }_{\text {a }}^{12,9,93}$ |  | ， |  | $\frac{317,32}{48,58}$ | （ty， 47,40 | $6_{6,93}$ | ， | ${ }^{6729,97}$ | $\frac{20,587}{30,42}$ | ${ }_{\text {20，}}^{23,351}$ |  | ${ }_{\text {1，}}^{1,56,684}$ |  |  |  |



	$\xrightarrow{\longrightarrow}$	${ }_{\text {k }}$	Ser	${ }_{\text {a }}{ }^{3}$		${ }_{\text {coton }}$	Sbees		$\stackrel{8}{\text { atry }}$	$\underbrace{\text { and }}$	${ }_{\text {cosim }}^{10}$	${ }_{\text {corer }}^{\text {cer }}$						${ }^{\text {cil }}$			detereme		cot	cos	2. 24					Smuara	30		coick			cose	
	1.) Ease Lusestak	Soicese	Olsua					Comens	.	Soist	\%omon	, (00002		\%oind	come	,	.ome	,oiose	$\stackrel{\text { acose }}{\text { Nomin }}$	.001421	.	(omos		coios			$\frac{0}{01338}$	.om	.omeas	.ocss	coict	Oosas	$\xrightarrow{\text { O20abe }}$	Oilb	Come	Sos24	$\frac{12069}{\text { anes }}$
	nat			277	.27205		.0026	.0023s		.00035				.00733						amen	${ }_{\text {arem }}$	\%omeo	500	momese	03378	${ }^{\text {clites }}$	.01622	.on103	Sor			00793	cose	.202999	${ }^{\text {andes6 }}$	OSS6	.
		\%ound	,	\%outs	O20660	${ }_{\text {1.02330 }}$	.00076		.omon	.00012	doome	O0,	O6437	.01998	.ooser			.0304	.cose	.02094	.01468	.amom	000	${ }^{60022}$	.ar7oo	.026	.0,8			,	${ }^{\text {comer }}$	O1129	${ }^{\text {arase }}$	${ }^{\text {cose }}$	${ }^{01459} 1$	.07198	
	6. cesembe		.002s	$\xrightarrow{\text { and }}$			comen			(00022	comoli	.ous						\%	\%ocos		,omer	Nomo	somo		.00092	\%	\%ose	(0023				Omer	.08095	$\xrightarrow{\text { coser }}$	\%oser	.00359	
	8. Rereatry	:002\%	${ }_{\text {orama }}$	.09298			.omoen			(1.0009	5000		.ocose	.onats		-		$\xrightarrow{\text { O.onse }}$.01888	(.000s		coin			,	.02366	.00933	${ }^{10202388}$		.one		O0231		$\frac{.01985}{.0947}$	.00239	.	.007	
	10. vuatiem	.omene	.amens		amol					\%ome	(omes	Nomb	\%iskso	(00139	\%osis	\%omb	come		.oinse	,	\%oine	comos		,		.1039	${ }_{\text {cose }}^{\substack{\text { cos32 } \\ \text { coss }}}$	(ound	.008	${ }_{\text {cosem }}^{\text {comes }}$		O28		(0,		,01291	
	1). Comer	\%omen		\%	320	A	2023			Somest	(oine	O.0637	(1.0639		-		${ }^{\text {O20224 }}$	(outse		$\xrightarrow{\text { O20, }}$	$\frac{.0573}{0.0295}$		(omoso	\%oint	.0318				\%oind		ORowe			${ }_{\text {cose }}$		.an	
,			,	.2022e	coase			.00002	${ }^{0.0634}$	.00092	.omene	00963	(0371	.00178	Oizes		.00260	.00198					mome	.12029	.0132a	.0239	.oos	.0027							. 022	.0127	
	15. mometa			.0023	a	.omil			Sus	-	(0mon	.00236	\%oins	(0atas	. 0.6043	$\xrightarrow{\text { Li.losent }}$	${ }_{\text {a }}^{\text {a }}$	(omes	(000922		(0037	(omomo	Onomo	${ }_{\text {a }}$	,	Somes	,	.0.035	O,0iseme	\%ome	(eand	\%oreme	\%os.	.0323	\%		
	\%			.002022	5013	.00111	.0000	.00071	Soms	${ }^{\text {Poones }}$	00076	.002933	.109047	.01356	.obale	Smom	.omese	O1062	.00374	.0939	.0329	-mo	5000	.035.0	.02823	O1069	O2020	${ }^{\text {acomes }}$	.10923		${ }^{\text {O20332 }}$	O2,	\%oer		.0038	.0124	
	\%	(20638	(ounz	\%oilles	\%omes	come	Souo		.00336	$\xrightarrow{\text { Onome }}$	mome	(00021	.ones?	(0atr	\%oser	,	星	${ }_{\text {cosen }}$	Onoth	${ }_{\text {a }}$	Osoma	Onme	.omose	.0030	\%obe	\%ose	come	Oose	.015	Ome	OOB22	\%039	Oens	\%oice	.0218	O2038	\%
	20. Finticated teate	$\xrightarrow{\text { (100020 }}$	.	$\xrightarrow{\text { Loment }}$	Somer		$\xrightarrow{\text { comome }}$	Omome	\%omes			\%onl2	Sase	${ }^{\text {anine }}$	$\stackrel{\text { OOO222 }}{ }$	-0000	\%omen		00022	(0ase	(102029	\%	.0020	$\xrightarrow{\text { O2026as }}$	\%oible	$\xrightarrow{\text { a }}$	${ }^{\text {coseme }}$	.0023	O. 0.0236	,omer	\%	${ }_{\text {a }}^{0}$	does	${ }_{\text {coser }}$	.0,0e3		
			(02388		${ }^{20363}$	O.opers	Omeae	\%ome					.0132	, 2 203964			.0ate		(ome		(00660			coick													
					Omees	.0068s	\%omes	Somes		.0030	.omem	.02023	.0074	${ }^{10989}$	.02368	,omen	.0034	.00884	O2480	.0024	.1027	.0000	Onom	2037	${ }^{1214766}$	.0323	O,0,4	O088	.0071	\%ome	\%om21	.10449	${ }^{2}$	O. 0.48	\%oso	\%osico	
		,		,	\%omen	.0024	.0000	(00024	.00034	.ooos	.oome	.om	\%oors	.00389	Oomes	\%omon	.0013s	Oomest	cose	\%ostin	:0006s	\%omom			come				${ }_{\text {a }}^{0.083}$	.00068		Sols	(007	(0abse	${ }_{\text {cose }}$	\%0838	0
			,			coiose	.omese	(.osesi		coise	(omen	(00023	Soios	$\xrightarrow{\text { L20033 }}$	.00089	(oomos	.00936	Oorra	-0032	.0027	coicle	(osomo	,omom	(outs			${ }_{\text {cose }}^{\substack{\text { cose } \\ \text { cose }}}$	coile	(0833				038		.2083	.2246	O,9811
		${ }^{\text {oon2 } 2}$	.0032	.00278	.00018	.0017	.o.ones	.oment	(omong	come	(monoo	.	(10039	$\xrightarrow{\text { coment }}$	.00230	.omone	.oons	Oop,64	oom20	(oise	,	como	mome	come		${ }^{0.103364}$	Oilus	(0,231	.		des	O2396	Oent	aissa	2usa	.orise	
		$\xrightarrow{\text { Onomb }}$	coich			.	\%	(0,	.00021	Omom	.omom	.00244	D0376	(02038	O, Ooss	Omom	.00023	\%oler	oomes	.	comereme	\%osom		Some	coint	Sester	O2036	\%ome	.		.0063	cosers	00292	,		\%osic	
		$\xrightarrow{\text { O2026 }}$	.003	${ }_{\text {cose }}$	$\xrightarrow{\text { couber }}$	(007312	$\xrightarrow{\text { O.omos6 }}$	\%omin	cose	\%omed	\%omen	O0039	\%ooss	$\xrightarrow{\text {.ouns }}$	O20025	,	\%omes	(0033	cose	Somen		$\xrightarrow{\text { comome }}$	(omoue	coinco	Some	dose	.0.0933	coize	\%ound	.0008	Oolse	\%ose	2.0.038	O. 0.1095	${ }^{\text {a }}$	$\xrightarrow{\text { coicse }}$	
			coise	$\xrightarrow{\text { O20128 }}$	.0.0099	.	Stas	(omos	2032	(o.0008	(omole	(00230	\%oins							边			amomo		${ }_{\text {a }}^{1023}$		:0154939		O218)				.0,6		10883		ata
																																	0337	20,4	H00		
																																					maso



