Some non-normal Cayley digraphs of the generalized quaternion group of certain orders

Edward Dobson

Department of Mathematics and Statistics PO Drawer MA Mississippi State, MS 39762, U.S.A. dobson@math.msstate.edu

Submitted: Mar 10, 2003; Accepted: Jul 30, 2003; Published: Sep 8, 2003 MR Subject Classifications: 05C25, 20B25

Abstract

We show that an action of $\operatorname{SL}(2, p)$, $p \geq 7$ an odd prime such that $4 \not| (p-1)$, has exactly two orbital digraphs Γ_1 , Γ_2 , such that $\operatorname{Aut}(\Gamma_i)$ admits a complete block system \mathcal{B} of p + 1 blocks of size 2, i = 1, 2, with the following properties: the action of $\operatorname{Aut}(\Gamma_i)$ on the blocks of \mathcal{B} is nonsolvable, doubly-transitive, but not a symmetric group, and the subgroup of $\operatorname{Aut}(\Gamma_i)$ that fixes each block of \mathcal{B} set-wise is semiregular of order 2. If $p = 2^k - 1 > 7$ is a Mersenne prime, these digraphs are also Cayley digraphs of the generalized quaternion group of order 2^{k+1} . In this case, these digraphs are non-normal Cayley digraphs of the generalized quaternion group of order 2^{k+1} .

There are a variety of problems on vertex-transitive digraphs where a natural approach is to proceed by induction on the number of (not necessarily distinct) prime factors of the order of the graph. For example, the Cayley isomorphism problem (see [6]) is one such problem, as well as determining the full automorphism group of a vertex-transitive digraph Γ . Many such arguments begin by finding a complete block system \mathcal{B} of Aut(Γ). Ideally, one would then apply the induction hypothesis to the groups Aut(Γ)/ \mathcal{B} and fix_{Aut(Γ)(\mathcal{B})|_B, where Aut(Γ)/ \mathcal{B} is the permutation group induced by the action of Aut(Γ) on \mathcal{B} , and fix_{Aut(Γ)(\mathcal{B}) is the subgroup of Aut(Γ) that fixes each block of \mathcal{B} set-wise, and $B \in \mathcal{B}$. Unfortunately, neither Aut(Γ)/ \mathcal{B} nor fix_{Aut(Γ)}(\mathcal{B})|_B need be the automorphism group of a digraph. In fact, there are examples of vertex-transitive graphs where Aut(Γ)/ \mathcal{B} is a doubly-transitive nonsolvable group that is not a symmetric group (see [7]), as well as examples of vertex-transitive graphs where fix_{Aut(Γ)}(\mathcal{B})|_B is a doubly-transitive nonsolvable group that is not a symmetric group (see [2]). (There are also examples where Aut(Γ)/ \mathcal{B} is a solvable doubly-transitive group, but in practice, this is not usually}} a genuine obstacle in proceeding by induction.) The only known class of examples of vertex-transitive graphs where $\operatorname{Aut}(\Gamma)/\mathcal{B}$ is a doubly-transitive nonsolvable group, have the property that $\operatorname{Aut}(\Gamma)/\mathcal{B}$ is a faithful representation of $\operatorname{Aut}(\Gamma)$ and Γ is not a Cayley graph. In this paper, we give examples of vertex-transitive digraphs that are Cayley digraphs and the action of $\operatorname{Aut}(\Gamma)/\mathcal{B}$ on \mathcal{B} is doubly-transitive, nonsolvable, not faithful, and not a symmetric group.

1 Preliminaries

Definition 1.1 Let G be a permutation group acting on Ω . If $\omega \in \Omega$, then a sub-orbit of G is an orbit of $\operatorname{Stab}_G(\omega)$.

