Some non-normal Cayley digraphs of the generalized quaternion group of certain orders

Edward Dobson
Department of Mathematics and Statistics
PO Drawer MA
Mississippi State, MS 39762, U.S.A.
dobson@math.msstate.edu

Submitted: Mar 10, 2003; Accepted: Jul 30, 2003; Published: Sep 8, 2003
MR Subject Classifications: 05C25, 20B25

Abstract

We show that an action of $\operatorname{SL}(2, p), p \geq 7$ an odd prime such that $4 X(p-1)$, has exactly two orbital digraphs Γ_{1}, Γ_{2}, such that $\operatorname{Aut}\left(\Gamma_{i}\right)$ admits a complete block system \mathcal{B} of $p+1$ blocks of size $2, i=1,2$, with the following properties: the action of $\operatorname{Aut}\left(\Gamma_{i}\right)$ on the blocks of \mathcal{B} is nonsolvable, doubly-transitive, but not a symmetric group, and the subgroup of $\operatorname{Aut}\left(\Gamma_{i}\right)$ that fixes each block of \mathcal{B} set-wise is semiregular of order 2. If $p=2^{k}-1>7$ is a Mersenne prime, these digraphs are also Cayley digraphs of the generalized quaternion group of order 2^{k+1}. In this case, these digraphs are non-normal Cayley digraphs of the generalized quaternion group of order 2^{k+1}.

There are a variety of problems on vertex-transitive digraphs where a natural approach is to proceed by induction on the number of (not necessarily distinct) prime factors of the order of the graph. For example, the Cayley isomorphism problem (see [6]) is one such problem, as well as determining the full automorphism group of a vertex-transitive digraph Γ. Many such arguments begin by finding a complete block system \mathcal{B} of $\operatorname{Aut}(\Gamma)$. Ideally, one would then apply the induction hypothesis to the groups $\operatorname{Aut}(\Gamma) / \mathcal{B}$ and $\left.\operatorname{fix}_{\operatorname{Aut}(\Gamma)}(\mathcal{B})\right|_{B}$, where $\operatorname{Aut}(\Gamma) / \mathcal{B}$ is the permutation group induced by the action of $\operatorname{Aut}(\Gamma)$ on \mathcal{B}, and $\operatorname{fix}_{\operatorname{Aut}(\Gamma)}(\mathcal{B})$ is the subgroup of $\operatorname{Aut}(\Gamma)$ that fixes each block of \mathcal{B} set-wise, and $B \in \mathcal{B}$. Unfortunately, neither $\operatorname{Aut}(\Gamma) / \mathcal{B}$ nor $\left.\operatorname{fix}_{\operatorname{Aut}(\Gamma)}(\mathcal{B})\right|_{B}$ need be the automorphism group of a digraph. In fact, there are examples of vertex-transitive graphs where $\operatorname{Aut}(\Gamma) / \mathcal{B}$ is a doubly-transitive nonsolvable group that is not a symmetric group (see [7]), as well as examples of vertex-transitive graphs where $\left.\operatorname{fix}_{\operatorname{Aut}(\Gamma)}(\mathcal{B})\right|_{B}$ is a doubly-transitive nonsolvable group that is not a symmetric group (see [2]). (There are also examples where $\operatorname{Aut}(\Gamma) / \mathcal{B}$ is a solvable doubly-transitive group, but in practice, this is not usually
a genuine obstacle in proceeding by induction.) The only known class of examples of vertex-transitive graphs where $\operatorname{Aut}(\Gamma) / \mathcal{B}$ is a doubly-transitive nonsolvable group, have the property that $\operatorname{Aut}(\Gamma) / \mathcal{B}$ is a faithful representation of $\operatorname{Aut}(\Gamma)$ and Γ is not a Cayley graph. In this paper, we give examples of vertex-transitive digraphs that are Cayley digraphs and the action of $\operatorname{Aut}(\Gamma) / \mathcal{B}$ on \mathcal{B} is doubly-transitive, nonsolvable, not faithful, and not a symmetric group.