	${ }^{\text {mamemem }}$		${ }^{3}$ naty	为	${ }_{\text {coten }}$			$\stackrel{5}{6}$	\|hat		${ }_{\text {coper }}^{\text {cen }}$		com				${ }^{21}$	ction		Rapete					mis				cose	Som					coick	
1.	-	\%os		\%	.000	.000	$\xrightarrow{.000}$	(.000	(.00	(.000	-	${ }_{0}^{\infty}$	.16\%	.000	.om	-	.omo	$\xrightarrow{\text { a }}$	.	\%om	.o.00		com	\%om	.000	.000		come	.aso	.000	.00	.	com	.000		.om
	.	.000		$\xrightarrow{\text { cosem }}$	(.000	(.000	.	com	(1000	(.00	(om		. 1.005	(om	.om	.om	(omo	como	(omos	om	.00	$\stackrel{0}{0}$		-				(.000		\%om	(omos	\%	como	\%		
	(.00	(.000	\%	.om	(000	(om	(ome	com	com	(200	.om	(.000	.	\%oo	como	\%om	$\ldots$	(.000	.ow	(100)	(000		\%om	-	\%om	\%om	.o.	(omom		\%	(ombe	(omo	(omo			
\%. Citase crom	(om	.om			$\ldots$	(.000	(.as	\%	$\stackrel{.00}{.00}$	.omo	-00	${ }^{\text {and }}$	-	(.00	(.000	$\ldots$	(omom	.o.	com	(om	(000	.om	$\stackrel{\text { com }}{\text { com }}$	.00	\%om	.000	-.om	.08		\%om		(.00	(.00			(omo
	(.om	(.00		(.om	.om	(.000	-000	${ }_{\text {cosem }}^{\text {com }}$	${ }_{\text {cosem }}$	${ }_{\text {cose }}^{\text {. }}$	-1.00	.000	. 0.00	.000	.om	.oom		.000	-.000	$\stackrel{\text { Ono }}{\text { O20 }}$	com	\%omo	como	com	como		$\stackrel{.008}{.00}$	$\ldots$	$\stackrel{\text { a }}{\text { com }}$	${ }_{\text {cose }}^{\text {como }}$	,om	\%om	com	-0.00		
Ini. copert	.	(.00	.00	.om	.om	(.om	(omo	¢	(1000	(1000	.0.09	.	.000	-		:000	come	.	(.000		(000	. 000	$\stackrel{1}{0.000}$	.o.00	(omo	-	-	(omom	\%om	\%om	\%om	$\ldots$	(omos	$\xrightarrow{\text { a }}$		com
	.0.08	. 1.022	.am	.	. 1.09	.00	.012	.000	$\xrightarrow{203}$	.	.0188	$\stackrel{.000}{\text { Ond }}$	.0.0.	-	.022	${ }^{20}$	.000	.002	-0,	.00	(100	.om	\%om	.002	. 00	$\frac{.000}{.000}$	.om	$\ldots$	${ }_{\text {cos }}$	$\frac{.080}{.00}$	$\frac{.001}{0.00}$	$\frac{.098}{.000}$	边			\%om
3.	$\stackrel{.00}{.00}$	(.00	20	(.00	-000	(.00	¢	com	(000	.o.00	com	. 0.000	.	.000	coioc	(000	(.000	${ }_{\text {a }}^{\substack{\text { c.om } \\ .000}}$	$\xrightarrow{\text { O.00 }}$	(.om	-	$\xrightarrow{-.000}$	.0.00	.000	(.a0)	-	.o.00	-	.om	\%om	.o.00	$\stackrel{\text { and }}{\substack{\text { an }}}$	\%om	-	$\stackrel{.00}{\text { com }}$	
	\%om	-0,	\%	.000	\%ois	.0.0.		com		.000	.000	.0.038	. .00	. .00	.000	. .00	(009	${ }_{\text {a }}$	-	(000	como	-	(.000	. 128	...00	. 000	.000	.00	¢	(1.00	\% 0.006		com	¢00		
	-	\%om		(.000	\%om	como	(000	-	.o.	.	.ois	.	. 0.00	(oot	$\frac{.085}{.005}$	-	:009	${ }_{\text {cosem }}$	.	(0, 0	(1000	\%	$\stackrel{.060}{.000}$	.0,	\%os	.	cos	.ose	${ }_{0}^{0}$	(10\%	.004	\%os		\%	\%oin	
	.	.om	O	com	\%om	.om	\%om	$\xrightarrow{\text { a }}$	\%omo	como	$\xrightarrow{\text { O.om }}$	(000	-..00	.000	.	.	.omo	-..00	-	(0.00	.	-000	(000	. 0.00	.	.	(.00	\%om	(0.00	(om	.o.	.o.	.om	(.00		
	.000	\%omb	\%	.	(om	,	${ }_{\text {a }}^{\text {O200 }}$	.o.000	(000	${ }_{\text {a }}^{0.05}$	.006	\%	$\xrightarrow{\text { O }}$	.098	.	.	-	-	-003	-	.o.00	$\stackrel{.00}{\text { O.os }}$	(10)	.	-	-	(omo	\%		¢	$\xrightarrow{\text { O.00 }}$	$\stackrel{0}{0.00}$		.000		
	\%	$\xrightarrow{\text { O}}$	.	\%	.010	\%	.	$\stackrel{.009}{0.02}$	.	${ }_{\text {cose }}^{\text {O209 }}$	-010	.017	. 0.045	$\frac{.08}{.004}$	${ }_{\text {a }}^{\text {a }}$	.	.006	cos	.	(os)	.098	-	(.007	\%omb	(om	-	\%	\%	.098	\%00		\%		\%oin		.00
	come	.		(.000	(0,	(000	${ }_{\text {O }}^{0.00}$	.	.000	.002	${ }_{\substack{\text { coo } \\ \text { com }}}$	\%o9	${ }_{\text {cose }}^{\text {com }}$		.	$\stackrel{.04}{.00}$	coms	.	${ }_{\text {cose }}^{\text {cos }}$	.	.oss	$\xrightarrow{\text {. } 0 \text { aco }}$	$\stackrel{\text { cos }}{\substack{\text { O, }}}$	${ }_{\text {cose }}^{\text {a }}$	.	(ion	,	\%		\%os	\%	\%om	\%os		(0,	
	(000	.	.	${ }_{\text {cose }}^{\text {a }}$	.	(01)	$\xrightarrow{\text { c.38 }}$		(0,	(000	$\stackrel{.000}{.0 .00}$	.0.00	.	(.00	$\stackrel{.000}{.002}$	.oso	(.002	-	.o.00	cos	(.00	$\xrightarrow{-000}$	\%	-	-	-	$\xrightarrow{\text { coion }}$	\%	.ow	(im	\%os	(.00	\%om		(omem	
	(000	(0.00		(002	.	-	.om	(.009	(0,	\%	-		$\frac{.000}{.000}$	\%	$\frac{.012}{102}$	-00		-	,	\%	\%	$\stackrel{.008}{.00}$	:38	\%	-0.	. 024		.	. 0.09	\%ois	\%	$\xrightarrow{.008}$	(0at	\%oid	(.000	
	com	(002	\%	.	.	. 1.02	-	.om			.	(1000	.0,	-		. 0.020	. 0.018	-0.029	.	.	\%	.019	$\stackrel{.083}{.025}$	$\frac{.02}{.024}$	$\stackrel{.0}{.02}$	.		.	. 0.	-09	.017	$\bigcirc$	\%	(000	20and	\%omb
	(008	.006		. 0.00	. 0.008	(000	(.009	.000	(00	(0,	.019	(019	(012	cols	$\xrightarrow{\text {. } 000}$	(.00	.	${ }_{\text {a }}^{\text {O27 }}$	(109		.008	$\xrightarrow{\text { O22 }}$	. 0.09	. 0.08	.	(ese	$\stackrel{\text { O }}{.09}$		\%os	$\stackrel{0}{08}$	$\stackrel{.009}{.004}$		\%os	(013		