Definition 1.2 Let G be a finite group. The *socle* of G, denoted $\operatorname{soc}(G)$, is the product of all minimal normal subgroups of G. If G is primitive on Ω but not doubly-transitive, we say G is *simply primitive*. Let G be a transitive permutation group on a set Ω and let G act on $\Omega \times \Omega$ by $g(\alpha, \beta) = (g(\alpha), g(\beta))$. The orbits of G in $\Omega \times \Omega$ are called the *orbitals* of G. The orbit $\{(\alpha, \alpha) : \alpha \in \Omega\}$ is called the *trivial orbital*. Let Δ be an orbital of G in $\Omega \times \Omega$. Define the *orbital digraph* Δ to be the graph with vertex set Ω and edge set Δ . Each orbital of G has a *paired orbital* $\Delta' = \{(\beta, \alpha) : (\alpha, \beta) \in \Delta\}$. Define the *orbital* graph Δ to be the graph with vertex set Ω and edge set $\Delta \cup \Delta'$. Note that there is a canonical bijection from the set of orbital digraphs of G to the set of sub-orbits of G (for fixed $\omega \in \Omega$).

Definition 1.3 Let G be a transitive permutation group of degree mk that admits a complete block system \mathcal{B} of m blocks of size k. If $g \in G$, then g permutes the m blocks of \mathcal{B} and hence induces a permutation in S_m , which we denote by g/\mathcal{B} . We define $G/\mathcal{B} = \{g/\mathcal{B} : g \in G\}$. Let $\operatorname{fix}_{\mathcal{B}}(G) = \{g \in G : g(B) = B \text{ for every } B \in \mathcal{B}\}.$

Definition 1.4 Let G be transitive group acting on Ω with r orbital digraphs $\Gamma_1, \ldots, \Gamma_r$. Define the 2-closure of G, denoted $G^{(2)}$ to be $\bigcap_{i=1}^r \operatorname{Aut}(\Gamma_i)$. Note that if G is the automorphism group of a vertex-transitive digraph, then $G^{(2)} = G$.

Definition 1.5 Let Γ be a graph. Define the *complement of* Γ , denoted by $\overline{\Gamma}$, to be the graph with $V(\overline{\Gamma}) = V(\Gamma)$ and $E(\overline{\Gamma}) = \{uv : u, v \in V(\Gamma) \text{ and } uv \notin E(\Gamma)\}.$

Definition 1.6 A group G given by the defining relations

$$G = \langle h, k : h^{2^{a-1}} = k^2 = m, m^2 = 1, k^{-1}hk = h^{-1} \rangle$$

is a generalized quaternion group.

Let $p \ge 5$ be an odd prime. Then $\operatorname{GL}(2, p)$ acts on the set \mathbb{F}_p^2 , where \mathbb{F}_p is the field of order p, in the usual way. This action has two orbits, namely $\{0\}$ and $\Omega = \mathbb{F}_p^2 - \{0\}$. The action of $\operatorname{GL}(2, p)$ on Ω is imprimitive, with a complete block system \mathcal{C} of $(p^2 - 1)/(p - 1) = p + 1$ blocks of size p - 1, where the blocks of \mathcal{C} consist of all scalar multiples of a given