1 Preliminaries

Definition 1.1 Let G be a permutation group acting on Ω. If $\omega \in \Omega$, then a sub-orbit of G is an orbit of $\operatorname{Stab}_{G}(\omega)$.

Definition 1.2 Let G be a finite group. The socle of G, denoted $\operatorname{soc}(G)$, is the product of all minimal normal subgroups of G. If G is primitive on Ω but not doubly-transitive, we say G is simply primitive. Let G be a transitive permutation group on a set Ω and let G act on $\Omega \times \Omega$ by $g(\alpha, \beta)=(g(\alpha), g(\beta))$. The orbits of G in $\Omega \times \Omega$ are called the orbitals of G. The orbit $\{(\alpha, \alpha): \alpha \in \Omega\}$ is called the trivial orbital. Let Δ be an orbital of G in $\Omega \times \Omega$. Define the orbital digraph Δ to be the graph with vertex set Ω and edge set Δ. Each orbital of G has a paired orbital $\Delta^{\prime}=\{(\beta, \alpha):(\alpha, \beta) \in \Delta\}$. Define the orbital graph Δ to be the graph with vertex set Ω and edge set $\Delta \cup \Delta^{\prime}$. Note that there is a canonical bijection from the set of orbital digraphs of G to the set of sub-orbits of G (for fixed $\omega \in \Omega$).

Definition 1.3 Let G be a transitive permutation group of degree $m k$ that admits a complete block system \mathcal{B} of m blocks of size k. If $g \in G$, then g permutes the m blocks of \mathcal{B} and hence induces a permutation in S_{m}, which we denote by g / \mathcal{B}. We define $G / \mathcal{B}=\{g / \mathcal{B}: g \in G\}$. Let fix $\mathcal{B}_{\mathcal{B}}(G)=\{g \in G: g(B)=B$ for every $B \in \mathcal{B}\}$.

Definition 1.4 Let G be transitive group acting on Ω with r orbital digraphs $\Gamma_{1}, \ldots, \Gamma_{r}$. Define the 2 -closure of G, denoted $G^{(2)}$ to be $\cap_{i=1}^{r} \operatorname{Aut}\left(\Gamma_{i}\right)$. Note that if G is the automorphism group of a vertex-transitive digraph, then $G^{(2)}=G$.

Definition 1.5 Let Γ be a graph. Define the complement of Γ, denoted by $\bar{\Gamma}$, to be the graph with $V(\bar{\Gamma})=V(\Gamma)$ and $E(\bar{\Gamma})=\{u v: u, v \in V(\Gamma)$ and $u v \notin E(\Gamma)\}$.

Definition 1.6 A group G given by the defining relations

$$
G=\left\langle h, k: h^{2^{a-1}}=k^{2}=m, m^{2}=1, k^{-1} h k=h^{-1}\right\rangle
$$

