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ABSTRACT 
 

The human gut microbiome is believed to play an integral role in host health and 

disease. In a microbial community, associations between constituent members play an 

important role in determining the overall structure and function of the community.  To 

understand the nature of bacterial associations at the species level in healthy human 

gut microbiomes, we analyzed previously published collections of whole-genome 

shotgun sequence data, from fecal samples obtained from four different healthy human 

populations. Using a Random Forest Classifier, we identified bacterial species that were 

prevalent in these populations and whose relative abundances could be used to 

accurately distinguish between the populations. Bacterial association networks were 

also constructed using these signature species revealed conserved bacterial 

associations across populations and a dominance of positive associations over negative 

associations, with this dominance being driven by associations between species that 

are closely related either taxonomically or functionally. Functional analysis using protein 

families suggests that much of the taxonomic variation across human populations does 

not foment substantial functional differences. Next, multiple external healthy controls 

from the same geographical regions (American population) were compared to 

Inflammatory Bowel Disease (IBD) samples from the American population using 

shotgun sequencing data. We identified 34 bacterial species that were significantly 

elevated in IBD samples, relative to all control groups. These species elevated in IBD 

appear to play important roles in the healthy control groups, but it is possible that their 

over-abundance has deleterious effects on the host, possibly due to many of these 
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bacteria being involved in mucin degradation, immune modulation, antibiotic resistance, 

and inflammation. We also identified differences in functional capacities between IBD 

and healthy controls, and linked the changes in the functional capacity to previously 

published clinical research and to symptoms that commonly occur in IBD, such as rectal 

bleeding, diarrhea, vitamin K deficiency, and inflammation.  
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CHAPTER 1: INTRODUCTION 
 

The microbiome is defined as the community of microbes that exists throughout a 

host, both and internally and on external surfaces, and is believed to play an important 

role in maintaining host health.(Methé et al. 2012) This community of microbes exists as 

a complex consortium whose ecological and metabolic interactions are believed to 

heavily influence host health, especially in host metabolism, immunological modulation 

and development, mucosal regeneration and homeostasis, cell signaling, and pathogen 

resistance (Rahaman, n.d.; Thaiss et al. 2016; Das and Nair 2019; Shreiner, Kao, and 

Young 2015; Kostic, Xavier, and Gevers 2014; Kho and Lal 2018; Petersen and Round 

2014). The disruption of this community, commonly termed ‘dysbiosis’, has been 

associated with a multitude of varying diseases such as obesity, diabetes, 

cardiovascular disease, inflammatory bowel disease (IBD), and various cancers (Koren 

et al. 2011; Karlsson et al. 2012; 2013; Franzosa et al. 2019; Becker, Neurath, and 

Wirtz 2015; Kostic et al. 2013). However, it is difficult to discern if the disruption of the 

gut microbiome is a cause or an effect of the associated diseases. Furthermore, 

defining what a healthy, or ‘eubotic’, gut microbiome is difficult due to the large number 

of bacterial species found in the gut and the large intra-personal variation of the gut 

microbiome across human populations (Huttenhower et al. 2012; Johnson et al. 2019). 

Identifying what microbiota constitute a healthy microbiome is integral, as one of the 

primary translational goals of microbiome research is to identify what a dysbiotic 

microbiome is and return it to its healthy state. 
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The bacterial compositions of the microbiome are most commonly examined by 

DNA sequencing, either by targeted sequencing of a marker gene or by shotgun 

sequencing of whole genomes. Targeted sequencing utilizes marker genes, such as the 

16S ribosomal RNA gene for bacteria, as a phylogenetic marker (George E Fox et al. 

1977). While the gut microbiome is comprised of bacteria, archaea, viruses, and fungi, 

most studies focus on the bacterial constituents of the gut microbiome, mainly due to 

bacteria being the largest constituents of the microbiome (Kho and Lal 2018). 

While targeted sequencing approaches are cheaper and allow for higher-

throughput, the highly conserved nature of the 16S rRNA gene and the short lengths of 

the sequenced regions makes it difficult to distinguish bacterial species (G. E. Fox, 

Wisotzkey, and Jurtshuk 1992; Ranjan et al. 2016). Furthermore, bacterial relative 

abundance estimation is obfuscated by the presence of multiple copies of the 16S gene 

within many bacterial species and the intragenic variation these copies exhibit (Rastogi 

et al. 2009; Ibal et al. 2019). Finally, due to the targeted sequencing only focusing on 

one gene, it is difficult to accurately identify the functional capacity of a bacterial 

species. In contrast to targeted sequencing, whole genome shotgun (WGS) sequencing 

yields more accurate estimates of relative abundances, better taxonomic resolution, and 

greater ability to estimate genomic functional capacity (Laudadio et al. 2018; Ranjan et 

al. 2016). 

Regardless of sequencing methodology, the resulting sequencing data are 

compositional in nature due to the fixed number of reads generated by a sequencing 

instrument (Gloor et al. 2017). Compositional data are parts of a whole and thus only 
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contain relative information (Pawlowsky-Glahn and Egozcue 2006). Due to the 

compositional nature of sequencing data, it can be difficult to analyze differential 

abundance, infer associations, or estimate correlations (Aitchison 1982; Jonathan 

Friedman and Alm 2012; Tsilimigras and Fodor 2016; Pearson 1896). To mitigate the 

issues caused by the compositional nature of the sequencing data, we utilized a 

centered log-ratio (CLR)  transformation (Aitchison 1982). The CLR transformation 

allows to examine the differential abundance data and infer associations without 

inducing spurious correlations (Gloor et al. 2017; Tsilimigras and Fodor 2016). 

Furthermore, the covariance matrix of log-transformed relative abundance data provides 

a good approximation of the covariance matrix of the log-transformed absolute 

abundance data enabling us to better model the associations between bacteria (Kurtz et 

al. 2015). 

Associations within bacterial communities are composed of the direct and indirect 

interactions between the constituent bacteria, and are important for understanding the 

dynamics underlying the community assembly. Bacterial association networks are 

commonly inferred using pair-wise estimation correlation such as the Pearson or 

Spearman correlations. However, due to the compositional nature of the sequencing 

data used, it is difficult to accurately infer associations, especially due to the possibility 

of spurious correlations arising (Pearson 1896; Jonathan Friedman and Alm 2012). 

Even if the sequencing is CLR transformed, pair-wise correlation methods are unable to 

accurately infer bacterial association networks due to their inability to identify conditional 

independence (Kurtz et al. 2015). One way to identify the conditional independences 

within the bacterial association networks is to utilize a Gaussian graphical model (GGM) 
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to estimate the underlying covariance structure (Wermuth and Lauritzen 1990). 

Furthermore, due to the sparse nature of biological networks, in which most constituents 

are not strongly associated, it is important to conduct a sparse estimation of the 

bacterial association networks (Jerome Friedman, Hastie, and Tibshirani 2008; 

Jonathan Friedman and Alm 2012). Here, we utilize a Gaussian Graphical Model 

(GGM) framework in conjunction with a graphical lasso (glasso) to construct bacterial 

association networks from the CLR-transformed relative abundance data (Jerome 

Friedman, Hastie, and Tibshirani 2008; Loftus, Hassouneh, and Yooseph 2021) . These 

bacterial association networks are represented as an unweighted graph in which nodes 

denote bacterial species and an edge between two nodes denotes an association 

between the corresponding bacterial species. 

The random forest classifier (RFC) has become an important tool for 

classification and feature identification in microbiome research due to its ability to utilize 

with non-parametric, ‘noisy’, and multi-dimensional data (Breiman 2001; Díaz-Uriarte 

and Alvarez de Andrés 2006; Loomba et al. 2017; Saulnier et al. 2011; Roguet et al. 

2018; Shi et al. 2005). The RFC can incorporate bacterial relative abundance data and 

metadata to generate a model that account for microbiome taxonomic profiles as well as 

subject characteristics, such clinical and demographic characteristics, when classifying 

samples. Furthermore, the RFC is able to assign feature importances, numeric values 

indicating the relative importance of a feature for achieving a correct classification, to 

the input features. These feature importances are helpful for identifying features that 

may be informative in relation to the specified sample labels. . One shortcoming of 
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these feature importances, however, is their lack of statistical significance. Due to the 

stochastic nature of model construction using an RFC, some features may be relatively 

important in one instance of an RFC model, but relatively unimportant in another 

instance of the RFC model. To enable us to utilize RFC feature importance to 

distinguish potentially important features and reduce the dimensionality of our data, we 

formulated a framework that allowed us to add statistical significance to the feature 

importances. 

Importantly, many studies examining the microbiome suffer from a lack of cross-

cohort consistency making it difficult to generalize findings to populations rather than 

just the utilized study groups (Pasolli et al. 2016). One proposed remedy for this lack of 

cross-cohort consistency is to utilize external samples from independent cohorts, 

especially when comparing diseased and healthy microbiomes, and applying the same 

methods and techniques across all samples (Pasolli et al. 2016; Thomas et al. 2019). 

To this end, we include two external healthy controls when analyzing IBD samples to 

enable us to generalize our findings to a population group, rather than just the study 

participants. 

 

By utilizing shotgun sequencing data, we are able to more accurately determine 

relative abundances, bacterial taxonomies, and genomic functional capacities. 

Furthermore, employing the GGM framework on CLR-transformed data enables to 

approximate the covariance structure of the absolute abundances as well as account for 

conditional independence between the constituent species (Wermuth and Lauritzen 
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1990; Aitchison 1982) . Finally, due to our use of external cohorts, we can corroborate 

our findings and arrive at generalizable conclusions that represent the population and 

not only the study participants. 
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CHAPTER 2: BACTERIAL ASSOCIATIONS IN THE HEALTHY HUMAN 
GUT MIROBIOME ACROSS POPULATIONS 

 

Note: This section has been published in part and the citation link is: Loftus, M., 

Hassouneh, S. A.-D., & Yooseph, S. (2021). Bacterial associations in the healthy 

human gut microbiome across populations. Scientific Reports, 11(1), 1–14. 

https://doi.org/10.1038/s41598-021-82449-0. 

 

Introduction 

The community of microbial cells in the human gut is estimated to be comparable 

in magnitude to the number of human cells(Sender, Fuchs, and Milo 2016). This 

community, deemed the human gut microbiome, is mainly composed of bacteria, 

archaea, fungi, and viruses, with bacteria being the largest constituent. These bacterial 

cells exist in a complex consortium of ecological and metabolic interactions that 

ultimately influence the taxonomic and functional profile of the microbial community, as 

well host health. The gut microbiome of healthy individuals is believed to be mainly 

symbiotic and is known to play important roles in host metabolism, immunological 

modulation and development, cell signaling, pathogen colonization resistance, and 

mucosal homeostasis (Kho and Lal 2018; Kostic, Xavier, and Gevers 2014; Thaiss et al. 

2016). 

The continued stability of this community and its functions, i.e. homeostasis (Das 

and Nair 2019; Shreiner, Kao, and Young 2015), is important and its disruption, broadly 

https://doi.org/10.1038/s41598-021-82449-0
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described as ‘dysbiosis’ (Petersen and Round 2014), has been associated with 

numerous diseases including, but not limited to: diabetes(Karlsson et al. 2013), 

cardiovascular disease(Koren et al. 2011; Karlsson et al. 2012), obesity(consortium et 

al. 2013), inflammatory bowel disease(Franzosa et al. 2019),(Becker, Neurath, and 

Wirtz 2015), and various cancers(Kostic et al. 2013). However, it remains unclear 

whether disease onset is the consequence or cause of the microbiome community 

disruption. Furthermore, what constitutes a healthy gut microbiome is still under 

investigation due to the overwhelming amount of bacterial species found in the gut, and 

the large variation in their carriage rates across human populations and 

individuals(Consortium 2012; Johnson et al. 2019). These issues are of great 

importance as one of the ultimate goals of microbiome research is to modulate the 

community from a ‘dysbiotic’ state into a healthy ‘homeostatic’ one. 

Early research towards this goal chose to limit their focus to taxonomic 

differences between healthy and disease microbiomes(Villmones et al. 2018; Gevers et 

al. 2014; David et al. 2014). While these comparisons are valuable, since the bacterial 

community taxonomic profile generally represents the potential metabolic and 

transcriptional profiles that are present within the ecosystem; simply profiling the 

community fails to acknowledge the underlying bacterial associations and the impact 

they exert on both the microbial ecosystem and host health. In fact, many studies within 

natural systems and animal hosts have shown that the associations (positive and 

negative) between bacteria are an important foundation for the continued stability and 

proper functioning of these ecosystems(Zhou et al. 2011; Lupatini et al. 2014; Eiler, 

Heinrich, and Bertilsson 2012; Kara et al. 2013; Shetty et al. 2017; Gould et al. 2018). 
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As such, it is of great importance to assess the relationships that exist between bacteria 

within the healthy human gut microbiome in order to better understand the ecological 

associations important for the structure and maintenance of the gut microbiome and its 

related processes. Naturally, this raises an important question: are there similarities in 

the structural features of bacterial association networks in human gut microbiomes 

across healthy populations, and if so, are there conserved associations? 

 

Microbial associations in a community are characterized by both direct and 

indirect interactions between the constituents(Hibbing et al. 2010). In this paper, we 

depict these associations using a weighted graph (network) in which the nodes 

represent bacterial species and an edge between two nodes represents an association 

between the corresponding species, with the edge weight capturing the strength of the 

association. This framework enables us to model both positive and negative 

associations between species, and thus can help to shed light on cooperation and 

competition between species in the community. Once a network is constructed, an 

analysis of the various topological properties of the network can enable us to decipher 

the underlying ecological rules associated with the microbial ecosystem. These 

networks also provide the ability to determine the relative importance of species for 

ecosystem structure and function. 

Microbial association networks are typically constructed from a sample-taxa 

count matrix generated by collecting multiple samples from the community and 

determining the taxa counts in each sample. With the availability of high-throughput and 
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low-cost DNA sequencing technologies, these counts are generated by sequencing the 

collected biological samples. Microbiome sequence data are generated either using a 

targeted approach, involving the sequencing of a taxonomic marker gene (e.g., the 16S 

ribosomal RNA gene)(George E Fox et al. 1977) or using a whole-genome shotgun 

(WGS) sequencing approach(Venter et al. 2004). However, estimates of taxa 

abundances using 16S rRNA sequences can be confounded by several factors 

including the presence of multiple copies and variants of the 16S rRNA gene in 

genomes, and the lack of taxonomic resolution in the selected variable region of the 

16S gene(Větrovský and Baldrian 2013; Edgar 2018). Conversely, WGS data can be 

used to provide more accurate estimates of genome relative abundances as well as 

higher resolution taxonomic classification, compared to 16S rRNA data(Ranjan et al. 

2016; Laudadio et al. 2018). Regardless of sequencing approach, the taxa count data 

generated by DNA sequencing are compositional in nature and provide only relative 

abundance information of the constituent taxa(Gloor et al. 2017). This poses challenges 

for inferring associations, and the computation of measures like correlation directly from 

the observed sequence counts can be misleading(Jonathan Friedman and Alm 2012). 

While several methods have been proposed for constructing association networks that 

address this challenge(Layeghifard, Hwang, and Guttman 2017), here we use a 

Gaussian Graphical Model (GGM) framework on Centered Log-Ratio (CLR) 

transformed count data to construct an association network(Aitchison 1982; Kurtz et al. 

