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ABSTRACT 

Cardiovascular disease (CVD) is one of the major causes of death worldwide. 

Disease management, as well as patient health, can be significantly improved by early 

detection of patient deterioration and proper intervention. Review of the patient's medical 

history and physical examination including stethoscope auscultation and 

electrocardiograms (ECG), echocardiography imaging, numerous blood testing, and 

computed tomography are common means of evaluating cardiac function. 

Seismocardiographic (SCG) signals are the vibrations of the chest wall due to the 

mechanical activity of the heart. These signals can provide useful information about heart 

function and could be used to diagnose cardiac problems. The variability in SCG 

waveforms may make it difficult to obtain accurate waveforms, limiting SCG clinical 

value.  Breathing is a well-known source of change in SCG morphology. In this 

dissertation, SCG variability due to respiration is described, related signal characteristics 

changes are measured, and the effects of breathing states and maneuvers are discussed. 

Increased SCG variability understanding can aid in accounting for variability in signal as 

well as more accurate characterization of significant features in SCG that could correlate 

with heart health.  

Direct airflow measurement is frequently used to assess respiration. When direct 

airflow access is difficult or unavailable, indirect ways to breathing monitoring might be 

used. The seismocardiographic signal is influenced by respiration. As a result, this signal 

can be utilized to noninvasively determine the respiratory phases. Hence, SCG may reduce 

the requirement for direct airflow measurements in situations where SCG signals are easily 
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available. This dissertation extracts respiration derived from SCG in healthy adults using 

machine learning techniques and compares the results with direct respiration airflow 

measurements.  

Finite element method (FEM) was implemented to perform SCG simulation during 

different breathing states by modeling the myocardial movements propagation to the 

surface of the chest. SCG waveforms predicted by FEM analysis were comparable with 

SCG signals measured at the surface of the chest suggesting that myocardial activity is the 

SCG main source. The effects of increased soft tissue in the chest wall on SCG signal were 

investigated and were found to decrease SCG amplitude. The research led to an enhanced 

understanding of the SCG variability sources as well as respiratory phase-detection 

methods. These discoveries could lead to better non-invasive, low-cost approaches 

development for managing cardiovascular disorders, which can enhance patient quality of 

life.  



v 

 

 

 

 

 

 

 

This dissertation is dedicated to my parents 

 

MD Sirajul Islam 

and 

Shirina Islam 

 

who have given me their endless love, support and encouragement. 

 

 

 

 

 

 

 



vi 

 

ACKNOWLEDGMENT 

           First of all, I am feeling oblige in taking the opportunity to sincerely thank my 

supervisor, Dr. Hansen Mansy for teaching me valuable research methods and helping me 

come up with a strong dissertation. I am truly grateful to him for his guidance and support 

throughout all of these years. He continuously motivated me and guided me to achieve the 

goals of my research. I cannot express enough thanks to my dissertation external committee 

member, Dr. Richard Sandler for providing constructive feedback regarding finalizing the 

experimental protocol and overall progress of the research. I am also grateful to my 

committee members, Dr. Sam Song and Dr. Luigi Perotti for agreeing to serve on my Ph.D. 

committee and giving me useful feedback in the direction of successfully completing my 

dissertation. I offer my sincere appreciation to my professors Dr. M. Mahbubur Razzaque, 

Dr. Mohammad Nasim Hasan, and Dr. Mohammad Motalab at my undergraduate 

institution, Bangladesh University Engineering and Technology for fueling my passion to 

pursue an advanced degree. 

           I thank my current and previous collegues Rajkumar Dhar, Sherif Farahat, Dr. 

Khurshidul Azad, Dr. Peshala Gamage at Biomedical Acoustics Research Lab for their 

assistance and helping me achieving the goals of different parts in my research. I'd like to 

thank Alexandra Owens for helping me in perfoming the detiled  feature analysis parts of 

my research.  

          A very special thanks to my loving and caring wife, Badrun Rahman who 

consistently encouraged me on my tough days and was a source of comfort throughout this 

process. She  has not only actively helped me in performing experimental parts of my 



vii 

 

research but is also contributing to all aspects of my life. Her relentless encougement and 

care have brought the best out of me.  

           My deep appreciation goes to my amazing parents and siblings for always 

encouraging me and supporting me at every step of my life. They have immense 

contribution in each of my success. I am truly grateful to have each of them in my life. At 

last but not the least, I'd like to express my gratitude to my friends and family for their 

unwavering support over the years. 

  



viii 

 

TABLE OF CONTENTS 

LIST OF FIGURES ........................................................................................................... xi 

LIST OF TABLES ........................................................................................................... xxi 

CHAPTER 1 - INTRODUCTION ...................................................................................... 1 

SCG signal variability during normal breathing and breath holding at varying 

airway pressure ............................................................................................................... 3 

The identification of respiratory phase from SCG using machine learning ....... 4 

Finite element analysis of SCG signal ................................................................ 4 

CHAPTER 2 – SCG SIGNAL VARIABILITY DURING NORMAL BREATHING AND 

BREATH HOLDING AT VARYING AIRWAY PRESSURE ......................................... 6 

Materials and methods ........................................................................................ 6 

Data acquisition .............................................................................................. 7 

Protocol for collecting data during normal breathing ..................................... 8 

Protocol for collecting data during breath holding at end inspiration and end 

expiration .................................................................................................................... 9 

Protocol for collecting data during varying airway pressure at breath holding

................................................................................................................................... 10 

Signal processing .......................................................................................... 13 

K-medoid clustering...................................................................................... 14 



ix 

 

Decision Boundary........................................................................................ 18 

Statistical Analysis ........................................................................................ 19 

Results and discussion ...................................................................................... 19 

Time and frequency domain features ............................................................ 21 

Heart rate ....................................................................................................... 24 

Heart rate variability feature ......................................................................... 24 

Effect of intrathoracic pressure ..................................................................... 26 

Inter-cluster variability between normal breathing and breath holding ........ 29 

Inter-cluster variability between normal breathing and breath holding at 

positive 2-4 cm water pressure ................................................................................. 31 

Inter-cluster variability between normal breathing and breath holding at 

negative 2-4 cm water pressure................................................................................. 34 

Inter-cluster variability between normal breathing and breath holding at 

positive 15-20 cm water pressure ............................................................................. 36 

Inter-cluster variability between normal breathing and breath holding at 

negative 15-20 cm water pressure ............................................................................. 39 

Conclusion ........................................................................................................ 42 

CHAPTER 3 – THE IDENTIFICATION OF RESPIRATORY PHASE FROM 

SEISMOCARDIOGRAPHIC SIGNAL USING MACHINE LEARNING ..................... 43 

Methods............................................................................................................. 44 



x 

 

Data collection .............................................................................................. 44 

Feature collection, selection, and scaling ..................................................... 45 

Machine learning framework ........................................................................ 47 

Performance parameters................................................................................ 49 

Results ............................................................................................................... 50 

Conclusion ........................................................................................................ 55 

CHAPTER 4 – FINITE ELEMENT ANALYSIS OF SCG ............................................. 56 

Methods: computational modeling ................................................................... 58 

Results ............................................................................................................... 61 

Respiratory effect (heart location changes) .................................................. 61 

Effect of extra soft tissue .............................................................................. 64 

Conclusion ........................................................................................................ 66 

APPENDIX A: TIME AND FREQUENCY DOMAIN ANALYSIS OF SCG EVENTS 

DURING DIFFERENT BREATHING MANEUVERS .................................................. 67 

APPENDIX B: CLUSTER ANALYSIS OF SCG EVENTS DURING NORMAL 

BREATHING ................................................................................................................... 84 

APPENDIX C: IRB INFORMATION ............................................................................. 90 

APPENDIX D: IRB APPROVAL .................................................................................... 93 

LIST OF REFERENCES .................................................................................................. 95 



xi 

 

LIST OF FIGURES 

Figure 1 SCG variability with breathing. ................................................................ 3 

Figure 2 SCG acquisition and analysis methodology. ............................................ 7 

Figure 3 Locations of sensors and experimental setup. .......................................... 8 

Figure 4 Flow rate vs. time normal breathing. ........................................................ 9 

Figure 5 flow rate vs. time  during breath holding at end inspiration and end 

expiration. ........................................................................................................................... 9 

Figure 6 Pressure and flow rate vs. time  during end inspiration positive and 

negative 2-4 cm water pressure......................................................................................... 10 

Figure 7 Pressure and flow rate vs. time  during end expiration positive and negative 

2-4 cm water pressure. ...................................................................................................... 11 

Figure 8 Pressure and flow rate vs. time  during end inspiration positive and 

negative 15-20 cm water pressure. .................................................................................... 11 

Figure 9 Pressure and flow rate vs. time  during end expiration positive and negative 

15-20 cm water pressure. .................................................................................................. 12 

Figure 10 Raw data of SCG X, SCG Y, SCG Z, flow rate and ECG signals (from 

top to bottom, respectively). Here, SCG in in craniocaudal axis is labeled as SCG X, SCG 

in lateral axis is labeled as SCG Y and SCG in dorsoventral axis is labeled as SCG Z. .. 12 

Figure 11 Filtered vs original signal. (a) shows multiple SCG beats ; (b) shows 

zoomed in view. ................................................................................................................ 13 

Figure 12 The difference between Euclidean distance and dynamic time warping.

........................................................................................................................................... 15 



xii 

 

Figure 13 The optimal warping path between signals X and Y to illustrate DTW.

