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FICTITIOUS CONTROLS AND APPROXIMATION OF
AN OPTIMAL CONTROL PROBLEM FOR

PERONA-MALIK EQUATION

Peter Kogut∗, Yaroslav Kohut†, Rosanna Manzo‡

Abstract. We discuss the existence of solutions to an optimal control problem for the
Cauchy-Neumann boundary value problem for the evolutionary Perona-Malik equations.
The control variable v is taken as a distributed control. The optimal control problem is
to minimize the discrepancy between a given distribution ud ∈ L2(Ω) and the current
system state. We deal with such case of non-linearity when we cannot expect to have
a solution of the original boundary value problem for each admissible control. Instead
of this we make use of a variant of its approximation using the model with fictitious
control in coefficients of the principle elliptic operator. We introduce a special family of
regularized optimization problems for linear parabolic equations and show that each of
these problems is consistent, well-posed, and their solutions allow to attain (in the limit)
an optimal solution of the original problem as the parameter of regularization tends to
zero.
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in coefficients, approximation approach..
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1. Introduction

Recently, in the context of time interpolation of satellite multi-spectral images,
the following model has been proposed (see [8])

ut − div (f (|∇u|)∇u) + (∇u, b) = v in Q = (0, T )× Ω, (1.1)
u(0, x) = u0(x) in Ω, (1.2)

∂νu(t, x) = 0 on Σ = (0, T )× ∂Ω, (1.3)

where Ω ⊂ R2 is a Lipschitz domain, b ∈ Bad and v ∈ Vad are the control
functions with

Bad =
{
b ∈ L∞(Q)2 ∩BV (Q)2 : ‖b‖L∞(Q)2 ≤ κ

}
, (1.4)

Vad =
{
v ∈ L2(0, T ;L2(Ω))

}
, (1.5)
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∂ν stands for the outward normal derivative, f ∈ C1,1(R+) is a non-increasing
real function such that f(s)→ 0 when s→ +∞ and f(s)→ 1 when s→ +0. In
particular,

f (|∇u|) =
1

1 + |∇u|2
. (1.6)

In fact, the Cauchy-Neumann problem (1.1)–(1.3) can be viewed as some
improvement of the Perona-Malik model [23] that was proposed in order to avoid
the blurring in images and to reduce the diffusivity at those locations which have
a larger likelihood to be edges. This likelihood is measured by |∇u|2.

However, the indicated problem is ill-posed due to the degenerate behavior
of the multiplayer f(|∇u|), f(|∇u|) −→ 0 as the gradient |∇u| tends to infinity.
So, equation (1.1) acts like a standard convection-diffusion equation inside the
regions where the magnitude of the gradient of u is weak, whereas at those points
where the magnitude of the gradient is large enough, the diffusion is ’stopped’.

Moreover, it can be shown that the equation (1.1), as an example of the
nonlinear equation of the porous medium type, combines forward-backforward
diffusion flow with the convection (or drift) of the function u in accordance
with the velocity field b. In particular, the operator div (f (|∇u|)∇u) implies
the forward diffusion in the regions where the squared gradient magnitude of the
function u is less than 1, whereas the backward diffusion appears in the area where
absolute values of the gradient are larger than 1.

Thus, the model (1.1) is an ill-posed problem from the mathematical point
of view and can produce many unexpected phenomena (see [13]). In particular,
we have no results of existence and consistency of the initial-boundary value
problem (1.1)–(1.3). To overcome this problem, many authors have been looking
for some regularizations of the equation (1.1) which inherit its usefulness in image
restoration but have better mathematical behavior (see, for instance, [1,3,7,14,15,
21] and the references therein). In order to guarantee the existence and uniqueness
of solution to the initial-boundary value problem (1.1)–(1.3), the authors in [8]
proposed to specify the equation (1.1) as follows

ut − div (K(t, x)∇u) + (∇u, b) = v in Q = (0, T )× Ω (1.7)

with K(t, x) = f (|∇Y ∗σ |), where ∇Y ∗σ = ∇Gσ ∗ Y ∗ is the spatially regularized
gradient of Y ∗, Gσ denotes the two-dimensional Gaussian filter kernel,

Gσ(x) =
1

2πσ2
e−
|x|2

2σ2 , x ∈ R2,

(∇Gσ ∗ Y ∗) (x) :=

ˆ
Ω
∇Gσ(x− y)Y ∗(y) dy, ∀x ∈ Ω,

and Y ∗ ∈ C([0, T ];L2(Ω)) is a special function which describes the simplest model
of image evolution over the interval [0, T ], and this function is defined as a solution
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of the following optimization problem
ˆ

Ω

[( ∂Y
∂t

∣∣∣∣
t=(T0+T1)/2

− div (f (|∇Yσ|)∇Y )|t=(T0+T1)/2

+
(
∇Y |t=(T0+T1)/2 , b

)
− v
)2]

dx

+

ˆ
Ω

[
λ2

1|∇v|2 + λ2
2

(
|∇b1|2 + |∇b2|2

)]
dx→ inf

v∈H1(Ω)

b∈H1(Ω;R2)

. (1.8)

However, it is well-known that the Perona–Malik model with the spatially
regularized gradient has several serious practical and theoretical difficulties. The
first one is that the spatial regularization of gradient in the form f (|∇Gσ ∗ u|)
leads to the loss of accuracy in the case when the signal is noisy, with white
noise, for instance [7]. Then the noise introduces very large, in theory unbounded,
oscillations of the gradient ∇u. As a result, the conditional smoothing introduced
by the model will not help, since all these noise edges will be kept.

The second drawback of the Perona–Malik model with the regularized gradient
(see also the model (1.7), (1.2), (1.3)) is the fact that the space-invariant Gaussian
smoothing inside the divergent term tends to push the edges in u away from their
original locations. We refer to [26] where this issue is studied in details. This
effect, known as edge dislocation, can be detrimental especially in the context of
the boundary detection problem and its application to the remote sensing and
monitoring.

In view of this, our prime interest in this paper is to study the equation (1.1)
and the corresponding PDE-constrained optimization problem without the space-
invariant Gaussian smoothing inside the divergent term. With that in mind we
consider the following optimal control problem

(R) Minimize J(v, u) =

ˆ
QT

∣∣∣∣D( 1

1 + |∇u|2

)∣∣∣∣
+

1

2

ˆ
Ω
|u(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u|2 dxdt+

γ

2

ˆ T

0

ˆ
ω
|v|2 dxdt (1.9)

subject to the constraints

ut − div
(

∇u
1 + |∇u|2

)
= vχω in QT := (0, T )× Ω, (1.10)

∂νu = 0 on (0, T )× ∂Ω, (1.11)
u(0, ·) = u0 in Ω, (1.12)

v ∈ Vad := L2(0, T ;L2(ω)), (1.13)

where T > 0, Ω is a bounded open subset of RN with a Lipschitz boundary,N ≥ 2,

ω is an open nonempty subset of Ω, χω =

{
1, x ∈ ω,
0, x ∈ Ω \ ω

}
is the characteristic
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function of the set ω, ∂ν stands for the outward normal derivative, u0, ud ∈ L2(Ω)
are given functions, λ, γ are given positive constants, and v : ω → R is a control.

Let us mention that control problems for the non-smoothed Perona-Malik
equation have received very little attention in the literature. Formulating the
control problem (1.9)–(1.13) for the nonlinear equation of the porous medium type
is mainly motivated by the observation that this statement can be successfully
applied to the image processing, in particular, to the reduction of mixture of
Gaussian and impulse noise with keeping safe the image contours and texture
(see, for instance, [2] and the references therein). On the other hand, the novelty
of this problem is that we involve into optimization the nonlinear equation with
rather special type (non-convex and non-coercive) of non-linearity. Because of this
the situation is even more delicate since (1.10) is not well-posed for the given type
of non-linearity.

As was mentioned before, the operator div (f (|∇u|)∇u) with a function f
given by (1.6) provides an example of a non-linear operator in divergence form
with a so-called degenerate nonlinearity. Moreover, since the function RN 3 s 7→
s

1+|s|2 ∈ RN is neither monotone nor coercive, we have no existence result for the
initial-boundary value problem (IBVP) (1.10)–(1.12) and its uniqueness. With
that in mind, we say that (v, u) is a feasible pair to the problem (1.9)–(1.13) if

v ∈ Vad := L2(0, T ;L2(ω)), u ∈ L2(0, T ;H1(Ω)), J(v, u) < +∞, (1.14)

and the following integral identity
ˆ T

0

ˆ
Ω

(
−u∂ϕ

∂t
+

(∇u,∇ϕ)

1 + |∇u|2

)
dxdt =

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx

(1.15)
holds for any function ϕ ∈ Φ, where

Φ =
{
ϕ ∈ C1(QT ) : ϕ(T, ·) = 0 in Ω and ∂νϕ = 0 on (0, T )× ∂Ω

}
.

