
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2022

Graph Neural Networks for Improved Interpretability and Graph Neural Networks for Improved Interpretability and

Efficiency Efficiency

Patrick Pho
University of Central Florida

 Part of the Categorical Data Analysis Commons, and the Data Science Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Pho, Patrick, "Graph Neural Networks for Improved Interpretability and Efficiency" (2022). Electronic
Theses and Dissertations, 2020-. 1068.
https://stars.library.ucf.edu/etd2020/1068

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/817?utm_source=stars.library.ucf.edu%2Fetd2020%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=stars.library.ucf.edu%2Fetd2020%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1068?utm_source=stars.library.ucf.edu%2Fetd2020%2F1068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

GRAPH NEURAL NETWORKS FOR IMPROVED INTERPRETABILITY AND EFFICIENCY

by

PATRICK PHO
B.S University of Economics Ho Chi Minh City, 2010

M.S University of Central Florida, 2016

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Statistics & Data Science
in the College of Sciences

at the University of Central Florida
Orlando, Florida

Spring Term
2022

Major Professor: Alexander V. Mantzaris

© 2022 Patrick Pho

ii

ABSTRACT

Attributed graph is a powerful tool to model real-life systems which exist in many domains such

as social science, biology, e-commerce, etc. The behaviors of those systems are mostly defined by

or dependent on their corresponding network structures. Graph analysis has become an important

line of research due to the rapid integration of such systems into every aspect of human life and the

profound impact they have on human behaviors. Graph structured data contains a rich amount of

information from the network connectivity and the supplementary input features of nodes. Machine

learning algorithms or traditional network science tools have limitation in their capability to make

use of both network topology and node features. Graph Neural Networks (GNNs) provide an

efficient framework combining both sources of information to produce accurate prediction for a

wide range of tasks including node classification, link prediction, etc. The exponential growth of

graph datasets drives the development of complex GNN models causing concerns about processing

time and interpretability of the result. Another issue arises from the cost and limitation of collecting

a large amount of annotated data for training deep learning GNN models. Apart from sampling

issue, the existence of anomaly entities in the data might degrade the quality of the fitted models.

In this dissertation, we propose novel techniques and strategies to overcome the above challenges.

First, we present a flexible regularization scheme applied to the Simple Graph Convolution (SGC).

The proposed framework inherits fast and efficient properties of SGC while rendering a sparse

set of fitted parameter vectors, facilitating the identification of important input features. Next, we

examine efficient procedures for collecting training samples and develop indicative measures as

well as quantitative guidelines to assist practitioners in choosing the optimal sampling strategy to

obtain data. We then improve upon an existing GNN model for the anomaly detection task. Our

proposed framework achieves better accuracy and reliability. Lastly, we experiment with adapting

the flexible regularization mechanism to link prediction task.

iii

To my parents and my grandmother who always support, encourage, and believe in me.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my PhD adviser, Dr. Alexander

V. Mantzaris. Without his support, both emotional and technical guidance, this dissertation would

not be possible.

I am deeply grateful to my committee members, Dr. Edgard Maboudou, Dr. Larry Tang, Dr.

Gita Reese Sukthankar, and my mentor Dr. Hsin-Hsiung Huang, for their valuable feedback and

insights on my research and professional development. My gratitude extends to the department of

Statistics and Data Science for funding opportunity to undertake my master and PhD studies.

Special thanks should be given to my friend and colleague Michael Hopwood for many thoughtful

discussions about interesting research ideas and for his significant contribution in our publications

constituting part of this dissertation. I would like to thank Jianbin Zhu, Yuan Du, and Charles

Harrison for sharing their expertise and for collaborating with me on many interesting projects

that greatly enhance my technical skills. A sincere thank you to Hayden Hampton and Michael

Hopwood for their prompt and diligent proofreading of this dissertation.

I would like to extend my sincere thanks to my friends, lab mates, and colleagues - Md Jibanul

Haque Jiban, Haosha Li, and Qing He for the cherished time spent together during my study at

UCF. My appreciation also goes to my parents, my grandmother, and my aunts for their encour-

agement and support throughout my studies.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xxi

CHAPTER 1: INTRODUCTION . 1

Contribution . 2

CHAPTER 2: REGULARIZED SIMPLE GRAPH CONVOLUTION (SGC) FOR IMPROVED

INTERPRETABILITY OF LARGE DATASETS 5

Introduction . 5

Related work . 8

Data . 10

Circular data . 10

Linearly inseparable data . 11

Cora dataset . 13

Methodology . 13

Optimization for regularized SGC . 17

Training regularized SGC . 23

vi

Tuning hyperparameters . 24

Simulation Study . 34

Simulation Setting . 34

Simulation results . 37

Discussion . 38

Conclusion . 39

CHAPTER 3: EXPLORING THE VALUE OF NODES WITH MULTICOMMUNITY MEM-

BERSHIP FOR CLASSIFICATION WITH GRAPH CONVOLUTIONAL NEU-

RAL NETWORKS . 40

Introduction . 40

Data . 43

Methodology . 44

Sampling methods . 44

Degree . 44

PageRank . 45

VoteRank . 45

Simple Graph Convolution (SGC) . 45

Evaluation of Network Topology . 47

vii

Results . 48

Discussion . 59

CHAPTER 4: EXPLORING A LINK BETWEEN NETWORK TOPOLOGY AND AC-

TIVE LEARNING . 61

Introduction . 61

Data . 62

Real datasets . 63

Synthetic dataset . 63

Methodology . 64

Sampling methods . 64

Simple Graph Convolution (SGC) . 66

Evaluation of Network Topology . 68

Results . 69

Conclusions . 73

CHAPTER 5: ONE-CLASS GRAPH NEURAL NETWORKS FOR DETECTION OF ANOMA-

LOUS NODES IN ATTRIBUTED GRAPHS (rh-OCGNN) 75

Introduction . 75

viii

Methodology . 80

Anomaly detection and hypersphere learning . 80

Hypersphere learning on attributed graph data . 81

Optimization for OCGNN . 84

Training OCGNN . 91

rh-OCGNN . 92

Optimization for rh-OCGNN . 95

Training rh-OCGNN . 96

Tuning the radius . 97

Data . 98

Experiments . 99

Results . 101

Conclusion . 110

CHAPTER 6: LINK PREDICTION WITH SIMPLE GRAPH CONVOLUTION AND REG-

ULARIZED SIMPLE GRAPH CONVOLUTION 113

Introduction . 113

Methodology . 115

ix

SGC . 115

Regularized SGC . 116

Link prediction . 117

Datasets . 119

Experiment . 120

Results . 120

Conclusion . 124

CHAPTER 7: CONCLUSION . 125

LIST OF REFERENCES . 127

x

LIST OF FIGURES

Figure 2.1: The application of the proposed methodology to the circular data. Data points

are produced about the origin at a fixed radius so that 100 points are equally

spaced. The data points have class labels allocated so that there are 50 in

each of 2 classes. This is shown in the plot with a line which determines the

separation. 11

Figure 2.2: 15 data points of 2 classes are randomly generated and form 2 distinct clus-

ters residing on the opposite sides of the axis. Sub-figure a) presents the scat-

ter plots of these data points. Sub-figure b) shows the network connections

among those data points. In terms of a distance metric between the points,

or from using a linear projection, erroneous label assignments can arise from

using only the Sub-figure a) data but the incorporation of the network asso-

ciations shown in Sub-figure b) allows this to be bypassed. The results of the

application to the proposed methodology is shown in the Methodology section. 12

Figure 2.3: The overall framework of regularized SGC 19

xi

Figure 2.4: The above plots show the results of applying the SGC method with and

without regularization upon the synthetic circular data. In Subfigure a) the

dashed line shows the separation line where each side defines the point labels

and the solid lines shows the SGC projections learned in Θ, and perfect ac-

curacy is achieved. Sub-figure b) presents multiple subplots of separate inde-

pendent runs of the proposed regularized SGC methodology where there are

different random initializations using gradient descent. Various comparable

fittings are found and it can be seen how all the aspects of the regularization

upon ΘR are respected in terms of the magnitude, relative directions between

class vectors and the number of components (features) used. 27

Figure 2.5: Applying logistic regression to a set of datapoints where there features are

not linearly separable. This is the SGC methodology where k = 0 and the

network information is not incorporated. 28

Figure 2.6: The results of applying the SGC method on the linearly inseparable data is

presented here. Subfigure a) plots the data points and the 2 learned parameter

vectors by SGC methodology under different initializations. It can be seen

how although the displayed classification vectors within Θ with the network

information provide the ability for a lossless prediction. Similarly, for Sub-

figure b) it can be seen how a new set of axes for the projection S2X (network

and features) the linear separation becomes visible. 30

xii

Figure 2.7: The application of the regularized SGC to the dataset where linear projections

are incapable of class separation. Subfigure a) shows the parameter vectors

produced by introducing constraints into SGC method on the feature space

with original data points and how the classification can then produce perfect

accuracy. It can be seen the proposed SGC reduces the effective number of

features used in the columns of the matrix ΘR. Subfigure b) shows the plots

for the same set of weight vectors displayed on the projection axes of S2X

where each datapoint (node) accumulates feature information from neighbors

2-hops away (k = 2). 31

Figure 2.8: The results of applying the regularized SGC with an orthogonal constraint

upon the projection achieved by using a change in regularization term L3. In

Subfigure a) the vector projections within the methodology can be fit so that

there is no loss and the orthogonality constraint is satisfied. In Subfigure b)

the transformation upon the data with the network information is presented

and how within this space the linear projections can separate the classes with

the orthogonal vectors. 32

xiii

Figure 2.9: The plots showing the results of applying the proposed method of SGC with

and without regularization on the features to the dataset of Cora. Subfig-

ure a) shows the heatmap of the class columns of matrix Θ which holds the

parameter values for the feature projections of the data X after the inference

with SGC without the regularization. Subfigure b) analogously shows the pa-

rameter values but with the inference procedure applying the constraints for

the regularization as proposed which produces the shown values of ΘR. On

the bottom right of each plot there are 7 cells with padded values to produce

the heatmaps. The columns of the parameter vector correspond to different

classes, each shown separately, and the weights applied to each feature be-

longing to the nodes. It can be seen that the regularization reduces the amount

of weighting over the features highlighting key variables. 34

Figure 2.10:The distribution of the parameter values inferred for the Cora dataset with

the application of the SGC and the regularized SGC. In Subfigure a) the SGC

is applied and the histograms of the parameter values for each class in Θ is

shown in the plots. Subfigure b) shows the equivalent plots but using the

regularized SGC that penalizes the number of features. The majority of the

features are around value zero. 35

Figure 2.11:Visualizations various network topology from simulated attributed graphs,

each with 3 communities (colored). Number of preferential attachment (num_pref)

controls the overall amount of connectivity while the inter-graph connectivity

probability (inter_p) governs the amount of linkings between subgraphs. . . . 37

Figure 2.12:Performance of the SGC and regularized SGC under various network settings. 38

xiv

Figure 3.1: High iCVd networks (Cora, Citeseer) have higher accuracies when sampling

nodes from the highest score to lowest score (i.e. ’descending’ methods),

showing the effectiveness of the node ranking algorithms on a node classifi-

cation task. 50

Figure 3.2: The left figure here presents scatter plots of node degree centrality, Di against

node homogeneous connectivity Ωi on the training data. The upper half of

nodes according to their centrality are colored in yellow while the lower half

is presented in purple. The histogram on the right visualizes the distribution

of homogeneous connections. The skewness for each subset’s distribution is

annotated above the right graph. 52

Figure 3.3: Low iCVd networks (Pubmed) have lower accuracy when sampling nodes

from the lowest to highest score (i.e. ’ascending’ methods), showing the

ranking algorithms are inversely beneficial to the node classification task. . . 53

Figure 3.4: The left figure here presents scatter plots of node degree centrality, Di against

node homogeneous connectivity Ωi on the training data. The upper half of

nodes according to their centrality are colored in yellow while the lower half

is presented in purple. The histogram on the right visualizes the distribu-

tion of homogeneous connections. The skew for each subset’s distribution is

annotated above the right graph. 54

Figure 3.5: The performance of this pipeline on the Deezer_Europe social media dataset

(plot b) is unusual in that almost all sampling methods are uniformly better

than random selection. 55

xv

Figure 3.6: The left figure here presents scatter plots of node degree centrality, Di against

node homogeneous connectivity Ωi on the training data. The upper half of

nodes according to their centrality are colored in yellow while the lower half

is presented in purple. The histogram on the right visualizes the distribu-

tion of homogeneous connections. The skew for each subset’s distribution is

annotated above the right graph. 56

Figure 3.7: Logistic probability (blue line) shows an increasing likelihood of a descend-

ing sampling procedure as the coefficient of variance of the degree (iCVd)

increases. Results show a complete separation is defined by iCVd 59

Figure 4.1: Network visualizations for the 35 generated simulations, each with 3 com-

munities (colored). Traversing along the y-axis shows how these networks

topologies change when varying the distance within a communities. Travers-

ing along the x-axis shows how the network topologies changes when varying

distance between communities. 65

Figure 4.2: Degree distributions for the 35 generated simulations show that all settings

create a relatively scale-free network. Traversing along the y-axis shows how

these networks topologies change when varying the distance within a com-

munities. Traversing along the x-axis shows how the network topologies

changes when varying distance between communities. 66

Figure 4.3: Simulations report a density of preferred (higher accuracy) sampling direc-

tion as a function of network topology (y-axis) and feature similarity (x-axis)

shows that the sampling direction is dependent on the network topology. . . . 71

xvi

Figure 4.4: High iCVd networks (Cora, Citeseer) have higher accuracies when sampling

nodes from the highest score to lowest score (i.e. ’descending’ methods),

showing the effectiveness of the node ranking algorithms on a node classifi-

cation task. 72

Figure 4.5: Low iCVd networks (Pubmed and amazon-photo) graphs have lower accura-

cies when sampling nodes from the lowest to highest score (i.e. ’ascending’

methods), showing the ranking algorithms are inversely beneficial to the node

classification task. 73

Figure 5.1: The overall framework of GAD involving a 2-layer GNN. The GNN maps

the original feature space x ∈ RD to the node embedding h(2) ∈ RQ 87

Figure 5.2: The overall framework of our proposed rh-OCGNN for graph anomaly de-

tection (GAD) on attributed graph data. Given an input attributed graph, rh-

OCGNN guides GNNs to explore embedding space mapping normal nodes

closely within a hypersphere of user-specified radius r. 94

Figure 5.3: Average test accuracy, precision, and recall rates (over 10 independent initial-

ization of OCGNN models on benchmark datasets. Albeit achieving promiss-

ing AUCs (reported in Table 5.2, closer inspection reveals subpar perfor-

mance of OCGNN models indicating sub-optimal decision threshold, i.e. ra-

dius, for anomaly detection task. 103

xvii

Figure 5.4: Average radius (over 5 independent initialization) against a range of β (on

log scale). The radius is an intrinsic decision threshold to detect anomalous

nodes in OCGNN framework. The plot shows sporadic behavior of radius

indicating that the mapping learned by OCGNN is not efficient to represent

normal class data. 104

Figure 5.5: Average training loss curves (over 5 independent initialization) against a

range of beta (on log scale). Large losses occur at small values of beta in-

dicate the model is unsuccessful in learning representative embedding space

for normal class data. 105

Figure 5.6: Average training loss curves (over five independent initialization) against a

range of radius (on log scale). As the radius gets larger, less training samples

are considered in the training process resulting to larger loss values. 107

Figure 5.7: Tuning process of OCGNN (sub-figure A) and rh-OCGNN (sub-figure B).

The plots show average validation accuracy rate curves (over five independent

initialization) against a range of hyperparameter (β for OCGNN in sub-figure

(a) and r for rh-OCGNN in sub-figure (b). The proposed rh-OCGNN pro-

duces relatively smooth mount-shape validation curves facilitating the tuning

process. The optimal radii can be easily selected where the curves reach their

peaks. 111

xviii

Figure 5.8: Average test accuracy, precision, and recall rates (over 5 independent initial-

ization) of OCGNN (sub-figure A) and rh-OCGNN (sub-figure B). Important

hyperparameters of OCGNN (β) and rh-OCGNN (r) are tuned using valida-

tion approach where the optimal values are selected to maximize validation

accuracy rates. rh-OCGNN renders flexibility to directly tailor the decision

threshold, i.e. the radius. Hence, it achieves better performance on all bench-

mark datasets. 112

Figure 6.1: The plots show the results of applying SGC with and without regularization

on the hidden edge embeddings of the Cora dataset. The histogram in the left

panel shows the distribution of weight and the heat map in the right panel dis-

plays the weight magnitude. Subfigure (a) presents the weight W under the

SGC model without regularization while Subfigure (b) shows the weight WR

under the SGC model with regularization. It can be seen that the regulariza-

tion reduces the weight vector’s magnitude over the hidden edge embedding

highlighting key variables. 121

Figure 6.2: The plots show the results of applying SGC with and without regularization

on the hidden edge embeddings of the Citeseer dataset. The histogram in

the left panel shows the distribution of weight and the heat map in the right

panel displays the weight magnitude. Subfigure (a) presents the weight W

under the SGC model without regularization while Subfigure (b) shows the

weight WR under the SGC model with regularization. It can be seen that the

regularization reduces the weight vector’s magnitude over the hidden edge

embedding highlighting key variables. 122

xix

Figure 6.3: The plots show the results of applying SGC with and without regularization

on the the hidden edge embeddings of the Pubmed dataset. The histogram in

the left panel shows the distribution of weight and the heat map in the right

panel displays the weight magnitude. Subfigure (a) presents the weight W

under the SGC model without regularization while Subfigure (b) shows the

weight WR under the SGC model with regularization. It can be seen that the

regularization reduces the weight vector’s magnitude over the hidden edge

embedding highlighting key variables. 123

xx

LIST OF TABLES

Table 2.1: Summary statistics of the Cora data set . 13

Table 3.1: Dataset statistics and domain-specific information. 44

Table 3.2: The sampling direction is predicted with a high accuracy by studying the

skewness of the homogeneity connectivity distribution. Misclassifications

are likely caused by a lack of node importance evaluators that are robust to

graph topology. 57

Table 4.1: Dataset statistics and domain-specific information. 63

Table 4.2: Optimal sampling results on real datasets . 69

Table 5.1: Summary statistics of three citation datasets and the size of train/val/test sets

used in this work. 99

Table 5.2: Results of the first experiment where we replicate OCGNN with three popular

GNN frameworks - GCN, GAT, and GraphSAGE. Test AUCs (in percentage)

averaged over 10 independent initializations and their corresponding standard

deviations. Note that the standard deviations are not converted to percentage

to keep consistent with [120]. The best results are highlighted in boldface.

OC-SAGE outperforms its peers on Citeseer and Pubmed datasets while OC-

GAT achieves highest average AUC on Cora dataset. 102

xxi

Table 5.3: Test accuracy rates (%) averaged over five independent initialization of rh-

OCGNN and OCGNN. The optimal values of β (for OCGNN) and r (for rh-

OCGNN) are selected via tuning to maximize the validation accuracy rates.

Note that on OCGNN, the radius is not a hyperparameter and is learned dur-

ing training phase. The best models are highlighted with boldface. Over-

all, the rh-OCGNN models outperform their OCGNN peers on all bench-

mark datasets. rh-OC-SGC shines on Cora and Citeseer while rh-OC-GAT

achieves best performance on Cora. 109

Table 6.1: Summary statistics of three citation datasets and the size of train/val/test sets

used in this work. 119

xxii

CHAPTER 1: INTRODUCTION

Many complex systems in our world can be represented as attributed graphs (networks) where

each component is regarded as a node with associated attributes (features) and a collection of

edges joining pairs of nodes representing relations between them. For example, in e-Commerce,

users and products are considered as nodes and edges connecting between certain users and their

purchased items. In chemistry, the molecular structure can be described as a graph whose nodes

are atoms and edges are defined by the atomic bonding property. In biology, the information of

interaction between proteins of a given organism can be modeled as a graph whose nodes are

proteins and edges connect pairs of interacting proteins. Behaviors of such systems are mostly

defined by or dependent on their underlying network structure [27, 132, 30].

Research into network based approaches in machine learning and deep learning has been ongoing

with the goal of uncovering information hidden within these data structures. The applications of

graph analysis have a profound impact on human life. E-commerce platforms can build a learning

algorithm to exploit the interaction between users and their purchased items to produce highly ac-

curate recommendations. Physicists use graph-based techniques to analyze and discover new ma-

terials, which play an important role in solving many societal and energy challenges [22]. Graph

analysis can be categorized into node-level tasks (node classification [85], node regression [74]),

edge-level tasks (link prediction [119], edge classification [2]), and graph-level tasks (graph clas-

sification [126], graph prediction [125]). A key factor determining the success in these tasks is the

effectiveness of the framework in combining the node features and the topological structure of the

graph, into representative low-dimensional node embedding (in the form of vectors) [99].

Graph Neural Networks (GNN) belong to a class of neural network operating on the graph domain.

It provides a methodological framework for combining node features and structural information

1

in order to produce expressive node representations (node embeddings) for predictions within a

machine learning paradigm. Many variants of GNNs have been proposed and achieved state-of-

the-art performance on a variety of tasks [48, 37, 116, 121].

The advent of technology has led to exponential growth of graph structured data with millions of

nodes and thousands of features. This causes concerns on the processing time, complexity of the

models, and the ability to interpret the results. Training large and complex GNN models also poses

a challenge in the modeling pipeline as it often requires large amount of annotated data which

might be limited and costly to obtain. Another common obstacle in learning with graph structure

data is the existence of anomalies entities (nodes, edges, subgraphs) which do not follow expected

patterns. Including these uncommon data in machine learning pipeline might negatively affect the

quality of the model.

Contribution

This dissertation is a collection of works addressing the aforementioned challenges in learning

with graph structured data. The major contributions are as follows:

• Regularized Simple Graph Convolution (SGC) For Improved Interpretability Of Large

Datasets:

In chapter 2 and in [79], we investigate the capability of SGC in producing expressive node

embedding for node classification task. SGC combines network topology and node features

via linear operation, and hence renders a fast and efficient framework for computation. We

then explore and propose a flexible regularization mechanism upon SGC to facilitate mean-

ingful interpretation. The regularized SGC is capable of producing sparse weight vectors

highlighting important input features for further investigation if needed.

2

• Exploring The Value Of Nodes With Multicommunity Membership For Classification

With Graph Convolutional Neural Networks:

Sampling plays an important role in machine learning pipeline, as it provides quality training

samples to build the model. However, the process of determining the best sampling method

has rarely been studied in the context of graph neural networks. In chapter 3 and in [39],

we evaluate the effect of multiple sampling strategies on node classification task using SGC.

Our discoveries include an indicative measure of sampling efficiency and a heuristic criterion

based on network topology which can be utilized to suggest optimal sampling strategies for

practitioners.

• Exploring A Link Between Network Topology And Active Learning:

Upon the findings of previous work on the importance of network topology in the selection

of training samples, we further study the proposed heuristic measure in chapter 4 and in

[38]. We design a comprehensive study to benchmark the proposed measure utilizing a set

of synthetic datasets covering a wide variety of network structures and input features. We

then derive effective sampling approaches based on the proposed measure to facilitate the

task of predicting node label.

• One-Class Graph Neural Networks For Detection Of Anomalous Nodes in Attributed

Graphs (rh-OCGNN):

In chapter 5, we study another important task in graph analysis, which is the problem of

detecting anomalous entities. This problem can be cast as one class classification where all

normal nodes are utilized to build a model capable of describing the concept of normality.

Anomaly is detected if a new node deviates from the description of the fitted model. We

propose a new model (rh-OCGNN) that builds upon a previous GNN but addresses some

pitfalls that degrade the model’s performance. The proposed model is tested and compared

to the previous approach, using various benchmark datasets, showing that it produces better

3

accuracy and reliability.

• Link Prediction With Simple Graph Convolution And Regularized Simple Graph Con-

volution:

Link prediction is an important task on attributed graph with a wide range of useful ap-

plications. Simple link prediction approaches have limitation in their capability to capture

network topology and node attributes. Graph Neural Networks (GNNs) provide an efficient

framework incorporating node attributes and connectivity to produce informative embedding

for many downstream task including link prediction. In chapter 6, we explore how to adapt

the flexible regularization mechanism of regularized SGC to the link prediction task with the

aim of improving the interpretability of the fitted model.

4

CHAPTER 2: REGULARIZED SIMPLE GRAPH CONVOLUTION (SGC)

FOR IMPROVED INTERPRETABILITY OF LARGE DATASETS

Introduction

Research into network based approaches in machine learning has been ongoing with the growing

sizes of networks produced by users on commercial online social networking platforms. The ways

in which users interact with each other directly on online social network platforms from indepen-

dent activities have given rise to networks with billions of users (nodes) [52]. The information

provided by users can be used to investigate different phenomena. The interlinking information

that produces edges which then can form a network, or series of networks, has been studied in the

growing field of network science [70, 10]. Network science offers many tools and approaches to

learn and to draw insight about the community structures [35], the centrality distribution [16] of

the nodes (users), and provides models for how the networks can grow from an initial set of nodes

[42, 6]. There are many applications for these insights such as in targeted advertising [53] where

brands seek to have highly central nodes spread advertising content, and another application is in

the effort to understand the ’landscape’ of political polarization between communities in Twitter

[103].