........................................................................................................................................... 16 

Figure 14 To demonstrate the elbow method, average SOD for different numbers 

of clusters was calculated.................................................................................................. 17 

Figure 15 SVM hyperplane showing the decision boundary and margin between the 

classes. .............................................................................................................................. 19 

Figure 16 In a simplified waveform of lung volume, the four respiratory phases are 

labeled. .............................................................................................................................. 20 

Figure 17 Cluster distribution in the lung volume vs flow rate plane for 2 subjects 

during 1 minute of data recordings. .................................................................................. 20 

Figure 18 Intra and inter cluster variability (Azad, 2020). ................................... 21 

Figure 19 Intra-cluster variability during normal breathing and breath holding. . 21 

Figure 20 The SCG energy in the 0 –20 Hz (normalized by energy in the 0-50 Hz) 

during normal breathing and breath holding. .................................................................... 23 

Figure 21 HRV energy in high frequency range (HF) during normal breathing and 

breath holding. .................................................................................................................. 25 

Figure 22 Intra-cluster variability during end inspiration breath holding at varying 

airway pressure. ................................................................................................................ 26 

Figure 23 Intra-cluster variability during end expiration breath holding at varying 

airway pressure. ................................................................................................................ 28 

Figure 24 Inter-cluster variability between cluster 1 and breath holding at zero 

airway pressure. ................................................................................................................ 29 



xiii 

 

Figure 25 Inter-cluster variability between cluster 2 and breath holding at zero 

airway pressure. ................................................................................................................ 30 

Figure 26 Inter-cluster variability between cluster 1 and breath holding at positive 

2-4 cm water. .................................................................................................................... 31 

Figure 27 Inter-cluster variability between cluster 2 and breath holding at positive 

2-4 cm water. .................................................................................................................... 33 

Figure 28 Inter-cluster variability between cluster 1 and breath holding at negative 

2-4 cm water. .................................................................................................................... 34 

Figure 29 Inter-cluster variability between cluster 2 and breath holding at negative 

2-4 cm water. .................................................................................................................... 35 

Figure 30 Inter-cluster variability between cluster 1 and breath holding at positive 

15-20 cm water. ................................................................................................................ 37 

Figure 31 Inter-cluster variability between cluster 2 and breath holding at positive 

15-20 cm water. ................................................................................................................ 38 

Figure 32 Inter-cluster variability between cluster 1 and breath holding at negative 

15-20  cm water. ............................................................................................................... 39 

Figure 33 Inter-cluster variability between cluster 2 and breath holding at negative 

15-20 cm water. ................................................................................................................ 41 

Figure 34 For this study, the sensor placements and experimental setup. ............ 44 

Figure 35 SCG event selection from ECG R peak. .............................................. 45 



xiv 

 

Figure 36 Selection of features from a segmented SCG waveform. The average 

amplitude over each 4 ms frame (the interval between the red lines) was chosen as a feature 

in this case. ........................................................................................................................ 46 

Figure 37 Labeling SCG events based on lung volume signal. ............................ 46 

Figure 38 Illustration of finding predictor using boosting algorithm. .................. 48 

Figure 39 The accuracy, sensitivity/recall, specificity, precision, and F1 score for 

all participants when using SVM to detect inspiration/expiration phases. ....................... 51 

Figure 40 The accuracy, sensitivity/recall, specification, precision, and F1 score for 

all subjects using XGBoost to detect inspiration/expiration phases. ................................ 52 

Figure 41 The accuracy, sensitivity/recall, specification, precision, and F1 score for 

all individuals when using SVM to detect high lung volume/low lung volume phases. .. 53 

Figure 42 The accuracy, sensitivity/recall, specification, precision, and F1 score for 

all individuals using XGBoost to detect high lung volume/low lung volume phases. ..... 54 

Figure 43 The 3D modeled region's location and detailed structures (a) Muscular, 

bony, and lung regions (b) Ribs, ICM, cartilage, sternal, and xiphoid (c) placement and 

orientation of the modeled region (Gamage, 2020). ......................................................... 59 

Figure 44 (a) Computational mesh, (b) MRI-mapped displacements of the heart 

surface, and (c) and (d) further 3D views of the computational model domain. The rib edges 

are in red color (Gamage, 2020). ...................................................................................... 60 

Figure 45 Surface acceleration distribution in the dorso-ventral direction at SCG 1 

and SCG 2 peak times at: (a) & (c) end inspiration state; and (b) & (d) end expiration. The 

SCG peak tended to be louder at the end of inspiration. The SCG1 peak moved about 3cm 



xv 

 

to the right at the end of expiration, which is comparable with the corresponding upward 

movement in the heart position; all data are in mm/s2 (Gamage, 2020). .......................... 62 

Figure 46  End-of-inspiration and end-of-expiration SCG signals simulated at 

various chest sites. The waveform variability (measured as the rms of the waveform 

difference) matched experimental results (Gamage, 2020). ............................................. 63 

Figure 47 Surface acceleration distribution in dorso-ventral direction at: (a) &(c) 

original model in end inspiration state; and (b) & (d) 1 cm extra soft tissue on outer muscle 

during both SCG 1 and SCG 2 peak timing. ..................................................................... 64 

Figure 48 Simulated SCG signals at 4th intercostal space for the original model and 

model with extra soft tissue. SCG amplitude was decreased by 0.0305 m/s2 due to extra 

soft tissue in the model. .................................................................................................... 65 

Figure 49 Time domain analysis during 5 runs of normal breathing without 

performing clustering with events plotted on top of each other for a subject. Number of 

events and variability values in each run are also listed. .................................................. 68 

Figure 50 Time domain analysis during 5 runs of normal breathing without 

performing clustering where events are plotted on top of previous SCG event for a subject.

........................................................................................................................................... 68 

Figure 51 Frequency domain analysis during 5 runs of normal breathing without 

performing clustering where the spectra of each SCG event are plotted on top of each other.

........................................................................................................................................... 69 



xvi 

 

Figure 52 Time domain analysis during 5 runs of normal breathing cluster 1 with 

events plotted on top of each other for a subject. Number of events and variability values 

in each run are also listed. ................................................................................................. 69 

Figure 53 Time domain analysis during 5 runs of normal breathing cluster 1 where 

events are plotted on top of previous SCG event for a subject. ........................................ 70 

Figure 54 Frequency domain analysis during 5 runs of normal breathing cluster 1 

where the spectra of each SCG event are plotted on top of each other. ........................... 70 

Figure 55 Time domain analysis during 5 runs of normal breathing cluster 2 with 

events plotted on top of each other for a subject. Number of events and variability values 

in each run are also listed. ................................................................................................. 71 

Figure 56 Time domain analysis during 5 runs of normal breathing cluster 2 where 

events are plotted on top of previous SCG event for a subject. ........................................ 71 

Figure 57 Frequency domain analysis during 5 runs of normal breathing cluster 2 

where the spectra of each SCG event are plotted on top of each other. ........................... 72 

Figure 58 Time domain analysis during 3 runs of breath holding at end inspiration 

with events plotted on top of each other for a subject. Number of events and variability 

values in each run are also listed....................................................................................... 72 

Figure 59 Time domain analysis during 3 runs of breath holding at end inspiration 

where events are plotted on top of previous SCG event for a subject. ............................. 73 

Figure 60 Frequency domain analysis during 3 runs of breath holding at end 

inspiration where the spectra of each SCG event are plotted on top of each other. ......... 73 



xvii 

 

Figure 61 Time domain analysis during 3 runs of breath holding at end expiration 

with events plotted on top of each other for a subject. Number of events and variability 

values in each run are also listed....................................................................................... 73 

Figure 62 Time domain analysis during 3 runs of breath holding at end expiration 

where events are plotted on top of previous SCG event for a subject. ............................. 74 

Figure 63 Frequency domain analysis during 3 runs of breath holding at end 

expiration where the spectra of each SCG event are plotted on top of each other. .......... 74 

Figure 64 Time domain analysis during 3 runs of end inspiration at positive 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events and 

variability values in each run are also listed. .................................................................... 74 

Figure 65 Time domain analysis during 3 runs of end inspiration at positive 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. ..... 75 

Figure 66 Frequency domain analysis during 3 runs of end inspiration at positive 

2-4 cm water pressure where the spectra of each SCG event are plotted on top of each other.

........................................................................................................................................... 75 

Figure 67 Time domain analysis during 3 runs of end inspiration at negative 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events and 

variability values in each run are also listed. .................................................................... 76 

Figure 68 Time domain analysis during 3 runs of end inspiration at negative 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. ..... 76 



xviii 

 

Figure 69 Frequency domain analysis during 3 runs of end inspiration at negative 

2-4 cm water pressure where the spectra of each SCG event are plotted on top of each other.

........................................................................................................................................... 76 

Figure 70 Time domain analysis during 3 runs of end inspiration at positive 15-20 

cm water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. ............................................................. 77 

Figure 71 Time domain analysis during 3 runs of end inspiration at positive 15-20 

cm water pressure where events are plotted on top of previous SCG event for a subject. 77 

Figure 72 Frequency domain analysis during 3 runs of end inspiration at positive 

15-20 cm cm water pressure where the spectra of each SCG event are plotted on top of 

each other. ......................................................................................................................... 77 

Figure 73 Time domain analysis during 3 runs of end inspiration at negative 15-20 

cm water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. ............................................................. 78 

Figure 74 Time domain analysis during 3 runs of end inspiration at negative 15-20 

cm water pressure where events are plotted on top of previous SCG event for a subject. 78 

Figure 75 Frequency domain analysis during 3 runs of end inspiration at negative 

15-20 cm cm water pressure where the spectra of each SCG event are plotted on top of 

each other. ......................................................................................................................... 78 

Figure 76 Time domain analysis during 3 runs of end expiration at positive 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events and 

variability values in each run are also listed. .................................................................... 79 



xix 

 

Figure 77 Time domain analysis during 3 runs of end expiration at positive 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. ..... 79 

Figure 78 Frequency domain analysis during 3 runs of end expiration at positive 2-

4 cm water pressure where the spectra of each SCG event are plotted on top of each other.