In order to find out in what sense the solution takes the initial value u(0, ·) =
u0, we give the following result.

Proposition 1.1. Let (v, u) be a feasible pair to the problem (1.9)–(1.13). Then,

for any η ∈ C∞0 (Ω), the scalar function h(t) =

ˆ
Ω
u(t, x)η(x) dx belongs to

W 1,1(0, T ) and h(0) =

ˆ
Ω
u0(x)η(x) dx.

Proof. We set ϕ(t, x) = η(x)ζ(t) where ζ(·) is a smooth function on [0, T ] and
ζ(T ) = 0. Then it is clear that ϕ ∈ Φ and, therefore, the integral identity (1.15)
yields the equality
ˆ T

0

[
− h(t)ζ ′(t) +

(ˆ
Ω

(∇u,∇η)

1 + |∇u|2
dx−

ˆ
ω
ηv dx

)
︸ ︷︷ ︸

H(t)

ζ(t)

]
dt =

(ˆ
Ω
u0η dx

)
︸ ︷︷ ︸

k

ζ(0).

(1.16)



46 P. Kogut, Ya. Kohut, R. Manzo

Since h ∈ L1(0, T ) and H ∈ L1(0, T ), it follows from (1.16) that h ∈ W 1,1(0, T ),
i.e., the function h(t) is absolutely continuous on [0, T ]. Moreover, from (1.16) we
deduce that h(0) = k.

For further convenience we denote the set of all feasible solutions to the
problem (1.9)–(1.13) by Ξ. Because of the degenerate behavior of multiplier f(|∇u|),
the structure of the set Ξ and its main topological properties are unknown in
general.

The main focus in this paper consists in providing an approximation framework
which in spite of the technical difficulties leads to an implementable scheme,
namely, to the so-called indirect approach proving the existence of optimal solu-
tions and giving the procedure of their efficient approximation. With that in
mind, we show that the original optimal control problem (1.9)–(1.13) can be
approximated efficiently by a special family of optimal control problems for linear
parabolic equations with the fictitious BV -control in the principle part of elliptic
operator div (ρ∇u). In spite of the fact that the concept of fictitious controls is
not new in the literature, in this paper we utilize it in a new manner combining
it with the pointwise convergence of the gradients of solutions to some parabolic
equations.

The paper is organized as follows. In the next section, we give some prelimina-
ries and notions that will be needed in the sequel. Section 3 contains a few technical
results concerning the almost everywhere convergence of the gradients of solutions
to linear parabolic equations with BV -coefficients in the main part of the elliptic
operator. These results were obtained in the spirit of Bocardo and Murat approach
(see Theorems 4.1 and 4.3 in [6]). In Section 4 we give a precise statement of
the fictitious optimal control problems for linear parabolic equations with the
constrained BV -controls in the coefficients. We also discuss in this section the
existence issues for the proposed control problems. The announced approximation
framework is the subject of Section 5, where we provide an asymptotic analysis of
a family of approximated optimal control problems and show that some optimal
pairs to the original problem (1.9)–(1.13) can be attained (in an appropriate
topology) by optimal solutions to the approximated problems.

2. Preliminaries and Basic Definitions

We begin with some notation. For vectors ξ ∈ RN and η ∈ RN , (ξ, η) = ξtη
denotes the standard vector inner product in RN , where t denotes the transpose
operator. The norm |ξ| is the Euclidean norm given by |ξ| =

√
(ξ, ξ).

Let Ω be a given bounded open subset of RN (N ≥ 2) with a sufficiently
smooth boundary. We suppose that the unit outward normal ν = ν(x) is well-
defined for HN−1-a.a. x ∈ ∂Ω, where a.a. it means here with respect to the
(N − 1)-dimensional Hausdorff measure HN−1. For any subset D ⊂ Ω we denote
by |D| its N -dimensional Lebesgue measure LN (D). For a subset D ⊆ Ω let D
denote its closure and ∂D its boundary. We define the characteristic function χD
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of D by

χD(x) :=

{
1, for x ∈ D,
0, otherwise.

Let X denote a real Banach space with norm ‖ · ‖X , and let X ′ be its dual.
Let 〈·, ·〉X′;X be the duality form on X ′ ×X. By ⇀ and ∗

⇀ we denote the weak
and weak∗ convergence in normed spaces, respectively.

For given 1 ≤ p ≤ +∞, the space Lp(Ω;RN ) is defined by

Lp(Ω;RN ) =
{
f : Ω→ RN : ‖f‖Lp(Ω;RN ) < +∞

}
,

where ‖f‖Lp(Ω;RN ) =
(´

Ω|f(x)|p dx
)1/p for 1 ≤ p < +∞. The inner product of

two functions f and g in Lp(Ω;RN ) with p ∈ [1,∞) is given by

(f, g)Lp(Ω;RN ) =

ˆ
Ω

(f(x), g(x)) dx =

ˆ
Ω

N∑
k=1

fk(x)gk(x) dx.

We denote by C∞c (RN ) a locally convex space of all infinitely differentiable
functions with compact support. We recall here some functional spaces that will
be used throughout this paper. We define the Banach space H1(Ω) as the closure
of C∞c (RN ) with respect to the norm

‖y‖H1(Ω) =

(ˆ
Ω

(
y2 + |∇y|2

)
dx

)1/2

.

We denote by
(
H1(Ω)

)′ the dual space of H1(Ω). We also set H1(Ω; ∂Ω) ={
u ∈ H1(Ω) : ∂u

∂ν = 0
}
.

Let k > 0. In what follows, we will often use composition of functions in
Sobolev space H1(Ω) with the Lipschitz continuous function

Tk(s) = max {−k,min {s, k}} .

We recall the well-know result on Sobolev spaces about composition with regular
functions.

Theorem 2.1. Let G : R → R be a Lipschitz continuous function such that
G(0) = 0. If u belongs to H1(Ω), then G(u) belongs to H1(Ω) as well, and

∇G(u) = G′(u)∇u almost everywhere in Ω.

As a result, we have

∇Tk(u) = ∇uχD{|u| ≤ k} almost everywhere in Ω. (2.1)

Weak and Strong Convergence in L1(Ω). Throughout the paper we will often
use the concepts of the weak and strong convergence in L1(Ω). Hereinafter, ε



48 P. Kogut, Ya. Kohut, R. Manzo

denotes a small parameter which varies within a strictly decreasing sequence of
positive numbers converging to 0. When we write ε > 0, we consider only the
elements of this sequence, in the case ε ≥ 0 we also consider its limit ε = 0. Let
{aε}ε>0 be a sequence in L1(Ω). We recall that {aε}ε>0 is called equi-integrable
if for any δ > 0 there is τ = τ(δ) such that

´
S |aε| dx < δ for all aε and for every

measurable subset S ⊂ Ω of Lebesgue measure |S| < τ . A sufficient condition for
the sequence {aε}ε>0 to be equi-integrable is that there exists a constant C > 0
such that

sup
ε>0

ˆ
Ω
|aε|1+θ dx ≤ C (2.2)

for some θ > 0.

Theorem 2.2 (Dunford–Pettis). Let {aε}ε>0 be a sequence in L1(Ω). Then this
sequence is relatively compact with respect to the weak convergence in L1(Ω) if
and only if {aε}ε>0 is uniformly bounded in L1(Ω), i.e., supε>0 ‖uε‖L1(Ω) < +∞,
and {aε}ε>0 is equi-integrable.

Theorem 2.3 (Lebesgue–Vitali). If a sequence {aε}ε>0 ⊂ L1(Ω) is equi-integrable
and there exists a function a ∈ L1(Ω) such that aε(x) → a(x) almost everywhere
in Ω then aε → a in L1(Ω).

A typical application of VitaliвЂ™s theorem is provided by the next simple
lemma.

Lemma 2.1. Let {aε}ε>0 be a sequence in L1(Ω) such that aε(x)→ a(x) almost
everywhere in Ω, and this sequence is uniformly bounded in Lp(Ω) for some p > 1.
Then

aε → a in Lr(Ω) for all 1 ≤ r < p. (2.3)

The next lemma is useful in many applications.

