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Abstract. We deal with the initial-boundary value problems with some restrictions at
infinity for linear and nonlinear anisotropic parabolic second-order equations in unbounded
domains with respect to the spatial variables. The weak solutions of our problem in
Lebesgue and Sobolev spaces with variable exponents is considered. We prove theorems
on the existence and uniqueness of the weak solutions using the method based on Saint-
Venant principle, and the monotonicity method. Moreover, we obtain estimate of the weak
solutions.
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1. Introduction

Let n be a natural number, and R™ be the linear space of ordered collections
z = (21, ..., ) of real numbers with a norm |z| := (|22 +... 4 |z,|?)/2. Suppose
that Q is an unbounded domain in R™, and 992 (boundary of the domain 2) is a
piecewise-smooth surface. Let v = (v1, ..., 1) be a outward-pointing normal unit
vector on 0f). Suppose 92 = I'g U I'1, where I'y is a closure of an open set on
0 (in particular, Io = 0 or Ty = 9Q), T'; := 9N\ Ty. Put @ := Q x (0,7),
Yo : =T x(0,7), 1 :=T71 x (0,T), where T' > 0. Denote by Bd(f2) the set of
all bounded subdomains of €.

We consider the problem: to find the function u : Q@ — R that satisfies (in
some sense) the parabolic equation

n

Up — Z diai(:z,t, u, Vu) + ag(z, t,u, Vu) = f(x,t), (x,t) €Q, (1.1)

N
i=1 *
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the boundary conditions

ul =0, =0, (1.2)

and the initial condition
u(z,0) =up(z), =€, (1.3)

where a; : Q X R 5 R, i=0,n, f:Q = R, ug: Q = R are given real-valued

Ju(x,t
functions, duz, ) =y ai(x, t,u, Vu) vi(x) is an exterior conormal derivative

oy,
of u in point (x,t) € Xy.

Remark 1.1. An simpler example of the equations of type (1.1) considered here is

Ut — Z (aij(xa t)u:vj):m‘ + Zaj(l‘, t)urj +60(x, t)u = f(xa t)? (J}, t) € Qv (14)
1,7=1 7=1

where @;; = @j; € Loo(Q), i,j = 1,n, are functions such that for a.e. (z,t) € Q
we have

n n
> @il tyming = w > Iml?, () €RT, w = const >0,
ij=1 =1

and @; € Loo(Q), 7 = 0,n, f: Q@ — R is such that f € Ly(Q' x (0,7)) for all
O € Bd(Q).

In Remark 3.4, we have given additional conditions for the coefficients of
equation (1.4), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.4), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. O

Remark 1.2. An more complex example of the equations of type (1.1) considered
here is

k

up— > (@2, ), )z,

ij=1

= Y @i, ) e, [P g, ), + do(z, tu = fl,t), (1.5)
i=k+1

(z,t) € Q, where k € {1,...,n—1} and Q such that QN{z = (z1, ..., Tk, Tk11, ..., Tn)
€ R™ | |z1[*+...+|2x|* < 72} is bounded for each T > 0, for example, Q = Q0 xQy,
Q is an unbounded domain in space {(z1,..., k) ‘ x1,....xp € R}, and Oy is a
bounded domain in space {(g41, ..., Tn) ‘ Tkt - Tn, € R}. Also we suppose that
1) a;j = aj; € Loo(Q), i,j = 1,k, are functions such that for a.e. (z,t) € Q a
quadratic form Zﬁjzl aij(x, t)ning, (m,....,nk) € R*, is positive, 2) for every i €
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{0,k +1,...,n} a function @; : Q — R is measurable, and 0 < essinfo/, (1) a@; <
essSUpq/y (o) @ < +oo for all Q' € Bd(Q), 3) for every i € {k +1,...,n} a
function p; : @ — R is measurable, and 1 < essinfo p; < esssupg p; < +00
for all Q' € Bd(Q) (the functions p;,i = k+ 1,n, are called exponents of the
nonlinearity).

In remark 3.5, we have given additional conditions for the coefficients of
equation (1.5), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.5), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. O

Initial-boundary value problems for parabolic equations in unbounded domains
with respect to the spatial variables were studied by many authors. As is well
known, to guarantee the uniqueness of the solution of the initial-boundary value
problems for linear parabolic equations in unbounded domains (in particular,
these problems can be described by (1.4), (1.2), (1.3)) we need some restrictions
on solution’s behavior as |z| — +oo (for example, solution’s growth restriction
as |x| — oo, or belonging of solution to some functional spaces). Since the
uniqueness of solution is the determining condition to the well-posedness of prob-
lems for evolutionary equations, then it is naturally to formulate the initial-
boundary value problem for equation (1.1) in the following form: to find the
solution of this equation that satisfies conditions (1.2), (1.3), and some restrictions
on its behavior as |x| — +o00. Firstly this was obtained in [1]. There it was shown
that the classical solution of the Cauchy problem for heat equation

u—Au=0, (z,t)eR"x(0,T], uli=0 =wup(x), z€R", (1.6)
is a unique in the class of the functions such that
lu(z,t)| < Ae?™” for all (z,t) € R" x [0,T], (1.7)

where constants a, A are depending on u, while restriction (1.7) is an essential
condition for the uniqueness of the solution of the problem. Or rather, in [1],
[2] was proved that problem (1.6) with ugp = 0 has a nontrivial solution with
growth Ae?®"™* as |z| — 400 for € > 0. Remark that restriction (1.7) can be
interpreted as an analog of the boundary condition at infinity. Similar results for
weak solutions of linear parabolic equations from a wide class were obtained in [3],
and to substantiate these results used an analogue of the principle of Saint-Venant
known in mechanics. The similar situation is with nonlinear parabolic equations
from certain classes (see [4-9], etc).

Note that we need some restrictions on the data-in behavior as |z| — 400 to
solvability of the initial-boundary value problems for parabolic equations conside-
red above. In particular, in the paper [1] it was shown that a classical solution of
a problem (1.6), (1.7) exists if ug satisfies the condition: |ug(z)| < Bebl*® for all
x € R™, where b, B are any constants.