vector in Ω (these blocks are usually called *projective points*), and the action of GL(2, p)on the blocks of \mathcal{C} is doubly-transitive. Furthermore, $\operatorname{fix}_{\operatorname{GL}(2,p)}(\mathcal{C})$ is cyclic of order p-1, and consists of all scalar matrices αI (where I is the 2 × 2 identity matrix) in GL(2, p). Note that if m|(p-1), then GL(2,p) admits a complete block system \mathcal{C}_m of (p+1)mblocks of size (p-1)/m, and fix_{GL(2,p)}(\mathcal{C}_m) consists of all scalar matrices $\alpha^i I$, where $\alpha \in \mathbb{F}_p^*$ is of order (p-1)/m and $i \in \mathbb{Z}$. Each such block of \mathcal{C}_m consists of all scalar multiples $\alpha^i v$, where v is a vector in \mathbb{F}_p^2 and $i \in \mathbb{Z}$. Hence $\operatorname{GL}(2,p)/\mathcal{C}_m$ admits a complete block system \mathcal{D}_m consisting of p+1 blocks of size m, induced by \mathcal{C}_m . Henceforth, we set m=2so that \mathcal{C}_2 consists of 2(p+1) blocks of size (p-1)/2, and \mathcal{D}_2 consists of p+1 blocks of size 2. Note that as $p \ge 5$, SL(2, p) is doubly-transitive on the set of projective points, as if $A \in GL(2, p)$, then $det(A)^{-1}A \in SL(2, p)$. Finally, observe that $(-1)I \in SL(2, p)$. Thus $(-1)I/\mathcal{C}_2 \in \text{fix}_{\mathrm{SL}(2,p)/\mathcal{C}_2}(\mathcal{D}_2) \neq 1$ so that $\mathrm{SL}(2,p)/\mathcal{C}_2$ is transitive on \mathcal{C}_2 . Additionally, as $fix_{GL(2,p)}(\mathcal{C}_2) = \{ \alpha^i I : |\alpha| = (p-1)/2, i \in \mathbb{Z} \}, SL(2,p)/\mathcal{C}_2 \cong SL(2,p).$ That is, $SL(2,p)/\mathcal{C}_2$ is a faithful representation of SL(2, p). We will thus lose no generality by referring to an element $x/\mathcal{C}_2 \in \mathrm{SL}(2,p)/\mathcal{C}_2$ as simply $x \in \mathrm{SL}(2,p)$. As each projective point can be written as a union of two blocks contained in \mathcal{C}_2 , we will henceforth refer to blocks in \mathcal{C}_2 as projective half-points.

2 Results

We begin with a preliminary result.

Lemma 2.1 Let $p \ge 7$ be an odd prime such that $4 \not\mid (p-1)$, and let SL(2,p) act as above on the 2(p+1) projective half-points. Then the following are true:

- 1. SL(2, p) has exactly four sub-orbits; two of size 1 and 2 of size p,
- 2. SL(2, p) admits exactly one non-trivial complete block system which consists of p+1 blocks of size 2, namely \mathcal{D}_2 , formed by the orbits of (-1)I.

PROOF. By [4, Theorem 2.8.1], $|\mathrm{SL}(2,p)| = (p^2 - 1)p$. It was established above that $\mathrm{SL}(2,p)$ admits \mathcal{D}_2 as a complete block system of p+1 blocks of size 2, and this complete block system is formed by the orbits of (-1)I as $(-1)I \in \mathrm{fix}_{\mathrm{SL}(2,p)}(\mathcal{D}_2)$ and is semi-regular of order 2. As $\mathrm{SL}(2,p)/\mathcal{D}_2 = \mathrm{PSL}(2,p)$ is doubly-transitive, there are two sub-orbits of $\mathrm{SL}(2,p)/\mathcal{D}_2$, one of size 1 and the other of size p. Now, consider $\mathrm{Stab}_{\mathrm{SL}(2,p)}(x)$, where x is a projective half-point. Then there exists another projective half-point y such that $x \cup y$ is a projective point z. As $\{x, y\} \in \mathcal{D}_2$ is a block of size 2 of $\mathrm{SL}(2,p)$, we have that $\mathrm{Stab}_{\mathrm{SL}(2,p)}(x) = \mathrm{Stab}_{\mathrm{SL}(2,p)}(y)$. Thus $\mathrm{SL}(2,p)$ has at least two singleton sub-orbits. As $\mathrm{SL}(2,p)/\mathcal{D}_2 = \mathrm{PSL}(2,p)$ has one singleton sub-orbit, $\mathrm{SL}(2,p)$ has order a multiple of p. As the non-singleton sub-orbits of $\mathrm{SL}(2,p)$ have order a multiple of p, $\mathrm{Stab}_{\mathrm{SL}(2,p)}(x)$ has either one non-singleton orbit of $\mathrm{SL}(2,p)$ have order a multiple of p. As the order orbit of $\mathrm{SL}(2,p)$ have order a multiple of p. As the order orbit of size 2p or two non-singleton orbits of size p. As the order of a non-singleton orbit must divide $|\mathrm{Stab}_{\mathrm{SL}(2,p)}(x)| = p(p-1)/2$ which is odd as

4 $\not|$ (p-1), SL(2, p) must have exactly two non-singleton sub-orbits of size p. Thus 1) follows.

