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NONLINEAR EVOLUTIONARY PROBLEM OF FILTRATION
CONSOLIDATION WITH THE NON-CLASSICAL

CONJUGATION CONDITION

OlhaR. Michuta∗, PetroM. Martyniuk†

Abstract. Finite-element solutions of the initial-boundary value problem for a nonlinear
parabolic equation in an inhomogeneous domain with the conjugation condition of a
non-ideal contact were found. The initial boundary value problem is a mathematical
model of an important technical problem of filtration consolidation of inhomogeneous
soils. Inhomogeneity is considered in terms of the presence of thin inclusions, physico-
chemical characteristics of which differ from those of the main soil. The problem of long-
term consolidation is especially pronounced in soils with low filtration coefficient. Low
permeability of the porous medium causes deviation from the linear relationship between
the pressure gradient and the filtration rate. Weak formulation of the problem is suggested,
and the accuracy of the approximate finite element solution, its existence and uniqueness
are substantiated for the case of Darcy’s nonlinear law. A test example and the effect
of the nonlinear filtration law for thin inclusion on the dynamics of scattering of excess
pressures in the entire area of the problem are considered.
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1. Introduction

A nonlinear initial-boundary value problem is investigated for the parabolic
equation in the inhomogeneous domain Ω = Ω1 ∪Ω2, Ω1 ∩Ω2 = ∅, where Ω1, Ω2

are some given domains. By inhomogeneity we mean the presence of a contact
interface ω = Ω1 ∩ Ω2 which from a physical view point means a thin inclusion
of the third material. Differences in the physical characteristics of the materials
of the inclusion ω and regions Ωi, i = 1, 2, can lead to the discontinuity of the
solutions of the initial boundary value problem at the inclusion. Regarding the
study of problems in inhomogeneous environments of this type, we will focus on
the methodology where the study of processes at the thin inclusion itself is taken
outside the general initial-boundary value problem. The physical characteristics of
the thin inclusion material and the inclusion thickness are taken into account. The
presence of a thin inclusion is taken into account in the general initial-boundary
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value problem by the so-called conjugation conditions for an unknown function.
This approach, when using numerical methods, avoids solving the problem in the
inclusion itself and thus simplifies the solution process.

The above approach to simulating inhomogeneities in soils began to develop
in the work of I.I. Lyashko, I. V. Sergienko, V. V. Skopetskii, V. S. Deineka and is
quite fully described in review monographs [6,15,16]. The works [2,11,14–17] are
also worth mentioning in this direction which develop both the solution methods
and the qualitative theory of initial-boundary value problems with possible dis-
continuous solutions.

As noted above, the initial-boundary value problem, more specifically the
conjugation with non-ideal contact, include physical characteristics of the material
of the thin inclusion (inclusions themselves may be both of natural origin and
artificial). The parameters of the material of thin soil inclusions (filtration coeffi-
cient, porosity, thermal conductivity, etc.) are nonlinearly dependent on the effect
of external factors. Considering the initial-boundary value problems as mathema-
tical models of physico-chemical processes in porous soil media, the presence
of such dependences requires modification of the conjugation conditions. The
above-mentioned works [2,6,11,14–17] assumed the parameters of inclusions to be
constant, which is reflected in the conjugation conditions with non-ideal contact.
Mathematical models for the distribution of inorganic chemicals in porous media
and modification of conjugation conditions taking into account nonlinear depen-
dences of material parameters of thin geobarriers on the effect of physicochemical
factors, including chemical suffusion [23] were developed in [18,19].

The influence of organic substances on the development of microorganisms
and the effect of bioclogging processes on the value of pressure jumps at a thin
geobarrier were studied in [20,21]. Modified conjugation conditions and mathema-
tical models of moisture transfer in inhomogeneous porous media are presented
in [5, 12]. The method of modification of conjugation conditions for the partial
case of Darcy’s nonlinear law is shown in [13].