........................................................................................................................................... 79 

Figure 79 Time domain analysis during 3 runs of end expiration at negative 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events and 

variability values in each run are also listed. .................................................................... 80 

Figure 80 Time domain analysis during 3 runs of end expiration at negative 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. ..... 80 

Figure 81 Frequency domain analysis during 3 runs of end expiration at negative 

2-4 cm water pressure where the spectra of each SCG event are plotted on top of each other.

........................................................................................................................................... 80 

Figure 82 Time domain analysis during 3 runs of end inspiration at positive 15-20 

cm water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. ............................................................. 81 

Figure 83 Time domain analysis during 3 runs of end inspiration at positive 15-20 

cm water pressure where events are plotted on top of previous SCG event for a subject. 81 

Figure 84 Frequency domain analysis during 3 runs of end inspiration at positive 

15-20 cm cm water pressure where the spectra of each SCG event are plotted on top of 

each other. ......................................................................................................................... 81 



xx 

 

Figure 85 Time domain analysis during 3 runs of end expiration at negative 15-20 

cm water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. ............................................................. 82 

Figure 86 Time domain analysis during 3 runs of end expiration at negative 15-20 

cm water pressure where events are plotted on top of previous SCG event for a subject. 83 

Figure 87 Frequency domain analysis during 3 runs of end expiration at negative 

15-20 cm cm water pressure where the spectra of each SCG event are plotted on top of 

each other. ......................................................................................................................... 83 

Figure 88 Cluster distribution and the accuracy of normal breathing for 5 runs (1 

min each) for subject 2. ..................................................................................................... 85 

Figure 89 Cluster distribution and the accuracy of normal breathing for 5 runs (1 

min each) for subject 4. ..................................................................................................... 86 

Figure 90 Cluster distribution and the accuracy of normal breathing for 5 runs (1 

min each) for subject 7. ..................................................................................................... 87 

Figure 91 Cluster distribution and the accuracy of normal breathing for 5 runs (1 

min each) for subject 14. ................................................................................................... 88 

Figure 92 Cluster distribution and the accuracy of normal breathing for 5 runs (1 

min each) for subject 15. ................................................................................................... 89 

 



xxi 

 

LIST OF TABLES 

Table 1 Changes in intra-cluster variability. The study subjects' mean and standard 

deviation (SD) are reported. There was a decrease with clustering (p<0.05) and a further 

decrease with breath hold (p<0.05). .................................................................................. 22 

Table 2 In the 0-20 Hz frequency, there is a change in normalized SCG energy. The 

energy dropped with breath hold (p<0.05). ...................................................................... 23 

Table 3 Heart rate change. The heart rate decreased with breath hold (p<0.05). . 24 

Table 4 Heart rate variability frequency ranges. ................................................... 25 

Table 5 HRV energy change in the high frequency range (HF). With breath held, 

there was a significant drop. (p<0.05). ............................................................................. 26 

Table 6 Intra-cluster variability change. There was an increase with increasing 

positive and negative intrathoracic pressure after end inspiration breath holding. ........... 27 

Table 7 Intra-cluster variability change. There was an increase with increasing 

positive and negative intrathoracic pressure after end expiration breath holding. ........... 28 

Table 8 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration compared to cluster 1 and end expiration 

(p<0.05). ............................................................................................................................ 29 

Table 9 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration compared to cluster 2 and end inspiration 

(p<0.05). ............................................................................................................................ 30 



xxii 

 

Table 10 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration positive 2-4 cm water pressure compared 

to cluster 1 and end expiration positive 2-4 cm water pressure (p<0.05). ........................ 31 

Table 11  Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration positive 2-4 cm water pressure compared 

to cluster 2 and end inspiration positive 2-4 cm water pressure (p<0.05). ....................... 33 

Table 12 Inter-cluster variability change between cluster 1 and end inspiration 

negative 2-4 cm water pressure and cluster 1 and end expiration negative 2-4 cm water 

pressure (p<0.05). ............................................................................................................. 34 

Table 13 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration negative 2-4 cm water pressure compared 

to cluster 2 and end inspiration negative 2-4 cm water pressure (p<0.05). ...................... 36 

Table 14 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration positive 15-20 cm water pressure 

compared to cluster 1 and end expiration positive 15-20 cm water pressure (p<0.05). ... 37 

Table 15  Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration positive 15-20 cm water pressure 

compared to cluster 2 and end inspiration positive 15-20 cm water pressure (p<0.05). .. 39 

Table 16 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration negative 15-20 cm water pressure 

compared to cluster 1 and end expiration negative 15-20 cm water pressure (p<0.05). .. 40 



xxiii 

 

Table 17 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration negative 15-20 cm water pressure 

compared to cluster 2 and end inspiration negative 15-20 cm water pressure (p<0.05). . 41 

Table 18 The number of data points used for training and testing for each subject.

........................................................................................................................................... 47 

Table 19 Validation accuracy for each subject using SVM. ................................. 48 

Table 20 Validation accuracy for each subject using XGBoost. .......................... 49 

Table 21 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to detect 

inspiration/expiration phases using SVM ......................................................................... 51 

Table 22 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to detect 

inspiration/expiration phases using XGBoost. .................................................................. 52 

Table 23 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to detect 

high lung volume/low lung volume phases using SVM. .................................................. 53 

Table 24 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect high lung 

volume/low lung volume phases using XGBoost. ............................................................ 54 

Table 25 Material properties (Gamage, 2020) ...................................................... 61 



1 

 

CHAPTER 1 - INTRODUCTION 

In the United States, cardiovascular disorders are one of the main causes of 

disability and mortality (Virani et al., 2020). As a result, new methods for detecting 

cardiovascular disease early are needed. The most common procedures for assessing 

heart function include a history and physical examination, stethoscope auscultation, 

electrocardiograms (ECG), echocardiographic imaging, and several tests of the blood. 

Though these treatments can give important diagnostic data, these usually necessitate 

medical assistance and are only used in clinical settings. Vibrations over the chest 

surface induced by heart action are known as seismocardiographic (SCG) signals 

(Bozhenko, 1961). Mechanical activity such as valve closures, blood momentum 

changes, and cardiac muscle contraction have been linked to these vibrations in the past 

(Salerno, 1990; Crow, Hannan, Jacobs, Hedquist, & Salerno, 1994; Tavakolian et al., 

2012; Taebi & Mansy, 2017; Taebi, Sandler, Kakavand, & Mansy, 2017; Taebi, 2018). 

Because SCG signals give information about heart function, they may be proven useful 

in the cardiovascular diseases diagnosis and monitoring. SCG signals were used to 

extract several parameters of the heart such as systolic time intervals and heart rate 

(Shafiq, Tatinati, Ang, & Veluvolu, 2016; Taebi & Mansy, 2017; Taebi, Bomar, 

Sandler, & Mansy, 2018). In phonocardiography (PCG), electronic stethoscopes are 

used to record sounds caused by blood flow, valve closure and ventricular filling. 

Seismocardiography (SCG) is a technique for evaluating heart function that involves 

using accelerometers to detect the chest wall surface vibrations. In ambulatory settings, 

it can be utilized in conjunction with other modalities. PCG, on the other hand, may not 

always contain low-frequency heart vibratiosns like S3 and S4 (Glower et al., 1992; 

Siejko et al., 2013; Hosenpud & Greenberg, 2007). SCG, which can detect low 
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frequency vibrations with high precision and may also be implemented to recognize 

cardiac events such  as aortic opening, mitral opening, and isovolumetric contraction 

(Tavakolian, 2016; Crow et al., 1994). In additions, breathing, stomach noises, and 

body movements may contain traces SCG signals. 

As previously stated, SCG signals provide information about the chest wall 

surface audible and infrasonic vibrations (Taebi et al., 2019; Taebi & Mansy, 2017; 

Taebi & Mansy, 2017; Taebi et al., 2019) . The frequency of SCG signals was studied 

in healthy persons. According to Taebi, SCG signal intensities peaked at two points 

during the cardiac cycle, matching PCG's S1 and S2 sounds which are referred to as 

SCG1 and SCG2, respectively. When measured at the lower left sternal border in the 

4th intercostal space, SCG1 usually exhibits a larger signal intensity than SCG2. The 

power spectral density (PSD) of SCG1 identified three key frequencies. These are lower 

domiant frequency 9 Hz, 25 Hz, and higher dominat frequency 50 Hz. The lower 

dominant frequency of 9 Hz may correspond to ventricular contraction, and the higher 

dominant frequency of 50 Hz correspond to atrioventricular valve closure, according to 

Taebi. This demonstrates how SCG signals, which offer data at lower frequencies than 

PCG signals, can be used to extract extra information about the  mechanical activity of 

the heart. SCG variability, particularly respiratory variability, is little understood, 

despite its potential utility. These variabilities may mask important diagnostic SCG 

morphological traits or, conversely, make SCG interpretation problematic. As a result, 

lowering variability and/or improving our understanding of its origins will increase the 

utility of SCG.  A better understanding of SCG variability could help account for it 

while also allowing for a clearer interpretation of key SCG features to improve 

diagnostic predictive value. 
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The proposed study will focus on SCG variability in relation to respiration, 

which has not been adequately investigated in previous research. 