Suppose that \mathcal{D} is another non-trivial complete block system of $\mathrm{SL}(2,p)$. Let $D \in \mathcal{D}$ with v a projective half-point in D. By [3, Exercise 1.5.9], D is a union of orbits of $\mathrm{Stab}_{\mathrm{SL}(2,p)}(v)$, so that |D| is either 2, p+1, p+2, 2p, or 2p+1. Furthermore, as the size of a block of a permutation group divides the degree of the permutation group, |D| = 2or p+1. If |D| = 2, then D is the union of two singleton orbits of $\mathrm{Stab}_{\mathrm{SL}(2,p)}(v)$, in which case D consists of two projective half-points whose union is a projective point. Thus if |D| = 2, then $D \in \mathcal{D}_2$ and $\mathcal{D} = \mathcal{D}_2$. If |D| = p+1, then \mathcal{D} consists of 2 blocks of size p+1 and D is the union of two orbits of $\mathrm{Stab}_{\mathrm{SL}(2,p)}(v)$, and these orbits have size 1 and p. We conclude that $\cup D$ does not contain the projective point q that contains v.

Now, $\operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D})$ cannot be trivial, as $\operatorname{SL}(2,p)/\mathcal{D}$ is of degree 2 while $|\operatorname{SL}(2,p)| = (p^2 - 1)p$. Then $|\operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D})| = (p^2 - 1)p/2$ as $\operatorname{SL}(2,p)/\mathcal{D}$ is a transitive subgroup of S_2 . Furthermore, $-I \notin \operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D})$ as no block of \mathcal{D} contains the projective point q that contains v so that -I permutes the two projective half-points whose union is q. Thus $\operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D}_2) \cap \operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D}) = 1$. As $\langle -I \rangle = \operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D}_2)$ and both $\operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D}_2)$ and $\operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D})$ are normal in $\operatorname{SL}(2,p)$, we have that $\operatorname{SL}(2,p) = \operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D}_2) \times \operatorname{fix}_{\operatorname{SL}(2,p)}(\mathcal{D})$. Thus a Sylow 2-subgroup of $\operatorname{SL}(2,p)$ can be written as a direct product of two nontrivial 2-groups, contradicting [4, Theorem 8.3].

Theorem 2.2 Let $p \ge 7$ be an odd prime such that $4 \not\mid (p-1)$. Then there exist exactly two digraphs Γ_i , i = 1, 2 of order 2(p+1) such that the following properties hold:

- 1. Γ_i is an orbital digraph of SL(2, p) in its action on the set of projective half-points and is not a graph,
- 2. Aut (Γ_i) admits a unique nontrivial complete block system \mathcal{D}_2 which consists of p+1 blocks of size 2,
- 3. $\operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2) = \langle -I \rangle$ is cyclic of order 2,
- 4. $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2)$ is doubly-transitive but $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) \neq A_{p+1}$.

PROOF. By Lemma 2.1, SL(2, p) in its action on the half-projective points has exactly four orbital digraphs; one consisting of p + 1 independent edges (the edges of this graph consists of all edges of the form (v, w), where $\cup \{v, w\}$ is a projective point; thus $\cup \{v, w\}$ is a block of \mathcal{D}_2), one which consists of only self-loops (and so is trivial with automorphism group S_{2p+2} and will henceforth be ignored) and two in which each vertex has in and out degree p. The orbital digraph Γ of SL(2, p) consisting of p + 1 independent edges is then $\overline{K}_{p+1} \wr K_2$. The other orbital digraphs of SL(2, p), say Γ_1 and Γ_2 , each have in-degree and out-degree p.