However, there are nonlinear parabolic equations for which the corresponding
initial-boundary value problems are unique solvable without any conditions at



Initial-boundary value problems for parabolic equations 101

infinity. First result was proved in [10] for equation (1.5) with py = const > 2,
and pgi1 = ... = p, = 2. Similar results were obtained for nonlinear parabolic
equations in [10-20], etc.

Nonlinear differential equations with variable exponents of the nonlinearity
(for example, equation (1.5)) appear as mathematical models in various physical
processes. In particular, these equations describe electroreological substance flows,
image recovering processes, electric current in the conductor with changing tempe-
rature field (see [21]). Nonlinear differential equations with variable exponents
of the nonlinearity were intensively studied in [22-29], etc. The corresponding
generalizations of Lebesgue and Sobolev spaces (see [30]) were used in these
investigations.

In this work we consider a class of second order parabolic equations in unboun-
ded domains with respect to the spatial variables, which require for the correct
formulation of the initial-boundary value problems of setting conditions for the
behavior of the solution at infinity. This class contains both linear (see, for
example, (1.4)) and nonlinear equations with variable exponents of the nonlinearity
(see, for example, (1.5))). Here we complement and generalize results for linear
(see, for example, [3]), and nonlinear parabolic equations with constant exponents
of the nonlinearity (see, for example, [6]). As we know from the available sources,
nonlinear parabolic equations with variable exponents of the nonlinearity were
not previously investigated in the context of the problem under consideration. In
our researches, we use an analog of the well-known in mechanics Saint-Venant
principle. It was developed in [3,6, 31, 32|, and others. Moreover, to prove the
solvability of our problem we use the method of exhaustion for unbounded domains,
and the monotonicity method [33].

The article is organized as follows. In Section 2, we describe functional spaces
which are used in the sequel. In Section 3, we set the researched problem and
formulate the main results. Section 4 contains auxiliary statements that are used
in the next section. Finally, Section 5 is devoted to substantiation of the main
results.

2. Main notation

Firstly, we introduce some functional spaces. Let r : & — R be a measurable
function, r(z) > 1 for almost every (a.e.) z € Q, and esssup,cq/ 7(z) < oo for any
Q' € Bd(Q2). For any Q' € Bd(2) we denote by L,.y()') the linear space of (classes
of) measurable functions v : ' — R such that por,(v) == [o, Jv(z)|"®) dz < oco.
This is the Banach space with a norm

[0l @) = A >0 | porp(v/A) <1}

Space LT(.)(Q’ ) is called the Lebesgue space with variable exponent or generalized
Lebesgue space (see, for example, [30]). If r(z) > 1 for a.e. z € €, put by definition
r'(x) :=r(x)/(r(zr)—1) for a.e. € Q. As is well known, the dual space (L, (?2'))’
can be identified with LT/(,)(Q’) under the condition essinf,cq r(z) > 1. Note
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also that in the case r(z) = r = const > 1 for a.e. z € Q' € Bd(Q) we have
Lyy () = Le(), and || - Iz, @) = | - lz.(2)-

Denote by Ly 10¢(€2) the linear space of (classes of) measurable functions
v : Q@ — R such that their restrictions v|o belong to the space L,.y(Y') for
any set Q' € Bd(Q). This space with a family of seminorms {|| - HLTM(Q/) |V €
Bd(2)} is complete locally convex. Then a sequence {v;}p2; converges to v in
Ly(),10¢(82) strongly (correspondly, weakly), if for any domain ' € Bd(f) the
sequence {vi|or}2; converges to v|gr in L,(.y(Q2') strongly (correspondly, weakly).
As above, we introduce the space Lr( (@), where Q" = ' x (0,T), Q' € Bd(Q),
by using the functional p¢y - = [Jo lw(z, 1) )|"@®) dadt instead of pgy - (v). Then

we define a complete locally convex space LT(_)JOC(Q) along with a family of
seminorms {|| - ||, ., @x(0m) | " € Bd(Q)}.

Let the following condition holds:
(P) p = (po,p1,--.,pn) : & — R is a vector-valued function such that for every
i € {0,1,...,n} the function p; : @ — R is measurable, and for any Q' € Bd()
we have 1 < essinfoy p; < esssupg p; < +00.

Let p'= (pp, pl, - - -, pl,) be the vector-valued function such that ( y T /( y=1
for a.e. x € Q, i = 0,n. Obviously, the function p’ satisfies cond1t1on (P) with p!
instead of p;, i = 0, n.

For any domain Q' € Bd(Q2) we define the space

W) = {0 € Lyy(y () | g, € Ly s (), i =T}

This is the Banach space with the norm
n
ol @y = ol + - Nowllz,, o
i=1

Space Wpl(‘)(Q') is called the Sobolev space with variable exponent or generalized

Sobolev space (see, for example, [30]). Denote by Wpl(

convex space of (classes of ) functions v € Ly, (). 10c(Q2) such that vy, € Ly, () 100(),
i = 1,n, along with a family of seminorms {||UHW1 (@) | @ € Bd()}. Let

/V[Z)l(.) 10c(€2) be the closure of the set cl@Q) : {v e CYQ) | vl[r, = 0} in
space Wp(,) 1oc (). By Wpl(.) .(2) we denote a subspace of Wl() 1o (€) consisting
of functions with bounded supports.

For the domain Q" = Q' x (0,T), where ' € Bd(Q), we put

), loc () the complete locally

W, (@) == {w € L) (@) | way € Ly (@), i=T,n}.