Lemma 2.2. Let {aε}ε>0, {bε}ε>0, a, and b be a measurable functions such that

aε(x)→ a(x) a.e. in Ω, sup
ε>0
‖aε‖L∞(Ω) <∞, (2.4)

bε ⇀ b in L1(Ω). (2.5)

Then

ab ∈ L1(Ω) and aεbε ⇀ ab in L1(Ω). (2.6)

Functions with Bounded Variation. Let f : Ω → R be a function of L1(Ω).
Define
ˆ

Ω
|Df | = sup

{ˆ
Ω
f div ϕ dx :

ϕ = (ϕ1, . . . , ϕN ) ∈ C1
0 (Ω;RN ), |ϕ(x)| ≤ 1 for x ∈ Ω

}
,
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where div ϕ =
∑N

i=1
∂ϕi
∂xi

. According to the Radon-Nikodym theorem, if
´

Ω|Df | <
+∞ then the distributionDf is a measure and there exist a vector-valued function
∇f ∈ [L1(Ω)]N and a measure Dsf , singular with respect to the N -dimensional
Lebesgue measure LNbΩ restricted to Ω, such that

Df = ∇fLNbΩ +Dsf.

Definition 2.1. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if
´

Ω|Df | < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation.

Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) +
´

Ω|Df |, BV (Ω) is a Banach space.
The following compactness result for BV -functions is well-known:

Proposition 2.1. The uniformly bounded sets inBV -norm are relatively compact
in L1(Ω).

Definition 2.2. A sequence {fk}∞k=1 ⊂ BV (Ω) weakly-∗ converges to some f ∈
BV (Ω), and we write fk

∗
⇀ f if and only if the two following conditions hold: fk →

f strongly in L1(Ω), and Dfk ⇀ Df weakly-∗ in M(Ω;RN ), where M(Ω;RN )
stands for the space of all vector-valued Borel measures which is, according to
the Riesz theory, the dual of the space C(Ω;RN ) of all continuous vector-valued
functions ϕ vanishing at infinity.

In the proposition below we give a compactness result related to this conver-
gence, together with the lower semicontinuity property (see [4]):

Proposition 2.2. Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging to
some f in L1(Ω) and satisfying supk∈N

´
Ω|Dfk| < +∞. Then

(i) f ∈ BV (Ω) and
´

Ω|Df | ≤ lim infk→∞
´

Ω|Dfk|;

(ii) fk
∗
⇀ f in BV (Ω).

The following embedding results forBV -function is useful in many applications
(see [5, p.378]).

Proposition 2.3. Let Ω be an open bounded subset of RN with a Lipschitz
boundary. Then the embedding BV (Ω) ↪→ L

N
N−1 (Ω) is continuous and the embed-

dings BV (Ω) ↪→ Lp(Ω) are compact for all p such that 1 ≤ p < N
N−1 . Moreover,

there exists a constant Cem > 0 which depends only on Ω and p such that for all
u in BV (Ω), (ˆ

Ω
|u|p dx

)1/p

≤ Cem‖u‖BV (Ω), ∀ p ∈
[
1,

N

N − 1

]
.
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3. Some Auxiliaries

In this section we give a few technical results that can be viewed as some
specification of the well-known results of Bocardo and Murat (see Theorems 4.1
and 4.3 in [6]).

Proposition 3.1. Let {uk}k∈N be a weakly convergent sequence in L2(0, T ;H1(Ω)),
and

uk ⇀ u weakly in L2(0, T ;H1(Ω)). (3.1)

Assume that
∂uk
∂t

= hk in D′((0, T )× Ω) ∀ k ∈ N, (3.2)

where {hk}k∈N is a bounded sequence in L2(0, T ;H−1(Ω)). Then

uk → u strongly in L2
loc(0, T ;L2

loc(Ω)). (3.3)

Proof. For arbitrary test functions ψ ∈ C∞0 (Ω) and η ∈ C∞0 (0, T ), we set

φ(t, x) = η(t)ψ(x), zk = φuk, αk = φhk +
∂φ

∂t
uk.

Then, in view of the dense embeddings H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω), we see that,
for any bounded open subset S such that supp (ψ) ⊂ S ⊂ Ω,

zk(t, ·) ∈ H1
0 (S) and

∂φ(t, ·)
∂t

uk(t, ·) ∈ H−1(S) a.e. t ∈ (0, T ),

∂zk
∂t

= αk in D′((0, T )× S), ∀ k ∈ N,

sup
k∈N
‖zk‖L2(0,T ;H1

0 (S)) ≤ C, sup
k∈N
‖αk‖L2(0,T ;H−1(S)) ≤ C with some C > 0. (3.4)

Moreover, all these functions have their support included in the same compact
subset of (0, T )× S.

Since the embeddings H1
0 (S) ↪→ L2(S) and L2(S) ↪→ H−1(S) are compact,

the brilliant Aubin’s Lemma (see [24, Section 8, Corollary 4]) and conditions
(3.4) ensure that the sequence {zk}k∈N is compact in L2(0, T ;L2(S)). This implies
(3.3).

Proposition 3.2. Let ε ∈ (0, 1) and K ∈ (0,∞) be given values. Assume that
the sequences

{uk}∞k=1 ⊂ L2(0, T ;H1(Ω)), {vk}∞k=1 ⊂ L2(0, T ;L2(Ω)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT )
(3.5)
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are bounded and such that

uk ⇀ u weakly in L2(0, T ;H1(Ω)), (3.6)

vk ⇀ v weakly in L2(0, T ;L2(Ω)), (3.7)
ρk ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT , (3.8)

ρk ≥ ε a.e. in QT , ∀ k ∈ N, (3.9)
∂uk
∂t
− div (ρk∇uk) = vk in D′(QT ), ∀ k ∈ N. (3.10)

Then
∇TK(uk)→ ∇TK(u) strongly in L2

loc(0, T ;L2
loc(Ω))N , (3.11)

where TK : R→ R is the truncation at height K.

Proof. Let us denote the duality pairing between

L2(0, T ;H−1(Ω)) and L2(0, T ;H1
0 (Ω))

by < ·, · >QT . We also set SK(u) =

ˆ u

0
TK(s) ds. Then, using the trick with

approximation by convolution, it is easy to show that:

For any φ ∈ C∞0 (0, T ;C∞0 (Ω)) and any u ∈ L2(0, T ;H1(Ω))

with
∂u

∂t
∈ L2(0, T ;H−1(Ω)), we have〈∂u

∂t
, φTK(u)

〉
QT

= −
¨
QT

∂φ

∂t
SK(u) dxdt. (3.12)

With an arbitrary compact subset A ⊂ QT = (0, T )×Ω we associate a function
φA ∈ C∞0 (0, T ;C∞0 (Ω)) such that 0 ≤ φA(t, x) ≤ 1 in QT and φA(t, x) = 1 on A.
Then using in (3.10) the test function

zk = [TK(uk)− TK(u)]φA,

we obtain 〈∂uk
∂t

, φATK(uk)
〉
QT

by (3.12)
= −

¨
QT

∂φA
∂t

SK(uk) dxdt

and, therefore, (3.10) yields

−
¨
QT

∂φA
∂t

SK(uk) dxdt−
〈
∂uk
∂t

, φATK(u)

〉
QT

+

¨
QT

φAρk (∇uk,∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

[TK(uk)− TK(u)] ρk (∇uk,∇φA) dxdt

=

ˆ T

0
〈vk, [TK(uk)− TK(u)]φA〉H−1(Ω),H1

0 (Ω) dt. (3.13)
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As follows from the initial assumptions (3.5)–(3.8), the sequence {hk}k∈N with

hk = div (ρk∇uk) + vk

is bounded in L2(0, T ;H−1(Ω)). Then, Proposition 3.1 implies that, up to a
subsequence, the following assertion holds

TK(uk)− TK(u) ⇀ 0 weakly in L2(0, T ;H1(Ω)),

TK(uk)− TK(u)→ 0 strongly in L2
loc(QT ), and a.e. in QT . (3.14)

Therefore, the last term in (3.13) tends to zero as k →∞.
Moreover, using the fact that ρk(x) − ρ(x) → 0 a.e. in QT and the sequence

{(∇uk,∇φA)}k∈N is bounded in L2(QT ), we deduce that

¨
QT

[TK(uk)− TK(u)] ρk (∇uk,∇φA) dxdt→ 0 as k →∞.