If either Γ_1 or Γ_2 is a graph, then assume without loss of generality that Γ_1 is a graph. Then whenever $(a, b) \in E(\Gamma_1)$ then $(b, a) \in E(\Gamma_1)$. As Γ_1 is an orbital digraph, there exists $\alpha \in SL(2, p)$ such that $\alpha(a) = b$ and $\alpha(b) = a$. Raising α to an appropriate odd power, we may assume that α has order a power of 2, and so $\alpha \in Q$, where Q is a Sylow 2-subgroup of SL(2, p). As a Sylow 2-subgroup of SL(2, p) is isomorphic to a generalized quaternion by [4, Theorem 8.3], Q contains a unique subgroup of order 2 (see [4, pg. 29]), which is necessarily $\langle -I \rangle$. If α is not of order 2, then $\alpha^2(a) = a$ and $\alpha^2(b) = b$ so that α has at least two fixed points. However, $(\alpha^2)^c = -I$ for some $c \in \mathbb{Z}$ and -I has no fixed points, a contradiction. Thus α has order 2 and so $\alpha = -I$. Thus $(a, b) \in \bar{K}_{p+1} \wr K_2 \neq \Gamma_1$, a contradiction. Hence 1) holds.

We now establish that 2) holds. Suppose that for i = 1 or 2, $\operatorname{Aut}(\Gamma_i)$ is primitive. We may then assume without loss of generality that $\operatorname{Aut}(\Gamma_1)$ is primitive, and as $\operatorname{Aut}(\Gamma_1) \neq$ $K_{2(p+1)}$, Aut(Γ_1) is simply primitive, and, of course, SL(2, p)⁽²⁾ \leq Aut(Γ_1). First observe that by [11, Theorem 4.11], $SL(2, p)^{(2)}$ admits \mathcal{D}_2 as a complete block system. Let v be a projective half-point. By Lemma 2.1, SL(2, p) has four sub-orbits relative to v, two of size 1, say $\mathcal{O}_1 = \{v\}$ and $\mathcal{O}_2 = \{w\}$, and two of size p, say \mathcal{O}_3 and \mathcal{O}_4 . By [11, Theorem 5.5 (ii)] the sub-orbits of $SL(2, p)^{(2)}$ relative to v are the same as the sub-orbits of SL(2, p) relative to v. Thus the neighbors of v in Γ_1 consist of all elements in one of the sub-orbits \mathcal{O}_3 or \mathcal{O}_4 . Without loss of generality, assume that this sub-orbit is \mathcal{O}_3 . As Aut(Γ_1) is primitive, by [3, Theorem 3.2A], every non-trivial orbital digraph of Aut(Γ_1) is connected. Then the orbital digraph of Aut(Γ_1) that contains \vec{vw} is connected, and so $\mathcal{O}_2 = \{w\}$ is not a sub-orbit of Aut(Γ_1). Of course, Aut(Γ_1) = Aut(Γ_1) so that $\operatorname{Aut}(\Gamma_1)$ is primitive as well. As if $\operatorname{Aut}(\Gamma_1)$ has exactly two sub-orbits, then $\operatorname{Aut}(\Gamma_1)$ is doubly-transitive and hence $\Gamma_1 = K_{2(p+1)}$ which is not true, $\operatorname{Aut}(\Gamma_1)$ has exactly three sub-orbits. Clearly \mathcal{O}_3 is a sub-orbit of Aut(Γ_1) so that the only sub-orbits of Aut(Γ_1) relative to v are $\mathcal{O}_1, \mathcal{O}_3$, and $\mathcal{O}_2 \cup \mathcal{O}_4$. Thus the neighbors of v in Γ_1 are all contained in one sub-orbit of $\operatorname{Aut}(\Gamma_1)$ relative to v. However, one of these directed edges is an edge (as $\Gamma_1 = \Gamma_2 \cup (K_{p+1} \wr K_2)$), and so every neighbor of v in Γ_1 is an edge. Thus every neighbor of v in Γ_1 is an edge. However, we have already established that Γ_1 is a digraph that is not a graph, a contradiction. Whence $\operatorname{Aut}(\Gamma_i)$, i = 1, 2, are not primitive, and as $SL(2,p) \leq Aut(\Gamma_i)$, we have by Lemma 2.1 that \mathcal{D}_2 is the unique complete block system of Aut(Γ_i), i = 1, 2. Thus (2) holds.