Here, we investigate the initial-boundary value problem for a quasilinear para-
bolic equation as a mathematical model of soil consolidation. The problem of
consolidation (compaction) of soils is especially relevant for water-saturated clays.
This is caused by the low filtration coefficient of clay soils and, as a result, the long
time for the transition of clay bases of civil and industrial buildings to a stable
state. Weak permeability of clay soils raises questions about the limits of Darcy’s
filtration law in its classical form [9]. It will be recalled that Darcy’s classical law
mathematically records the linear relationship between the filtration rate and the
pressure gradient. The linearity of Darcy’s basic filtration law has its physically
determined limits. The linearity is violated both for highly permeable porous
media and for weakly permeable ones. In particular, for weakly permeable porous
media, this is manifested in the presence of the so-called “threshold gradient”,
below which the relationship between the filtration rate and the pressure gradient
becomes nonlinear.

The nonlinearity of Darcy’s law for consolidation problems is taken into account
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in e.g. [10,24,25]. However, only homogeneous media without thin inclusions are
considered there. Additionally, power laws were considered nonlinear (dependence
of the filtration rate on the pressure gradient raised to a certain degree other
than unity). Quasilinear filtration processes were studied in [3,4] where the linear
dependence of the filtration rate on the pressure gradient is preserved, but the
filtration coefficient nonlinearly depends on the physico-chemical parameters of
the porous medium.

Thus, the objectives of this work are: 1) modification of the conjugation
condition on a thin inclusion under Darcy’s nonlinear law; 2) formation of a
mathematical model of filtration consolidation of inhomogeneous soil in the pre-
sence of the threshold gradient; 3) investigation of finite element solutions of the
corresponding boundary value problem, numerical experiments and analysis of
the significance of the nonlinearity of Darcy’s law on the value of excess pressures
and their jumps.

2. The problem of nonlinear filtration through a thin inclusion

It is suggested in [9] to generalize nonlinear filtration laws in the form (in
one-dimensional case)

u = −k

(
∂h

∂x
− I

γ
(

1
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)γ ( 1

α
,
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i
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)α)
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∂x

))
, (2.1)

where i is the absolute value of the pressure gradient, i.e. in the one-dimensional
case i =

∣∣∂h
∂x

∣∣; k is the filtration coefficient of the porous medium; u is the filtration
rate; I is the absolute value of the pressure gradient below which the linearity
of Darcy’s law is violated (the so-called threshold gradient); α is an empirical
parameter;
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Here γ (a), γ (a, x) are the so-called gamma function and the lower incomplete
gamma function.

As noted in [9], Eq. (2.1) includes previously proposed nonlinear filtration laws
for permeable soils, i.e. Hansbo’s law (1960), Swartzendruber’s law (1961), Zou’s
law (1996).

The use of the law in the form of (2.1) is quite inconvenient in terms of
applying the finite element method. Given that ∂h
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)
, it follows from

(2.1) that
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or
u = −k∗(n, I)

∂h

∂x
, (2.2)

where
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Here n is the soil porosity; ε > 0 is a small constant. Since in this work we consider
the problem of soil compaction, the dependence of the filtration coefficient on
porosity should be taken into account.

We assume (due to thinness of the inclusion ω, Fig. 1) that the filtration
processes in the cross-section of this inclusion are stationary (or at least quasi-
stationary). Thus, similarly to [5, 12, 13, 18–21], for the inclusion of thickness d,
we consider the following filtration problem:

d

d

(
−k∗ω(nω, Iω)

dh

dξ

)
= 0, 0 < ξ < d, (2.3)

h(0) = h−, h(d) = h+. (2.4)

Here, h−, h+ are the known values of pressures, and the sub-script ω means the
corresponding characteristic for the inclusion ω (Fig. 4.1). Repeating the reasoning
of [5, 12,13,18–21], we have

h(ξ) =

ˆ ξ

0

dx

k∗ω(nω, Iω)ˆ d

0

dx
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(
h+ − h−

)
+ h−.