is a generalized quaternion group.
Let $p \geq 5$ be an odd prime. Then GL $(2, p)$ acts on the set \mathbb{F}_{p}^{2}, where \mathbb{F}_{p} is the field of order p, in the usual way. This action has two orbits, namely $\{0\}$ and $\Omega=\mathbb{F}_{p}^{2}-\{0\}$. The action of $\mathrm{GL}(2, p)$ on Ω is imprimitive, with a complete block system \mathcal{C} of $\left(p^{2}-1\right) /(p-1)=$ $p+1$ blocks of size $p-1$, where the blocks of \mathcal{C} consist of all scalar multiples of a given
vector in Ω (these blocks are usually called projective points), and the action of GL $(2, p)$ on the blocks of \mathcal{C} is doubly-transitive. Furthermore, $\operatorname{fix}_{\mathrm{GL}(2, p)}(\mathcal{C})$ is cyclic of order $p-1$, and consists of all scalar matrices αI (where I is the 2×2 identity matrix) in GL $(2, p)$. Note that if $m \mid(p-1)$, then $\operatorname{GL}(2, p)$ admits a complete block system \mathcal{C}_{m} of $(p+1) m$ blocks of size $(p-1) / m$, and fix $\mathrm{GL}_{(2, p)}\left(\mathcal{C}_{m}\right)$ consists of all scalar matrices $\alpha^{i} I$, where $\alpha \in \mathbb{F}_{p}^{*}$ is of order $(p-1) / m$ and $i \in \mathbb{Z}$. Each such block of \mathcal{C}_{m} consists of all scalar multiples $\alpha^{i} v$, where v is a vector in \mathbb{F}_{p}^{2} and $i \in \mathbb{Z}$. Hence $\operatorname{GL}(2, p) / \mathcal{C}_{m}$ admits a complete block system \mathcal{D}_{m} consisting of $p+1$ blocks of size m, induced by \mathcal{C}_{m}. Henceforth, we set $m=2$ so that \mathcal{C}_{2} consists of $2(p+1)$ blocks of size $(p-1) / 2$, and \mathcal{D}_{2} consists of $p+1$ blocks of size 2 . Note that as $p \geq 5, \mathrm{SL}(2, p)$ is doubly-transitive on the set of projective points, as if $A \in \mathrm{GL}(2, p)$, then $\operatorname{det}(A)^{-1} A \in \mathrm{SL}(2, p)$. Finally, observe that $(-1) I \in \mathrm{SL}(2, p)$. Thus $(-1) I / \mathcal{C}_{2} \in \operatorname{fix}_{\mathrm{SL}(2, p) / \mathcal{C}_{2}}\left(\mathcal{D}_{2}\right) \neq 1$ so that $\mathrm{SL}(2, p) / \mathcal{C}_{2}$ is transitive on \mathcal{C}_{2}. Additionally, as $\operatorname{fix}_{\mathrm{GL}(2, p)}\left(\mathcal{C}_{2}\right)=\left\{\alpha^{i} I:|\alpha|=(p-1) / 2, i \in \mathbb{Z}\right\}, \operatorname{SL}(2, p) / \mathcal{C}_{2} \cong \operatorname{SL}(2, p)$. That is, $\operatorname{SL}(2, p) / \mathcal{C}_{2}$ is a faithful representation of $\operatorname{SL}(2, p)$. We will thus lose no generality by referring to an element $x / \mathcal{C}_{2} \in \mathrm{SL}(2, p) / \mathcal{C}_{2}$ as simply $x \in \mathrm{SL}(2, p)$. As each projective point can be written as a union of two blocks contained in \mathcal{C}_{2}, we will henceforth refer to blocks in \mathcal{C}_{2} as projective half-points.

2 Results

We begin with a preliminary result.
Lemma 2.1 Let $p \geq 7$ be an odd prime such that $4 \not \backslash(p-1)$, and let $\operatorname{SL}(2, p)$ act as above on the $2(p+1)$ projective half-points. Then the following are true:

1. $\mathrm{SL}(2, p)$ has exactly four sub-orbits; two of size 1 and 2 of size p,
2. $\mathrm{SL}(2, p)$ admits exactly one non-trivial complete block system which consists of $p+1$ blocks of size 2 , namely \mathcal{D}_{2}, formed by the orbits of $(-1) I$.