SCG signal variability during normal breathing and breath holding at varying airway 

pressure 

To help reduce variability with respiration, some earlier studies (Taebi & 

Mansy, 2017; Solar, Taebi, & Mansy, 2017) categorised SCG events according to their 

lung volume phases (high lung volume/low lung volume) or respiratory flow 

(inspiration/expiration). SCG waveforms were better sorted into groups with the least 

intra-group variability using unsupervised machine learning, according to a previous 

work (Gamage, Azad, Taebi, Sandler, & Mansy, 2018). Clustering SCG events by lung 

volume phases, rather than respiratory flow phase, may yield more homogeneous 

groupings, according to that previous study. SCG fluctuation during breath holding has 

been less  studied in the previous literature. The goal of this study is to see how SCG 

varies from normal breathing to holding a breath at different lung capacities and airway 

pressures. Several variables that cause variability (such as heart position and 

intrathoracic pressure) are altered with breathing. Two SCG signals are shown in Figure 

1 during distinct stages of respiration.  

 

Figure 1 SCG variability with breathing.  
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The identification of respiratory phase from SCG using machine learning 

 A mouthpiece or other breathing airflow access is typically utilized to measure 

respiration. When gaining direct access to breathing airflow is inconvenient or difficult, 

it could be necessary to use an indirect method of respiration detection. The 

morphological changes in SCG as a function of respiration have previously been 

studied (Tavakoliyan et al., 2009; Zakeri et al., 2009). As a result, the respiratory signal 

can be derived from the SCG signal non-invasively, eliminating the requirement for a 

less convenient method under certatin circumstances, which is especially useful in an 

ambulatory context. The accuracy of pulmonary phase calculated from the SCG signals 

was compared with direct breathing assessment in this study. 

Finite element analysis of SCG signal 

Understanding how the waveform of SCG signal obtained on the chest wall 

relates to heart activity could help improve SCG's utility as a reliable diagnostic tool 

for cardiac problems. Electrocardiography has been used to identify several peaks in a 

cardiac cycle of SCG (Giorgis et al., 2008; Crow, Hannan, Jacobs, Hedquist, & Salerno, 

1994). The findings, however, are still controversial (Akhbardeh et al., 2009). Because 

of intricate motions of the heart walls, it's difficult to link cardiac movements to SCG 

morphology. Certain cardiac events that occur at different locations in the heart may 

overlap, boosting or negating their impact on SCG morphology. However, capturing 

heart motions and correlating them with the SCG utilizing 4D cardiac image processing 

and Cine-MRI imaging techniques may aid in finding the signal's origins. Furthermore, 

realistic 3D heart movement capture might be used to create a computer model to 

analyze heart movement transmission to the cheat wall from Cine-MRI. One purpose 
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of this research is to create a computational model that accurately replicates the 

distribution of cardiac motions to the surface of the chest. The effects of increased soft 

tissue in the chest wall were also investigated in this study. This type of computer model 

can be used to investigate the relation between SCG and cardiac motions, as well as to 

understand SCG's origins. 
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CHAPTER 2 – SCG SIGNAL VARIABILITY DURING NORMAL 

BREATHING AND BREATH HOLDING AT VARYING AIRWAY 

PRESSURE 

The variability of SCG waveforms may make it difficult to extract accurate SCG 

waveforms, limiting its clinical value. If the variability of the SCG is reduced and the 

sources of variability are better understood, the utility of the SCG can be increased. 

Breathing is one known source of SCG variation. The position of the heart and the 

pressure around it are altered while breathing. These modifications may lead to 

variability the causes problems in SCG interpretation, but they may also contain 

diagnostic SCG morphological traits. Improved understanding of the causes of 

variability may aid in the extraction of more accurate SCG waveforms, as well as 

providing key elements that increase SCG's diagnostic predictive value. There is limited 

published information about SCG changes during breath holding (BH) to our 

knowledge. SCG and heart rate fluctuations during regular breathing are compared to 

BH in this experiment. Some of the characteristics that generate variability (such as 

heart position) can be maintained during BH. SCG morphological changes at different 

breathing states can help us better understand SCG sources and identify the optimal 

breathing states and recording procedures. 

Materials and methods 

Following IRB permission, we recruited 20 healthy volunteers (Female=14, 

Male=6, Age: 21±2 years). Subjects were asked to lie supine on a bed with their feet 

extended horizontally and their head angled to 45 degrees. The methods used in our 

research is depicted in Figure 2. 
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Figure 2 SCG acquisition and analysis methodology. 

Data acquisition 

A biopotential recorder was used to record the ECG signal (IX-B3G, iWorx 

Systems, Inc., Dover, NH). A tri-axial accelerometer was used to capture SCG signals 

(Model: 356A32, PCB Piezotronics, Depew, NY). The sensor was taped to the chest 

surface in the 4th intercostal space near the left lower sternal border with double-sided 

medical grade adhesive. A spirometer was used to assess the rate of breathing (Model: 

A-FH-300, iWorx Systems, Inc., Dover, NH). Figure 3 depicts the experimental setup 

and sensor placements. 

Data acquisition:

SCG, ECG, Flow 
measurements

Preprocessing:

Filter (Band pass 
0.05-200 Hz);

Segment SCG 
events using R 
peak of ECG.

Clustering:

Separate SCG 
waveforms during 
normal breathing 

into two 
clusters. Find

decision boundary.   

Analysis

SCG: Intra and 
inter cluster 

variability, Energy 
in 0-20 Hz / 0-

50Hz

Heart Rate: 
variability in the 

range 0.15-0.4 Hz.
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Figure 3 Locations of sensors and experimental setup. 

Protocol for collecting data during normal breathing  

The first step in performing experimental protocol is to collect data during 

normal breathing. Here, all studies were done with an air tight face mask covering the 

nose and mouth and was connected to the spirometer. Figure 4 shows typical flow rate 

data during normal breathing. The participants were given two minutes to rest while 

using a spirometer to measure their breathing. The baseline tidal volume was measured 

during this time. Next, subjects practiced breathing at a tidal volume that is within +/-

10-20% of their baseline. Core signals (tri-axial SCG, ECG, and Spirometer flow rate) 

were collected for 5 minutes (while volunteers maintained a tidal volume of +/-20% of 

baseline). Flow rate vs. time is plotted in Figure 4 during normal breathing. 
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Figure 4 Flow rate vs. time normal breathing. 

Protocol for collecting data during breath holding at end inspiration and end 

expiration  

This protocol was performed during breath holding while maintaining an open  

 

Figure 5 flow rate vs. time  during breath holding at end inspiration and end expiration. 
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glottis. End inspiration BH was conducted for 20 seconds (or as long as feasible) while 

the signals were being recorded, then a three-minute rest time followed. This cycle was 

repeated two more times (a total of 3 cycles for end inspiration). Three end expiration 

BH trials (20 seconds each, if possible) were carried out in the same manner, with three 

minutes of rest in between. Figure 5 depicts the flow rate vs. time during breath holding 

at the conclusion of inspiration and exhalation. 

Protocol for collecting data during varying airway pressure at breath holding 

 

Figure 6 Pressure and flow rate vs. time  during end inspiration positive and negative 

2-4 cm water pressure.  

          This experiment is done with open glottis, blocked airflow, face mask covering 

the nose and mouth connected to the manometer. Here, the experiment is to perform 

data collection with “normal” airway pressures (positive and neg 2-4 cm water 

pressure) and with increased airway pressures (positive and neg 15-20 cm water 

pressure). Then, with 2 minutes of rest between trials, three trials of raised and 
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decreased airway pressure of 2-4 cm and 15-20 cm water at end inspiration and end 

expiration were done after subjects have done enough practice following the protocol.  

 

Figure 7 Pressure and flow rate vs. time  during end expiration positive and negative 2-

4 cm water pressure.  

 

Figure 8 Pressure and flow rate vs. time  during end inspiration positive and negative 

15-20 cm water pressure.  
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Figure 9 Pressure and flow rate vs. time  during end expiration positive and negative 

15-20 cm water pressure.  

 

Figure 10 Raw data of SCG X, SCG Y, SCG Z, flow rate and ECG signals (from top 

to bottom, respectively). Here, SCG in in craniocaudal axis is labeled as SCG X, SCG 

in lateral axis is labeled as SCG Y and SCG in dorsoventral axis is labeled as SCG Z.  

Figure 6 shows pressure and flow rate vs. time  during end inspiration positive and 

negative 2-4 cm water pressure. Figure 7 shows pressure and flow rate vs. time  during 

end expiration positive and negative 2-4 cm water pressure. Figure 8 shows pressure 
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and flow rate vs. time  during end inspiration positive and negative 2-4 cm water 

pressure. Figure 9 shows pressure and flow rate vs. time  during end expiration positive 

and negative 15-20 cm water pressure. The raw data from the triaxial SCG, ECG, and 

spirometer flow rate are shown in Figure 10. The sampling rate was 10,000 Hz in this 

experiment. 

Signal processing 

 

 

 

 

 

 

 

 

 

Figure 11 Filtered vs original signal. (a) shows multiple SCG beats ; (b) shows zoomed 

in view. 

(a) 

(b) 
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         After downsampling SCG signals to 1000 Hz, a band pass filter (Chebyshev 2 

type) with a cut-off frequency of 0.05–200 Hz was employed to filter the signals. This 

is done to eliminate background noise as well as baseline drifting caused by breathing 

and other bodily motions. Figure 11 shows Filtered vs original signal in multiple SCG 

beats and zoomed in view. The R-R intervals of the simultaneously obtained ECG were 

used to segment the SCG signal into the SCG events (SCG signals during each heart 

cycle). To keep it simple and consistent, the beginning and end times of the SCG event 

were set to be 100 milliseconds before the R wave.  

K-medoid clustering 

Before clustering, SCG events were downsampled to 500 Hz. An unsupervised 

machine learning technique known as k-medoid clustering was used to cluster SCG 

events based on their waveform to reduce SCG variability during normal breathing. The 

dynamic time warping (DTW) distance was used to cluster the data. Clustering time 

series based on waveform shape was previously suggested to be more accurate than 

other approaches. 