Since

∂

∂t
SK(uk) = TK(uk)

∂uk
∂t

in D′((0, T )× Ω) ∀ k ∈ N,

it follows from Proposition 3.1 that SK(uk)→ SK(u) strongly in L2
loc(QT ), which

yields

lim
k→∞

¨
QT

∂φA
∂t

SK(uk) dxdt =

¨
QT

∂φA
∂t

SK(u) dxdt.

As for the second term in (3.13), we see that φATK(u) ∈ L2(0, T ;H1
0 (Ω)) and ∂uk

∂t
is a bounded term in L2(0, T ;H−1(Ω)). Hence,

〈
∂uk
∂t

, φATK(u)

〉
QT

→
〈
∂u

∂t
, φATK(u)

〉
QT

by (3.12)
=

¨
QT

∂φA
∂t

SK(u) dxdt

as k →∞.
Thus, we have shown that

lim
k→∞

¨
QT

φAρk (∇uk,∇TK(uk)−∇TK(u)) dxdt = 0. (3.15)
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Taking this fact into account, we observe that
¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇TK(uk)− ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt

=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

−
¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt

=

¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt

+

¨
QT

φA (ρk∇uk,∇TK(uk)−∇TK(u)) dxdt

−
¨
QT

φA (ρk∇u,∇TK(uk)−∇TK(u))χΛk dxdt

−
¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt, (3.16)

where χΛK stands for the characteristic function of the set

Λk := {(t, x) ∈ QT : |uk(t, x)| > K} .

In view of (3.8), (3.14), and (3.15), we have:
¨
QT

φA (ρ− ρk) (∇TK(uk),∇TK(uk)−∇TK(u)) dxdt
by Lemma 2.2→ 0,

¨
QT

φA (ρk∇uk,∇TK(uk)−∇TK(u)) dxdt
by (3.15)→ 0,

¨
QT

φA (ρ∇TK(u),∇TK(uk)−∇TK(u)) dxdt
by (3.14)→ 0.

As a result, it follows from (3.16) that

lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
= − lim

k→∞

¨
QT

φA (ρk∇u,∇TK(uk)−∇TK(u))χΛk dxdt.
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Utilizing the fact that χΛK∇TK(uk) = 0 almost everywhere in QT , we see that

lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt
= lim

k→∞

¨
QT

φA (ρk∇u,∇TK(u))χΛk dxdt.

Moreover, in view of the weak convergence (3.6) and the Lebesgue dominated
Theorem, we have

φA∇TK(u)χΛk → 0 strongly in L2(QT )N .

Hence,

0 = lim
k→∞

¨
QT

φAρ
∣∣∇TK(uk)−∇TK(u)

∣∣2 dxdt ≥ ε ‖TK(uk)−∇TK(u)‖2 ,

and we arrive at the announced convergence (3.11).

In fact, the main result of Proposition 3.2 can be specified as follows.

Theorem 3.1. Let ε ∈ (0, 1) be a given value and let

{uk}∞k=1 ⊂ L2(0, T ;H1(Ω)), {vk}∞k=1 ⊂ L2(0, T ;L2(Ω)),

and {ρk}∞k=1 ⊂ BV (QT ) ∩ L∞(QT )
(3.17)

be bounded sequences satisfying conditions (3.6)–(3.10). Then

∇uk → ∇u strongly in Lq(0, T ;Lq(Ω))N for any q ∈ [1, 2). (3.18)

Proof. We fix an arbitrary compact subset A ⊂ QT = (0, T ) × Ω and associate
with it a smooth function φA ∈ C∞0 (0, T ;C∞0 (Ω)) such that 0 ≤ φA(t, x) ≤ 1
in QT and φA(t, x) = 1 on A. In accordance with the initial assumptions, the
functions {vk}∞k=1 and v belong to the space L2(0, T ;H−1(Ω)). Hence,

∂u

∂t
∈ L2(0, T ;H−1(Ω)) and

∂uk
∂t
∈ L2(0, T ;H−1(Ω)), ∀ k ∈ N.

Therefore, in order to perform the usual integration by parts in the variational
equality (3.10), we can use for this TK(uk − u)φA as a test function. Taking into
account the representation (3.12) and using the fact that

∂ (uk − u)

∂t
− div (ρk∇uk − ρ∇u) = vk − v in D′(QT ), ∀ k ∈ N,

we obtain

−
¨
QT

∂φA
∂t

SK(uk − u) dxdt+

¨
QT

φA (ρk∇uk − ρ∇u,∇TK(uk − u)) dxdt

+

¨
QT

[TK(uk − u)] (ρk∇uk − ρ∇u,∇φA) dxdt

=

ˆ T

0
〈vk − v, [TK(uk − u)]φA〉H−1(Ω),H1

0 (Ω) dt. (3.19)
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Due to Proposition 3.1, we have

TK(uk − u) ⇀ 0 weakly in L2(0, T ;H1(Ω)), (3.20)

TK(uk − u)→ 0 strongly in L2
loc(QT ), and a.e. in QT , (3.21)

SK(uk − u)→ 0 strongly in L2
loc(QT ). (3.22)

Then, in view of (3.7), the first and last terms in (3.19) tend to zero as k → ∞.
Moreover, using the fact that {ρk}∞k=1 ⊂ L∞(QT ), ρk(x) − ρ(x) → 0 a.e. in QT ,
and the sequence {(∇uk −∇u,∇φA)}k∈N is bounded in L2(QT ), by the Lebesgue
dominated theorem we deduce that¨

QT

[
TK(uk − u)

]
(ρk∇uk − ρ∇u,∇φA) dxdt

=

¨
QT

[TK(uk − u)] ρk (∇uk −∇u,∇φA) dxdt

+

¨
QT

[TK(uk − u)] (ρk − ρ) (∇u,∇φA) dxdt→ 0 as k →∞. (3.23)

Thus, passing to the limit in (3.19) when k tends to infinity, we obtain

lim
k→∞

¨
QT

φA (ρk∇uk − ρ∇u,∇TK(uk − u)) dxdt

= lim
k→∞

¨
QT

φAρ (∇uk −∇u,∇TK(uk − u)) dxdt

+ lim
k→∞

¨
QT

φA(ρk − ρ) (∇uk,∇TK(uk − u)) dxdt

= lim
k→∞

¨
QT

φAρ (∇(uk − u),∇TK(uk − u)) dxdt = 0, (3.24)

where
lim
k→∞

¨
QT

φA(ρk − ρ) (∇uk,∇TK(uk − u)) dxdt = 0

by Lemma 2.2. Setting

Ek := φAρ|∇(uk − u)|2 in QT

and splitting the set A onto

BK
k = {(t, x) ∈ A : |uk(t, x)− u(t, x)| ≤ K} ,

GKk = {(t, x) ∈ A : |uk(t, x)− u(t, x)| > K} ,

we see that¨
A
Eθk dxdt =

¨
BKk

Eθk dxdt+

¨
GKk

Eθk dxdt

≤

(¨
BKk

Ek dxdt

)θ
|BK

k |1−θ +

(¨
GKk

Ek dxdt

)θ
|GKk |1−θ
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by Hólder inequality with some θ ∈ (0, 1). Since, for K fixed, we have |GKk | → 0 as
k →∞, and since the sequence {ρ∇(uk − u)}∞k=1 is bounded in L2(0, T ;L2(Ω)N ),
it follows that supk∈N ‖Ek‖L1(QT ) <∞, and, therefore,

lim
k→∞

(¨
GKk

Ek dxdt

)θ
|GKk |1−θ = 0.

Hence,

0 ≤ lim
k→∞

¨
A
Eθk dxdt

≤ lim
k→∞

(¨
BKk

Ek dxdt

)θ
|BK

k |1−θ


=

(
lim
k→∞

¨
QT

φAρ (∇(uk − u),∇TK(uk − u)) dxdt

)θ
× lim
k→∞
|BK

k |1−θ
by (3.24)

= 0. (3.25)

As a result, we deduce from (3.25) that Eθk → 0 strongly in L1(A). So, using a
sequence of compact sets A ⊂ QT , there exists a subsequence of {Ek}k∈N such
that

Ekn(t, x)→ 0 for almost each (t, x) ∈ QT .

Then the estimate (3.9) implies that

∇ukn(t, x)→ ∇u(t, x) for almost each (t, x) ∈ QT as n→∞.

To conclude the proof, it remains to notice that since the sequence {∇uk}∞k=1

is bounded in the space L2(0, T ;L2(Ω)N ), it follows from Vitaly’s theorem (see
Lemma 2.1) that

∇uk → ∇u strongly in Lq(QT ).