2015). 

We are motivated by the observation that the covariance matrix of a multivariate 

Gaussian distribution used to fit log-transformed relative count data provides a good 
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approximation to the covariance matrix of the log-transformed absolute count 

data(Aitchison 1982). The GGM framework also enables the modeling of conditional 

dependencies of the random variables that represent taxa abundances. The adjacency 

matrix of the association network that we construct is the inverse covariance matrix (i.e. 

the precision matrix) of the underlying multivariate Gaussian distribution used in the 

GGM. This graph has the property that an edge exists between two nodes if and only if 

the corresponding entry in the precision matrix is non-zero. A zero entry in the precision 

matrix indicates conditional independence between the two corresponding random 

variables. We also incorporate sparsity in our framework using the l1-penalty norm and 

construct sparse association networks using the graphical lasso method 

(glasso)(Jerome Friedman, Hastie, and Tibshirani 2008). 

In this study we investigate bacterial association networks in gut microbiomes 

across four healthy human populations. Previous studies analyzing bacterial association 

networks have mainly used 16S rRNA data, and given its lower taxonomic resolution, 

these studies have analyzed associations at the genus level(Falony et al. 2016; Jerome 

Friedman, Hastie, and Tibshirani 2008)Instead, here we use a large collection of WGS 

samples from multiple human populations to investigate bacterial associations at the 

species level. We use a machine learning algorithm to identify a set of signature species 

that can accurately distinguish between the different healthy populations. Using these 

signature species, we construct networks by employing a glasso method that 

incorporates a bootstrapping(Efron and Tibshirani 1986) approach to reduce the 

number of false positive edges inferred(Su et al. 2017). We analyze these networks to 
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assess the theoretical ecology, and potential importance of species within healthy 

human gut microbial communities. 

 

Results 

Signature Species in the Healthy Human Gut Microbiome 

For each cohort, the prevalence of individual species across all samples was 

measured and plotted. All cohorts exhibited a skewed bi-modal distribution (Figure 1a). 

The first peak in the distribution was centered around a prevalence of 10%, while the 

second peak occurred around a prevalence of 90%. This skewed bi-modal distribution 

has been previously observed in a microbial community, and organisms that were highly 

prevalent were deemed the ‘abundant core’ as they were found to account for the 

majority of total sample abundances(Saunders et al. 2016). The 90% prevalent species 

set for each cohort consisted of 127 (American), 109 (Indian), 182 (European), and 146 

(Japanese) species respectively, and these species were found to account for a large 

majority of the total sample proportions, the median values for the cohorts were 0.93 

(American), 0.93 (Indian), 0.87 (European), and 0.81 (Japanese) (Figure 1b). Next, we 

utilized a Random Forest Classifier (RFC) to determine the effect of prevalence 

thresholds on the ability to distinguish between cohorts using the taxonomic profiles of 

the constituent samples. The RFC was able to distinguish between cohorts with an F1-

score >0.85 for all prevalence thresholds (0%, 50%, 90%, 100%), but demonstrated the 

highest F1-score at the 90% threshold, even though less than 10% of the original 

species remained (Figure 2).  Based on this analysis, we define the set of signature 
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species to be the union of the prevalent (>90%) species sets from the four cohorts. The 

signature species set consisted of 202 species and was used for constructing the 

bacterial association network for each cohort. We explored the variability in signature 

species relative abundance between samples using principal components analysis 

(PCA) applied to the CLR-transformed data (Figure 1c). PCA showed evidence for 

separation of samples from the Indian and American cohorts, but ultimately the PCA 

only explained a small amount of the total variance (PC1: 11.38%, PC2: 10.91%). 

 

Bacterial Association Networks 

Prior to its application on the cohort data, the network inference method with 

bootstrapping was tested on synthetic data (see supplemental) notably, most graph-

types were inferred with an F1-score above 0.7 (band: 0.974, hub: 0.885, random: 711, 

cluster: 0.692, scale-free: 0.416) (Figure 3a).  Furthermore, we demonstrate that as the 

sample-to-taxa ratio increases, F1-scores approach 1, and all groups demonstrate 

mean F1-scores above 0.9 (Figure 3a). Finally, we observe that our network inference 

method tends to underestimate edge weights, and on average the estimated edge 

weights are 53.23% of the actual edge weights (Figure 3b). A bacterial association 

network was constructed for each cohort using the CLR-transformed relative 

abundances of the signature species (see methods). Each network was modeled as an 

undirected graph consisting of nodes and edges (Figure 4). At a high-level, differences 

in the structure of the four networks were apparent. The European, Japanese, and 

Indian networks exhibited a high density of edges occurring between nodes from the 
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phylum Firmicutes, whereas the American network had the largest density of edges 

existing between nodes from the phylum Bacteroidetes. Positive associations were 

dominant in all networks (American: 0.98, Indian: 0.97, European: 0.96, Japanese: 

0.96), and negative associations involve nodes from the phylum Firmicutes. Network 

topology was studied by calculating the following network properties: average shortest 

path length (ASPL), transitivity, modularity, degree assortativity, and genera 

assortativity (see methods) (Table 1). These properties were compared to random 

networks using Monte Carlo simulations (see supplemental). All cohort networks were 

deemed non-random in their topology and exhibited significantly low ASPL (all P-values 

< 0.05), significantly high modularity (all P-values < 0.01), significantly high transitivity 

(all P-values < .001), significantly high genera assortativity (all P-values < .001) and 

significantly high degree assortativity (all P-values < 0.01), relative to the random 

networks. The low ASPL within networks suggest that nodes are connected to one 

another through short paths within the network. The high transitivity and modularity 

indicate that nodes form cliques and networks exhibit compartmentalization (modules), 

respectively. Lastly, the high (assortative) degree assortativity and genera assortativity 

portrays that nodes tend to form connections to other nodes that have a similar degree 

and taxonomy. 

 

Theoretical Ecology based on Bacterial Association Networks 

All cohort networks were found to contain highly similar distributions of 

association (edge) weights, where positive associations were more frequent and greater 
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in magnitude than negative associations (Figure 5a). Furthermore, a large percentage 

of associations (American: 40%, Indian: 40%, European: 40%, Japanese: 53%) were 

found to be shared with at least one other network and these associations were all 

positive (Figure 5b). A conserved structure of 14 associations, composed of 20 species 

(Figure 5c), mainly from the genus Bacteroides, was observed to be contained within 

all networks (Figure 6). No negative association was retained across networks. 

However, viewed at the higher taxonomic rank for those species involved in negative 

associations, we observed that across all cohort networks, members from the phylum 

Firmicutes were involved in a large percentage of the negative associations (American: 

100%, Indian: 100%, European: 62.5% , Japanese: 100%), and specifically these 

negative associations were mainly occurring between species from the order 

Clostridiales (American: 25%, Indian: 89%, European: 56%, Japanese: 100%) (Figure 

7). We next explored the taxonomic relationship between species and their association 

type (positive or negative) (Figure 8a), as well as the genome functional profile 

dissimilarities, according to Bray-Curtis dissimilarity, between network neighbors against 

their association weight (Figure 8b). We found that most positive associations take 

place between bacteria that are more taxonomically and functionally similar, while 

negative associations were never found between species within the same genus, or 

between species with low genome functional profile distance (<0.2). 
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Network Cliques and Module Detection 

As our networks exhibited both high transitivity and modularity, we sought to 

investigate the cliques and modules of species contained within them. We first found all 

cliques of three species (1,588 unique cliques) within our networks (see methods). Of 

these cliques: 113 were shared in at least 1 other network, 8 were shared across three 

networks, and only 1 (Bacteroides caecimuris, Bacteroides fluxus, Bacteroides 

thetaiotaomicron) was found in all networks. Species from 66 genera were shown to 

participate in clique formation, however, species from the genus Bacteroides were 

found to be involved in the largest percentage of cliques (American: 21.0%, Indian: 

4.0%, European: 4.9%, Japanese: 5.8%) within most cohort networks (Figure 9). 

Interestingly, the cliques that contained species from Bacteroides were also the most 

retained (American: 20.9%, Indian: 8.5%, European: 8.5%, Japanese: 10.8%) across all 

cohorts (Figure 10). 

Following clique analysis, we performed module detection utilizing an 

asynchronous Label Propogation Algorithm (aLPA) (see supplemental) which identified 

a total of 49 modules (American: 10, European: 11, Indian: 14, Japanese: 14) that 

contained 3 or more members (Cordasco and Gargano 2010) (Figure 11). The quality 

of network partitioning by the module detection algorithm (performance) was analyzed 

(American: 0.96, Indian: 0.98, European: 0.94, Japanese: 0.98) showing that the 

majority of edges between nodes were contained within modules (see supplemental). 

PCA was utilized to examine the variance between Module Functional Profiles (MFP’s) 

of the different cohort (Figure 8c). This analysis revealed MFPs fell within one of four 

clusters, and each cohort had representation within each cluster. Taxonomic and 
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functional characteristics of the clusters were analyzed. Cluster I contained modules 

formed mainly by the genera Streptococcus and Bifidobacterium (Figure 12a). Cluster II 

modules were mainly composed of species from the genera Alistipes, Bacteroides, and 

Prevotella (Figure 12b). Cluster III modules were dominated by the genera Bacteroides 

(Figure 12c). Cluster IV modules were mainly composed of species from the genera 

Blautia, Eubacterium, Lachnoclostridium, and Ruminococcus (Figure 12d). Functional 

analysis of clusters revealed unique roles in each cluster: Cluster I (increase in toxin 

production, protein secretion, anaerobic metabolism, nucleic acid metabolism; decrease 

in thiamine biosynthesis), Cluster II (increase in cellular metabolism and protein 

degradation; decrease in cell division and signal transduction), Cluster III (increase in 

chemoautotrophy, sulfur and phosphorous metabolism, DNA metabolism), and cluster 

IV (increase in transcription factors; decrease in roles associated with adaptation to 

atypical conditions) (Figure 13). 

We next analyzed the sample functional profiles using PCA (Figure 14). PCA 

explained a modest amount of variance (PC1: 27.82%; PC2: 5.99%) although samples 

between cohorts were found to overlap. When analyzing the Cohort Functional Role 

Profiles (CFRP’s), only 11 differences, when comparing the signs (+/-), out of the 113 

found roles were found, and only the European cohort exhibited more than two 

differences (Figure 15). 
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Node centrality analysis 

We utilized degree and betweenness centrality measurements to identify “hub” 

and “bottleneck” nodes, respectively, within our networks (see supplemental). These 

centrality measurements were selected because ‘hubs’ and ‘bottlenecks’ are nodes that 

could have strong influence within a network and have been utilized previously to 

identify important species within microbial ecosystems(Lupatini et al. 2014; Prettejohn, 

Berryman, and McDonnell 2011; Kara et al. 2013). Considering all cohort networks were 

deemed assortative in respect to their degree assortativity we did not expect to find 

network “hub” nodes. However, we did find that nearly all modules, within each cohort, 

were disassortative in their degree assortativity which hinted at “hub” nodes existing 

within modules (Figure 16). For these reasons we chose to select the node within each 

module that exhibited the highest degree (See Figure 4), and the top 10 nodes within 

each network with the highest betweenness. Across all cohorts we found variation in the 

species deemed module ‘hubs’ and ‘bottlenecks’ (Figure 17a), although at the genus 

level there was a large amount of agreement (Figure 17b). In at least three out of the 

four cohorts, species from Bacteroides, Alistipes, Bifidobacterium, Eubacterium, and 

Streptococcus were designated as ‘hubs’, whereas species from Bacteroides and 

Lachnoclostridium were designated as ‘bottlenecks’. 
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Discussion 

In this study, we used WGS data in conjunction with a network inference method 

that is robust to sequence data compositionality in order to analyze the associations 

occurring between species within the healthy human gut microbiome across different 

populations. The association networks were constructed utilizing the signature species. 

We demonstrated that bacterial association networks, across all cohorts, do not 

have the same properties as random networks. However, relative to each other, the 

networks of the four cohorts display similar properties. Random networks are known to 

contain short average path lengths, low node clustering, and high modularity44,45. 

Compared to random networks each cohort network was found to exhibit significantly 

shorter average shortest path lengths, significantly higher transitivity (clustering), 

significantly higher modularity, significantly higher degree assortativity, and significantly 

higher genera assortativity. We posit that the similarities in network properties reflect an 

organization of the bacterial community that is important to underlying ecological 

processes. For instance, the short average path lengths within our networks could imply 

rapid signaling between bacterial species, potentially facilitating swift changes in 

community metabolism. This is supported by previous studies demonstrating that the 

human gut microbiome exhibits rapid alterations in bacterial metabolism and abundance 

in conjunction with change in host diet19. 

In addition to exhibiting similar properties, cohort networks also shared a large 

percentage of associations (American: 40%, Indian: 40%, European: 40%, Japanese: 

53%), including a conserved set of 14 positive associations composed of 20 species. 
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These conserved associations may be indicative of strong partner fidelity, important 

ecological relationships, or potentially obligate partnerships. Furthermore, we found that 

taxonomically and functionally similar species tended to have positive associations. This 

finding was unexpected as some previous studies on microbial ecosystems, including 

the human gut46–48, have shown negative interactions between bacteria (competition, 

predation, etc.) should be the dominant form of interaction49, especially when those 

bacteria are taxonomically or functionally alike50. The differences between our results 

and the aforementioned research may be due to their use of non-transformed data and 

pairwise analysis as well as the use of low-resolution taxonomic sequencing data or in-

vitro analysis33. Our findings would suggest that kin-selection51 (positively associating 

with those of similar lineage in order to directly or indirectly pass on ones genes), as 

opposed to competitive exclusion52 (bacteria with similar lineage or functionality are 

more likely to compete within a habitat), is more prevalent within the healthy gut 

microbiome. This observation cannot be excluded as there is precedence within 

microbial ecosystems for the co-occurrence of bacteria with similar genetic traits50,53, 

and studies on bacterial dynamics in the gut that suggest close relatives to bacteria 

currently present in the gut are more likely to be recruited into the community, i.e. 

phylogenetic under-dispersion (nepotism) hypothesis54. 

Within all cohorts, positive associations were not only the most dominate form of 

association, but also the only associations that were shared across networks. This 

finding seems logical as within the anoxic environment of the gut, bacterial energy 

production is limited which would make positive associations, such as mutual cross-

feeding, preferable in order to produce and utilize energy more efficiently55. In addition, 
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ecological community theory suggests that partitioning of resources in space and time 

drive coexistence56, and bacteria within the human gut microbiota are known to exhibit 

diurnal fluctuations57 and exist in distinct spatial organizations58–60. Furthermore, 

positive associations between species are also known to alleviate ecosystem stresses 

and allow for a greater diversity of organisms to coexist61, and the healthy gut 

microbiome has a high level of biodiversity62. However, it is Important to be cognizant 

that a positive association between species does not rule out the presence of a negative 

interaction completely, as negative interactions between species can still have a net 

positive result if an increased survival rate is occurring, as well as to understand that 

these positive associations are not always indicative of cooperative activities as they 

could simply reflect a common preferred environmental niche61. In contrast to the large 

proportion of shared positive associations, negative associations were always unique to 

a specific cohort; however, as we viewed the higher-level taxonomic ranking of species 

involved in negative associations, we found that across all cohorts most negative 

associations were occurring between species from the order Clostridiales. Species from 

the order Clostridiales are known to be largely cellulolytic, in that they mainly hydrolyze 

the polysaccharide cellulose63. This limited nutritional niche could theoretically create 

competition between Clostridiales sp., and in any case, these associations might be 

important for community stability as negative associations within microbial communities 

are thought to be an important stabilizing force48. While the healthy human gut 

microbiome is indeed routinely described as stable62, the low abundance of negative 

associations within our networks suggests that the gut microbiome would be more 

vulnerable to positive feedback loops between species which could result in instability48. 
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We hypothesize that the high modularity found within all cohort networks could mitigate 

the vulnerability to positive feedback loops as high network modularity has been shown 

to have a stabilizing effect45. 