This is the Banach space with the norm

n
el gy = Il @n + D Il @)
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Denote by W% o0, 1OC(Q) the complete locally convex space of (classes of) functions
w € Lp0(~),loc(Q) such that ws, € Ly, (), 10c(@), i = 1,n, along with a family

‘ Q' € Bd(Q)}. By Wl((; 10e(@) we denote a

(Q) such that w(-, t) belongs to Wpl(-) 1oc (€2) for

of seminorms {HwHWm)( OT)

subspace of functions w € W
a.e. t € (0,7).
By definition, put

), loc

C([0,T); Lojoc(2)) := {w : [0, T] = Lo 10c(S2) } w e C([0,T]; L2 () V' € Bd(Q)}.
This space with the family of seminorms

wlleqomza ) = s, |w(-, 8]y 1 € Bd(Q)}

is complete locally convex.
Denote by

Uptoe(@) 1= W5 100(@) 1 C((0, T]; Lo 1o (2))-

This space is complete locally convex along with a family of seminorms
Ul rngoy + Illcqoyzaery | € B},

Finally, let C}(0,7) c C*(0,T) be a set of functions with compact supports
n (0,7).

3. Statement of the problem and formulation of main results

We will consider weak solutions of the problem (1.1) — (1.3). To define them,
we introduce corresponding data-in classes.

Let p = (po,p1,---,pn) be a vector-valued function that satisfies condition
(P). By A, we denote all ordered collections (ag, a1, ..., a,) of the real functions
satisfying the following conditions:

(Aq) for every i € {0,1,...,n}, function a;(x,t,p, &), (z,t,p,€) € Q x R is
a Carathéodory, i.e., function a;(x,t,-,-) : R™*™ — R is a continuous for
a.e. (z,t) € @, and function a;(-, -, p,€) : @ — R is a measurable for every
(p, &) € R in addition, a;(z,t,0,0) = 0 for a.e. (z,t) € Q,i =0, n;

(Ay) for every i € {0,1,...,n}, for a.e. (x,t) € Q, and for every (p,£) € RI*"
the following inequality holds
i, t, p, )] <l (, 1) (|07 +Z|€ PP 4y o (2, 1),

7j=1

where hi1 € Loo,10c(Q), hi2 € L P, 1oc(@)-



104 M. Bokalo

Now we give a definition of a weak solution of problem (1.1) — (1.3). We assume

that p satisfies condition (P), (ao, a1, ...,an) €Ay, f € Lajoc(Q), uo € L2 1oc(2).

Definition 3.1. A weak solution of problem (1.1) — (1.3) is called a function

u € Upioc(Q) that satisfies (in the sense of space C([0,T7]; La1oc(£2))) the initial
condition

u(-,0) = up(-) a.e. on €, (3.1)
and the integral identity

// [—utbg’ + ) ai(x,t,u, Vu)ihe, e + ao(x, t, u, V)] dudt
Q i=1

= //wacpdxdt Ve Wiy (Q), Yo e CHO,T). (3.2)

Suppose 0 € 2. Let k € {1,...,n} be a number such that for any 7 > 0 the
set Q== QN{z € R" | |z + ... + |x[? < 72} is bounded. For any 7 > 0 we

denote by €2, a connected component of the set € that contains 0. For any 7 > 0
put Q; := Q; x (0,7T"). Obviously, Q = (.o 27, Q@ = U, @~

The choice of value k depends on the geometry of the domain € (up to the
numbering of variables z1,...,z,). Obviously, in the general case we can take
k = n, and, in this case, the class of equations considered below will consist of
generalizations of equation (1.4), or rather, of almost linear equations. But in the
case of k < n the class of equations to which the following results apply is wider
than in the case of k = n, and the smaller the value of k the wider the class of
these equations (to confirm this, see (1.5)).

Let us illustrate possibilities of the value’s k considered two examples.

Example 3.1. Assume Q = Q; x 5, where 2 is an unbounded domain in Rl =
{(z1,...,7) | 2; €R, i = 1,1} forsomel € {1,...,n—1}, Qs is a bounded domain
in R" = {(z151,...,20) |2; € R, i =+ 1,n}, and 0 € Q. Then we can take
arbitrary k € {l,...,n}. If k = [, then Q; = Oy » x Qy for any 7 > 0, where §; ; is
a connected component of the set Q1 N {(x1,...,2;) € R | |22 +. .. +|z)? < 72}
such that 0 € 4 g. Il

Ezample 3.2. Suppose
Q= {(.1‘1,.%2) € RQ | —o0o < r <400, —¢1($1) < x9 < qf)g(l‘l)},

where for each m € {1,2} a function ¢,, is continuous on R, and ¢,,(s) > 0 for
all s € R. Then we can take either k = 1 or £ = 2. In case £k = 1, we have
Q.= {(.Tl,l‘g) cR? ’ 1| <7, —d1(x1) < 22 < gf)g(ﬂ:l)} for any 7 > 0. If k = 2,
then

Q= {(z1,22) €R? | 1] < 7,
—min{¢1(z1), /72 — |z1*} < 22 < min{ga(z1), /7% — |21]?}

for any 7 > 0. g
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By definition, put
I =1I;n00,, 7=0,1, T'i;: =200,
Yir=1;-x(0,T), 7=0,1, X,;:=0,x(0,T), 7>0.
We will use a notation

Vit = (Vpys -0z, )y VRV = ([vay | + - oo+ o, )2

Everywhere further we will consider that is carried out the following condition:

(P*) p= (po,p1,---,0n) : Q@ — R satisfy condition (P), and po(x) = p1(x) =
. =pr(x) =2 for a.e. x € Q.