4. Regularization of the Original Optimal Control Problem

We introduce the following family of approximating control problems

(Rε) Minimize Jε(ρ, v, u) =
1

2

ˆ
Ω
|u(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|v|2 dxdt+

ˆ
QT

|Dρ|+ 1

ε

ˆ T

0

ˆ
Ω
|ρ− 1

1 + |∇u|2
|2 dxdt (4.1)
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subject to the constraints

ut − div (ρ∇u) = vχω in QT := (0, T )× Ω, (4.2)
∂u

∂ν
= 0 on (0, T )× ∂Ω, (4.3)

u(0, ·) = u0 in Ω, (4.4)

v ∈ Vad := L2(0, T ;L2(ω)), (4.5)
ρ ∈ Rad := {h ∈ BV (QT ) ∩ L∞(QT ) : 0 ≤ h(t, x) ≤ 1 a.e. in QT } . (4.6)

We say that a tuple (ρ, v, u) is a feasible solution to the problem (4.1)–(4.6) if

ρ ∈ Rad, v ∈ Vad, u ∈ L2(0, T ;H1(Ω)), (4.7)

ρ(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇u(t, x)|2

}
a.e. in QT , (4.8)

and this triplet satisfies the following integral identity

ˆ T

0

ˆ
Ω

(−ϕtu+ ρ (∇u,∇ϕ)) dxdt =

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx (4.9)

for each ϕ ∈ Ψ, where

Ψ =
{
ϕ ∈ C1(QT ) : ϕ(T, ·) = 0 in Ω and ∂νϕ = 0 on (0, T )× ∂Ω

}
.

The set of all feasible solution is denoted by Ξε.

Remark 4.1. Let us show that Ξε 6= ∅ for each ε > 0. Indeed, taking z = e−αtu,
we obtain the following IBVP for z:

zt + αz − div Â = e−αtvχω, z
∣∣∣
i=0

= u0, (4.10)

where the vector function Â = ρeαt∇z possesses the following monotonicity,
coercivity, and boundedness conditions(

Â(t, x, ξ)− Â(t, x, η), ξ − η
)
≥ 0,

(
Â(t, x, ξ), ξ

)
≥ ε2

1 + ε2
|ξ|2,

(
Â(t, x, ξ), ξ

)
≤ eαT |ξ|2,

and the operator Bz = αz − div Â is coercive in the space L2(0, T ;H1(Ω)), i.e.

〈Bz, z〉L2(0,T ;(H1(Ω))∗);L2(0,T ;H1(Ω)) ≥ α‖z‖
2
L2(QT ) +

ε2

1 + ε2
‖∇z‖2L2(QT ;RN )

≥ c0‖z‖2L2(0,T ;H1(Ω)).

Hence, the problem (4.10) has a unique solution for each v ∈ Vad [20]. As for the
original IBVP, the same result follows by multiplying of z by eαt. Moreover, in
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this case the integral identity (4.9) holds for any function ϕ ∈ Ψ and the energy
equality

ˆ
Ω
u2(t, x) dx+ 2

ˆ t

0

ˆ
Ω
ρ|∇u|2 dxdt

= 2

ˆ t

0

ˆ
ω
vu dxdt+

ˆ
Ω
u2

0 dx, 0 ≤ t ≤ T, (4.11)

is valid.

Our next step deals with the study of topological properties of the set of
feasible solutions Ξε to the problem (4.1)–(4.6).

Definition 4.1. A sequence {(ρk, vk, uk) ∈ Ξε}k∈N is called bounded if

sup
k∈N

[
‖ρk‖BV (QT ) + ‖vk‖L2(0,T ;L2(ω)) + ‖uk‖L2(0,T ;H1(Ω))

]
< +∞.

Definition 4.2. We say that a bounded sequence {(ρk, vk, uk) ∈ Ξε}k∈N of feasible
solutions τ -converges to a triplet

(ρ, v, u) ∈ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

if conditions

uk ⇀ u weakly in L2(0, T ;H1(Ω)), (4.12)

vk ⇀ v weakly in L2(0, T ;L2(ω)), (4.13)
ρk ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT (4.14)

hold true.

Remark 4.2. As follows from Theorem 3.1, if {(ρk, vk, uk) ∈ Ξε}k∈N is a τ -conver-
gent sequence of feasible solutions and (ρk, vk, uk)

τ→ (ρ, v, u), then ∇uk → ∇u
strongly in Lq(0, T ;Lq(Ω))N for any q ∈ [1, 2) and, passing to a subsequence if
necessary, we can assert that ∇uk(t, x)→ ∇u(t, x) a.e. in QT = (0, T )× Ω.

Remark 4.3. As immediately follows from (4.9), if (ρ, v, u) is a feasible solution
to the problem (4.1)–(4.6), then the equality

∂uk
∂t
− div (ρk∇uk) = χωvk in D′(QT )

holds in the sense of distributions for each k ∈ N. Moreover, if a sequence
{(ρk, vk, uk) ∈ Ξε}k∈N is bounded in the sense of Definition 4.1, then div (ρk∇uk)+
χωvk ∈ L2(0, T ;H−1(Ω)). Therefore, uk ∈ C([0, T ];L2(Ω)) for all k ∈ N (see [25,
Proposition III.1.2]) and due to J.L. Lions [22, Chapitre 1, Theorem 5.1] (we refer
also to [24] for some generalizations), the Banach space

W =

{
ϕ : ϕ ∈ L2(0, T ;H1(Ω)),

∂ϕ

∂t
∈ L2(0, T ;H−1(Ω))

}
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with the norm of the graph

‖ϕ‖W = ‖ϕ‖L2(0,T ;H1(Ω)) +

∥∥∥∥∂ϕ∂t
∥∥∥∥
L2(0,T ;H−1(Ω))

,

is compactly embedded into L2(0, T ;L2(Ω)).
Thus, the first term in the objective functional (4.1) is well defined onto the

set of feasible solutions. So, if {uk}k∈N is a bounded sequence in W and uk ⇀ u
weakly in L2(0, T ;H1(Ω)), then uk → u strongly in L2(0, T ;L2(Ω)) and, as a
consequence, uk(T, ·)→ u(T, ·) strongly in L2(Ω).

Before proceeding further, we establish the following important property.

Proposition 4.1. For every ε ∈ (0, 1) the set Ξε is sequentially closed with
respect to the τ -convergence.

Proof. Let {(ρk, vk, uk)}k∈N ⊂ Ξε be a τ -convergent sequence of feasible solutions
to the optimal control problem (4.1)–(4.6). Let (ρ, v, u) be its τ -limit. Our aim is
to show that (ρ, v, u) ∈ Ξε.

Since the inclusions χωv ∈ Vad := L2(0, T ;L2(Ω)) and u ∈ L2(0, T ;H1(Ω))
are obvious, let us show that the condition (3.9) is valid for some ε > 0. Indeed,
in view of Remark 4.2, we can suppose that, up to a subsequence,

uk(t, x)→ u(t, x) and
1

1 + |∇uk(t, x)|2
→ 1

1 + |∇u(t, x)|2
a.e. in QT .

Hence, in view of the definition of τ -convergence, the limit passage in the relation

ρk(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uk(t, x)|2

}
a.e. in QT

immediately leads us to the inequality (3.9) with ε̂ = ε2

1+ε2
. As for the inclusion

ρ ∈ Rad, it is a direct consequence of the weak-∗ compactness of bounded set Rad

in BV (QT ).
It remains to show that the limit triplet (ρ, v, u) is related by the integral

identity (4.9). To do so, it is enough to fix an arbitrary test function ϕ ∈ Ψ and
pass to the limit in relation

ˆ T

0

ˆ
Ω

(−ϕtuk + ρk (∇uk,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vkϕdxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx. (4.15)

Since ρk∇uk → ρ∇u strongly in Lq(QT ) for q ∈ [1, 2) by Lemma 2.1, it follows
that the limit passage in (4.15) leads to the integral identity (4.9). Thus, (ρ, v, u)
is a feasible solution to optimal control problem (4.1)–(4.6).
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We are now in a position to state the existence of optimal solutions to the
problem (4.1)–(4.6).

Theorem 4.1. Let ud ∈ L∞(Ω) be a given function, and let λ and γ be given
constants. Then, for each ε ∈ (0, 1), the optimal control problem (4.1)–(4.6) admits
at least one solution (ρ0

ε, v
0
ε , u

0
ε) ∈ Ξε.