A common method for comparing two time series is the DTW. The DTW 

method uses temporal aberrations between two time sequences to achieve an optimum 

local alignment. A measure of similarity is determined regardless of non-linear 

variations in time by "warping" the sequences in the time domain. 

DTW procedure 

The following are the processes for computing the DTW distance between two 

time series of differing lengths, X and Y.  
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𝑋 = {𝑥1, 𝑥2, … 𝑥𝑖, … . 𝑥𝑛}              (1) 

𝑌 = {𝑦1, 𝑦2, … 𝑦𝑗 , … . 𝑦𝑚}       (2) 

The lengths of the two signals are n and m, respectively.  

The following formula is used to recursively fill this distance matrix: 

𝐷(𝑖, 𝑗) = 𝛿(𝑥𝑖, 𝑦𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗)

𝐷(𝑖 − 1, 𝑗 − 1)
                                                                     (3) 

were 𝛿(𝑥𝑖, 𝑦𝑗) = (𝑥𝑖 − 𝑦𝑗)
2

 𝑜𝑟 |𝑥𝑖 − 𝑦𝑗| 

An optimal alignment (warping path) 𝑊 = {𝑤1, 𝑤2, … . 𝑤𝑘 , … , 𝑤𝑁} is to be 

found were 𝑤𝑘 = (𝑖, 𝑗) represent the alignment between ith point of X and jth point of Y. 

The optimal warping path is found such that it minimizes, 

𝐷𝑇𝑊(𝑋, 𝑌) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐷(𝑤)𝑘=𝑁
𝑘=1          (4)

 where, the warping path should satisfy the following three conditions.  

Boundary constraint: 𝑤1 = (1,1), 𝑤𝑁 = (𝑛, 𝑚) 

Monotonicity constraint: 𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′)  were 𝑖′ ≥ 𝑖 and 𝑗′ ≥ 𝑗 

Continuity constraint:  𝑤𝑘 = (𝑖, 𝑗), 𝑤𝑘+1 = (𝑖′, 𝑗′)  were 𝑖′  ≤ 𝑖 + 1 and 𝑗′  ≤

𝑗 + 1 

 

Figure 12 The difference between Euclidean distance and dynamic time warping. 
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Figure 13 The optimal warping path between signals X and Y to illustrate DTW. 

Figure 12 shows the difference between Euclidean distance and dynamic time warping. 

Figure 13 shows how DTW algorithm finds distance matrix. 

The K-Medoid clustering technique was created in MATLAB. A representative 

event (medoid) is picked for the cluster instead of a cluster centroid. Medoid is the event 

in the cluster having the shortest distances to all other events. K-medoid clustering is 

preferred to K-means clustering because it is less susceptible to outliers. 

K-Medoid algorithm 

Step 1: Choose inputs: 1) Cluster number = K; 2) The SCG events 

 {𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑖 … . , 𝑋𝑁} where N refers to the number of events and each event is a 

feature vector of signal amplitudes such that 𝑋𝑖 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑙𝑖
}.  

            Step 2: Initialize the medoid for each cluster 𝐶1, … , 𝐶𝑗 , … 𝐶𝑘.  

            Step 3: For each SCG event, 𝑋𝑖, find the nearest cluster medoid 

𝐶𝑗  (using cross co − relation as the distance measure) and assign 𝑋𝑖 to cluster 𝑗.  
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            Step 4: After assigning all events to a cluster, use Eq. 5 to update 𝐶𝑗 based on 

the clustered events from the previous step:  

𝐶𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦∈{𝑋1𝑗,𝑋2𝑗,…,𝑋𝑖𝑗,...,𝑋𝑛𝑗} ∑ 𝑑𝑡𝑤(𝑦, 𝑋𝑖𝑗)
𝑛𝑗

𝑖=1
                                                     (5) 

where Xij is the ith event of cluster j and nj is the number of j events after step 2.  

Step 5: Repeat steps 3 and 4 until cluster assignments do not change. 

The ideal number of clusters was determined using the elbow method. A small 

number of clusters were chosen to limit intra-cluster variance. Equation 6 calculates the 

average sum of distances (SOD) between each event and its cluster medoid, which 

reveals intra-cluster variability. 

𝑆𝑂𝐷 =
1

𝑁
∑ ∑ 𝑑𝑡𝑤(𝐶𝑗 , 𝑋𝑖𝑗)

𝑛𝑗

𝑖=1
𝑘
𝑗=1                                                                                    (6) 

Here, 𝑁 is the total number of events, 𝑋𝑖𝑗 is the 𝑖𝑡ℎ event for cluster medoid 𝐶𝑗 , 

and 𝑛𝑗  is the number of events for 𝐶𝑗.  

 

 

 

 

 

 

 

 

 

 

Figure 14 To demonstrate the elbow method, average SOD for different numbers of 

clusters was calculated. 
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Figure 14 shows the average SOD for various cluster sizes. When the number 

of clusters was 2, an elbow form was found, which is consistent with earlier research 

(Sandler et al., 2021; Sandler et al., 2021; Hassan et al., 2021) . With the fewest number 

of clusters, it can be argued that two clusters would result in acceptable intra-cluster 

variance. 

Decision Boundary 

After clustering, a support vector machine (SVM) was used to create a decision 

boundary to illustrate how accurately the two clusters are separated. By finding a 

hyperplane for the features, the SVM algorithm maximizes the margin between the two 

classes. A decision boundary can be defined (for linearly separable data) as 𝑤. 𝑥𝑖 + 𝑏 =

0 and the margins are defined using the hyperplanes 𝑤. 𝑥𝑖 + 𝑏 = ±1. Marginal data 

points on the boundary are known as the support vectors. The weight vector, feature 

vector, and bias are represented by w, x, and b, respectively. The aim of SVM is to 

maximize the decision margin 𝑑 =
1

‖𝑤‖
 . Figure 15 shows the SVM hyperplane and 

margin.  
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Figure 15 SVM hyperplane showing the decision boundary and margin between the 

classes. 

Statistical Analysis 

In this dissertation, the waveform parameters are compared between different 

physiological states. To calculate the statistical significance of parameter changes, the 

paired t-test was used. 

Results and discussion  

In Figure 17, the lung volume change versus flow rate plot for two participants 

shows the cluster distribution and decision boundary of SCG events. The following 

equation 7 was used to calculate the decision boundary's accuracy. 

              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
                                                                                 (7)  

A simplified lung volume waveform with the four respiratory phases is shown 

in Figure 16. SCG clustering appears to be related to respiration, as seen in Figure 17, 

and the two clusters were well separated with high accuracy. Cluster 1 and cluster 2 

SCG events are represented by blue ‘∇’  triangles and red ‘o’  circles, respectively. 
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Clusters are not separated solely on the basis of respiratory flow rate or lung volume, 

according to these results.  

 

Figure 16 In a simplified waveform of lung volume, the four respiratory phases are 

labeled. 

 

 

Figure 17 Cluster distribution in the lung volume vs flow rate plane for 2 subjects 

during 1 minute of data recordings. 

(a) Accuracy: 0.9844 

(b) Accuracy: 0.9836 
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  Time and frequency domain features 

The intra-cluster DTW distance was utilized to measure how dissimilar two 

waveform sets are. DTW distances are used in Equation 8 to calculate intra-cluster 

variability.  

𝐼𝑛𝑡𝑟𝑎 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑛1+𝑛2
[∑ 𝑑𝑡𝑤(𝐶1, 𝑋𝑖1) + ∑ 𝑑𝑡𝑤(𝐶2, 𝑋𝑖2)

𝑛2
𝑖=1

𝑛1
𝑖=1 ]   (8) 

𝐼𝑛𝑡𝑒𝑟 − 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑛1+𝑛2
[∑ 𝑑𝑡𝑤(𝐶2, 𝑋𝑖1) + ∑ 𝑑𝑡𝑤(𝐶1, 𝑋𝑖2)

𝑛2
𝑖=1

𝑛1
𝑖=1 ]   (9) 

 

Figure 18 Intra and inter cluster variability (Azad, 2020). 

 

Figure 19 Intra-cluster variability during normal breathing and breath holding. 

𝐶1 

𝐶2 

𝑋𝑖1 𝑋𝑖2 
𝐼𝑛𝑡𝑟𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝐼𝑛𝑡𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 
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Table 1 Changes in intra-cluster variability. The study subjects' mean and standard 

deviation (SD) are reported. There was a decrease with clustering (p<0.05) and a 

further decrease with breath hold (p<0.05). 

Change in intra-cluster variability Mean (%) SD (%) 

(After clustering -before clustering)/ before 

clustering 
-15 7 

(End inspiration BH- Normal breathing 

unclustered)/Normal breathing unclustered 
-52 16 

(End Expiration BH- Normal breathing 

unclustered)/Normal breathing unclustered 
-52 17 

 

Inter and intra cluster variability is depicted in Equation 8, 9 and Figure 18. 

Here, 𝑋𝑖1 and 𝑋𝑖2 are the 𝑖𝑡ℎ SCG event of cluster 1 and cluster 2, respectively. 𝐶1  and 

𝐶2  are the respective medoids of the 2 clusters. 𝑛1 𝑎𝑛𝑑  𝑛2 are cluster 1 and 2 total 

number of events, respectively. Low intra-cluster DTW distance indicates more 

homogeneous groupings. High inter-clustere variability indicates better cluster 

separation. 

The decrease in intra-cluster variability between the un-clustered normal 

breathing, clustered normal breathing, BH end inspiration, and BH end expiration states 

is shown in Figure 19 and table 1. When comparing clustered normal breathing to un-

clustered normal breathing, the results demonstrated a 15% reduction in variability 

(p<0.05). In comparison to the un-clustered normal breathing condition, there was a 
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52% (p<0.05) drop in variability for end inspiration and a 52% (p<0.05) decrease in 

variability for end expiration. The high SD indicates a lot of inter-subject variation.. 