As well as the information of node interlinking that can produce a network (graph), there are

user attributes that can provide useful information for improving predictive analytics. A notable

technique used by online shopping platforms is collaborative filtering [84] which works as a rec-

ommendation system to improve the customer’s shopping experience by optimizing the product

view to those items predicted to be of interest. These new link predictions are based upon past pur-

chases and the historical records of other customers. Here, ’clusters’ are formed between groups

5

of items in a multidimensional space of these choices [105, 115]. This is based on the observa-

tion that items are not selected independently of previous purchases and that there is information

gained from utilizing the data collected [130]. Another area where predictive analytics has used

information to make predictions is in student performance [43]. Logistic regression has been used

in situations where a model is required in a decision framework to predict achievements [111]. A

key difference between the network-based approach and these approaches is that the information

contained in the network and how the links influence the node of concern are excluded from the

model, which can play a key role in predicted economic behaviors [41]. In the effort to fuse these

sources together for models to incorporate, [100] discusses how user identity linkage across online

social networks can be accomplished.

Online social networks have been at the forefront of the interest in networks and approaches which

use the interlinking information due to their size and the effect they have on human behaviors

[7]. The network topologies of the virtual networks can find applications but they also carry over

into the physical world. The techniques have been used in other domains such as examining the

centrality in streets of urban spaces [23] which also can be seen as a continuation of the original

network/topological graph theoretical formulation of Euler’s investigation of the ’Seven Bridges

of Konigsberg’ problem [28]. As these urban networks fit within networks of urban spaces them-

selves, multilayer networks [50] are produced that span over the globe allowing an analysis of

even global migration patterns [12]. Similarly, it is also possible to consider academic literature as

a network with similar properties governing its construction, such as homophily [68]. The nodes

in such academic networks are publications and the links are the citations between the articles

that provide information of association. There is active research in this field [104] which notes

that the key motivation is that researchers can spend considerable amounts of time searching for

relevant research to not allocate time on topics already explored with similar approaches. Finding

associative research is of importance since it is possible for scholars to be directed in areas already

6

investigated and waste time, as well as materials, in research such as studies requiring expensive

laboratory equipment. Navigating the network to extract relevant research is therefore a key ac-

tivity in preventing this. The work of [82] discusses how investigators can seek insights from

these datasets for the dynamics of growth and the interconnectivity of scientific thought. With the

growth of the citation datasets (such as the ones described in the Data section) the concerns on the

processing time, complexity of the models and the ability to interpret the results are becoming a

key issue.

This then poses key questions about how to process and then reason about the results from large

datasets with large variations. Questions about the results even require effort in their interpretation.

Work such as [106] looks at the problem from a conceptual perspective on the areas of focus for

big data and how the user can interact with the data that are the results of a post-analysis. The

work of [19] provides a high-level overview of the tools and approaches available to visually

investigate the data, and the results of different methods return. It is possible to include the full

set of interpretable outcomes and the full set of relevant data features, but that does produce a

challenge for the practitioner to determine which features are or prime interest. A dimensionality

reduction approach [83] provides a more effective experience for the practitioner.

Graph Neural Networks (GNNs), [91], provide a methodological framework to combine feature

prediction and information from network data in order to produce predictions within a machine

learning paradigm. There are many applications ranging from image object positions in a non-

euclidean space representation, molecular properties, and citation networks [135]. Therefore this

work deals with investigating an even more simple GNN, the Simple Graph Convolution (SGC)

[121], which has a simpler methodological definition and a competitive predictive accuracy. In

developing a modified SGC, the task of reducing the dimensionality in large datasets with a GNN

will be explored. As will be shown in Methodology section, the simplicity of the model allows it

to be a basis for extensions that can incorporate constraints such as shrinkage upon the parameters.

7

This is done in a manner similar to the Lasso regularization procedure [114]. This will allow the

large complex datasets to be processed in such a manner as to be interpretable and more accessible

in terms of the computations resources required. Models other than the SGC would incorporate

more complexity into procedures already complex, making large dataset investigations an increas-

ingly large challenge to apply. The work effectively takes the SGC and extends it so that the model

can introduce constraints upon the parameter vectors in such a manner as to allow the model to be

more easily interpreted. This allows the parameters for each class to be more sparse and for each

class to have less overlap between each other. Altogether this results in a parameter matrix which

can more easily be inspected. Our contributions are listed as follows:

• We illustrate the capability of SGC in utilizing network information to separate non-linearly

separable data.

• We introduce a flexible regularization scheme built on the basis of SGC that renders a sparse

set of fitted parameters highlighting important features for further investigation.

Related work

Convolutional Neural Networks (CNNs) [55] has brought a methodological approach to handle

high-dimensional problems more efficiently than other paradigms. As noted in [54] in conjunction

with deep learning, CNNs have greatly improved the ability to classify sound and image data.

The work of [24] formally introduces how graph-based methods can be used with CNNs. A key

contribution of [24] is that the extension of the model to generalize to graphs is founded upon

localized graph filters instead of the CNN’s localized convolution filter (or kernel). It presents a

spectral graph formulation and how filters can be defined with respect to individual nodes in the

graph with a certain number of ’hops’ distance. These ’hops’ are representative of the number of

8

edges traversed between nodes and are the result of the powers of the adjacency matrix where the

number of walks can be calculated [16] (walks are paths that allow node revisits).

An introduction to the motivation from basic principals can be found in [101], where the funda-

mental analysis operations of signals from regular grids (lattice structures) to more general graphs

is developed. The authors in [90] utilize the theory of signals in graphs to show how a shift-

invariant convolution filter can be formulated as a polynomial of adjacency matrices. The discus-

sion of how low-pass filters are an underlying principle in the GNN is discussed in [72] which

is also described in the work of the SGC. [48] proposes a Graph Convolutional Networks (GCN)

by adapting Convolutional Neural Networks (CNNs) for graph-structured data. The GCN learns a

graph representation via layer-wise propagation rules that represents localized spectral filters.

The GNN can allow for the augmentation of a users social network and their features to make a

more accurate prediction and similarly for an academic paper that the features (keywords or low

dimensional representation) with the citation links can more accurately place its relevance. The

machine learning framework can introduce large overhead in processing time, especially for large

datasets, but fortunately research has shown that simpler GNN models display peak performance

[98]. The work of [48] which introduces a semi-supervised approach to GNNs, shows in their

appendix B the performance of the methodology with the number of ’layers’ employed in the

model and how there is an actual degradation of the performance after a few layers. The SGC

[121] provides an efficient framework to provide a similar model of data associations as the GCN,

but avoids the need for layering in the GCN. The methodology of the SGC allows a single layer of

matrix computations with a non-linear activation function. This is similar to the processing steps

taken for logistic regression, which can be computed for large datasets very efficiently. Building

upon this efficient model allows an investigator to explore further constraints that would be much

more computationally demanding with the incorporation of layers.

9

Data

Three different datasets are employed in order to explore the proposed model, two of them being

synthetic and the last one being real datasets which are well explored [67, 87]. The first synthetic

data set has two-dimensional features with data points placed in a circle and labels applied on

opposite sides of the identity line (x1 = x2). The other synthetic dataset also has 2 dimensions

and is placed in such a way that clustering or a non-network-based model, relying upon distance

measures, would incorrectly classify the node labels. More about these 2 datasets is described

below.

Circular data

Figure 2.1 shows the synthetic data produced with points allocated along a circle based at the

origin. There are 100 points, and 50 of them are allocated to each class placing them on either side

of the identity line. A key aspect of this data is that the model will attempt to shrink the feature

projections which can incur a penalty on the optimization procedure. The compromise between

the error function on the data and the regularization term will require a balance, as a single feature

reduces the shrinkage penalty, but the direction for the optimal fit uses both dimensions. This

compromise is induced since the optimal projection will be with a vector containing nonnegative

parameters for each dimension of equal value in a direction x1 = −x2, therefore, highlighting the

shrinkage of one of the parameters. The network data (the adjacency matrix) is a ring network

connecting neighboring nodes.

10

Figure 2.1: The application of the proposed methodology to the circular data. Data points are
produced about the origin at a fixed radius so that 100 points are equally spaced. The data points
have class labels allocated so that there are 50 in each of 2 classes. This is shown in the plot with
a line which determines the separation.

Linearly inseparable data

Figure 2.2 shows 30 synthetically produced data points in 2 dimensions (x1,x2) which form 4 dis-

tinct clusters. Each class has 15 random generated data points and is separated into 2 clusters

across the axis. We produce a nondisjoint network (single component) structure for the data points

to be connected with a more dense connectivity set between points of the same label. This pro-

duction is inline with the concept of modularity in networks [71] where the density of the edges

between nodes of the same label is proportionately greater than the density between nodes with

different labels. Without the network structure, distance metrics would produce erroneous results,

and the introduction of this information increases the accuracy. This allows the linear operations

to produce a separation for the class labels.

11

(a)

(b)

Figure 2.2: 15 data points of 2 classes are randomly generated and form 2 distinct clusters residing
on the opposite sides of the axis. Sub-figure a) presents the scatter plots of these data points. Sub-
figure b) shows the network connections among those data points. In terms of a distance metric
between the points, or from using a linear projection, erroneous label assignments can arise from
using only the Sub-figure a) data but the incorporation of the network associations shown in Sub-
figure b) allows this to be bypassed. The results of the application to the proposed methodology is
shown in the Methodology section.

12

Cora dataset

Cora [67] is a public citation dataset in which scientific publications are nodes, and the references

between them form edges. Each paper’s feature is a binary vector indicating the presence of words

in the paper. Papers are categorized by corresponding topics (labels).

Statistics Value
Number of nodes 2,708
Number of edges 10,556
Number of isolated nodes 0
Number of classes 7
Node feature 1,433
Density 0.002

Table 2.1: Summary statistics of the Cora data set

Methodology

[48] develops Graph Convolutional Networks (GCNs) by adapting Convolutional Neural Networks

(CNNs) for graph-structured data, and the work of [121] (proposing the Simple Graph Convolu-

tion (SGC)) builds upon it. The SGC removes the nonlinear transitions between the layers in the

model. This simplification significantly speeds up processing time, yet still performs on par with

GCNs and other state-of-the-art graph neural network models across multiple benchmark graph

datasets. The model modification will allow easier interpretability of the parameters fitted by the

optimization procedure with the application of a set of constraints. The constraints introduced into

the loss function will force the stochastic gradient descent algorithm to find directions that have

fewer non-zero values and less overlap for the parameters between the classes. This addresses the

problem of how to inspect effectively the matrix of parameters and the vectors of the parameters

for each class. This takes inspiration from regularization methods.

13

We adopt the notations presented in [48] and [121] for the GCN and SGC, respectively. A graph

G = (V ;A) can be defined as a collection of nodes (vertexes) set V = (v1,v2, ...,vN) containing N

nodes and an adjacency matrix A ∈ RN×N where ai j is the weighted edge between node vi and v j

(ai j = 0 if vi and v j are not connected). We define the degree matrix D = diag(d1,d2, ...,dN) as a

diagonal matrix whose non-diagonal elements are zero, and each diagonal element di captures the

degree of node vi and hence di = ∑ j ai j. There is a feature matrix (also known as the design matrix)

X ∈ RN×D where each row xi is the feature vector measured at each node of the graph. Each node

vi receives a label from C classes and hence can be coded as one hot vector yi ∈ {0,1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the matrix S:

S = D̃−
1
2 ÃD̃−

1
2 (2.1)

where Ã = A+ I and D̃ is the diagonal degree matrix of Ã. This normalization allows successive

powers of the matrix to not influence the overall size the projections. The SGC removes non-linear

transformation from the kth-layer of the GCN resulting in a linear model of the form:

Ŷ = softmax(S . . .SSXΘ
(1)

Θ
(2) . . .Θ(K)). (2.2)

The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix S into the

kth power matrix SK and reparameterizing the successive weight matrices as Θ = Θ(1)Θ(2) . . .Θ(K):

Ŷ = softmax(SKXΘ)

= softmax(X̄Θ)

= softmax(Z)

(2.3)

14

where X̄ = SKX is the aggregated input feature and Z = X̄Θ is the weighted input.

The parameter k corresponds to the number of ’hops’ which is the number of edge traversals in

the network adjacency matrix S. k can be thought of as accumulating information from a certain

number of hops away from a node (as described visually in [121]). If k = 0 the methodology

becomes equivalent to a logistic regression application which is known to be scalable to large

datasets. Since the SGC introduces the matrix S as linear operation the same scalability applies.

In node classification, we aim to classify the nodes into correct classes. This can be achieved

by utilizing SGC g(X;A;Θ) to learn the class distribution p(y|X), i.e. p(y|X) ≈ g(X;A;Θ) =

softmax(SKXΘ) = Ŷ. Hence, given K training samples, the set of optimal parameters Θ can be

obtained by maximizing the likelihood of data:

l(y|Θ) =
K

∏
i=1

C

∏
c=1

p̂(yi j|xi)
yic =

K

∏
i=1

C

∏
c=1

ŷyic
i j =

K

∏
i=1

C

∏
c=1

[σ(zi)c]
yic (2.4)

where zi = ΘT x̄i is the weighted input feature of sample (node) i, and

σ(zi)c =

[
exp(−zic)

∑
C
c=1 exp(−zic)

]
=

[
exp(−(Θ(.,c))

T .x̄i)

∑
C
c=1 exp(−(Θ(.,c))

T .x̄i)

]
(2.5)

with Θ(.,c) is the column c of the weight matrix. Note that this column is the parameter vector

corresponding to class c.

Maximizing the problem in 2.4 is equivalent to maximizing the log likelihood:

L(y|Θ) = log(l(y|Θ)) =
K

∑
i=1

C

∑
c=1

yic logσ(zi)c (2.6)

15

Formally, the SGC model attempts to minimize the objective loss function:

L (Θ) =
K

∑
i=1

C

∑
c=1

yic logσ(zi)c =
K

∑
i=1

C

∑
c=1

yic log

[
exp(−(Θ(.,c))

T .x̄i)

∑
C
c=1 exp(−(Θ(.,c))

T .x̄i)

]
(2.7)

As motivated in the Introduction section, the SGC shows how an efficient formulation of GNN can

be derived, it does not provide as well the ability to reduce the feature set. To reduce the number

of parameter values, we introduce a flexible set of constraints as shrinkage operators in the loss of

Eqn 2.7:

LR(Θ) = L +L1×∑
c∈C

(
D

∑
d=1
|ΘR(·,c)|4

)(−1)

+L2×∑
c∈C
∥ΘR(·,c)∥2+

L3×

(
∑

c1∈C
∑

c2∈C

(
|ΘT

R(·,c1)
| · |ΘR(·,c2)| : c1 ≺ c2

))
(2.8)

The first component of LR is the loss from SGC being L . Next, L1 is the shrinkage term for

penalizing the number or parameters by reducing the penalization with a larger skew in the number

of elements in the columns of ΘR. The term |ΘR(·,c)|4 denotes the normalized vector for each class

projection in the parameter matrix (which are columns) and that each element is raised to the power

of 4. The term L2 is the total magnitude of the parameter vector so that the distribution of the terms

is not influential but only the norm result. The term L3 penalizes the projection of class labels

that have large overlaps, so that the vectors will be orthogonal or depending on the value of L3 to

support opposing directions. The parameters of the fitted model using the shrinkage in the loss

will be referred to as ΘR. To impose an orthogonality constraint between the projection vectors,

16

the term L3 can be slightly modified:

LR = L +L1×∑
c∈C

(
D

∑
d=1
|ΘR(·,c)|4

)(−1)

+L2×∑
c∈C
∥ΘR(·,c)∥2+

L3×

(
∑

c1∈C
∑

c2∈C

(
|ΘT

R(·,c1)
| · |ΘR(·,c2)| : c1 ≺ c2

)2
)
. (2.9)

This methodology therefore delivers a formulation which is based upon an approach with layers

as other ’deep learning’ frameworks provide, but without the computational burdens that come

along with it. Therefore, the simplified model implementation is capable of running on a personal

computer with Pytorch [45].

Optimization for regularized SGC

In this section, we present the approach to minimize the loss in Eq. 2.8. The overall regularized

SGC framework is shown in Figure 2.3.

For an input attributed graph data consisting of a node feature matrix X ∈ RN×D and an adjacency

matrix A ∈ RN×N , the SGC model first aggregates neighborhood features and updates the input

feature of node vi as:

xi←
1

di +1
xi +

n

∑
j=1

ai j√
(di +1)

(
d j +1

)x j (2.10)

This can be expressed compactly as X̄ = SkX where S is the adjusted adjacency matrix with added

self-loops.

Then, the weighted input is computed by linearly transforming the input x̄ using a learnable weight

matrix Θ ∈ RD×C:

17

z = Θ
T × x̄ (2.11)

The output of the model h ∈ RC, is produced by applying a softmax function σ(.) to the weighted

input:

h = σ(z) (2.12)

where

σ(z)i =

[
exp(−zc)

∑
C
c=1 exp(−zc)

]
(2.13)

Then, with K training samples, the loss function can be constructed as:

LR(Θ) = L (Θ)+L1×∑
c∈C

(
D

∑
d=1
|ΘR(·,c)|4

)(−1)

+

L2×∑
c∈C
∥ΘR(·,c)∥2 +L3×

(
∑

c1∈C
∑

c2∈C

(
|ΘT

R(·,c1)
| · |ΘR(·,c2)| : c1 ≺ c2

))
(2.14)

where

L (Θ) =
K

∑
i=1

C

∑
c=1

yic log

[
exp(−(Θ(.,c))

T .x̄i)

∏
C
c=1 exp(−(Θ(.,c))

T .x̄i)

]
(2.15)

To simplify the notation for subsequent derivation, let θc =
(
Θ(.,c)

)T . Then, we can rewrite the

above loss function as:

18

Figure 2.3: The overall framework of regularized SGC

.

LR(Θ) = L (Θ)+L1×∑
c∈C

(
|θc|4.

−→
1
)(−1)

+

L2×∑
c∈C
∥θc∥2 +L3×

(
∑

c1∈C
∑

c2∈C

(
|θ T

c1
| · |θc2| : c1 ≺ c2

))
(2.16)

where:

19

L (Θ) =
K

∑
i=1

C

∑
c=1

yic log
[

exp(−θc.x̄i)

∑
C
c=1 exp(−θc.x̄i)

]
(2.17)

To minimize the loss in Eq. 2.16, we utilize gradient descent algorithm which requires the gradient

of the parameters Θ.

Let Li = ∑
C
c=1 yic log

[
exp(−θc.x̄i)

∑
C
c=1 exp(−θc.x̄i)

]
= ∑

C
c=1 yic×

[
−θc.x̄i− log

(
∑

C
c=1 exp(−θc.x̄i)

)]
be the

loss of a training sample i.

We compute the gradient w.r.t. Θ using the following procedure. For each c = 1,2, ...,C:

1. compute the gradient of Li w.r.t. θc:

∂Li

∂θc
=

[
−yic−

C

∑
c=1

yic×
[

exp(−θc.x̄i)

∑
C
c=1 exp(−θc.x̄i)

]]
× x̄i (2.18)

2. Compute the gradient of the L1 term w.r.t. θc:

∂

∂θc

(
L1×∑

c∈C

(
|θc|4.

−→
1
)(−1)

)
=

∂

∂θc

(
L1×

(
|θc|4.

−→
1
)(−1)

)
=−L1.

(
|θc|4.

−→
1
)(−2)

× ∂

∂θc

(
|θc|4.

−→
1
)

=−L1.
(
|θc|4.

−→
1
)(−2)

× (|θc|4).
∂

∂θc

(
|θc|4

)
=−L1.

(
|θc|4.

−→
1
)(−2)

× (|θc|4).∆c

(2.19)

20

where:

∆c =
∂

∂θc

(
|θc|4

)
=

∂

∂θc1
(

θ 4
c1√

∑d θ 2
cd
) ∂

∂θc2
(

θ 4
c1√

∑d θ 2
cd
) · · · ∂

∂θcD
(

θ 4
c1√

∑d θ 2
cd
)

∂

∂θc1
(

θ 4
c2√

∑d θ 2
cd
) ∂

∂θc2
(

θ 4
c2√

∑d θ 2
cd
) · · · ∂

∂θcD
(

θ 4
c2√

∑d θ 2
cd
)

...
...

∂

∂θc1
(

θ 4
cD√

∑d θ 2
cd
) ∂

∂θc2
(

θ 4
cD√

∑d θ 2
cd
) · · · ∂

∂θcD
(

θ 4
cD√

∑d θ 2
cd
)

(2.20)

and:

∂
θ 4

c j√
∑d θ 2

cd

∂θci
=

4θ 3

ci

√
∑d θ 2

cd− (∑d θ 2
cd)

3/2.θ 5
ci if i = j

(∑d θ 2
cd)

3/2.θ 4
c j.θci else

(2.21)

3. Compute the gradient of L2 term w.r.t. θc:

∂

∂θc

(
L2×∑

c∈C
∥θc∥2

)
=

∂

∂θc
(L2×∥θc∥2) = L2×

θc

∥θc∥2
(2.22)

4. Compute the gradient of the L3 term w.r.t. θc:

∂

∂θc

(
L3× ∑

c1∈C
∑

c2∈C

(
|θ T

c1
| · |θc2| : c1 ≺ c2

))
= L3×

∂

∂θc

(
∑

j

(
|θc| · |θ T

j | : j < c
))

= L3×

(
∑

j, j<c
|θ j|

)
∂ |θc|
∂θc

= L3×

(
∑

j, j<c
|θ j|

)
Ωc

(2.23)

21

where:

Ωc =
∂ |θc|
∂θc

=

∂

∂θc1
(θc1√

∑d θ 2
cd
) ∂

∂θc2
(θc1√

∑d θ 2
cd
) · · · ∂

∂θcD
(θc1√

∑d θ 2
cd
)

∂

∂θc1
(θc2√

∑d θ 2
cd
) ∂

∂θc2
(θc2√

∑d θ 2
cd
) · · · ∂

∂θcD
(θc2√

∑d θ 2
cd
)

...
...

∂

∂θc1
(θcD√

∑d θ 2
cd
) ∂

∂θc2
(θcD√

∑d θ 2
cd
) · · · ∂

∂θcD
(θcD√

∑d θ 2
cd
)

(2.24)

and:

∂
θc j√
∑d θ 2

cd

∂θci
=

√

∑d θ 2
cd− (∑d θ 2

cd)
3/2.θ 2

ci if i = j

(∑d θ 2
cd)

3/2.θc j.θci else
(2.25)

Then, the loss gradient in Eq. 2.16 w.r.t. θc can be achieved as:

∂LR

∂θc
=

1
K

K

∑
i=1

∂Li

∂W(1)
−L1.

(
|θc|4.

−→
1
)(−2)

.(|θc|4).∆c +L2.
θc

∥θc∥2
+L3.

(
∑

j, j<c
|θ j|

)
Ωc (2.26)

Now, to minimize the loss, we iteratively update the parameters Θ with gradient descent algorithm.

In each iteration, we simultaneously update θc for c = 1,2, ...,C as follows:

θ
(t+1)
c ← θ

(t)
c −ηΘ

∂LR

∂θc
(2.27)

where ηΘ is step size of the update.

22

Training regularized SGC

The training procedure for regularized SGC can be summarized in Algorithm 1. At the outset, the

model aggregates node neighboring features to update the node feature input X̄ = SkX. The set of

weights Θ is initialized and is used to produce initial weighted input via linear operation Z = X̄Θ.

Then, the node output matrix is computed using softmax function H = softmax(Z). The loss is

derived as in Eq. 2.8. The framework can optimize the loss by updating the network weights Θ

using stochastic gradient descent. In this work, we utilize PyTorch [77] to perform updating the

network’s weights.

Algorithm 1 Training regularized SGC model
Input: Attributed graph G = (V;X;A), training nodes Vtr, number of hops k ∈ [0,∞), penalty
terms L1,L2,L3
Output: Weight Θ = [θ T

1 ,θ
T
2 , ...,θ

T
C]

1: Initialize Θ[i=0]

2: Aggregate input X̄ = SkX
3: while i ≤ num_iter do
4: Compute the weighted input: Z[i] = X̄Θ[i=0]

5: Compute node output: H [i] = softmax(Z[i])
6: Compute the loss:

LR(Θ) =
K

∑
i=1

C

∑
c=1

yic log

[
exp(−(Θ(.,c))

T .x̄i)

∏
C
c=1 exp(−(Θ(.,c))

T .x̄i)

]
+L1×∑

c∈C

(
|θc|4.

−→
1
)(−1)

+

L2×∑
c∈C
∥θc∥2 +L3×

(
∑

c1∈C
∑

c2∈C

(
|θ T

c1
| · |θc2| : c1 ≺ c2

))

7: Update Θ[i+1] using gradient descent algorithms
8: i← i+1
9: end while

23

Tuning hyperparameters

Our regularization scheme allows users considerable leeway in specifying the desired values of

penalty terms L1,L2,L3 based on their domain knowledge and applications. If users only wish to

obtain a sparse set of parameters, they can apply only the L1 term. If they believe the parameter

vectors are not only sparse but also have the least amount of overlapping, then a combination of L1

and L3 terms together might produce a desirable solution.