Suppose A7 is a subset of Aj, which every element satisfies conditions (Aq),
(Ay), and the following condition:

(A3) for a.e. (z,t) € Q and for every (p1, &), (p2,£2) € R, we have

k
Z ‘ai(x7t7p17§1) - ai(.%',t,pg,{z)‘ < gl(xat)"fll - 5/2‘ +gg($’,t)|p1 - PQ’,
=1

(3.3)

n

> (i, t,p1,6") — ail, t, p2, ))& — &) + (ao(a, t, p1, &)

i=1

- a0($7t7p2>£2))(:01 - p2) = ql(x>t)|§,1 - §/Q|2 + QQ(.%',t)|p1 - p2‘27 (34)

where &7 := (&],...,8), 1€79] == (|1> + ... + |§)V2, j € {1,2}, and gy,
g2, q1, ¢2 : @ — R are continuous functions on @) that satisfy the following
conditions:

o gi(x,t) >0, ga(w,t) > 0, q1(z,t) > 0 for all (z,t) € Q, inf g2 > —o0;

e there exist a real number u, and continuous functions di, do, A defined on
[1,+00) such that

q@(z,t) +p >0 forall (x,t) € Q, (3.5)

forall 7>1: di(7) 2 max =——, ds(7) > max gs, 3.6
1(7) max — o 2(7) max g (3.6)

/ [qlkav‘Q + QQ|U‘2] dar
forall 7>1: —p<A(r)<inf —"

t,v 2 ’
|v|* dT
F*,T

where the infimum is taken over all numbers ¢ € [0, 7], and all functions v
that are continuously differentiable in the neighborhood of I'y -, and v = 0

(3.7)
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on 0T - N T (in particular, —p < A(7) < ming_— ¢o),
while N ’
(o0}
d
/ T = 4o, (3.8)
1 Au(r)

d1(7'> dQ(T)
A7)+ M)+ 4w

where

(3.9)

Remark 3.1. If supg j;» < 00, supg g2 < +09, then functions dy, da, A can
1

be chosen as constants. Namely, di(7) := di0, d2(T) := da0, A(7) := A¢ for all
T > 1, where dj o, d2,9, Ao are constants such that

g :
dipg=sup ——, doo=sup g2, Ao < %f q2-

o Vi Q
Then we can take p such that A\g > —u, and
di0 ds.0
A (r)=A,0:= : + : for all 7> 1.
/»‘( ) 1,0 /AO+,U/ )\O—i_,u/ =

g

Suppose AJ*, in the case of k < n, is a subset of Aj, which arbitrary element
satisfies the following condition:

(Ay) for a.e. (z,t) € Q and for every (p, &) € R we have

n

Zai(‘rvt)paé)éi_’_a()(xvt’pag)p > QS(xvt) Z |€Z|pl(m)—Q4(l’7t)|p|2—h(l’,t),
i=0 i=k+1

B B (3.10)
where ¢3,q4 € C(Q), g3(xz,t) > 0 for all (z,t) € @, 0 < supg ¢4 < +00,

h € Li0c(Q), h >0 a.e. on Q.

In the case of k = n we will assume that AZ* = A;;.

It is easy to prove that the initial problem

dr
o= Au(r), 7(0)=1 (3.11)
has a unique solution 7(a), a € [0, +00), and this solution is determined by the
equality
(@) ¢
/ " —a, a>0. (3.12)
1 Au(s)

From this and (3.8) it follows that

T(a) = +o00 as a — +oo. (3.13)
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Suppose 7(a), « € [0,4+00), is a solution of problem (3.11), and put
0=y TF=Tjr@a,i=01 T¢:=T, @),
Q% =Qra) X = Tjra), ) =01, =B

Note that in view of (3.13) we have Q = (J,.( 2%, Q@ = Uyso Q@™

Let {An,}2°_; be a sequence of real numbers such that for all m € N we have

/ [@1|Viv]? + go|v|?] da
—p < Ay <inf 2

Q
t,v 2 ’
|v|* dx
m

where the infimum is taken over all numbers ¢ € [0, 7], and functions v € C1(Q™)
such that v =0 on 0™ \ I'{" (in particular, —p < Ap, < mingz g2).

(3.14)

Denote ) 9
Ek,u(w) = q1|vkw’ + (QQ + :U’)|w‘ )

1/2 (3.15)
(W) = (ﬂQa Ej (w)e=2ut da:dt) , a=0.

Now we formulate our main results.

Theorem 3.1 (a uniqueness of the solution). Let p satisfies condition (P*), f €

L210c(Q), uo € L210c(2), (a0, a1, ..., a,) € Ay. Then problem (1.1) - (1.3) has at
most one weak solution such that

e B2 (p -0 as R— +oo (3.16)
(an analog of the boundary condition at infinity), where (-)gr defined in (3.15).
Remark 3.2. Assertion (3.16) is equivalent to the condition

ds

Pl o // (1| Viul® + (@2 + @) |ul?] dzdt -0 as 7 — +oo.  (3.17)
Qr

It follows from (3.12), if to remark that Q¥ = Q,., if R = flr Aifs)' O

Theorem 3.2 (an existence of the solution). Let p satisfies condition (P*), f €

L210c(Q), o € Lajoc(R2), (a0, a1,...,an) € A*. Also suppose for some number
» € (0,1) the following inequality holds

(A + )71 // |f|?e™ 2 dxdt + / lug)? dz < C1 ™™ ¥meN, (3.18)
m Qm

where C1 > 0 is a constant.
Then there exists a weak solution of problem (1.1) — (1.3) satisfying condition
(3.16). Moreover, for this solution the following estimate is fulfilled:

(W < Coel=M2 ym e N, (3.19)
where Cy := [(2+ e'/2 — e /%) /(1 — e~ #/?)]\/C7, ()m defined in (3.15).
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Remark 3.3. Estimate (3.19) is equivalent to the estimate
_ T _ds
// [01|Vkul? + (g2 + ) [ul2] e 2 dadt < Cze" P TG wr =1, (3.20)
Qr

where C5 > 0 is a constant depending only on s and C].
The statement is substantiated in the same way as (3.17). g

Remark 3.4. For equation (1.4) the conditions of Theorems 1 and 2 are satisfied if
functions @;j;, ¢,7 = 1,n, a;, ¢ = 0,n, are as in Remark 1.1, and for a.e. (z,t) € Q
following hold

n n

o)=Y (Y lasnP) " e =o

i=1  j=1

() =w/2, o) < (dolet) - oo 3 A 0P),
=1

where g1, g2, q1, g2 are as in (A3) with u = 0, and f, ug satisfy (3.18). O

Remark 3.5. For equation (1.5) the conditions of Theorems 1 and 2 are satisfied
if functions a;j, i,j = 1,k, @;, i = k + 1,n, @y are as in Remark 1.2, and for a.e.
(z,t) € Q following inequalities hold

k

Vi max |a;j(z,t)| < g1(x,t),
izle{l,...,k}| i@, 1) < gi(a,t)

k

k
1,7=1 i=1

a0($7t) = Q2(967t)7 min ai($7t) = Q3(:B>t)a
ie{k+1,...,n}
where g1, q1, g2, g3 are as in (Aj3), (Ay) together with go =0, ¢4 = 0, u = 0, and
f,up satisfy (3.18). O