However, hereafter we are more interested not in the pressure itself, but in its
gradient. As a result

dh

dξ
=

1

k∗ω(nω, Iω)

ˆ d

0

dx

k∗ω(nω, Iω)

(
h+ − h−

)
. (2.5)

3. Conjugation condition for nonlinear filtration law

According to [16], similarly to [5, 13] the conjugation condition is derived on
the basis of the law of conservation of fluid flow through the cross-section area of
the inclusion surface along the normal in time ∆t. As the flow

q = −k∗ω(nω, Iω)
dh

d
∆t = u∆t

and
q = q+ = q−,
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then
u±
∣∣
x=ξ

= −k∗ω(nω, Iω)
dh

dξ
. (3.1)

From (2.5) and (3.1) we have the final formula of the conjugation condition with
non-ideal contact for pressures at the inclusion, with nonlinear filtration law in
the form (2.2)

u±
∣∣
x=ξ

= − [h]ˆ d

0

dx

k∗ω(nω, Iω)

. (3.2)

Here [h] = h+ − h− is the pressure jump at the inclusion.
Before formulating the mathematical model of the problem, we note that the

porosity n (as well as nω) of the soil in the regions Ωi, i = 1, 2, is related
to the void ratio e as n = e

1+e . In its turn, and it is shown in the section of
numerical experiment results, e depends on pressures h(x, t). Thus n = n(h), and
in subsequent calculations k∗ = k∗(h, I), k∗ω = k∗ω(h, Iω).

4. Nonlinear mathematical model of filtration consolidation of
porous medium with thin inclusion

Here we consider the process of filtration consolidation of the soil layer of total
thickness l with a thin inclusion ω of thickness d which is located at the depth
x = ξ (Fig. 4.1). The material of the thin inclusion differs in its physico-chemical
characteristics from those of the main soil.

Fig. 4.1. A layer of soil of thickness l with a thin inclusion ω of thickness d (d � l).

The formulation of the mathematical model of the described problem will
partially use the work of scientists reviewed in Introduction. The mathematical
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model will include the equations of filtration consolidation [8,22,23]. As a result,
we have the following boundary value problem:
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Here,

k∗(h, I) = k (h)
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Ω1 = (0; ξ) ,Ω2 = (ξ; l) , 0 < ξ < l; Ω = Ω1 ∪ Ω2;

T > 0 is the specified time duration; h0 (x) is a known function; a is the soil
compressibility coefficient; n, nω are the porosity of soil and inclusion material,
respectively; e = n

1−n is the soil void ratio; γ is the specific weight of the pore
fluid; h is the pressure; k, kω are the filtration coefficients of the main soil and
soil inclusion, respectively; u is the filtration rate which is determined according
to (2.2); u± are the filtration rates at x = ξ − 0 and x = ξ + 0, respectively;
[h] = h+ − h− is the pressure jump at the thin inclusion.

We shall show that k∗ is always positive. Let us turn to the starting relations
from [9] from which the generalized Darcy’s law (2.1) is derived. Particularly, it
is based on ( [9, formula (1.20)])
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from which we have [9, formula (1.21)]
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Since γ
(

1
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= 0, then for i = 0 from the formula for k∗(h, I) we obtain
k∗(h, I) = k(h) > 0. Therefore

k∗(h, I) > 0, i ∈ [0; +∞)

and similarly
k∗ω(h, Iω) > 0, i ∈ [0; +∞).

Similarly to [6] we introduce the following notation: QT = Ω × (0;T ] , Q1
T =

Ω1 × (0;T ] , Q2
T = Ω2 × (0;T ] .

Assume that the function h0(x) is continuous on each of the closures Ω1, Ω2.
Also with respect to the coefficients k∗, k∗ω, assume that

1)
0 < k∗min ≤ k∗(s1, s2) ≤ k∗max <∞,

0 < k∗ω,min ≤ k∗ω(s1, s2) ≤ k∗ω,max,

∀s1 ∈ (−∞; +∞), ∀s2 ∈ [0; +∞); k∗min, k
∗
max, k∗ω,min, k

∗
ω,max are positive constants;

2)
|k∗ (p1, s1)− k∗ (p2, s2)| ≤ k∗L |p1 − p2| , 0 < k∗L <∞;

|k∗ω (p1, s1)− k∗ω (p2, s2)| ≤ k∗ω,L |p1 − p2| , 0 < k∗ω,L <∞.