In some applications, without prior knowledge or domain requirement for the penalty terms L1,L2

and L3; users have the option to perform hyperparameters optimization to achieve the best per-

formance. Here, we describe a grid search process to tune L1,L2,L3 in Algorithm 2. First,

the labeled samples are partitioned into a training set Vtr and a validation set Vval . Then we

choose a performance metric M to evaluate the capability of the model and set of candidate values

arrL1 = {a1,a2, ...,aJ}, arrL2 = {b1,b2, ...,bK}, and arrL3 = {c1,c2, ...,cL} of interest. For each

combination of L1 = a j,L2 = bk,L3 = cl belonging to the candidate sets, we train the model on

the training set and store its performance on the validation set M(j,k,l). Depending on the appli-

cation, the optimal values L∗1,L
∗
2,L
∗
3 are chosen as a combination that maximizes or minimizes the

corresponding set of performance metrics:

L∗1,L
∗
2,L
∗
3 = min

a j,bl ,ck
{M(a1,b1,c1),M(a1,b1,c2), ...,M(aJ ,bK ,cL)}

OR

L∗1,L
∗
2,L
∗
3 = max

a j,bl ,ck
{M(a1,b1,c1),M(a1,b1,c2), ...,M(aJ ,bK ,cL)}

(2.28)

24

Algorithm 2 Tuning hyperparameters L1,L2,L3 for regularized SGC
Input: Attributed graph G= (V;X;A), training nodes Vtr, validation nodes Vval , arrays of arrL1 =
{a1, ...,aJ}, arrL2 = {b1, ...,bK}, and arrL3 = {c1, ...,cL}
Output: Optimal L∗1,L

∗
2,L
∗
3 and Weight Θ∗

1: for a j in arrL1 do
2: for bk in arrL2 do
3: for cl in arrL3 do
4: Assign the penalty terms L1 = a j,L2 = bk,L3 = cl

5: Initialize Θ[i=0]

6: Aggregate input X̄ = SkX
7: while i ≤ num_iter do
8: Compute the weighted input: Z[i] = X̄Θ[i=0]

9: Compute node output: H [i] = softmax(Z[i])
10: Compute the loss:

LR(Θ) =
K

∑
i=1

C

∑
c=1

yic log

[
exp(−(Θ(.,c))

T .x̄i)

∏
C
c=1 exp(−(Θ(.,c))

T .x̄i)

]
+L1×∑

c∈C

(
|θc|4.

−→
1
)(−1)

+

L2×∑
c∈C
∥θc∥2 +L3×

(
∑

c1∈C
∑

c2∈C

(
|θ T

c1
| · |θc2| : c1 ≺ c2

))

11: Update Θ[i+1] using gradient descent algorithms
12: i← i+1
13: end while
14: Check model’s performance on validation set and store M(j,k,l)
15: end for
16: end for
17: end for
18: L∗1,L

∗
2,L
∗
3 =min(a j,bl ,ck){M(a1,b1,c1), ...,M(aJ ,bK ,cL)}OR max(a j,bl ,ck){M(a1,b1,c1), ...,M(aJ ,bK ,cL)}

Results

Here, we present the results of applying the proposed methodology to the datasets described in

Data section. The synthetic circularly placed datapoints with labels allocated on the sides of the

identity line of 2 dimensions, described in the subsection Circular data of the Data section. The

synthetic datapoints placed along 2 dimensions without a linear separation of the labels based

upon a distance metric but possible with the network information is described in the subsection

25

’Linearly inseparable data’ and the results for it are shown in the subsection of the Results section,

’Synthetic linearly inseparable data’. The results of the application to the real dataset of [67]

(Cora citation dataset) are shown in the subsection of the Results section, ’Application to the Cora

dataset’. The methods of logistic regression, SGC and the regularized SGC are applied and the

results are compared revealing that the fitted parameter vectors for each class have less overlap

between themselves so that their characteristics for the classes can be more effectively interpreted.

Synthetic circular data

The results of applying the SGC methodology with and without regularization to synthetic circular

data are shown in Figure 2.4. The points in the dataset have 2 features x1 and x2. In Subfigure a)

the SGC model produces a perfect accuracy with 2 parameters used the projection vectors pointing

to the proper direction of each class. The regularized SGC returns different solutions due to the

regularization in the parameter matrix Θ. Subfigure b) shows the regularized parameter vectors

under different initializations of the learning algorithm which applies constraints. These constraints

reduce the number of parameters used, the size of the vectors as a norm, and the direction between

the vectors to be more informative. It can be seen how different random initializations produce

different loss values and accuracy depending on the local optima reached. These different stable

points do show that the shrinkage factors are affecting the vectors for each class in Θ.

A separation based upon the identity line for the 2 dimensions represents a situation where there

is equal weight upon all the features of the data and the inference scheme must make a choice

in the penalization. The choice results in a decrease in the loss of accuracy in order to decrease

the penalization from the regularization from the 3 components calculated from the projections;

L1, L2 and L3 as discussed in Methodology section. The variation shows that the model is able to

explore a wide range of vectors for the matrix columns of ΘR. From that the choice with the largest

26

(a)

(b)

Figure 2.4: The above plots show the results of applying the SGC method with and without reg-
ularization upon the synthetic circular data. In Subfigure a) the dashed line shows the separation
line where each side defines the point labels and the solid lines shows the SGC projections learned
in Θ, and perfect accuracy is achieved. Sub-figure b) presents multiple subplots of separate in-
dependent runs of the proposed regularized SGC methodology where there are different random
initializations using gradient descent. Various comparable fittings are found and it can be seen
how all the aspects of the regularization upon ΘR are respected in terms of the magnitude, relative
directions between class vectors and the number of components (features) used.

accuracy (lowest loss) can be chosen.

27

Synthetic linearly inseparable data

In this subsection, we apply the SGC method with and without regularization on the linearly in-

separable data which contains feature coordinates and a network of associations. The dataset used

here is described in the Data section’s subsection ’Linearly inseparable data’ where the coordinate

space of the datapoints and the network are displayed. The key aspect which this dataset empha-

sizes is that the features alone without the network information cannot produce a linear separation,

but with the incorporation of the network information (with linear operators) this classification

then becomes possible. Figure 2.5 shows the results of applying the SGC to the dataset without

the network information being used k = 0, and is effectively an application of logistic regression.

The methodology cannot separate the data correctly with a pair of linear projections, but this can

be alleviated as seen in the following figures by incorporating the network information as well

(k > 0).

Figure 2.5: Applying logistic regression to a set of datapoints where there features are not linearly
separable. This is the SGC methodology where k = 0 and the network information is not incorpo-
rated.

Using the SGC (by setting the shrinkage parameters to 0) Subfigure a) shows that although the

vectors for the class projections, as columns in Θ, do not enable a separation between the groups

28

the network information enables a perfect accuracy to be produced. This is because although the

support for an erroneous class can be accumulated for a point, the feature space ’communicated’ to

it from the edge connections of features overrides the nodes’ own features in these cases. Each plot

is an independent run with slight changes in Θ. Subfigure b) shows a set of plots where the axes

x1∗ and x2∗ for each data point represent the projection of the features with the ’neighborhoods’

of the points. With k = 2, S2, aggregates the weights from ’2 hops’ distance in the network, so that

the multiplication of S2X is shown on these new axes. It can then be understood why the data is

then ’linearly’ separable after this transformation. This emphasizes how the network information

can be used to improve accuracy and maintain the simplicity of the model.

In Figure 2.7 the regularized SGC is applied to the dataset (with L2 = 0) and the parameter vectors

for each class from ΘR are plotted in both Subfigures a) and b). Constraints (shrinkages) are placed

on the sum of the elements within Θ·, jR and the direction of the vectors, which reduces the total

value summation for feature extraction. In Subfigure a) the projection vectors of ΘR are shown

and as with Figure 2.6 the results produce a perfect accuracy. What can be seen is that the model

explores alternative parameterizations that have not been previously found without regularization.

All projections display a drop of a feature dimension. Subfigure b) shows the projection S2X and

that perfect accuracy can still be achieved. In each of the plots, it can be seen how various equiva-

lent (in terms of the accuracy) projections can be searched, which effectively reduce the number of

features used for each class being predicted. The ability for the non-linearly separable data to be

correctly classified without introduction of new parameters or ’layers’ in the CNN enables explo-

rations to be done more efficiently on large datasets in terms of time and processing capabilities.

The change of the L3 constraint is utilized so that the projection vectors for each class are fit to be

orthogonal to each other (shown in Eqn 2.9. This allows the possibility for a smaller number of

classes to be fit if the class number is not known, and differs from the previous application in that

29

(a)

(b)

Figure 2.6: The results of applying the SGC method on the linearly inseparable data is presented
here. Subfigure a) plots the data points and the 2 learned parameter vectors by SGC methodology
under different initializations. It can be seen how although the displayed classification vectors
within Θ with the network information provide the ability for a lossless prediction. Similarly, for
Subfigure b) it can be seen how a new set of axes for the projection S2X (network and features) the
linear separation becomes visible.

the support for each class would be seen as a separate linear function’s projected value. Figure 2.8

shows the results in Subfigure a) and b) where the vector fit is seen in the space of the data points

and how the data are transformed into different axes using the network data, respectively. It can

be seen that the constraint for the orthogonality is preserved and the accuracy for the fits is still

achieved for this problem.

30

(a)

(b)

Figure 2.7: The application of the regularized SGC to the dataset where linear projections are in-
capable of class separation. Subfigure a) shows the parameter vectors produced by introducing
constraints into SGC method on the feature space with original data points and how the classifi-
cation can then produce perfect accuracy. It can be seen the proposed SGC reduces the effective
number of features used in the columns of the matrix ΘR. Subfigure b) shows the plots for the
same set of weight vectors displayed on the projection axes of S2X where each datapoint (node)
accumulates feature information from neighbors 2-hops away (k = 2).

Application to the Cora dataset

Here is presented the application of the SGC methodology and the proposed regularized SGC

to the dataset of Cora [67]. The purpose is to examine the capability of both the SGC and the

regularized SGC on a dataset with a large number of features. There are many situations in big

31

(a)

(b)

Figure 2.8: The results of applying the regularized SGC with an orthogonal constraint upon the
projection achieved by using a change in regularization term L3. In Subfigure a) the vector pro-
jections within the methodology can be fit so that there is no loss and the orthogonality constraint
is satisfied. In Subfigure b) the transformation upon the data with the network information is pre-
sented and how within this space the linear projections can separate the classes with the orthogonal
vectors.

data applications where the datasets have large numbers of features due to larger data gathering

schemes and a requirement to select key features without supervision. The SGC has been applied

to the Cora dataset [13], and here the performance with a regularized version is mainly directed

at the interpretability in highlighting the key variables in the feature set while also applying other

constraints. Figure 2.9 presents the results with 2 subfigures with heat maps showing the parameter

32

values fitted for each class in Θ and ΘR. The dataset classifies each document as belonging to one

of seven different classes where the SGC then produces a parameter matrix Θ with seven columns

and d rows for the feature number. The constraint upon L3 is set so that the projection vectors

between classes are in opposing direction so that class feature loadings are differentiated by their

placement in a histogram of the values. With the SGC applied, Subfigure a) shows the weights

of the parameters for each class (a single column in Θ) as a separate heatmap with a legend for

the values indicated. Analogously, the same set of results produced with the regularized SGC

proposed here is shown in Subfigure b). The approach produces a new parameter matrix ΘR that

introduces regularizations in the inference scheme for the parameters by penalizing their total sum

and directions to be as informative about the features in terms of accuracy prediction and lack of

overlap (removing redundancy within large feature spaces typical of large datasets). It can be seen

that there are fewer variables highlighted for the practitioner to examine, which looks to investigate

and highlight which variables are important for the class membership determination. The 7 cells

highlighted in the bottom right are padding.

Using the data in the heatmaps shown in Figure 2.9 a histogram of the parameter values for each

class and the features is created for the SGC and the values from the regularized SGC are held in

the matrices Θ (Subfigure a) and ΘR (Subfigure b). In Subfigure a) it can be seen how there is a

smaller group of features which provide positive contribution to the class identification and that an

apparent 2 mode distribution can be made out. Each plot belongs to a different class in the data set

and is a different column in Θ. Subfigure b) shows the distribution of the parameter value within

ΘR. The effect of the regularization can be seen in comparison with Subfigure a) where the number

of feature values at value 0 are the majority. This makes the exploration and backtracking process

the features easier.

33

(a)

(b)

Figure 2.9: The plots showing the results of applying the proposed method of SGC with and
without regularization on the features to the dataset of Cora. Subfigure a) shows the heatmap of
the class columns of matrix Θ which holds the parameter values for the feature projections of the
data X after the inference with SGC without the regularization. Subfigure b) analogously shows the
parameter values but with the inference procedure applying the constraints for the regularization
as proposed which produces the shown values of ΘR. On the bottom right of each plot there are 7
cells with padded values to produce the heatmaps. The columns of the parameter vector correspond
to different classes, each shown separately, and the weights applied to each feature belonging to
the nodes. It can be seen that the regularization reduces the amount of weighting over the features
highlighting key variables.

Simulation Study

Simulation Setting

In this section, we investigate the performance of SGC and its regularized version under a variety of

network topologies. Thirty attributed graph datasets are synthesized to imitate scale-free networks
34

(a)

(b)

Figure 2.10: The distribution of the parameter values inferred for the Cora dataset with the appli-
cation of the SGC and the regularized SGC. In Subfigure a) the SGC is applied and the histograms
of the parameter values for each class in Θ is shown in the plots. Subfigure b) shows the equivalent
plots but using the regularized SGC that penalizes the number of features. The majority of the
features are around value zero.

which are commonly found in real applications. Each graph contains three clusters (subgraphs)

with 100 nodes per cluster. Each subgraph is constructed following the Barabási-Albert preferen-

tial attachment model [11]. The interconnectivity between a pair of subgraphs is determined as

follows.

35

• On each subgraph, a subset of nodes is chosen using weighted random sampling on degrees

of the nodes. We posit that popular nodes (with high degrees) in each subgraph tends to

connect with other popular nodes in other subgraph. In the context of citation network,

well-known publications in one class might be cited by popular works in the other classes.

• Random edges are generated between a pair of subsets of nodes. The probability of connect-

ing a pair of nodes is inter_p.

Hyperparameters (number of preferential attachment for the Barabási-Albert model, probability of

random edges) are then established to control the topology of the whole graph. Samples of sim-

ulated graphs are illustrated in Figures 2.11. As the number of preferential attachment increases,

the graph grows in the amount of connectivity and becomes denser. Similarly, as the inter-graph

connectivity inter_p gets larger, more connection between clusters are generated.

The node feature matrix corresponding with each cluster is generated following multivariate nor-

mal distributions Xc ∼ N (µc,Σ),c = 1,2,3. We set the mean vectors as µ1 = (1,0,0)T , µ2 =

(0,1,0)T , µ3 = (0,0,1)T and the covariance matrix is Σ = I3.

For this experiment, we choose the number of hops k = 2 for both models. The proportion of

training, validation, and test sets are 20%,25%,45% respectively. All models are trained for 100

epochs using the AdamW optimizer [61] with a learning rate of 0.2. We follow Algorithm 2 to

tune the regularization parameters L1 and L3. Optimal values of L1 and L3 are chosen from a grid

search of 20×20 values, each varies from 10−5 to 102, to maximize the validation accuracy. Note

that we utilize the orthogonality constraint for the penalty L3.

36

Figure 2.11: Visualizations various network topology from simulated attributed graphs, each with 3
communities (colored). Number of preferential attachment (num_pref) controls the overall amount
of connectivity while the inter-graph connectivity probability (inter_p) governs the amount of link-
ings between subgraphs.

Simulation results

Figure 2.12 displays line graphs with test accuracy on the vertical axis and probability of intergraph

connectivity on the horizontal axis. Overall, both SGC and regularized SGC achieve decent classi-

fication capability under different network structures. Our proposed framework not only performs

on par with the SCG but also induces sparsity on the fitted parameters, which facilitates further

37

investigation on important features defining class membership.

We also observe that as the network gets denser (indicated by increasing num_pref), the models

tend to perform better. This can be explained as on sparse graphs, nodes tend to have few neighbors,

and the node representations produced by aggregating neighborhood features would become less

smooth. Consequently, the models would have difficulty classifying nodes in these ineffective

mapping spaces.

Figure 2.12: Performance of the SGC and regularized SGC under various network settings.

Discussion

We have presented a model extension of the Simple Graph Convolution (SGC) that aims at produc-

ing a smaller and more meaningful set of projections in which classification labels are presented.

It addresses a key issue with interpretability of model result in big data applications, where many

features may be used, which are redundant and remove the ability for a practitioner to examine

38

the weights. A key reason for why the SGC was chosen to be extended with this capability is

that the operations are linear in the methodology, with the exception of the softmax function, so

that application can be run relatively efficiently in comparison to methodologies relying on more

parameterizations and more layers in order to improve accuracy.

The SGC can produce an accurate classification of data points in a feature space which is not

linearly separable by utilizing the network information via linear operations. The results demon-

strated this capability on a small dataset where the network projection effectively linearizes the

search by having information from the node ’neighborhood’ accumulated from ’k-hops’ distance

(relying upon the powers of the adjacency matrix). This allows for fast run times and the applica-

tion to services which rely upon small delays. The methodology was applied to the Cora citation

dataset, which has a large number of features, and the reduction is significant in the number of

features highlighted to the user. This provides a small enough set to explore manually if required.

Simulation study shows that our proposed model performs on par with the SGC on thirty attributed

graph datasets with varying network structures.

Conclusion

The SGC model extension presented here allows a more explainable set of results to be presented

to the user. The regularization terms reduce the number of non-zero parameters and the overlap

between parameterizations of the different classes. Future work could entail a more in-depth ex-

ploration of how the network can be ’decomposed’ in such a way as to minimize the number of

label alterations. Producing a network separation by eliminating edges can find applications in

social networks where polarized communities must be isolated as a means of inoculation.

39

CHAPTER 3: EXPLORING THE VALUE OF NODES WITH

MULTICOMMUNITY MEMBERSHIP FOR CLASSIFICATION WITH

GRAPH CONVOLUTIONAL NEURAL NETWORKS

Introduction

The rapid growth of graph data with millions of nodes makes inspecting these elements individ-

ually for generalization or inferring underlying relationships a challenging task. Simplifying the

vast collection of nodes into a handful of communities or groups facilitates the investigation of

network structure. This simplification process can be regarded as assigning nodes with distinct

labels of their communities capturing aggregated behaviors of all existing nodes in the network.

Examples for the label application can cover voting patterns which are pigeon holed into a small

number of choices, consumer buying patterns in respect to certain products and even different psy-

chological profiles. This concept is applied in algorithms using collaborative filtering [92] (usually

for retail) where recommendation systems apply a customer’s interests to find the closest commu-

nity set to predict an affinity for new items. The principle underlying the ability to group nodes

together in this fashion is based on a degree of homophily [68] in the groups. Examples of this are

found in the work of [44], which studies how social network connections created from friendships

or interests can drive political engagements differently. For the growth of a network where edges

are constructed, nodes create connections or affiliations and it becomes a question of determining

the label for a node with which an edge is constructed. Choosing these connections becomes an

important issue for the originating node as it produces label associations.

Traditional statistical approaches, such as logistic regression, use only node features to infer their

labels and ignore node connectivity information. On the other hand, network science tools such as

40

community detection algorithms (e.g Louvain algorithm [15]) only make use of the placement of

a node in the network topology, but they do not take into account the node features for allocating

the labels. The methods of Graph Neural Networks (GNNs) [123] provide a framework which

combines both the feature information and the network information in order to make inferences on

the labels applied to nodes.

The methodology of the Simple Graph Convolutional (SGC) [121] (described in more detail in

Methodology section) presents an intuitive, simple, and expressive formulation for learning these

latent representations of the nodes labels which builds upon the general theory of graph convolu-

tional networks [131]. This methodology is appealing because the operations are linear between

the adjacency matrix, the features, and the parameters prior to the use of the softmax function.

This makes it an ideal candidate to work with in exploring different applications of its formulation,

as the feature projections are linear and the adjacency matrix is clearly an operation aggregating

feature information of the vicinity of the nodes.

A machine learning pipeline usually consists multiple parts: sample, explore, modify, model and

assess [8]. As the data travel through the pipeline, the error propagates; a mistake in an earlier

step may have resounding impacts on the pipeline performance. Active learning focuses on the

sampling step by prioritizing samples that are assumed to be more helpful to the task [95]. Sam-

pling the training corpus prior to training the model is conducted to attempt to receive similar, if

not better, accuracy utilizing fewer data. This process has been shown to be successful in multiple

domains, such as natural language processing and image data [31, 102, 97, 107]. Recent work has

been conducted on the performance of active learning on graph data [62, 122]. In general deep

learning has shown great advantages in many fields, [133, 51, 134], and spatial components for a

complex object [113].

For graph data, there are a variety of node-ranking algorithms such as PageRank [75] and VoteRank

41

[128]) which can be utilized to select nodes in the active learning process. In this paper, we look

for optimal sampling methods for the node classification task across five real graph datasets which

span a large domain of network topologies. Our main contribution is the discovery of the effect of

the sampling method or direction (i.e., ascending versus descending selection) on the results of a

node classification task.

This paper looks at how the SGC can be used to arrive at correct label allocations of nodes in net-

works (where nodes contain features) where the full set of the network nodes is not provided. The

context is that often the full network is not visible to the investigator and that the set of nodes are

actually sampled. From the investigation, it can be seen that how nodes are sampled can change

the accuracy of labels trying to be predicted. It could be assumed that nodes which have the largest

number of edges would be the best representatives of a community label so that their label would

propagate to other nodes for whom it is the most central node. The investigation here shows in the

results that counterintuitively low ranked nodes in terms of centrality can provide better informa-

tion on the labels. The fact that the lower-ranked central nodes contain more accurate information

for label allocation supports the general idea that weak-ties are valuable [18]. Two strategies are

proposed to predict the best sampling methods based on the network topology. First, we find that

the skewness of homogeneous connectivity distribution is an accurate predictor for the sampling

direction. Furthermore, we empirically find a correlation between the topology structure, consoli-

dated by a single statistic, and the sampling direction. Our contributions are listed as follows:

• We introduce sampling strategies to improve the performance of node classification using

SGC framework

• We proposes indicative measures built upon network topology facilitating users in choosing

sampling methods for their applications

42

Data

An attributed graph G = (X ,A,y) is represented by three components: an adjacency matrix A ∈

RN×N , a feature matrix X ∈ RN×D, and a node label vector y ∈ RN . Real datasets were gathered

from online resources; seven of the nine datasets were accessed using open-source python libraries

[98], [118]. The other two, Lastfm-Asia and Deezer-Europe, were downloaded from the Stanford

Network Analysis Project’s repository [56].

Cora [67], Citeseer [33], and Pubmed [94] are three citation datasets where scientific publications

are nodes, and the references between them form edges. Each paper is represented by a binary vec-

tor indicating the presence of words in the paper (features) and categorized by the corresponding

topic (labels).

Coauthor-CS [98] and Coauthor-Physics [98] contain co-authorship information in computer sci-

ence and physics academic publications respectively. The authors are considered as nodes, defined

by a vector of keywords in their published papers. Their coauthorship forms edges. Each author is

categorized by the their most active field of study.

Amazon-PC and Amazon-Photo are subsets of the Amazon co-purchase graph [66] where goods

are considered as nodes represented by a vector of keywords in their product review and classi-

fied by their product category. Connection between a pair of node (the edge) indicates that these

products are frequently purchased together by customers.

Lastfm-Asia and Deezer-Europe are social network datasets introduced in [88]. In Lastfm-Asia,

nodes are social network users of LastFM, defined by their artists-of-interest, and edges are formed

by their mutual followers. Each user is classified by location. Deezer-Europe is a network of

Deezer users from European countries (nodes) and their mutual follower (edges). Each node is

represented by their artists-of-interest (features) and categorized by the user’s gender (labels).

43

Dataset Nodes/Edges/Classes Description
Cora 2708/5278/7 Scientific publications.
Citeseer 3327/4614/6 Scientific publications.
Pubmed 19717/44325/3 Diabetes-focused scientific publications.
Amazon-PC 13752/287209/10 Computer goods sold at Amazon.
Amazon-Photo 7650/143663/8 Photos sold at Amazon.
Coauthor-CS 163788/18333/15 Authors of computer science papers.
Coauthor-Physics 34493/495924/5 Authors of physics papers.
Lastfm-Asia 7624/27806/18 LastFM social network users.
Deezer-Europe 28281/92752/2 Deezer European social media users.

Table 3.1: Dataset statistics and domain-specific information.

Methodology

Sampling methods

Two procedures of sampling are considered in this study, namely descending and ascending. In de-

scending sampling, training instances are selected by gradually acquiring from the most important

nodes to the least important ones. On the contrary, ascending sampling gradually selects training

samples starting from the least important nodes to the most important ones.

Three different criteria are used to evaluate a node’s importance (centrality) for sampling orders.

Degree

In degree sampling, we acquire nodes for training based on their corresponding number of directly

connected neighbours (i.e. node’s degree).

44

PageRank

PageRank algorithm [75] derives a web page (node)’s rank by accumulating its incoming neigh-

bors’ ranks proportionally to their total number of outgoing connections. The resulting ranking

represents the relative importance of pages in the network. In this study, we apply PageRank to

rank all the nodes in our graphs and then sample them based on their rankings.

VoteRank

VoteRank algorithm [128] iteratively selects a set of important nodes called spreaders using voting

scores given by the neighboring nodes. Once a node is selected as spreader, it is excluded from

next round of voting and its direct neighbors’ voting abilities are also reduced. In this study, we

employ VoteRank to all nodes in the graph (by setting the number of spreaders as the total number

of nodes) and then sample them based on their rankings.

Simple Graph Convolution (SGC)

SGC [121] is a simplified GNN model developed from GCN [48] by removing non-linear activa-

tion functions between hidden layers and reparametrizing successive layers into one single layer.

This simplification reduces superfluous complexity of GCN while retains superb performance on

many downstream tasks. The work of [79] illustrates SGC’s expressive power in node classifica-

tion task and proposes a flexible regularization methodology to reduce the number of parameters

and highlight a sparse set of important features. The SGC is a ’one-shot’ learner which simpli-

fies the training procedure and allows for the full set of data points to be used for the parameter

inference.