If $\operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2)$ is not cyclic, then there exists $1 \neq \gamma \in \operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2)$ such that $\gamma(v) = v$ for some $v \in V(\Gamma_i)$. It is then easy to see that $\operatorname{Aut}(\Gamma_i)$ has only three sub-orbits, two of size 1, and one of size 2p, a contradiction. Thus (3) holds.

To establish (4), as $\operatorname{SL}(2,p)/\mathcal{D}_2 = \operatorname{PSL}(2,p)$ which is doubly-transitive in its action on the blocks (projective points) of \mathcal{D}_2 , we have that $\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2$ is doubly-transitive. As $\operatorname{PSL}(2,p) \leq \operatorname{Aut}(\Gamma_i)/\mathcal{D}_2$, by [1, Theorem 5.3] $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2)$ is a doubly-transitive nonabelian simple group acting on p+1 points. Thus we need only show that $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) \neq A_{p+1}$.

Assume that $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) = A_{p+1}$. Recall that as p is odd, a Sylow 2-subgroup Q of $\operatorname{SL}(2,p)$ is a generalized quaternion group. Furthermore, the unique element of Q of order 2, namely -I, is contained is every Sylow 2-subgroup of $\operatorname{SL}(2,p)$ and is semiregular. Observe that as $4 \not| (p-1), 4 \mid (p+1)$. Then Q contains an element δ such that δ/\mathcal{D}_2 is a product of (p+1)/4 disjoint 4-cycles and $\langle \delta^4 \rangle = \operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2) = \langle -I \rangle$. Let $\delta/\mathcal{D}_2 = z_0 \dots z_{\frac{p+1}{4}-1}$ be the cycle decomposition of δ/\mathcal{D}_2 . As $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) = A_{p+1}$, there

exists $\omega \in \operatorname{Aut}(\Gamma_i)$ such that $\omega/\mathcal{D}_2 = z_0 z_1^{-1} \dots z_{\frac{p+1}{4}-1}^{-1}$ (note that if ω/\mathcal{D}_2 is not an even permutation, then δ/\mathcal{D}_2 is not an even permutation, in which case $\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2 = S_{p+1}$ and $\omega \in \operatorname{Aut}(\Gamma_i)$). Then $|\delta\omega/\mathcal{D}_2| = 2$ so that $(\delta\omega)^2 \in \operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2)$. Let \mathcal{O}_0 be the union of the non-singleton orbits of $\langle z_0 \rangle$, and \mathcal{O}_1 be the union of the non-singleton orbits of $\langle z_1 \rangle$ (note that as $p \geq 7$, $p+1 \geq 8$, so that $(p+1)/4 \geq 2$). Let $D \in \mathcal{D}_2$ such that $D \subset \mathcal{O}_1$. Then $\delta\omega|_D$ has order 1 or 2, so that $(\delta\omega)^2|_D = 1$. Thus if $\omega|_{\mathcal{O}_0} \in \delta|_{\mathcal{O}_0}$, then $(\delta\omega)^2 \in \operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2) = \langle -I \rangle$, $(\delta\omega)^2 \neq 1$, but $(\delta\omega)^2$ has a fixed point, a contradiction. Thus $\omega|_{\mathcal{O}_0} \notin \delta|_{\mathcal{O}_0}$. Then $H = \langle \delta, \omega \rangle|_{\mathcal{O}_0}$ has a complete block system \mathcal{E} of 4 blocks of size 2 induced by \mathcal{D}_2 . Furthermore, H/\mathcal{E} is cyclic of order 4, so that $\operatorname{fix}_H(\mathcal{E})$ has order at least 4. Then $\operatorname{Stab}_H(v) \neq 1$ for every $v \in \mathcal{O}_0$. In particular, \mathcal{E} consists of 4 blocks of size 2, and $\operatorname{Stab}_H(v)$ is the identity on some block of \mathcal{E} while being transitive on some other block. As each block of \mathcal{E} is also a block of \mathcal{D}_2 , $\operatorname{Stab}_{\operatorname{Aut}(\Gamma)}(v)$ is transitive on some block D_v of \mathcal{D}_2 . This then implies that $\operatorname{Stab}_{\operatorname{Aut}(\Gamma_i)}(v)$ has three orbits, two of size one and one of size 2(p+1)-2, a contradiction. \Box