Proof. By [4, Theorem 2.8.1], $|\mathrm{SL}(2, p)|=\left(p^{2}-1\right) p$. It was established above that $\mathrm{SL}(2, p)$ admits \mathcal{D}_{2} as a complete block system of $p+1$ blocks of size 2 , and this complete block system is formed by the orbits of $(-1) I$ as $(-1) I \in \operatorname{fix}_{\mathrm{SL}(2, p)}\left(\mathcal{D}_{2}\right)$ and is semi-regular of order 2. As $\operatorname{SL}(2, p) / \mathcal{D}_{2}=\operatorname{PSL}(2, p)$ is doubly-transitive, there are two sub-orbits of $\operatorname{SL}(2, p) / \mathcal{D}_{2}$, one of size 1 and the other of size p. Now, consider $\operatorname{Stab}_{\mathrm{SL}(2, p)}(x)$, where x is a projective half-point. Then there exists another projective half-point y such that $x \cup y$ is a projective point z. As $\{x, y\} \in \mathcal{D}_{2}$ is a block of size 2 of $\operatorname{SL}(2, p)$, we have that $\operatorname{Stab}_{\mathrm{SL}(2, p)}(x)=\operatorname{Stab}_{\mathrm{SL}(2, p)}(y)$. Thus $\mathrm{SL}(2, p)$ has at least two singleton sub-orbits. As $\operatorname{SL}(2, p) / \mathcal{D}_{2}=\operatorname{PSL}(2, p)$ has one singleton sub-orbit, $\mathrm{SL}(2, p)$ has exactly two singleton sub-orbits. We conclude that every non-singleton sub-orbit of SL $(2, p)$ has order a multiple of p. As the non-singleton sub-orbits of $\operatorname{SL}(2, p)$ have order a multiple of $p, \operatorname{Stab}_{\mathrm{SL}(2, p)}(x)$ has either one non-singleton orbit of size $2 p$ or two non-singleton orbits of size p. As the order of a non-singleton orbit must divide $\left|\operatorname{Stab}_{\operatorname{SL}(2, p)}(x)\right|=p(p-1) / 2$ which is odd as
$4 \nmid(p-1), \mathrm{SL}(2, p)$ must have exactly two non-singleton sub-orbits of size p. Thus 1) follows.

Suppose that \mathcal{D} is another non-trivial complete block system of $\operatorname{SL}(2, p)$. Let $D \in \mathcal{D}$ with v a projective half-point in D. By [3, Exercise 1.5.9], D is a union of orbits of $\operatorname{Stab}_{\mathrm{SL}(2, p)}(v)$, so that $|D|$ is either $2, p+1, p+2,2 p$, or $2 p+1$. Furthermore, as the size of a block of a permutation group divides the degree of the permutation group, $|D|=2$ or $p+1$. If $|D|=2$, then D is the union of two singleton orbits of $\operatorname{Stab} \operatorname{SL}_{(2, p)}(v)$, in which case D consists of two projective half-points whose union is a projective point. Thus if $|D|=2$, then $D \in \mathcal{D}_{2}$ and $\mathcal{D}=\mathcal{D}_{2}$. If $|D|=p+1$, then \mathcal{D} consists of 2 blocks of size $p+1$ and D is the union of two orbits of $\operatorname{Stab}_{\operatorname{SL}(2, p)}(v)$, and these orbits have size 1 and p. We conclude that $\cup D$ does not contain the projective point q that contains v.

Now, fix ${ }_{\mathrm{SL}(2, p)}(\mathcal{D})$ cannot be trivial, as $\mathrm{SL}(2, p) / \mathcal{D}$ is of degree 2 while $|\mathrm{SL}(2, p)|=$ $\left(p^{2}-1\right) p$. Then $\left|\operatorname{fix}_{\mathrm{SL}(2, p)}(\mathcal{D})\right|=\left(p^{2}-1\right) p / 2$ as $\mathrm{SL}(2, p) / \mathcal{D}$ is a transitive subgroup of S_{2}. Furthermore, $-I \notin \operatorname{fix}_{\mathrm{SL}(2, p)}(\mathcal{D})$ as no block of \mathcal{D} contains the projective point q that contains v so that $-I$ permutes the two projective half-points whose union is q. Thus $\operatorname{fix}_{\mathrm{SL}(2, p)}\left(\mathcal{D}_{2}\right) \cap \operatorname{fix}_{\mathrm{SL}(2, p)}(\mathcal{D})=1$. As $\langle-I\rangle=\operatorname{fix}_{\mathrm{SL}(2, p)}\left(\mathcal{D}_{2}\right)$ and both fix $\mathrm{XLL}_{\mathrm{SL}(2, p)}\left(\mathcal{D}_{2}\right)$ and $\operatorname{fix}_{\mathrm{SL}(2, p)}(\mathcal{D})$ are normal in $\operatorname{SL}(2, p)$, we have that $\operatorname{SL}(2, p)=\operatorname{fix}_{\mathrm{SL}(2, p)}\left(\mathcal{D}_{2}\right) \times \operatorname{fix}_{\mathrm{SL}(2, p)}(\mathcal{D})$. Thus a Sylow 2-subgroup of $\operatorname{SL}(2, p)$ can be written as a direct product of two nontrivial 2-groups, contradicting [4, Theorem 8.3].