We used a module detection algorithm to identify groups of highly connected 

species within our networks. The algorithm identifies modules of species which have 

previously been noted to benefit by growing together (e.g. Bifidobacterium sp.)64. As we 

analyzed the variance between module functional profiles, using PCA, we found that 

modules gravitated towards one of four clusters. Although some cohorts had a greater 

proportion of modules within certain clusters, all cohorts had some level of 

representation within each cluster. Upon further analysis, we were able to find distinct 

functional and taxonomic differences between module clusters, but we were not able to 

distinguish overt functional differences between CFRP’s. This implies that a general set 

of functions is present in each healthy population regardless of taxonomic differences. 

These module clusters may be indicative of niches that are retained in the healthy 

human gut microbiome, and the redundancy of multiple modules of a cohort falling 

within a cluster is potentially a further stabilizing force for the ecosystem. These findings 

agree with previous studies showing comparable communities and high functional 

redundancy across gut microbiome data sets53,65. 

Lastly, we identified species that acted as “hubs” or “bottlenecks” within the 

structure of cohort networks. Notably, we found Bacteroides sp. were designated as 

both “hubs” and “bottlenecks” across all networks. Interestingly, Bacteroides sp. were 

also found to be the largest constituent of bacterial cliques and these cliques were the 
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most retained across all cohorts. Additionally, of the 20 species from the 14 conserved 

associations found across networks, most were species belonging to Bacteroides. 

These findings suggest that Bacteroides sp. are important drivers of the ecosystem 

within the healthy human gut microbiome. Interestingly, previous studies have also 

designated Bacteroides sp., such as Bacteroides fragilis and Bacteroides stercosis, as 

potentially important (keystone) species within the human gut microbiome66. 

It is important to consider the limitations of our study. Our samples originated 

from different geographical locations and utilized different preparation procedures both 

of which are known to introduce biases24,67,68. Additionally, due to the cross-sectional 

nature of our data we are only able to capture snapshots of the gut microbiome and are 

unable to examine the dynamics of the ecosystem. Furthermore, we utilized a 

reference-based mapping approach for taxonomic classification potentially causing our 

classifications to be limited by the genomes available. Finally, the constructed bacterial 

networks were undirected, and the study was non-mechanistic which prevents us from 

being able to examine the influence individual species have on one another 

(unidirectional ecological interactions). 

In closing, we have demonstrated that bacterial communities across healthy 

human populations are similar in their organization and functional capacities. We have 

also revealed that positive associations regularly occur between taxonomically and 

functionally related species despite bacterial carriage differences, healthy human gut 

microbiomes across populations exhibit less variation (structural and functional) than 

previously believed. Our future research will build upon these findings to better 
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understand how bacterial associations change within the disease microbiome. Also, by 

using the prevalent species, we can minimize the ‘noise’ of bacterial variation across 

hosts, especially since low prevalence species may ultimately be transient in nature41. 

This could be advantageous as it has been suggested that the most abundant 

organisms are the ones that act as “ecosystem engineers”50, and the study of these 

organisms would be important to understand how the microbiome responds to 

disturbances. 

Materials and Methods 

 

Data Acquisition 

We utilized 606 WGS fecal samples (1.7 Tbp), which were obtained from four 

previously published human gut microbiome studies from four different healthy human 

populations (cohorts). Three cohort datasets were downloaded from the NCBI 

Sequence Read Archive (SRA): American15 (PRJNA48479; 202 samples), Indian69 

(PRJNA397112; 106 samples), and European70 (PRJEB2054; 120 samples). The 

Japanese cohort dataset was downloaded from the DDBJ Sequence Read Archive 

(DRA): Japanese71 (PRJDB4176; 178 samples) (Figure 18). 

 

Data Pre-Processing 

Reads from all samples were first trimmed using Trimmomatic72 (version 0.36) 

and then human reads were filtered using BowTie273 (version 5.4.0) and the 

GRCh38.p12 (https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38/) human 
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reference genome. After removal of human reads, 15.9 billion high-quality reads 

remained. (Figure 19). 

 

Read Mapping and Species-Level Taxonomic Profiling 

Reads were mapped to a collection of 10,839 bacterial reference strain genomes 

downloaded from RefSeq74, using Bowtie2. The read mapping information was 

analyzed using a probabilistic framework based on a mixture model to estimate the 

relative copy number of each reference genome in a sample. This framework used an 

Expectation-Maximization (EM) algorithm to optimize the log-likelihood function 

associated with the model75. The EM algorithm was found to be highly accurate when 

benchmarked using simulated WGS reads produced by WGSim 

(https://github.com/lh3/wgsim) (Figure 20). Sub-sampling and benchmark testing of 

sample read mapping counts showed that a read depth of 250,000 mapped reads at a 

noise threshold of 1e-5 correlated well with samples mapping over 5 million mapped 

reads (R2 > 0.85, Figure 21). Any bacterial strain found in a sample below 1e-5 relative 

abundance was considered statistical noise and was dropped to an abundance of 0. 

Strains were then grouped by their species classification and their relative abundances 

were summed to produce species abundances. 

 

Bacterial Genome Annotation and Functional Profiles 

All bacterial reference genomes were functionally annotated in-house to create 

reference strain functional profiles. Before genome annotation, we utilized CheckM76 
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(v1.0.13) to ensure that these reference genomes were mostly complete (Figure 22). 

Prodigal77 (version 2.6.3) was used to identify genes, and generate protein sequence 

translations, which were then provided to InterProScan78 (version 5.39-77.0) to find 

matches to protein families using the TIGRFAM79 (version 15.0) database. The 

functional profile for a bacterial strain was created by identifying the total number 

TIGRFAM matches to the strain, and subsequently converting these counts to relative 

abundances. The functional profile for a bacterial species was created separately for 

each cohort. This was computed by first finding the average genome abundance of 

each strain within the cohort, weighting the strain functional profiles based on these 

proportions, and then aggregating the resulting strain profiles. Each species functional 

profile was then CLR-transformed. CLR-transformation is defined as: 

clr(x)= �ln
x1

g(x) …,ln
x2

g(x) …,ln
xD

g(x)� 

where x is the vector of species abundances within each sample, D is the total 

number of species. The geometric mean of vector x is defined as: 

𝑔𝑔(𝑥𝑥) = �𝑥𝑥1 × 𝑥𝑥2 × … 𝑥𝑥𝐷𝐷𝐷𝐷  

TIGRFAM functional annotations were obtained from TIGRFAMs_ROLE_LINK 

and TIGRFAM_ROLE_NAMES files generated by J. Craig Venter Institute (JCVI) 

(ftp://ftp.jcvi.org/pub/data/TIGRFAMs/14.0_Release/). 

 

 

ftp://ftp.jcvi.org/pub/data/TIGRFAMs/14.0_Release/
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Cohort Sample Functional Profiling 

A Simplified Annotation Format (SAF) file containing the bacterial chromosomal 

coordinates of TIGRFAMS (features) for all reference strains was provided to 

FeatureCounts80 (Subread package 2.0.0) to find the total features contained within 

sample reads. Counts of features were subsequently length normalized, summed, and 

re-normalized (by total) for each sample producing sample functional profiles. Protein 

families were grouped by their TIGRFAM role, and their relative abundances were 

aggregated and CLR-transformed to generate the cohort functional role profiles (CFRP). 

Roles that were a different sign (+/-) in one cohort, when compared to all other cohorts, 

were considered different (elevated/reduced). 

 

Construction of Bacterial Association Networks 

For each cohort, a sample-taxa matrix was constructed containing the relative 

abundances of the signature species in each sample. The bacterial association network 

for a cohort was constructed from its CLR transformed sample-taxa matrix using the 

GGM framework. In each case, a sparse precision matrix was computed using the R81 

huge82 package, and this matrix formed the adjacency matrix of the association 

network. The tuning parameter ρ in the l1-penalty model for sparse precision matrix 

estimation was chosen using the stability approach to regularization (StARS) method83. 

In order to reduce the number of false positives, the estimated sparse precision matrix 

Ω was processed further using a bootstrap method as follows: r bootstrap datasets, 
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each with n samples, were generated from the original CLR-transformed matrix by 

random sampling with replacement. A sparse precision matrix was estimated from each 

bootstrap dataset using the same previously chosen value of the tuning parameter ρ 

used to estimate Ω. The final precision matrix Ω’ is derived from Ω as follows: (a) if 

Ω[i,j]=0, then Ω’[i,j] = 0. (b) if Ω[i,j] ≠ 0, then Ω’[i,j] = Ω[i,j] if the entry [i,j] is non-zero in at 

least f*r precision matrices estimated from the bootstrap datasets. Otherwise Ω’[i,j]=0. 

Thus, Ω’ is at least as sparse as Ω. Partial Correlation matrix, P, was calculated as: 

𝑃𝑃[𝑖𝑖,𝑗𝑗] =
−𝛺𝛺[𝑖𝑖,𝑗𝑗]

′

�𝛺𝛺[𝑖𝑖,𝑖𝑖]
′ × 𝛺𝛺[𝑗𝑗,𝑗𝑗]

′
 

The value f is a preset threshold (0 ≤ f ≤ 1). We used r = 50 (bootstrap replicates) 

and f = 0.8 (e.g. association must be non-zero >80% of the time) in our analysis. Partial 

correlation matrices were parsed using python and all associations below a magnitude 

of .01 were considered statistical noise and removed. 

 

Network Property, Clique, and Module Analysis 

For each cohort network, the following properties were computed using 

NetworkX84 (version 2.4): average shortest path length (ASPL), transitivity, modularity, 

degree assortativity, degree centrality, betweenness centrality, and genera assortativity. 

The ASPL (α) is defined as: 

𝛼𝛼 = 𝛴𝛴𝑠𝑠,𝑡𝑡∈𝑉𝑉
𝐷𝐷[𝑠𝑠, 𝑡𝑡]
𝑛𝑛(𝑛𝑛 − 1) 
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where V is the set of nodes in the graph (G), D[s,t] is the shortest path from s to t, 

and n is the total number of nodes in G (11,12). The transitivity (T) of a network is the 

fraction of all possible triangles present in the graph, and is defined as: 

𝑇𝑇 = 3
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑔𝑔𝑡𝑡𝑠𝑠
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑠𝑠

 

triangles are a clique (a subset of nodes within a network where each node is 

adjacent to all other nodes within the subset) of three nodes, and triads are the count of 

connected triples (three nodes xyz with edges (x,y) and (y,z) where the edge (x,z) can 

be present or absent)84,85. Modularity (Q) is defined as: 

𝑄𝑄 =
1

2𝑚𝑚
𝛴𝛴
𝑖𝑖,𝑗𝑗 ∑ �𝐴𝐴[𝑖𝑖,𝑗𝑗]−

𝑘𝑘𝑖𝑖𝑘𝑘𝑗𝑗
2𝑚𝑚 �𝛿𝛿�𝐶𝐶𝑖𝑖,𝐶𝐶𝑗𝑗�𝑖𝑖,𝑗𝑗

 

where A is the adjacency matrix of graph (G), m is the total number of edges, ki is 

the degree of node i, and δ(Ci,Cj) is 1 if i and j (node pair) are in the same community or 

0 if in different communities85,86. Assortative mixing is a predilection of nodes to form 

connections with other nodes that are like (assortative) or unlike (disassortative) 

themselves. We measured node mixing preference according to node degree (degree 

assortativity) and node genus classification (genera assortativity). Degree assortativity 

is calculated using the standard Pearson correlation coefficient: 

𝑡𝑡 =
∑ 𝑥𝑥𝑥𝑥𝑥𝑥 𝑦𝑦�𝐷𝐷[𝑥𝑥,𝑦𝑦] − 𝑡𝑡𝑥𝑥𝑏𝑏𝑥𝑥�

𝜎𝜎𝑎𝑎𝜎𝜎𝑏𝑏
 

Where D is the joint probability distribution matrix, D[x,y] is the fraction of all 

edges in the graph that connects nodes with degree values x and y, ax and by
 
are the 
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fraction of edges that start and end at nodes with values x and y, and σa and σb are the 

standard deviations of the distributions ax
 
and by.

 
The value of r can be any value 

between –1 (perfect disassortativity) and 1 (perfect assortativity)(14). Genera 

assortativity is defined as: 

𝑡𝑡 =
𝑇𝑇𝑡𝑡𝑄𝑄 − ‖𝑄𝑄2‖

1 − ‖𝑄𝑄2‖
 

Where Q is the joint probability distribution matrix whose elements are Q[i,j] (the 

fraction of all edges in the graph that connects nodes of genus type i to genus type j), Tr 

is the trace of the matrix Q, and ||Q|| signifies the sum of all elements of the matrix Q87. 