 

Figure 20 The SCG energy in the 0 –20 Hz (normalized by energy in the 0-50 Hz) 

during normal breathing and breath holding. 

Table 2 In the 0-20 Hz frequency, there is a change in normalized SCG energy. The 

energy dropped with breath hold (p<0.05). 

Change in the energy in the 0-20 Hz for 

all subjects 
Mean (%) SD (%) 

(End inspiration BH- Normal 

breathing)/Normal breathing 
-14 9 

(End Expiration BH- Normal 

breathing)/Normal breathing 
-9 13 

 

The energy of the SCG in the 0-20 Hz range was also investigated, as previous 

research had suggested that this feature could be useful [Gamage, 2020]. The energy in 

the 0-50 Hz band was used to equalize this energy. The shift in normalized energy in 

the 0-20 Hz range is depicted in Figure 20 and Table 2. When compared to normal 
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breathing, the study individuals saw a 14% (p<0.05) decrease for end inspiration BH 

and a 9% (p<0.05) decrease in end expiration BH. 

Heart rate  

The heart rate was calculated and compared during end inspiration BH, end 

expiration BH, and the 30 seconds before and after both BH. Table 3 shows the changes 

in HR. When compared to before and after BH, end inspiration BH resulted in a 9% 

and 11% (p<0.05) decline in heart rate, respectively. In addition, during end expiration 

BH, heart rates reduced by an average of 5% and 7% (p<0.05) compared to before and 

after BH, respectively. 

Table 3 Heart rate change. The heart rate decreased with breath hold (p<0.05). 

Change in HR during BH for all subjects Mean (%) SD (%) 

(End inspiration BH- before BH)/before BH 
-9 6 

(End inspiration BH- after BH)/after BH -11 6 

(End expiration BH- before BH)/before BH 
-5 8 

(End expiration BH- after BH)/after BH 
-7 8 

Heart rate variability feature 

The HRV's spectral power in the 0.15–0.4 Hz band, often known as the high-

frequency region, was calculated (HF). The properties and frequency ranges of heart 

rate variability are shown in Table 4. The spectral energy variations in HF band between 

the two breathing conditions are shown in Figure 21 and Table 5. When compared to 
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normal breathing, the results demonstrated a 59% (p<0.05) decrease in this energy 

during end inspiration BH and a 64% (p<0.05) decrease during end expiration BH. This 

drop is most likely due to the fact that breathing frequency falls within this range. 

Because the HRV linked with breathing (a condition called as respiratory sinuous 

arrhythmia) is reduced with BH, this frequency band is likely to have less energy. 

Table 4 Heart rate variability frequency ranges. 

 

 

 

 

Figure 21 HRV energy in high frequency range (HF) during normal breathing and 

breath holding. 

 

 

Heart Rate 

Variability 

(HRV) 

LF  Spectral power in 0.04–0.15 Hz 

HF Spectral power in 0.15–0.4 Hz 

VHF Total spectral power in 0.4–1.0 Hz 

TP Total spectral power in  0–0.4 Hz 
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Table 5 HRV energy change in the high frequency range (HF). With breath held, there 

was a significant drop. (p<0.05). 

Energy change in the HF band for all 

subjects 
Mean (%) SD (%) 

(End inspiration BH- Normal 

breathing)/Normal breathing 
-59 20 

(End Expiration BH- Normal 

breathing)/Normal breathing 
-64 21 

 

Effect of intrathoracic pressure 

 Figure 22 and table 6 shows the intra-cluster variability between the BH end 

inspiration, positive 2-4 cm water pressure after end inspiration, negative 2-4 cm water 

pressure after end inspiration, positive 15-20 cm water pressure after end  

 

Figure 22 Intra-cluster variability during end inspiration breath holding at varying 

airway pressure. 
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Table 6 Intra-cluster variability change. There was an increase with increasing 

positive and negative intrathoracic pressure after end inspiration breath holding. 

Change in intra-cluster variability due to change 

in intrathoracic pressure 

Mean (%) 

(End inspiration positive 2-4 cm water- End 

inspiration)/End inspiration zero pressure 

54 

(End inspiration negative 2-4 cm water- End 

inspiration)/End inspiration zero pressure 

81 

(End inspiration positive 15-20 cm water- End 

inspiration)/End inspiration zero pressure 

105 

(End inspiration negative 15-20 cm water- End 

inspiration)/End inspiration zero pressure 

154 

 

inspiration, negative 15-20 cm water pressure after end inspiration states. Results 

showed an average 54% increase in variability for positive 2-4 cm water pressure after 

end inspiration compared to BH end inspiration. Also, it was found that there was an 

average 81% increase in variability for positive 2-4 cm water pressure after end 

inspiration, 105% increase in variability for positive 15-20 cm water pressure after end 

inspiration and a 154% increase in variability for negative 15-20 cm water pressure 

after end inspiration, as compared to the BH end inspiration state.  

                   Figure 23 and table 7 shows the change in intra-cluster variability between 

the BH end expiration, positive 2-4 cm water pressure after end expiration, negative 2-

4 cm water pressure after end expiration, positive 15-20 cm water pressure after end 

expiration, negative 15-20 cm water pressure after end expiration states. Results 

showed an average 56% increase in variability for positive 2-4 cm water pressure after 

end expiration compared to BH end inspiration. Also, it was found that there was an 
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average 62% increase in variability for positive 2-4 cm water pressure after end 

expiration, 186% increase (p>0.05) in variability for positive 15-20 cm water pressure 

after end expiration and a 121% increase (p>0.05) in variability for negative 15-20 cm 

water pressure after end expiration, as compared to the BH end expiration state. 

 

Figure 23 Intra-cluster variability during end expiration breath holding at varying 

airway pressure. 

Table 7 Intra-cluster variability change. There was an increase with increasing 

positive and negative intrathoracic pressure after end expiration breath holding. 

Change in intra-cluster variability due to change 

in intrathoracic pressure 

Mean (%) 

(End inspiration positive 2-4 cm water- End 

inspiration)/End inspiration zero pressure 

56 

(End inspiration negative 2-4 cm water- End 

inspiration)/End inspiration zero pressure 

62 

(End inspiration positive 15-20 cm water- End 

inspiration)/End inspiration zero pressure 

186 

(End inspiration negative 15-20 cm water- End 

inspiration)/End inspiration zero pressure 

121 
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Inter-cluster variability between normal breathing and breath holding 

Figure 24 shows the inter-cluster variability between cluster 1 and BH for all 

subjects separately. Here, blue rectangle shows inter cluster variability between cluster 

1 and BH at end inspiration. Red rectangle shows inter cluster variability between 

cluster 1 and BH at end expiration. Results showed inter cluster variability between  

 

Figure 24 Inter-cluster variability between cluster 1 and breath holding at zero airway 

pressure. 

cluster 1 and end inspiration was lower than inter cluster variability between cluster 1 

and end expiration in most of the subjects. This confirms that cluster 1 is more similar 

to breath holding at end inspiration (at high lung volume).  

Table 8 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration compared to cluster 1 and end 

expiration (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 1 and end inspiration zero airway 

pressure 
28.4 

Cluster 1 and end expiration zero airway 

pressure 
29.4 

 

Table 8 shows the average inter-cluster variability for all subjects between 

cluster 1 and BH. Here, it was found that average inter-cluster variability for all subjects 

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

V
ar

ia
b

ili
ty

 [
V

]

Subject No

Inter cluster variability between
Cluster 1 and End Inspiration
Inter cluster variability between
Cluster 1 and End Expiration



30 

 

between cluster 1 and end inspiration was 28.4 mV (p<0.05). Also, the inter-cluster 

variability for all subjects between cluster 1 and end expiration was 29.4 mV (p<0.05). 

The results from Figure 24 and Table 8 showed cluster 1 was more similar to end 

inspiration than end expiration in 11 of the 20 subjects. 

Figure 25 shows the inter-cluster variability between cluster 2 and BH for all 

subjects separately. Here, blue rectangle shows inter cluster variability between cluster  

 

Figure 25 Inter-cluster variability between cluster 2 and breath holding at zero airway 

pressure. 

2 and BH at end inspiration. Red rectangle shows inter cluster variability between 

cluster 2 and BH at end expiration. Results showed inter cluster variability between 

cluster 2 and end expiration was lower than inter cluster variability between cluster 2 

and end inspiration in 14 of the 20 subjects. 

Table 9 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration compared to cluster 2 and end 

inspiration (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 2 and end inspiration zero airway 

pressure 
28.0 

Cluster 2 and end expiration zero airway 

pressure 
26.5 
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            Table 9 shows the average inter-cluster variability for all subjects between 

cluster 2 and BH. Here, it was found that average inter-cluster variability for all subjects 

between cluster 2 and end inspiration was 28.0 mV (p<0.05). Also, the inter-cluster 

variability for all subjects between cluster 2 and end expiration was 26.5 mV (p<0.05). 

The results from Figure 25 and Table 9 showed cluster 2 was more similar to end 

expiration than end inspiration based on these findings. 

Inter-cluster variability between normal breathing and breath holding at positive 2-4 

cm water pressure 

 

Figure 26 Inter-cluster variability between cluster 1 and breath holding at positive 2-4 

cm water. 

Table 10 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration positive 2-4 cm water pressure 

compared to cluster 1 and end expiration positive 2-4 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 1 and end inspiration positive 2-4 cm 

water  
29.3 

Cluster 1 and end expiration positive 2-4 cm 

water  
29.9 
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Figure 26 shows the inter-cluster variability between cluster 1 and BH at 

positive 2-4 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 1 and BH at end inspiration positive 2-4 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 1 and BH 

at end expiration positive 2-4 cm water pressure. Results showed inter cluster variability 

between cluster 1 and end inspiration positive 2-4 cm water pressure was lower than 

inter cluster variability between cluster 1 and end expiration positive 2-4 cm water 

pressure in most of the subjects. 