4. Auxiliary statements

Here we give some auxiliary results which will be used in Section 5. We denote

a;(v)(z,t) = a;(z, t,v(z,t), Vo(z,t), (z,t)€Q, 1=0,n, (4.1)

ov =v, 0v=0v, i=1n. (4.2)

Recall that Lip(Q2) is the linear space of Lipschitz continuous functions on Q.
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Lemma 4.1 (Lemma 1, [24]). Suppose p satisfies condition (P), R > 0 is an
a;"bz'tmry fixed number, and a function w € W;{g,loc(@) satisfies the integral
rdentity

// [—wwcp/ + Z giaﬂbcp] dzdt =0
i =0 (4.3)
V¢ € W;()yc(Q)? Suppw C QiRa VSO € Ccl(ovT)a

where g; € Ly () 10c(Q), i = 0,n, are given functions.

Then for arbitrary function ¢ € Lip(Q), supp( C Qr, ¢ = 0 we have /Cw €
C([0,T); L2(2R)) (hence, w € C([0,T]; La(Qgr)) for every R’ € (0, R)). Moreover,
for arbitrary functions 6 € C*([0,T)), and for any numbers t1,t2 € [0,T] (t1 < t2)
the following equality holds

5 1000 /Q ot ) ] - ! /: /QR w]?C ¢ dudt
+/tt2/9 [igiai(wC)]Gda:dt:O. (4.4)

R =0

If, in addition, it is known that w|p_ ,xo,r) = 0, then w € C([0,T]; L2(2R)), and
we can take ((x) =1, x € Q, in ({.4).

Lemma 4.2 (an analog of Saint-Venant principle). Assume p satisfies condition

(P*), (ag,a1,...,an) € Ay, f € L210c(Q), ug € Lo joc(2). Suppose R > 0 is an

arbitrary number, and w1, uz € Up1oc(Q) such that for each | € {1,2} we have

w(-,0) =ug(:) ae on QF, (4.5)
and
//QR [—wve’ + ;ai(ul)ﬁiwap] dzdt = //QR [ dxdt,

Vi € Wi (), suppy C QF, Ve CHO,T). (4.6)
Then for every Ri, Rz, 0 < Ry < Ry < R, the following inequality holds
(ug — ug)g, < eFrR2/2 () —yo)p . (4.7)

Remark 4.1. The inequality of type (4.7) has been obtained in [3]| for weak
solutions from ng ﬁ)c to linear parabolic equations, and in [6], [31], [32] and

other works for weak solutions from W21 ’1?) . to quasilinear parabolic equations with
constant nonlinearty exponents. This inequality is an analog of the well-known in
elasticity theory Saint-Venant principle. g
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The proof of Lemma 2. For an arbitrary x € R™ we set x = (2/,2"), where 2/ =
(21,..., ) € R¥, 2" = (211, .., 2n) € RVF. Let |2/| = (|1 + ... + |z]?)V2
For any § € (0,1), 7 € [1,4+00), 2’ € R* we denote

1, if |2'| <7 -6,
Ys(@' 7)== (r—|2!])/s, ifT—6< || <,
0, if |2'| > 7.

Obviously, for every i € {1,...,k} we have 9;¢5(z',7) := 0 if |2/| < 7 —§ or
|z'| > 7, and

Opps(a’,T) = —5‘3;2/‘ if T—d<|2| <. (4.8)

By definition, put w := u; — ug. Let § € (0,1), 7 € (1,7(R)) be arbitrary
fixed. We subtract the integral identity (4.6) for [ = 2 from this identity for [ = 1.
Applying Lemma 1 to their difference with t; = 0, to = T, 0(t) := e 2*, t € R,
C(z) == s(a, 1), » = (2,2") € Q, we obtain

sl [t Pustel,ryda] [+ // wf2se 2 dadt

// al uy) — ai(ug))o; ’ll)l/]g} =20t o dt

// al u1) — ai(ug))wo; ¢5} =20t . (4.9)

Let Viw := (Qyw, ..., 0pw), |Viw| := (Zle |9;w|?)'/2. In view of (3.3) we have
k
> lai(ur) — ai(uz)| < g1|Vew| + golw| a.e. on Q. (4.10)
From (4.9), taking into account (3.4), (4.5), (4.8), and (4.10), we deduce

// (01| Vikw]® + (g2 + p)w[*] se dadt
Qr

1
S // (91| Viw| + ga|w|] [w]e” " dadt. (4.11)
5 T\QT*(S

Note that for an arbitrary function P € L 10c(Q) we have

// P(:v,t)dxdt:/ (// P(z,1) dth) do, 7> 0.
QT\Qrfé T—0 *,0
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Using the latter assertion, we pass to the limit in (4.11) as § — 0+. So, we get

// (1| Viw? + (g2 + p)|w|?] e dadt
Qr

< // (91| Viw| + go|w|] [wle™** dT dt  for ae. 7€ (0,7(R)). (4.12)

From Cauchy-Bunyakovsky-Schvartz inequality it follows that for a.e. 7 €
(0,7(R))

1/2
// 91V kw]| + galw|] [w]e~2 T dt < (// 1912|V w|2e =2t drdt)
*,T Z*,T

1/2
X (// lw|?e 21 dth) —I—// galwPe M dD dt.  (4.13)
2*,7’ 2*,7

By virtue of (3.6) and (3.7), we obtain for a.e. 7 € (0,7(R)) and for a.e.
te(0,T)

/‘wme&w</[memww%r

T T

< (011(7))2/F (@1 View]* + (g2 + p)|wl?] dT, (4.14)

