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Abstract. We deal with the initial-boundary value problems with some restrictions at
infinity for linear and nonlinear anisotropic parabolic second-order equations in unbounded
domains with respect to the spatial variables. The weak solutions of our problem in
Lebesgue and Sobolev spaces with variable exponents is considered. We prove theorems
on the existence and uniqueness of the weak solutions using the method based on Saint-
Venant principle, and the monotonicity method. Moreover, we obtain estimate of the weak
solutions.
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1. Introduction

Let n be a natural number, and Rn be the linear space of ordered collections
x = (x1, ..., xn) of real numbers with a norm |x| := (|x1|2 + ...+ |xn|2)1/2. Suppose
that Ω is an unbounded domain in Rn, and ∂Ω (boundary of the domain Ω) is a
piecewise-smooth surface. Let ν = (ν1, ..., νn) be a outward-pointing normal unit
vector on ∂Ω. Suppose ∂Ω = Γ0 ∪ Γ1, where Γ0 is a closure of an open set on
∂Ω (in particular, Γ0 = ∅ or Γ0 = ∂Ω), Γ1 := ∂Ω \ Γ0. Put Q := Ω × (0, T ),
Σ0 := Γ0 × (0, T ), Σ1 := Γ1 × (0, T ), where T > 0. Denote by Bd(Ω) the set of
all bounded subdomains of Ω.

We consider the problem: to find the function u : Q → R that satisfies (in
some sense) the parabolic equation

ut −
n∑
i=1

d

dxi
ai(x, t, u,∇u) + a0(x, t, u,∇u) = f(x, t), (x, t) ∈ Q , (1.1)
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the boundary conditions

u
∣∣∣
Σ0

= 0,
∂u

∂νa

∣∣∣
Σ1

= 0, (1.2)

and the initial condition

u(x, 0) = u0(x) , x ∈ Ω, (1.3)

where ai : Q× R1+n → R, i = 0, n, f : Q→ R, u0 : Ω→ R are given real-valued

functions,
∂u(x, t)

∂νa
:=
∑n

i=1 ai(x, t, u,∇u) νi(x) is an exterior conormal derivative

of u in point (x, t) ∈ Σ1.

Remark 1.1. An simpler example of the equations of type (1.1) considered here is

ut−
n∑

i,j=1

(âij(x, t)uxj )xi +
n∑
j=1

âj(x, t)uxj + â0(x, t)u = f(x, t), (x, t) ∈ Q, (1.4)

where âij = âji ∈ L∞(Q), i, j = 1, n, are functions such that for a.e. (x, t) ∈ Q
we have

n∑
i,j=1

âij(x, t)ηiηj > ω
n∑
l=1

|ηl|2, (η1, ..., ηn) ∈ Rn, ω = const > 0,

and âj ∈ L∞(Q), j = 0, n, f : Q → R is such that f ∈ L2(Ω′ × (0, T )) for all
Ω′ ∈ Bd(Ω).

In Remark 3.4, we have given additional conditions for the coefficients of
equation (1.4), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.4), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. �

Remark 1.2. An more complex example of the equations of type (1.1) considered
here is

ut −
k∑

i,j=1

(âij(x, t)uxj )xi

−
n∑

i=k+1

(âi(x, t)|uxi |pi(x)−2uxi)xi + â0(x, t)u = f(x, t), (1.5)

(x, t) ∈ Q, where k ∈ {1, ..., n−1} and Ω such that Ω∩{x = (x1, ..., xk, xk+1, ..., xn)
∈ Rn

∣∣ |x1|2+...+|xk|2 < τ2} is bounded for each τ > 0, for example, Ω = Ω1×Ω2,
Ω1 is an unbounded domain in space {(x1, ..., xk)

∣∣x1, ..., xk ∈ R}, and Ω2 is a
bounded domain in space {(xk+1, ..., xn)

∣∣xk+1, ..., xn ∈ R}. Also we suppose that
1) âij = âji ∈ L∞(Q), i, j = 1, k, are functions such that for a.e. (x, t) ∈ Q a
quadratic form

∑k
i,j=1 âij(x, t)ηiηj , (η1, ..., ηk) ∈ Rk, is positive, 2) for every i ∈
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{0, k + 1, ..., n} a function âi : Q → R is measurable, and 0 < ess infΩ′×(0,T ) âi 6
ess supΩ′×(0,T ) âi < +∞ for all Ω′ ∈ Bd(Ω), 3) for every i ∈ {k + 1, ..., n} a
function pi : Ω → R is measurable, and 1 < ess infΩ′ pi 6 ess supΩ′ pi < +∞
for all Ω′ ∈ Bd(Ω) (the functions pi, i = k + 1, n, are called exponents of the
nonlinearity).

In remark 3.5, we have given additional conditions for the coefficients of
equation (1.5), which together with those indicated here guarantee the existence
and uniqueness of a weak solution of problem (1.5), (1.2), (1.3) in some class of
functions, which have corresponding behavior at infinity. �

Initial-boundary value problems for parabolic equations in unbounded domains
with respect to the spatial variables were studied by many authors. As is well
known, to guarantee the uniqueness of the solution of the initial-boundary value
problems for linear parabolic equations in unbounded domains (in particular,
these problems can be described by (1.4), (1.2), (1.3)) we need some restrictions
on solution’s behavior as |x| → +∞ (for example, solution’s growth restriction
as |x| → +∞, or belonging of solution to some functional spaces). Since the
uniqueness of solution is the determining condition to the well-posedness of prob-
lems for evolutionary equations, then it is naturally to formulate the initial-
boundary value problem for equation (1.1) in the following form: to find the
solution of this equation that satisfies conditions (1.2), (1.3), and some restrictions
on its behavior as |x| → +∞. Firstly this was obtained in [1]. There it was shown
that the classical solution of the Cauchy problem for heat equation

ut −∆u = 0, (x, t) ∈ Rn × (0, T ], u|t=0 = u0(x), x ∈ Rn, (1.6)

is a unique in the class of the functions such that

|u(x, t)| 6 Aea|x|2 for all (x, t) ∈ Rn × [0, T ], (1.7)

where constants a,A are depending on u, while restriction (1.7) is an essential
condition for the uniqueness of the solution of the problem. Or rather, in [1],
[2] was proved that problem (1.6) with u0 ≡ 0 has a nontrivial solution with
growth Aea|x|

2+ε as |x| → +∞ for ε > 0. Remark that restriction (1.7) can be
interpreted as an analog of the boundary condition at infinity. Similar results for
weak solutions of linear parabolic equations from a wide class were obtained in [3],
and to substantiate these results used an analogue of the principle of Saint-Venant
known in mechanics. The similar situation is with nonlinear parabolic equations
from certain classes (see [4–9], etc).

Note that we need some restrictions on the data-in behavior as |x| → +∞ to
solvability of the initial-boundary value problems for parabolic equations conside-
red above. In particular, in the paper [1] it was shown that a classical solution of
a problem (1.6), (1.7) exists if u0 satisfies the condition: |u0(x)| 6 B eb|x|

2 for all
x ∈ Rn, where b, B are any constants.

However, there are nonlinear parabolic equations for which the corresponding
initial-boundary value problems are unique solvable without any conditions at
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infinity. First result was proved in [10] for equation (1.5) with p0 = const > 2,
and pk+1 = . . . = pn = 2. Similar results were obtained for nonlinear parabolic
equations in [10–20], etc.