45

In this section, we briefly present the original SGC. An attributed graph data set contains a graph

G = (V ;A) and a feature matrix X ∈ RN×D. The graph G composes of V = (v1,v2, ...,vN) is a set

of N nodes (vertices) and A ∈ RN×N is the adjacency matrix where each element ai j represents

an edge between node vi and v j (ai j = 0 if vi and v j are disconnected). We define the degree

matrix D = diag(d1,d2, ...,dN) as a diagonal matrix whose off-diagonal elements are zero and each

diagonal element di capture the degree of node vi and di = ∑ j ai j. Each row xi of the feature matrix

X ∈ RN×D is the feature vector measured on each node of the graph. Each node i receives a label

from C classes and hence can be coded as one hot vector yi ∈ {0,1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the matrix S:

S = D̃−
1
2 ÃD̃−

1
2 (3.1)

where Ã = A+ I and D̃ = diag(Ã). This normalization allows successive powers of the matrix to

not influence the overall size the projections. The SGC removes nonlinear transformations from

the kth layer of the GCN, resulting in a linear model of the form:

Ŷ = softmax(S . . .SSXΘ
(1)

Θ
(2) . . .Θ(K)). (3.2)

The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix S into the

kth power matrix SK and reparameterizing the successive weight matrices as Θ = Θ(1)Θ(2) . . .Θ(K),

and its structure as a GNN is defined by:

Ŷ = softmax(SKXΘ). (3.3)

The parameter k corresponds to the number of ’hops’ which is the number of edge traversals in

the network adjacency matrix S. k can be thought of as accumulating information from a certain

46

number of hops away from a node (as visually described in [121]). If k = 0 the methodology

becomes equivalent to a logistic regression application which is known to be scalable to large

datasets. Since the SGC introduces the matrix S as linear operation, the same scalability applies.

The weight matrix Θ is trained by minimizing the loss:

L = ∑
l∈YL

∑
c∈C

Ylc lnŶlc (3.4)

where YL is a collection of labeled nodes. This model allows for a very computationally efficient

exploration of the network based datasets but this multilayer approximation may not provide the

full extent of deep learning generalizations.

Evaluation of Network Topology

The network topology was evaluated using the inverse coefficient of variation of the node’s degree

distribution.

iCVd =
µd

σd
(3.5)

where µd = 1
N ∑

N
i=1 di is the average degree and σd = 1

N−1 ∑
N
i=1(di−µ)2 is the standard deviation

of degree.

A low value of iCVd occurs for networks that have a high variation in their degree distributions

compared to the mean degree. It indicates that important hubs (nodes) are highly connected to

other nodes. On the contrary, a high value of iCVd results from relatively low variation in degree

distribution compared to the mean degree where important nodes tends to be less popular.

47

The node degree centrality is defined by

Di =
di

max(di)
(3.6)

where di is the degree of node i.

Homogeneous connectivity is the proportion of homogeneous connections that a node has normal-

ized by its total number of connections.

Ωi =
hi

di
(3.7)

where hi is the number of homogeneous nodes within one degree.

Results

Sampling the nodes from a graph causes a change in performance. Active learning [95], as opposed

to passive learning, selects a set of most informative instances for training to achieve the best

performance while using minimal samples. This paper utilizes common sampling methods (i.e.

degree, PageRank, VoteRank) to select nodes in a graph for the training corpus using an ascending

(i.e. lowest to highest score) and descending (highest to lowest score) fashion.

Two separate methods are formulated to predict the best sampling direction. A method that utilizes

the network topology looks for a partition in the iCVd domain. The pros of this method is that

it utilizes information which is readily available prior to classification, excluding the requirement

of knowing the ground truths. A second method is proposed which compares the skewness of

the homogeneous connectivity distributions to evaluate the best sampling direction. This method

utilizes the ground truth to explain why the best sampling direction is, in fact, the best.

48

Two different types of plot are visualized for each dataset. The sampling result plot shows the

performance of the node classification task (measured by accuracy) on various training sizes across

multiple sampling techniques. The accuracy curves tend to improve as more training samples

are recruited. The box-plots show results of random sampling with 10 replications. With further

inspection, sampling methods (plotted as lines) can be viewed to pass specific judgement regarding

its performance. If these sampling methods show better performance than random selection, it can

be concluded that the method is an improvement.

Degree centrality plot composes of a scatter plot illustrating the relationship between homoge-

neous connectivity, Ωi (Equation 3.7) node centrality (Equation 3.6) (on the left panel), and a

histogram showing the distribution of homogeneous connectivity (on the right panel). The purple

points describe the nodes that are sampled following the "degree ascending" method when s = 0.5;

similarly, the yellow points describe the nodes that are sampled following the "degree descending"

method when s = 0.5. Because the scatterplot is visualized according to node degree centrality on

the x-axis, a clear partition is found between the purple and yellow points. It is also informative to

look at the histogram, which shows the distribution of the homogeneous connectivity according to

the sampling direction. On this plot, some deductions can be made as to why the superior sampling

direction was more effective.

In a high iCVd graph (Cora and Citeseer), the three ascending methods almost uniformly render

higher accuracies than the ascending methods across training sizes (Figure 3.1). The dominance of

descending sampling in these graphs could be explained by the fact that important (central) papers

of certain disciplines are usually cited by many papers in the same discipline. Consequently, the

most important nodes contains crucial information about the class label and hence is beneficial for

node classification task.

The distribution of homogeneous connectivity across the Cora and Citeseer data sets is similar

49

(a)

(b)

Figure 3.1: High iCVd networks (Cora, Citeseer) have higher accuracies when sampling nodes
from the highest score to lowest score (i.e. ’descending’ methods), showing the effectiveness of
the node ranking algorithms on a node classification task.

(Figure 3.2). Homogeneous connections of both data sets exhibit left-skewed patterns indicating

the existence of clusters of informative nodes (high Ω) and noisy nodes (low Ω). Nodes with

low Ω mainly connects with neighbors across different categories while node with high Ω mostly

connects to neighboring nodes within the same category.

On Cora, the ascending and descending samplings possess a similar amount of most informative

50

nodes. However, the bottom 50% of the central nodes shows a higher left skewness (3.2A)). It

indicates that less popular papers are noisier, since they tend to get cited by papers in different

categories. Hence, recruiting these samples in the training step is not desirable, since they pro-

vide noisy representations of the corresponding categories and deteriorate the performance of the

classifier.

On Citeseer, a different pattern occurs where large amounts of noisiest nodes exist in both sampling

schemes. However, the descending samplings contain a higher amount of moderate to high infor-

mative nodes, as the distribution of the top central nodes exhibits lower degree of left skewness

(3.2B)). Hence, descending sampling tends to work better since recruiting popular papers provide

smoother representation of their categories

Alternatively, we observe an opposite trend in low iCVd graphs (Pubmed), where ascending sam-

plings prevail (Figure 3.3. Pubmed citation graph contains publications on diabetes and, hence, has

a smaller scope compared with other citation data sets. Important (central) papers might be cited

by other papers across classes due to the close nature of their categories. Therefore, important

nodes contains a less differentiating factor for classification tasks. On the other hand, less impor-

tant nodes might contain unique characteristics of the class and render useful information for node

classification task.

Pubmed’s homogeneous connectivity distributions are highly left-skewed (Figure 3.4). Both sam-

pling schemes contain relatively high amounts of informative and noisy nodes. Descending sam-

pling has relatively higher skewness implying a heterogeneous selection of high quality and low

quality popular papers (in terms of their homogeneous connectivity). Popular papers (high D) with

low amount of within category citations (low Ω) get cited by other papers from different category.

Hence, the descending strategy has a worse performance since these low-quality popular papers

inevitably induce a confusing representation of the category.

51

(a)

(b)

Figure 3.2: The left figure here presents scatter plots of node degree centrality, Di against node
homogeneous connectivity Ωi on the training data. The upper half of nodes according to their
centrality are colored in yellow while the lower half is presented in purple. The histogram on
the right visualizes the distribution of homogeneous connections. The skewness for each subset’s
distribution is annotated above the right graph.

The LastFM-Asia is a social media data set which categorizes users based on their country of origin

(Table 3.1). Node classification results change dramatically with training size, s. After s = 0.3,

the ascending sampling methods perform consistently better than the descending methods. On this

social network, nodes with smaller importance are more indicative of a node’s label, the person’s

country of origin. Users with smaller followerships could be more likely to be connected with

52

Figure 3.3: Low iCVd networks (Pubmed) have lower accuracy when sampling nodes from the
lowest to highest score (i.e. ’ascending’ methods), showing the ranking algorithms are inversely
beneficial to the node classification task.

people they know personally, within their real-life circle. However, people with more followers

are more famous and likely have more followers across the globe, therefore causing the country to

be hard to discern. Much like the other data sets, the homogeneous connectivity distribution for

LastFM-Asia is left-skewed. In other words, there exists a large set of edges that are interconnected

within the community and fewer that are connected to other communities. The skewness of the

ascending selections is greater than that of the descending selections; as a result, the utilization of

ascending rank, as the sampling direction, is chosen, which matches with the node classification

results.

The Deezer-Europe social media data set shows varied results. Most of the sampling methods,

agnostic to the sampling direction, consistently perform better than random. In other words, the

53

Figure 3.4: The left figure here presents scatter plots of node degree centrality, Di against node
homogeneous connectivity Ωi on the training data. The upper half of nodes according to their
centrality are colored in yellow while the lower half is presented in purple. The histogram on
the right visualizes the distribution of homogeneous connections. The skew for each subset’s
distribution is annotated above the right graph.

more popular and less popular nodes are helpful in the node gender-classification task, as opposed

to users in the middle-ground. Intuitively, the networks of less popular users likely respond to

gender homophily, as shown in certain age groups in [49]. More popular users likely have growing

followerships which can be based on mutual interests, especially in this network’s musical context.

The Deezer-Europe dataset renders a unique homogeneous connectivity distribution, showing one

which appears to be Gaussian. The average value is around 0.50. The skew of the Ωi domain is in

favor of the descending sampling process, which is also the conclusion made by the iCVd process.

In this paper, we have found a correlation between network topology and the optimal sampling

strategy. Interested readers are referred to the appendix for the results of the remaining datasets

that are not discussed here. This fact implies that machine learning practitioners can deduce an

optimal sampling strategy by 1) evaluating their network topology, and 2) observing its position in

Figure 3.7. The results show that no sampling method is superior in terms of accuracy; the logistic

probability of a descending sampling evaluation producing the best results increases with increas-

54

(a)

(b)

Figure 3.5: The performance of this pipeline on the Deezer_Europe social media dataset (plot b)
is unusual in that almost all sampling methods are uniformly better than random selection.

ing iCVd . A high iCVd occurs for highly connected graphs (high µd) where all nodes have a similar

number of connections (low σd). Coauthor-cs, citeseer, and deezer_europe are among the highest

scorers in iCVd . In these graphs, important nodes have relatively lower popularity, which correlates

with a descending sampling direction because these nodes contain the defining characteristics of

55

(a)

(b)

Figure 3.6: The left figure here presents scatter plots of node degree centrality, Di against node
homogeneous connectivity Ωi on the training data. The upper half of nodes according to their
centrality are colored in yellow while the lower half is presented in purple. The histogram on
the right visualizes the distribution of homogeneous connections. The skew for each subset’s
distribution is annotated above the right graph.

their associated categories. A low iCVd occurs for low connected graphs where important nodes are

highly connected,i.e. more popular which correlates with an ascending direction. Sampling less

popular nodes is more beneficial, since they contain distinct characteristics to represent associated

categories.

Network topology-informed sampling methods (i.e. all methods except random) seem to perform

56

well in node classification tasks, often resulting in similar accuracies utilizing a smaller amount

of data. Additionally, independent of the ascending/descending, we see across the board a higher

number of cases where the more complicated sampling procedures (i.e. Pagerank/Voterank) out-

perform Degree. While we see an increase in performance, there is a trade-off with computation

time; nodes degree distribution can be computed swiftly while PageRank and VoteRank require

complex evaluation, and hence be more computationally expensive.

Dataset Prediction Actual
Cora Descending Descending
Citeseer Descending Descending
Pubmed Ascending Ascending
Amazon-pc Descending Ascending
Amazon-photo Ascending Ascending
Coauthor-cs Descending Descending
Coauthor-physics Ascending Descending
Lastfm_Asia Ascending Ascending
Deezer_Europe Descending Descending

Table 3.2: The sampling direction is predicted with a high accuracy by studying the skewness of
the homogeneity connectivity distribution. Misclassifications are likely caused by a lack of node
importance evaluators that are robust to graph topology.

The skewness of the homogeneous connectivity Ωi distribution is indicative of the better perform-

ing sampling direction. Left-skew distribution is more common because it is expected that there

is an association between network topology and nodes’ label, in which nodes with the same labels

tend to connect with each other. Graph neural networks utilize message passing to learn expressive

node embedding for a given task [34]. The mechanism involves aggregating features of a node’s

neighbors to produce a smoother representation where neighboring nodes tends to have similar

property such as belonging to the same class. Therefore, a left skew of Ωi is suitable for graph

neural networks to learn the effective node embedding for a classification task.

Under the assumption that a Ωi is left skewed, the sampling method which renders a weaker skew-

57

ness will be the one which performs better. A stronger left-skewed distribution has an elongated

tail, which recruits more noisy, low informative nodes. These samples aggregate features of neigh-

boring nodes belonging to other classes and provide a poor representation of their own classes.

Their noisy representations inevitably induce more confusion to the model and degrade the per-

formance on classification task. Table 3.2 demonstrates the agreement between skewness of the

homogeneous distribution and the best sampling approaches.

Some graphs (i.e. amazon-pc, coauthor-physics) do not robustly fit the node importance evalua-

tors utilized in this study, as indicated by the poor performance of informed samplers compared

to random sampling. Both examples show conflicting results when using our two sampling direc-

tion detection schemas; coauthor-physics concludes ascending via Ωi and descending via iCVd and

amazon-pc concludes descending via Ωi and ascending via iCVd . Future work will be required to

observe the domain in which this phenomenon occurs, since both examples of conflicting indica-

tions occur at the edges of the iCVd domain. Given that node degree is one of the measures of node

centrality, we would assume that using other centrality measurement (such as VoteRank) might

render harmonious conclusions of sampling schemes from Ωi and iCVd .

In practice, obtaining homogeneous connectivity distribution prior to sampling is impractical since

it requires knowledge about the labels in the calculation process. Hence, we developed an alter-

native criteria to help the practitioner select the best sampling approach based on the inverse of

the coefficient of variation of the node degree. Our experiments show an relationship between the

network topology (summarized by iCVd) and the best sampling direction (Figure 3.7).

58

Figure 3.7: Logistic probability (blue line) shows an increasing likelihood of a descending sam-
pling procedure as the coefficient of variance of the degree (iCVd) increases. Results show a com-
plete separation is defined by iCVd .

Discussion

The careful selection of nodes for a machine learning process helps increase the accuracy of correct

label prediction, enticing the study of different sampling methods. Two sampling methods are

evaluated, ascending and descending, in which samples are selected based on node centrality as

defined by three different measures (Voterank, PageRank, and degree). We conclude that there

does not exist a uniformly best method for node selection across all network topologies.

Before building a classification pipeline, it is useful for the practitioner to have an estimate of which

sampling direction is superior. An indicative measure of best sampling strategy is the skewness of

homogeneous connectivity distribution. A left-skewed distribution is desirable since neighboring

nodes tend to belong to the same class and hence produce smoother representation for the node

classification task. However, we found that a strong left skewness, indicating a selection of more

59

noisy and low informative nodes, is detrimental to the performance of the classification task. How-

ever, rendering the homogeneous connectivity is impractical for practioners due to its reliance on

knowing the node’s labels. Therefore, we present a second method that only requires network

topology information (iCVd). This method is empirically proven.

Future work will apply these findings to large social media networks for tasks like job searching.

Further, applications to knowledge embedding in the natural language processing domain will be

pursued.

60

CHAPTER 4: EXPLORING A LINK BETWEEN NETWORK

TOPOLOGY AND ACTIVE LEARNING

Introduction

In the previous chapter, we have discovered that network topology has a significant impact on

the effect of sampling strategy for the node classification task. A heuristic criteria based on node

degree, the inverse of the coefficient of variation of node’s degree (iCVd), has been introduced as

an indicative measure for practitioners to select the best sampling strategy. In this chapter and in

[38], we further evaluate the effect of iCVd and derive effective sampling approaches to facilitate

the process of predicting node label.

Labels of nodes can be inferred using standard classification methods, such as logistic regression,

which are predominantly reliant on the node feature information after a training phase. However,

these methods do not consider the supplementary node connectivity information. Additionally,

community detection algorithms (e.g. Louvain [15]) take into account node connectivity informa-

tion, but not node feature information. Graph neural networks (GNN) combine both information

into a framework for inference (i.e. label prediction). The Simple Graph Convolution (SGC)

[121] simplifies GNN to a logistic-regression-like formulation while maintaining the connectiv-

ity information of the node. The computational efficiency of this model allows for the practical

experimentation done in this study.

In many cases, labeled data is limited and costly to produce. The field of active learning focuses

on ordering the available labeled data prior to the training process for the purpose of strategically

showing the model more informative nodes earlier, allowing it to generalize with less data while

maintaining a similar (or superior) performance [96]. This project focuses on the application of

61

active learning to graph neural networks (GNN) by utilizing available node ranking algorithms

such as node connectivity densities (i.e. degree), PageRank [75], and VoteRank [128]. Similar to

[39], this work experiments with bidirectional sampling (i.e. ascending and descending) of these

algorithms’ rankings.

Node classification task across four real graph datasets are optimized using the six node selection

processes (i.e. ascending & descending selection along 3 node importance evaluators) to study

the correlation between the superior sampling process and network topology. Results show that

the sampling direction (i.e. ascending vs descending selection of samples with respect to their

importance rankings) is dependent on network topology. The results are empirically reverse engi-

neered using an unsupervised process to allow the prediction future applications to derive the best

sampling method as opposed to the brute force experimentation provided in this study. Generally,

networks with sparse topologies perform better in node classification tasks when the active learn-

ing process uses a descending node selection; conversely, dense networks prefer ascending node

selection. Our contributions are as follows:

• We design comprehensive synthetic attributed graph data to examine the heuristic measure

proposed in previous chapter

• We introduce quantitative guideline and suggestions about using the proposed measure to

determine sampling strategies

Data

We utilize four real datasets collected from on-line resources [67, 33, 94, 66] as well as thirty-five

synthetic attributed graph datasets to evaluate the proposed methodology.

62

Real datasets

Cora [67], Citeseer [33], and Pubmed [94] are three citation datasets where scientific publications

are nodes, and the references between them form edges. Each paper’s feature is a binary vector

indicating the presence of words on the paper. Papers are categorized by corresponding topics

(labels).

Amazon-Photo is a subset of the Amazon co-purchase graph [66] where photos sold at Amazon are

considered as nodes represented by a vector of keywords in their product review and classified by

their product category. The connection between a pair of nodes indicates that they are frequently

purchased together.

Dataset Nodes/Edges/Classes Description
Cora 2708/5278/7 Scientific publications.
Citeseer 3327/4614/6 Scientific publications.
Pubmed 19717/44325/3 Diabetes-focused scientific publications.
Amazon-Photo 7650/143663/8 Photos sold at Amazon.

Table 4.1: Dataset statistics and domain-specific information.

Synthetic dataset

Thirty five attributed graph datasets are synthesized to imitate scale-free (right-skew degree distri-

bution) networks which are commonly found in practice (Figures 4.1 and 4.2). Each graph contains

three clusters (subgraphs) with 100 nodes per cluster. Each subgraph is generated following the

Barabási–Albert preferential attachment model [11]. The interconnectivity between a pair of

• On each subgraph, a subset of nodes is chosen using weighted random sampling on degrees

of the nodes. We posit that popular nodes (with high degrees) in each subgraph tends to

63

connect with other popular nodes in other subgraph. In the context of citation network,

well-known publications in one class might be cited by popular works in the other classes.

• Random edges are generated between a pair of subsets of nodes. The probability of connect-

ing a pair of nodes is inter_p.

The hyperparameters (number of preferential attachment for the Barabási-Albert model, probabil-

ity of random edges) are then established to control the connectivity between subgraphs (seen in

Figures 4.1 and 4.2). As the number of preferential attachment increases, the graph grows in the

amount of connectivity and becomes denser. Similarly, as the inter-graph connectivity inter_p gets

larger, more connection between clusters are generated.

The node feature matrix is generated by first creating a set of three isotropic Gaussian clusters

(100 observations per each cluster) in a two-dimensional feature space and then assigning these

observations as node features. We control the amount of overlap between three feature clusters by

adjusting the distances between cluster centers and the within-cluster standard deviation.

Methodology

Sampling methods

Two procedures of sampling are considered in this study, namely descending and ascending. In de-

scending sampling, training instances are selected by gradually acquiring from the most important

nodes to the least important ones. On the contrary, ascending sampling gradually selects training

samples starting from the least important nodes to the most important ones.

Three different criteria are used to evaluate the importance (centrality) of a node for sampling

orders. In degree sampling, we acquire nodes for training based on their corresponding number

64

Figure 4.1: Network visualizations for the 35 generated simulations, each with 3 communities
(colored). Traversing along the y-axis shows how these networks topologies change when varying
the distance within a communities. Traversing along the x-axis shows how the network topologies
changes when varying distance between communities.

of directly connected neighbors (i.e. node’s degree). The PageRank algorithm [75] derives the

rank of a web page (node) by accumulating its incoming neighbors’ ranks proportionally to their

total number of outgoing connections. The resulting ranking represents the relative importance of

pages in the network. In this study, we apply PageRank to rank all nodes in our graphs and then

sample them based on their rankings. Lastly, the VoteRank algorithm [128] iteratively selects a

set of important nodes called spreaders using voting scores given by the neighboring nodes. Once

a node is selected as spreader, it is excluded from next round of voting, and its direct neighbors’

voting abilities are also reduced. In this study, we use VoteRank for all nodes on the graph (by

65

Figure 4.2: Degree distributions for the 35 generated simulations show that all settings create a
relatively scale-free network. Traversing along the y-axis shows how these networks topologies
change when varying the distance within a communities. Traversing along the x-axis shows how
the network topologies changes when varying distance between communities.

setting the number of spreaders as the total number of nodes) and then sample them based on their

rankings.

Simple Graph Convolution (SGC)

SGC [121] is a simplified GNN model developed from GCN [48] by removing non-linear activa-

tion functions between hidden layers and reparametrizing successive layers into one single layer.

This simplification reduces superfluous complexity of GCN while retains superb performance on

66

many downstream tasks. The work of [79] illustrates SGC’s expressive power in node classifica-

tion task and proposes a flexible regularization methodology to reduce the number of parameters

and highlight a sparse set of important features. The SGC is a ’one-shot’ learner which simpli-

fies the training procedure and allows for the full set of data points to be used for the parameter

inference.

In this section, we briefly present the original SGC. An attributed graph data set contains a graph

G = (V ;A) and a feature matrix X ∈ RN×D. The graph G composes of V = (v1,v2, ...,vN) is a set

of N nodes (vertices) and A ∈ RN×N is the adjacency matrix where each element ai j represents

an edge between node vi and v j (ai j = 0 if vi and v j are disconnected). We define the degree

matrix D = diag(d1,d2, ...,dN) as a diagonal matrix whose off-diagonal elements are zero and each

diagonal element di capture the degree of node vi and di = ∑ j ai j. Each row xi of the feature matrix

X ∈ RN×D is the feature vector measured on each node of the graph. Each node i receives a label

from C classes and hence can be coded as one hot vector yi ∈ {0,1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the matrix S:

S = D̃−
1
2 ÃD̃−

1
2 (4.1)

where Ã = A+ I and D̃ = diag(Ã). This normalization allows successive powers of the matrix to

not influence the overall size the projections. The SGC removes a nonlinear transformation from

the kth layer of the GCN, resulting in a linear model of the form:

Ŷ = softmax(S . . .SSXΘ
(1)

Θ
(2) . . .Θ(K)). (4.2)

The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix S into the

kth power matrix SK and reparameterizing the successive weight matrices as Θ = Θ(1)Θ(2) . . .Θ(K),

67

and its structure as a GNN is defined by:

Ŷ = softmax(SKXΘ). (4.3)

The parameter k corresponds to the number of ’hops’ which is the number of edge traversals in

the network adjacency matrix S. k can be thought of as accumulating information from a certain

number of hops away from a node (as visually described in [121]). If k = 0 the methodology

becomes equivalent to a logistic regression application which is known to be scalable to large

datasets. Since the SGC introduces the matrix S as linear operation, the same scalability applies.

The weight matrix Θ is trained by minimizing the loss:

L = ∑
l∈YL

∑
c∈C

Ylc lnŶlc (4.4)

where YL is a collection of labeled nodes. This model allows for a very computationally efficient

exploration of the network based datasets but this multilayer approximation may not provide the

full extent of deep learning generalizations.

Evaluation of Network Topology

The network topology is evaluated using the inverse of coefficient of variation of the node’s degree

distribution.

iCVd =
µd

σd
(4.5)

where µd = 1
N ∑

N
i=1 di is the average degree and σd = 1

N−1 ∑
N
i=1(di−µ)2 is the standard deviation

of degree.

68

A low value of iCVd occurs for networks that have a high variation in their node degree distributions

compared to the mean degree of the nodes. It indicates that important hubs (nodes) are highly

connected to other nodes. On the contrary, a high value of iCVd results from relatively low variation

in degree distribution compared to the mean degree where important nodes tends to be less popular.

The feature information is evaluated using the inverse of coefficient of variation of the node-to-

node feature distances. For example, node 1 is defined as a vector of distances between its feature

vector and all other nodes’ feature vectors. This description allows for an evaluation regarding a

node’s centrality in the feature space.