Also, the function k∗ = k∗(h, I) must be continuous on Ω1, Ω2 and continuously
differentiated on Ω1, Ω2.

Definition 4.1. The classical solution of the initial-boundary value problem
(4.1)–(4.5) which allows a discontinuity of the first kind at the point x = ξ is
a function h(x, t) ∈ Ψ that satisfies ∀(x, t) ∈ QT equation (4.1) and the initial
condition (4.4).

Here, Ψ is a set of functions ψ(x, t) which, together with ∂ψ
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2
T , have bounded continuous partial derivatives ∂ψ
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∂x2 on Q1

T , Q
2
T , and satisfy conditions (4.2), (4.3), (4.5).

For further calculations we will note one more aspect. The conjugation condition
with non-ideal contact (see [16, page 291, formula (7.4)]) which can be called
classic (
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includes r, a known constant, and 0 < r0 ≤ r < ∞. Consider condition (4.5).
When the second of conditions 1) for the coefficient in the right part of the
conjugation condition (4.5)(
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Thus, in the case of a modified conjugation condition (4.5), we have
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d
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d

<∞. (4.8)

Estimate (4.8) allows us to generalize the theorems proved in [6,16] for problems
with the classical conjugation condition with non-ideal contact, for the case of a
modified conjugation condition (4.5).

5. Generalized solution of problem (4.1)-(4.5)

Similarly to [6] let H0 be the space of functions s (x) that in each of the regions
Ωi belong to the Sobolev space W 1

2 (Ωi), i = 1, 2, and they acquire zero values
at the ends of the segment [0; l] where the function h (x, t) is set the boundary
conditions of the first kind.

Let h(x, t) ∈ Ψ be the classical solution of the initial-boundary value problem
(4.1)–(4.5). Take s (x) ∈ H0. Multiply equation (4.1) and initial condition (4.4)
by s (x). Integrating them on the segment [0; l] and taking into account the
conjugation conditions (4.5), we obtain
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Thus, if h(x, t) ∈ Ψ is a classical solution of the initial-boundary value problem
(4.1)-(4.5), then h(x, t) is a solution of problem (5.1), (5.2) in a weak formulation.
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Let H be the space of functions v (x, t) that are square-integrable together
with their first derivatives ∂v

∂t ,
∂v
∂x on each of the intervals (0; ξ), (ξ; l), ∀t ∈ (0 ; T ],

T > 0 , and they satisfy the same boundary conditions of the first kind as the
function h (x, t).

Definition 5.1. Function h (x, t) ∈ H that for any s (x) ∈ H0 satisfies integral
relations (5.1), (5.2) is called a generalized solution of the initial-boundary value
problem (4.1)–(4.5).

An approximate generalized solution of the initial-boundary value problem
(4.1)-(4.5) will be sought in the form

ĥ (x, t) =
N∑
i=1

hi (t)ϕi (x), (5.3)

where {ϕi(x)}Ni=1 is the basis of finite-dimensional subspace M0 ⊂ H0; hi (t),
i = 1, N are unknown coefficients that depend only on time.

The set of functions that can be represented in the form (5.3) generate a
finite-dimensional subspace M1 ⊂ H1.