## Projected Acreage of Irrigated Cropland and

Value of Production, 1980 and 2010

## Proremed dereare But C





 Asisoma meojecto






 Prejorn





 まeturn sitwervon。

[^14]| Cuod | $1969 \quad 2986$ |  | 2010 |
| :---: | :---: | :---: | :---: |
|  | $=0$. | Qe8 | - |
| A1808tan hay | 163.9 | 897 | 356 |
| 60seon | 328.4 | 500 | 378 |
| Rexieg | 268.9 | 286 | 78 |
| Coras | 29.7 | 87 | $1{ }^{3}$ |
| Wazemama | 224.6 | 95 | 60. |
| Whase | 88.9 | 18 | 12 |
| Vegeostios | 60.0 | 00 | 48 |
| Capertht | 6.0 | 3 | 6 |
| Ornages | 8.3 | 18 | 18 |
| 1amone | 2.0 | 3 | \% |
| Othen envpe | -62.3 | 48 | -88 |
| motas | 12,005.0 | 930 | 763 |




 pore mes.
 1920 and 2000.




 mbsimu yint














$8 \quad 1960$							
Cros	$\therefore$ :						
ALSc:\%s bay	theas	6.08	7-23	273	20,33	232	143
Pus208	30mo	8.45	2.35	373	34	233	
Sorme	20nes	0.90	2.56	183	2, 38	235	136
6.62\% goseruay	Pras	2.843	2.46	\%23	3.89	285	
Where	Wome	0.93	3.89	358	1.82	124	2
Gotcos.	nutea	18. 29	3.06	256	3.84	295	
Vegetates	cres.	183	331	235	4.3	282	88
E.eres	Bopas	253	331	255	44	243	-3

The tlyestock Bactore
 hes bean exratic oves the pare tro decatas (Table P-3). Sas number of cactle

 cotele to nethise rangetand Eoscre.


第的昜			$\frac{\operatorname{sen}}{(000)}$
189	88.8	2952	758
1948	906	2953	c5s
1943	852	395	889
	278	1984	ES ${ }^{\text {che }}$
2093	830	1953	． 803
1996	864	1954	59 ${ }^{4}$
1097	889	537	89
1948	738	1958	25
2949	749	855．	88
2950	769	2886	38685









 Were elucsiy that to chose developet far the ratge Ifreuterk yector. The Righ dearce of dependency satwaen the two sectors is indiast it by hae Kollawing relationship shom in the 1960 date; (1) about 95 percent of the grass outp \& Pron the range sectur are purchased as input for the Ifverock fecting eactar (2) nearly 50 perent of the total value of faputs for livg scock fecting sactor are ifventock purnhmsza.
 thet the relathomhtp betvaen the two sectom in the profector years verld be the same as shey wase in 1960 . Tha Patue or gross output in 1920 is estimaces to be \$185.6miniton, ara by 2010 it will increase to \$159.3 militon。
 Gila subbasin in 1960. ghis is approxinately 355 pown fer caples. Medium lavel poputazion projectons vedin the study wase matriplied by 355 pounds to estingte profuction in 1980 and 2010. The seanting projectien are 1.093 .6 million pothdis in 1980 and $2,307.7$ mislics pounts in 2010 .
 this butance wilf be retaked 48 wall as tha 1950 per coptre conemopton leval. The projected eross-vaive of production Eos 1900 mind 2010 ate \$72.4 million and \$252.8 milison, zerpectively.
 In this sector, is especed to increase at the same rate as popalatson in


 and $\$ 42.4$ million in 2010.



 milion in 1980。 It is asmenac that groning feen wifi fueresse at the same Sate es the inctans in photre and range yiclde eatmated sor vine rance Iivesconk eccer．An incrense ef sor parceat by 1980 zadicates the promble velue of suaing fers to be $\$ 0.5$ milltono．The vatue of grosu oncpur zor the forestry sentor is thus estmated to be $\% 20$ million 4 ti 1930.