Results

In this section, the correlation of the optimal sampling direction for the node classification task

with network topology is captured in simulations and real data. The results show that no sampling

method (i.e. degree, PageRank, VoteRank) is uniformly superior in terms of accuracy. However,

independent of the ascending/descending, we see across the board a higher number of cases where

the more complicated sampling procedures (i.e. PageRank/VoteRank) outperform Degree. While

we see an increase in performance, there is a trade-off with computation time; nodes degree distri-

bution can be computed swiftly, while PageRank and VoteRank require complex evaluation, and

hence, be more computationally expensive.

Dataset iCVd Optimal sampling direction
Cora 0.75 Descending

Citeseer 0.82 Descending
Pubmed 0.6 Ascending

Amazon-Photo 0.69 Ascending

Table 4.2: Optimal sampling results on real datasets

69

Dataset information including degree inverse of coefficient of variation and optimal sampling di-

rection, as derived through a grid search, can be found in Table 4.2. The descending and ascend-

ing optimal sampling directions are cleanly partitioned in the iCVd space. A numerical boundary

would be useful to allow users to calculated iCVd and perform the active learning procedure with-

out having to experiment through grid search, as done in this paper. From the results (Table 4.2),

it is hard to pinpoint an exact threshold, other than that it should likely be somewhere between

iCVd = 0.69 and iCVd = 0.75. Therefore, simulations are conducted to obtain a finer resolution.

Figure 4.3 shows a contour plot containing the density of the iCVd distribution for ascending and

descending sampling procedures. A partition is found near iCVd = 0.82, which is slightly higher

than our estimated window, which is likely caused by discrepancies between the real and simu-

lated data. However, generally speaking, these visualized distributions show significant levels of

partitioning on the vertical axis (iCVd). In fact, a one-sided t-test result concludes significance

(pval = 6.7×10−41).

In high iCVd graphs (i.e. Cora and Citeseer), all three descending methods almost uniformly do

better than the ascending methods across training sizes (Figure 4.4). Apparent performance im-

provements are made in terms of accuracy, especially at low train sizes (from s = 0.1 to s = 0.5).

As the training size gets closer to utilizing the full training dataset (s = 1.0), sampling approaches

are less selective because, by definition, they are using more and more data each iteration. The

dominance of descending sampling in these graphs might be explained by the fact that important

(central) papers of certain disciplines are usually cited by many papers in that same discipline.

Consequently, the most important nodes contains crucial information about the class label and are

commonly referenced by papers within its discipline, so they are beneficial for node classification

task.

Alternatively, we observe an opposite trend in low iCVd graphs (Pubmed and amazon-photo),

where ascending samplings prevail. The Pubmed citation graph contains publications about a

70

Figure 4.3: Simulations report a density of preferred (higher accuracy) sampling direction as a
function of network topology (y-axis) and feature similarity (x-axis) shows that the sampling di-
rection is dependent on the network topology.

specified domain and hence has a smaller scope compared with other citation data sets like Cora

and Citeseer (Figure 4.5a). Important (central) papers across classes might cite each other due

to the close nature of their categories. Therefore, important nodes contains a less differentiating

factor for the classification tasks. On the other hand, less important nodes might contain unique

characteristics of the class and render useful information for node classification task. Amazon-

photo graph exhibits closely connected clusters with relatively low inter-cluster connectivity (Fig-

ure 4.5b). Popular photos from different categories might have similar features (in terms of re-

views, as they receive generally positive compliments). Hence, sampling popular nodes is less

desirable for classification since their representations are indiscriminative. Less popular photos

71

(a)

(b)

Figure 4.4: High iCVd networks (Cora, Citeseer) have higher accuracies when sampling nodes
from the highest score to lowest score (i.e. ’descending’ methods), showing the effectiveness of
the node ranking algorithms on a node classification task.

might contain more defined characteristics of their corresponding category. Therefore, lower score

nodes may contain more information about the community and hence be more beneficial for node

classification.

72

(a)

(b)

Figure 4.5: Low iCVd networks (Pubmed and amazon-photo) graphs have lower accuracies when
sampling nodes from the lowest to highest score (i.e. ’ascending’ methods), showing the ranking
algorithms are inversely beneficial to the node classification task.

Conclusions

Participants in networking platforms continue to upload more data onto these platforms, such as in

academic literature [124] and social networking [73] (being part of the always-on generation [93]

and efficient protocols [3]). It becomes a question of efficiency of whether a subset of the nodes

can be sampled to provide information about other nodes with unknown membership labels, and

73

can be useful for e-health [59]. The study conducted here on a set of networks covering different

information sources shows that the best indicator for whether nodes should be sampled in terms of

ascending or descending centrality is based upon the inverse of coefficient of variation of the degree

of the nodes. Intuitively, this can be understood as being related to the sparseness of the network

topology. An implication of this is that when attempting to infer labels of network participants

in an active learning paradigm, understanding the general degree distribution for communities

can determine whether the sampling should be done in the ascending or descending direction.

Practitioners can use the general rule of thumb (iCVd > 0.8 should use the descending sampling

direction, otherwise ascending) to avoid the computational burden of computing grid searches.

Future work will entail applications in professional networking sites (i.e. LinkedIn) to improve

the ability to adopt a community of followers of a certain label, or finding the best connections

to develop a new affiliation label. These actions can help navigate the labor market [109] for

opportunities or to plan promotions in new markets.

74

CHAPTER 5: ONE-CLASS GRAPH NEURAL NETWORKS FOR

DETECTION OF ANOMALOUS NODES IN ATTRIBUTED GRAPHS

(rh-OCGNN)

Introduction

In chapters 2, 3, and 4, we have discussed flexible regularization and efficient sampling strategies

for node classification task in attributed graph. In this chapter, we turn our focus to another im-

portant task on graph domain, i.e. detection of anomalous nodes, edges, and subgraphs. Studying

these uncommon entities helps improve the performance of learning algorithms and the security of

the underlying systems. We will present a class of graph neural networks (GNN) that is optimal

for anomalous nodes detection on graph structured data.

Anomaly detection involves identifying unusual data that do not follow the expected pattern of

the majority within a dataset. Multiple terminologies are devised in different domains to address

these irregular data, such as anomalies, outliers, discordant observations, exceptions, etc. [21].

In this work, we use anomaly and outlier interchangeably to refer to these anomalous data points

(or nodes). Anomaly detection has captured a large amount of attention in the research commu-

nity with many applications in various domains. It can be used for administering internet protocol

network security measures [112], monitoring crowded scenes in computer vision [63], fraud detec-

tion in finance [46], and surveillance of public health care [20]. In those applications, recognizing

anomalous patterns plays an essential role, as it provides critical and actionable information for

administrative system management or further investigation of irregular events.

Due to its complex nature, anomaly detection still remains a challenging problem. There are many

techniques developed for this task which can be categorized as classification-based such as clus-

75

tering techniques when inferring where to place cluster centers. Interested readers are referred to

the works of [21, 80] for a thorough review. A typical approach utilizes regular data to build a

model capable of describing the range of a class in the domain of a model. Test data can be scored

and compared to a decision threshold (guard value) to determine the points which are considered

anomalous [80] or not. Support Vector Data Description (SVDD) [110] is a prominent anomaly de-

tection algorithm aiming to establish a spherical boundary enclosing normal class data. Unknown

data will be deemed an anomaly if it resides outside the sphere, i.e. its distance from the sphere’s

center exceeds the sphere’s radius.

Attributed graph (network) is a powerful tool to model real-life complex systems where each el-

ement is regarded as a node with associated attributes (features) and the connectivity information

between elements forms edges. This graph-structured feature data is used to represent complex

systems in various domains such as social science (social networks [29]), biology (biochemical

pathways [17]), and material science (molecular networks [34]). Research into network-based ap-

proaches in machine learning and deep learning has been ongoing with the goal of uncovering

information hidden within these data structures. Applications of graph analysis can be catego-

rized into node-level tasks (node classification [85], node regression [74]), edge-level tasks (link

prediction [119], edge classification [2]), and graph-level tasks (graph classification [126], graph

prediction [125]). A key factor determining the success of those tasks is the effectiveness of the

framework in combining two sources of information, i.e. node features and topological structure

of the graph, into representative low-dimensional node embedding (in the form of vectors) [99].

Graph Neural Networks (GNNs) are neural networks operating on the graph domain. GNNs pro-

duce expressive node representations (node embeddings) via an iterative message passing mecha-

nism where each node aggregates its direct neighbors’ feature vectors and updates its own feature

vector with the aggregate information. The final node representation encapsulates structural in-

formation of a k-hop neighborhood. To produce a representation of the entire graph, one simply

76

applies a pooling operator (such as summation) on the set of feature vectors of all nodes [34, 126].

Many GNNs variants have been proposed and achieved state-of-the-art performance on a variety

of tasks. Graph Convolutional Networks (GCN) [48] learn a graph representation via layer-wise

propagation rules representing localized spectral filters. GraphSAGE [37] generates embeddings

by uniformly sampling nodes neighbors and aggregating their features using different choice of

aggregators. Graph Attention Network (GAT) [116] utilizes a attention mechanism to account for

neighbors’ importance in aggregation phase. Simple Graph Convolution (SGC) [121] simplifies

GCN by removing non-linear transitions between layers while retaining its representational power.

The work of [79] demonstrates the expressive node embedding capability of SGC and explores

flexible regularization mechanisms to facilitate meaningful interpretation. Interested readers are

referred to [136] for detailed reviews of GNNs.

Graph anomaly detection (GAD) can be defined as the task of identifying uncommon graph en-

tities (nodes, edges, subgraphs) that differ significantly from the expected pattern of reference

entities. As graph structured data is gaining popularity due to its power in capturing a rich amount

of information, developing an efficient GAD framework becomes necessary. GAD can help in

revealing suspicious patterns in networks, and hence provide useful insight to detect fraudulent

transactions and strengthen the integrity of complex systems in finance, commercial, telecommu-

nication, etc. [5]. Various GAD methods have been proposed over the years and can be categorized

based on the types of anomalous graph entity, the characteristics of input graph data (unattributed

or attributed, static or dynamic), availability of annotated training data (supervised, unsupervised,

semi-supervised), etc. [81]. In this work, we focus on the detection of anomalous nodes in at-

tributed graph data.

Detecting anomalous nodes in attributed graph data can be achieved by applying traditional ma-

chine learning techniques to identify anomalies on the node feature space. This strategy ignores

the supplementary node connectivity information and hence often yields poor performance. One

77

might attempt to incorporate additional features capturing the network topology such as a node’s

importance measures (in and out degree, betweeness centrality, closeness centrality, eigenvector

centrality, etc. [70]). However, manual feature engineering is often not desirable due to its heavy

dependence on human prior knowledge regarding the specific networks and the application do-

main. On the other hand, network-based techniques [5, 14] utilize only connectivity information

to construct densely connected communities in the networks, then mark anomalous nodes as those

that do not belong to any community. This approach ignores valuable information provided by

node features and fails to detect anomalous patterns that can occur in the feature space. Therefore,

it is better to use an approach based upon GNN which utilizes both aspects of the information.

Early GAD works [32, 69, 78] incorporate node feature and connectivity information to discover

densely connected communities (in full or subspace of relevant node features) and identify local

outliers whose node attributes deviate considerably from direct neighbors. The work of [32] spec-

ifies a multivariate probabilistic model on the full set of node attributes, but it does not work well

in many real-life applications involving large feature space (due to the curse of dimensionality)

or upon arbitrary node feature distributions. A drawback of [69, 78] is its dependence on a good

community analysis, which is difficult to perform on highly sparse networks. Additionally, their

shallow linear mechanisms are inefficient in capturing complex interactions between node features

and their connectivity.

With the recent increase in popularity of GNNs, there are efforts to adopt it for its powerful node

representation learning in the task of GAD. The works [25, 58] leverage the graph autoencoder

framework with the GCN as an encoder to synthesize and compress node features as well as the

graph topology into a low dimensional embedding space. While [25] attempts to detect anomalous

nodes via a reconstruction error, [58] accomplishes the detection task via an estimated Gaussian

mixture density function on the latent embedding space. As the graph autoencoder objective is

to compress and reconstruct original data, the learnt node embedding is not a efficient represen-

78

tation and is not tailored directly to the GAD task. [120] proposes a One-Class Graph Neural

Network (OCGNN) incorporating the SVDD hypersphere learning principle into the GNNs node

representation learning mechanism to tackle anomaly detection on attributed graph data. OCGNN

offers versatility that allows users to adopt any choice of GNN variants. Its objective function

efficiently guides GNNs to explore node embedding space directly tailored to the GAD task, i.e.

mapping normal class data compactly around a given center, and at the same time construct a min-

imal volume hypersphere enclosing the data. The framework uses the sphere’s radius as a decision

threshold and detects anomalies as nodes reside outside the sphere’s boundary, i.e. their distances

from the sphere’s center exceed the radius. However, since it attempts to learn the radius (deci-

sion threshold) directly during the training phase, the model is highly prone to overfitting as the

learned threshold might behave sporadically due to ineffective training sampling. Incorporating the

radius parameter magnitude into the loss function produces an effect where the ideal radius size

can be altered in order to reduce the loss at the detriment of the training and testing classification

results. Another drawback is the lack of control over the decision threshold inhibiting users from

fine tuning it with respect to their domain applications.

We propose radius as hyperparameter OCGNN (rh-OCGNN) as a superior alternative to OCGNN

for the GAD task on attributed graph. Inspired by OCGNN, we modify its design treating the

decision threshold radius as a hyperparameter rather than a learnable parameter, which contributes

to the loss based upon its magnitude. With the rh-OCGNN, practitioners are able to incorporate

domain knowledge in determining appropriate decision threshold. Our design also gives users

considerable leeway to fine-tune the decision threshold to optimize their anomaly detection sys-

tem with respect to any accuracy metrics of interest. Furthermore, the proposed model utilizes

training samples more effectively, resulting in an easier tuning process and a more robust decision

threshold. The main contributions of this work are listed as follows:

79

• We demonstrate the pitfall of area under the ROC curve (AUC) as a sole accuracy metric for

anomaly detection problem

• We thoroughly investigate the overfitting issue of the state-of-the-art OCGNN, and present is

a flexible GAD framework rh-OCGNN combining GNN’s powerful representation learning

directly with hypersphere learning for anomaly detection. The rh-OCGNN offers direct

control of the sphere’s radius, i.e. the decision threshold, facilitating incorporation of users’

domain knowledge and optimization of anomaly detection system for their applications.

Methodology

Anomaly detection and hypersphere learning

Detecting anomalous nodes in a network can be defined as a one-class classification problem in

which a classifier is built upon representative normal class data to describe normal behavior [80].

The model assigns anomaly scores to test data and classifies them as normal or anomalous by

comparing their scores to a decision threshold. [110] propose Support Vector Data Description

(SVDD), which provides a description of normal class by constructing a compact hypersphere

enclosing all (or most of) training normal samples. Anomaly scores of test data are computed

based on their distances from the sphere’s center and the decision threshold is assigned as the

sphere’s radius.

Given a set of N training samples xi ∈ RD, i = 1,2, ...,N from the normal class and a mapping

function ΦF : RD→ RF to project input data onto a high-dimensional feature space, SVDD aims

to find a minimum volume hypersphere characterized by a center c ∈ RF and a radius R > 0 to

enclose most of the training samples on the feature space RF :

80

min
R,c,ξ

R2 + τ

N

∑
i=1

ξi

s.t. ∥ΦF (xi)− c∥2
2 ≤ R2 +ξi,ξi ≥ 0,∀i

(5.1)

where ∥.∥2 is the Euclidean norm and ξi are slack variables that allow some relaxation of the set

of constraints and hence produce a soft boundary (i.e. some training samples can be outside of the

sphere). τ > 0 is a hyperparameter controlling the trade-off between the violations of the boundary

and the volume of the sphere. SVDD classifies a test data xi as an anomaly if it resides outside of

the hypersphere, i.e. its distance from the sphere’s center exceeds the radius.

Hypersphere learning on attributed graph data

An attributed graph G = (V;X;A) consists of three components: a collection of nodes (vertexes)

V= (v1,v2, ...,vN) containing N nodes, a node attribute matrix X∈RN×D where each row xvi ∈RD

is feature vector of node vi, and an adjacency matrix A ∈ RN×N where each element ai j is the

weighted edge between node vi and v j (ai j = 0 if vi and v j are not connected).

GNNs are powerful neural network frameworks capable of learning representation on attributed

graph data [126]. Its power comes from utilizing the message passing mechanism, i.e. iterative

aggregating neighborhood representation, to learn expressive node embedding for various down-

stream tasks such as node classification, link prediction, and graph classification [126, 34, 136].

We denote a L-layer GNN model as g(X,A;W) where the input consists of nodes attribute matrix

X and nodes connectivity information (i.e. the adjacency matrix A). W = {W(1),W(2), ...,W(L)}

is the set of network weights. The model outputs node embedding Z ∈ RN×F where each row

zvi ∈ RF is vector representation of node vi.

81

A L-layer GNN is effectively a collection of L stacked layers, each of which recursively updates

the node representation by aggregating information from 1-hop neighbors. As a result, the model

produces node embedding capturing structural information within L-hop neighborhood [126]. For

a specific lth layer, the output node embedding H(l+1) can be derived from the input H(l) (which is

the output node embedding of the previous layer) as follows:

H(l+1) = g(H(l),A,W(l)) (5.2)

[120] propose OCGNN framework for anomaly detection task on graph structured data. Their

GAD paradigm combines hypersphere learning objective with GNNs to produce latent node em-

bedding capable of mapping normal class nodes as compactly as possible around a given center.

This approach can be seen as an extension of deep one class classification framework proposed in

[89] on graph domain. The OCGNN problem can be derived as:

min
r,c,ξ

r2 +
1

βK

K

∑
i=1

ξi

s.t. ∥g(X,A;W)vi− c∥2 ≤ r2 +ξi,ξi ≥ 0,∀i

(5.3)

The set of constraints on ξi can be rewritten as ∥g(X,A;W)vi− c∥2− r2 ≤ ξi and ξi ≥ 0. This is

equivalent to ξi = max(0,∥g(X,A;W)vi− c∥2−r2). Thus, the OCGNN problem in 5.3 can be cast

as an unconstrained optimization as:

min
r,c,W

r2 +
1

βK ∑
vi∈Vtr

max(∥g(X,A;W)vi− c∥2− r2) (5.4)

82

Formally, OCGNN attempts to minimize the objective loss function:

L (r,c,W) =
1

βK ∑
vi∈Vtr

[
∥g(X,A;W)vi− c∥2− r2

]+
+ r2 (5.5)

where K = |Vtr| is the size of the training set Vtr ⊆ V containing only normal nodes, [.]+ =

max(0, .) is a max function, c∈RF and r ∈R+ are the center and radius of the sphere respectively,

and g(X,A;W)vi is the vector representation of node vi obtained via the chosen GNN g(X,A;W).

The hyperparameter β ∈ (0,1] controls the update of the sphere’s radius (see the explanation below

and Eq. 5.31) and thus determines the flexibility of the model by allowing a fraction of training

nodes being mapped outside of the sphere boundary.

The first term of the loss function penalizes the distances of nodes mapped outside of the sphere,

while the second term characterizes the goal of hypersphere learning, i.e. minimizing the sphere

volume by reducing its radius r.

As OCGNN is developed upon deep neural networks, the minimization of the loss function in

Eq. 5.5 can be done using gradient descent algorithm. However, the work of [89] has pointed out

that treating the center c as a free parameter of the optimization would result in a trivial solution.

Hence, we adopt the suggestion in [89, 120] to fix the center c as the mean of the training node

representations resulted from an initial forward pass:

c =
1
K ∑

vi∈Vtr

g(X,A;W)vi (5.6)

Thus, we can consider optimizing the loss functions in Eq. 5.5 with respect to r and W :

LR(r,W) =
1

βK ∑
vi∈Vtr

[
∥g(X,A;W)vi− c∥2− r2

]+
+ r2 (5.7)

83

To reduce overfitting, one can impose weight decay regularization placed upon the network weights

W by adding a weight decay term into the loss in Eq. 5.5:

LR(r,W) =
1

βK ∑
vi∈Vtr

[
∥g(X,A;W)vi− c∥2− r2

]+
+ r2 +

λ

2

L

∑
l=1

∥∥∥W(l)
∥∥∥2

F

LR(r,W) = L (r,W)+
λ

2

L

∑
l=1

∥∥∥W(l)
∥∥∥2

F

(5.8)

where λ > 0 is the weight decay coefficient and ∥.∥F denotes the Frobenius norm.

Optimization for OCGNN

In this section, we present the approach to minimize the loss in Eq. 5.8. The general procedure

depends on the architecture of the chosen GNN. Here, we discuss how the optimization can be

achieved on a framework with 2-layer GNN with P hidden neurals in the first layer and Q output

neurals in the second layers. The overall framework is shown in figure 5.1.

For an input attributed graph data consisting of a node feature matrix X ∈ RN×D and an adjacency

matrix A ∈RN×N , the first layer of the GNN model aggregates neighborhood features and updates

the input feature of node vi as:

h(1)
i ←

1
di +1

h(0)
i +

n

∑
j=1

ai j√
(di +1)

(
d j +1

)h(0)
j (5.9)

or equivalently

h(1)
i ←

1
di +1

x(0)i +
n

∑
j=1

ai j√
(di +1)

(
d j +1

)x(0)j (5.10)

84

This can be expressed compactly as H̄(1) = SH(0) = SX, where S is the adjusted adjacency matrix

with added self-loops (introduced in Methodology section of chapter 2):

S = D̃−
1
2 ÃD̃−

1
2 (5.11)

where Ã = A+ I and D̃ is the diagonal degree matrix of Ã.

Then, the weighted input of layer 1 is computed by linearly transforming the input h̄(1) using a

learnable weight matrix W(1) ∈ RP×D:

z(1) = W(1)× h̄(1) (5.12)

The output of layer 1, h1 ∈ RP, is produced by applying an element-wise activation function σ1(.)

to the weighted input:

h(1) = σ1(z(1)) (5.13)

Similarly, layer 2 of the GNN model produces the final output of node representation by taking the

output of layer 1 as its input and repeating the aforementioned transformations using a learnable

weight matrix W(2) ∈ RQ×P:

H̄(2) = SH(1)

z(2) = W(2)× h̄(2)

h(2) = σ2(z(2))

(5.14)

85

Compactly, we can rewrite the above transformation with the 2-layer GNN framework as:

H(2) = g(X,A;W = {W(1),W(2)})

= σ2

(
SH(1)W(2)T

)
= σ2

(
S
(

σ1

[
SXW(1)T

])
W(2)T

) (5.15)

Then, with K training samples, the loss of OCGNN can be constructed as:

LR(r,W) =
1

βK

K

∑
k=1

[∥∥∥h(2)k − c
∥∥∥2
− r2

]+
+ r2 +

λ

2

2

∑
l=1

∥∥∥W(l)
∥∥∥2

F

LR(r,W) = L (r,W)+
λ

2

2

∑
l=1

∥∥∥W(l)
∥∥∥2

F

(5.16)

To minimize the loss in Eq. 5.16, we utilize the gradient descent algorithm, which requires the

gradient of the parameters r,W(1),W(2):

The gradient w.r.t. radius r is as follows:

∂LR

∂ r
= 2r+

1
βK

K

∑
i=1

0 if ∥h(2)− c∥2− r2 ≤ 0

−2r else
(5.17)

To compute the gradient w.r.t. W(1) and W(2), we apply backpropagation algorithm. Let Li =

1
β

[∥∥∥h(2)i − c
∥∥∥2
− r2

]+
be the loss of one training sample i. We first compute the gradient of Li

w.r.t. W(1) and W(2) using the following procedure:

1. Compute the gradient of weighted input of layer 2:

86

Figure 5.1: The overall framework of GAD involving a 2-layer GNN. The GNN maps the original
feature space x ∈ RD to the node embedding h(2) ∈ RQ

.

δ
(2) =

∂Li

∂ z(2)
=

∂Li

∂h(2)
.
∂h(2)

∂ z(2)
(5.18)

We have:

∂Li

∂h(2)
=

0 if ∥h(2)− c∥2− r2 ≤ 0

1
β
(h(2)− c) else

(5.19)

∂h(2)

∂ z(2)
= σ

′
2(z

(2)) (5.20)

87

Hence:

δ
(2) =

0 if ∥h(2)− c∥2− r2 ≤ 0

1
β
(h(2)− c) else

⊙σ
′
2(z

(2) (5.21)

2. Compute the gradient of input of layer 2:

δ̄
(2) =

∂Li

∂ h̄(2)
=

∂Li

∂ z(2)
.
∂ z(2)

∂ h̄(2)
= W(2)T .δ (2) (5.22)

3. Compute the gradient of output of layer 1:

γ
(1) =

∂Li

∂h(1)i

= ∑
j∈Ni

∂Li

∂ h̄(2)j

.
∂ h̄(2)j

∂h(1)i

= ∑
j∈Ni

δ̄
(2)
j .

∂ h̄(2)j

∂h(1)i

(5.23)

We have:

∂ h̄(2)j

∂h(1)i

=

diag

(
1

dk+1

)
if i = j

diag

(
a ji√

(di+1)(d j+1)

)
else

(5.24)

where Ni contains sample (node) i and its 1-hop neighboring samples (nodes) in the training

data and diag(.) returns diagonal matrix of size P×P

4. Compute the gradient of weighted input of layer 1:

δ
(1) =

∂Li

∂ z(1)
=

∂Li

∂h(1)
.
∂h(1)

∂ z(1)
= γ

(1)⊙σ
′
1(z

(1)) (5.25)

5. Compute the gradient of W(2):

∂Li

∂W(2)
=

∂Li

∂ z(2)
.

∂ z(2)

∂W(2)
= δ

(2)T .h̄(2) (5.26)

6. Compute the gradient of W(1):

88

∂Li

∂W(1)
=

∂Li

∂ z(1)
.