Nonlinear differential equations with variable exponents of the nonlinearity
(for example, equation (1.5)) appear as mathematical models in various physical
processes. In particular, these equations describe electroreological substance flows,
image recovering processes, electric current in the conductor with changing tempe-
rature field (see [21]). Nonlinear differential equations with variable exponents
of the nonlinearity were intensively studied in [22–29], etc. The corresponding
generalizations of Lebesgue and Sobolev spaces (see [30]) were used in these
investigations.

In this work we consider a class of second order parabolic equations in unboun-
ded domains with respect to the spatial variables, which require for the correct
formulation of the initial-boundary value problems of setting conditions for the
behavior of the solution at infinity. This class contains both linear (see, for
example, (1.4)) and nonlinear equations with variable exponents of the nonlinearity
(see, for example, (1.5))). Here we complement and generalize results for linear
(see, for example, [3]), and nonlinear parabolic equations with constant exponents
of the nonlinearity (see, for example, [6]). As we know from the available sources,
nonlinear parabolic equations with variable exponents of the nonlinearity were
not previously investigated in the context of the problem under consideration. In
our researches, we use an analog of the well-known in mechanics Saint-Venant
principle. It was developed in [3, 6, 31, 32], and others. Moreover, to prove the
solvability of our problem we use the method of exhaustion for unbounded domains,
and the monotonicity method [33].

The article is organized as follows. In Section 2, we describe functional spaces
which are used in the sequel. In Section 3, we set the researched problem and
formulate the main results. Section 4 contains auxiliary statements that are used
in the next section. Finally, Section 5 is devoted to substantiation of the main
results.

2. Main notation

Firstly, we introduce some functional spaces. Let r : Ω → R be a measurable
function, r(x) > 1 for almost every (a.e.) x ∈ Ω, and ess supx∈Ω′ r(x) <∞ for any
Ω′ ∈ Bd(Ω). For any Ω′ ∈ Bd(Ω) we denote by Lr(·)(Ω′) the linear space of (classes
of) measurable functions v : Ω′ → R such that ρΩ′,r(v) :=

´
Ω′ |v(x)|r(x) dx < ∞.

This is the Banach space with a norm

‖v‖Lr(·)(Ω′) := inf{λ > 0 | ρΩ′,r(v/λ) 6 1}.

Space Lr(·)(Ω′) is called the Lebesgue space with variable exponent or generalized
Lebesgue space (see, for example, [30]). If r(x) > 1 for a.e. x ∈ Ω, put by definition
r′(x) := r(x)/(r(x)−1) for a.e. x ∈ Ω. As is well known, the dual space (Lr(·)(Ω

′))′

can be identified with Lr′ (·)(Ω
′) under the condition ess infx∈Ω′ r(x) > 1. Note
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also that in the case r(x) = r = const > 1 for a.e. x ∈ Ω′ ∈ Bd(Ω) we have
Lr(·)(Ω

′) = Lr(Ω
′), and ‖ · ‖Lr(·)(Ω′) = ‖ · ‖Lr(Ω′).

Denote by Lr(·), loc(Ω) the linear space of (classes of) measurable functions
v : Ω → R such that their restrictions v|Ω′ belong to the space Lr(·)(Ω′) for
any set Ω′ ∈ Bd(Ω). This space with a family of seminorms {‖ · ‖Lr(·)(Ω′) |Ω

′ ∈
Bd(Ω)} is complete locally convex. Then a sequence {vl}∞l=1 converges to v in
Lr(·), loc(Ω) strongly (correspondly, weakly), if for any domain Ω′ ∈ Bd(Ω) the
sequence {vl|Ω′}∞l=1 converges to v|Ω′ in Lr(·)(Ω′) strongly (correspondly, weakly).
As above, we introduce the space Lr(·)(Q′), where Q′ = Ω′ × (0, T ), Ω′ ∈ Bd(Ω),
by using the functional ρQ′,r(w) :=

˜
Q′ |w(x, t)|r(x) dxdt instead of ρΩ′,r(v). Then

we define a complete locally convex space Lr(·), loc(Q) along with a family of
seminorms {‖ · ‖Lr(·)(Ω′×(0,T )) | Ω′ ∈ Bd(Ω)}.

Let the following condition holds:

(P) p = (p0, p1, . . . , pn) : Ω→ R1+n is a vector-valued function such that for every
i ∈ {0, 1, . . . , n} the function pi : Ω → R is measurable, and for any Ω′ ∈ Bd(Ω)
we have 1 < ess infΩ′ pi 6 ess supΩ′ pi < +∞.

Let p′= (p′0, p
′
1, . . . , p

′
n) be the vector-valued function such that 1

pi(x) + 1
p′i(x)

=1

for a.e. x ∈ Ω, i = 0, n. Obviously, the function p′ satisfies condition (P) with p′i
instead of pi, i = 0, n.

For any domain Ω′ ∈ Bd(Ω) we define the space

W 1
p(·)(Ω

′) := {v ∈ Lp0(·)(Ω
′) | vxi ∈ Lpi(·)(Ω

′), i = 1, n}.

This is the Banach space with the norm

‖v‖W 1
p(·)(Ω

′) := ‖v‖Lp0(·)(Ω′) +

n∑
i=1

‖vxi‖Lpi(·)(Ω′).

Space W 1
p(·)(Ω

′) is called the Sobolev space with variable exponent or generalized
Sobolev space (see, for example, [30]). Denote by W 1

p(·), loc(Ω) the complete locally
convex space of (classes of) functions v ∈ Lp0(·), loc(Ω) such that vxi ∈ Lpi(·), loc(Ω),
i = 1, n, along with a family of seminorms

{
‖v‖W 1

p(·)(Ω
′)) | Ω′ ∈ Bd(Ω)

}
. Let

W̃ 1
p(·), loc(Ω) be the closure of the set C̃1(Ω) := {v ∈ C1(Ω) | v|Γ0 = 0} in

space W 1
p(·), loc(Ω). By W̃ 1

p(·),c(Ω) we denote a subspace of W̃ 1
p(·), loc(Ω) consisting

of functions with bounded supports.
For the domain Q′ = Ω′ × (0, T ), where Ω′ ∈ Bd(Ω), we put

W 1,0
p(·)(Q

′) := {w ∈ Lp0(·)(Q
′) | wxi ∈ Lpi(·)(Q

′), i = 1, n}.

This is the Banach space with the norm

‖w‖
W 1,0
p(·)(Q

′) := ‖w‖Lp0(·)(Q′) +

n∑
i=1

‖wxi‖Lpi(·)(Q′).
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Denote by W 1,0
p(·), loc(Q) the complete locally convex space of (classes of) functions

w ∈ Lp0(·), loc(Q) such that wxi ∈ Lpi(·), loc(Q), i = 1, n, along with a family
of seminorms

{
‖w‖

W 1,0
p(·)(Ω

′×(0,T ))

∣∣ Ω′ ∈ Bd(Ω)
}
. By W̃ 1,0

p(·), loc(Q) we denote a

subspace of functions w ∈W 1,0
p(·), loc(Q) such that w(·, t) belongs to W̃ 1

p(·), loc(Ω) for
a.e. t ∈ (0, T ).

By definition, put

C([0, T ];L2,loc(Ω)) := {w : [0, T ]→ L2,loc(Ω)
∣∣ w ∈ C([0, T ];L2(Ω′)) ∀Ω′ ∈ Bd(Ω)}.

This space with the family of seminorms

{‖w‖C([0,T ];L2(Ω′)) := max
t∈[0,T ]

‖w(·, t)‖L2(Ω′) |Ω′ ∈ Bd(Ω)}

is complete locally convex.
Denote by

Up,loc(Q) := W̃ 1,0
p(·),loc(Q) ∩ C([0, T ];L2,loc(Ω)).