Table 10 shows the average inter-cluster variability for all subjects between 

cluster 1 and BH at positive 2-4 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 1 and end inspiration positive 2-

4 cm water pressure was 29.3 mV (p<0.05). Also, the inter-cluster variability for all 

subjects between cluster 1 and end expiration positive 2-4 cm water pressure was 29.9 

mV (p<0.05). The results from Figure 26 and Table 10 showed cluster 1 was more 

similar to end inspiration positive 2-4 cm water pressure than end expiration positive 

2-4 cm water pressure based on these findings. 

Figure 27 shows the inter-cluster variability between cluster 2 and BH at 

positive 2-4 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 2 and BH at end inspiration positive 2-4 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 2 and BH 

at end expiration positive 2-4 cm water pressure. Results showed inter cluster variability 

between cluster 2 and end inspiration positive 2-4 cm water pressure was higher than 

inter cluster variability between cluster 2 and end expiration positive 2-4 cm water 

pressure in most of the subjects. 
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Figure 27 Inter-cluster variability between cluster 2 and breath holding at positive 2-4 

cm water. 

Table 11 shows the average inter-cluster variability for all subjects between 

cluster 2 and BH at positive 2-4 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 2 and end inspiration positive 2-

4 cm water pressure was 29.5 mV (p<0.05). Also, the inter-cluster variability for all 

subjects between cluster 2 and end expiration positive 2-4 cm water pressure was 28.1 

mV (p<0.05). The results from Figure 27 and Table 11 showed cluster 2 was more 

similar to end expiration positive 2-4 cm water pressure than end inspiration positive 

2-4 cm water pressure based on these findings. 

Table 11  Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration positive 2-4 cm water pressure 

compared to cluster 2 and end inspiration positive 2-4 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 2 and end inspiration positive 2-4 cm 

water  
29.5 

Cluster 2 and end expiration positive 2-4 cm 

water  
28.1 
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Inter-cluster variability between normal breathing and breath holding at negative 2-4 

cm water pressure 

           Figure 28 shows the inter-cluster variability between cluster 1 and BH at 

negative 2-4 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 1 and BH at end inspiration negative 2-4 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 1 and BH 

at end expiration negative 2-4 cm water pressure. Results showed inter cluster 

variability between cluster 1 and end inspiration negative 2-4 cm water pressure was 

lower than inter cluster variability between cluster 1 and end expiration negative 2-4 

cm water pressure in most of the subjects although it was opposite in some subjects as 

after end inspiration creating negative pressure was challenging for them . 

 

Figure 28 Inter-cluster variability between cluster 1 and breath holding at negative 2-4 

cm water. 

Table 12 Inter-cluster variability change between cluster 1 and end inspiration 

negative 2-4 cm water pressure and cluster 1 and end expiration negative 2-4 cm 

water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 1 and end inspiration negative 2-4 cm 

water  
32.7 

Cluster 1 and end expiration negative 2-4 cm 

water  
31.1 
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Table 12 shows the average inter-cluster variability for all subjects between 

cluster 1 and BH at negative 2-4 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 1 and end inspiration negative 

2-4 cm water pressure was 32.7 mV (p<0.05). Also, the inter-cluster variability for all 

subjects between cluster 1 and end expiration negative 2-4 cm water pressure was 31.1 

mV (p<0.05). There was no clear pattern found for this case because of lack 

experimental control in some subjects . 

Figure 29 shows the inter-cluster variability between cluster 2 and BH at 

negative 2-4 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 2 and BH at end inspiration negative 2-4 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 2 and BH 

at end expiration negative 2-4 cm water pressure. Results showed inter cluster 

variability between cluster 2 and end inspiration negative 2-4 cm water pressure was 

higher than inter cluster variability between cluster 2 and end expiration negative 2-4 

cm water pressure in most of the subjects. 

 

Figure 29 Inter-cluster variability between cluster 2 and breath holding at negative 2-4 

cm water. 
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Table 13 shows the average inter-cluster variability for all subjects between 

cluster 2 and BH at negative 2-4 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 2 and end inspiration negative 

2-4 cm water pressure was 33.6 mV (p<0.05). Also, the inter-cluster variability for all 

subjects between cluster 2 and end expiration negative 2-4 cm water pressure was 30.3 

mV (p<0.05). The results from Figure 29 and Table 13 showed cluster 2 was more 

similar to end expiration negative 2-4 cm water pressure than end inspiration negative 

2-4 cm water pressure based on these findings. 

Table 13 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration negative 2-4 cm water pressure 

compared to cluster 2 and end inspiration negative 2-4 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 2 and end inspiration negative 2-4 cm 

water  
33.6 

Cluster 2 and end expiration negative 2-4 cm 

water  
30.3 

 

Inter-cluster variability between normal breathing and breath holding at positive 15-

20 cm water pressure 

           Figure 30 shows the inter-cluster variability between cluster 1 and BH at positive 

15-20 cm water pressure for all subjects separately. Here, blue rectangle shows inter 

cluster variability between cluster 1 and BH at end inspiration positive 15-20 cm water 

pressure. Red rectangle shows inter cluster variability between cluster 1 and BH at end 

expiration positive 15-20 cm water pressure. Results showed inter cluster variability 

between cluster 1 and end inspiration positive 15-20 cm water pressure was lower than 
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inter cluster variability between cluster 1 and end expiration positive 15-20 cm water 

pressure in most of the subjects. 

 

Figure 30 Inter-cluster variability between cluster 1 and breath holding at positive 15-

20 cm water. 

Table 14 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration positive 15-20 cm water pressure 

compared to cluster 1 and end expiration positive 15-20 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 1 and end inspiration positive 15-20 cm 

water  
34.5 

Cluster 1 and end expiration positive 15-20 cm 

water  
38.4 

 

Table 14 shows the average inter-cluster variability for all subjects between 

cluster 1 and BH at positive 15-20 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 1 and end inspiration positive 

15-20 cm water pressure was 34.5 mV (p<0.05). Also, the inter-cluster variability for 

all subjects between cluster 1 and end expiration positive 15-20 cm water pressure was 

38.4 mV (p<0.05). The results from Figure 30 and Table 14 showed cluster 1 was more 

similar to end inspiration positive 15-20 cm water pressure than end expiration positive 

15-20 cm water pressure based on these findings. 
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Figure 31 shows the inter-cluster variability between cluster 2 and BH at 

positive 15-20 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 2 and BH at end inspiration positive 15-20 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 2 and BH 

at end expiration positive 15-20 cm water pressure. Results showed inter cluster 

variability between cluster 2 and end inspiration positive 15-20 cm water pressure was 

higher than inter cluster variability between cluster 2 and end expiration positive 15-20 

cm water pressure in most of the subjects although it was opposite in some subjects as 

after end expiration creating positive pressure was challenging for them. 

 

Figure 31 Inter-cluster variability between cluster 2 and breath holding at positive 15-

20 cm water. 

Table 15 shows the average inter-cluster variability for all subjects between 

cluster 2 and BH at positive 15-20 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 2 and end inspiration positive 

15-20 cm water pressure was 31.3 mV (p<0.05). Also, the inter-cluster variability for 

all subjects between cluster 2 and end expiration positive 15-20 cm water pressure was 

36.6 mV (p<0.05). The results from Figure 31 and Table 15 showed no clear pattern 

for this case because of lack experimental control in some subjects. 
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Table 15  Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration positive 15-20 cm water pressure 

compared to cluster 2 and end inspiration positive 15-20 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 2 and end inspiration positive 15-20 cm 

water  
31.3 

Cluster 2 and end expiration positive 15-20 cm 

water  
36.6 

 

Inter-cluster variability between normal breathing and breath holding at negative 15-

20 cm water pressure 

           Figure 32 shows the inter-cluster variability between cluster 1 and BH at 

negative 15-20 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 1 and BH at end inspiration negative 15-20 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 1 and BH 

at end expiration negative 15-20 cm water pressure. Results showed inter cluster 

variability between cluster 1 and end inspiration negative 15-20 cm water pressure was 

lower than inter cluster variability between cluster 1 and end expiration negative 15-20  

cm water pressure in most of the subjects although it was opposite in some subjects as 

after end inspiration creating negative pressure was challenging for them . 

 

Figure 32 Inter-cluster variability between cluster 1 and breath holding at negative 15-

20  cm water. 
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Table 16 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 1 and end inspiration negative 15-20 cm water pressure 

compared to cluster 1 and end expiration negative 15-20 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 1 and end inspiration negative 15-20 cm 

water  
37.9 

Cluster 1 and end expiration negative 15-20 cm 

water  
36.4 

          Table 16 shows the average inter-cluster variability for all subjects between 

cluster 1 and BH at negative 15-20 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 1 and end inspiration negative 

15-20 cm water pressure was 37.9 mV (p<0.05). Also, the inter-cluster variability for 

all subjects between cluster 1 and end expiration negative 15-20 cm water pressure was 

36.4 mV (p<0.05). There was no clear pattern found for this case because of lack 

experimental control in some subjects . 

Figure 32 shows the inter-cluster variability between cluster 2 and BH at 

negative 15-20 cm water pressure for all subjects separately. Here, blue rectangle shows 

inter cluster variability between cluster 2 and BH at end inspiration negative 15-20 cm 

water pressure. Red rectangle shows inter cluster variability between cluster 2 and BH 

at end expiration negative 15-20 cm water pressure. Results showed inter cluster 

variability between cluster 2 and end inspiration negative 15-20 cm water pressure was 

higher than inter cluster variability between cluster 2 and end expiration negative 15-

20 cm water pressure in most of the subjects. 
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Figure 33 Inter-cluster variability between cluster 2 and breath holding at negative 15-

20 cm water. 