It wes assumet that the value of timber in 2010 motat be the same as と多t estimeat for 1980，The projectec value of grazing in the nstanal forest in 2010 whes computad in the sememanner as the 1930 projectiono An estimsted fuctease in pasture and renge yieid of 78 percent angente the expected vaku of graitu in 2010 to be fo． 7 miliion dellara．The cotas value of cozest ourpit fas chue egtimated at 2.1 million for 2010.
 sector wase besed of the projscted cusput of the sectors whin purehased
 purchesze by the cotron sectoz in 1950 amwwed to 17.2 percent of tha
 जeze deyoloped for each eactor．Using this techniques it was eschnaces that the velue of grose outpur lin agricultural services aector would be \＄45．9． militon in 1980 and $\$ 57.2$ million in 2010．

Sumary of fross ontput and ping Demgn A?l prifes are projetcd at 1950 levels. The projutted gross nalue of prodution for 1500 Rud 2010 with the data for 1980 for comparison is presented in mable p-5. Exnal demand bju sezeor is shorin in shble P-6.

Tabl P-5--Vresent and Projected Total Groes Oatpat For Agricultuxal ard Foresty Sectore, cila Subbatin, 1960, 1930 and 2020

Segter			
	Yor:	1980	2010
Tance 1ivertock	33,652	45.596	59.700
devestock feeding	87,06?	115,399	151,259
Farn daisy	27,371	72,399	252,795
Forage, foed and zood cxops	37:209	57.564	59, 54,
cotter	141,244	214.860	258,563
Pegetibla	48,303	78.050	96,678
C15923	6.738	11. 2365	18,685
Ocher agxiculture	9.357	22.214	4,2,403
digstenitural setvices	31.382	45,893	57.159
foxeacry	1.645	2. 100	2.159
Total	424,705	665,591	899,407



Sestox		gnel denere	cgersenc Entat     
	1090 toll	I000 is 2ngis	Eereent
1959			
Range It	39．658		3．4
品酸3toct	85，069	57.935	$66^{6} .5$
\％esm badxy	27.371	$3.2 \times 2$	11．7
Porage giesu mma tove	97．200	4.856	13．8
comson		227， 278	80．${ }^{\text {L }}$
Te8etumbes	43，280	$44^{3.001}$	99.8
Cきtwere	6.75	6,396	93.4
	9.354	\％，248	$77^{7}$.
Agtisulitusat gex ide	32.832	140	－ 4
Foreetmy	2．643	0	0
2930			
	45.35	$3.35{ }^{3}$	7.4
divardosk fetatne	115．354	29.930	$25^{2}$ ， 3
	72.309	3． 335	岳，7
Forecan，ised and Eond	57853㔜	\％． 178	2.0
Cotsom	214．850	176，939	82．4．4
Pegetables	78，050	73.849	97.2
ctitue	13．206	7.535	67.0
	23.214	14．021	63.2
Agryetitural seratices	45.585	200	． 4
Sostesmay	2.200	$\%$	0
2010			
	59,700	6， 674	12．2
	152，259	12，665	7.3
7exan datry	152， 596	33．73意	25：
	59， 96	0	0
Cotern	253， 5 6	20235	783
Fegtsables	59.678	$33_{5} 895$	83.8
Ctezes	18．6585	$9_{5} 5_{5} 5^{3}$	51．0
	42， 405	20，973	49.5
Agricuituras marwemea	57.197	350	，6
Fotessexy	2， 3 S	0	0

## Projected Water Availability, 1980 and 2010

## sex





















 of wher other $s$ i Colored rar $r$ sume.



## Cround Rater spurees

Gromed macez is the primany somece for tawtgation in the gtla gubbertno the resource 13 veet, but by no manna tnewheretable. Dopeh to pater is




 some ugeful ebtioutes ray be medo.






 concatned Ln Figure P-3. Wh? mant waphd dectine of Ghe groumd waker mbie
 A conctant but zeas rapht tiactine has occumed $2 n$ mon other axeas

 devakopment in the stere and is hatgety degendent on groms pares foz iset gation supptios. Rechatge of agrtere is geescest In tha Gace Grondempuremes


Figure P-4 shows historical trend in water table levels.


Figure P-3-Cumatative Net Change in Weter Levels in Feet, Historical ana Projected, Selected A-eas, \$aic kiver Yalley, 大ila subbasit
geet Below susemce
A. Gueen Creck-Higley-Gilbert ares


D. Litchitclaw ieazusleymininetce area
$\qquad$路2toricz


Table P-8--Depth to Ground Water 1959, and Projected Depth 1980 and 2010 , Major Ground Water Areas, Gila Sub-Basin


Figure P-4-- Cumulative Net Change in Water Levels, Historical and Projected Major Areas





 batre.





















Historical data from Annual report on Ground Water in Arizona, Spring 1963 to Spring, 1964 Ariz.


## Proiection of Fine Denenc for "All other" Sectors

Fith the exception of the export semments of the tourist-oriented sectors, the following procedure was followed. 15

The projections are besed on a comparison of per capita final demand in each secior in the Unitec States $\left(\frac{F u_{i}^{u s}}{P^{u s}}\right)$ with per capita final denand in the sub-basin $\left(\frac{\mathrm{ED}^{\mathrm{sb}}}{\mathrm{P}^{\mathrm{cb}}}\right)$.
$\mathrm{FD}_{i}^{\text {us }}$ was derived from data in the ORRRC Report 非23, pages 280-283. $\mathrm{P}^{\text {us }}$ was obtained from Resources for the Future, Inc. Using these data we were able to obtain a national per capita final demand expenditure estimate for both historical years (1950 and 1960) and for the projected years.