Modules within each network were found utilizing the 

label_propogation_communities algorithm, based on the asynchronous label 

propagation algorithm (aLPA)42 from NetworkX. To quantify the ability of the aLPA to 

partition the data, we utilized the performance function NetworkX. Performance (p) is 

defined as: 

𝑝𝑝 =
𝑡𝑡 + 𝑏𝑏
𝑐𝑐

 

where a is the total intra-module edges, b is the total inter-module non-edges, 

and c is the total potential edges89. Monte Carlo simulations were utilized to test for 

statistical significance of network property differences (see supplemental). Three 

member cliques and modules within each network were found using NetworkX. Module 

functional profiles (MFP) were created by aggregating the functional profiles of species 

contained within each module. 
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Network Node Centrality Analysis 

Degree centrality is defined as the degree (total edges) of a node. The node 

within each network module exhibiting the highest degree centrality was designated as 

a module “hub”. If two or more species were found to have equal degree centrality then 

centrality measurements of those nodes were re-computed in context of the entire 

network. The top ten nodes exhibiting the highest betweenness centrality within each 

network were designated as “bottlenecks”. To find “bottleneck” species, betweenness 

centrality was computed for each node. Betweenness centrality is defined as: 

𝐶𝐶𝐵𝐵(𝑢𝑢) = �
𝜎𝜎(𝑠𝑠, 𝑡𝑡|𝑢𝑢)
𝜎𝜎(𝑠𝑠, 𝑡𝑡)

𝑠𝑠,𝑡𝑡∈𝑉𝑉

 

where the betweenness centrality of a node (υ) is the sum of the fraction of all-

pairs shortest paths that pass through υ, V is the set of all nodes, σ(s,t) is the number of 

shortest paths (s,t)-paths, and σ(s,t| υ) is the number of those paths passing through 

node υ other than s,t90.  
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Figures 

 

Figure 1: ‘Abundant cores’ and Signature Species. 
a. All cohorts exhibit a bimodal distribution for species prevalence. Species that are prevalent in 
90% or more samples within a cohort is considered a member of that cohort’s ‘abundant core’. 
b. The proportion of total sample relative abundance each cohort’s ‘abundant core’ species and 
the union of all ‘abundant cores’ species (i.e. Signature Species/Sig). The ‘abundant core’ 
microbiota is shown to account for the bulk of reads mapped within each sample. Each dot 
represents a sample from that cohort. c. PCA demonstrating the lack of distinct clustering of 
samples from different cohorts based on CLR-transformed relative abundance data of the 
signature species. Samples from the Indian and American cohorts appear to separate from the 
rest of the cohorts however, samples from the other two cohorts demonstrate little separation. 
The diamonds indicate cluster centroids. 
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a. 
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Figure 2: Effect of prevalence thresholds on RFC accuracy. 
a. The 90% bacterial prevalence threshold enables the most accurate distinction between co-
horts. Bacterial species used for RFC-based classification were determined by prevalence of 
bacteria in the samples. The 90% prevalence threshold offers slightly better ability to distin-
guish between the cohorts based on their taxonomic profiles while removing over 1,800 fea-
tures. The 90% prevalence threshold was then randomly permuted (RandPermute) and added to 
the plot as a reference. Utilizing only species that were present in 100% of samples led to di-
minished accuracy while removing relatively few features. b. Multi-class Receiver Operator 
Characteristic (mROC) graph was created for each cohort. Each cohort displayed a large Area 
Under the Curve (AUC) indicating that the model was able to accurately distinguish the differ-
ent cohorts from each other using the taxonomic profiles alone. The multi-class AUC was 
weighted by sample size for each cohort. 
  

b. 
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a. 
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Figure 3: GGM algorithm benchmarking 
Average F1-scores of the GGM algorithm for various graph-types and sample-to-taxa ratios. 
Synthetic data was modeled on the CLR-transformed means and sample-to-taxa ratios present in 
the real data sets. A sample-to-taxa ratio of 10 was added to demon-strate the effect adding 
additional samples has on accuracy of GGM. a. The average F1-score for all graph-types is 
0.74. The hub and band networks consistently exhibit the highest accuracy. An overt increase in 
accuracy is demonstrated as the sample-to-taxa ratio increases for all graph-types, with no 
graph-type have an F1-score <0.9 at a sam-ple-to-taxa ratio of 10. b. GGM consistently 
underestimates magnitude of associations. As sample-to-taxa ratio increases, there is an 
appreciable increase in the accuracy of association magnitude estimation in all, but the cluster 
and scale-free, graph-types. 

b. 
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Figure 4: Species-level bacterial association networks by cohort. 
Network modeling of associations between (173/202) signature species within each network. A 
total of 29 species were not shown as they had zero edges in all networks. Node color designates 
the phylum each species belongs to, node size is reflective of node degree, and edge color 
represents if the association is positive (green) or negative (red). Nodes are ordered 
counterclockwise around the circle by the alphabetical order of the concatenated string of all 
taxonomic levels. Nodes that are numbered correspond to species with the highest degree 
centrality within modules, designated as “hubs”. Brackets around [Bacteroides] pectinophilus 
indicate that it is misclassified (i.e. placed incorrectly in a higher taxonomic rank and awaiting 
to be formally renamed). We utilized Blast to designate [Bacteroides] pectinophilus as belonging 
to the phylum Firmicutes91. For a full list of species shown and not shown within network 
models see supplemental. 
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Figure 5: Cohort network association analysis. 
a. The distribution of bacterial association weights within each cohort’s network, dots and (n) 
represent total associations. b. The proportion of associations within each cohort’s network that 
are unique (red) or shared (blue) with at least one other network. c. Sub-graph displaying only 
the 20 conserved nodes (species) and 14 edges (associations) retained across all cohorts. 
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Figure 6: Conserved genera counts. 
When examining the networks of all cohorts, there were 14 conserved associations comprised of 
20 bacterial species. Species of the Bacteroides genus were the most abundant constituents of the 
bacterial associations conserved within all cohorts. 
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Figure 7: Cohort negative association heatmap. 
Heatmaps of the proportion of total negative associations within each cohort’s network that 
order member species were found to be involved in. Within each cohort, negative associations 
appear to occur mainly between species from the order Clostridiales. 
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Figure 8: Taxonomic and functional relationships between species. 
a. Proportion of associations within each cohort’s network that are either positive or negative at 
the lowest level of taxonomic relation (n = total associations). Most positive associations appear 
between taxonomically similar species. b. Association weight vs Bray-Curtis distance of genome 
functional profiles between network partners. Positive associations between functionally similar 
species are both common and greater in strength than negative associations. There appears to be 
a minimal distance between genome functional profiles before a negative association is 
demonstrated. c.  An asynchronous LPA was used to analyze the modules composing the 
networks of each cohort. Four distinct clusters were found, and each cohort was represented 
within each cluster. The American cohort appears to be biased towards the Cluster IV, however 
the other cohorts do not appear overtly biased to any one cluster. Each dot represents the 
aggregated TIGRFAM profiles of an individual module found by aLPA and the diamonds 
represent the cohort centroids.  
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Figure 9: Genera involvement in clique formation as a percentage. 
Heatmap of the proportion of total cliques found within each cohort’s network that genera 
member species were found to be involved in (n = total 3 member cliques). Species from the 
genus Bacteroides tend to be found in the majority of cliques across all cohorts. 
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Figure 10: Proportion of genera shared in cliques. 
Heatmap of cliques that were retained in at least one other network. Cliques that Bacteroides sp. 
are involved in are highly re-tained across networks. 
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Figure 11: Distribution of module sizes. 
Distribution of module sizes found by asynchronous LPA, colored by cohort. a. Distribution of 
module sizes within the European cohort. b. Distribution of module sizes within the American 
cohort. c. Distribution of module sizes within the Indian cohort. d. Distribution of module sizes 
within the Japanese cohort.   
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Figure 12: Pie charts of cluster taxonomy. 
Pie plots demonstrating genus-level taxonomic compositions within each of the module clusters. 
Clusters were determined using PCA of module functional profiles for each module. a. Cluster I 
is dominated by members of the Streptococcus and Bifidobacterium genera and no genus 
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represents less than 3% relative abundance. b. Members of the Bacteroides genus are the most 
abundant in the Cluster III and there are 49 genera with relative abundances below 3%. c. 
Members of the Bacteroides genus are also the most abundant in the Cluster II, however the 
Prevotella and Allistipes genera are also abundant and account for >70% of abundance when 
combined with Bacteroides. There are 6 genera with relative abundances below 3%. d. There are 
only 5 genera above 3% relative abundance and 44 genera below 3% with no one genus showing 
greater than 15% relative abundance. Genera with < 3% relative abundance were placed in the 
‘Others’ category. 
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Figure 13: Functional role profile differences. 
Tables illustrating relative differences in functional roles within the cohorts. Roles that were 
different signs (+/-) in one cohort relative to all other cohorts, were deemed different. If the sign 
was negative after CLR transformation, the role was considered reduced and if the sign was 
positive the role is considered elevated a. The different clusters ap-pear to have overt functional 
differences possibly indicating the importance of the existence of modules from each cluster in a 
cohort for the healthy functioning of the gut microbiome. 
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Figure 14: Cohort functional profile PCA. 
PCA was performed by analyzing the aggregated cohort functional profiles of each cohort. The 
cohorts have a large amount of overlap and do not appear to distinctly separate. 
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Figure 15: Cohort functional profiles. 
Few functional role differences were demonstrated between the different cohorts as only the 
American and European cohorts had more than one difference and only the European cohort 
demonstrated greater than two differences. 
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Figure 16: Degree assortativity of modules. 
Distribution of the degree assortativity of modules within cohort networks. Most modules were 
disassortative in respect to their degree assortativity hinting at "hub" species existing within 
modules. 
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a. 
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Figure 17: Cohort network “hubs” and “bottlenecks” 
a. Species with highest degree centrality are designated as “hubs.” b. Species with highest 
betweenness centrality are designated as “bottlenecks.” 

  

b. 
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Figure 18: Sample counts in each cohort. 
A bar plot representing the counts of samples from each cohort. 
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Figure 19: Read statistics by cohort. 
a. Each dot represents the total reads in an individual sample. The dashed black line in each 
box-plot represents the median reads of the cohort. b. Each dot represents the mapped reads in 
an individual sample. The dashed black line in each box-plot represents the median mapped 
reads of the cohort. c. Each dot represents the percent mapped reads in an individual sample. 
The dashed black line in each box-plot represents the median percent of reads mapped for each 
cohort. 
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Figure 20: EM benchmarking on simulated bacterial communities. 
Stacked bar graphs showing benchmarking results of our EM algorithm on estimating known 
genome relative abundances from simulated whole-genome shotgun sequences created with 
WGSim; a. strain level results of a mixed E. coli community with Pearson's R2 = 0.997 between 
known genome relative abundances and the EM genome relative abundance estimations; b. 
species level results of a mixed community with a Pearson's R2 = 0.999 between the known 
genome relative abundances and the EM genome rela-tive abundance estimations. 
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Figure 21:Read-depth benchmarking. 
Correlation of varying read depths with samples at 5+ million read depth. Samples with 5+ 
million reads were sub-sampled to varying depths and examined using ordinary least squares 
linear regression. Samples with 250 000+ reads, on average, demonstrate an R2 value greater 
than 0.85. The red text indicated the chosen threshold for subsequent analysis. 
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Figure 22: Reference genome completeness estimation. 
All reference genomes utilized for read mapping were analyzed for their percentage of genome 
completeness with CheckM. In total there were 10 839 genomes of which only 38 (0.004%) that 
were designated as below 70% complete. One genome was marked as 0.0% complete although 
that was due to CheckM not having data on the lineage of that organism. 
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Tables 

Table 1: Cohort network topological properties. 
Network topological properties calculated for each cohort’s network. The plus (+) or minus (-) 
sign indicates that the network property was greater or lower than the average of 1,000 random 
networks. Stars indicate that the network property was statistically significantly different (P-
value: * < 0.05, ** <0.01, ***<0.001). 
 

Network Nodes Edges Density ASPL Transitivity Modularity Degree 
Assortativity 

Genera 
Assortativity 

American 202 338 0.017 1.539 0.487 0.475 0.338 0.144 
Indian 202 273 0.013 1.874 0.452 0.667 0.330 0.163 

European 202 386 0.019 1.369 0.353 0.681 0.158 0.196 
Japanese 202 274 0.013 1.444 0.471 0.755 0.308 0.242 
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CHAPTER 3: LINKING INFLAMMATORY BOWEL DISEASE 
SYMPTOMS TO CHANGES IN THE GUT MICROBIOME STRUCURE 

AND FUNCTIONS 
 

Note: This section has been published in part and the citation link is: Hassouneh, 

S. A. D., Loftus, M., & Yooseph, S. (2021). Linking Inflammatory Bowel Disease 

Symptoms to Changes in the Gut Microbiome Structure and Function. Frontiers in 

Microbiology, 12, 2009. https://www.frontiersin.org/articles/10.3389/fmicb.2021.673632. 

 

Introduction 

Inflammatory bowel disease (IBD) is a heterogeneous disorder characterized by 

chronic inflammation of the gastrointestinal tract. The two main manifestations of IBD 

are Crohn’s Disease (CD) and Ulcerative Colitis (UC). CD most often affects the 

terminal ileum but can affect any part of the gastrointestinal tract in a non-contiguous 

fashion, sometimes known as ‘skip lesions’, and often results in diarrhea, bloody stools, 

abdominal pain, cachexia, and fatigue (Veauthier and Hornecker 2018; Flores et al. 

2015) . UC most often affects the large intestine, extending from the rectum, and is 

characterized by contiguous inflammation and often results in rectal bleeding, bloody 

stools, diarrhea, cachexia, and fatigue (Flores et al. 2015; “FDA Briefing Document 

Gastrointestinal Drug Advisory Committee Meeting” 2018) . While the etiology of IBD is 

not well understood, it is believed that the disorder arises due to environmental and 

host-related factors causing an aberrant immune response in genetically predisposed 

https://www.frontiersin.org/articles/10.3389/fmicb.2021.673632
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individuals (Chiara et al. 2020; Kish et al. 2013) . One such factor is believed to be the 

microbiome, specifically the gut microbiome (Duranti et al. 2016) . 

 

The human microbiome is the community of microbes that exists on and within 

the human body and has been implicated in maintaining health, as well as possibly 

contributing to a multitude of diseases such as IBD, Irritable Bowel Syndrome (IBS), 

diabetes, Parkinson’s disease, and amyotrophic lateral sclerosis (Gevers, Kugathasan, 

Denson, Vázquez-Baeza, Van Treuren, et al. 2014; Vich Vila et al. 2018; Brown et al. 

2011; Petrov et al. 2017; Wu et al. 2015; Kho and Lal 2018) . The bacterial composition 

of the microbiome can be studied using DNA sequencing, either by targeted sequencing 

of a marker gene or by shotgun sequencing. Targeted sequencing involves the 

amplification of specific regions of bacterial genomes, such as the 16S ribosomal RNA 

gene, for use as a phylogenetic marker (George E Fox et al. 1977) . However, due to the 

highly conserved nature of the 16S rRNA gene and the short lengths of the regions 

within the gene that are commonly targeted, the taxonomic resolution generated by 

these types of studies are often inadequate to distinguish bacterial species (G. E. Fox, 

Wisotzkey, and Jurtshuk 1992; Ranjan et al. 2016) . Furthermore, estimation of bacterial 

relative abundances is confounded by the presence of multiple copies and intragenic 

variation of the 16S rRNA gene within a single bacterium (Rastogi et al. 2009; Ibal et al. 

2019) . In contrast, shotgun sequence data generated from the DNA extracted from a 

sample can be used to obtain more accurate estimates of relative abundance, higher 
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resolution of bacterial taxonomy, and a more accurate representation of genomic 

functional capacity (Ranjan et al. 2016; Laudadio et al. 2018) . 

 

Regardless of the sequencing framework used, the generated sequence data are 

compositional in nature enabling only an estimation of the relative abundances of the 

constituent microbial taxa (Gloor et al. 2017). This compositionality aspect makes it 

difficult to analyze differential abundance, infer associations, and estimate correlations 

(Aitchison 1982; Jonathan Friedman and Alm 2012; Tsilimigras and Fodor 2016; 

Pearson 1896) . By utilizing a Centered Log-Ratio (CLR) transformation of the relative 

abundance data, we can examine the differential abundances more clearly and without 

inducing spurious correlations (Aitchison 1982; Jonathan Friedman and Alm 2012; 

Tsilimigras and Fodor 2016; Pearson 1896) . Furthermore, the covariance matrix of log-

transformed relative abundance data provides a good approximation of the covariance 

matrix of the log-transformed absolute abundance data enabling us to better model the 

associations between bacteria (Kurtz et al. 2015) . 

 

Associations within a bacterial community are comprised of the direct and 

indirect interactions between the community constituents and are important for 

understanding the underlying dynamics at play in a microbial community (Kurtz et al. 