Proof. Let ε ∈ (0, 1) be a fixed value. Then, as it was indicated in Remark 4.1,
the optimal control problem (4.1)–(4.6) is consistent, that is, Ξε 6= ∅.

Let {(ρk, vk, uk) ∈ Ξε}k∈N be a minimizing sequence to the problem (4.1)–
(4.6). Then the relation

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = lim
k→∞

[1

2

ˆ
Ω
|uk(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇uk|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|vk|2 dxdt +

ˆ
QT

|Dρk|+
1

ε

ˆ T

0

ˆ
Ω
|ρk −

1

1 + |∇uk|2
|2 dxdt

]
< +∞

and definition of the set Rad imply existence of a constant C > 0 such that

sup
k∈N
‖∇uk‖L2(0,T ;L2(Ω)N ) ≤ C,

sup
k∈N
‖vk‖L2(0,T ;L2(ω)) ≤ C,

and sup
k∈N
‖ρk‖BV (QT ) ≤ C.

(4.16)

Then, from the energy equality (4.11), we deduce that
ˆ T

0

ˆ
Ω
u2
k(t, x) dxdt ≤ 2T

ˆ T

0

ˆ
ω
vkuk dxdt+ T

ˆ
Ω
u2

0 dx

≤ 2T 2

ˆ T

0

ˆ
ω
v2
k dxdt+

1

2

ˆ T

0

ˆ
Ω
u2
k dxdt+ T

ˆ
Ω
u2

0 dx.

Hence,
sup
k∈N
‖uk‖L2(0,T ;L2(Ω)) ≤ 4T 2C2 + 2T‖u0‖2L2(Ω).

Utilizing this fact together with (4.16), we see that {(ρk, vk, uk) ∈ Ξε}k∈N is a
bounded sequence in the sense of Definition 4.1. As a result, there exist functions
ρ0
ε ∈ BV (QT ), v0

ε ∈ L2(0, T ;L2(ω)), and u0
ε ∈ L2(0, T ;H1(Ω)) such that, up to a

subsequence, (ρk, vk, uk)
τ→ (ρ0

ε, v
0
ε , u

0
ε) as k →∞. Since the set Ξε is sequentially

closed with respect to the τ -convergence (see Proposition 4.1), it follows that the
τ -limit tuple (ρ0

ε, v
0
ε , u

0
ε) is a feasible solution to optimal control problem (4.1)–

(4.6) (i.e., (ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε). To conclude the proof, we observe that ∇uk(t, x)→

∇u0
ε(t, x) a.e. in QT (see Remark 4.2) and, therefore,

ρk(t, x)− 1

1 + |∇uk(t, x)|2
→ ρ0

ε(t, x)− 1

1 + |∇u0
ε(t, x)|2

a.e. in QT .
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Since ∥∥∥∥ρk − 1

1 + |∇uk|2

∥∥∥∥
L∞(QT )

≤ 2 for all k ∈ N,

it follows that the sequence
{
ρk −

1

1 + |∇uk|2

}
k∈N

is equi-integrable. Hence,

Vitaly’s theorem implies that

ρk −
1

1 + |∇uk|2
→ ρ0

ε −
1

1 + |∇u0
ε|2

strongly in L2(QT ) (4.17)

(see Lemma 2.1). Taking this fact into account and observing that

lim inf
k→∞

ˆ T

0

ˆ
Ω
|ρk −

1

1 + |∇uk|2
|2 dxdt by (4.17)

=

ˆ T

0

ˆ
Ω
|ρ0
ε −

1

1 + |∇u0
ε|2
|2 dxdt,

lim
k→∞

ˆ
Ω
|uk(T )− ud|2 dx

by Remark (4.3)
≥

ˆ
Ω
|u0
ε(T )− ud|2 dx,

lim
k→∞

ˆ T

0

ˆ
Ω
|∇uk|2 dxdt

by (4.12)
=

ˆ T

0

ˆ
Ω
|∇u0

ε|2 dxdt,

lim inf
k→∞

ˆ T

0

ˆ
ω
|vk|2 dxdt

by (4.13)
≥

ˆ T

0

ˆ
Ω
|v0
ε |2 dxdt,

lim inf
k→∞

ˆ
QT

|Dρk|
by (4.14)
≥

ˆ
QT

|Dρ0
ε|,

we see that the cost functional Jε is sequentially lower τ -semicontinuous. Thus

Jε(ρ
0
ε, v

0
ε , u

0
ε) ≤ lim inf

k→∞
Jε(ρk, vk, uk) ≤ lim

k→∞
Jε(ρk, vk, uk) = inf

(ρ,v,u)∈Ξε
Jε(ρ, v, u),

and, therefore, (ρ0
ε, v

0
ε , u

0
ε) is an optimal triplet.

5. Asymptotic Analysis of the Approximated OCP (Rε)

The main goal of this section is to show that the original OCP (R) is solvable
and some solutions can be attained (in an appropriate topology) by optimal
solutions to the approximated problems (Rε). With that in mind, we make use
of the concept of variational convergence of constrained minimization problems
(see [9, 17, 18]) and study the asymptotic behavior of a family of OCPs (Rε) as
ε→ 0.

Before proceeding further, we adopt the following concept.

Definition 5.1. Let

{(ρε, vε, uε)}ε>0 ⊂ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

be an arbitrary sequence. We say that this sequence is bounded if

sup
ε>0

[
‖ρε‖BV (QT ) + ‖vε‖L2(0,T ;L2(ω)) + ‖uε‖L2(0,T ;H1(Ω))

]
< +∞.
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Definition 5.2. We say that a bounded sequence

{(ρε, vε, uε)}ε>0 ⊂ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

is w-convergent as ε → 0 and (ρε, vε, uε)
w→ (ρ, v, u) if (ρε, vε, uε)

τ→ (ρ, v, u) as
ε→ 0, i.e.,

uε ⇀ u weakly in L2(0, T ;H1(Ω)), (5.1)

vε ⇀ v weakly in L2(0, T ;L2(ω)), (5.2)
ρε ⇀ ρ weakly-∗ in BV (QT ) and a.e. in QT ; (5.3)

and ∇uε → ∇u strongly in L1(0, T ;L1(Ω)N ).

The following technical result will play a significant role in the sequel.

Lemma 5.1. Let {(ρε, vε, uε) ∈ Ξε}ε>0 be a τ -convergent sequence of feasible
solutions to OCPs (4.1)–(4.6), and let

(ρ, v, u) ∈ BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω))

be its τ -limit. Then (ρε, vε, uε)
w→ (ρ, v, u) as ε → 0, and (ρ, v, u) is subjected to

the constrains

ρ ∈ Rad, v ∈ Vad, u ∈ L2(0, T ;H1(Ω)), (5.4)

ρ(t, x) ≥ 1

1 + |∇u(t, x)|2
a.e. in QT , (5.5)

ˆ T

0

ˆ
Ω

(−ϕtu+ ρ (∇u,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vϕ dxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx, ∀ϕ ∈ Ψ. (5.6)

Proof. Since {(ρε, vε, uε) ∈ Ξε}ε>0 is a sequence of feasible solutions, it implies
that the equality

ˆ T

0

ˆ
Ω

(−ϕtuε + ρε (∇uε,∇ϕ)) dxdt

=

ˆ T

0

ˆ
ω
vεϕdxdt+

ˆ
Ω
u0(x)ϕ(0, x) dx, ∀ϕ ∈ Ψ (5.7)

holds true for all ε > 0. Then the limit passage in (5.7) leads to the relation (5.6).
Setting in this relation the test function ϕ as an element of C∞c (QT ) ⊂ Ψ, we see
that the τ -limit (ρ, v, u) satisfies the equation

∂u

∂t
− div (ρ∇u) = χωv
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in the sense of distributions D′(QT ). So, in view of Remark 4.3, we can suppose
that, for each ε > 0, we have the equalities

∂ (uε − u)

∂t
− div (ρk∇uε − ρ∇u) = (vε − v)χω in D′(QT ). (5.8)

Therefore, arguing as in the proof of Theorem 3.1, we use for (5.8) the test
function TK(uε − u)φA, where A is a compact subset of QT , and the function
φA ∈ C∞0 (0, T ;C∞0 (Ω)) is such that 0 ≤ φA(t, x) ≤ 1 in QT and φA(t, x) = 1 on
A. After integration by parts, we obtain