This space is complete locally convex along with a family of seminorms
{‖w‖

W 1,0
p(·)(Ω

′×(0,T ))
+ ‖w‖C([0,T ];L2(Ω′)) | Ω′ ∈ Bd(Ω)}.

Finally, let C1
c (0, T ) ⊂ C1(0, T ) be a set of functions with compact supports

on (0, T ).

3. Statement of the problem and formulation of main results

We will consider weak solutions of the problem (1.1) – (1.3). To define them,
we introduce corresponding data-in classes.

Let p = (p0, p1, . . . , pn) be a vector-valued function that satisfies condition
(P). By Ap we denote all ordered collections (a0, a1, . . . , an) of the real functions
satisfying the following conditions:

(A1) for every i ∈ {0, 1, . . . , n}, function ai(x, t, ρ, ξ), (x, t, ρ, ξ) ∈ Q× R1+n, is
a Carathéodory, i.e., function ai(x, t, ·, ·) : R1+n → R is a continuous for
a.e. (x, t) ∈ Q, and function ai(·, ·, ρ, ξ) : Q → R is a measurable for every
(ρ, ξ) ∈ R1+n; in addition, ai(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q, i = 0, n;

(A2) for every i ∈ {0, 1, . . . , n}, for a.e. (x, t) ∈ Q, and for every (ρ, ξ) ∈ R1+n

the following inequality holds

|ai(x, t, ρ, ξ)| 6 hi,1(x, t)
(
|ρ|p0(x)/p′i(x) +

n∑
j=1

|ξj |pj(x)/p′i(x)
)

+ hi,2(x, t),

where hi,1 ∈ L∞, loc(Q), hi,2 ∈ Lp ′i(·), loc(Q).
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Now we give a definition of a weak solution of problem (1.1) – (1.3). We assume
that p satisfies condition (P), (a0, a1, ..., an)∈Ap, f ∈ L2,loc(Q), u0 ∈ L2,loc(Ω).

Definition 3.1. A weak solution of problem (1.1) — (1.3) is called a function
u ∈ Up,loc(Q) that satisfies (in the sense of space C([0, T ];L2,loc(Ω))) the initial
condition

u(·, 0) = u0(·) a.e. on Ω, (3.1)

and the integral identity
¨
Q

[
−uψϕ′ +

n∑
i=1

ai(x, t, u,∇u)ψxiϕ+ a0(x, t, u,∇u)ψϕ
]
dxdt

=

¨
Q
fψϕdxdt ∀ψ ∈ W̃ 1

p(·),c(Ω), ∀ϕ ∈ C1
c (0, T ). (3.2)

Suppose 0 ∈ Ω. Let k ∈ {1, . . . , n} be a number such that for any τ > 0 the
set Ω̃τ := Ω ∩ {x ∈ Rn

∣∣ |x1|2 + . . . + |xk|2 < τ2} is bounded. For any τ > 0 we
denote by Ωτ a connected component of the set Ω̃τ that contains 0. For any τ > 0
put Qτ := Ωτ × (0, T ). Obviously, Ω =

⋃
τ>0 Ωτ , Q =

⋃
τ>0Qτ .

The choice of value k depends on the geometry of the domain Ω (up to the
numbering of variables x1, ..., xn). Obviously, in the general case we can take
k = n, and, in this case, the class of equations considered below will consist of
generalizations of equation (1.4), or rather, of almost linear equations. But in the
case of k < n the class of equations to which the following results apply is wider
than in the case of k = n, and the smaller the value of k the wider the class of
these equations (to confirm this, see (1.5)).

Let us illustrate possibilities of the value’s k considered two examples.
Example 3.1. Assume Ω = Ω1 × Ω2, where Ω1 is an unbounded domain in Rl :=
{(x1, . . . , xl) | xi ∈ R, i = 1, l} for some l ∈ {1, . . . , n−1}, Ω2 is a bounded domain
in Rn−l := {(xl+1, . . . , xn) |xi ∈ R, i = l + 1, n}, and 0 ∈ Ω. Then we can take
arbitrary k ∈ {l, . . . , n}. If k = l, then Ωτ = Ω1,τ ×Ω2 for any τ > 0, where Ω1,τ is
a connected component of the set Ω1∩{(x1, . . . , xl) ∈ Rl | |x1|2 + . . .+ |xl|2 < τ2}
such that 0 ∈ Ω1,R. �

Example 3.2. Suppose

Ω := {(x1, x2) ∈ R2 | −∞ < x1 < +∞, −φ1(x1) < x2 < φ2(x1)},

where for each m ∈ {1, 2} a function φm is continuous on R, and φm(s) > 0 for
all s ∈ R. Then we can take either k = 1 or k = 2. In case k = 1, we have
Ωτ =

{
(x1, x2)∈R2

∣∣ |x1| < τ, −φ1(x1) < x2 < φ2(x1)
}
for any τ > 0. If k = 2,

then

Ωτ =
{

(x1, x2)∈R2
∣∣ |x1| < τ,

−min{φ1(x1),
√
τ2 − |x1|2

}
< x2 < min{φ2(x1),

√
τ2 − |x1|2

}
for any τ > 0. �
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By definition, put

Γj,τ := Γj ∩ ∂Ωτ , j = 0, 1, Γ∗,τ := Ω ∩ ∂Ωτ ,

Σj,τ := Γj,τ × (0, T ), j = 0, 1, Σ∗,τ := Γ∗,τ × (0, T ), τ > 0.

We will use a notation

∇kv := (vx1 , . . . , vxk), |∇kv| := (|vx1 |2 + . . .+ |vxk |
2)1/2.

Everywhere further we will consider that is carried out the following condition:

(P∗) p = (p0, p1, . . . , pn) : Ω→ R1+n satisfy condition (P), and p0(x) = p1(x) =
. . . = pk(x) = 2 for a.e. x ∈ Ω.

Suppose A∗p is a subset of Ap, which every element satisfies conditions (A1),
(A2), and the following condition:

(A3) for a.e. (x, t) ∈ Q and for every (ρ1, ξ
1), (ρ2, ξ

2) ∈ R1+n, we have

k∑
i=1

|ai(x, t, ρ1, ξ
1)− ai(x, t, ρ2, ξ

2)| 6 g1(x, t)|ξ′1 − ξ′2|+ g2(x, t)|ρ1 − ρ2|,

(3.3)
n∑
i=1

(ai(x, t, ρ1, ξ
1)− ai(x, t, ρ2, ξ

2))(ξ1
i − ξ2

i ) + (a0(x, t, ρ1, ξ
1)

− a0(x, t, ρ2, ξ
2))(ρ1 − ρ2) > q1(x, t)|ξ′1 − ξ′2|2 + q2(x, t)|ρ1 − ρ2|2, (3.4)

where ξ′j := (ξj1, . . . , ξ
j
k), |ξ

′j | := (|ξj1|2 + . . . + |ξjk|
2)1/2, j ∈ {1, 2}, and g1,

g2, q1, q2 : Q→ R are continuous functions on Q that satisfy the following
conditions:

• g1(x, t) > 0, g2(x, t) > 0, q1(x, t) > 0 for all (x, t) ∈ Q, infQ q2 > −∞;

• there exist a real number µ, and continuous functions d1, d2, λ defined on
[1,+∞) such that

q2(x, t) + µ > 0 for all (x, t) ∈ Q, (3.5)

for all τ > 1 : d1(τ) > max
Σ∗,τ

g1√
q1
, d2(τ) > max

Σ∗,τ
g2, (3.6)

for all τ > 1 : −µ < λ(τ) 6 inf
t,v

ˆ
Γ∗,τ

[
q1|∇kv|2 + q2|v|2

]
dΓ

ˆ
Γ∗,τ

|v|2 dΓ

, (3.7)

where the infimum is taken over all numbers t ∈ [0, T ], and all functions v
that are continuously differentiable in the neighborhood of Γ∗,τ , and v = 0
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on ∂Γ∗,τ ∩ Γ0 (in particular, −µ < λ(τ) 6 minΣ∗,τ
q2),

while ˆ +∞

1

dτ

Aµ(τ)
= +∞, (3.8)

where
Aµ(τ) :=

d1(τ)√
λ(τ) + µ

+
d2(τ)

λ(τ) + µ
, τ > 1. (3.9)

Remark 3.1. If supQ
g1√
q1

< +∞, supQ g2 < +∞, then functions d1, d2, λ can

be chosen as constants. Namely, d1(τ) := d1,0, d2(τ) := d2,0, λ(τ) := λ0 for all
τ > 1, where d1,0, d2,0, λ0 are constants such that

d1,0 > sup
Q

g1√
q1
, d2,0 > sup

Q

g2, λ0 6 inf
Q
q2.