2015) . Bacterial association networks are often constructed using pairwise correlation 

methods on relative abundance or count data of the bacteria found within the samples. 
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Due to the compositional nature of sequencing data, however, it is difficult to accurately 

identify correlations from counts generated from sequencing data as a result of spurious 

correlations that arise (Jonathan Friedman and Alm 2012) . Even after CLR-

transformation of the sequencing data, pairwise correlation methods are unable to 

account for conditional independence between bacterial species causing these methods 

to produce inaccurate bacterial association networks (Kurtz et al. 2015). In this paper, 

we used a Gaussian Graphical Model (GGM) framework in conjunction with a graphical 

lasso (glasso) to construct bacterial association networks from the CLR-transformed 

relative abundance data (Jerome Friedman, Hastie, and Tibshirani 2008; Loftus, 

Hassouneh, and Yooseph 2021) . We represent these bacterial association networks 

using an unweighted graph in which nodes denote bacterial species and an edge 

between two nodes denotes an association between the corresponding bacterial 

species. Utilizing the GGM framework on the CLR-transformed data, enables us to 

approximate the covariance structure of the absolute abundances as well as account for 

conditional independence between the constituent species (Wermuth and Lauritzen 

1990; Aitchison 1982) . By utilizing shotgun sequence data and employing 

compositionally robust methodologies, we can identify potentially important differences 

in bacterial associations, taxonomic composition, and functional capacity between the 

IBD and healthy gut microbiomes that may play a role in disease and symptom 

progression. 
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Due to the Random Forest Classifier’s (RFC) ability to deal with ’noisy’, non-

normally distributed, multi-dimensional data, it has become an important tool for 

identifying important features and differences in the microbiome (Breiman 2001; Díaz-

Uriarte and Alvarez de Andrés 2006; Loomba et al. 2017; Saulnier et al. 2011; Roguet 

et al. 2018; Shi et al. 2005) . These features can include bacterial relative abundances 

and metadata thus allowing us to generate a model that accounts for subject 

characteristics as well as gut microbiome taxonomic profiles. Another benefit of the RFC 

is its ability to assign importance to the features used for the classification. The feature 

importance’s allow us to quantify the role a specific feature plays in making a prediction 

and can allow us to determine which features may be informative. One shortcoming of 

these feature importances, however, is their lack of statistical significance. Due to the 

stochastic nature of model construction using an RFC, some features may be relatively 

important in one instance of an RFC model, but relatively unimportant in another 

instance of the RFC model. To enable us to utilize RFC feature importance to 

distinguish potentially important features and reduce the dimensionality of our data, we 

formulated a framework that allowed us to add statistical significance to the feature 

importances. 

 

Here, we utilized the IBD Multi-omics DataBase (IBDMDB) cohort from a 

previously published study to study IBD (Lloyd-Price et al. 2019) . This dataset consists 

of shotgun sequence data generated from CD, UC, and an internal control group 

(henceforth also referred to as non-IBD samples). The non-IBD samples were collected 
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from subjects that underwent histopathologic examination (via colonoscopy) but were 

not diagnosed with IBD. These samples are derived from subjects presenting for routine 

screenings, gastrointestinal (GI) distress, or non-specific symptoms generating a 

heterogeneous control group. This control group design may obfuscate important 

differences between healthy and IBD gut microbiomes, especially if the differences may 

be related to presentations common between IBD and GI distress, such as diarrhea, 

bloating, or abdominal pain. Additionally, many studies examining the microbiome suffer 

from a lack of cross-cohort consistency making it difficult to generalize findings to 

populations rather than just the utilized study groups (Pasolli et al. 2016) . One proposed 

remedy for this lack of cross-cohort consistency is to utilize external samples from 

independent cohorts, especially when comparing diseased and healthy microbiomes, 

and applying the same methods and techniques across all samples (Pasolli et al. 2016; 

Thomas et al. 2019) . To enable us to generalize our findings and utilize healthy control 

groups in our analysis, we incorporated samples from both the Human Microbiome 

Project (Huttenhower et al. 2012)  referred to as the Healthy-1 cohort, and from A.J. 

Johnson et al 2019 (Johnson et al. 2019) referred to as the Healthy-2 cohort, as 

external controls. The external cohorts we elected to use were shotgun sequence 

datasets generated from gut microbiome samples collected from healthy subjects (no 

overt or reported disease) and utilizing the same sequencing platform as the IBDMDB 

cohort (Illumina). Furthermore, due to the similarity of the results produced by the 

Chemagic DNA extraction kit (IBDMDB cohort) and the Mo Bio PowerSoil DNA 

extraction kit (Healthy-1 and Healthy-2 cohorts), we concluded that these cohorts could 

serve as external controls without the addition of a significant amount of technical bias 
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(Multinu et al. 2018) . Also, due to the use of replicates within the Healthy-2 cohort and 

the IBDMDB cohort, we were able to examine temporal variation within subjects 

diagnosed with IBD relative to the non-IBD group (internal control) and the Healthy-2 

group (external control). By incorporating these two independent healthy cohorts, we 

can compare the IBD samples to healthy samples and mitigate the possible issues 

inherent in the design of the IBDMDB internal control group (non-IBD group) as well as 

arrive at more robust and generalizable conclusions from our analysis. 

 

To understand the effects of changes in the microbiome, we cannot solely focus 

on the presence, absence, or differential abundances that are found. We also need to 

examine how these bacteria interact with each other to understand the impacts they 

have on shaping the microbiome. It is also integral that we examine the functional 

consequences of these differences and associations to build a more complete picture of 

the changes the gut microbiome underwent and the possible effects these changes may 

foment (Heintz-Buschart and Wilmes 2018) . By examining the taxonomy, the bacterial 

interactions, and the functional changes of the gut microbiome, our study aims to 

identify bacterial species that may play a role in the onset or exacerbation of IBD or 

IBD-related symptoms. By utilizing two external healthy controls, we are also able to 

corroborate our conclusions when comparing IBD and healthy samples and generalize 

our findings more confidently to the population. Additionally, we utilized a machine 

learning framework and a prevalence threshold to identify potentially important bacterial 

species. We also compared the functional capacity of the gut microbiome of IBD 
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samples to non-IBD and control samples, and identified important potential functional 

differences that may play a role in symptoms IBD patients typically experience. 

 

Materials and Methods 

Data Acquisition 

 

Shotgun sequence data generated from 574 fecal samples were obtained from 

three previously published studies of the human gut microbiome (United States 

populations). Of these, two cohorts were downloaded from NCBI’s Sequence Read 

Archive (SRA): Human Microbiome Project (SRA: PRJNA48479; 203 samples) and the 

IBD Multi-omics Database (SRA: PRJNA398089; 257 samples). The A.J. Johnson et al 

cohort was downloaded from the European Nucleotide Archive (ENA) (ENA: 

PRJEB29065; 114 samples). We were able to access metadata for sex and age/age-

group for all cohorts. 

 

Data pre-processing 

 

Reads from the whole genome sequencing data were trimmed using 

Trimmomatic (version 0.36) and then reads corresponding to the human genome were 

filtered out using BowTie2 (version 5.4.0) and the GRCh38.p12 

(www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38) human reference genome 

(Bolger, Lohse, and Usadel 2014; Langmead and Salzberg 2012) . 
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Read mapping and taxonomic identification 

 

Reads were mapped to 10,839 bacterial reference strain genomes obtained from 

the NCBI RefSeq database using BowTie2 (O’Leary et al. 2016) . Bacterial genome 

relative abundances were estimated using a probabilistic framework based on a mixture 

model. The framework utilized an Expectation-Maximization (EM) algorithm to perform 

soft assignment of the reads to the reference genomes and was found to be highly 

accurate (Xia et al. 2011; Loftus, Hassouneh, and Yooseph 2021) . We have previously 

demonstrated that samples with less than 250,000 mapped reads display diminished 

accuracy for taxonomic profiling, consequently all samples that contained less than 

250,000 mapped reads threshold were not used for downstream analysis (Loftus, 

Hassouneh, and Yooseph 2021) . When calculating abundances, any strain that had a 

relative abundance below 1 × 10−5 was considered statistical noise. The relative 

abundance data was then transformed using the CLR transformation and the CLR-

transformed data was used for all downstream analyses except for the alpha-diversity 

analysis. The CLR transformation is defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) = �𝑡𝑡𝑛𝑛
𝑥𝑥1
𝐺𝐺(𝑥𝑥) , 𝑡𝑡𝑛𝑛

𝑥𝑥2
𝐺𝐺(𝑥𝑥) . . . 𝑡𝑡𝑛𝑛

𝑥𝑥𝐷𝐷
𝐺𝐺(𝑥𝑥)� 

where x is the vector of relative abundances within a sample, D is the total 

number of species present within the sample, and G(x) is the geometric mean of x. The 

geometric mean is defined as: 
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𝐺𝐺(𝑥𝑥) = √𝑥𝑥1 × 𝑥𝑥2 ×. . . 𝑥𝑥𝐷𝐷𝐷𝐷 . 

 

 

Sample inclusion criteria 

 

IBDMDB inclusion criteria 

To reduce potential confounders within the internal control group (non-IBD 

samples), we instituted a set of inclusion criteria for the non-IBD group: no colonoscopy 

within the last two weeks, no history of bowel surgery, no immunosuppressants use, no 

antibiotic use, no IBS, and no diarrhea in the past two weeks. Due to the adverse 

associations between these variables and the gut microbiome that have been noted in 

the literature, we excluded any samples from subjects that violated these criteria 

(Schubert et al. 2014; Halfvarson et al. 2017; Bhat et al. 2017; Dethlefsen et al. 2008; 

Vich Vila et al. 2018; Nagata et al. 2019). We also did not utilize any samples collected 

prior to week 26 of the study to ensure that subjects had ample time to overcome any 

gastrointestinal distress they have been experiencing at the time of study initiation. To 

limit any potential bias from an over-representation of a subject within the cohort, no 

more than five randomly chosen samples were retained from any one subject for any of 

the sample groups in the IBDMDB cohort (CD, UC, non-IBD) resulting in a mean 

number of replicates of 2.5 and a median of 2. 
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Healthy-1 cohort inclusion criteria 

Samples for the healthy-1 cohort were derived from (Huttenhower et al. 2012)  

and were generated as part of the Human Microbiome Project. All 203 samples utilized 

were derived from unique individuals and demonstrated over 250,000 mapped reads so 

all samples were included in the analysis. 

 

Healthy-2 cohort inclusion criteria 

Samples for the healthy-2 cohort were derived from (Johnson et al. 2019)  and 

were generated as part of a longitudinal analysis of fecal shotgun metagenomes in 

healthy subjects. The study by Johnson et al aimed to examine gut microbiome 

responses to a changes diet. Subject were randomly given fatty acid supplementation 

on days 10-17 of the study. To ensure that our analysis reflected healthy samples on 

habitual diets, only samples taken prior to day 10 of the study were used. Furthermore, 

subjects were sampled daily for 17 days but not all subjects consistently had more than 

five samples with greater than 250,000 (minimum threshold for inclusion) mapped reads 

so to limit the number of replicates from a single subject a maximum of five randomly 

chosen samples were retained from any one subject resulting in a mean number of 

replicates of 3.3 and a median of 3. 

 

Diversity analysis 

Alpha diversity was analyzed using the Shannon entropy. The Shannon entropy, 

H, is defined as: 
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𝐻𝐻 = −�𝑝𝑝𝑖𝑖

𝐷𝐷

𝑖𝑖=1

𝑡𝑡𝑙𝑙𝑔𝑔2(𝑝𝑝𝑖𝑖) 

where D is the number of species in the sample and pi is the proportion of 

species i in the sample (Shannon 1948) . The non-transformed relative abundances 

were used for the Shannon entropy calculations. 

 

Intrapersonal and interpersonal dissimilarity 

The Bray-Curtis dissimilarity (BCD) between replicates within a subject was used 

to quantify intrapersonal variation within each cohort with replicates (IBDMDB and 

Healthy-2 cohorts). The BCD between subjects within diagnosis groups (interpersonal 

dissimilarity) was also examined to observe the variability of the gut microbiome within 

the diagnosis groups. The BCD between two samples, i and j, was calculated as 

𝐵𝐵𝐶𝐶𝐷𝐷𝑖𝑖,𝑗𝑗 = 1 −
2𝐶𝐶𝑖𝑖𝑗𝑗
𝑆𝑆𝑖𝑖 + 𝑆𝑆𝑗𝑗

 

where Cij is the sum of the relative abundances of the species with the lowest 

combined relative abundance within samples i and j. Si and Sj are the sums of the 

relative abundances found in sample i and sample j, respectively. The intrapersonal 

dissimilarity was calculated by generating pairwise BCD’s for samples from the same 

subject. The interpersonal dissimilarity was calculated by generating pairwise BCD’s 

between samples from different subjects. 
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Prevalent species 

To reduce the dimensionality of our data, we utilized only bacterial species that 

were present in at least 90% of samples within each diagnosis group (IBD, non-IBD, 

Healthy-1, and Healthy-2) for our downstream analysis (Loftus, Hassouneh, and 

Yooseph 2021) . The union of the bacterial species present at a prevalence greater than 

or equal to 90% in each diagnosis group was then used for the classification of the 

signature species. 

 

Classification of signature species 

A modified Random Forest Classifier (RFC) framework was used to identify 

bacterial species for downstream analysis (Breiman 2001) . The RFC was used to 

classify samples by the sample groups (IBD, non-IBD, and Healthy). The Healthy-1 and 

Healthy-2 cohort were combined for the RFC analysis to enable us to identify bacterial 

species importances by health status, rather than by cohort. A random noise column 

was added into the data prior to RFC analysis. The noise column was generated by 

creating a normal distribution resembling the CLR-transformed data of the genome 

relative abundances and randomly sampling from the distribution. The data was then 

label encoded due to the presence of categorical data. This process was performed 100 

times, where a new random noise column would be generated each time, and the 

feature importances of every feature (bacterial species, metadata, and the random 

feature) were stored for all runs. A Mann-Whitney U test was then performed on the 

importances of all features with a mean feature importance higher than the random 
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feature to determine if the importances of these features were significantly different from 

the feature importances of the random column. The Benjamini-Hochberg procedure for 

controlling false discovery rate was utilized to account for the multiple-testing and only 

features with a q-values less than 0.05 were considered significantly different from the 

random column (Benjamini and Hochberg 1995) . This framework allows us to identify 

the bacterial species and metadata whose feature importances were significantly higher 

than the random noise. The bacterial species that were significantly more important 

than the random noise column are referred to as the ‘signature’ species due to their 

ability to provide a non-random signal during classification. The RFC was implemented 

in Python 3.8 using Sci-kit Learn 0.23.1 (Van Rossum, Guido and Drake 2009; 

Varoquaux et al. 2015) . 