∂ z(1)

∂W(1)
= δ

(1)T .h̄(1) (5.27)

Then, the gradient of the loss in Eq. 5.16 w.r.t. W(1) and W(2) can be achieved as:

∂L

∂W(1)
=

1
K

K

∑
i=1

∂Li

∂W(1)
+λ .W(1) =

1
K

K

∑
i=1

δ
(1)T
i .h̄(1)i +λ .W(1) (5.28)

∂L

∂W(2)
=

1
K

K

∑
i=1

∂Li

∂W(2)
+λ .W(2) =

1
K

K

∑
i=1

δ
(2)T
i .h̄(2)i +λ .W(2) (5.29)

Now, to minimize the OCGNN loss in Eq. 5.16, we iteratively update the parameters r, W(1), and

W(2) with gradient descent algorithm.

r(t+1)← r(t)−ηr×

2r+
1

βK

K

∑
i=1

0 if ∥h(2)− c∥2− r2 ≤ 0

−2r else

W(1)(t+1)←W(1)(t)−ηW

1
K

K

∑
i=1

δ
(1)T
i .h̄(1)i +λ .W(1)

W(2)(t+1)←W(2)(t)
ηW

1
K

K

∑
i=1

δ
(2)T
i .h̄(2)i +λ .W(2)

(5.30)

where ηr and ηW are step sizes for the update.

As suggested by the work of [120], we update r and W alternatively since r is not an inner pa-

rameter of the GNN model. In particular, we first fix r and update W only. Then, after every φ th

iteration, with the latest update W ′, we compute the distance set dVtr of the training samples and r

89

can be updated by linear percentile search on the distance set:

dVtr = {dvi|dvi =
∥∥g(X,A;W ′)vi− c

∥∥2
,vi ∈ Vtr}

= {dvi|dvi =
∥∥∥h(2)vi − c

∥∥∥2
,vi ∈ Vtr}

r← P(1−β)×100%(dVtr)

(5.31)

where Pi% is the i-th percentile. It’s obvious that after a round of update, there are (β)×100% of

training nodes mapped outside of the boundary since their distances exceed r.

The backpropagation algorithm to update a general L-layer OCGNN can be summarized as fol-

lows:

1. Compute the gradient of weighted input of layer L:

δ
(L) =

∂Li

∂ z(L)
=

∂Li

∂h(L)
.
∂h(L)

∂ z(L)

=

0 if ∥h(L)− c∥2− r2 ≤ 0

1
β
(h(L)− c) else

⊙σ
′
L(z

(L)
(5.32)

2. Backpropagate the gradient:

For each l = L−1,L−2, ...,1 compute the gradient of weighted input of layer l

δ
(l) =

∂Li

∂ z(l)
=

∂Li

∂h(l)
.
∂h(l)

∂ z(l)
= γ

(l)⊙σ
′
l (z

(l)) (5.33)

where:

δ̄
(l+1) =

∂Li

∂ h̄(l+1)
=

∂Li

∂ z(l+1)
.
∂ z(l+1)

∂ h̄(l+1)
= W(l+1)T .δ (l+1) (5.34)

90

γ
(l) =

∂Li

∂h(l)i

= ∑
j∈Ni

∂Li

∂ h̄(l+1)
j

.
∂ h̄(l+1)

j

∂h(l)i

= ∑
j∈Ni

δ̄
(l+1)
j .

∂ h̄(l+1)
j

∂h(l)i

(5.35)

∂ h̄(l+1)
j

∂h(l)i

=

diag

(
1

dk+1

)
if i = j

diag

(
a ji√

(di+1)(d j+1)

)
else

(5.36)

where Ni contains sample (node) i and its 1-hop neighboring samples (nodes) in the training

data and diag(.) returns diagonal matrix

3. Compute the gradient w.r.t. weight W(l) of layer l:

∂L

∂W(l)
=

1
K

K

∑
i=1

∂Li

∂W(l)
+λ .W(l) =

1
K

K

∑
i=1

δ
(l)T
i .h̄(l)i +λ .W(l) (5.37)

Training OCGNN

The training procedure of OCGNN can be summarized in Algorithm 3. At the outset, the set

of weights W is initialized and used to produce the initial node representation matrix H(L) =

g(X,A;W) ∈ RN×F . The radius r is set as 0, and the center is computed as the mean of node

representation in training data c = 1
K ∑vi∈Vtr h(L)vi . Then, the set of distances between the center

and training nodes are computed dVtr = {dvi|dvi = ∥g(X,A;W)vi− c∥2 ,vi ∈ Vtr} and the loss is

derived as in Eq. 5.8. The framework can optimize the loss by updating the network weights W

using stochastic gradient descent while the radius r is updated alternately (after every φ th epochs

during training phase) via linear percentile search on the distance set dVtr as follows:

r← P(1−β)×100%(dVtr) (5.38)

91

Note that in this work, we update neural networks weights W using PyTorch [77] which is an open

source deep learning framework.

Algorithm 3 Training OCGNN models
Input: Attributed graph G = (V;X;A), normal training nodes Vtr, β

Output: Weight W = {W(1), ...,W(L)}, radius r ∈ R+, and center c ∈ RF

1: Initialize W [i=0]

2: Initialize r[i=0] = 0; Compute c = 1
K ∑vi∈Vtr g(X,A;W [i=0])vi

3: while i ≤ num_iter do
4: Compute node representation: H(L)[i] = g(X,A;W [i])

5: Compute distance set: d[i]
Vtr

= {dvi|dvi =
∥∥∥h[i](L)vi − c

∥∥∥2
,vi ∈ Vtr}

6: Compute the loss: L
[i]

R = 1
βK ∑

K
k=1

[
d[i]

Vtr
−
(

r[i]
)2
]+

+
(

r[i]
)2

+ λ

2 ∑
L
l=1

∥∥∥W[i](l)
∥∥∥2

F

7: Update W [i+1] using gradient descent and backpropagation algorithms
8: if i mod φ = 0 then
9: Update radius: r[i+1]← P(1−β)×100%(d

[i]
Vtr

)
10: end if
11: i← i+1
12: end while

After training phase, the optimal W ∗ and r∗ can be used to calculate the distance from the center

dvi = ∥g(X,A;W ∗)vi− c∥2 and anomaly score S(vi) = dvi− r∗2 for a node vi ∈ V. Node vi is then

classified as an anomaly if S(vi)> 0 or a normal node otherwise.

rh-OCGNN

The above OCGNN framework detects anomalous nodes by comparing their distances from the

sphere center (on the GNN’s latent embedding space) and the radius. In effect, the radius is an

intrinsic threshold of the model. Tuning threshold is important to achieve decent performance for

anomaly detection task [108, 117]. One drawback of the above OCGNN is the incapability of

tuning the radius directly. Since the radius is learned to optimize the loss (Eq. 5.5) using training

data, the boundary achieved might be overfitting and not generalize well on test data. Although

92

one might control the volume of the sphere via β , Eq. 5.31 suggests that when β is set too small,

the linear percentile search will result in too few training samples mapped outside the boundary.

The consequence is less training data fed into the penalty part of the loss function (the first term in

Eq. 5.5) inhibiting the ability to learn a good embedding space to describe normal class data.

Instead of building a hypersphere with the smallest volume in the latent space of GNN, we en-

courage the model to learn a mapping space (via the set of weights W) that projects normal class

data compactly within a hypersphere of given radius. Figure 5.2 illustrates the architecture of the

proposed framework. This is equivalent to the following optimization problem:

min
c,ξ

1
K

K

∑
i=1

ξi

s.t. ∥g(X,A;W)vi− c∥2 ≤ r2 +ξi,ξi ≥ 0,∀i

(5.39)

With similar derivation as described earlier, the problem in 5.39 can be cast as an unconstrained

optimization as:

min
c,W

1
K ∑

vi∈Vtr

max(∥g(X,A;W)vi− c∥2− r2) (5.40)

Formally, our proposed framework aims to minimize the following loss function:

L (W) =
1
K ∑

vi∈Vtr

[
∥g(X,A;W)vi− c∥2− r2

]+
+

λ

2

L

∑
l=1

∥∥∥W(l)
∥∥∥2

F
(5.41)

Again, we adopt the suggestion from the work of [89, 120] to fix the hypersphere center c as the

93

Figure 5.2: The overall framework of our proposed rh-OCGNN for graph anomaly detection
(GAD) on attributed graph data. Given an input attributed graph, rh-OCGNN guides GNNs to
explore embedding space mapping normal nodes closely within a hypersphere of user-specified
radius r.

mean of the training node representations resulting from an initial forward pass:

c =
1
K ∑

vi∈Vtr

g(X,A;W)vi (5.42)

In Eq. 5.41, r becomes a hyperparameter determined by the user before training the model. The

first term is a penalization of the distances of nodes mapped outside of the sphere and the second

term is weight decay regularization. To distinguish from the above OCGNN, we name our model

as "radius as hyperparameter OCGNN" (rh-OCGNN). Our rh-OCGNN framework allows practi-

tioners to employ domain knowledge in choosing appropriate decision threshold value (in form of

the radius) for their anomaly detection applications. In addition, users can further optimize their

94

anomaly detector by directly tuning the radius with respect to any performance metrics related to

the corresponding domains.

Optimization for rh-OCGNN

To minimize the loss in Eq. 5.41, we apply the same backpropagation algorithm described above

to derive the gradient of the weights W = W(1), ...,W(L), then utilize gradient descent to update

them, respectively, as follows:

1. Compute the gradient of weighted input of layer L:

δ
(L) =

∂Li

∂ z(L)
=

∂Li

∂h(L)
.
∂h(L)

∂ z(L)

=

0 if ∥h(L)− c∥2− r2 ≤ 0

1
β
(h(L)− c) else

⊙σ
′
L(z

(L)
(5.43)

2. Backpropagate the gradient:

For each l = L−1,L−2, ...,1 compute the gradient of weighted input of layer l

δ
(l) =

∂Li

∂ z(l)
=

∂Li

∂h(l)
.
∂h(l)

∂ z(l)
= γ

(l)⊙σ
′
l (z

(l)) (5.44)

where:

δ̄
(l+1) =

∂Li

∂ h̄(l+1)
=

∂Li

∂ z(l+1)
.
∂ z(l+1)

∂ h̄(l+1)
= W(l+1)T .δ (l+1) (5.45)

γ
(l) =

∂Li

∂h(l)i

= ∑
j∈Ni

∂Li

∂ h̄(l+1)
j

.
∂ h̄(l+1)

j

∂h(l)i

= ∑
j∈Ni

δ̄
(l+1)
j .

∂ h̄(l+1)
j

∂h(l)i

(5.46)

95

∂ h̄(l+1)
j

∂h(l)i

=

diag

(
1

dk+1

)
if i = j

diag

(
a ji√

(di+1)(d j+1)

)
else

(5.47)

where Ni contains sample (node) i and its 1-hop neighboring samples (nodes) in the training

data and diag(.) returns diagonal matrix

3. Compute the gradient w.r.t. weight W(l) of layer l:

∂L

∂W(l)
=

1
K

K

∑
i=1

∂Li

∂W(l)
+λ .W(l) =

1
K

K

∑
i=1

δ
(l)T
i .h̄(l)i +λ .W(l) (5.48)

where ηW are step sizes for the update.

Training rh-OCGNN

The training procedure of rh-OCGNN can be summarized in Algorithm 4. At the outset, the

set of weights is initialized and used to produce an initial node representation matrix H(L) =

g(X,A;W) ∈RN×F . The center is set as the mean of initial node representation c = 1
K ∑vi∈Vtr h(L)vi .

Then, the set of distances between the center and training nodes are computed dVtr = {dvi|dvi =∥∥∥h(L)vi − c
∥∥∥2

,vi ∈ Vtr} and the loss is derived as in Eq. 5.41. The framework can optimize the loss

by updating the network weights W using stochastic gradient descent. Again, we utilize PyTorch

[77] to perform updating the network’s weights W .

After the training phase, the optimal W ∗ can be used to calculate the distance from the center

dvi = ∥g(X,A;W ∗)vi− c∥2 and the anomaly score S(vi) = dvi − r2 for a node vi ∈ V. Node vi is

then classified as an anomaly if S(vi)> 0 or as a normal node otherwise.

96

Algorithm 4 Training rh-OCGNN models
Input: Attributed graph G = (V;X;A), normal training nodes Vtr, radius r ∈ R+

Output: Weight W = {W(1), ...,W(L)}, center c ∈ RF

1: Initialize W [i=0]

2: Compute c = 1
K ∑vi∈Vtr g(X,A;W [i=0])vi

3: while i ≤ num_iter do
4: Compute node representation: H [i](L) = g(X,A;W [i])

5: Compute distance set: d[i]
Vtr

= {dvi|dvi =
∥∥∥h[i](L)vi − c

∥∥∥2
,vi ∈ Vtr}

6: Compute the loss: L
[i]

R = 1
βK ∑

K
k=1

[
d[i]

Vtr
− r2

]+
+ λ

2 ∑
L
l=1

∥∥∥W[i](l)
∥∥∥2

F
7: Update W [i+1] using gradient descent and backpropagation algorithms
8: i← i+1
9: end while

Tuning the radius

One of the important hyperparameters in our rh-OCGNN is the radius r. As described above, the

radius r is the threshold of anomaly system. With our framework, users have the flexibility to

specify the value of r based on their domain knowledge and applications.

In some applications, without prior knowledge or domain requirement for the threshold r, users

have the option to perform hyperparameter optimization to achieve the best performance. Here,

we describe a grid search process to tune the radius r in Algorithm 5. First, the normal samples are

partitioned into training set Vtr and validation set Vval . Then we choose a performance metric M

to evaluate the capability of the model and set of candidate radii arrr = {r0,r1, ...,rm} of interest.

For each values of radius r = ri belonging to the candidate set, we train rh-OCGNN on the training

set and store its performance on the validation set Mri . Depending on the application, the optimal

radius r∗ is chosen as one that maximizes or minimizes the corresponding set of performance

metric:

97

r∗ = min
ri
{Mr1,Mr2, ...,Mrm}

OR

r∗ = max
ri
{Mr1,Mr2 , ...,Mrm}

(5.49)

Algorithm 5 Tuning hyperparameter r for rh-OCGNN models
Input: Attributed graph G = (V;X;A), normal training nodes Vtr, validation nodes Vval , array of
radii arrr = {r0,r1, ...,rm}
Output: Optimal radius r∗ and Weight W ∗, center c ∈ RF

1: for ri in arrr do
2: Assign the radius r = ri
3: Initialize W [i=0]

4: Compute c = 1
K ∑vi∈Vtr g(X,A;W [i=0])vi

5: while i ≤ num_iter do
6: Compute node representation: H [i](L) = g(X,A;W [i])

7: Compute distance set: d[i]
Vtr

= {dvi|dvi =
∥∥∥h[i](L)vi − c

∥∥∥2
,vi ∈ Vtr}

8: Compute the loss: L
[i]

R = 1
βK ∑

K
k=1

[
d[i]

Vtr
− r2

]+
+ λ

2 ∑
L
l=1

∥∥∥W[i](l)
∥∥∥2

F
9: Update W [i+1] using gradient descent and backpropagation algorithms

10: i← i+1
11: end while
12: Check model’s performance on validation set and store Mri

13: end for
14: r∗ = minri{Mr1 ,Mr2, ...,Mrm}OR r∗ = maxri{Mr1,Mr2, ...,Mrm}

Data

Three popular and publicly available attributed graph datasets are employed in order to explore the

proposed model, namely Cora [67], Citeseer [33], and Pubmed [94]. These datasets contain scien-

tific publications (regarded as nodes) where each paper is represented by a binary vector indicating

the presence of informative keywords (regarded as node’s features). The citations between papers

98

form edges and each paper can be categorized into a specific topic (regarded as label). Datasets

statistics are given in Table 6.1.

We follow the processing strategy in [120] to derive suitable data for the GAD task, that is, as-

signing one category as normal class (“Neural Networks”, “IR” and “Diabetes Mellitus Type 2”

for Cora, Citeseer, and Pubmed respectively) and the remaining categories as abnormal class. The

training set contains randomly sampled nodes from the normal class only. On the contrary, half of

the validation and test sets consist of normal nodes and the other half are of abnormal nodes. The

proportion of normal samples in the train, validation, and test sets are 60/15/25% of total normal

class data, respectively.

Dataset Nodes/Edges/Classes Features Train/Val/Test
Cora 2708/5429/7 1433 490/246/410
Citeseer 3327/4732/6 3703 420/210/352
Pubmed 19717/44338/3 500 4725/2364/3936

Table 5.1: Summary statistics of three citation datasets and the size of train/val/test sets used in
this work.

Experiments

We adopt and slightly modify the OCGNN setup in [120] to examine the performance of popu-

lar GNN frameworks, namely GCN [48], GAT [116], GraphSAGE [37], and SGC [121] for our

proposed rh-OCGNN paradigm. Three experiments are conducted to investigate the drawback of

OCGNN and demonstrate the excellent performance of rh-OCGNN.

In the first experiment, three OCGNN models (OC-GCN, OC-GAT, OC-GraphSAGE) are repli-

cated as in [120]. The hyperparameter β that controls the size of the sphere is set as 0.1. We use

Glorot uniform weight initialization [36] to initialize the weights of the network. All models are

99

trained for a maximum of 5000 epochs using the AdamW optimizer [61] with a learning rate of

0.001 and a weight decay coefficient of 0.0005. The training process is allowed to stop early based

on validation loss and AUC score with a patience of 100 epochs. For each OCGNN model, we use

two different network structures: a three layers of sizes 64-64-32 (on Cora and Citeseer datasets)

and a two layers of sizes 128-64 (on Pubmed dataset). Each hidden layer is followed by the ReLU

activation function and then a dropout layer of 0.5 rate is applied. Pooling aggregator is adopted

for each GraphSAGE layer. For OC-GAT, the number of attention head is set as 8.

The second experiment is designed to examine the effect of the hyperparameter β on the loss

function and the radius of OCGNN using OC-GAT, OC-GCN, and OC-SGC. An exponential grid

of 30 values of β from e−10 to e−0 are evaluated. We adopt the setting of the first experiment with

two exceptions: the number of maximum training epochs is reduced to 2000, and the criterion for

early stopping is changed to validation accuracy rate. For OC-SGC, we set the number of hops

k = 2 and the number of output units as 32. OC-GCN and OC-GAT network structures are kept

the same as in the first experiment.

The last experiment illustrates a typical tuning process for the rh-OCGNN paradigm. Three rh-

OCGNN models (rh-OC-GAT, rh-OC-GCN, and rh-OC-SGC) are evaluated. For hyperparameter

r, an exponential grid of 30 values from e−2 to e−10 are used. We adopt the same setting as in

the second experiment for common hyperparameters, except that the number of maximum training

epochs is reduced to 1000. The network structures of rh-OC-GAT, rh-OC-GCN, and rh-OC-SGC

are kept the same as in the second experiments.

We implement our proposed framework (rh-OCGNN) and OC-SGC using PyTorch [77] and Deep

Graph Library [118]. Other OCGNN models implementation is adopted and edited from [120]

100

Github repository 1. We release the source code for all models in our Github repository 2 for

reproducibility purposes. All experiments are carried out using Kaggle kernels 3 and Azure 4

Standard NC6 Compute Instance with 1 GPU NVIDIA Tesla K80.

Results

Table 5.2 shows the results of our first experiment where we replicate three OCGNN models (OC-

GAT, OC-GCN, and OC-SAGE) that have been evaluated in [120]. The average AUCs are similar

to the original results reported in the previous study. AUC assumes values from 0 to 1 and serves

as an aggregate measure of the classifier’s capability to discriminate between normal objects and

anomalies. In practice, AUC of 0.7 or less implies poor discrimination, 0.7 to 0.8 suggests ac-

ceptable discrimination, 0.8 or above indicates excellent discrimination [40]. OC-GAT is the most

desirable GAD framework on Cora for its stelar discriminating power (AUC of 89.57%), while

OC-SAGE appears to be a more effective framework on both Citesser and Pubmed (AUCs of

83.10% and 77.07% respectively). Our experimental exploration reaffirms the performance of the

state-of-the-art OCGNN. Although it appears that the models achieve somewhat decent perfor-

mance, one should be aware of the insufficiency of AUC as the sole measurement of accuracy

for binary classification task [60]. AUC was designed to provide a summary measurement of a

classifier’s predictive power across all possible choices of threshold. The intention was to prevent

any subjectivity in threshold choice from influencing accuracy evaluation. However, for anomaly

detection problem discussed in this work, the model has an intrinsic threshold, i.e. the radius of

the description sphere, and hence, its performance should not be evaluated using AUC alone.

1https://github.com/WangXuhongCN/OCGNN
2https://github.com/phuongpho/rh-OCGNN
3https://www.kaggle.com/code
4https://azure.microsoft.com/en-us/

101

Method Cora Citeseer Pubmed
Our experiment
OC-GAT 89.57 ± 0.05 76.15 ± 0.03 57.76 ± 0.01
OC-GCN 79.74 ± 0.07 64.11 ± 0.03 53.69 ± 0.02
OC-SAGE 86.81 ± 0.06 83.10 ± 0.13 77.07 ± 0.01
Results in [120]
OC-GAT 88.19 ± 0.02 79.06 ± 0.03 60.98 ± 0.01
OC-GCN 73.25 ± 0.02 62.81 ± 0.01 54.53 ± 0.01
OC-SAGE 86.97 ± 0.04 85.62 ± 0.01 74.72 ± 0.03

Table 5.2: Results of the first experiment where we replicate OCGNN with three popular GNN
frameworks - GCN, GAT, and GraphSAGE. Test AUCs (in percentage) averaged over 10 indepen-
dent initializations and their corresponding standard deviations. Note that the standard deviations
are not converted to percentage to keep consistent with [120]. The best results are highlighted
in boldface. OC-SAGE outperforms its peers on Citeseer and Pubmed datasets while OC-GAT
achieves highest average AUC on Cora dataset.

Figure 5.3 shows the performance of the OCGNN models in the first experiment on three other

predictive metrics: accuracy, precision, and recall rates. Given the balanced nature of the test

sets (described in Data section of this chapter), the low accuracy rates reveal the false impression

of excellent performance left by the AUCs. We also notice an intriguing pattern where models

achieve outstanding recall rates (except for OC-GAT on Pubmed) while average out mediocre

precision rates (around 50%). Recall that these OCGNNs would classify an observation as outlier

if it lies outside the hyper-sphere, i.e. its distance from the sphere center is greater than the radius.

The above pattern implies that the fitted radii are too small, and the models effectively classify the

majority of test data as outliers, since their distances easily exceed the radii. This result underscores

the major drawback of the OCGNN, being its tendency to overfit the decision threshold, i.e. the

sphere’s radius, in its attempt to minimize the training loss (Eq. 5.5).

Figures 5.4 and 5.5 show the results of the second experiment, in which we investigate the effect

of β ∈ (0,1], an important hyperparameter of the OCGNN model, on the radius and classification

capability. β regulates the proportion of training data (β×100 percent) to be mapped outside of the

102

Figure 5.3: Average test accuracy, precision, and recall rates (over 10 independent initialization of
OCGNN models on benchmark datasets. Albeit achieving promissing AUCs (reported in Table 5.2,
closer inspection reveals subpar performance of OCGNN models indicating sub-optimal decision
threshold, i.e. radius, for anomaly detection task.

boundary and therefore controls the flexibility of the model by shrinking or expanding the radius

of the sphere [120]. Eq. 5.31 reveals the role of β in determining r via percentage line search.

Theoretically, an inverse proportional relationship between β and r should be expected, i.e. a large

value of β results in small r and vice versa. However, figure 5.4 discloses a rather counter intuitive

behavior of the radius as β varies over its domain. Overall, the radius exhibits downward trend

with occasional upward deviation or sharp spikes. This tendency becomes noticeable at small

values of β (from −10 to −2.5 on the logarithmic scale of β). Since tiny β dictates large values

of r, the majority of training nodes are mapped inside the boundary. Hence, the loss function takes

into account almost no training samples in the penalty component (the first term in Eq. 5.5). The

103

network might not be able to learn a good mapping to a latent space capable of clustering the

normal samples compactly around the center. As a consequence, the radius learned on training

distances produced on such space might behave sporadically. Furthermore, as different values of β

result in distinct optimal embedding spaces learned by OCGNN, the magnitude of distances might

be inconsistent between these latent spaces. Hence, applying percentage line search (Eq. 5.31) on

these distance set dVtr will produce incompatible radii.

Figure 5.4: Average radius (over 5 independent initialization) against a range of β (on log scale).
The radius is an intrinsic decision threshold to detect anomalous nodes in OCGNN framework.
The plot shows sporadic behavior of radius indicating that the mapping learned by OCGNN is not
efficient to represent normal class data.

Figure 5.5 examines the effect of β on the training loss. A recurrent pattern can be seen as the loss

starts at high values and gradually decreases to the vicinity of zero. Notice that while the radius

remains relatively stable, the training loss decreases rapidly at small values of β (from −10 to

104

−7.5 on the logarithmic scale of β). As β varies over the lower end of its spectrum, the weight of

the penalty component decreases (1/β in Eq. 5.5) but there might be no change in the number of

training samples contributing to the loss. With little to no change in training samples, the model

might learn similar mapping spaces which result in similar radii. A high value of the loss function

indicates that the model is unsuccessful in learning a good representation of the normal class due

to a restricted contribution of the small proportion of training sample. It confirms the observation

above that setting β too small is ineffective for the training process.

Figure 5.5: Average training loss curves (over 5 independent initialization) against a range of beta
(on log scale). Large losses occur at small values of beta indicate the model is unsuccessful in
learning representative embedding space for normal class data.