Then we can take µ such that λ0 > −µ, and

Aµ(τ) = Aµ,0 :=
d1,0√
λ0 + µ

+
d2,0

λ0 + µ
for all τ > 1.

�

Suppose A∗∗p , in the case of k < n, is a subset of A∗p, which arbitrary element
satisfies the following condition:

(A4) for a.e. (x, t) ∈ Q and for every (ρ, ξ) ∈ R1+n, we have

n∑
i=0

ai(x, t, ρ, ξ)ξi+a0(x, t, ρ, ξ)ρ > q3(x, t)

n∑
i=k+1

|ξi|pi(x)−q4(x, t)|ρ|2−h(x, t),

(3.10)
where q3, q4 ∈ C(Q), q3(x, t) > 0 for all (x, t) ∈ Q, 0 6 supQ q4 < +∞,
h ∈ L1,loc(Q), h > 0 a.e. on Q.

In the case of k = n we will assume that A∗∗p := A∗p.

It is easy to prove that the initial problem

dτ

dα
= Aµ(τ), τ(0) = 1 (3.11)

has a unique solution τ(α), α ∈ [0,+∞), and this solution is determined by the
equality ˆ τ(α)

1

ds

Aµ(s)
= α, α > 0. (3.12)

From this and (3.8) it follows that

τ(α)→ +∞ as α→ +∞. (3.13)
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Suppose τ(α), α ∈ [0,+∞), is a solution of problem (3.11), and put

Ωα := Ωτ(α), Γαj := Γj,τ(α), j = 0, 1, Γα∗ := Γ∗,τ(α),

Qα := Qτ(α), Σα
j := Σj,τ(α), j = 0, 1, Σα

∗ := Σ∗,τ(α).

Note that in view of (3.13) we have Ω =
⋃
α>0 Ωα, Q =

⋃
α>0Q

α.

Let {Λm}∞m=1 be a sequence of real numbers such that for all m ∈ N we have

−µ < Λm 6 inf
t,v

ˆ
Ωm

[
q1|∇kv|2 + q2|v|2

]
dx

ˆ
Ωm
|v|2 dx

, (3.14)

where the infimum is taken over all numbers t ∈ [0, T ], and functions v ∈ C1(Ωm)
such that v = 0 on ∂Ωm \ Γm1 (in particular, −µ < Λm 6 minQm q2).

Denote
Ek,µ(w) := q1|∇kw|2 + (q2 + µ)|w|2,

〈w〉α :=

(˜
Qα Ek,µ(w)e−2µt dxdt

)1/2

, α > 0.
(3.15)

Now we formulate our main results.

Theorem 3.1 (a uniqueness of the solution). Let p satisfies condition (P∗), f ∈
L2,loc(Q), u0 ∈ L2,loc(Ω), (a0, a1, . . . , an) ∈ A∗p. Then problem (1.1) – (1.3) has at
most one weak solution such that

e−R/2 〈u〉R → 0 as R→ +∞ (3.16)

(an analog of the boundary condition at infinity), where 〈·〉R defined in (3.15).

Remark 3.2. Assertion (3.16) is equivalent to the condition

e
−
´ r
1

ds
Aµ(s)

¨
Qr

[
q1|∇ku|2 + (q2 + µ)|u|2

]
dxdt→ 0 as r → +∞. (3.17)

It follows from (3.12), if to remark that QR = Qr, if R =
´ r

1
ds

Aµ(s) . �

Theorem 3.2 (an existence of the solution). Let p satisfies condition (P∗), f ∈
L2,loc(Q), u0 ∈ L2,loc(Ω), (a0, a1, . . . , an) ∈ A∗∗p . Also suppose for some number
κ ∈ (0, 1) the following inequality holds

(Λm + µ)−1

¨
Qm
|f |2e−2µt dxdt+

ˆ
Ωm
|u0|2 dx 6 C1 e

(1−κ)m ∀m ∈ N, (3.18)

where C1 > 0 is a constant.
Then there exists a weak solution of problem (1.1) – (1.3) satisfying condition

(3.16). Moreover, for this solution the following estimate is fulfilled:

〈u〉m 6 C2 e
(1−κ)m/2 ∀m ∈ N, (3.19)

where C2 := [(2 + e1/2 − e−κ/2)/(1− e−κ/2)]
√
C1, 〈·〉m defined in (3.15).
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Remark 3.3. Estimate (3.19) is equivalent to the estimate
¨
Qr

[
q1|∇ku|2 + (q2 + µ)|u|2

]
e−2µt dxdt 6 C3 e

(1−κ)
´ r
1

ds
Aµ(s) ∀ r > 1, (3.20)

where C3 > 0 is a constant depending only on κ and C1.
The statement is substantiated in the same way as (3.17). �

Remark 3.4. For equation (1.4) the conditions of Theorems 1 and 2 are satisfied if
functions âij , i, j = 1, n, âi, i = 0, n, are as in Remark 1.1, and for a.e. (x, t) ∈ Q
following hold

g1(x, t) >
n∑
i=1

( n∑
j=1

|âij(x, t)|2
)1/2

, g2(x, t) = 0,

q1(x, t) = ω/2, q2(x, t) 6
(
â0(x, t)− 1

2ω

n∑
i=1

|âi(x, t)|2
)
,

where g1, g2, q1, q2 are as in (A3) with µ = 0, and f, u0 satisfy (3.18). �

Remark 3.5. For equation (1.5) the conditions of Theorems 1 and 2 are satisfied
if functions âij , i, j = 1, k, âi, i = k + 1, n, â0 are as in Remark 1.2, and for a.e.
(x, t) ∈ Q following inequalities hold

√
k

k∑
i=1

max
j∈{1,...,k}

∣∣âij(x, t)∣∣ 6 g1(x, t),

k∑
i,j=1

âij(x, t)ηiηj > q1(x, t)
k∑
i=1

|ηi|2 ∀ (η1, ..., ηk) ∈ Rk,

â0(x, t) > q2(x, t), min
i∈{k+1,...,n}

âi(x, t) > q3(x, t),

where g1, q1, q2, q3 are as in (A3), (A4) together with g2 = 0, q4 = 0, µ = 0, and
f, u0 satisfy (3.18). �

4. Auxiliary statements

Here we give some auxiliary results which will be used in Section 5. We denote

ai(v)(x, t) := ai(x, t, v(x, t),∇v(x, t)), (x, t) ∈ Q, i = 0, n, (4.1)

∂0v = v, ∂iv = ∂iv, i = 1, n. (4.2)