Theorem 2.2 Let $p \geq 7$ be an odd prime such that $4 \not \backslash(p-1)$. Then there exist exactly two digraphs $\Gamma_{i}, i=1,2$ of order $2(p+1)$ such that the following properties hold:

1. Γ_{i} is an orbital digraph of $\mathrm{SL}(2, p)$ in its action on the set of projective half-points and is not a graph,
2. $\operatorname{Aut}\left(\Gamma_{i}\right)$ admits a unique nontrivial complete block system \mathcal{D}_{2} which consists of $p+1$ blocks of size 2,
3. $\operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)=\langle-I\rangle$ is cyclic of order 2 ,
4. $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)$ is doubly-transitive but $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right) \neq A_{p+1}$.

Proof. By Lemma 2.1, $\mathrm{SL}(2, p)$ in its action on the half-projective points has exactly four orbital digraphs; one consisting of $p+1$ independent edges (the edges of this graph consists of all edges of the form (v, w), where $\cup\{v, w\}$ is a projective point; thus $\cup\{v, w\}$ is a block of \mathcal{D}_{2}), one which consists of only self-loops (and so is trivial with automorphism group $S_{2 p+2}$ and will henceforth be ignored) and two in which each vertex has in and out degree p. The orbital digraph Γ of $\operatorname{SL}(2, p)$ consisting of $p+1$ independent edges is then $\bar{K}_{p+1} \backslash K_{2}$. The other orbital digraphs of $\operatorname{SL}(2, p)$, say Γ_{1} and Γ_{2}, each have in-degree and out-degree p.

If either Γ_{1} or Γ_{2} is a graph, then assume without loss of generality that Γ_{1} is a graph. Then whenever $(a, b) \in E\left(\Gamma_{1}\right)$ then $(b, a) \in E\left(\Gamma_{1}\right)$. As Γ_{1} is an orbital digraph, there exists $\alpha \in \operatorname{SL}(2, p)$ such that $\alpha(a)=b$ and $\alpha(b)=a$. Raising α to an appropriate odd
power, we may assume that α has order a power of 2 , and so $\alpha \in Q$, where Q is a Sylow 2-subgroup of $\operatorname{SL}(2, p)$. As a Sylow 2-subgroup of $\operatorname{SL}(2, p)$ is isomorphic to a generalized quaternion by [4, Theorem 8.3], Q contains a unique subgroup of order 2 (see [4, pg. 29]), which is necessarily $\langle-I\rangle$. If α is not of order 2 , then $\alpha^{2}(a)=a$ and $\alpha^{2}(b)=b$ so that α has at least two fixed points. However, $\left(\alpha^{2}\right)^{c}=-I$ for some $c \in \mathbb{Z}$ and $-I$ has no fixed points, a contradiction. Thus α has order 2 and so $\alpha=-I$. Thus $(a, b) \in \bar{K}_{p+1} \prec K_{2} \neq \Gamma_{1}$, a contradiction. Hence 1) holds.