/ mﬂw</ [ Viwl? + (g2 + wlw]?] dT
F*,T F*,T

I, o st et |t

< (A7) +u)1/F (1| Vsw]® + (g2 + p)|w[*] dT',  (4.15)

/ gglw|2dF < dQ(T)/ |w|2dF
T

*, T

< do(T)N(1) + p)~? / (1| Viw|® + (g2 + p)|w|?] dT. (4.16)

*,T

From (4.12), taking into account (4.13) — (4.16), we infer

//Q (01| Viw]* + (g2 + p)w[*]e™ dadt
< [di () AF) + )72 + da(r) (A7) + )]

X // (1| Viw? + (g2 + p)|w|*] e dl dt. (4.17)
Z*,T
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In view of (3.9), (3.15), and (4.17) we establish for a.e. 7 € (0,7(R))

// B p(w)e™ 2 dxdt < A, (1) // By p(w)e™ 2 dr dt. (4.18)
QT *,T

Denote
F(r):= // By (w)e M dadt = / ( Ek,#(w)e’2“tdl“dt) do, (4.19)
Q‘r 0 E*,o‘

for all 7 € [1,7(R)]. Then for a.e. 7 € (1,7(R))

_ d [T _ dF(7)
E AT dt = — E 21t g = :
/Z*’T pulw)e arde = - | ( . e (w)e 2t d dt) do =
(4.20)
From (4.18), using (4.19), and (4.20), we obtain
dF
F(r) < Ay(r) ) for ae. 7€ [1,7(R). (4.21)

dr

Suppose 7 = 7(a), @ € [0,+00), is a solution of problem (3.11), and R, Ry are
arbitrary real numbers such that 0 < R; < Ry < R. In view of (3.11) and (4.21)
we get

< dF (1()) dr ()

F(T(a)) S dr da o€ [Rl,Rg].
It follows that
0< M — F(1(a)), « € [Ry,Rs). (4.22)

do

Multiplying (4.22) by e~%, we deduce 0 < di(e_O‘F(T(a))>, a € [Ry, Ryl
o'

Integrating the latter inequality in « from R; to Rs, we infer
F(1(Ry)) < 2B (1(Ry)). (4.23)

From (4.23), taking into account (w), = \/F(7(«)), we imply (4.7). O
5. Proofs of the main results

The proof of Theorem 1. Let us show that problem (1.1) — (1.3) has no more
than one weak solution. Assume the opposite. Let u; and us be different weak
solutions of problem (1.1) — (1.3), which satisfy condition (3.16). It is clear that

for arbitrary R > 0 a functional (-)r is a seminorm in space Up joc(@). From this
fact and (3.16) we deduce

e 2wy —ug)p < e ()R + (u2)r) = e 2 (ur) g + e (us)r = B(R),
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where S(R) — 0 as R — +o00. Using this assertion and Lemma 2 (see (4.7)) for
arbitrary Rj, Re such that R; < Rs, we obtain the estimate

(ug —ug)g, < eFR200y) —uy)p, = ef/28(Ry). (5.1)

We fix Ry, and tend Ry to +o0. From (5.1) it follows that (u; — u2)g, = 0. Thus
u1 = uo almost everywhere on Q. As R; is arbitrary, we get u; = ug almost
everywhere on (). This contradiction proves Theorem 1. O

The proof of Theorem 2. The proof is in four steps.
Step 1 (the solution’s approzimations). Let o > 0 be an arbitrary number. By
W[}(,)(QO‘) define the closure of space {v € C'(Q) ‘v‘am\r‘f =0} in Wpl(,)(QO‘).

By /W;(’F))(Qa) denote a space of functions w € W;(’g (Q¥) such that, for a.e. t €
(0,T), w(-,t) belongs to WI}(_)(QO‘). We set ﬁp(Qa) = W;(’g(Qa)ﬂC([O, T]; La(029)).

For every | € N we consider the problem: to find the function u; € I[AJp(Ql) that
satisfies (in the sense of space C([0,T]; La())) the initial condition

w(-,0) = uo(-) almost everywhere in (5.2)

and the integral identity

//Ql {—ulwp’ + zn; ai(ul)aﬂb@} dzdt = / o fp dxdt,

Vi € Wy, (), suppt €, Vo € CH0.T). (5.3)

To prove the existence of the function u; € [[AJp(Ql) we use Faedo-Galerkin
method (see, for example, [22]). In view of (Ags) it is easy to show that the
function u; is a unique.

For every [ € N the function u; is extended by zero to @, and the extension
denote by u; again. Obviously, that u; € Uy joc (Q). Now we show that there exists
a subsequence of the sequence {u;};°, converging to the weak solution of problem
(1.1) — (1.3), (3.16) in some sense. We use an approach from [3], [6], and [33].

Step 2 (the convergence of the sequence of solution’s approximations). First we
estimate (u;); for an arbitrary fixed [ € N. From Lemma 1, putting w = u;, R = [,
t1=0,t0=T,0() =e 2 teR, ((z) =1, 2 €, and using (5.3) instead of
(4.3), we obtain (see (4.1))

_2“T/ lug(x,T) ]2dm+// i(up) Ouy + | } 20 ddt

/ fuge M ddt + = / lup|* dz.  (5.4)
Ql
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From this assertion, taking into account (A;) (or rather, the condition a;(0) =
0, i =0,n), (A3) (see (3.4)), and Cauchy inequality:

1
ab < %aQ + 2—€b2, a,beR, >0, (5.5)

we infer

//Ql (1| Vil + (g2 + ) |w|*] e dadt

1 1
< % // ’ul‘QefQMt dxdt + 2/ |f’2672ut dxdt + 2/ |u0‘2 dxdt, (5.6)
Q! €1 ! «

where €1 > 0 is an arbitrary constant.
We have

T
// ’w\QeQ“tda;dt:/ 62#t(/ |uz!2da:) dt
Q! 0 Q!