Recall that Lip(Ω) is the linear space of Lipschitz continuous functions on Ω.
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Lemma 4.1 (Lemma 1, [24]). Suppose p satisfies condition (P), R > 0 is an
arbitrary fixed number, and a function w ∈ W̃ 1,0

p(·),loc(Q) satisfies the integral
identity ¨

QR

[
−wψϕ′ +

n∑
i=0

gi∂iψϕ

]
dxdt = 0

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ ΩR, ∀ϕ ∈ C1

c (0, T ),

(4.3)

where gi ∈ Lp′i(·),loc(Q), i = 0, n, are given functions.
Then for arbitrary function ζ ∈ Lip(Ω), supp ζ ⊂ ΩR, ζ > 0 we have

√
ζw ∈

C([0, T ];L2(ΩR)) (hence, w ∈ C([0, T ];L2(ΩR′)) for every R′ ∈ (0, R)). Moreover,
for arbitrary functions θ ∈ C1([0, T ]), and for any numbers t1, t2 ∈ [0, T ] (t1 < t2)
the following equality holds

1

2

[
θ(t)

ˆ
ΩR

|w(x, t)|2ζ(x) dx
]∣∣∣t=t2
t=t1
− 1

2

ˆ t2

t1

ˆ
ΩR

|w|2ζ θ′ dxdt

+

ˆ t2

t1

ˆ
ΩR

[ n∑
i=0

gi∂i(wζ)
]
θ dxdt = 0. (4.4)

If, in addition, it is known that w|Γ∗,R×(0,T ) = 0, then w ∈ C([0, T ];L2(ΩR)), and
we can take ζ(x) = 1, x ∈ Ω, in (4.4).

Lemma 4.2 (an analog of Saint-Venant principle). Assume p satisfies condition
(P∗), (a0, a1, . . . , an) ∈ A∗p, f ∈ L2,loc(Q), u0 ∈ L2,loc(Ω). Suppose R > 0 is an
arbitrary number, and u1, u2 ∈ Up,loc(Q) such that for each l ∈ {1, 2} we have

ul(·, 0) = u0(·) a.e. on ΩR, (4.5)

and

¨
QR

[
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ
]
dxdt =

¨
QR

fψϕdxdt,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ ΩR, ∀ϕ ∈ C1

c (0, T ). (4.6)

Then for every R1, R2, 0 < R1 < R2 6 R, the following inequality holds

〈u1 − u2〉R1 6 e
(R1−R2)/2 〈u1 − u2〉R2 . (4.7)

Remark 4.1. The inequality of type (4.7) has been obtained in [3] for weak
solutions from W 1,1

2,loc to linear parabolic equations, and in [6], [31], [32] and
other works for weak solutions fromW 1,0

2,loc to quasilinear parabolic equations with
constant nonlinearty exponents. This inequality is an analog of the well-known in
elasticity theory Saint-Venant principle. �
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The proof of Lemma 2. For an arbitrary x ∈ Rn we set x = (x′, x′′), where x′ =
(x1, ..., xk) ∈ Rk, x′′ = (xk+1, ..., xn) ∈ Rn−k. Let |x′| = (|x1|2 + . . . + |xk|2)1/2.
For any δ ∈ (0, 1), τ ∈ [1,+∞), x′ ∈ Rk we denote

ψδ(x
′, τ) :=


1, if |x′| 6 τ − δ,
(τ − |x′|)/δ, if τ − δ < |x′| < τ,

0, if |x′| > τ.

Obviously, for every i ∈ {1, . . . , k} we have ∂iψδ(x′, τ) := 0 if |x′| < τ − δ or
|x′| > τ , and

∂iψδ(x
′, τ) = − xi

δ|x′|
if τ − δ < |x′| < τ. (4.8)

By definition, put w := u1 − u2. Let δ ∈ (0, 1), τ ∈ (1, τ(R)) be arbitrary
fixed. We subtract the integral identity (4.6) for l = 2 from this identity for l = 1.
Applying Lemma 1 to their difference with t1 = 0, t2 = T , θ(t) := e−2µt, t ∈ R,
ζ(x) := ψδ(x

′, τ), x = (x′, x′′) ∈ Ω, we obtain

1

2

[
e−2µt

ˆ
Ωτ

|w(x, t)|2ψδ(x′, τ) dx
]∣∣∣t=T
t=0

+ µ

¨
Qτ

|w|2ψδe−2µt dxdt

+

¨
Qτ

[ n∑
i=0

(ai(u1)− ai(u2))∂iwψδ

]
e−2µt dxdt

= −
¨
Qτ

[ k∑
i=1

(ai(u1)− ai(u2))w∂iψδ

]
e−2µt dxdt. (4.9)

Let ∇kw := (∂1w, . . . , ∂kw), |∇kw| := (
∑k

i=1 |∂iw|2)1/2. In view of (3.3) we have

k∑
i=1

|ai(u1)− ai(u2)| 6 g1|∇kw|+ g2|w| a. e. on Q. (4.10)

From (4.9), taking into account (3.4), (4.5), (4.8), and (4.10), we deduce

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
ψδe
−2µt dxdt

6
1

δ

¨
Qτ\Qτ−δ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dxdt. (4.11)

Note that for an arbitrary function P ∈ L1,loc(Q) we have

¨
Qτ\Qτ−δ

P (x, t) dxdt =

ˆ τ

τ−δ

( ¨
Σ∗,σ

P (x, t) dΓ dt
)
dσ, τ > 0.
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Using the latter assertion, we pass to the limit in (4.11) as δ → 0+. So, we get

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dxdt

6
¨

Σ∗,τ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dΓ dt for a.e. τ ∈ (0, τ(R)). (4.12)

From Cauchy-Bunyakovsky-Schvartz inequality it follows that for a.e. τ ∈
(0, τ(R))

¨
Σ∗,τ

[
g1|∇kw|+ g2|w|

]
|w|e−2µt dΓ dt 6

(¨
Σ∗,τ

|g1|2|∇kw|2e−2µt dΓ dt
)1/2

×
(¨

Σ∗,τ

|w|2e−2µt dΓ dt
)1/2

+

¨
Σ∗,τ

g2|w|2e−2µt dΓ dt. (4.13)

By virtue of (3.6) and (3.7), we obtain for a.e. τ ∈ (0, τ(R)) and for a.e.
t ∈ (0, T )

ˆ
Γ∗,τ

|g1|2|∇kw|2 dΓ 6
ˆ

Γ∗,τ

[|g1|2/q1]q1|∇kw|2 dΓ

6 (d1(τ))2

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ, (4.14)

ˆ
Γ∗,τ

|w|2 dΓ 6
ˆ

Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ/[ ˆ

Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ
/ˆ

Γ∗,τ

|w|2 dΓ
]

6 (λ(τ) + µ)−1

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ, (4.15)

ˆ
Γ∗,τ

g2|w|2 dΓ 6 d2(τ)

ˆ
Γ∗,τ

|w|2 dΓ

6 d2(τ)(λ(τ) + µ)−1

ˆ
Γ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
dΓ. (4.16)

From (4.12), taking into account (4.13) – (4.16), we infer

¨
Qτ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dxdt

6
[
d1(τ)(λ(τ) + µ)−1/2 + d2(τ)(λ(τ) + µ)−1

]
×
¨

Σ∗,τ

[
q1|∇kw|2 + (q2 + µ)|w|2

]
e−2µt dΓ dt. (4.17)
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In view of (3.9), (3.15), and (4.17) we establish for a.e. τ ∈ (0, τ(R))

¨
Qτ

Ek,µ(w)e−2µt dxdt 6 Aµ(τ)

¨
Σ∗,τ

Ek,µ(w)e−2µt dΓ dt. (4.18)

Denote

F (τ) :=

¨
Qτ

Ek,µ(w)e−2µt dxdt ≡
ˆ τ

0

( ˆ
Σ∗,σ

Ek,µ(w)e−2µt dΓ dt
)
dσ, (4.19)

for all τ ∈ [1, τ(R)]. Then for a.e. τ ∈ (1, τ(R))

¨
Σ∗,τ

Ek,µ(w)e−2µt dΓ dt =
d

dτ

ˆ τ

0

( ˆ
Σ∗,σ

Ek,µ(w)e−2µt dΓ dt
)
dσ =

dF (τ)

dτ
.