¨
QT

φAρε (∇uε −∇u,∇TK(uε − u)) dxdt =

¨
QT

∂φA
∂t

SK(uε − u) dxdt

−
¨
QT

φA(ρε − ρ) (∇u,∇TK(uε − u)) dxdt

−
¨
QT

φAρ (∇uε −∇u,∇TK(uε − u)) dxdt

−
¨
QT

φA(ρε − ρ) (∇uε,∇TK(uε − u)) dxdt

+

ˆ T

0
〈(vε − v)χω, [TK(uε − u)]φA〉H−1(Ω),H1

0 (Ω) dt. (5.9)

Since, by Proposition 3.1,

TK(uε − u) ⇀ 0 weakly in L2(0, T ;H1(Ω)), strongly in L2
loc(QT ), and a.e. in QT ,

SK(uε − u)→ 0 strongly in L2
loc(QT ) as ε→ 0,

it follows from (5.1)–(5.3) and the Lebesgue dominated theorem that the right
hand side of (5.9) tends to zero as ε→ 0. Hence, passing to the limit in (5.9), we
deduce:

lim
ε→0

¨
QT

φAρε (∇uε −∇u,∇TK(uε − u)) dxdt = 0. (5.10)

Setting
Eε := φAρε|∇(uε − u)|2 in QT

and aligning the set A into

Bε = {(t, x) ∈ A : |uε(t, x)− u(t, x)| ≤ K} ,
Gε = {(t, x) ∈ A : |uε(t, x)− u(t, x)| > K} ,

we see that
¨
A
Eθε dxdt ≤

(¨
Bε

Eε dxdt

)θ
|Bε|1−θ +

(¨
Gε

Eε dxdt

)θ
|Gε|1−θ



64 P. Kogut, Ya. Kohut, R. Manzo

by Hölder inequality with some θ ∈ (0, 1). Since, for K fixed, we have |Gε| → 0
as ε→ 0, and the sequence {ρε∇(uε − u)}ε>0 is bounded in L2(0, T ;L2(Ω)N ), it
follows that supε>0 ‖Eε‖L1(QT ) <∞, and, therefore,

lim
ε→0

(¨
Gε

Eε dxdt

)θ
|Gε|1−θ = 0.

Hence,

0 ≤ lim
ε→0

¨
A
Eθε dxdt

≤ lim
ε→0

[(¨
Bε

Eε dxdt

)θ
|Bε|1−θ

]

=

(
lim
ε→0

¨
QT

φAρ (∇(uε − u),∇TK(uε − u)) dxdt

)θ
lim
ε→0
|Bε|1−θ

by (3.24)
= 0. (5.11)

As a result, we deduce from (5.11) that Eθε → 0 strongly in L1(A). So, using a
sequence of compact sets A ⊂ QT converging in an appropriate sense to QT , there
exists a subsequence of {Eε}ε>0 (still denoted by the same index) such that

Eε(t, x)→ 0 for almost each (t, x) ∈ QT as ε→ 0.

Thus,

ρε(t, x) |∇uε(t, x)−∇u(t, x)|2 → 0 for a.e. (t, x) ∈ QT as εn → 0. (5.12)

Utilizing the fact that (ρε, vε, uε) ∈ Ξε for each ε > 0 and observing that
ε2

1 + ε2
→ 0 as ε→ 0, we see that

ρε(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uε(t, x)|2

}
≥ 1

1 + |∇uε(t, x)|2
a.e. in QT (5.13)

for ε > 0 small enough. Hence, from (5.13) and (5.11) we deduce:

0 ≤ lim
ε→0

¨
QT

1

1 + |∇uε|2
|∇uε −∇u|2 dxdt

≤ lim
ε→0

¨
QT

ρε |∇uε −∇u|2 dxdt = 0. (5.14)
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Since

‖∇uε −∇u‖2L1(0,T ;L1(Ω)N ) =

(ˆ T

0

ˆ
Ω
|∇uε −∇u| dxdt

)2

≤

(ˆ T

0

(ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dx

)1/2(ˆ
Ω

(
1 + |∇uε(x)|2

)
dx

)1/2

dt

)2

≤
ˆ T

0

ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dxdt

ˆ T

0

ˆ
Ω

(
1 + |∇uε(x)|2

)
dx dt

≤
(
|QT |+ sup

ε>0
‖uε‖2L2(0,T ;H1(Ω))

)ˆ
Ω

1

1 + |∇uε(x)|2
|∇uε −∇u|2 dx,

it follows from (5.14) that

lim
ε→0
‖∇uε −∇u‖2L1(0,T ;L1(Ω)N )

≤ C lim
ε→0

¨
QT

1

1 + |∇uε|2
|∇uε −∇u|2 dxdt = 0. (5.15)

Thus, we can specify the τ -convergence properties (5.1)–(5.3) as follows: in addition
to (5.1) ∇uε → ∇u strongly in L1(0, T ;L1(Ω)N ), and there exists a subsequence
{ε′} such that

∇uε′(t, x)→ ∇u(t, x) a.e. in QT . (5.16)

To conclude the proof, it remains to show that

ρ(t, x) ≥ 1

1 + |∇u(t, x)|2
a.e. in QT . (5.17)

To do so, it is enough to observe that

ρε(t, x) ≥ max

{
ε2

1 + ε2
,

1

1 + |∇uε(t, x)|2

}
≥ 1

1 + |∇uε(t, x)|2
a.e. in QT (5.18)

for ε > 0 small enough. Using the pointwise convergence (5.16) and (5.3) and
passing to the limit in (5.18) as ε → 0, we arrive to the announced property
(5.5).

Our next step is to discuss the issue related to the existence of solutions to the
original optimal control problem (1.9)–(1.13) and their attainability by optimal
solutions of the approximated problems (Rε). Before we go on, we assume that
the set of feasible solution Ξ to the problem (1.9)–(1.13) is non-empty. In the case
when the initial state u0 is sufficiently smooth and supp (u0) ⊂ ω, this assumption
can be easily verified. Indeed, let ϕ ∈ C∞([0, T ];C∞c (ω)) be an arbitrary function
such that ϕ(0, x) = u0(x) in Ω. Then it is easy to check that the pair

(v, u) :=

([
ϕt − div

(
∇ϕ

1 + |∇ϕ|2

)]⌊
x∈ω

, ϕ

)
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belongs to the set Ξ. Thus, Ξ 6= ∅.
We begin with the following result that can be viewed as a direct consequence

of Lemma 5.1 and Theorem 4.1.

Proposition 5.1. Let ud ∈ L∞(Ω) be a given function, and λ and γ be given
constants. Let

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a bounded sequence of optimal solutions
to the approximated problems (4.1)–(4.6) when the small parameter ε varies
within a strictly decreasing sequence of positive numbers converging to zero. Then
there is a subsequence of

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

, still denoted by the suffix ε, and
distributions ρ0 ∈ Rad ⊂ BV (QT ), v0 ∈ Vad, and u0 ∈ L2(0, T ;H1(Ω)) such that
they satisfy conditions (5.5)–(5.6), and (ρ0

ε, v
0
ε , u

0
ε)

w→ (ρ0, v0, u0) as ε→ 0.

The key point in Proposition 5.1 is the assumption that a given sequence of
optimal solutions to the approximated problems (4.1)–(4.6) is bounded. Let us
show that this assumption can be omitted if only the original optimal control
problem is consistent, i.e. Ξ 6= ∅.

Proposition 5.2. Assume that Ξ 6= ∅. Let
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a sequence
of optimal solutions to the approximated problems (4.1)–(4.6). Then there exists
a constant C > 0 independent of ε > 0 such that

sup
ε>0

[
‖ρ0

ε‖BV (QT ) + ‖v0
ε‖L2(0,T ;L2(ω)) + ‖u0

ε‖L2(0,T ;H1(Ω))

]
≤ C. (5.19)

Proof. Let (v̂, û) ∈ Ξ be a feasible solution to optimal control problem (1.9)–
(1.13). Hence, this pair satisfies conditions (1.14)–(1.15). Setting ρ̂ := (1+|∇û|2)−1

in QT , we see that

0 ≤ ρ̂(t, x) ≤ 1 a.e. in QT and ρ̂ ∈ BV (QT ) ∩ L∞(QT ),

and the pair (ρ̂, û) satisfies inequalities (4.8) for ε > 0 small enough. Hence,
ρ̂ ∈ Rad and, as a consequence, we deduce: (ρ̂, v̂, û) ∈ Ξε for ε > 0 small enough.
Therefore,

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = Jε(ρ
0
ε, v

0
ε , u

0
ε) ≤ Jε (ρ̂, v̂, û)

=
1

2

ˆ
Ω
|û(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇û|2 dxdt

+
γ

2

ˆ T

0

ˆ
ω
|v̂|2 dxdt+

ˆ
QT

|Dρ̂| = C < +∞.