Definition 5.2. An approximate generalized solution of the initial-boundary
value problem (4.1)–(4.5) is a function ĥ(x, t) ∈M1 that for an arbitrary function
S(x) ∈M0 satisfies integral relations
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k∗ω(ĥ, Iω)

= 0, (5.4)

ˆ l

0
ĥ (x, 0)S (x) dx =

ˆ l

0
h0 (x)S (x) dx. (5.5)

Next, from the weak formulation of (5.4), (5.5) we obtain (assuming the
function S(x) equal to each basis function ϕi(x), i = 1, N) the Cauchy problem
for a system of nonlinear differential equations
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mij =
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The square matrix M (H) is symmetric and positive definite because γa
1+e > 0,

∀(x, t) ∈ QT . Given the proven positivity of the coefficients k∗, k∗ω, as well as
the assumptions 1) made regarding their limitations, the matrix L (H) will also
be symmetric and positively definite [6, page 417]. Next, similarly to [6, problem
(3.14) of Chapter 8], we write the system (5.7) in the form

dH

dt
= Φ (H) , (5.8)

where Φ (H) = −M−1L (H) H (t). The functions Φ (H), ∂Φ/∂H are continuous.
Thus, there is a single approximate generalized solution ĥ (x, t) ∈M1 of the initial-
boundary value problem (4.1)–(4.5).

We will introduce the following norms [6, page 380]:
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(u(ξ + 0, t)− u(ξ − 0, t))2dt.

Similarly to [6, page 380, Theorem 1] we can prove the following result.

Theorem 5.1. Let h(x, t) be a classical solution of the initial-boundary value
problem (4.1)–(4.5), and ĥ(x, t) be a generalized solution of this problem from
spaceM1. Then, under the conditions 1), 2) imposed on k∗, k∗ω, taking into account
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(4.8), there are such positive constants c, δ1, δ2, that for an arbitrary function
h̃(x, t) ∈M1 the following inequality holds:∥∥∥h− ĥ∥∥∥2

L2×L∞
+ δ1

∥∥∥h− ĥ∥∥∥2
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+ δ2

∥∥∥[h− ĥ]∥∥∥2
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2
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}
, ∀h̃ ∈M1. (5.9)

Dependence (5.9) is used in estimating the accuracy of the finite element
method.

6. Finite element method

We will cover the closure Ω = Ω1∪Ω2 with a finite element grid with the total
number of nodes N. The point x = ξ should be double numbered, the node on
the left x = ξ − 0 and the node on the right x = ξ + 0. Let in (4.8) ϕi(x) be the
basis functions of the finite element method which allow a discontinuity of the
first kind at the point x = ξ and are polynomials of m-th degree. Then the space
of functions ĥ(x, t) of the form (5.3) with the specified basic functions is denoted
HN
m .

Theorem 6.1. Let the classical solution h(x, t) of the boundary value problem
(4.1)–(4.5) have partial derivatives ∂m+1(·)

∂xm+1 ,
∂m+2(·)
∂xm∂t limited on QiT , i = 1, 2. Then

the approximate generalized solution ĥ(x, t) ∈ HN
m has an estimate∥∥∥h− ĥ∥∥∥

W 1
2×L2

≤ c · hmmax,

where m is the degree of FEM polynomials, c = const > 0,

hmax = max
i=0,N−1

(xi+1 − xi) ,

[xi+1;xi] are finite elements.

Proof. The validity of the theorem follows from the estimate (5.9) of the previous
theorem taking into account the interpolation estimates [6, page 387, Theorem
2].

7. Time discretization methods

Problem (5.6), (5.7) is a Cauchy problem for a system of nonlinear differential
equations of the first order. Finding its solution also requires the use of appropriate
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discretization methods. The application of the Crank-Nicolson method is subґ-
stantiated in [15]:

M

(
1

2

(
H(j+1) + H(j)

)) H(j+1) −H(j)

τ

+ L

(
1

2

(
H(j+1) + H(j)

))
· 1

2

(
H(j+1) + H(j)

)
= 0, j = 0, 1, 2, ...,mτ − 1.

Here the time segment [0, T ] is divided into mτ equal parts with the step τ = T
mτ

;
H(j) is the approximate solution of the Cauchy problem (5.6), (5.7) for t = jτ .
Let also introduce the following notation: hj is the classical solution of the initial-
boundary value problem (4.1)–(4.5) for t = jτ ; ĥj is the approximate generalized
solution of the initial-boundary value problem (4.1)-(4.5) for t = jτ ; φj+1/2 =
1
2(φj+1 + φj); zj = hj − ĥj .