(4.20)
From (4.18), using (4.19), and (4.20), we obtain

F (τ) 6 Aµ(τ)
dF (τ)

dτ
for a.e. τ ∈ [1, τ(R)]. (4.21)

Suppose τ = τ(α), α ∈ [0,+∞), is a solution of problem (3.11), and R1, R2 are
arbitrary real numbers such that 0 < R1 < R2 6 R. In view of (3.11) and (4.21)
we get

F (τ(α)) 6
dF (τ(α))

dτ

dτ(α)

dα
, α ∈ [R1, R2].

It follows that
0 6

dF (τ(α))

dα
− F (τ(α)), α ∈ [R1, R2]. (4.22)

Multiplying (4.22) by e−α, we deduce 0 6
d

dα

(
e−αF (τ(α))

)
, α ∈ [R1, R2].

Integrating the latter inequality in α from R1 to R2, we infer

F (τ(R1)) 6 eR1−R2F (τ(R2)). (4.23)

From (4.23), taking into account 〈w〉α =
√
F (τ(α)), we imply (4.7).

5. Proofs of the main results

The proof of Theorem 1. Let us show that problem (1.1) – (1.3) has no more
than one weak solution. Assume the opposite. Let u1 and u2 be different weak
solutions of problem (1.1) – (1.3), which satisfy condition (3.16). It is clear that
for arbitrary R > 0 a functional 〈·〉R is a seminorm in space Up,loc(Q). From this
fact and (3.16) we deduce

e−R/2 〈u1 − u2〉R 6 e−R/2(〈u1〉R + 〈u2〉R) = e−R/2〈u1〉R + e−R/2〈u2〉R = β(R),
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where β(R) → 0 as R → +∞. Using this assertion and Lemma 2 (see (4.7)) for
arbitrary R1, R2 such that R1 < R2, we obtain the estimate

〈u1 − u2〉R1 6 e
(R1−R2)/2〈u1 − u2〉R2 = eR1/2β(R2). (5.1)

We fix R1, and tend R2 to +∞. From (5.1) it follows that 〈u1 − u2〉R1 = 0. Thus
u1 = u2 almost everywhere on QR1 . As R1 is arbitrary, we get u1 = u2 almost
everywhere on Q. This contradiction proves Theorem 1.

The proof of Theorem 2. The proof is in four steps.
Step 1 (the solution’s approximations). Let α > 0 be an arbitrary number. By
Ŵ 1
p(·)(Ω

α) define the closure of space {v ∈ C1
(
Ωα
)
| v
∣∣
∂Ωα\Γα1

= 0} in W 1
p(·)(Ω

α).

By Ŵ 1,0
p(·)(Q

α) denote a space of functions w ∈ W 1,0
p(·)(Q

α) such that, for a.e. t ∈
(0, T ), w(·, t) belongs to Ŵ 1

p(·)(Ω
α). We set Ûp(Qα) := Ŵ 1,0

p(·)(Q
α)∩C([0, T ];L2(Ωα)).

For every l ∈ N we consider the problem: to find the function ul ∈ Ûp(Ql) that
satisfies (in the sense of space C([0, T ];L2(Ωl))) the initial condition

ul(·, 0) = u0(·) almost everywhere in Ωl, (5.2)

and the integral identity

¨
Ql

{
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ
}
dxdt =

¨
Ql
fψϕdxdt,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ Ωl, ∀ϕ ∈ C1

c (0, T ). (5.3)

To prove the existence of the function ul ∈ Ûp(Ql) we use Faedo-Galerkin
method (see, for example, [22]). In view of (A3) it is easy to show that the
function ul is a unique.

For every l ∈ N the function ul is extended by zero to Q, and the extension
denote by ul again. Obviously, that ul ∈ Up,loc(Q). Now we show that there exists
a subsequence of the sequence {ul}∞l=1 converging to the weak solution of problem
(1.1) – (1.3), (3.16) in some sense. We use an approach from [3], [6], and [33].

Step 2 (the convergence of the sequence of solution’s approximations). First we
estimate 〈ul〉l for an arbitrary fixed l ∈ N. From Lemma 1, putting w = ul, R = l,
t1 = 0, t2 = T , θ(t) = e−2µt, t ∈ R, ζ(x) = 1, x ∈ Ω, and using (5.3) instead of
(4.3), we obtain (see (4.1))

1

2
e−2µT

ˆ
Ωl
|ul(x, T )|2 dx+

¨
Ql

[ n∑
i=0

ai(ul) ∂iul + µ|ul|2
]
e−2µt dxdt

=

¨
Ql
f ul e

−2µt dxdt+
1

2

ˆ
Ωl
|u0|2 dx. (5.4)
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From this assertion, taking into account (A1) (or rather, the condition ai(0) =
0, i = 0, n), (A3) (see (3.4)), and Cauchy inequality:

ab 6
ε

2
a2 +

1

2ε
b2, a, b ∈ R, ε > 0, (5.5)

we infer
¨
Ql

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
e−2µt dxdt

6
ε1

2

¨
Ql
|ul|2e−2µt dxdt+

1

2ε1

¨
Ql
|f |2e−2µt dxdt+

1

2

ˆ
Ωl
|u0|2 dxdt, (5.6)

where ε1 > 0 is an arbitrary constant.
We have

¨
Ql
|ul|2e−2µt dxdt =

ˆ T

0
e−2µt

( ˆ
Ωl
|ul|2 dx

)
dt

=

ˆ T

0
e−2µt

( ˆ
Ωl

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
dx
/[ ˆ

Ωl

[
q1|∇kul|2

+ (q2 + µ)|ul|2
]
dx
/ ˆ

Ωl
|ul|2 dx

])
dt

6
1

Λl + µ

¨
Ql

[
q1|∇kul|2 + (q2 + µ)|ul|2

]
e−2µt dxdt, (5.7)

where Λl is defined in (3.14).
From (5.6) and (5.7), putting ε1 = Λl + µ, we get
¨
Ql
Ek,µ(ul)e

−2µt dxdt 6 (Λl + µ)−1

¨
Ql
|f |2e−2µt dxdt+

ˆ
Ωl
|u0|2 dx.

The latter inequality and (3.18) imply the estimate

〈ul〉l 6
√
C1 e

(1−κ)l/2, l ∈ N. (5.8)

Letm ∈ N be an arbitrary fixed number, and let l, r ∈ N be arbitrary numbers,
while l > m. We have

〈ul+r − ul〉m 6
r−1∑
i=0

〈ul+i+1 − ul+i〉m. (5.9)

For each i ∈ {0, . . . , r − 1} and the functions ul+i+1, ul+i, using Lemma 2 with
R = l + i, we obtain

〈ul+i+1 − ul+i〉m 6 e−1/2〈ul+i+1 − ul+i〉m+1 6 . . .