= /OTe_Q“t(/QZ (@1 |Vl + (g2 + 1) |?] dw/[/ﬂl (1| Vi |?
oot ) dn) [l de] ) ai

1 2 27 —2ut
< V =+ =+ da?dt, .
l //l [q1\ kul\ (QQ [L)‘ul| ]6 (5 7)

where A; is defined in (3.14).
From (5.6) and (5.7), putting 1 = A; + p, we get

ﬂn&Ww”4MMﬁ<(m+ﬂVﬂﬂfﬂ%”WMﬁ+/Wme.
Q! Q! o

The latter inequality and (3.18) imply the estimate
(W) < /Cr =2 | eN, (5.8)

Let m € N be an arbitrary fixed number, and let [, 7 € N be arbitrary numbers,
while { > m. We have

|
—

r

(Wr —u)m < ) (Wit — Wi)m- (5.9)

I
o

For each ¢ € {0,...,r — 1} and the functions wuj4;11, w4, using Lemma 2 with
R =1+ 1, we obtain

(Writr — Wi)m < € A Wpitt — Wgi)mr1 < ..
< 67(l+i7m)/2<ul+i+1 — Ui (5.10)
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In view of (5.8), we have

(Uit )it + (Uigi)i
\/a[ (1= (I+i+1)/2 4 (1—%)(l+i)/2]
VO [e? 4104072 — ¢y (=02 (517)

(Uigit1 — UWigi)iti

NN //\

where Cy := /C7 (e!/? +1).
Using (5.9) — (5.11), we find

r—1
(Utgr — s < a3 e (=2 (0102
=0
< C4e(m—%l)/2 Z(e—%/Q)i < C5e(m—%l)/2’ (512)
=0
where
05 = C4/(1 — 67”/2) _ \/a(el/Z + 1)/(1 o 67”/2). (5.13)

From (5.12) it follows that (uj4, —u)m — 0 as I — +oo uniformly by r € N,
that is, {Q;w}, i = 0,k, are Cauchy sequences in space Lo(Q™), where m € N
is an arbitrary fixed. Hence, there exists a function u € L2710C(@) such that

du € Lajoc(Q), i = 1,k, and

Oju;— Oju  strongly in LQJOC(@), 1=0,k. (5.14)
l—00

Taking into account (As) (see (3.3)), from (5.14) we get

ai(ul)ljo a;(u) strongly in = Lo 15.(Q), i=1,k. (5.15)

Suppose m € N is an arbitrary fixed number, and [,r € N are arbitrary

numbers such that [ > m, r > m. Under the condition supp v C Q™, we subtract

the integral identity (5.3) for [ = r from this identity for [. Applying Lemma 1

to their difference with t; = 0, to = s € (0,T], 0(t) := e 2 t € R, ((z) :=
VY12, 7(m)), x = (a/,2") € Q, we obtain

t=s

%[6‘2’“ / iy (, 1) w1/2<w r(m)) de||

t=0

/ / az uy) — ai(uy))Oug + N’ulr‘2]¢l/2€i2ut dxdt

/ / (o ) — ai(ur) Dy o dudt,  (5.16)

where uy := u; — Uy
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By virtue of (A3) and (4.8), (5.2), from (5.16) for all s € [0,T] we deduce

/ [ir (2, )01 22!, 7(m)) d

< 42T / / |al w) (ur)|‘ulr|] dadt. (5.17)
From (5.17), in view of Cauchy—Bunyakovsky—Schvartz inequality, it implies that

max luy(z,t) — up(z,t)]* d
t€(0,1] /QT(m) 1/2 "

k 1/2
< 4e?HIT Z (// lai(w) — a;(uy)|? dacdt)
i=1 "

1/2
« (// g — [ dr) (5.18)
Qm

Using (5.14) and (5.15), from (5.18) we infer that {u;} is the Cauchy sequence in
space C([0,T]; L2 10c(£2)). Hence,

we O(0. T Lojoe@) and w—u i C(0.T) Loe@).  (5.19)

—00
Assume m € N is an arbitrary fixed number, and | € N is an arbitrary
number such that [ > m. Putting w = w;, R = 7(m), t1 = 0, to = T, ((z) :=

Y1 yo(a’,7(m)), z = (2/,2") € Q, 0(t) := e 2%, t € R, where ¢ := supg ¢4 (¢4 from
condition (Ay4)), and using (5.3) instead of (4.3), from Lemma 1 we obtain

e[ ru,<x,T>Pwl/2<x',T<m>> s

// i(uy)Oyuy + qluy| ]wl/ge 24t dpdt

- // Z a;(ug)uy Gi@/}l/ge_zqt dxdt + / fulwl/ge_zqt dxdt
=1 Q™
1
+ 2/Q |uo[*1 2 (2, 7(m)) da. (5.20)

Estimating the terms of (5.20) with conditions (A1), (As) (see (3.3)), (Ay4),
(4.8) and Cauchy-Bunyakovsky-Schvartz inequality, we get

// [(J3 Z |0 [P+ (g — q4)!ul\2] e 29 dydt
Qr(m)—1/2

i=k+1

k
< Cy (// [Z|8iul|2} e 24t dxdt+// [|f|2+h}6_2qtdxdt—l—/ g2 dx),
Q™ "i=0 Qm om

(5.21)
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where constant C7 > 0 is independent of [, but it may be depended on m.
Using (5.14), from (5.21) we obtain

n
// > 10w i) dzdt < Cs, m,l €N, 1 >m, (5.22)
Qr(m)—1/2 =0
where constant Cg > 0 is independent of [, but it may be depended on m.
By virtue of (As), (5.14), (5.22), and discrete Holder inequality we deduce
that for every i € {0,k +1,...,n} and arbitrary m,l € N, [ > m,

n

// la; (w)[Pi® dzdt < Cy // [Z \ajul\pm)} dzdt 4+ Co < Cha,
Qr(m)y—1/2 Q

T(m)=1/2 j=0
(5.23)
where positive constants Cy, Cig, C11 are independent of [, but they may be
depended on m.
In view of (5.22), (5.23), and the reflexivity of spaces Ly, (.)(Qr), Ly ()(@r),
i =k+1,n, 7> 0, it follows that there exists a subsequence of the sequence
{ul }Zl (without loss of generality we use the notation {ul }Zl for this subsequence),

and functions xo € L2, 10c(Q), Xi € Lp’i(~),loc(@)7 1t =k + 1,n, such that

Oiup— O weakly in L, 10c(Q), i=k+1,n, (5.24)
l—o0 ’
ag (ul)—> xo weakly in Lajoc(Q), (5.25)
l—00
a; (ul)ljo x; weakly in L/p/i(,),loc(@), i=k+1,n. (5.26)
Put L
Xi i =a;(u), =1k (5.27)