To obtain a sub-basin value for final demand in 1950 , it was assumed that final demand constituted the same portion of TCO in 1950 that it did in 1960. Thus, having 1950 and 1960 final demand, it was possible to obtain $\frac{\mathrm{FD}_{i}^{\mathrm{Sb}}}{\mathrm{P}^{\mathrm{sb}}} \quad$ comparable to the U.S. figures derived earlier. It was assumed that that the area's per capita final demand for a given industry would converge towards that of the national counterpart industry at a steady rate of compound growth (logrithmic). By employing this annual growth rate, the 1960 ratio ( K ) can be projected to 1980 and 2010. Given the various value of $K_{t}$, final demand expenditures for industry "i" in a sub-basin may be found by:

[^15]$$
F D_{i}^{\mathrm{Sb}}=\frac{\mathrm{FD}}{\mathrm{i}} \mathrm{P}^{\mathrm{us}}: P^{\mathrm{sb}}
$$

From the mediun projection of population we are able to obtain the medium projection of final demand for each sector.

One of the basic problems encountcred in this method was that of projecting $K$. In most cases $K$ converged tovards the national mean in the 1950 to 1960 period. Iu such cases. K vas projected et its $1950-1960$ growth rate until a value of 1.00 was reached. From that time on, it was assured that $k$ would renein at 1.00 to 2010. There wes a problen when $K$ was diverging frow the national average in the $1950-1960$ period. In such cases, it was assuned that 1960 represented the point of greatest divergence, and that the grovth trend of K would reverse ftself tovards eventual convergence with $K$ equal to l. $\hat{H} 0$. iost of the tine, it was assuned that $K$ would reach 1.00 in 2010 and appropriate gronth rates weie euployed in the 1960 to 2010 perlod to supply internediate values for 1965 and 1900. This divergence pattenn cam be demonstiated graphically.


The divergence is greatest ( $K$ is the smallest) at 1960 , slowly $K$ recovers to an arbitrary 2010 value of 1.00.

In addition, a tourdsn variable, or weight, was futroduced in the projections of several sectors, where applicable, as follows:

$$
\mathrm{T}_{i}^{\mathrm{sb}}=\mathrm{X}_{1} \cdot \mathrm{~K}_{\mathrm{t}}\left(\frac{\sum \mathrm{Y}_{1} \cdot \mathrm{Y}_{i}^{d}}{\mathrm{Y}_{\mathrm{us}}^{\mathrm{d}}}\right)
$$

where

$$
\begin{aligned}
& \mathrm{X}=1960 \text { exports from the input-output table. } \\
& K_{t}=\text { J.S. projected increase in tourist and recreation } \\
& \text { expenditures (ORIC). } \\
& W_{1}=\text { per cent of total toundsts entering sub-basins } \\
& \text { that orfeneted in state } i \text {, therefore } \\
& \sum \|_{i}=\text { all tourists for a given year. } \\
& Y_{1}^{d}=\text { disposable personal incona in state } i \text {. } \\
& Y_{u s}^{d}=\text { disposable personal lacone in U.S. }
\end{aligned}
$$

The service sectors presented another problen. since the opsc projections of final demand for the U.S. were madc only for total services, It was decided that we should do the same. Lodgtng and Other Services were aggregated, projected as a wiole, and cisaggregated in a ratio similar to that of 1960 but with shall allowances for projected changes in the distribution of total services.

The sane procedure vas used in the projections of total trade; however, another problef presented itself in the trade sectors. In this report, final demand for Eating and Lrinking is shom as gross sales in the input-output table. The orRRC projections of cotal trade included Eating and Drinking as part of their projections of nargin sales: thus, it was necessary to convert our gross sales figure to margin sales for purposes of projecting. Once the projections were complete, the nargin sales of Eating and Drinking vere reconverted to gross sales.

Appendix
Sumnary Analysis of Projected I-0 Tables
In order to facilitate analysis of the projected tables of inputoutput relations and coefficients which appeared above (Tables G $1980 \mathrm{a}, \mathrm{b}, \mathrm{c}$ and $G 2010 a, b, c$ ) a series of sumnary tables have been prepared which follow:

Table G-2010~d

Total Gross Output of Processing Sector Industries in the Gila Sub-Basin

Industry
Total Gross Output

1. Contract Construction
2. Rentals \& Finance
3. Other Retail Trade
4. Wholesale Trade
5. Other Services (Except Professional)
6. Other Manufacturing
7. Primary Metals
8. Eating \& Drinking Places
9. Electric Energy
10. Transportation
11. Stone, Clay \& Glass Products
12. Copper
13. Food \& Kindred Products
14. Fabricated Metals
15. Other Utilities
16. Other Mining
17. Lodging
18. Printing \& Publishing
19. Service Stations
20. Cotton
21. Chemica1s
22. Dai.ry
23. Feeder Livestock
24. Lumber \& Wood Products
25. Vegetalies
26. Paper ic pulp
27. Forage, Feed \& Food Crops
$\$ 6,213,687,000$
4,905,958,000
3,895,093,000
2,357,119,000
2,275,362,000
1,608,560,000
1,229,136,000
1,147,558,000
1,067,848,000 957,428,000
873,140,000
866,814,000
849,431,000
728,538,000 647,350,000 573,571,000 481,933,000 411,500,000 302,174,000 258,568,000 178,164,000 152,796,000 151,299,000
131,354,000 96,678,000
80,030,000
59, 941, 000
28. Range Jivestock 59,700,000
29. Agricultural Services 57,197,000
30. Other Agriculture
31. Fumiture \& Fixtures
32. Textiles \& Apparel

42,403,000
32,807,000
33. Citrus Crops

30,759,000
34. Uranium
35. Forestry 18,686,000
2,687,000
36. Leather \& Leather Goods

1,751,000

Source: Table G-2010-a.