We now establish that 2) holds. Suppose that for $i=1$ or 2 , $\operatorname{Aut}\left(\Gamma_{i}\right)$ is primitive. We may then assume without loss of generality that $\operatorname{Aut}\left(\Gamma_{1}\right)$ is primitive, and as $\operatorname{Aut}\left(\Gamma_{1}\right) \neq$ $K_{2(p+1)}$, $\operatorname{Aut}\left(\Gamma_{1}\right)$ is simply primitive, and, of course, $\operatorname{SL}(2, p)^{(2)} \leq \operatorname{Aut}\left(\Gamma_{1}\right)$. First observe that by [11, Theorem 4.11], $\mathrm{SL}(2, p)^{(2)}$ admits \mathcal{D}_{2} as a complete block system. Let v be a projective half-point. By Lemma $2.1, \mathrm{SL}(2, p)$ has four sub-orbits relative to v, two of size 1 , say $\mathcal{O}_{1}=\{v\}$ and $\mathcal{O}_{2}=\{w\}$, and two of size p, say \mathcal{O}_{3} and \mathcal{O}_{4}. By [11, Theorem 5.5 (ii)] the sub-orbits of $\mathrm{SL}(2, p)^{(2)}$ relative to v are the same as the sub-orbits of $\mathrm{SL}(2, p)$ relative to v. Thus the neighbors of v in Γ_{1} consist of all elements in one of the sub-orbits \mathcal{O}_{3} or \mathcal{O}_{4}. Without loss of generality, assume that this sub-orbit is \mathcal{O}_{3}. As $\operatorname{Aut}\left(\Gamma_{1}\right)$ is primitive, by [3, Theorem 3.2A], every non-trivial orbital digraph of $\operatorname{Aut}\left(\Gamma_{1}\right)$ is connected. Then the orbital digraph of $\operatorname{Aut}\left(\Gamma_{1}\right)$ that contains $v \vec{w}$ is connected, and so $\mathcal{O}_{2}=\{w\}$ is not a sub-orbit of $\operatorname{Aut}\left(\Gamma_{1}\right)$. Of course, $\operatorname{Aut}\left(\Gamma_{1}\right)=\operatorname{Aut}\left(\bar{\Gamma}_{1}\right)$ so that $\operatorname{Aut}\left(\bar{\Gamma}_{1}\right)$ is primitive as well. As if $\operatorname{Aut}\left(\Gamma_{1}\right)$ has exactly two sub-orbits, then $\operatorname{Aut}\left(\Gamma_{1}\right)$ is doubly-transitive and hence $\Gamma_{1}=K_{2(p+1)}$ which is not true, Aut $\left(\Gamma_{1}\right)$ has exactly three sub-orbits. Clearly \mathcal{O}_{3} is a sub-orbit of $\operatorname{Aut}\left(\Gamma_{1}\right)$ so that the only sub-orbits of $\operatorname{Aut}\left(\Gamma_{1}\right)$ relative to v are $\mathcal{O}_{1}, \mathcal{O}_{3}$, and $\mathcal{O}_{2} \cup \mathcal{O}_{4}$. Thus the neighbors of v in $\bar{\Gamma}_{1}$ are all contained in one sub-orbit of $\operatorname{Aut}\left(\Gamma_{1}\right)$ relative to v. However, one of these directed edges is an edge (as $\bar{\Gamma}_{1}=\Gamma_{2} \cup\left(\bar{K}_{p+1} \prec K_{2}\right)$), and so every neighbor of v in $\bar{\Gamma}_{1}$ is an edge. Thus every neighbor of v in Γ_{1} is an edge. However, we have already established that Γ_{1} is a digraph that is not a graph, a contradiction. Whence $\operatorname{Aut}\left(\Gamma_{i}\right), i=1,2$, are not primitive, and as $\operatorname{SL}(2, p) \leq \operatorname{Aut}\left(\Gamma_{i}\right)$, we have by Lemma 2.1 that \mathcal{D}_{2} is the unique complete block system of $\operatorname{Aut}\left(\Gamma_{i}\right), i=1,2$. Thus (2) holds.

If fix ${\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)$ is not cyclic, then there exists $1 \neq \gamma \in \operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)$ such that $\gamma(v)=v$ for some $v \in V\left(\Gamma_{i}\right)$. It is then easy to see that $\operatorname{Aut}\left(\Gamma_{i}\right)$ has only three sub-orbits, two of size 1 , and one of size $2 p$, a contradiction. Thus (3) holds.