Given (4.8), similarly to Theorem 5 [6, Chapter 8] it is also valid the following
result.

Theorem 7.1. Let h(x, t) be a classical solution of the initial-boundary value
problem (4.1)–(4.5). Let the functions ∂h

∂t ,
∂h
∂x be twice continuously differentiable

over time on Q
i
T , i = 1, 2. Let also assume that the derivatives ∂3h

∂t3
, ∂3h
∂t2∂x

are
uniformly limited in modulus by a constant c1, ∀(x, t) ∈ QT . If conditions 1),
2) are satisfied, then there are positive constants c, δ1, r0, τ0, that depend on
the constants of conditions 1), 2), as well as T , l, such that for ∀τ ≤ τ0 the
classical solution h(x, t) and the approximate generalized solution obtained using
the Crank-Nicolson method, ĥ(x, t) ∈ M1, of the problems (4.1)–(4.5) and (5.6),
(5.7), respectively, satisfy the inequality

‖zmτ ‖
2
L2

+ δ1

mτ−1∑
j=0

∥∥zj+1/2

∥∥2

H1
0
τ + r0

mτ−1∑
j=0

[
zj+1/2

]2
τ

≤ c

mτ−1∑
j=0

∥∥∥(h− h̃)j+1/2

∥∥∥2

H1
0

τ + +

mτ−1∑
j=1

∥∥∥∥∥(h− h̃)j+1/2 − (h− h̃)j−1/2

τ

∥∥∥∥∥
2

L2

τ

+

mτ−1∑
j=0

[
(h− h̃)j+1/2

]2
τ +

∥∥∥(h− h̃)0

∥∥∥2

L2

+
∥∥∥(h− h̃)mτ−1/2

∥∥∥2

L2

+
∥∥∥(h− h̃)1/2

∥∥∥2

L2

+ O(τ4)
)
, ∀h̃ ∈M1. (7.1)

Similarly to Theorem 6 [6, Chapter 8] and taking into account estimate (7.1),
we have:

Theorem 7.2. Let the classical solution h(x, t) of the problem (4.1)–(4.5) satisfy
the conditions of Theorem 7.1. Then for the errors z of the approximate generalized
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solution ĥ(x, t) ∈ HN
m of the problem (5.4), (5.5) obtained using the Crank-

Nicolson method, the following estimate is valid:

‖zmτ ‖
2
L2

+ δ1τ

mτ−1∑
j=0

∥∥zj+1/2(h)
∥∥2

H1
0
≤ c ·

(
h2m
max + τ4

)
.

However, the practical implementation of the Crank-Nicolson method for the
nonlinear Cauchy problem (5.6), (5.7) requires the use of iterations. Instead of the
Crank-Nicolson method, one can use the predictor-corrector method [16], which
for the system of equations (5.6) has the following form:

M
(
H(j)

)W(j+1) −H(j)

τ
+ L

(
H(j)

) 1

2

(
W(j+1) + H(j)

)
= 0,

M

(
1

2

(
W(j+1) + H(j)

)) H(j+1) −H(j)

τ
+

+L

(
1

2

(
W(j+1) + H(j)

))
· 1

2

(
H(j+1) + H(j)

)
= 0, j = 0, 1, 2, ...,mτ − 1,

where W(j+1) are auxiliary vector functions.
From the view point of the simplicity of practical implementation, a fully

implicit linearized difference scheme has proved itself well [8,21,23]. For the system
(5.6), it has the form

M
(
H(j)

) H(j+1) −H(j)

τ
+ L

(
H(j)

)
·H(j+1) = 0, j = 0, 1, 2, ...,mτ − 1.

8. Results of numerical experiments and their analysis

According to [9, formula (1.24)],

I = Ak̃
B
,

where A = 4.0 × 10−12 and B = −0.78 are empirical parameters; k̃ (
[
k̃
]

= m2)

is the soil permeability coefficient, i.e. k = k̃ρg
µ , ρ is the density of pore fluid, µ

is its viscosity, g is the acceleration of free fall. Since these studies do not yet
take into account non-isothermal conditions, the dynamic viscosity of water at
constant temperature 25

◦
C is used which is

µ = 1.03 · 10−8 Pa · day.