Processing Sector Industry Sales to Final Demand in the Gila Sub-Basin

## Industry

1. Contract Construction
2. Rentals \&e Finonce
3. Other Retail Trade
4. Wholesale Trade
5. Other Services (Rxcept Professional)
6. Primary Metals
7. Eating \& Drinking Places
8. Other Manufacturing
9. Food \& Kindred Products
10. Lodging
11. Electric Energy
12. Cotton
13. Service Stations
14. Transportation
15. Other Utilities
16. Printing \& Pub1ishing
17. Fabricated Metals
18. Vegetables
19. Other Mining
20. Lumber \& Wood Products
21. Stone, Clay \& Glass Products
22. Dairy
23. Chemicals,
24. Textiles \& Appare1
25. Furniture \& Fixtures
26. Other Agriculture
27. Feeder Livestock
28. Paper is Pulp
29. Citrus Crops
30. Copper
31. Range Livestock
32. Leather \& Leather Goods
33. Uranium
34. Agricultural Services
35. Forestry
36. Forage, Feed \& Food Crops

Sales to Final Demand

$$
\$ 4,185,393,000
$$

$$
3,776,377,000
$$

$$
3,515,822,000
$$

$$
1,699,314,000
$$

$$
1,526,874,000
$$

$$
1,124,133,000
$$

1,041,724,000
808,917,000
587,210,000
396,127,000
327,545,000
202,330,000
175,791,000
166,664,000
$124,365,000$
106,855,000
101,377,000 84,895,000 74,996,000 $74,460,000$ 44,134,000 38,733,000 31,694,000 30,334,000 30,321,000 20,975,000 11,060,000 10,758,000 9,52,4,000 7,447,000 6,674,000 1,614,000

906,000
350,000

- 0 -
- 0 -

Source: Interindustry Transactions Table, G-2010-a.

Table G-2010-f

# Sales to Final Demand by Processing Sectors Listed Below As a Percentage of Total Gross Output. in the Gila Sub-Basin 

## Industry

1. Textiles \& Appare1
98.62
2. Furniture \& Fixtures
3. Leather \& Leather Goods
4. Primary Metals
. 92.18
5. Other Retail
91.46
6. Vegetables
7. Lodging
8. Cotton
9. Rentals \& Finance
10. Wholesale Trade
11. Food \& Kindred Products
12. Contract Construction
13. Other Services (Except Professional)
14. Service Stations
15. Lumber \& Wood Products
16. Citrus Crops
17. Other Manufacturing
18. Other Agriculture
19. Uranium
20. Electric Energy
21. Printing \& Publishing
22. Dairy
23. Other Utilities
24. Chemicels
25. Transportation
26. Eating \& Drinking Places
27. Fabricaced Mctals
28. Paper \& Pulp
29. Other Mining
30. Range Livestock
31. Feeder Livestock
32. Stone, Clay \& Glass Products
33. Copper
34. AgricuItural Services
35. Forestry
36. Forage, Feed \& Food Crops

Sales to Final Demand Divided by Total Gross Output

```
Tab1e G-2010-h
```

Processing Sector Industries of the Gila Sub-Basin Ranked By The Magnitude of the Total Dollar Production Directly and Indirectly Required by the Sub-Basin Economy to Sustain a $\$ 1.00$ Increase in Deliveries to Final Damand by the Industries Named.

Industry
Direct and Indirect Requirements

1. Contract Construction
1.367708
2. Other Mining
1.272848
3. Stone, Clay \& Glass Products
1.215915
4. Electric Energy
5. 202525
6. Other Manufacturing
1.193315
7. Paper \& Pulp
1.089429
8. Fabricated Metals
1.084403
9. Furniture \& Fixtures
1.072966
10. Food \&c Kindred Products
1.070719
11. Other Services (Except Professional)
1.054990
12. Copper
1.045081
13. Transportation
1.044671
14. Rentals \& Finance
1.037027
15. Chemicals
1.026754
16. Printing \& Publishing
1.026750
17. Wholesale Trade
1.026256
18. Uranium
1.025736
19. Prinary Metals
1.024272
20. Other Utilities
1.023155
21. Lumber \& Wood Products
1.019485
22. Dairy
1.018943
23. Other Retail Trade
1.015393
24. Textiles \& Appare1
1.014327
25. Feeder Livestock
1.013729
26. Eating \& Drinking Places
1.011787
27. Service: Stations 1.009368
28. Other Agriculture
1.006709
29. Forage, Feed \& Food Crops
1.006283
30. Cottion
1.004478
31. Citrus Crops
1.003184
32. Vegetables
1.002023
33. Range Livestock
1.001668
34. Lodging
1.001635
35. Leather \& Leather Goods 1.000127
36. Agricultural Services 1.000052
37. Forestry 1.000002

Source: Table of Direct and Indirect Requjuement Coefficients, G-2010..c.

Table G-2010-i
Number of Processing Sector Industries Responding in Amounts of At Least $\$ 0.01$ per Dollar of Sales to Final. Demand by the Industries Listed Below.

## Industry

Food \& Kindred Producta 21
Other Agriculture 19
Other Mining 18
Primary Metals
17
Leather \& Leather Goods 16
Other Manufacturing 16
Copper 16
Citrus Crops 16
Uraniun 14
Eating \& Drinking Places 14
Lodging 13
Fabricated Metals 13
Printing \& Publishing 13
Cotton 13
Forage, Feed \& Food Crops 13
Lumber \& Wood Products 12
Paper \& Pulp 12
Chemjeals : 12
Contract Construction 11
Transportation 11
Other Services (Excopt Professional) 11
Stone, Clay \& Glass Products. 11
Furniture \& Fixtures 11
Vegetables 11
Dairy 11
Feeder Livestock 10
Service Stětions 10
Other Retail 10
Agricultural Services 9
Other Utilities 9
Wholesale Trade 9
Textiles \& Appare1 9
Electric Energy 7
Rentals \& Finance 5
Range Livestock - 6
Forestry 4

Source: Table of Direct and Indirect Requirements per Dollar of Final Demand, G-2010-c.

Table G-1980-d

Total Gross Output of Processing Sector Industries in the Gila Sub-Basin

## Industry

1. Contract Construction
2. Other Retail Trade
3. Rental.s \& Finance
4. Wholesale Trade
5. Other Services (Except Professjonal)
6. Other Manufacturing
7. Other Utilities
8. Primary Metals
9. Food \& Kindred Products
10. Eating \& Drinking Places
11. Copper
12. Electric Energy
13. Transportation
14. Cotton
15. Stone, Clay \& Glass Products
16. Fabricated Metals
17. Other Mining
18. Lodging
19. Service Stations
20. Feeder Iivestock
21. Printing \& Publishing
22. Vegetables
23. Dairy
24. Lumber \& Wood Products
25. Chemicals
26. Forage: Feed \& Food Crops
27. Agricultural Services
28. Range Jivestock
29. Paper \& Pulp
30. Furniture \& Fixtures
31. Other Agriculture
32. Textiles \& Appare1
33. Citrus Crops
34. Forestry
35. Leather \& Leather Goods
36. Uraniun

Total Gross Output
\$ 2,520,746,000
$1,673,830,000$
$1,361,356,000$
1,018,362,000
81,2,268,000
759,463,000
649,717,000
604,014,000
546,863,000
483,538,000
$439,262,000$
$416,054,000$
360,442,000
214,861,000
179,933,000
173,675,000
$165,734,000$
165,283,000
$125,532,000$
115,599,000
105,868,000
78,050,000
72,399,000
67,407,000
62,432,000
57,544,000
45,893,000
45,596,000
23,143,000
22,479,000
22,214,000
20,709,000
11,286,000
2,100,000
884,000
790,000

Source: Table G-1980-a.