 

Differential abundance analysis 

Differential abundance analysis was conducted by performing a Mann-Whitney U 

test and the Benjamini-Hochberg multi-test correction on the CLR-transformed relative 

abundance profiles. The IBD group was compared to the non-IBD group, the Healthy-1 

group, and the Healthy-2 group individually. Bacterial species that were significantly 

differentially abundant in IBD relative to every other individual group were designated as 

differentially abundant. 
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Bacterial association network construction 

The signature species were used to create a sample-taxa matrix of CLR-

transformed relative abundances in each sample. The GGM framework, as previously 

described, was used to generate the bacterial association networks using the above 

sample-taxa matrices for each cohort (Loftus, Hassouneh, and Yooseph 2021) . In brief, 

the HUGE package in R was used to compute a sparse precision matrix. The stability 

approach to regularization selection (StARS) method was used to determine the tuning 

parameter in the l1-penalty model for sparse precision matrix estimation. To reduce false 

positives, the final precision matrix, Ω, underwent bootstrap testing. If Ω[i,j] ≠ 0, then 

Ω’[i,j] = Ω[i,j] if[𝑡𝑡, 𝑗𝑗] ≠ 0 in f*r or greater precision matrices estimated from bootstraping. 

Otherwise, Ω’[i,j]=0. The value r = 50 (bootstrap replicates) and f = 0.8 (threshold 

between 0 and 1 indicating proportion of edges that must be non-zero). Networks were 

visualized and analyzed using Python 3.8 and NetworkX 2.4 (Hagberg, Schult, and 

Swart 2008). 

 

Eigenvector centrality 

Eigenvector centrality (EVC) measures the influence a node has in a network by 

accounting for the connections of the node in question as well as the connections of its 

neighbors (Bonacich 1972; Ruhnau 2000) . The EVC, x, for a given node, i, is defined 

as: 

𝑥𝑥𝑖𝑖 = �𝐴𝐴𝑖𝑖𝑗𝑗
𝑗𝑗

𝑥𝑥𝑗𝑗 
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where A is the adjacency matrix and j is a neighboring node of i. 

 

Bacterial genome functional annotation 

Prodigal (version 2.6.3) was used to identify genes and generate protein 

sequence translations (Hyatt et al. 2010) . The protein sequence translations were 

provided to InterProScan (version 5.39-77.0) to identify protein families using the 

TIGRFAM (versions 15.0) protein family database (Hunter et al. 2009; Haft 2001) . 

TIGRFAM counts were generated for each reference genome. Bacterial species that 

were greater than 90% prevalent within a diagnosis group (IBD, non-IBD, Healthy-1, 

and Healthy-2) were used for functional annotation to reduce the effects of potentially 

transient species when analyzing the genomic functional capacity of the microbiomes 

(Saunders et al. 2016; Ursell et al. 2012) . Then the TIGRFAM counts were weighted 

based on CLR-transformed genome relative abundance, and summed by total for each 

cohort. Differential abundances of TIGRFAM profiles were therefore calculated by using 

the CLR-transformed relative abundances of the TIGRFAMs within each cohort. The 

TIGRFAM CLR-transformed relative abundances were then tested using a Mann-

Whitney U test. 

 

Statistical analysis and graph creation 

Statistical analysis and graph creation was performed using Python 3.8 (Van 

Rossum, Guido and Drake 2009) . 
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Results 

A total of 569 shotgun sequence datasets from 3 previously published studies 

(IBDMDB, Healthy-1, and Healthy-2) of the human gut microbiome were utilized in this 

study. The IBDMDB cohort consisted of CD, UC, and non-IBD samples. To minimize 

potential confounders in the IBDMDB group, samples from individuals that reported 

recent colonoscopy, antibiotic or immunosuppressant use, IBS, or recent GI symptoms 

were excluded from the control (non-IBD) group. For each dataset, the sequence reads 

were quality trimmed and human reads were identified and filtered. The remaining reads 

were mapped to a comprehensive collection of 10,839 bacterial strain reference 

genomes from NCBI RefSeq and genome relative abundances were calculated using a 

probabilistic framework (Xia et al. 2011; Loftus, Hassouneh, and Yooseph 2021) . The 

alpha-diversity was then calculated on the relative abundances using Shannon entropy. 

To reduce the dimensionality of our data, we focused our analysis on bacterial species 

that were prevalent in at least 90% of the samples. Next, the relative abundance vector 

for each sample was CLR transformed and used for all downstream analysis. A random 

forest classifier (RFC) framework (Breiman 2001) was then used to classify the samples 

by their diagnosis groups using the taxonomic profiles as well as the metadata available 

for all cohorts (sex, age, unique subject ID to account for replicates) . For the RFC 

analysis, the Healthy-1 and Healthy-2 cohorts were grouped under one label (Healthy) 

to create a single healthy control group to compare to the IBD and non-IBD sample 

groups thus allowing us to identify important features that distinguish between diagnosis 

groups rather than cohort in a more robust manner (Pasolli et al. 2016; Thomas et al. 

2019) . The RFC was then trained on the taxonomic profiles as well as the metadata 
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available for all cohorts. While RFC’s provide feature importances based on the 

features’ contribution to classification of the given label, there is no statistical 

significance attached to these importances. To assess statistical significance of the 

features a random noise column was generated and added to the data (see methods). 

The species that were ranked as significantly more important than the random noise 

column were designated as the ‘signature species’ and used for all downstream 

analyses. A Mann-Whitney U test and Benjamini-Hochberg (BH) multi-test correction 

was used to compare the differential abundance of the signature species within IBD to 

all other groups individually. 

Bacterial species that were significantly differentially abundant in IBD, relative to 

every other sample group, were designated as differentially abundant. Next, a GGM 

framework (see methods) was used to construct the bacterial association networks from 

the relative abundance information of each sample group. Finally, the genomic 

functional capacity within each sample group was determined by using the TIGRFAM 

protein family database. The TIGRFAM counts for each signature species were 

weighted by the relative abundance of the species within each sample group and then 

CLR-transformed. A Mann-Whitney U test and BH multi-test correction was then used to 

compare the differential abundance of the TIGRFAM functions within IBD to the other 

groups to determine differences in functional capacity. 
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Alpha-diversity analysis 

The non-IBD group displayed a similar alpha-diversity to the UC and CD groups, 

however the external healthy cohorts displayed significantly higher alpha-diversities 

than all other groups (Figure 23). When examining the effect of cohort read-depth on 

alpha-diversity, we did not observe any significant correlation between read-depth and 

alpha-diversity (Figure 24). Notably, the Healthy-2 cohort displayed lower read-depth 

on average, relative to the IBDMDB cohort, but displayed significantly higher alpha-

diversity. 

 

Intrapersonal dissimilarity 

When examining intrapersonal dissimilarity, it was noted that samples from the 

same subject were significantly more similar to each other than they were to samples 

from other subjects (Figure 25a). This trend was constant for every diagnosis group 

that could be tested (Healthy-1 cohort did not utilize replicates) and was statistically 

significant every time. Furthermore, it was observed that IBD samples demonstrated the 

highest levels of intrapersonal dissimilarity and were significantly higher than both non-

IBD samples and Healthy-2 samples. Interestingly, the intrapersonal dissimilarity of non-

IBD samples fell between the IBD and the Healthy-2 samples. 

 

Interpersonal dissimilarity 

To quantify how different the gut microbiomes of samples within a specific 

diagnosis group are, we examined the interpersonal dissimilarity. Once again, the IBD 
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samples exhibited the highest levels of dissimilarity when examining the interpersonal 

dissimilarity (Figure 25b). IBD sample interpersonal dissimilarities were significantly 

higher than the Healthy-1 and Healthy-2 samples but were not significantly different 

than the non-IBD samples. It was also noted that the non-IBD samples displayed 

significantly higher interpersonal dissimilarity, relative to the Healthy-1 and Healthy-2 

cohorts. 

 

Taxonomic analysis 

When attempting to classify all different diagnoses (CD, UC, non-IBD, and 

healthy) using the RFC, it was noted that CD and UC samples were often misclassified 

as one another (CD as UC or vice versa) which contributed to the modest RFC 

classification accuracy (weighted average F1-score: 0.79) (Figure 26a). After combining 

the CD and UC diagnoses into the IBD sample group, the RFC was able to distinguish 

between the various cohorts with higher average accuracy (weighted average F1-score: 

0.87) (Figure 27). Notably, the non-IBD group was difficult to distinguish, and these 

misclassifications were split between IBD and healthy controls implying that the non-IBD 

group had a heterogeneous composition in which some samples resembled healthy 

samples and others resembled IBD samples (Figure 26b). The RFC model identified 

122 important features with the ‘age’ feature demonstrating the greatest feature 

importance. The ‘unique subject ID’ feature was also an important feature but was 

ranked 99/122 according to feature importance. The remaining 120 important features 

were bacterial species. The CLR-transformed relative abundances of these 120 species 
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were then compared between IBD and non-IBD (internal control) resulting in 55 

significantly differentially abundance species. Out of these 55 species, 42 were 

significantly differentially abundant in IBD relative to all three control groups (non-IBD, 

Healthy-1 Healthy-2) with a q-value < 0.05 and greater than a two-fold difference 

(Figure 28). Of those 42 species, 34 were elevated in IBD and 8 species were elevated 

in the internal and external controls. All 42 of the above species were also found to be 

differentially abundant when utilizing the union of the 90% prevalent species for the 

differential abundance analysis. Out of the 34 species elevated in IBD, only the 

Clostridium (5 species) and Blautia (4 species) genera displayed more than 2 species 

elevated (Figure 29). 

 

Bacterial association networks 

Bacterial species elevated in IBD had non-zero degree in all bacterial association 

networks (Figure 30). While these nodes were elevated in IBD, they still maintained a 

higher than average number of associations within all networks (Figure 31). It was 

observed that while the nodes elevated in IBD display higher than average degree, the 

majority of nodes within each network were actually composed of species that were not 

significantly different between IBD and the control groups (IBD: 52.5%, non-IBD: 52.6%, 

Healthy-1: 65.6%, Healthy-2: 53.7%) (Figure 32). When examining the most important 

species within the network, defined as the species with the ten highest Eigenvector 

centralities, a measure of relative importance or influence of nodes, within a network, all 

but two of the ten species were found in the top-10 important species non-IBD or 
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healthy networks (Table 2) (Newman 2006) . While there was a large amount of overlap, 

there were also 56 associations that are unique to the IBD network (Figure 33). The 

vast majority of these associations (85.71%) involved species that were elevated in IBD. 

 

Differences in functional capacity 

Analysis of the genomic functional capacities of the different cohorts 

demonstrated 6 significant differences with greater than two-fold fold change between 

the IBD cohort and all other cohorts (Figure 34). IBD samples displayed elevated 

relative abundance of protein families involved in sporulation and germination, synthesis 

and degradation of polysaccharides, signal transduction, regulatory protein interactions, 

and molybdopterin biosynthesis. The IBD samples also displayed reduced relative 

abundance of protein families involved in menaquinone and ubiquinone synthesis. Out 

of the 34 bacterial species elevated in IBD, 13 were previously found to be associated 

with IBD, CRC, IBS, obesity, or rectal bleeding and 8 of the 13 species were found to 

have multiple roles (Appendix A). A particular interest within this group of 13 bacteria 

were the species that have been studied in vitro or in vivo and found to potentially play a 

role in IBD such as Ruminococcus gnavus, Flavonifractor plautii, Clostridium 

symbiosum, and Anaerostipes hadrus. Out of the 21 remaining species, 16 were novel 

potential markers for IBD, 1 was previously found to be reduced in UC, and 4 were 

previously found to be elevated in healthy samples. 
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Discussion 

This study identified numerous differences in taxonomic profiles, bacterial 

association networks, and genomic functional capacity between the IBD gut microbiome 

and the control gut microbiomes. Furthermore, our findings were corroborated by 

multiple external cohorts, and were generated using techniques and analyses that 

account for the compositionality of sequencing data. To our knowledge, this is the first 

study to utilize multiple external cohorts from a similar geographic region to corroborate 

comparisons between the internal control group and the diseased group in an analysis 

of the gut microbiome while also utilizing a compositionally robust methodology. 

Additionally, we demonstrated that bacterial species whose relative abundance is 

elevated in IBD are also present in the healthy microbiomes and maintain an important 

position in the healthy and IBD bacterial association networks implying that these 

species play an important role in the gut microbiome. However, these elevated bacteria 

are also often implicated in mucin degradation, immune system modulation, antibiotic 

resistance, and modulation of inflammation and their over-abundance may dysregulate 

these important processes possibly contributing to IBD pathogenesis and IBD-related 

symptoms. 

 

We found that the IBD samples had alpha-diversities similar to internal controls 

(non-IBD), but significantly lower than external healthy controls. While It has previously 

been noted that IBD samples have lower alpha-diversity than healthy controls, we 

believe this may be due to the convenience selection of internal controls (Gevers, 
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Kugathasan, Denson, Vázquez-Baeza, Van Treuren, et al. 2014; Frank et al. 2011; 

Sheehan, Moran, and Shanahan 2015) . As reported in Lloyd-Price et. al. 2019, the 

internal controls (non-IBD) consisted of “patients [who] were approached for potential 

recruitment upon presentation for routine age-related colorectal cancer screening, work 

up of other gastrointestinal (GI) symptoms, or suspected IBD, either with positive 

imaging (for example, colonic wall thickening or ileal inflammation) or symptoms of 

chronic diarrhoea or rectal bleeding”. However, due to ~75% of internal control samples 

being derived from subjects below the age of 45 (the earliest recommended age for 

colorectal cancer screening without personal or family history of colon cancer), it is 

presumed that the majority of these subjects presented with GI distress (Lloyd-Price et 

al. 2019)  (Figure 35). 

 

When examining the replicates present in the IBDMDB and Healthy-2 cohorts, it 

was noted that subjects diagnosed with IBD demonstrated increased temporal 

variability, as measured by the intrapersonal dissimilarity, when compared to non-IBD 

samples and Healthy-2 samples. This has been previously demonstrated when 

comparing CD and UC to non-IBD controls and has been posited to be caused by the 

inflammation and decreased intestinal transit time experienced by IBD patients as well 

as the medications and lifestyle changes employed to manage IBD (Clooney et al. 

2020) . It was also noted that the IBD and non-IBD samples displayed greater subject-to-

subject variability relative to Healthy-1 and Healthy-2 samples. The relatively elevated 

temporal stability and subject-to-subject variability indicates that the gut microbiome of 
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our IBD samples displayed increased heterogeneity, relative to healthy controls. This 

has also been previously demonstrated in pediatric IBD patients and is believed to be 

caused by a depletion of core microbes, possibly due to inflammation and IBD therapies 

(Schirmer et al. 2018) . 

 

Much like the original publication utilizing the IBDMDB cohort (Lloyd-Price et. al. 

2019), differentiating between the taxonomic profiles of IBD from non-IBD samples was 

difficult. In our study, using the RFC to classify IBD and non-IBD samples yielded many 

misclassifications in which non-IBD samples were consistently classified as IBD. The 

non-IBD samples were also misclassified as healthy. This split of RFC misclassifications 

for non-IBD samples indicates that the non-IBD group consists of a heterogeneous 

group that resembles both the IBD group, such as the subjects presenting with GI 

distress, and the healthy groups, such as the subjects presenting for routine screenings. 

It was also noted that the RFC utilizing the taxonomic profiles misclassified CD samples 

as UC samples and vice versa. This has also been previously demonstrated in other 

studies utilizing shotgun sequence data and is indicative of the high similarity 

demonstrated between the taxonomic profiles of the CD and UC gut microbiomes 

(Moustafa et al. 2018) . 