Soil parameters for the numerical experiments were taken from the Hydrus-
1D freeware. Specifically, Sandy Clay was considered as the main soil, with k0 =
0.0288 m/day, n0 = 0.38. Then for the main soil k̃ = 2.98 · 10−14 m2, and I =



84 O.R. Michuta, P.M. Martyniuk

0.142. Silty Clay was taken as the inclusion soil, with k0ω = 0.0048 m/day, n0ω =
0.46, where index "0"denotes the initial values. Then for the inclusion soil k̃ =
4.97 · 10−15 m2, I = 0.574.

The parameter α is also important. According to [9, formula (1.24)] α ≥ 0.
The authors state that the parameter α mainly characterizes the smoothness of
the transition from nonlinear to linear part of the curve of dependence u = u(i)
for the filtration rate and depends on the distribution of pore sizes in the porous
medium. An increase in α means a sharper transition. A larger distribution range
of pore sizes means a smoother transition between the linear and nonlinear parts
and thus a smaller α value. For instance, for α→∞ we have from the generalized
law (2.1) [1]

u =

{
0, i ≤ I;

−k (i− I) sgn(i), i ≥ I.
When α→ 0 we obtain the transition to Darcy’s linear law.

We used α = 2 for the main soil, and α = 5 hor the thin inclusion soil in the
following numerical experiments.

According to the linear compression dependence for soils,

e = −aσ + const.

Here σ are vertical stresses in the soil skeleton (in one-dimensional case). Further,

∂e

∂t
= −a∂σ

∂t
.

Also, according to Terzaghi’s effective stress principle [22,23]

∂σ

∂t
= −γ ∂h

∂t
,

and
∂e

∂t
= aγ

∂h

∂t
.

From the last ratio we obtain

e(j+1) − e(j)

τ
= aγ

h(j+1) − h(j)

τ
, j = 0, 1, 2, ...,mτ − 1,

or
e(j+1) = aγ

(
h(j+1) − h(j)

)
+ e(j), j = 0, 1, 2, ...,mτ − 1.

Obtained ratio was used to determine the variable filtration coefficient in the void
ratio according to the Kozeny-Carman equation [7]

k = k0
1 + e0

1 + e

(
e

e0

)3

,

where k0, e0 are the initial values of filtration coefficient and void ratio; k, e are
their variable values over time.
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In equation (4.1), the soil compressibility coefficient a = 5.12×10−7m2

H , specific
gravity of pore fluid γc = 104 H

m2 . Initial pressure distribution h0 (x) = 20 m
is corresponding to the application of the respective load to the soil surface.
Unobstructed outflow of pore fluid is provided at the upper limit, and there is no
drainage at the lower limit.

The model problem considered a soil layer of l = 25 m thickness. The depth of
inclusion ξ = 10 m, and its thickness d = 0.2 m. The x variable step was 0.04 m,
the time step τ = 10 day. Piece-square functions were used as FEM basis. The
results of numerical experiments are plotted in Figs. 8.2, 8.3.

Fig. 8.2. Difference of the distribution of the pressure fields for cases of nonlinear and linear
Darcy’s laws.

The nonlinearity in Darcy’s law has virtually no effect on the distribution
of excess pressure during the first 1000 days from the beginning of the study
process (Figs. 8.2, 8.3). However, as of the 3000th day, the relative difference in
the pressure jumps on the thin inclusion in the linear and nonlinear laws reached
8.4%. Then such relative differences continue to increase and reach 42% on the
9000th day (about 1.5 meters in absolute terms). Thus, the nonlinearity in Darcy’s
law and the presence of the threshold gradient can introduce significant changes
in the distribution of pressures, particularly in the long run. This is important
both in terms of natural heterogeneous soils and in terms of hydraulic structures
with fine inclusions.
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