In contrast to OCGNN, our framework treats the sphere’s radius as a hyperparameter and removes

its direct role in optimization of the training loss (Eq. 5.41). This modification gives the users more

105

leeway to exert domain specific control on the radius which also serves as the decision threshold of

their anomaly detection system. As with many anomaly detection applications, one needs to tune

the model hyperparameters to achieve the best performance [47, 57, 76, 127]. In rh-OCGNN, the

radius is obviously one of the most important hyperparameters. For a specified radius, the model

produces a latent space that can closely cluster all training samples around the center and within

the boundary of the sphere.

Figure 5.6 illustrates the tuning process of three rh-OCGNN models and shows their behaviors

with respect to various settings of radius (shown in logarithmic scale). Small values of radius

facilitate the training process as more training samples are accounted that contribute to the penalty

component in the loss function (the first term in Eq. 5.41). Once r becomes large, the amount of

contributing training samples declines and the model fails to generate a good embedding space that

compactly maps the normal samples. Hence, the training loss gets larger as r increases.

One might notice similarity in the behavior of rh-OCGNN (figure 5.6) and OCGNN (figure 5.5).

In general, as the number of training samples mapped outside the sphere increases (by increasing

β in OCGNN or decreasing r in rh-OCGNN), the model gets better at learning node embedding

to minimize the loss consisting of penalized distances of these instances. This results in a good

mapping space and a hypersphere capable of describing normal class data. However, it is worth

to note that our framework rh-OCGNN exerts exact control over the sphere’s volume by directly

specifying its radius. On the other hand, OCGNN is only capable of affecting volume via β . Since

β dictates the proportion of training samples mapped outside the sphere, different values of β

might result in similar sphere’s volumes (i.e. same radii) as long as the embedding spaces satisfy

the specified fraction of training samples violating the boundary.

Figure 5.7 compares the tuning process of OCGNN and rh-OCGNN. The plots show validation

accuracy curves with respect to various values of hyperparameter (β for OCGNN and r for rh-

106

Figure 5.6: Average training loss curves (over five independent initialization) against a range of
radius (on log scale). As the radius gets larger, less training samples are considered in the training
process resulting to larger loss values.

OCGNN). Our rh-OCGNN framework provides great flexibility for practitioners to fine-tune the

decision threshold, i.e. the radius, for their anomaly application. One can easily employ a typ-

ical validation approach to select the optimal r based on any choice of accuracy metrics on the

validation set. As opposed to the jagged and multimodal validation curves produced by OCGNN,

our validation curves appear to be unimodal which further facilitates tuning process as there is a

unique optimal value available for consideration. For this experiment, we choose the optimal r at

which the validation accuracy rate is maximized.

Table 5.3 compares the best performance of rh-OCGNN and OCGNN on test accuracy rates. Im-

portant hyperparameters of rh-OCGNN (r) and OCGNN (β) are tuned and optimized with respect

107

to validation accurarcy rates. Unlike AUC, accuracy rate is a single-number measurement summa-

rizing the proportion of correctly predicted samples with respect to a specific decision threshold.

It is a de facto metric to evaluate model performance in classification problem and is especially

desirable for balanced test data as in our experiments (described in 2). Our experiment shows

that the rh-OCGNN models outperform their OCGNN counterparts on all benchmark datasets.

rh-OC-SGC shines with its capability of correctly classifying 71.74% and 63.44% of normal and

anomalous nodes on the Cora and Pubmed dataset, respectively. On the other hand, rh-OC-GAT

makes 85.65% of accurate classification on Cora and hence, surpasses all of its peers. This result

highlights the advantage of rh-OCGNN as it allows users to obtain an optimal decision threshold

for the anomaly detection task and thus can achieve better performance.

Figure 5.8 further investigates the best performance of rh-OCGNN and OCGNN on two other

accuracy metrics, precision and recall rates. Precision quantifies the number of samples predicted

as event that are truly event while recall denotes the number of true events correctly classified

as event. In anomaly detection problem, the event of interest is anomaly and a model with high

precision and recall rates is desirable. However, one should be wary of wide disparity between

precision and recall as it indicates a poor choice of decision threshold. For example, high recall

and low precision rates suggest that the threshold is too low and the model effectively detects all test

data as anomaly. We observe sharp contrast between recall and precision rates on OCGNN models,

indicating failure to obtain optimal decision thresholds even after tuning the hyperparameter β .

On the other hand, despite slightly lower recall rates, the harmony in recall and precision metrics

observed on rh-OCGNN suggests that our framework achieves satisfactory threshold, i.e. radius,

for anomaly detection tasks. As a result, rh-OCGNN obtains significantly higher accuracy rates

on Cora and Citeseer datasets. Pubmed appears to be a greater challenge, as both frameworks

have slightly above average performance. Due to its larger scale (highest number of nodes and

connections, described in Table 5.1), there might be substructures existing within the normal class

108

Dataset Model beta Radius Test Accuracy rate
rh-OCGNN

Citeseer rh-OC-GAT NA 0.00072 69.40 ± 2.00
rh-OC-GCN NA 0.00164 62.51 ± 2.50
rh-OC-SGC NA 0.00651 71.74 ± 2.69

Cora rh-OC-GAT NA 0.00375 85.65 ± 3.90
rh-OC-GCN NA 0.00375 69.00 ± 5.23
rh-OC-SGC NA 0.01489 82.01 ± 2.02

Pubmed rh-OC-GAT NA 0.00031 54.60 ± 0.68
rh-OC-GCN NA 0.01489 55.13 ± 0.91
rh-OC-SGC NA 0.00164 63.44 ± 0.57

OCGNN
Citeseer OC-GAT 0.01596 0.00035 55.44 ± 7.66

OC-GCN 0.04489 0.00166 55.78 ± 3.86
OC-SGC 0.00402 0.00654 70.94 ± 5.58

Cora OC-GAT 0.01596 0.00260 65.65 ± 10.07
OC-GCN 0.01130 0.00411 63.54 ± 5.66
OC-SGC 0.00018 0.00933 69.09 ± 5.13

Pubmed OC-GAT 0.50175 0.00012 55.53 ± 0.26
OC-GCN 0.01596 0.01038 55.15 ± 0.92
OC-SGC 0.04489 0.00492 62.71 ± 0.52

Table 5.3: Test accuracy rates (%) averaged over five independent initialization of rh-OCGNN and
OCGNN. The optimal values of β (for OCGNN) and r (for rh-OCGNN) are selected via tuning to
maximize the validation accuracy rates. Note that on OCGNN, the radius is not a hyperparameter
and is learned during training phase. The best models are highlighted with boldface. Overall, the
rh-OCGNN models outperform their OCGNN peers on all benchmark datasets. rh-OC-SGC shines
on Cora and Citeseer while rh-OC-GAT achieves best performance on Cora.

that cannot be well described by one single hypersphere. Although both frameworks struggle

on Pubmed dataset, rh-OC-SGC achieves better threshold resulting to higher accuracy as well as

greater balance between precision and recall rates.

109

Conclusion

In this paper, we closely examine the performance of the existing OCGNN methodology for

anomaly detection on graph structured data and propose an alternative framework called the "radius

as hyperparameter OCGNN" (rh-OCGNN). Our model builds a description of normal class data by

constructing a hypersphere with a given radius to enclose all training samples on the GNN latent

node embedding space. The advantage is twofold: not only does it allow for the incorporation

of domain knowledge in establishing decision threshold for anomaly detection task (in the form

of the sphere’s radius), users can easily optimize their applications via fine-tuning the threshold

with respect to any performance metric of their desire. Three experiments are conducted: the first

one serves as a striking illustration of the pitfall of utilizing inadequate accuracy metric (AUC)

for model benchmarking, especially for the class of models with some intrinsic threshold. The

second experiment demonstrates the weakness of the state-of-the-art framework, while the third

experiment shows the improved performance of the proposed model.

The newly proposed model provides improved accuracy and precision on Cora and Citeseer datasets.

It also shows a validation accuracy curve for the key hyperparameter following a unimodal form

which is expected for such a problem. This framework can also assist in monitoring event streams

for changes of interest where input graphs are produced over a time-ordered stream based on an

entropic measure for the time window [64]. Future work entails learning multiple hyperspheres

for large datasets where groups sharing the same label can have multiple centers such as in fraud

detection data.

110

(a)

(b)

Figure 5.7: Tuning process of OCGNN (sub-figure A) and rh-OCGNN (sub-figure B). The plots
show average validation accuracy rate curves (over five independent initialization) against a range
of hyperparameter (β for OCGNN in sub-figure (a) and r for rh-OCGNN in sub-figure (b). The
proposed rh-OCGNN produces relatively smooth mount-shape validation curves facilitating the
tuning process. The optimal radii can be easily selected where the curves reach their peaks.

111

(a)

(b)

Figure 5.8: Average test accuracy, precision, and recall rates (over 5 independent initialization) of
OCGNN (sub-figure A) and rh-OCGNN (sub-figure B). Important hyperparameters of OCGNN
(β) and rh-OCGNN (r) are tuned using validation approach where the optimal values are selected
to maximize validation accuracy rates. rh-OCGNN renders flexibility to directly tailor the decision
threshold, i.e. the radius. Hence, it achieves better performance on all benchmark datasets.

112

CHAPTER 6: LINK PREDICTION WITH SIMPLE GRAPH

CONVOLUTION AND REGULARIZED SIMPLE GRAPH

CONVOLUTION

Introduction

Attributed graphs (networks) provide powerful representations of real-life complex systems where

each element is regarded as node a with associated attributes (features) and the connectivity infor-

mation between elements forms edges. These graph-structured feature data are used to represent

complex systems in various domains such as social science (social networks [29]), biology (bio-

chemical pathways [17]), material science (molecular networks [34]).

Link prediction aims to infer unknown connectivity in the form of a link between a pair of nodes

in the graph. It has a wide range of applications such as friend recommendation in social networks

[26, 1], knowledge graph construction [86], and protein-protein interaction [65].

Simple approaches to link prediction rely on heuristics to assess the similarity in network topology

between a pair of nodes and determine the likelihood of link existence. The common-neighbor

method uses the number of common neighbors to predict the link between a pair of nodes while

preferential attachment [9] predicts that popular nodes are more likely to connect. The Adamic-

Adar algorithm also utilizes the common neighbors and their popularity to predict connectivity

between target nodes [1]. PageRank employs the idea of random walk model to score the link

between the target nodes by taking into account all walks starting from one end to the other [75].

These heuristics can only capture limited network topologies and also fail to account for supple-

mental information in the form of node attributes.

113

Graph Neural Networks (GNNs) are neural networks operating on the graph domain and is able

to combine node attributes and connectivity to produce informative node representations (node

embeddings). GNNs produce expressive node representations (node embeddings) via an iterative

message passing mechanism where each node aggregates its direct neighbors’ feature vectors and

updates its own feature vector with the aggregate information. The final node representation encap-

sulates structural information of a k-hop neighborhood. To produce a representation of the entire

graph, one simply applies a pooling operator (such as summation) on the set of feature vectors

of all nodes [34, 126]. Many GNN variants have been proposed and have achieved state-of-the-

art performance in a variety of tasks [123]. Graph Convolutional Networks (GCN) [48] learn a

graph representation via layer-wise propagation rules representing localized spectral filters. Graph

Attention Networks (GAT) [116] utilizes an attention mechanism to account for node neighbors’

importance in the aggregation phase. The Simple Graph Convolution (SGC) [121] simplifies the

GCN by removing non-linear transitions between layers while retaining its representational power.

The work of [79] demonstrates the expressive node embedding capability of SGC and explores

flexible regularization mechanisms to facilitate meaningful interpretation.

Researchers have studied GNN applications for link prediction task. The work of [129] extracts

a local subgraph around each target link and utilizes GNN to learn a function mapping the sub-

graph patterns to link existence. [4] propose a novel Variational Graph Normalized AutoEncoder

(VGNAE) which aims to improve the embedding of isolated nodes by using L2-normalization.

In this work, we extend SGC and regularized SGC for a link prediction task. Since the SGC

framework involves mostly linear operations, it offers high efficiency and scalability compared

with other frameworks relying on more layers in order to improve accuracy. It is also of interest

to investigate the effect of regularization on dimensionality reduction to highlight important edge

embeddings and improve our understanding of these embeddings produced by SGC on the assess-

ment of connectivity between target nodes. Our framework can be used to build a recommendation

114

system for large social networks where computational cost is high, and thus a fast and efficient

framework is preferable. Our model can highlight useful edge embeddings that are important for

determining connectivity between users.

Methodology

SGC

SGC is introduced in [121] as a simplified GNN model developed from GCN [48] by removing

non-linear activation functions between hidden layers and reparametrizing successive layers into

one single layer. This modification reduces superfluous complexity of the GCN while retaining

its superb performance on many downstream tasks. In this section, we briefly present the original

SGC.

An attributed graph data set contains a graph G = (V ;E) of N nodes (vertices) V = (v1,v2, ...,vN)

and edges (vi,v j) ∈ E. Often, the connectivity in E is represented by an adjacency matrix A ∈

RN×N where each element ai j represents an edge between node vi and v j (ai j = 0 if vi and v j are

disconnected). Each node might have a feature vector xvi ∈RD which is stacked together to form a

node attribute matrix X∈RN×D. We define the degree matrix D= diag(d1,d2, ...,dN) as a diagonal

matrix whose off-diagonal elements are zero, and each diagonal element di captures the degree of

node vi and di = ∑ j ai j. Each node i receives a label from the C classes and therefore can be coded

as one hot vector yi ∈ {0,1}C.

The GCNs and SGC add self-loops and normalize the adjacency matrix to get the matrix S:

S = D̃−
1
2 ÃD̃−

1
2 (6.1)

115

where Ã = A+ I and D̃ = diag(Ã). This normalization allows successive powers of the matrix to

not influence the overall size the projections. The SGC removes non-linear transformation from

the kth layer of the GCN, resulting in a linear model of the form:

Ŷ = softmax(S . . .SSXΘ
(1)

Θ
(2) . . .Θ(K)). (6.2)

The SGC classifier is then achieved by collapsing the repetitive multiplication of matrix S into the

kth power matrix SK and reparameterizing the successive weight matrices as Θ = Θ(1)Θ(2) . . .Θ(K):

Ŷ = softmax(SKXΘ). (6.3)

The parameter k corresponds to the number of ’hops’ which is the number of edge traversals in

the network adjacency matrix S. This parameter k can be thought of as accumulating information

from a certain number of hops away from a node (as visually described in [121]). If k = 0 the

methodology becomes equivalent to a logistic regression application that is known to be scalable

to large datasets. Since the SGC introduces the matrix S in a linear operation, the same scalability

applies. The weight matrix Θ is trained by minimizing the loss:

L = ∑
l∈YL

∑
c∈C

Ylc lnŶlc (6.4)

where YL is a collection of labeled nodes.

Regularized SGC

The work of [79] illustrates SGC’s expressive power in the node classification task and proposes a

flexible regularization methodology to reduce the number of parameters and highlight a sparse set

of important features. They introduce a flexible set of constraints in terms of shrinkage parameters

116

L1,L2,and L3 in the loss L from Eq 6.4:

LR = L +L1×∑
c∈C

(
D

∑
d=1
|ΘR(·,c)|4

)(−1)

+L2×∑
c∈C
∥ΘR(·,c)∥2+

L3×

(
∑

c1∈C
∑

c2∈C

(
|ΘT

R(·,c1)
| · |ΘR(·,c2)| : c1 ≺ c2

))
(6.5)

where ΘR is the parameters for the regularized fitted SGC and |ΘR(·,c)|4 denotes the normalized

vector for each class projection in the parameter matrix (which are columns) and that each element

is raised to the power of 4. L1 regulates the number of parameters by inducing penalization with

a larger skew in the number of elements in the columns of ΘR. The L2 term controls the total

magnitude of the parameter vector, while the L3 term penalizes the class label projections, which

have large overlaps.

Link prediction

Given a graph GO = (V ;EO), the set of observed links (edges) EO can be considered as a subset of

the unobserved true links E∗. Link prediction involves distinguishing between the true and false

links from a set of candidate links EC = {(vi,v j)} where vi and v j are unconnected nodes in V .

A link predictor LP = f : V ×V → R is a mapping function to classify the candidate link from a

given pair of nodes. A simple mapping function utilizes heuristic node similarity such as common

neighbors, Adamic-Adar [1], etc. to access the similarity between a pair of nodes and produces

a score as a link likelihood, which can be used to classify the given link as true or false. The

drawbacks of these heuristics are 1) they are handcrafted features that only capture limited network

topologies and 2) they ignore rich information from node attributes.

GNNs are powerful neural network frameworks capable of combining node attributes and con-

117

nectivity to solve various downstream tasks such as node classification, link prediction, and graph

classification [136]. The success of the GNNs comes from employing a message passing mech-

anism which iteratively aggregates neighborhood representations to learn an expressive node em-

bedding [126, 34]. We denote a L-layer GNN model as g(X,A;Ω) where the input consists of a

nodes attribute matrix X and an adjacency matrix A. Ω = {Ω(1),Ω(2), ...,Ω(L)} is the set of net-

work weights. The model outputs node embedding Z ∈ RN×F where each row zvi ∈ RF is vector

representation of node vi.

In this work, we utilize two GNN frameworks, namely SGC [121] and regularized SGC [79]

to learn an informative node representation Z = SKXΘ. For a candidate edge eC
i j = (vi,v j), its

edge embedding zei j ∈ RF is produced by combining node representations zvi and zv j using the

Hadamard product, i.e. zei j = zvi ◦ zv j . A link predictor in the form of a one-layer fully connected

neural network f (zei j ,W) = σ(zei j ×W) can be optimized to learn a good mapping function to

classify the candidate edges as true or false. This choice of link predictor makes it effectively a

logistic regression model where the effect of the edge embeddings can be easily interpreted via the

set of weights W .

Given a training set Etr including true (positive) and false (negative) link samples, the model

attempts to minimize the loss function:

L (Θ,W) =− ∑
e∈Etr

ye log(ŷe)+(1− ye) log(1− ŷe) (6.6)

Motivated by the regularized SGC [79], we adopt the penalty terms into the loss:

LR(Θ,WR) = L +L1×
(−→

1 ·ŴR
4
)(−1)

+L2×∥WR∥2 (6.7)

118

where ŴR denotes normalized weight vector of the link predictor.

This modification would produce a sparser set of weights WR, highlighting the important edge

embeddings for link prediction. Another benefit of regularization is to improve model performance

by reducing overfitting.

Datasets

We employ three popular and publicly available attributed graph datasets namely Cora [67], Cite-

seer [33], and Pubmed [94] for the link prediction task using SGC and regularized SGC. These

datasets contains scientific publications (regarded as nodes) where each paper is represented by a

binary vector indicating the presence of informative keywords (regarded as node’s features) and the

citations between papers form edges. Each paper can be categorized into a specific topic (regarded

as label). Datasets statistics are given in Table 6.1.

Since the link prediction problem can be considered as a binary classification of edges into positive

and negative classes, we randomly select existing edges to form positive samples. Negative sam-

ples are then chosen by randomly sampling pairs of unconnected nodes. The amount of samples

between two classes is kept balanced. Each set of samples is partitioned and combined to form the

train, validation, and test sets with the proportions of 70/10/20%, respectively.

Dataset Nodes/Edges/Classes Node Features Train/Val/Test
Cora 2708/5028/7 1433 3520/503/1055
Citeseer 3327/4614/6 3703 3230/461/935
Pubmed 19717/44327/3 500 31029/4433/8865

Table 6.1: Summary statistics of three citation datasets and the size of train/val/test sets used in
this work.

119

Experiment

Two GNN frameworks, namely SGC [121] and regularized SGC [79] are adopted for our exper-

iment with the link prediction task. For both models, we set the number of hops k = 2 and the

number of output units as 256. All models are trained for 100 epochs using the AdamW optimizer

[61] with a learning rate of 0.01. Optimal regularization parameters L1 and L2 are chosen from a

grid search of 50×50 values, each varying from 10−5 to 102, to maximize validation AUC.

Results

In this section, we discuss the application of the proposed methodology to the three citation

datasets. The purpose is to examine the capability of both the SGC and the regularized SGC

to the link prediction task to real-life data with a large number of features.

Figure 6.1 displays the weight vectors fitted on the Cora dataset using SGC (Subfigure (a)) and

regularized SGC (Subfigure (b)). Each plot contains a histogram showing the weight vector’s

distribution and a heat map illustrating its magnitude. In Subfigure (a), the fitted weight vector W

ranges from−0.75 to 1.25 with a mode of 0.8. The model utilizes all edges’ representations to pro-

duce discriminative scores for link classification and achieves a good AUC of 0.768. Most weight

values are centered around 1, indicating that, under the logistic model, most edge embeddings have

an equivalent impact on the link likelihood. Analogously, the same set of results produced with the

regularized SGC is shown in Subfigure (b). The components of the weight vector WR are slightly

reduced and the model achieves a moderate AUC of 0.776. It is clear that the penalty term L2 on

the total magnitude of the weight vector can only produce a weak shrinkage effect. Moreover, the

regularization appears to limit overfitting and improve model performance.

120

(a)

(b)

Figure 6.1: The plots show the results of applying SGC with and without regularization on the
hidden edge embeddings of the Cora dataset. The histogram in the left panel shows the distribution
of weight and the heat map in the right panel displays the weight magnitude. Subfigure (a) presents
the weight W under the SGC model without regularization while Subfigure (b) shows the weight
WR under the SGC model with regularization. It can be seen that the regularization reduces the
weight vector’s magnitude over the hidden edge embedding highlighting key variables.

Figure 6.2 shows the results of SGC (Subfigure (a)) and regularized SGC (Subfigure (b)) on the

Citeseer dataset. The fitted weight of SGC shown in Subfigure (a) seems to follow a bimodal

distribution with values varies from −1 to 1. The information of all edge hidden features are

critical for link prediction and the model is capable of predicting link existence with an AUC of

0.709. The weight distribution suggests that two thirds of edge embeddings have a positive impact

on link likelihood, while the remaining embeddings tend to decrease link likelihood. Subfigure

121

(b) shows the results of regularization incorporated in SGC framework. We observe a moderate

shift in the weight’s distribution and the magnitude of weights seems to decrease slightly. Again,

regularization renders a boost in model performance with an increase of 2% in AUC.

(a)

(b)

Figure 6.2: The plots show the results of applying SGC with and without regularization on the
hidden edge embeddings of the Citeseer dataset. The histogram in the left panel shows the distri-
bution of weight and the heat map in the right panel displays the weight magnitude. Subfigure (a)
presents the weight W under the SGC model without regularization while Subfigure (b) shows the
weight WR under the SGC model with regularization. It can be seen that the regularization reduces
the weight vector’s magnitude over the hidden edge embedding highlighting key variables.

Figure 6.3 displays similar results of SGC and regularized SGC on the Pubmed dataset. In the

case of SGC, the model takes into account all edge’s hidden features to produce effective scores

to classify the edges. This results in a set of nonzero fitted weights shown in Subfigure (a) and

122

an excellent AUC of 0.913. Under the penalization of L2, the magnitude of the weight vector is

reduced moderately as illustrated in Subfigure (b). We observe a shift from a fat-tailed distribution

to a more centered distribution of weight values. Although a sparser set of weights is not achieved,

our model still benefits from regularization as the AUC increases to 0.922.

(a)

(b)

Figure 6.3: The plots show the results of applying SGC with and without regularization on the
the hidden edge embeddings of the Pubmed dataset. The histogram in the left panel shows the
distribution of weight and the heat map in the right panel displays the weight magnitude. Subfigure
(a) presents the weight W under the SGC model without regularization while Subfigure (b) shows
the weight WR under the SGC model with regularization. It can be seen that the regularization
reduces the weight vector’s magnitude over the hidden edge embedding highlighting key variables.

There are two possible reasons impeding model performance on Cora and Citeseer. These two

datasets contain a higher number of classes than Pubmed. Node connectivity patterns may vary

123

significantly between each class. Utilizing a one-layer fully connected neural network as link pre-

dictor might fail to model a potential nonlinear relationship of node connectivity exists in these

datasets. The simplicity of SGC might also be insufficient to produce highly expressive embed-

dings that are informative for distinguishing true and false links.

Conclusion

In this paper, we examine the capability of SGC and its regularized extension in link prediction

on three citation attributed graph datasets. Although SGC renders a fast and efficient framework

for computation, the model only achieves fair performance. This observation indicates the need of

a nonlinear framework to successfully capture complex relationships in nodes’ connectivity. The

regularization proves to be an effective medium to reduce overfitting and helps improve model

performance. Future work entails incorporating a flexible regularization scheme into a non-linear

framework to improve both the performance and interpretability of the result.

124

CHAPTER 7: CONCLUSION

The main contributions of this dissertation are novel techniques and strategies to improve inter-

pretability and efficiency of graph neural networks for node classification, link prediction, and

anomalous nodes detection.

First, we have presented an extension of the SGC model allowing for a more explainable set of

results to interested users in chapter 2 and in [79]. The regularization terms reduce the number

of nonzero parameters, the overall magnitude of the parameter vectors, and the overlap between

parameter vectors of the different classes. This extended framework inherits the fast and efficient

properties of SGC yet renders a sparse set of parameters highlighting important node features

defining class characteristics.

We then investigated optimal procedure to obtain training samples in order to improve the accu-

racy of node classification task on attributed graph data in chapter 3 and in [39]. Two sampling

schemes were experimented in conjunction with three different measures of node importance. We

explain the effect of these sampling strategies using the skewness of homogeneous connectivity

distribution. We then proposed and empirically validated a heuristic measure to determine the best

sampling strategy for the node classification task.

In the chapter 4 and in [38], we designed an comprehensive set of synthetic attributed graph

datasets covering different network topology and node features and then evaluated the performance

of the heuristic measure proposed above. We presented a quantitative guideline of how to use the

heuristic measure to select best sampling strategy.