 

The RFC was able to distinguish between the external healthy cohorts and the 

IBD samples consistently and accurately, most likely due to these cohorts being 

composed of samples with no reported or overt disease. Our modified RFC framework 
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also allowed us to distinguish bacterial species that had a higher ranking than the 

random feature, based on the RFC feature importance’s. These species were then used 

for differential abundance analysis, and network construction. While there was difficulty 

distinguishing the non-IBD sample taxonomic profiles from the IBD and healthy sample 

taxonomic profiles utilizing the RFC, we were able to distinguish 55 bacterial species 

that were significantly differentially abundant between the IBD and non-IBD groups. Of 

these 55 species, 42 were differentially abundant with a greater than 2-fold change in 

the external cohorts as well. 

 

The bacterial association networks revealed that while some bacteria were found 

to be elevated in IBD, they were still present in non-zero degree in non-IBD and healthy 

networks. As a matter of fact, the species elevated in IBD displayed higher than 

average degree in all networks except for the Healthy-1 network. Furthermore, when 

examining the most important nodes (top-10 eigenvector centrality) within the IBD 

network, 8 out of the 10 species were also found in the top-10 eigenvector centrality 

(EVC) nodes of the healthy networks but all 10 of the top EVC species were found to 

have relative abundances that are elevated in IBD samples. The presence and 

importance of species that are elevated in IBD appears to be ubiquitous throughout all 

networks implying that while these species have an increased relative abundance in 

IBD, they still play integral roles within the non-IBD and healthy microbiomes, and that it 

is their over-abundance and not mere presence that plays an important role in IBD. 

Interestingly, while bacteria with elevated relative abundances in IBD were present and 
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appeared to play an important role in the non-IBD and healthy networks, they also 

demonstrated many associations unique to the IBD network illustrating that some 

bacterial species can associate with different bacteria due to factors other than just the 

presence of the bacteria. This implies that other factors, such as host genetics, host 

diet, intestinal environment, or medications may lead to the unique associations (Pérez-

Gutiérrez et al. 2013; Ohland and Jobin 2015) . 

 

It was also noted that the majority of species within each network were not 

differentially abundant between IBD and the control groups (IBD: 52.5%, non-IBD: 

52.6%, Healthy-1: 65.6%, Healthy-2: 53.8%). This is an interesting finding 

demonstrating that the majority of gut microbiome network constituents are similar in 

relative abundance between healthy and IBD gut microbiomes. Furthermore, we 

observed that these non-differentially abundant bacteria accounted for greater than 60% 

of the relative abundances in all groups (IBD: 62.6%, non-IBD: 70.5%, Healthy-1: 

74.6%, Healthy-2: 64%). Most bacterial association networks and most of the gut 

microbiome were composed of bacteria that are not significantly differentially abundant 

between the IBD and control gut microbiomes indicating that the differences in the IBD 

gut microbiome are not wide-spread and appear to be limited to a set of bacterial 

species with significantly higher relative abundance. Interestingly, it was also observed 

that the majority of negative associations found in all networks were associated with 

species displaying elevated relative abundance in IBD samples (IBD network: 100%, 

non-IBD: 100%, Healthy-1: no negative edges, Healthy-2: 81.6%). This finding indicates 
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that the bacterial species elevated in IBD may play an important role in maintaining 

stability, possibly by preventing positive feedback loops, but due to their overabundance 

in IBD they may contribute to reducing the diversity of the gut microbiome in IBD 

samples (Coyte, Schluter, and Foster 2015). 

 

When analyzing the protein family relative abundances in each cohort, we were 

not able to identify any statistically significant differences in functional roles between the 

IBD and non-IBD group. However, we were able to find 6 significantly different 

functional roles between the IBD group and each of the external control cohorts. 

Notably, the protein family role most elevated in IBD, relative to external healthy 

controls, was associated with functions related to sporulation and germination. While 

sporulation in the context of GI disease is most often associated with Clostridium 

difficile, many members, especially pathogens, of the Clostridia genus have been found 

to utilize sporulation which is in-line with our data demonstrating that the Clostridium 

genus is the most commonly elevated genus in IBD (Hookman and Barkin 2009; Shen 

et al. 2019) . Our analysis also demonstrated that protein families involved in 

polysaccharide metabolism were elevated in IBD. This may be due to the increase in 

relative abundance of some bacteria that inhabit the intestinal mucosa and degrade 

mucin to derive glycans as an energy source, such as Ruminococcus gnavus and 

Clostridium symbiosum (Bernalier-Donadille 2010; Hall et al. 2017; Desai et al. 2016) . It 

was also found that protein families involved in molybdopterin synthesis were 

significantly elevated in IBD. Molybdopterin is an important co-factor for nitrate 
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reductase, which reduces nitrate to nitrite (Moreno-Vivián et al. 1999) . Previous 

research has identified nitrite as an important molecule in the regulation of mucosal 

blood flow, intestinal motility, and mucus membrane thickness, however it believed that 

an over-abundance of nitrite can have deleterious effects on commensal bacteria and 

has been shown to be associated with IBD as well as with increased bleeding (Lidder 

and Webb 2013; Tiso and Schechter 2015; Park et al. 2013) . This may indicate that an 

increase in nitrate reduction (leading to increased nitric oxide levels) can contribute to 

negative selection against commensal bacteria as well as contribute to increased 

propensity of intestinal bleeding in IBD. Nitric oxide, the main metabolite of nitrite, is 

also believed to be able to increase intestinal motility and lead to diarrhea (Kukuruzovic 

et al. 2003) . 

 

We also observed that protein families involved in the synthesis of quinones 

(menaquinone and ubiquinone) were reduced in IBD. Quinones are believed to be 

important growth factors for gut microbiota, especially for bacteria seen as commensals 

(Fenn et al. 2017) . Humans are also unable to synthesize menaquinone (Vitamin K) and 

thus must ingest it or have it produced by commensal bacteria indicating that a 

reduction in vitamin K synthesis by the gut microbiota may lead to a reduction of vitamin 

K levels in IBD (Walther et al. 2013) . In fact, IBD research has long noted that IBD 

patients present with lower vitamin K levels (Schoon et al. 2001; Krasinski et al. 1985) . 

Due to the important role of vitamin K in blood clotting and calcium binding, this 

reduction on vitamin K has been used to explain common co-occurrences and 
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symptoms of IBD such as osteoporosis and bleeding (Schoon et al. 2001; Agnello et al. 

2014) . Quinone synthesis appears to play an important role in maintaining host health 

and its reduction may contribute to the increased intestinal and rectal bleeding common 

in IBD. 

 

Finally, we were able to identify specific bacterial species that are elevated in IBD 

and play important roles in fomenting inflammation, degrading mucin, and antibiotic 

resistance. R. gnavus and C. symbiosum are mucin-degrading bacteria that are found in 

healthy gut microbiomes but are shown to be elevated in IBD gut microbiomes (Crost et 

al. 2016) . These bacteria may play an important role in preventing the over-secretion of 

mucus in healthy gut microbiomes, but their over-abundance may cause the mucus 

layers in the intestine to become too thin. We also identified Flavonifractor plautii as a 

species that was elevated in IBD. F. plautii has been found to degrade flavinoids, an 

important anti-inflammatory mediator in humans and mice (Musumeci et al. 2020) . The 

over-abundance of F. plautii can lead to low levels of flavonoids which has been shown 

to lead to increased inflammation, particularly in the gut microbiome (Gupta et al. 2019) . 

R. gnavus, C. symbiosum, and F. plautii are key examples of bacterial species that are 

present, and potentially important, in healthy microbiomes but appear to exhibit 

deleterious effects on host health when they become over-abundant. 
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While we attempted to mitigate as many confounders under our control as 

possible, there are still limitations to be cognizant of within our study. One very 

important limitation stems from the relatively low number of subjects present in the 

datasets we utilized. We previously demonstrated that as the sample-to-taxa ratio 

increases, our network inference framework generates better predictions (Loftus, 

Hassouneh, and Yooseph 2021) , however, due to the low number of unique individuals 

it was necessary to construct the networks using the replicates as individual samples. 

While we have demonstrated that the intrapersonal variation is lower than the 

interpersonal variation, we do not believe that this has a negative effect on the accuracy 

of the networks inferred. Due to the assumption that the samples in a group are all 

generated using the same underlying covariance structure, it is reasonable to include 

subject sample replicates for network inference. Another potential limitation was a bias 

towards samples from younger subjects in the IBDMDB cohort. Approximately half of 

(46.6%) IBDMDB samples were derived from subjects below the age of 18 (Figure 35a) 

and the youngest subject was 6 years of age. In contrast, no subjects in the Healthy-2 

cohort were below the age of 18 (Figure 36). While we did not have access to the 

metadata (other than sex) of the Healthy-1 cohort, it was previously published that all 

subjects fell between the ages of 18-40 (Methé et al. 2012) . The feature ‘age’ also 

displayed the greatest feature importance during classification according to our RFC 

framework, indicating that there was a non-trivial difference in the ages between the 

diagnosis groups. It has been previously observed that the taxonomic profiles of 

individuals begin to resemble adult configurations by 3 years of age, indicating that the 

bias is unlikely to contribute to major differences in the taxonomic profiles and may just 
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be indicative of the younger age of subjects in the IBDMDB study (Yatsunenko et al. 

2012) . However, the same study did note that while interpersonal variation greatly 

decreased after 3 years of age, it was still significantly higher in subjects between the 

ages of 3-17, relative to adults (18+ years of age), which may explain some of the 

difference in interpersonal variability observed between IBD and non-IBD samples, 

relative to the Healthy-1 and Healthy-2 samples. Finally, it was noted that there was a 

greater proportion of female subjects in the Healthy-2 cohort relative to the Healthy-1 

and IBDMDB cohorts (Figure 37). This does not appear to impact the classification 

results however, as the RFC did not find the features ‘sex’ to be more important than 

random noise. 

 

By utilizing two external control cohorts, we were able to identify and corroborate 

34 bacterial species whose relative abundance is significantly elevated in IBD. These 

species appear to play important roles in all bacterial association networks (IBD, non-

IBD, and external healthy controls) implying that while an elevation of their relative 

abundance is associated with IBD, they are also important to the function of healthy gut 

microbiomes. Furthermore, we identified important differences in functional capacities 

between IBD and the healthy controls that may contribute to the onset or exacerbation 

of IBD-related symptoms such as diarrhea, intestinal bleeding, mucin degradation, and 

intestinal inflammation. Finally, we were able to corroborate many of the bacterial 

species we identified as elevated in IBD using previously published research and 

identified 17 novel bacterial species that may play an important role in IBD. To the best 
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of our knowledge, we are the first to corroborate our analysis of the IBD gut microbiome 

by using external cohorts from the same geographic region (US) allowing us to 

generalize our findings to the population rather than only our study groups. 

Furthermore, we were able to illustrate important potential mechanistic links between 

the bacterial species elevated in the IBD gut microbiome and IBD-related symptoms. 

Finally, we identified differences in the genomic functional capacity of the IBD 

microbiome that bridges previous findings in IBD and IBD-related symptoms with the gut 

microbiome. 
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Figures 

 

Figure 23: Alpha-diversity of sample groups. 
Alpha diversity for each sample group by was calculated using Shannon entropy. The alpha-
diversity for CD, UC, and non-IBD were not significantly different from each other but all three 
were significantly lower than the healthy cohorts. *** indicates a p-value < 0.0005 compared to 
CD, UC, and non-IBD, using a Mann-Whitney U test. 
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Figure 24: Effect of read depth on Shannon diversity. 
To illustrate that the alpha-diversity value differences were not due to read depth, 
the read depth was plotted against the alpha-diversity (Shannon entropy). Read depth did not 
appear to have an effect on alpha-diversity and notable the Healthy-2 cohort had lower read 
depth but displayed greater alpha-diversity. 
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Figure 25: Intrapersonal and interpersonal variation. 
Bray-Curtis dissimilarities between replicate samples from the same subject were used to 
quantify intrapersonal variation while the Bray-Curtis dissimilarities between samples from 
different subjects were used to quantify interpersonal variation. a. It was observed that replicate 
samples from the same subject were significantly more similar to each other than to samples 
from other subjects. *** indicates a p-value < 0.0005. b. IBD samples demonstrated elevated 
intrapersonal variation relative to non-IBD and Healthy-2 samples and non-IBD samples 
demonstrate elevated intrapersonal variation relative to Healthy-2 samples. IBD and non-IBD 
samples both demonstrated elevated interpersonal variation relative to the Healthy-1 and 
Healthy-2 samples. *** indicates p-value < 0.0005, relative to Healthy-1. +++ indicates p-value 
< 0.0005, relative to Healthy-2. ^^^ indicates a p-value < 0.0005, relative to non-IBD. 
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Figure 26: Classification accuracy and misclassification before combining CD and UC 
into one IBD group. 
An RFC was trained on the taxonomic profiling data and metadata (age, sex, unique 
subject ID) for all groups without combining the CD and UC groups into one group. a. The RFC 
demonstrated poor classification accuracy when attempting to distinguish all groups (CD, UC, 
non-IBD, and Healthy), especially when attempting to classify the CD, UC, and non-IBD groups. 
b. The largest amount of misclassifications occurred due to the RFC classifying CD samples as 
UC and vice versa implying that the taxonomic profiles of both groups were very similar. 
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Figure 27: RFC classification accuracy by diagnosis label after grouping CD and UC as IBD. 
An RFC was trained on the taxonomic profiling data and metadata (age, sex, unique 
subject ID) for all groups after combining the CD and UC groups into one group, known as the 
IBD group. a. The RFC demonstrated better classification accuracy (weighted average of 0.87) 
compared to previous RFC without combining CD and UC samples under the IBD umbrella 
(weighted average of 0.79), however, non-IBD samples were still difficult to classify. b. The non-
IBD samples were still consistently misclassified and were split (with a bias towards being 
classified as IBD) between being classified as IBD and Healthy samples. 
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Figure 28: Differential abundance of bacterial species when comparing IBD to non-IBD and 
healthy groups. 
Relative abundance values were CLR-transformed and differential abundance was calculated for 
IBD compared to non-IBD, IBD compared to Healthy-1, and IBD compared to Healthy-2. The 
species that were significantly differentially abundant in IBD relative to every single other group 
were considered to be significantly differentially abundant resulting in 42 significantly 
differentially abundant bacterial species. Of these 42 species, 34 were found to be significantly 
more abundant in IBD relative to every other group and 8 bacterial species were found to be 
significantly less abundant in IBD, relative to every other group. The transformed relative 
abundances were then averaged and displayed under one label (non-IBD/Healthy) for ease of 
visualization. * indicates a q-value < 0.05. ** indicates a q-value < 0.01. *** indicates a q-
value < 0.001. 
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Figure 29: Genera counts of bacteria elevated in IBD. 
The genera of the bacteria that were elevated in IBD, according to the differential 
abundance analysis, were counted. Clostridium and Blautia were the most commonly 
elevated genera in IBD samples. Lachnoclostridium, Ruminococcus, Dorea, and Eubacterium 
were the only other genera to have more than one member elevated in IBD. 