Remark that for every I € N (see (5.3)) we have the identity

//Q g + 3 ai(u) i — fiop) dadt =0,
1=0

Vi € Wiy (Q), suppyy C O, Vo € CH0,T). (5.28)

In (5.28) we fix an arbitrary ¢ € Wpl(.) (Q), ¢ € CL(0,T), and pass to the limit
as | — oo, taking into account (5.14), (5.15), (5.25) — (5.27). So, we get

//Q [—utpy’ + Z XiObp — [ dedt = 0. (5.29)
=0

To conclude that u is a weak solution of problem (1.1) — (1.3). It remains to show
that the following identity holds

//Q i: XiOitbp dxdt = //Q i:ai(u)aiw drdt Ve W, (Q), Ve CH0O,T).
=0 =0
(5.30)
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Indeed, if (5.30) is true, then from this and (5.2! 29) we obtain the integral identity
(3.2). In view of (5.14), (5.24) we have u € W() 10o(@)- From (5.2), (5.19) we

deduce u € C([0,T]; L21oc(2)) (it means that u € Ubloc(@)) and the initial
condition (1.3) is true. Hence, the function u is a weak solutlon of problem (1.1)
- (1.3).

Step 8 (the correctness of identity (5.30)). To verify the correctness of identity
(5.30) we use the monotonicity method [33].

Let v € Lgjoc(@) be an arbitrary function such that d;v € Lpi(-),loc(@)> 1=
1,n,let ¢(2), ' = (z1,...,71) € R*, be a nonnegative continuously differentiable
function with bounded support, and let § € C}(0,T), > 0. By virtue of condition
(A3) (see (3 4)), for every | € N we have

// aZ uy) — a;(v)) (O — Oiv) + p(uy — v)z]CGe_z’” dxdt > 0. (5.31)
We rewrite inequality (5.31) as

// Zaz (up) 8ul Cee 26t Jopdt — // al w)Ov + a;(v)(Ou; — aﬂ)))

+ pluy — v) ?|¢he " dxdt >0 VIeN. (5.32)

Assume m € N such that supp¢ C {z/|]2/| < 7(m)}. Using Lemma 1, we
obtain from identity (5.28) as i > m

- . . —2ut _ 2 /e —2ut
//Q [gaz(ul)&ul}cae dxdt //Q lw|*¢(6'/2 — pb)e™ " dudt
k
—// D> ai(w)wdi¢ — fwlbe " dudt. (5.33)
Q =1

From (5.32) and (5.33) we get
k
/ ’ul‘QC(9//2 — u@)e—Zut dxdt — // [Z ai(ul)ulaig - fulg] Oe2H dodt
Q =1

// (ai(w)0v + a;(v)(Bw — 9;v)) + p(ug — v)z] COe 2 dxdt > 0. (5.34)

In (5.34) we pass to the limit as | — oo, and by virtue of (5.14), (5.15), (5.25) —
(5.27) we infer

k
//Q lu2¢(0' /2 — pf)e M dadt — //Q [; xiudi¢ — ful] Ge =2t dadt

- //Q [Zn: (xi0iv + a;(v)(Bu — Ov)) + p(u — v)?|¢he > dxdt > 0. (5.35)
=0
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In view of Lemma 1 it follows from (5.29) next equality

- .O): —2ut _ 2 / _ —out
//Q[ghazu] COe Mt dxdt //Qu| C(0'/2 — pb)e " dadt
k
_// [ZXiuaiC—fuC]Qe_Q’” dzdt. (5.36)
Q@ =1

Assertions (5.35) and (5.36) imply

//Q [izn; Xi Oyu]whe M dydt — // [Zn: (xi0v + a;(v)(Qiu — Ov))

Q =0
+ p(u — v)ﬂ Che™ M dxdt > 0,

that is,
// — a;(v))(Oiu — Op) + p(u — v)?| (e~ dadt > 0. (5.37)

In (5.37) we put v = u — My, where X is an arbitrary number, and ¢ €
WZ}(,)C(Q), @ € CX0,T) are arbitrary functions. So, taking into account the
arbitrariness of A, we obtain the equality

// — il — M) Dbp + Au(wp)?] COe 2 dardt = 0,

Here we tend A to 0, using conditions (A;), (Az), and Lebesgue dominated
convergence theorem. Thus, taking into account the arbitrariness of ¢ and 0,
we deduce

// — a;(u ))aiw]goda:dt =0, Y€ WI}(,),C(Q), 0 e CH0,T). (5.38)

From (5.38) it follows (5.30).

Step 4 (the solution’s estimate). Estimate (3.19) is obtained from (5.8), (5.12) and
(5.13) by this way: (u)m < (U — Um)m + (Um)m = Hmye0 (U — Um)m + (Um)m
< Crel=9Im/2 swhere Oy := /C1 + Cs = /C1(2 4 e'/2 — e7%/2) /(1 — e=#/?).

Now it is easy to see that the function u satisfies (3.16). Indeed, let R > 0
be an arbitrary number, and m be a natural number such that m —1 < R < m
Using (3.19), we get

<U>R < <U>m < 026(17%)”1/2 — 026(17%)(m7R)/26(17%)R/2

< 026(17%)/267%1%/261%/2 _ /B(R)eR/Q, R>1,
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where B(R) := Cye(l=%)/2¢=#R/2_ Since f(R) — 0 as R — +oo, then we have
(3.16).

So, we have shown that u is a weak solution of problem (1.1) — (1.3) that
satisfies (3.16) and (3.19). Theorem 2 is proved. O
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