Next, we studied an existing work of one class GNN for anomalous node detection and proposed

an improved model called the "radius as hyperparameter OCGNN" (rh-OCGNN) in chapter 5. Our

125

model allows users to apply domain knowledge in establishing decision threshold for anomaly

detection task (in the form of the sphere’s radius). Users can further optimize their applications via

fine tuning the threshold.

Finally, we experimented the flexible regularization scheme of regularized SGC for link prediction

task in chapter 6. The incorporation of regularization appears to reduce overfitting and improve

model performance. However, the shrikage effect was insignificant and the fitted models only

achieved slightly above average performance. This observation suggests the need of a nonlinear

framework to successfully capture complex relationship in nodes’ connectivity.

126

LIST OF REFERENCES

[1] Lada A Adamic and Eytan Adar. “Friends and neighbors on the web”. In: Social networks

25.3 (2003), pp. 211–230.

[2] Charu Aggarwal, Gewen He, and Peixiang Zhao. “Edge classification in networks”. In:

2016 IEEE 32nd International Conference on Data Engineering (ICDE). IEEE. 2016,

pp. 1038–1049.

[3] Nurzaman Ahmed, Hafizur Rahman, and Md I Hussain. “A comparison of 802.11 ah and

802.15. 4 for IoT”. In: Ict Express 2.3 (2016), pp. 100–102.

[4] Seong Jin Ahn and MyoungHo Kim. “Variational Graph Normalized AutoEncoders”. In:

Proceedings of the 30th ACM International Conference on Information & Knowledge Man-

agement. 2021, pp. 2827–2831.

[5] Leman Akoglu, Hanghang Tong, and Danai Koutra. “Graph based anomaly detection and

description: a survey”. In: Data mining and knowledge discovery 29.3 (2015), pp. 626–

688.

[6] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In:

Reviews of modern physics 74.1 (2002), p. 47.

[7] Tim Althoff, Pranav Jindal, and Jure Leskovec. “Online actions with offline impact: How

online social networks influence online and offline user behavior”. In: Proceedings of the

tenth ACM international conference on web search and data mining. 2017, pp. 537–546.

[8] Ana Isabel Rojão Lourenço Azevedo and Manuel Filipe Santos. “KDD, SEMMA and

CRISP-DM: a parallel overview”. In: IADS-DM (2008).

[9] Albert-László Barabási. “Network science”. In: Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences 371.1987 (2013), p. 20120375.

127

[10] Albert-László Barabási et al. Network science. Cambridge university press, 2016.

[11] Albert-László Barabási and Réka Albert. “Emergence of scaling in random networks”. In:

science 286.5439 (1999), pp. 509–512.

[12] Alexander Belyi et al. “Global multi-layer network of human mobility”. In: International

Journal of Geographical Information Science 31.7 (2017), pp. 1381–1402.

[13] Neda H Bidoki, Alexander V Mantzaris, and Gita Sukthankar. “Exploiting Weak Ties in

Incomplete Network Datasets Using Simplified Graph Convolutional Neural Networks”.

In: Machine Learning and Knowledge Extraction 2.2 (2020), pp. 125–146.

[14] PV Bindu and P Santhi Thilagam. “Mining social networks for anomalies: Methods and

challenges”. In: Journal of Network and Computer Applications 68 (2016), pp. 213–229.

[15] Vincent D Blondel et al. “Fast unfolding of communities in large networks”. In: Journal of

statistical mechanics: theory and experiment 2008.10 (2008), P10008.

[16] Stephen P Borgatti. “Centrality and network flow”. In: Social networks 27.1 (2005), pp. 55–

71.

[17] Pasquale Bove et al. “Prediction of Dynamical Properties of Biochemical Pathways with

Graph Neural Networks.” In: BIOINFORMATICS. 2020, pp. 32–43.

[18] Deborah Wright Brown and Alison M Konrad. “Granovetter was right: The importance

of weak ties to a contemporary job search”. In: Group & Organization Management 26.4

(2001), pp. 434–462.

[19] Enrico G Caldarola and Antonio M Rinaldi. “Big Data Visualization Tools: A Survey”. In:

Research Gate (2017).

[20] LF Carvalho et al. “A simple and effective method for anomaly detection in healthcare”. In:

Proceedings of the SIAM International Conference on Data Mining Workshop. Vol. 2015.

2015, pp. 16–24.

128

[21] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey”.

In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[22] L Chanussot et al. “The open catalyst 2020 (OC20) dataset and community challenges.

arXiv”. In: arXiv (2010).

[23] Paolo Crucitti, Vito Latora, and Sergio Porta. “Centrality measures in spatial networks of

urban streets”. In: Physical Review E 73.3 (2006), p. 036125.

[24] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional neural net-

works on graphs with fast localized spectral filtering”. In: Advances in neural information

processing systems. 2016, pp. 3844–3852.

[25] Kaize Ding et al. “Deep anomaly detection on attributed networks”. In: Proceedings of the

2019 SIAM International Conference on Data Mining. SIAM. 2019, pp. 594–602.

[26] Yuxiao Dong et al. “Link prediction and recommendation across heterogeneous social

networks”. In: 2012 IEEE 12th International conference on data mining. IEEE. 2012,

pp. 181–190.

[27] Ernesto Estrada. The structure of complex networks: theory and applications. Oxford Uni-

versity Press, 2012.

[28] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis”. In: Commentarii

academiae scientiarum Petropolitanae (1741), pp. 128–140.

[29] Wenqi Fan et al. “Graph neural networks for social recommendation”. In: The World Wide

Web Conference. 2019, pp. 417–426.

[30] Victor Fung et al. “Benchmarking graph neural networks for materials chemistry”. In: npj

Computational Materials 7.1 (2021), pp. 1–8.

129

[31] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. “Deep bayesian active learning with

image data”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1183–

1192.

[32] Jing Gao et al. “On community outliers and their efficient detection in information net-

works”. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge

discovery and data mining. 2010, pp. 813–822.

[33] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. “CiteSeer: An automatic citation

indexing system”. In: Proceedings of the third ACM conference on Digital libraries. 1998,

pp. 89–98.

[34] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: International

Conference on Machine Learning. PMLR. 2017, pp. 1263–1272.

[35] Michelle Girvan and Mark EJ Newman. “Community structure in social and biological

networks”. In: Proceedings of the national academy of sciences 99.12 (2002), pp. 7821–

7826.

[36] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training deep feed-

forward neural networks”. In: Proceedings of the thirteenth international conference on

artificial intelligence and statistics. JMLR Workshop and Conference Proceedings. 2010,

pp. 249–256.

[37] William L Hamilton, Rex Ying, and Jure Leskovec. “Inductive representation learning on

large graphs”. In: arXiv preprint arXiv:1706.02216 (2017).

[38] Michael Hopwood, Phuong Pho, and Alexander V Mantzaris. “Exploring a link between

network topology and active learning”. In: 2021 Twelfth International Conference on Ubiq-

uitous and Future Networks (ICUFN). IEEE. 2021, pp. 81–86.

130

[39] Michael Hopwood, Phuong Pho, and Alexander V Mantzaris. “Exploring the Value of

Nodes with Multicommunity Membership for Classification with Graph Convolutional

Neural Networks”. In: Information 12.4 (2021), p. 170.

[40] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. Applied logistic re-

gression. Vol. 398. John Wiley & Sons, 2013.

[41] Matthew O Jackson. “Networks in the understanding of economic behaviors”. In: Journal

of Economic Perspectives 28.4 (2014), pp. 3–22.

[42] Hawoong Jeong, Zoltan Néda, and Albert-László Barabási. “Measuring preferential attach-

ment in evolving networks”. In: EPL (Europhysics Letters) 61.4 (2003), p. 567.

[43] Dorina Kabakchieva. “Student performance prediction by using data mining classification

algorithms”. In: International journal of computer science and management research 1.4

(2012), pp. 686–690.

[44] Joseph Kahne and Benjamin Bowyer. “The political significance of social media activity

and social networks”. In: Political Communication 35.3 (2018), pp. 470–493.

[45] Nikhil Ketkar. “Introduction to pytorch”. In: Deep learning with python. Springer, 2017,

pp. 195–208.

[46] Mohamad Khedmati, Masoud Erfani, and Mohammad GhasemiGol. “Applying support

vector data description for fraud detection”. In: arXiv preprint arXiv:2006.00618 (2020).

[47] Meejoung Kim. “Supervised learning-based DDoS attacks detection: Tuning hyperparam-

eters”. In: ETRI Journal 41.5 (2019), pp. 560–573.

[48] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convo-

lutional Networks”. In: 5th International Conference on Learning Representations, ICLR

2017 - Conference Track Proceedings (Sept. 2016). URL: http://arxiv.org/abs/

1609.02907.

131

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907

[49] Deirdre M Kirke. “Gender clustering in friendship networks: some sociological implica-

tions”. In: Methodological Innovations Online 4.1 (2009), pp. 23–36.

[50] Mikko Kivelä et al. “Multilayer networks”. In: Journal of complex networks 2.3 (2014),

pp. 203–271.

[51] Thijs Kooi et al. “Large scale deep learning for computer aided detection of mammographic

lesions”. In: Medical image analysis 35 (2017), pp. 303–312.

[52] Alexandra Krallman, Mark J Pelletier, and Frank G Adams. “@ Size vs.# Impact: Social

media engagement differences amongst Facebook, Twitter, and Instagram”. In: Celebrat-

ing America’s Pastimes: Baseball, Hot Dogs, Apple Pie and Marketing? Springer, 2016,

pp. 557–561.

[53] Peter Laflin et al. “Discovering and validating influence in a dynamic online social net-

work”. In: Social Network Analysis and Mining 3.4 (2013), pp. 1311–1323.

[54] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436–444.

[55] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Pro-

ceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[56] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collec-

tion. http://snap.stanford.edu/data. June 2014.

[57] Yuening Li et al. “PyODDS: An end-to-end outlier detection system with automated ma-

chine learning”. In: Companion Proceedings of the Web Conference 2020. 2020, pp. 153–

157.

[58] Yuening Li et al. “Specae: Spectral autoencoder for anomaly detection in attributed net-

works”. In: Proceedings of the 28th ACM International Conference on Information and

Knowledge Management. 2019, pp. 2233–2236.

132

http://snap.stanford.edu/data

[59] Bin Liu, Zhisheng Yan, and Chang Wen Chen. “Medium access control for wireless body

area networks with QoS provisioning and energy efficient design”. In: IEEE transactions

on mobile computing 16.2 (2016), pp. 422–434.

[60] Jorge M Lobo, Alberto Jiménez-Valverde, and Raimundo Real. “AUC: a misleading mea-

sure of the performance of predictive distribution models”. In: Global ecology and Bio-

geography 17.2 (2008), pp. 145–151.

[61] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: arXiv

preprint arXiv:1711.05101 (2017).

[62] Kaushalya Madhawa and Tsuyoshi Murata. “Active Learning for Node Classification: An

Evaluation”. In: Entropy 22.10 (2020), p. 1164.

[63] Vijay Mahadevan et al. “Anomaly detection in crowded scenes”. In: 2010 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition. IEEE. 2010, pp. 1975–

1981.

[64] Alexander V Mantzaris et al. “Adaptive network diagram constructions for representing

big data event streams on monitoring dashboards”. In: Journal of Big Data 6.1 (2019),

pp. 1–19.

[65] Vıctor Martınez, Carlos Cano, and Armando Blanco. “ProphNet: a generic prioritization

method through propagation of information”. In: BMC bioinformatics 15.1 (2014), pp. 1–

13.

[66] Julian McAuley et al. “Image-based recommendations on styles and substitutes”. In: Pro-

ceedings of the 38th international ACM SIGIR conference on research and development in

information retrieval. 2015, pp. 43–52.

[67] Andrew Kachites McCallum et al. “Automating the construction of internet portals with

machine learning”. In: Information Retrieval 3.2 (2000), pp. 127–163.

133

[68] Miller McPherson, Lynn Smith-Lovin, and James M Cook. “Birds of a feather: Homophily

in social networks”. In: Annual review of sociology 27.1 (2001), pp. 415–444.

[69] Emmanuel Müller et al. “Ranking outlier nodes in subspaces of attributed graphs”. In: 2013

IEEE 29th International Conference on Data Engineering Workshops (ICDEW). IEEE.

2013, pp. 216–222.

[70] Mark Newman. Networks. Oxford university press, 2018.

[71] Mark EJ Newman. “Modularity and community structure in networks”. In: Proceedings of

the national academy of sciences 103.23 (2006), pp. 8577–8582.

[72] Hoang NT and Takanori Maehara. “Revisiting graph neural networks: All we have is low-

pass filters”. In: arXiv preprint arXiv:1905.09550 (2019).

[73] Ekaterina Olshannikova et al. “Conceptualizing big social data”. In: Journal of Big Data

4.1 (2017), pp. 1–19.

[74] Felix L Opolka et al. “Spatio-temporal deep graph infomax”. In: arXiv preprint arXiv:1904.06316

(2019).

[75] Lawrence Page et al. The PageRank citation ranking: Bringing order to the web. Tech. rep.

Stanford InfoLab, 1999.

[76] Akash Sampurnanand Pandey and KK Shukla. “Application of bayesian automated hy-

perparameter tuning on classifiers predicting customer retention in banking industry”. In:

Data Management, Analytics and Innovation. Springer, 2021, pp. 83–100.

[77] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-

brary”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach

et al. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.

cc/paper/9015- pytorch- an- imperative- style- high- performance- deep-

learning-library.pdf.

134

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[78] Bryan Perozzi et al. “Focused clustering and outlier detection in large attributed graphs”.

In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discov-

ery and data mining. 2014, pp. 1346–1355.

[79] Phuong Pho and Alexander V Mantzaris. “Regularized Simple Graph Convolution (SGC)

for improved interpretability of large datasets”. In: Journal of Big Data 7.1 (2020), pp. 1–

17.

[80] Marco AF Pimentel et al. “A review of novelty detection”. In: Signal Processing 99 (2014),

pp. 215–249.

[81] Tahereh Pourhabibi et al. “Fraud detection: A systematic literature review of graph-based

anomaly detection approaches”. In: Decision Support Systems 133 (2020), p. 113303.

[82] Filippo Radicchi, Santo Fortunato, and Alessandro Vespignani. “Citation networks”. In:

Models of science dynamics. Springer, 2012, pp. 233–257.

[83] G Thippa Reddy et al. “Analysis of dimensionality reduction techniques on big data”. In:

IEEE Access 8 (2020), pp. 54776–54788.

[84] Francesco Ricci, Lior Rokach, and Bracha Shapira. “Introduction to recommender systems

handbook”. In: Recommender systems handbook. Springer, 2011, pp. 1–35.

[85] Yu Rong et al. “Dropedge: Towards deep graph convolutional networks on node classifica-

tion”. In: arXiv preprint arXiv:1907.10903 (2019).

[86] Andrea Rossi et al. “Knowledge graph embedding for link prediction: A comparative anal-

ysis”. In: ACM Transactions on Knowledge Discovery from Data (TKDD) 15.2 (2021),

pp. 1–49.

[87] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. “Multi-scale attributed node embed-

ding”. In: Journal of Complex Networks 9.2 (2021), cnab014.

135

[88] Benedek Rozemberczki and Rik Sarkar. “Characteristic functions on graphs: Birds of a

feather, from statistical descriptors to parametric models”. In: Proceedings of the 29th ACM

international conference on information & knowledge management. 2020, pp. 1325–1334.

[89] Lukas Ruff et al. “Deep one-class classification”. In: International conference on machine

learning. PMLR. 2018, pp. 4393–4402.

[90] Aliaksei Sandryhaila and José MF Moura. “Discrete signal processing on graphs”. In: IEEE

transactions on signal processing 61.7 (2013), pp. 1644–1656.

[91] Franco Scarselli et al. “The graph neural network model”. In: IEEE Transactions on Neural

Networks 20.1 (2008), pp. 61–80.

[92] J Ben Schafer et al. “Collaborative filtering recommender systems”. In: The adaptive web.

Springer, 2007, pp. 291–324.

[93] Catharina Schmidt et al. “Generation “always on” turned off. Effects of smartphone sep-

aration on anxiety mediated by the fear of missing out”. In: International Conference on

Human-Computer Interaction. Springer. 2018, pp. 436–443.

[94] Prithviraj Sen et al. “Collective classification in network data”. In: AI magazine 29.3

(2008), pp. 93–93.

[95] Burr Settles. “Active learning”. In: Synthesis lectures on artificial intelligence and machine

learning 6.1 (2012), pp. 1–114.

[96] Burr Settles. “Active learning literature survey”. In: (2009).

[97] Burr Settles and Mark Craven. “An analysis of active learning strategies for sequence la-

beling tasks”. In: Proceedings of the 2008 Conference on Empirical Methods in Natural

Language Processing. 2008, pp. 1070–1079.

[98] Oleksandr Shchur et al. “Pitfalls of Graph Neural Network Evaluation”. In: Relational

Representation Learning Workshop, NeurIPS 2018 (2018).

136

[99] Nasrullah Sheikh, Zekarias Kefato, and Alberto Montresor. “gat2vec: representation learn-

ing for attributed graphs”. In: Computing 101.3 (2019), pp. 187–209.

[100] Kai Shu et al. “User identity linkage across online social networks: A review”. In: Acm

Sigkdd Explorations Newsletter 18.2 (2017), pp. 5–17.

[101] David I Shuman et al. “The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains”. In: IEEE signal

processing magazine 30.3 (2013), pp. 83–98.

[102] Aditya Siddhant and Zachary C. Lipton. “Deep Bayesian Active Learning for Natural Lan-

guage Processing: Results of a Large-Scale Empirical Study”. In: Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium:

Association for Computational Linguistics, Oct. 2018, pp. 2904–2909. DOI: 10.18653/

v1/D18-1318. URL: https://aclanthology.org/D18-1318.

[103] Felipe Bonow Soares, Raquel Recuero, and Gabriela Zago. “Influencers in polarized po-

litical networks on Twitter”. In: Proceedings of the 9th international conference on social

media and society. 2018, pp. 168–177.

[104] Jieun Son and Seoung Bum Kim. “Academic paper recommender system using multilevel

simultaneous citation networks”. In: Decision Support Systems 105 (2018), pp. 24–33.

[105] Xiaoyuan Su and Taghi M Khoshgoftaar. “A survey of collaborative filtering techniques”.

In: Advances in artificial intelligence 2009 (2009).

[106] Shan Suthaharan. “Big data classification: Problems and challenges in network intrusion

prediction with machine learning”. In: ACM SIGMETRICS Performance Evaluation Re-

view 41.4 (2014), pp. 70–73.

137

https://doi.org/10.18653/v1/D18-1318
https://doi.org/10.18653/v1/D18-1318
https://aclanthology.org/D18-1318

[107] Min Tang, Xiaoqiang Luo, and Salim Roukos. “Active learning for statistical natural lan-

guage parsing”. In: Proceedings of the 40th Annual Meeting of the Association for Com-

putational Linguistics. 2002, pp. 120–127.

[108] Xin-Min Tao et al. “A novel model of one-class bearing fault detection using SVDD and

genetic algorithm”. In: 2007 2nd IEEE Conference on Industrial Electronics and Applica-

tions. IEEE. 2007, pp. 802–807.

[109] Troy Tassier. “Labor market implications of weak ties”. In: Southern Economic Journal

(2006), pp. 704–719.

[110] David MJ Tax and Robert PW Duin. “Support vector data description”. In: Machine learn-

ing 54.1 (2004), pp. 45–66.

[111] Nguyen Thai-Nghe et al. “Recommender system for predicting student performance”. In:

Procedia Computer Science 1.2 (2010), pp. 2811–2819.

[112] Marina Thottan and Chuanyi Ji. “Anomaly detection in IP networks”. In: IEEE Transac-

tions on signal processing 51.8 (2003), pp. 2191–2204.

[113] Yonglong Tian et al. “Deep learning strong parts for pedestrian detection”. In: Proceedings

of the IEEE international conference on computer vision. 2015, pp. 1904–1912.

[114] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the

Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–288.

[115] Lyle H Ungar and Dean P Foster. “Clustering methods for collaborative filtering”. In: AAAI

workshop on recommendation systems. Vol. 1. Menlo Park, CA. 1998, pp. 114–129.

[116] Petar Veličković et al. “Graph attention networks”. In: arXiv preprint arXiv:1710.10903

(2017).

138

[117] Jianlin Wang et al. “Dynamic hypersphere based support vector data description for batch

process monitoring”. In: Chemometrics and Intelligent Laboratory Systems 172 (2018),

pp. 17–32.

[118] Minjie Wang et al. “Deep Graph Library: A Graph-Centric, Highly-Performant Package

for Graph Neural Networks”. In: arXiv preprint arXiv:1909.01315 (2019).

[119] Peng Wang et al. “Link prediction in social networks: the state-of-the-art”. In: Science

China Information Sciences 58.1 (2015), pp. 1–38.

[120] Xuhong Wang et al. “One-class graph neural networks for anomaly detection in attributed

networks”. In: Neural Computing and Applications (2021), pp. 1–13.

[121] Felix Wu et al. “Simplifying graph convolutional networks”. In: International conference

on machine learning. PMLR. 2019, pp. 6861–6871.

[122] Yuexin Wu et al. “Active learning for graph neural networks via node feature propagation”.

In: arXiv preprint arXiv:1910.07567 (2019).

[123] Zonghan Wu et al. “A comprehensive survey on graph neural networks”. In: IEEE trans-

actions on neural networks and learning systems (2020).

[124] Feng Xia et al. “Big scholarly data: A survey”. In: IEEE Transactions on Big Data 3.1

(2017), pp. 18–35.

[125] Tian Xie and Jeffrey C Grossman. “Crystal graph convolutional neural networks for an

accurate and interpretable prediction of material properties”. In: Physical review letters

120.14 (2018), p. 145301.

[126] Keyulu Xu et al. How Powerful are Graph Neural Networks? 2019. arXiv: 1810.00826

[cs.LG].

139

https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1810.00826

[127] Zekun Xu, Deovrat Kakde, and Arin Chaudhuri. “Automatic Hyperparameter Tuning Method

for Local Outlier Factor, with Applications to Anomaly Detection”. In: 2019 IEEE Inter-

national Conference on Big Data (Big Data). IEEE. 2019, pp. 4201–4207.

[128] Jian-Xiong Zhang et al. “Identifying a set of influential spreaders in complex networks”.

In: Scientific reports 6 (2016), p. 27823.

[129] Muhan Zhang and Yixin Chen. “Link prediction based on graph neural networks”. In:

Advances in neural information processing systems 31 (2018).

[130] Richong Zhang and Thomas Tran. “An information gain-based approach for recommend-

ing useful product reviews”. In: Knowledge and Information Systems 26.3 (2011), pp. 419–

434.

[131] Si Zhang et al. “Graph convolutional networks: a comprehensive review”. In: Computa-

tional Social Networks 6.1 (2019), p. 11.

[132] Xiao-Meng Zhang et al. “Graph neural networks and their current applications in bioinfor-

matics”. In: Frontiers in Genetics 12 (2021).

[133] Qinghe Zheng et al. “Improvement of generalization ability of deep CNN via implicit

regularization in two-stage training process”. In: IEEE Access 6 (2018), pp. 15844–15869.

[134] Qinghe Zheng et al. “Spectrum interference-based two-level data augmentation method in

deep learning for automatic modulation classification”. In: Neural Computing and Appli-

cations (2020), pp. 1–23.

[135] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: arXiv

preprint arXiv:1812.08434 (2018).

[136] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: AI

Open 1 (2020), pp. 57–81.

140

	Graph Neural Networks for Improved Interpretability and Efficiency
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Contribution

	CHAPTER 2: REGULARIZED SIMPLE GRAPH CONVOLUTION (SGC) FOR IMPROVED INTERPRETABILITY OF LARGE DATASETS
	Introduction
	Related work
	Data
	Circular data
	Linearly inseparable data
	Cora dataset

	Methodology
	Optimization for regularized SGC
	Training regularized SGC
	Tuning hyperparameters

	Simulation Study
	Simulation Setting
	Simulation results

	Discussion
	Conclusion

	CHAPTER 3: EXPLORING THE VALUE OF NODES WITH MULTICOMMUNITY MEMBERSHIP FOR CLASSIFICATION WITH GRAPH CONVOLUTIONAL NEURAL NETWORKS
	Introduction
	Data
	Methodology
	Sampling methods
	Degree
	PageRank
	VoteRank

	Simple Graph Convolution (SGC)
	Evaluation of Network Topology

	Results
	Discussion

	CHAPTER 4: EXPLORING A LINK BETWEEN NETWORK TOPOLOGY AND ACTIVE LEARNING
	Introduction
	Data
	Real datasets
	Synthetic dataset

	Methodology
	Sampling methods
	Simple Graph Convolution (SGC)
	Evaluation of Network Topology

	Results
	Conclusions

	CHAPTER 5: ONE-CLASS GRAPH NEURAL NETWORKS FOR DETECTION OF ANOMALOUS NODES IN ATTRIBUTED GRAPHS (rh-OCGNN)
	Introduction
	Methodology
	Anomaly detection and hypersphere learning
	Hypersphere learning on attributed graph data
	Optimization for OCGNN
	Training OCGNN

	rh-OCGNN
	Optimization for rh-OCGNN
	Training rh-OCGNN
	Tuning the radius

	Data
	Experiments
	Results
	Conclusion

	CHAPTER 6: LINK PREDICTION WITH SIMPLE GRAPH CONVOLUTION AND REGULARIZED SIMPLE GRAPH CONVOLUTION
	Introduction
	Methodology
	SGC
	Regularized SGC
	Link prediction

	Datasets
	Experiment
	Results
	Conclusion

	CHAPTER 7: CONCLUSION
	LIST OF REFERENCES