6 e−(l+i−m)/2〈ul+i+1 − ul+i〉l+i. (5.10)
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In view of (5.8), we have

〈ul+i+1 − ul+i〉l+i 6 〈ul+i+1〉l+i+1 + 〈ul+i〉l+i
6
√
C1

[
e(1−κ)(l+i+1)/2 + e(1−κ)(l+i)/2]

6
√
C1

[
e1/2 + 1]e(1−κ)(l+i)/2 = C4 e

(1−κ)(l+i)/2, (5.11)

where C4 :=
√
C1

(
e1/2 + 1).

Using (5.9) – (5.11), we find

〈ul+r − ul〉m 6 C4

r−1∑
i=0

e−(l+i−m)/2 e(1−κ)(l+i)/2

6 C4e
(m−κl)/2

∞∑
i=0

(e−κ/2)i 6 C5e
(m−κl)/2, (5.12)

where
C5 := C4/(1− e−κ/2) =

√
C1(e1/2 + 1)/(1− e−κ/2). (5.13)

From (5.12) it follows that 〈ul+r − ul〉m → 0 as l→ +∞ uniformly by r ∈ N,
that is, {∂iul}, i = 0, k, are Cauchy sequences in space L2(Qm), where m ∈ N
is an arbitrary fixed. Hence, there exists a function u ∈ L2, loc(Q) such that
∂iu ∈ L2,loc(Q), i = 1, k, and

∂iul−→
l→∞

∂iu strongly in L2, loc(Q), i = 0, k. (5.14)

Taking into account (A3) (see (3.3)), from (5.14) we get

ai(ul)−→
l→∞

ai(u) strongly in L2, loc(Q), i = 1, k. (5.15)

Suppose m ∈ N is an arbitrary fixed number, and l, r ∈ N are arbitrary
numbers such that l > m, r > m. Under the condition suppψ ⊂ Ωm, we subtract
the integral identity (5.3) for l = r from this identity for l. Applying Lemma 1
to their difference with t1 = 0, t2 = s ∈ (0, T ], θ(t) := e−2µt, t ∈ R, ζ(x) :=
ψ1/2(x′, τ(m)), x = (x′, x′′) ∈ Ω, we obtain

1

2

[
e−2µt

ˆ
Ωm
|ulr(x, t)|2ψ1/2(x′, τ(m)) dx

]∣∣∣t=s
t=0

+

ˆ s

0

ˆ
Ωm

[ n∑
i=0

(ai(ul)− ai(ur))∂iulr + µ|ulr|2
]
ψ1/2e

−2µt dxdt

= −
ˆ s

0

ˆ
Ωm

[ k∑
i=1

(ai(ul)− ai(ur))ulr∂iψ1/2

]
e−2µt dxdt, (5.16)

where ulr := ul − ur.
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By virtue of (A3) and (4.8), (5.2), from (5.16) for all s ∈ [0, T ] we deduce
ˆ

Ωm
|ulr(x, s)|2ψ1/2(x′, τ(m)) dx

6 4e2|µ|T
ˆ s

0

ˆ
Ωm

[ k∑
i=1

|ai(ul)− ai(ur)||ulr|
]
dxdt. (5.17)

From (5.17), in view of Cauchy-Bunyakovsky-Schvartz inequality, it implies that

max
t∈[0,T ]

ˆ
Ωτ(m)−1/2

|ul(x, t)− ur(x, t)|2 dx

6 4e2|µ|T
k∑
i=1

(¨
Qm
|ai(ul)− ai(ur)|2 dxdt

)1/2

×
(¨

Qm
|ul − ur|2 dxdt

)1/2
. (5.18)

Using (5.14) and (5.15), from (5.18) we infer that {ul} is the Cauchy sequence in
space C([0, T ];L2,loc(Ω)). Hence,

u ∈ C([0, T ];L2,loc(Ω)) and ul−→
l→∞

u in C([0, T ];L2,loc(Ω)). (5.19)

Assume m ∈ N is an arbitrary fixed number, and l ∈ N is an arbitrary
number such that l > m. Putting w = ul, R = τ(m), t1 = 0, t2 = T , ζ(x) :=
ψ1/2(x′, τ(m)), x = (x′, x′′) ∈ Ω, θ(t) := e−2qt, t ∈ R, where q := supQ q4 (q4 from
condition (A4)), and using (5.3) instead of (4.3), from Lemma 1 we obtain

1

2
e−2qT

ˆ
Ωm
|ul(x, T )|2ψ1/2(x′, τ(m)) dx

+

¨
Qm

[ n∑
i=0

ai(ul)∂iul + q|ul|2
]
ψ1/2e

−2qt dxdt

= −
¨
Qm

k∑
i=1

ai(ul)ul ∂iψ1/2e
−2qt dxdt+

¨
Qm

fulψ1/2e
−2qt dxdt

+
1

2

ˆ
Ωm
|u0|2ψ1/2(x′, τ(m)) dx. (5.20)

Estimating the terms of (5.20) with conditions (A1), (A3) (see (3.3)), (A4),
(4.8) and Cauchy-Bunyakovsky-Schvartz inequality, we get
¨
Qτ(m)−1/2

[
q3

n∑
i=k+1

|∂iul|pi(x) + (q − q4)|ul|2
]
e−2qt dxdt

6 C7

(¨
Qm

[ k∑
i=0

|∂iul|2
]
e−2qt dxdt+

¨
Qm

[
|f |2 +h

]
e−2qt dxdt+

ˆ
Ωm
|u0|2 dx

)
,

(5.21)
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where constant C7 > 0 is independent of l, but it may be depended on m.
Using (5.14), from (5.21) we obtain

¨
Qτ(m)−1/2

n∑
i=0

|∂iul|pi(x) dxdt 6 C8, m, l ∈ N, l > m, (5.22)

where constant C8 > 0 is independent of l, but it may be depended on m.
By virtue of (A2), (5.14), (5.22), and discrete Hölder inequality we deduce

that for every i ∈ {0, k + 1, . . . , n} and arbitrary m, l ∈ N, l > m,
¨
Qτ(m)−1/2

|ai(ul)|p
′
i(x) dxdt 6 C9

¨
Qτ(m)−1/2

[ n∑
j=0

|∂jul|pj(x)
]
dxdt+ C10 6 C11,

(5.23)
where positive constants C9, C10, C11 are independent of l, but they may be
depended on m.

In view of (5.22), (5.23), and the reflexivity of spaces Lpi( · )(Qτ ), Lp′i(·)(Qτ ),
i = k + 1, n, τ > 0, it follows that there exists a subsequence of the sequence{
ul
}∞
l=1

(without loss of generality we use the notation
{
ul
}∞
l=1

for this subsequence),
and functions χ0 ∈ L2, loc(Q), χi ∈ Lp′i(·),loc(Q), i = k + 1, n, such that

∂iul−→
l→∞

∂iu weakly in Lpi(·),loc(Q), i = k + 1, n, (5.24)

a0

(
ul
)
−→
l→∞

χ0 weakly in L2,loc(Q), (5.25)

ai
(
ul
)
−→
l→∞

χi weakly in Lp′i(·),loc(Q), i = k + 1, n. (5.26)

Put
χi := ai(u), i = 1, k. (5.27)

Remark that for every l ∈ N (see (5.3)) we have the identity
¨
Q

[
−ulψϕ′ +

n∑
i=0

ai(ul)∂iψϕ− fψϕ
]
dxdt = 0,

∀ψ ∈ W̃ 1
p(·),c(Ω), suppψ ⊂ Ωl, ∀ϕ ∈ C1

c (0, T ). (5.28)

In (5.28) we fix an arbitrary ψ ∈ W̃ 1
p(·),c(Ω), ϕ ∈ C1

c (0, T ), and pass to the limit
as l→∞, taking into account (5.14), (5.15), (5.25) – (5.27). So, we get

¨
Q

[
−uψϕ′ +

n∑
i=0

χi∂iψϕ− fψϕ
]
dxdt = 0. (5.29)

To conclude that u is a weak solution of problem (1.1) – (1.3). It remains to show
that the following identity holds
¨
Q

n∑
i=0

χi∂iψϕdxdt =

¨
Q

n∑
i=0

ai(u)∂iψϕdxdt ∀ψ ∈ W̃ 1
p(·),c(Ω), ∀ϕ ∈ C1

c (0, T ).