To establish (4), as $\operatorname{SL}(2, p) / \mathcal{D}_{2}=\operatorname{PSL}(2, p)$ which is doubly-transitive in its action on the blocks (projective points) of \mathcal{D}_{2}, we have that $\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}$ is doubly-transitive. As $\operatorname{PSL}(2, p) \leq \operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}$, by $\left[1\right.$, Theorem 5.3] $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)$ is a doubly-transitive nonabelian simple group acting on $p+1$ points. Thus we need only show that $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right) \neq$ A_{p+1}.

Assume that $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)=A_{p+1}$. Recall that as p is odd, a Sylow 2-subgroup Q of $\operatorname{SL}(2, p)$ is a generalized quaternion group. Furthermore, the unique element of Q of order 2 , namely $-I$, is contained is every Sylow 2-subgroup of $\operatorname{SL}(2, p)$ and is semiregular. Observe that as $4 \not \backslash(p-1), 4 \mid(p+1)$. Then Q contains an element δ such that δ / \mathcal{D}_{2} is a product of $(p+1) / 4$ disjoint 4 -cycles and $\left\langle\delta^{4}\right\rangle=\operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)=\langle-I\rangle$. Let $\delta / \mathcal{D}_{2}=$ $z_{0} \ldots z_{\frac{p+1}{4}-1}$ be the cycle decomposition of δ / \mathcal{D}_{2}. As $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)=A_{p+1}$, there
exists $\omega \in \operatorname{Aut}\left(\Gamma_{i}\right)$ such that $\omega / \mathcal{D}_{2}=z_{0} z_{1}^{-1} \ldots z_{\frac{p+1}{4}-1}^{-1}$ (note that if ω / \mathcal{D}_{2} is not an even permutation, then δ / \mathcal{D}_{2} is not an even permutation, in which case $\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}=S_{p+1}$ and $\left.\omega \in \operatorname{Aut}\left(\Gamma_{i}\right)\right)$. Then $\left|\delta \omega / \mathcal{D}_{2}\right|=2$ so that $(\delta \omega)^{2} \in \operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)$. Let \mathcal{O}_{0} be the union of the non-singleton orbits of $\left\langle z_{0}\right\rangle$, and \mathcal{O}_{1} be the union of the non-singleton orbits of $\left\langle z_{1}\right\rangle$ (note that as $p \geq 7, p+1 \geq 8$, so that $(p+1) / 4 \geq 2$). Let $D \in \mathcal{D}_{2}$ such that $D \subset \mathcal{O}_{1}$. Then $\left.\delta \omega\right|_{D}$ has order 1 or 2 , so that $\left.(\delta \omega)^{2}\right|_{D}=1$. Thus if $\left.\left.\omega\right|_{\mathcal{O}_{0}} \in \delta\right|_{\mathcal{O}_{0}}$, then $(\delta \omega)^{2} \in \operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)=\langle-I\rangle,(\delta \omega)^{2} \neq 1$, but $(\delta \omega)^{2}$ has a fixed point, a contradiction. Thus $\left.\left.\omega\right|_{\mathcal{O}_{0}} \notin \delta\right|_{\mathcal{O}_{0}}$. Then $H=\left.\langle\delta, \omega\rangle\right|_{\mathcal{O}_{0}}$ has a complete block system \mathcal{E} of 4 blocks of size 2 induced by \mathcal{D}_{2}. Furthermore, H / \mathcal{E} is cyclic of order 4 , so that $\operatorname{fix}_{H}(\mathcal{E})$ has order at least 4. Then $\operatorname{Stab}_{H}(v) \neq 1$ for every $v \in \mathcal{O}_{0}$. In particular, \mathcal{E} consists of 4 blocks of size 2 , and $\operatorname{Stab}_{H}(v)$ is the identity on some block of \mathcal{E} while being transitive on some other block. As each block of \mathcal{E} is also a block of $\mathcal{D}_{2}, \operatorname{Stab}_{\operatorname{Aut}(\Gamma)}(v)$ is transitive on some block D_{v} of \mathcal{D}_{2}. This then implies that $\operatorname{Stab}_{\operatorname{Aut}\left(\Gamma_{i}\right)}(v)$ has three orbits, two of size one and one of size $2(p+1)-2$, a contradiction.