## Processing Sector Industry Sales to Final Demand in the Gila Sub-Basin

## Industry

1. Contract Construction
2. Other Retail Trade
3. Rentals \& Finance
4. Wholesale Trade
5. Primary Metals
6. Other Services (Except Professional)
7. Other Utilities
8. Other Manufacturing
9. Eating \& Drinking Places
10. Food \& Kindred Products
11. Cotton
12. Electric Energy
13. Lodging
14. Service Stations
15. Vegetables
16. Transportation
17. Printing \& Publishing
18. Other Mining
19. Fabricated Metals
20. Lumber \& Wood Products
21. Feeder Livestock
22. Furniture \& Fixtures
23. Textiles \& Apparel
24. Stone, Clay \& Glass Products
25. Other Agriculture
26. Chemice 1s
27. Citrus Crops
28. Paper \&: Fulp
29. Copper
30. Dairy
31. Range Livestock
32. Forage, Feed \& Food Crops
33. Leather \& Leather Coods
34. Uranium
35. Agricultural Services
36. Forestry

Sales to Final Demand
\$1,731,315,000
1,523,507,000
933,083,000
736,362,000
579,450,000
533,142,000
464,209,000
451,765,000
451,409,000
436,161,000
176,959,000
154,428,000
139,330,000
76,176,000
75,849,000
71,516,000
49,474,000
47,231,000
46,552,000
35,959,000
29,930,000
20,942,000
20,562,000
18,063,000
14,031,000
12,159,000
7,559,000
5,216,000
3,852,000
3,381,000
3,381,000 1,171,000

847,000
614, 000
200,000

- 0 -

Source: Interindustry Transactions Tablc, G-1980-a.

Table G-1980-f
Sales to Final Demand by Processing Sectors Listed Below As a Percentage of Total Gross Output in the Gila Sub-Basin

Industyy

> Sales to Final Demand Divided by Total Gross Output

1. Textiles \& Appare1 ..... 99.29
2. Vegetables ..... 97.18
3. Primary Metals ..... 95.93
4. Leather \& Leather Goods ..... 95.81
5. Eating \& Drinking Places ..... 93.36
6. Furniture \& Fixtures ..... 93.16
7. Other Retail ..... 91.02
8. Lodging ..... 84.30
9. Cotton ..... 82.36
10. Food \& Kindied Products ..... 79.76
11. Uranium ..... 77.72
12. Wholescle Trade ..... 72.31
13. Other Utilities ..... 71.45
14. Contract Construction ..... 68.68
15. Rentals \& Finance ..... 68.54
16. Citrus Crops ..... 66.98
17. Other Services (Except Professional) ..... 65.63
18. Other Agriculture ..... 63.16
19. Service Stations ..... 60.68
20. Other Manufacturing ..... 59.48
21. Lumber \& Wood Products ..... 53.35
22. Printing \& Publishing ..... 46.73
23. Electric Energy ..... 37.12
24. Other Iining ..... 28.50
25. Fabricated Metals ..... 26.80
26. Feeder Livestock ..... 25.89
27. Paper \&e Pulp ..... 22.54
28. Transportation ..... 19.84
29. Chemicals ..... 19.48
30. Stone, Clay \& Glass Products ..... 10.04
31. Range Livestock ..... 7.42
32. Dairy ..... 4.67
33. Forage, Fecd \& Food Crops ..... 2.03
34. Copper ..... 0.88
35. Agricultural Services ..... 0.44
36. Forestry ..... 0.00

Source: Tables G-1980~d and G-1980-e.

Table G-1980-h
Processing Sector Industries of the Gila Sub-Basin Ranked By The Magnitude of the Total Dollar Production Directly and Indirectly Required by the Sub-Basin Econony to Sustain a $\$ 1.00$ Increase in Deliveries to Final Demand by the Industries Named.

Direct and Indirect Requirements$\qquad$		
1.	Contract Construction	1.366429
2.	Stone, Clay \& Glass Products	1.206650
3.	Other Mining	1.187828
4.	Electric Energy	1.186529
5.	Other Manufacturing	1.174766
6.	Paper \& Pulp	1.082421
7.	Furniture \& Fixtures	1.072964
8.	Food \& Kindred Products	1.059664
9.	Fabricated Metals	1.056449
10.	Other Services (Except Professional)	1.050925
11.	Iransportation	1.039599
12.	Rentals \& Finance	1.033249
13.	Copper	1.032433
14.	Dairy	1.022 .747
15.	Printing \& Publishing	1.021397
16.	Wholesale Trade	1.020433
17.	Chemicals	1,018662
18.	Other Utilities	1.018515
19.	Lumber \& Wood Products	1.017048
20.	Feeder Livestock	1.015549
21.	Uranium	1.015244
22.	Other Retail	1.013671.
23.	Primary Metals	1.013096
24.	Eating \& Drinking Places	1.011263
25.	Forage, Feed \& Food Crops	1.011229
26.	Textiles \& Apparel	1.007094
27.	Service Stations	1.006729
28.	Other Agriculture	1.004957
29.	Cotton	1.002350
30.	Range Livestock	1.001642
31.	Citrus Crops	1.001085
32.	Lodging	1.001065
33.	Vegetables	1.001005
34.	Agricultural Services	1.000048
35.	Leather \& Leather Goods	1.000044
36.	Forestry	1.000002

Source: Table of Direct and Indirect Requirement Coefficients, G-1980-c.

Table G-1980-i
Number of Processing Sector Industries Responding in Amounts ofAt Least $\$ 0.01$ per Dollar of Sales to Final Demand by the IndustriesListed Below.