(5.30)
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Indeed, if (5.30) is true, then from this and (5.29) we obtain the integral identity
(3.2). In view of (5.14), (5.24) we have u ∈ W̃ 1,0

p(·), loc(Q). From (5.2), (5.19) we
deduce u ∈ C([0, T ];L2,loc(Ω)) (it means that u ∈ U b

p,loc(Q)) and the initial
condition (1.3) is true. Hence, the function u is a weak solution of problem (1.1)
– (1.3).

Step 3 (the correctness of identity (5.30)). To verify the correctness of identity
(5.30) we use the monotonicity method [33].

Let v ∈ L2,loc(Q) be an arbitrary function such that ∂iv ∈ Lpi(·), loc(Q), i =

1, n, let ζ(x′), x′ = (x1, . . . , xk) ∈ Rk, be a nonnegative continuously differentiable
function with bounded support, and let θ ∈ C1

c (0, T ), θ > 0. By virtue of condition
(A3) (see (3.4)), for every l ∈ N we have
¨
Q

[ n∑
i=0

(ai(ul)− ai(v))(∂iul − ∂iv) + µ(ul − v)2
]
ζθe−2µt dxdt > 0. (5.31)

We rewrite inequality (5.31) as
¨
Q

[ n∑
i=0

ai(ul)∂iul
]
ζθe−2µt dxdt−

¨
Q

[ n∑
i=0

(
ai(ul)∂iv + ai(v)(∂iul − ∂iv)

)
+ µ(ul − v)2

]
ζθe−2µt dxdt > 0 ∀ l ∈ N. (5.32)

Assume m ∈ N such that supp ζ ⊂ {x′ | |x′| 6 τ(m)}. Using Lemma 1, we
obtain from identity (5.28) as l > m
¨
Q

[ n∑
i=0

ai(ul)∂iul
]
ζθe−2µt dxdt =

¨
Q
|ul|2ζ(θ′/2− µθ)e−2µt dxdt

−
¨
Q

[ k∑
i=1

ai(ul)ul∂iζ − fulζ
]
θe−2µt dxdt. (5.33)

From (5.32) and (5.33) we get

¨
Q
|ul|2ζ(θ′/2− µθ)e−2µt dxdt−

¨
Q

[ k∑
i=1

ai(ul)ul∂iζ − fulζ
]
θe−2µt dxdt

−
¨
Q

[ n∑
i=0

(
ai(ul)∂iv + ai(v)(∂iul − ∂iv)

)
+ µ(ul − v)2

]
ζθe−2µt dxdt > 0. (5.34)

In (5.34) we pass to the limit as l →∞, and by virtue of (5.14), (5.15), (5.25) –
(5.27) we infer

¨
Q
|u|2ζ(θ′/2− µθ)e−2µt dxdt−

¨
Q

[ k∑
i=1

χiu∂iζ − fuζ
]
θe−2µt dxdt

−
¨
Q

[ n∑
i=0

(
χi∂iv + ai(v)(∂iu− ∂iv)

)
+ µ(u− v)2

]
ζθe−2µt dxdt > 0. (5.35)
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In view of Lemma 1 it follows from (5.29) next equality

¨
Q

[ n∑
i=0

χi∂iu
]
ζθe−2µt dxdt =

¨
Q
|u|2ζ(θ′/2− µθ)e−2µt dxdt

−
¨
Q

[ k∑
i=1

χiu∂iζ − fuζ
]
θe−2µt dxdt. (5.36)

Assertions (5.35) and (5.36) imply

¨
Q

[ n∑
i=0

χi ∂iu
]
wθe−2µt dxdt−

¨
Q

[ n∑
i=0

(
χi∂iv + ai(v)(∂iu− ∂iv)

)
+ µ(u− v)2

]
ζθe−2µt dxdt > 0,

that is,
¨
Q

[ n∑
i=0

(χi − ai(v))(∂iu− ∂iv) + µ(u− v)2
]
ζθe−2µt dxdt > 0. (5.37)

In (5.37) we put v = u − λψϕ, where λ is an arbitrary number, and ψ ∈
W̃ 1
p(·),c(Ω), ϕ ∈ C1

c (0, T ) are arbitrary functions. So, taking into account the
arbitrariness of λ, we obtain the equality

¨
Q

[ n∑
i=0

(
χi − ai(u− λψϕ)

)
∂iψϕ+ λµ(ψϕ)2

]
ζθe−2µt dxdt = 0.

Here we tend λ to 0, using conditions (A1), (A2), and Lebesgue dominated
convergence theorem. Thus, taking into account the arbitrariness of ζ and θ,
we deduce
¨
Q

[ n∑
i=0

(
χi − ai(u)

)
∂iψ
]
ϕdxdt = 0, ψ ∈ W̃ 1

p(·),c(Ω), ϕ ∈ C1
c (0, T ). (5.38)

From (5.38) it follows (5.30).

Step 4 (the solution’s estimate). Estimate (3.19) is obtained from (5.8), (5.12) and
(5.13) by this way: 〈u〉m 6 〈u − um〉m + 〈um〉m = liml→∞〈ul − um〉m + 〈um〉m
6 C2e

(1−κ)m/2, where C2 :=
√
C1 + C5 =

√
C1(2 + e1/2 − e−κ/2)/(1− e−κ/2).

Now it is easy to see that the function u satisfies (3.16). Indeed, let R > 0
be an arbitrary number, and m be a natural number such that m− 1 < R 6 m.
Using (3.19), we get

〈u〉R 6 〈u〉m 6 C2e
(1−κ)m/2 = C2e

(1−κ)(m−R)/2e(1−κ)R/2

6 C2e
(1−κ)/2e−κR/2eR/2 = β(R)eR/2, R > 1,
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where β(R) := C2e
(1−κ)/2e−κR/2. Since β(R) → 0 as R → +∞, then we have

(3.16).
So, we have shown that u is a weak solution of problem (1.1) – (1.3) that

satisfies (3.16) and (3.19). Theorem 2 is proved.
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21. M. Ru̇žička, Electroreological fluids: modeling and mathematical theory, Springer-
Verl., Berlin, 2000.

22. V. N. Samokhin, On a class of equations that generalize equations of polytropic
filtration, Diff. Equat., 32 (5) (1996), 648–657.

23. O. Buhrii, S. Lavrenyuk, Initial boundary-value problem for parabolic equation
of polytropic filtration type, Visn. Lviv Univ (Herald of Lviv University). Ser. Mech.-
Math., 56 (2000), 33–43.

24. M.M. Bokalo, I.B. Pauchok, On the well-posedness of a Fourier problem for
nonlinear parabolic equations of higher order with variable exponents of nonlinearity,
Matematychni Studii, 26 (1) (2006), 25–48.

25. M. Bokalo, O. Domanska, On well-posedness of boundary problems for elliptic
equations in general anisotropic Lebesgue-Sobolev spaces, Matematychni Studii, 28
(1) (2007), 77–91.

26. S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions.
Existence, uniqueness, localization, blow-up, Atlantis Studies in Diff. Eq., Vol. 4,
Paris: Atlantis Press, 2015.
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