Corollary 2.3 Let $p=2^{k}-1>7$ be a Mersenne prime. Then there exist exactly two digraphs $\Gamma_{i}, i=1,2$ of order 2^{k+1} such that the following properties hold:

1. Γ_{i} is an orbital digraph of $\mathrm{SL}(2, p)$ in its action on the set of projective half-points and is not a graph,
2. $\operatorname{Aut}\left(\Gamma_{i}\right)$ admits a unique complete block system \mathcal{D}_{2} which consists of 2^{k} blocks of size 2 ,
3. $\operatorname{fix}_{\operatorname{Aut}\left(\Gamma_{i}\right)}\left(\mathcal{D}_{2}\right)$ is cyclic of order 2 ,
4. $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)=\operatorname{PSL}(2, p)$ is doubly-transitive,
5. Γ_{i} is a Cayley digraph of the generalized quaternion group of order 2^{k+1}.

Proof. In view of Theorem 2.2, we need only show that $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)=\operatorname{PSL}(2, p)$ and that each Γ_{i} is a Cayley digraph of the generalized quaternion group Q of order 2^{k+1}. As $|\operatorname{SL}(2, p)|=2^{k}\left(2^{k}-1\right)\left(2^{k}-2\right)$, a Sylow 2 -subgroup of $\operatorname{SL}(2, p)$ has order 2^{k+1}, and as p is odd, is isomorphic to a generalized quaternion group of order 2^{k+1}. As a transitive group of prime power order q^{ℓ} contains a transitive Sylow q-subgroup [10, Theorem 3.4'], a Sylow 2-subgroup Q of $\operatorname{SL}(2, p)$ is transitive and thus regular. It then follows by [9] that each Γ_{i} is isomorphic to a Cayley digraph of Q. Furthermore, $\operatorname{Stab}_{\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}}(v)$ is of index 2^{k} in $\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}$. By [5, Theorem 1] we have that either $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right)$ is $A_{2^{k}}$ or $\operatorname{PSL}(2, p)$. As by Theorem 2.2, $\operatorname{soc}\left(\operatorname{Aut}\left(\Gamma_{i}\right) / \mathcal{D}_{2}\right) \neq A_{2^{k}}$, the result follows.

References

[1] Cameron, P. J., Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981) 1-22.
[2] Cheng, Y., and Oxley, J., On weakly symmetric graphs of order twice a prime, J. Comb. Theory Ser. B 42 1987, 196-211.
[3] Dixon, J.D., and Mortimer, B., Permutation Groups, Springer-Verlag New York, Berlin, Heidelberg, Graduate Texts in Mathematics, 163, 1996.
[4] Gorenstein, D., Finite Groups, Chelsea Publishing Co., New York, 1968.
[5] Guralnick, R. M., Subgroups of prime power index in a simple group, J. of Algebra 81 1983, 304-311.
[6] Li, C. H., On isomorphisms of finite Cayley graphs - a survey, Disc. Math., 246 (2002), 301-334.
[7] Marušič, D., and Scapellato, R., Imprimitive Representations of $\operatorname{SL}\left(2,2^{k}\right)$ J. Comb. Theory Ser. B 58 1993, 46-57.
[8] Sabidussi, G., The composition of graphs, Duke Math J. 26 (1959), 693-696.
[9] Sabidussi, G. O., Vertex-transitive graphs, Monatshefte für Math. 68 1964, 426-438.
[10] Wielandt, H. (trans. by R. Bercov), Finite Permutation Groups, Academic Press, New York, 1964.
[11] Wielandt, H., Permutation groups through invariant relations and invariant functions, lectures given at The Ohio State University, Columbus, Ohio, 1969.
[12] Wielandt, H., Mathematische Werke/Mathematical works. Vol. 1. Group theory, edited and with a preface by Bertram Huppert and Hans Schneider, Walter de Gruyter \& Co., Berlin, 1994.