Industry
Other Agriculture
Food \& Kindred Products
Other Mining
Primary Metals
Intersections
greater than $\$ 0.01$17171616Citrus Crops
Leather \& Leather Goods
15Eating \& Drinking Places
13Copper
13Cotton15
12Paper \& PuIp
12Lodging
12Contract Construction
12Other Services (Except Professional)
11Other Manufacturing
11Fabricated Metals
11Printing \& Publishing
11Lumber \& Wood Products
11Uranium
11Forage, Feed \& Food Crops
11Dairy
Feeder Livestock
Furniture \& Fixtures Furniture \& Fixtures ..... 10
Chemicals ..... 10
Stone, Clay \& Glass Products ..... 10
Transportation ..... 10
Other Utilities ..... 9
Service Stations ..... 9
Wholesale Trade ..... 9
Vegetables
Textiles \& Apparel ..... 8
Other Retail Trade ..... 8
Agricultural Services ..... 8
Range Livestock ..... 7
Electric Fnergy ..... 5
Rentals \& Finance ..... 4
Forestry ..... 4

Source: Table of Direct and Indirect Requirements per Dollar of
Final Demand, G-1980-c.


[^0]:    ${ }^{2}$ The econory is assumed to consist of two classes of sectors, an autonomous sector which responds largely to forces external to this regional economy, and a non-autonomous sector which is responsive to changes originating within the regional economy. To unearth structural interrelationships within the non-autonomous sectors is the goal of the analysis. These non-autonomous categories are classified as constituting the "processing" sector. The autonomous categories are labeled the "Payments" sector along the rows and the "final demand" sector along the columns. For a detailed discussion of this point together with a diagramatic and symbolic exposition, see Miernyk, op. cit., Chapter 2.
    ${ }^{3}$ Ibid.

[^1]:    4
    This assumption of fixed coefficients appears to fly in the face of popular conceptions of an ever-changing teclnology and fluid tastes. There is also controversy on the professional level concernine the constancy of coefficients assumption. Tie resolution of this issue, however, will be found in empirical evidence rather than in theorizing, and on this ccunt, there is eviuence winch supports the assumption of relative constancy over short periods. In his input-output study of four Southrestern Howing counties, hichard Lund found very little cange in coefficients betweeri 1953 anc 1359, despite drastic changes in the ecomony of the region during the period. It s:ould be noted that the four counties he studies are all in the creen fiver Sub-iasin of the Coloracio River Basir. See Pichard l. Lund, Study of the Zesources, Pecole and Economy of Soutnrestorn Moring (Cheymine: Wyoming hatural Besource 5oard, 1962 ), p. 77. Chenery and Clark have comentad that "the results of input-output analyses are not sensitive to chances in the great many of tiae coerficients," and "....the research task of examining the fmportant coefficients for vossible modifications of the assumption of constancy is a manageable one." See their Interindusty conomics, op. cit., p. 161. In Chapter 6 of the same volume, there is a discussion of various studies which have been conducted to test the valicity of the assurptions urder-lying input.-output analysis. Finally, input-output analysis, unlike other methods of analysis, provides an arvantare in that it rsacily permits introduction of revised coefficients." See Philip :i. Eite, "Coament," in Input-Output Enalysis: An ippraisal, on. cit. : pp. 181~132.

[^2]:    5W. Duane Evans and Marvin Hoffenberg, "The Interindustry Relations Study for 1947", Review of Economics and Statistics (May, 1952), pp. 97142. See especially p. 126.
    ${ }^{6}$ This section borrows heavily from Miernyk's excellent paper, "SmallArea Interindustry Analysis", Bureau of Economic Research, University of Colorado, (Mímeographed, 1963), pp. 8-17.

[^3]:    13
    Additions to inventory were no doubt affected to some extent by price changes, although there would be some offset from inventory depletions. Price changes in 1960 were not large, however. Consumer prices rose about 1.6 percent and, wholesale prices were virtually stable. See Economic Report of the President (January, 1963), pp. 220-224. Cf. Evans and Hoffenberg, op. cit., p. 119.

[^4]:    ${ }^{14}$ Op. cit., p. 118.
    ${ }^{15}$ The inventory problem in some small-area input-output studies has been handled by reporting only net inventory changes. See for example, the transactions table in "The Eighth District Balance of Trade", Monthly Review, Federal Keserve Bank of St. Louis (June, 1952). In others it has been avoided by leaving inventories out of the calculations entirely. See, for example Frederick T. Moore and James W. Peterson, "Regional Analym sis: An Interindustry Model of Utah," Review of Econonics and Statistics (November, 1955), pp. 368-383, table following page 372; and Richari E. Lund, A Study of the Resources, Feonle and Economy of Southwestern Wyoming Laramie, Wyoming; Division of Business and Economic Research, University of lyoming (June, 196?), table following page 74.

[^5]:    $6_{\text {The }}$ two major sources of data on the industrial distribution of employment by county are the Employment Security Commission's (ESC's) of the various states which gather statistics on covered employment i.e., in industries not exempted from the law, and in establishments large enough to qualify for coverage under the law and the U.S. Bureau of the Census. The Census enumeration of county employment by industry usually produces larger figures than those reported by the ESC. This is partly due to the much more inclusive definition used by Census wich includes agricultural employment, for example, but also reflects various other methodological differences. Thus, the two sets of data are not strictly comparable. A major virtue of the Census data (available in this detail only for the years of the decennial census) is that they do provide a detailed historical record of employment for a group of industries which are defined in a generally consistent manner. For this reason, in this same section of the reports on the other sub-basins of the Colorado River Basin, Census data have been selected for analysis. However, in the detailed study of particular industries for 1960 which follow, ESC data have beer utilized.

[^6]:    

[^7]:    
    E）Yngigreftcome

[^8]:    (/) Sone transactions among nonagricultural sectors are not shown in this table.
    2/ Columns have been doleted where there were no purchases from agricultural and forestry sectors.

[^9]:    If Ony sector having transactions whit agmicultuse and forestry axe shema
    If Tocke uxe based an merounded ada．

[^10]:    SOURCE: Frank P. Knight and Frank J. Tuck, Mining in Arizona, Its past - Its Present - Ifs Future, Arizona Departinent of Mineral Resources (April 1961), p. 16.

[^11]:    ${ }^{4}$ By Cemons cmmontion in 195s, thewe were 224 cating and drimbing esiablisments in the Gila. intiopa's left and Fima's $4_{i} 30$ again lod the liat. Find follumed whati. In 1963 there were 2,500 esteblishnents in the Gila, with Mricopa's I, 146 leading the list of counties.

[^12]:    Gor a detailed discussion of the wo typen of productivity measure see Solomon Fabricat, Basic tacts on Productivity Cngne (hen York: hational Burcau of Economic esearch, Inc. Occastonel yapot 63, 1959), pp, 3-73.

[^13]:    Source: Tablcs G-S, 1980-a and 2010-a.

[^14]:    13 A M
    

[^15]:    ${ }^{15}$ The specjal considerations that were taken into account in the touristoriented sectors are discussed in the concluding paragraphs of this section.