  



111 
 

 
Figure 30: Gut microbiome bacterial association networks. 
The GGM framework was used to generate bacterial association networks from CLR-
transformed relative abundances. The bacterial species (nodes) were colored based on the 
differential abundance analysis and the node sizes were based degree of each node within the 
network. Bacterial species that were elevated in IBD were still present, and in high degree, in the 
non-IBD and healthy networks. It was also noted that the most common constituents of the 
bacterial association networks were bacteria that were not significantly differentially abundant 
in IBD, relative to the healthy and non-IBD groups. Finally, the IBD networks demonstrated 
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more negative edges when compared to the non-IBD and healthy groups. a: IBD network, b: 
non-IBD network, c: Healthy-1 network, d: Healthy-2 network. 
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Figure 31: Average degree of bacterial species that are elevated in IBD within each 
network. 
The average degree of the bacterial species that were elevated in IBD was calculated for each 
group and compared to the average degree of species not elevated in IBD (elevated in Healthy or 
not significantly different). On average, the species elevated in IBD displayed a higher number 
of connections (degree) within the bacterial association networks of all diagnosis groups and 
was significantly higher in 3 out of the 4 networks.  
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Figure 32: Network node compositions. 
The Majority of nodes for each network are composed of species that are not 
differentially abundant between IBD and the other diagnosis groups. 
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Figure 33: Unique associations within the IBD bacterial association network. 
When comparing the structure of the IBD bacterial association network to all other 
networks, 56 associations were found that were unique to IBD networks only. The majority 
(85.7%) of these associations involved bacteria elevated in IBD. Even though the bacteria 
elevated in IBD are also present in the control networks, and in high degree, they do appear to 
demonstrate different associations in the IBD network. 
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Figure 34: Differences in IBD gut microbiome functional capacity. 
Genomic functional capacity was determined by using the TIGRFAM protein family database. 
The counts for each TIGRFAM within a bacterial species were weighted by the relative 
abundance of the bacterial species within each group. The CLR-transformed relative abundance 
of the TIGRFAM’s within IBD were then compared to the non-IBD, Healthy-1 cohort, and 
Healthy-2 cohort individually. The differentially abundant TIGRFAM’s were then summed based 
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on their roles, according to the TIGRFAM database. There were no differences between the IBD 
and non-IBD gut microbiome functional capacities. There were 6 significantly differentially 
abundant protein family roles when comparing IBD to the Healthy-1 cohort that were also found 
in the Healthy-2 cohort. These differences are implicated in important processes that may 
contribute to IBD-related symptoms such as diarrhea, intestinal bleeding, and increased 
intestinal permeability. The relative abundances of the Healthy-1 and Healthy-2 cohort 
TIGRFAM roles were averaged for ease of visualization. * indicates a p-value < 0.05. ** 
indicates a p-value < 0.01. *** indicates a p-value < 0.001. 
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Figure 35: Age groups within the IBDMDB cohort and non-IBD samples. 
The counts of age ranges for subjects from the IBDMDB cohort were plotted. a. 
Almost half (46.6%) of samples in the IBDMDB cohort were from subjects below the age 18. b. 
The majority of non-IBD samples were derived from subjects that fell below the age of 45, the 
recommended age for colorectal cancer screening. Due to the description of subject recruitment 
from the original publication (Lloyd-Price et. al. 2019), it is presumed that the majority of the 
control group were comprised of samples that presented for GI distress or suspected IBD. 
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Figure 36: Age ranges of Healthy-2 samples. 
The age range for subjects of the Healthy-2 cohort were plotted. The vast majority 
of subjects are between 18 and 44 and no samples are below 18 years of age. 
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Figure 37: Sex counts by cohort. 
The counts of samples from a subject of a given sex were plotted for each cohort. 
There appears to be a greater proportion of females in the Healthy-2 cohort relative, but the 
IBDMDB and Healthy-1 cohorts appear to have similar proportions of each sex. 
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Tables 

Table 2: Top-10 eigenvector centralities (EVC) per sample group. 
Eigenvector centrality (EVC) of each node (bacterial species) in the IBD network was 
calculated. The ten nodes with the highest EVC in IBD were also found in the top-ten EVC nodes 
of the non-IBD, Healthy-1, or Healthy-2 networks except for Fusicatenibacter saccharivoran 
and Blautia hansenii. 
 

Species EVC Diagnosis Group 
Blautia_sp_N6H115 0.342211 IBD 

Hungatella_hathewayi 0.313393 IBD 
Blautia_obeum 0.304794 IBD 

Clostridium_citroniae 0.289837 IBD 
Clostridium_bolteae 0.283886 IBD 

Agathobaculum_desmolans 0.274133 IBD 
Fusicatenibacter_saccharivorans 0.266944 IBD 

Blautia_hydrogenotrophica 0.258565 IBD 
Clostridium_symbiosum 0.255309 IBD 

Blautia_hansenii 0.202126 IBD 
Blautia_sp_N6H115 0.357233 non-IBD 

Blautia_obeum 0.297542 non-IBD 
Clostridium_symbiosum 0.294405 non-IBD 
Hungatella_hathewayi 0.281785 non-IBD 

Blautia_hydrogenotrophica 0.265395 non-IBD 
Clostridium_bolteae 0.252532 non-IBD 

Ruminococcus_gnavus 0.25097 non-IBD 
Clostridium_citroniae 0.247998 non-IBD 
Anaerostipes_hadrus 0.20174 non-IBD 

Agathobaculum_desmolans 0.201307 non-IBD 
Bacteroides_fluxus 0.368378 Healthy-1 

Bacteroides_caecimuris 0.33475 Healthy-1 
Bacteroides_plebeius 0.322128 Healthy-1 

Bacteroides_coprocola 0.255504 Healthy-1 
Bacteroides_coprophilus 0.251902 Healthy-1 

Bacteroides_ovatus 0.250976 Healthy-1 
Butyricimonas_sp_H184 0.244785 Healthy-1 

Bacteroides_fragilis 0.23319 Healthy-1 
Bacteroides_thetaiotaomicron 0.218279 Healthy-1 
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Species EVC Diagnosis Group 
Bacteroides_vulgatus 0.209061 Healthy-1 

Fournierella_massiliensis 0.382647 Healthy-2 
Provencibacterium_massiliense 0.331834 Healthy-2 

Subdoligranulum_variabile 0.327014 Healthy-2 
Ruthenibacterium_lactatiformans 0.281926 Healthy-2 

Faecalicatena_contorta 0.247965 Healthy-2 
Clostridium_bolteae 0.245986 Healthy-2 

Merdibacter_massiliensis 0.234116 Healthy-2 
Clostridium_asparagiforme 0.211324 Healthy-2 

Butyricicoccus_pullicaecorum 0.205136 Healthy-2 
Blautia_hydrogenotrophica 0.166324 Healthy-2 
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CHAPTER 4: CONCLUSION 
 

To understand the effects caused by changes in the gut microbiome, analysis 

cannot be restricted to an examination of the presence, absence, or relative 

abundances of bacteria within the community. It is also important to examine the 

bacterial associations that compose the microbiome as well as the functional 

implications of the changes in the gut microbiome. To this end, we used WGS 

sequencing data to enable us to accurately identify changes in species-level taxonomic 

profiles and functional capacity of the microbiomes. We also used log-ratio 

transformations to account for the compositional nature of the sequencing data and 

developed a Graphical Gaussian Model to accurately infer bacterial associations. 

Finally, we included multiple independent cohorts to ensure that our findings could be 

replicated in independent cohorts thereby corroborating our findings. 

Firstly, we studied four independent healthy cohorts from different geographic 

regions to examine the variation in the healthy gut microbiome and identify patterns 

within the human gut microbiome that may be associated with health. While we found 

significant variation in the differential abundances of the bacteria in the gut microbiome, 

approximately 95% of bacterial species were present in all cohorts, indicating a 

significant overlap in the presence of bacterial species across healthy subjects. 

Bacterial association networks of the healthy gut microbiomes also exhibited many 

similarities in their properties and demonstrated conserved structures. Specifically, 20 

bacterial species were found to have the same 14 associations amongst each other 

across all healthy cohorts. All bacterial association networks also exhibited a preference 
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for species with similar taxonomy or function to associate positively with one another. 

Finally, analysis of functional capacity of all healthy cohorts demonstrated little variation, 

indicating that healthy populations have similar functional capabilities regardless of the 

differences in bacterial differential abundances. We demonstrate that gut microbiomes 

across healthy human populations from different geographical regions have similar 

species present, similar association network organization and properties, and similar 

functional capacities. These findings demonstrate that while possible differences within 

cohorts exist due to diet, genetics, and other geographically distinct influences, there is 

still a large amount of similarity within healthy gut microbiomes. 

Next, we used WGS sequencing of IBD patients to identify important differences 

between American IBD gut microbiomes and American healthy subjects. To corroborate 

our findings and increase their generalizability, we utilized two independent healthy 

cohorts as well as the internal control group. We identified 34 bacterial species that 

were significantly elevated in IBD. While these species were elevated in IBD, they still 

appeared to play important roles, as measured by the number of associations they were 

involved in, in the bacterial association networks of the healthy gut microbiome. 

Additionally, analysis of functional capacity of the IBD gut microbiome revealed lower 

capacity for menaquinone synthesis, an essential vitamin (vitamin K) not produced by 

humans, which is involved the regulation of osteoporosis and rectal bleeding. The 

functional capacity analysis also revealed an increased capacity for nitrate reduction 

which can contribute to intestinal bleeding, as well as increased intestinal motility 

leading to diarrhea. It was also revealed that IBD gut microbiomes displayed elevated 

capacity for polysaccharide metabolism, possibly due to the increased relative 
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abundance of known mucin-degrading bacteria such as Rumincoccus gnavus, 

Rumincoccus. torques, and Clostridium symbiosum. These findings illustrate a link 

between the gut microbiome and IBD-related symptoms as well as provide potential 

targets for symptom management in IBD patients. 

By using WGS sequencing in conjunction with compositionally appropriate 

analysis and network inference, we identified important species-level patterns in the 

relative abundances, community interactions, and functional capacity of the human gut 

microbiome in healthy subjects and IBD patients. Furthermore, the identified patterns 

were compared in the context of health and disease and some patterns were found to 

be associated with IBD-related symptoms such as rectal bleeding, diarrhea, 

inflammation, and mucin degradation. Finally, we corroborated our findings by using 

multiple healthy cohorts to ensure that our results are robust and are not limited to 

cohort-specific signals. Our findings illustrated that the gut microbiome is linked to IBD-

related symptoms and identified specific pathways and bacterial species as potential 

targets in the management of IBD symptoms. 
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APPENDIX A: DIFFERENTIALLY ABUNDANDANT BACTERIAL 
SPECIES 
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Species Differential 
Abundance 

Search 
Results Function Keywords Citations 

Flavonifractor 
plautii 

Elevated in 
IBD 

Associated 
with IBD 

Degrades 
beneficial 
flavinoids 

Inflammatory (Gupta et al. 2019; 
Musumeci et al. 2020) 

Faecalicatena 
contorta 

Elevated in 
IBD Novel Novel Novel Novel 

Blautia 
hydrogenotrophica 

Elevated in 
IBD 

Associated 
with IBD 

Multi-drug 
resistance 

Antibiotic 
resistance Novel 

Clostridium bolteae Elevated in 
IBD 

Associated 
with IBD     (Rodriguez et al. 2020) 

Clostridium 
citroniae 

Elevated in 
IBD Novel Novel Novel Novel 

Lachnoclostridium 
sp_YL32 

Elevated in 
IBD 

Associated 
with IBD     (Liang et al. 2019) 

Oscillibacter 
sp_PEA192 

Elevated in 
IBD Novel Novel Novel Novel 

Clostridium 
symbiosum 

Elevated in 
IBD 

Associated 
with CRC 
and rectal 
bleeding 

Transfers 
vanB genes 

to 
commensals 

Antibiotic 
resistance, 

Mucin-related 

(Xie et al. 2017; Launay 
et al. 2006) 

Blautia obeum Elevated in 
IBD 

Elevated in 
Healthy     (Theriot and Petri 2020) 

Ruminococcus 
gnavus 

Elevated in 
IBD 

Associated 
with IBD 

Foments 
TNF-a from 

dendritic 
cells 

Mucin-related, 
Inflammatory 

(Hall et al. 2017; 
Beaud, Tailliez, and 

Aba-Mondoloni 2005; 
Henke et al. 2019; 

Chua et al. 2018; Imam 
et al. 2018; Hansen, 
Skov, and Justesen 

2013; Crost et al. 2016) 

Blautia hansenii Elevated in 
IBD Novel Novel Novel Novel 

Blautia sp_N6H115 Elevated in 
IBD Novel Novel Novel Novel 

Merdimonas faecis Elevated in 
IBD 

Associated 
with 

obesity 
    (Schoch et al. 2012) 

Dorea 
formicigenerans 

Elevated in 
IBD 

Associated 
with IBD     (Nomura et al. 2005) 

Clostridium 
asparagiforme 

Elevated in 
IBD 

Elevated in 
Healthy   

  (Lett, Costello, and 
Roberts-Thomson 

2020) 
Intestinibacter 

bartlettii 
Elevated in 

IBD Novel Novel Novel Novel 

Ruminococcus 
torques 

Elevated in 
IBD 

Associated 
with CD 

Associated 
with upper 

GI 
involvement 

  (Kwak et al. 2020) 

Hungatella 
hathewayi 

Elevated in 
IBD 

Associated 
with CD     (Rodriguez et al. 2020) 

Butyricicoccus 
pullicaecorum 

Elevated in 
IBD 

Elevated in 
Healthy     (Eeckhaut et al. 2013) 

Agathobaculum 
desmolans 

Elevated in 
IBD Novel Novel Novel Novel 

Dorea longicatena Elevated in 
IBD Novel Novel Novel Novel 
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Species Differential 
Abundance 

Search 
Results Function Keywords Citations 

Fournierella 
massiliensis 

Elevated in 
IBD Novel Novel Novel Novel 

Eubacterium hallii Elevated in 
IBD Novel Novel Novel Novel 

Fusicatenibacter 
saccharivorans 

Elevated in 
IBD Novel Novel Novel Novel 

Erysipelotrichacea
e bacterium 

Elevated in 
IBD Novel Novel Novel Novel 

Holdemania 
massiliensis 

Elevated in 
IBD Novel Novel Novel Novel 

Lachnoclostridium 
phocaeense 

Elevated in 
IBD Novel Novel Novel Novel 

Negativibacillus 
massiliensis 

Elevated in 
IBD Novel Novel Novel Novel 

Clostridium 
scindens 

Elevated in 
IBD Novel 

Modulates 
steroid 

signaling 
Steroid signaling (Morris, Winter, and 

Cato 1985) 

Anaerostipes 
hadrus 

Elevated in 
IBD 

Associated 
with IBD 

Exacerbates 
inflammation 
in mice with 

colitis 

Inflammatory (Zhang et al. 2016) 

Subdoligranulum 
variabile 

Elevated in 
IBD 

Associated 
with IBS 

Cytokine 
release in 

PI-IBS 
Inflammatory (Sundin et al. 2015) 

Faecalibacterium 
prausnitzii 

Elevated in 
IBD 

Associated 
with 

Healthy 

Anti-
inflammatory   

(Zhao et al. 2020; Zhou 
et al. 2018; Breyner et 

al. 2017; Burkqvist et al. 
2019) 

Mordavella 
sp_MarseilleP3756 

Elevated in 
IBD Novel Novel Novel Novel 
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