Corollary 2.3 Let $p = 2^k - 1 > 7$ be a Mersenne prime. Then there exist exactly two digraphs Γ_i , i = 1, 2 of order 2^{k+1} such that the following properties hold:

- 1. Γ_i is an orbital digraph of SL(2, p) in its action on the set of projective half-points and is not a graph,
- 2. Aut (Γ_i) admits a unique complete block system \mathcal{D}_2 which consists of 2^k blocks of size 2,
- 3. $\operatorname{fix}_{\operatorname{Aut}(\Gamma_i)}(\mathcal{D}_2)$ is cyclic of order 2,
- 4. $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) = \operatorname{PSL}(2, p)$ is doubly-transitive,
- 5. Γ_i is a Cayley digraph of the generalized quaternion group of order 2^{k+1} .

PROOF. In view of Theorem 2.2, we need only show that $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) = \operatorname{PSL}(2, p)$ and that each Γ_i is a Cayley digraph of the generalized quaternion group Q of order 2^{k+1} . As $|\operatorname{SL}(2,p)| = 2^k(2^k - 1)(2^k - 2)$, a Sylow 2-subgroup of $\operatorname{SL}(2,p)$ has order 2^{k+1} , and as p is odd, is isomorphic to a generalized quaternion group of order 2^{k+1} . As a transitive group of prime power order q^ℓ contains a transitive Sylow q-subgroup [10, Theorem 3.4'], a Sylow 2-subgroup Q of $\operatorname{SL}(2,p)$ is transitive and thus regular. It then follows by [9] that each Γ_i is isomorphic to a Cayley digraph of Q. Furthermore, $\operatorname{Stab}_{\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2}(v)$ is of index 2^k in $\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2$. By [5, Theorem 1] we have that either $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2)$ is A_{2^k} or $\operatorname{PSL}(2,p)$. As by Theorem 2.2, $\operatorname{soc}(\operatorname{Aut}(\Gamma_i)/\mathcal{D}_2) \neq A_{2^k}$, the result follows.

References

 Cameron, P. J., Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981) 1–22.

- [2] Cheng, Y., and Oxley, J., On weakly symmetric graphs of order twice a prime, J. Comb. Theory Ser. B 42 1987, 196-211.
- [3] Dixon, J.D., and Mortimer, B., *Permutation Groups*, Springer-Verlag New York, Berlin, Heidelberg, Graduate Texts in Mathematics, **163**, 1996.
- [4] Gorenstein, D., *Finite Groups*, Chelsea Publishing Co., New York, 1968.
- [5] Guralnick, R. M., Subgroups of prime power index in a simple group, J. of Algebra 81 1983, 304-311.
- [6] Li, C. H., On isomorphisms of finite Cayley graphs a survey, Disc. Math., 246 (2002), 301-334.
- [7] Marušič, D., and Scapellato, R., Imprimitive Representations of $SL(2, 2^k)$ J. Comb. Theory Ser. B 58 1993, 46-57.
- [8] Sabidussi, G., The composition of graphs, Duke Math J. 26 (1959), 693-696.
- [9] Sabidussi, G. O., Vertex-transitive graphs, Monatshefte für Math. 68 1964, 426-438.
- [10] Wielandt, H. (trans. by R. Bercov), *Finite Permutation Groups*, Academic Press, New York, 1964.
- [11] Wielandt, H., Permutation groups through invariant relations and invariant functions, lectures given at The Ohio State University, Columbus, Ohio, 1969.
- [12] Wielandt, H., Mathematische Werke/Mathematical works. Vol. 1. Group theory, edited and with a preface by Bertram Huppert and Hans Schneider, Walter de Gruyter & Co., Berlin, 1994.