From this and definition of the set Rad, we deduce that

‖∇u0
ε‖2L2(0,T ;L2(Ω)N ) ≤

2

λ
C, ‖v0

ε‖2L2(0,T ;L2(Ω)) ≤
2

γ
C, (5.20)

ˆ
QT

∣∣Dρ0
ε

∣∣ ≤ C, ‖ρ0
ε‖BV (Ω) ≤ |QT |+ C, (5.21)

ˆ T

0

ˆ
Ω

∣∣∣∣ρ0
ε −

1

1 + |∇u0
ε|2

∣∣∣∣2 dxdt ≤ Cε (5.22)
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for all ε > 0 small enough. Then energy equality (4.11) implies that

ˆ T

0

ˆ
Ω

[
u0
ε

]2
dxdt ≤ 2T

ˆ T

0

ˆ
ω
v0
εu

0
ε dxdt+ T

ˆ
Ω
u2

0 dx

≤ 2T 2

ˆ T

0

ˆ
ω

[
v0
ε

]2
dxdt+

1

2

ˆ T

0

ˆ
Ω

[
u0
ε

]2
dxdt+ T

ˆ
Ω
u2

0 dx.

Therefore,

sup
ε>0
‖u0

ε‖L2(0,T ;L2(Ω)) ≤ 8T 2C

γ
+ 2T‖u0‖2L2(Ω). (5.23)

Thus, the sequence
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

is bounded in

BV (QT )× L2(0, T ;L2(ω))× L2(0, T ;H1(Ω)).

The next step of our analysis is to show that the pair (v0, u0) is optimal to
the original OCP (R) provided (ρ0, v0, u0) is a cluster tuple of a given sequence of
optimal solutions

{
(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

. To do so, we will utilize some hints from
the recent papers [10, 16] where the so-called indirect approach to the existence
problem of optimal solutions has been proposed.

Theorem 5.1. Assume that Ξ 6= ∅. Let
{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

be a sequence
of optimal solutions to the approximated problems (4.1)–(4.6). Let (ρ0, v0, u0) ∈
BV (QT )×L2(0, T ;L2(ω))×L2(0, T ;H1(Ω)) be a w-cluster tuple (in the sense of
Definition 5.2) of a given sequence of optimal solutions Then

(v0, u0) ∈ Ξ, ρ0(t, x) =
1

1 + |∇u0(t, x)|2
a.e. in QT , (5.24)

lim
ε→0

inf
(ρ,v,u)∈Ξε

Jε(ρ, v, u) = lim
ε→0

Jε(ρ
0
ε, v

0
ε , u

0
ε) = J(v0, u0) = inf

(v,u)∈Ξ
J(v, u). (5.25)

Proof. Arguing as in the proof of Proposition 5.2, it can be shown that there exists
a constant C > 0 such that estimates (5.20)–(5.23) hold true. Hence, the sequence{

(ρ0
ε, v

0
ε , u

0
ε) ∈ Ξε

}
ε>0

is compact with respect to the τ -convergence. Moreover, in
view of Proposition 5.1 and the Lebesgue Dominated Theorem, we can suppose
that, up to a subsequence,

(ρ0
ε, v

0
ε , u

0
ε)

w→ (ρ0, v0, u0) (5.26)
1

1 + |∇u0
ε|2
→ 1

1 + |∇u0|2
strongly in L2(QT ) as ε→ 0, (5.27)

ρ0
ε(t, x)− 1

1 + |∇u0
ε(t, x)|2

→ ρ0(t, x)− 1

1 + |∇u0(t, x)|2
a.e. in QT , (5.28)

and
(
ρ0
ε −

(
1 + |∇u0

ε|2
)−1
)
∈ L∞(Ω).
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Then it follows from Vitaly’s theorem (see Lemma 2.1) that

ρ0
ε −

(
1 + |∇u0

ε|2
)−1 → ρ0 − 1

1 + |∇u0|2
strongly in L2(Ω).

However, as follows from the third estimate in (5.22), the L2-limit of the sequence{
ρ0
ε − 1

1+|∇u0
ε|2

}
ε>0

is equal to zero. Hence, we obtain

ρ0(t, x) =
1

1 + |∇u0(t, x)|2
a.e. in QT .

Thus,

(ρ0
ε, v

0
ε , u

0
ε)

w→
(

1

1 + |∇u0|2
, v0, u0

)
as ε→ 0.

Taking into account Proposition 5.1, we see that (v0, u0) is a feasible solution to
the original OCP (R). Moreover, as a direct consequence of the properties (5.27),
we have the following estimate

lim inf
ε→0

Jε(ρ
0
ε, v

0
ε , u

0
ε) ≥

1

2

ˆ
Ω
|u0(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u0|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v0|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u0|2

)∣∣∣∣ = J(v0, u0). (5.29)

Let us assume for a moment that the pair (v0, u0) is not optimal for (R)-
problem. Then there exists another pair (v∗, u∗) ∈ Ξ such that

J(v∗, u∗) < J(v0, u0) < +∞. (5.30)

Setting ρ∗ =
(
1 + |∇u∗|2

)−1, we deduce from condition (v∗, u∗) ∈ Ξ that the tuple
(ρ∗, v∗, u∗) is a feasible solution to each approximate problem (Rε), i.e.,

(ρ∗, v∗, u∗) ∈ Ξε, ∀ ε ∈ (0, 1). (5.31)

Taking this fact into account, we get

J(v0, u0) =
1

2

ˆ
Ω
|u0(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u0|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v0|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u0|2

)∣∣∣∣
by (5.29)
≤ lim inf

ε→0
Jε(ρ

0
ε, v

0
ε , u

0
ε) = lim inf

ε→0
inf

(ρ,v,u)∈Ξε
Jε(ρ, v, u)

≤ lim
ε→0

Jε(ρ
∗, v∗, u∗) =

1

2

ˆ
Ω
|u∗(T )− ud|2 dx+

λ

2

ˆ T

0

ˆ
Ω
|∇u∗|2 dxdt

+
γ

2

ˆ T

0

ˆ
Ω
|v∗|2 dxdt+

ˆ
QT

∣∣∣∣D( 1

1 + |∇u∗|2

)∣∣∣∣
+

1

ε

ˆ T

0

ˆ
Ω

∣∣∣∣ρ∗ − 1

1 + |∇u∗ |2

∣∣∣∣2 dxdt = J(v∗, u∗).
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Thus, J(v0, u0) ≤ J(v∗, u∗) and we come into a conflict with condition (5.30).
Hence, the limit pair (v0, u0) is optimal for the original OCP (R).

As follows from Theorem 5.1, the optimal solutions to the approximated
problems (ρ0

ε, v
0
ε , u

0
ε) can be considered as a basis for the construction of suboptimal

controls to the original problem (R) (for the details we refer to [9, 11,12,19])
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7. F. Catté, P.L. Lions, J-M. Morel, T. Coll, Image Selective Smoothing and
Edge Detection by Nonlinear Diffusion, SIAM Journal on Numerical Analysis, 29
(1) (1992), 182–193.

8. C. D’Apice, P.I. Kogut, R. Manzo, On coupled two-level variational problem
in Sobolev-Orlicz space, submitted for publication.

9. C. D’Apice, U. De Maio, P.I. Kogut, Suboptimal boundary control for elliptic
equations in critically perforated domains, Ann. Inst. H. Poincaré Anal. Non
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Systems and Control, Birkhäuser Verlag, Boston, 2011.

19. P.I. Kogut, R. Manzo, On Vector-Valued Approximation of State Constrained
Optimal Control Problems for Nonlinear Hyperbolic Conservation Laws, Journal of
Dynamical and Control Systems, 19 (2) (2013), 381–404.

20. O.A. Ladyzhenskaja, V.A. Solonnikov, N.N. UralвЂ™ceva, Linear and quasilinear
equations of parabolic type, Translations of the American Mathematical Society,
American Mathematical Society, Providence, 1968.

21. S. Lecheheb, M. Maouni, H. Lakhal, Image Restoration Using a Novel Model
Combining the Perona-Malik Equation and the Heat Equation, International Journal
of Analysis and Applications, 19 (2) (2021), 228–238.
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