Table 17 shows the average inter-cluster variability for all subjects between 

cluster 2 and BH at negative 15-20 cm water pressure. Here, it was found that average 

inter-cluster variability for all subjects between cluster 2 and end inspiration negative 

15-20 cm water pressure was 38.1 mV (p<0.05). Also, the inter-cluster variability for 

all subjects between cluster 2 and end expiration negative 15-20 cm water pressure was 

35.2 mV (p<0.05). The results from Figure 33 and Table 17 showed cluster 2 was more 

similar to end expiration negative 15-20 cm water pressure than end inspiration 

negative 15-20 cm water pressure based on these findings. 

Table 17 Inter-cluster variability change. There was a decrease in inter-cluster 

variability between cluster 2 and end expiration negative 15-20 cm water pressure 

compared to cluster 2 and end inspiration negative 15-20 cm water pressure (p<0.05). 

Inter-cluster variability Mean (mV) 

Cluster 2 and end inspiration negative 15-20 cm 

water  
38.1 

Cluster 2 and end expiration negative 15-20 cm 

water  
35.2 
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Conclusion 

The variability in the SCG signal and heart rate during normal breathing and 

BH at various airway pressures was examined. Waveform variability was reduced by 

using unsupervised machine learning to group SCG signals obtained during normal 

breathing. A support vector machine was used to define the decision boundary, and 

classification accuracy was calculated. SCG waveforms may be accurately divided 

(>80%) into two groups, according to the findings.  

The Unclustered, clustered, and BH instances were studied for changes in intra-

cluster variability. The results showed that clustering reduced variability by 15% 

(p<0.05) and BH reduced variability by additional 52% (p<0.05). Inter cluster 

variability analysis showed that cluster 1 was more similar to end inspiration phases 

and cluster 2 was more similar to end expiration phases. The variability of heart rate 

during BH was also compared to regular breathing. During BH cases, there was an 8% 

(p<0.05) decrease in heart rate and a 62% (p<0.05) decrease in heart rate energy in the 

0.15-0.4 Hz range. Furthermore, when the airway pressure during BH was changed 

from zero, SCG waveform variability was as high as 180%. 

Other unsupervised machine learning techniques and supervised classifiers can 

be used to cluster SCG events during regular breathing in future investigations, and 

other supervised classifiers can be used to determine the decision boundary. The 

findings of future studies can then be compared to the results of this study. Future 

research with a larger number of subjects is also needed to confirm these findings in 

healthy people and heart failure patients.  
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CHAPTER 3 – THE IDENTIFICATION OF RESPIRATORY 

PHASE FROM SEISMOCARDIOGRAPHIC SIGNAL USING 

MACHINE LEARNING 

Respiration may be monitored in certain patients, especially in critical care 

settings. Spirometers and thermocouples, which monitor air flow or temperature, can 

be used to directly measure respiration (Marks et al., 1995). These devices require direct 

connections to the mouth, nose, or breathing circuit, which can complicate clinical 

monitoring and possibly cause interference with recorded data (Weissman et al., 1984; 

Moody et al., 1985). Spirometry should be done in the sitting posture, according to a 

prior study (Miller et al., 2005), which is impractical for post-operative or ICU patients. 

These direct assessments may be difficult or undesirable in other situations, such as 

stress testing, ambulatory monitoring, or long-term surveillance. These drawbacks 

could be overcome by utilizing less intrusive respiratory monitoring techniques. A 

multi-lead ECG signal was employed in a prior work (Moody et al., 1985) to extract 

breathing signals. Transthoracic impedance has been linked to breathing in several 

studies (Geddes et al., 1962; Allison et al., 1964). According to recent study (Solar et 

al., 2017; Taebi & Mansy, 2017), changes in lung volume influence 

seismocardiographic (SCG) signals, implying that these physiological signals can be 

utilized to extract respiration signals noninvasively. 

The objective of this study is to assess the performance of two machine learning 

algorithms (SVM and XGBoost) in identifying respiratory phases such as high lung 

volume (HLV) vs. low lung volume (LLV) or inspiration vs. expiration in healthy 

participants. Thoracic impendence readings are the same as GSR readings recorded at 

the chest surface.  
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Methods 

Data collection 

After receiving IRB approval, 15 healthy volunteers were recruited. The 

participants were instructed to lie supine on a bed with their feet extended horizontally 

and their heads tilted at a 45-degree angle. The SCG signals were captured using a tri-

axial accelerometer (Model: 356A32, PCB Piezotronics, Depew, NY) mounted to the 

chest surface at the left lower sternal border at the 4th intercostal space. A recent study 

(Hassan et al., 2018; Hassan et al., 2019; Hassan et al., 2020; Hassan, 2019) also used 

accelerometers to measure this signal. A biopotential recorder was used to record the 

ECG signal (IX-B3G, Dover, NH, IWorx Systems, Inc.). It provides simultaneous 

acquisition of chest galvanic skin response (GSR) data by putting two separate 

electrodes beneath the subject's right collarbone and near the left abdomen. The sensor 

locations and experimental setup for this study are shown in Figure 34.  

 

Figure 34 For this study, the sensor placements and experimental setup. 



45 

 

Feature collection, selection, and scaling 

ECG R-peaks were used to detect and segment SCG beats. Each SCG event was 

chosen to start 0.1 seconds before the R peak of the related ECG and end 0.1 seconds 

before the next R peak. Figure 35 shows the SCG event selection from the R peak of 

the ECG. 

 

Figure 35 SCG event selection from ECG R peak. 

Since an earlier study (Zakeri et al., 2017) showed the utility the waveform 

amplitudes (voltage) throughout every 4 milliseconds. This characteristic was used in 

this investigation. The characteristics are collected in Figure 36 by dividing the signal 

into bins and computing the average amplitude in each bin.  

SCG beats were split into inspiratory and expiratory beats, as well as high and 

low lung volumes (relative to the mean lung volume), based on their time in the 

respiratory cycle. SCG event labeling based on lung volume signal is shown in Figure 

37. 

The characteristics were normalized before using them for training and testing, 

SVM and XGBoost were used for subject-specific (SS) training and testing (i.e., both 

training and testing were done for each subject separately). 70% of the data was used 
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for training, while 30% was used for testing each participant. For each subject, Table 

18 displays the number of data points used for training and testing. 

 

Figure 36 Selection of features from a segmented SCG waveform. The average 

amplitude over each 4 ms frame (the interval between the red lines) was chosen as a 

feature in this case. 

 

Figure 37 Labeling SCG events based on lung volume signal. 
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Table 18 The number of data points used for training and testing for each subject. 

Subject No Training samples Testing samples 

1 22088 9500 

2 29116 12500 

3 23845 10250 

4 28112 12000 

5 26857 11750 

6 21084 9250 

7 19327 8250 

8 21084 9000 

9 21586 9500 

10 20080 8750 

11 17570 7500 

12 20080 8750 

13 22590 9750 

14 23343 10000 

15 26857 11750 

 

Machine learning framework 

Support vector machine (SVM) and extreme Gradient Boosting (XGBoost) 

were utilized to extract respiration phases. When SVM was used, a hyperplane was 

found in the "features space" (Cortes et al., 1995) that maximizes the margin between 

classes (i.e., respiration phases). Linear kernel function was used to train the SVM. 

Boosting algorithms look for predictors in a sequential manner, with each succeeding 

model attempting to correct the flaws of the one before it. Figure 38 shows the model. 

For the XGBoost (Chen et al., 2016) model, the number of gradients boosted trees was  
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Figure 38 Illustration of finding predictor using boosting algorithm. 

Table 19 Validation accuracy for each subject using SVM. 

Subject No Inspiration/Expiration HLV/LLV 

1 81 93 

2 87 85 

3 93 83 

4 87 87 

5 95 81 

6 88 88 

7 86 92 

8 92 87 

9 87 84 

10 86 89 

11 99 84 

12 79 71 

13 96 86 

14 92 74 

15 93 88 
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100, the maximum tree depth for base learners was 6 and boosting learning rate was 

0.7. K-fold cross-validation (k=10) was performed for both models.       

Table 19 and 20 show the validation accuracy using SVM and XGBoost for 

each subject. The validation accuracy was 89 ± 6 % for inspiration/expiration, 85 ± 6 

% for HLV/LLV detection using SVM. For XGBoost the validation accuracy was 90 ± 

4 % for inspiration/expiration and 85 ± 3 % for HLV/LLV detection. These findings 

are consistent with a previous study (Rahman et al., 2021). 

Table 20 Validation accuracy for each subject using XGBoost. 

Subject No Inspiration/Expiration HLV/LLV 

1 89 88 

2 87 87 

3 85 85 

4 91 89 

5 94 84 

6 92 88 

7 86 85 

8 94 87 

9 86 82 

10 87 86 

11 97 80 

12 83 79 

13 95 81 

14 90 83 

15 92 88 

 Performance parameters 

The performance parameters calculated and compared in this study are: testing 

accuracy, sensitivity/recall, specification, precision, F1 score. Validation accuracy is 

the calculated accuracy on the data set not used for testing. Testing accuracy is 

percentage of predicted value that matches with actual value. Sensitivity/Recall is true 
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positive rate. Specificity is true negative rate. Precision is positive predictive value. F1 

score is is the harmonic mean of precision and sensitivity. Sensitivity/recall, specificity, 

precision and F1 score are calculated from the  following equations:  

              𝑇𝑃𝑅 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑁)
                                                                                 (10)  

             𝑇𝑁𝑅 =
(𝑇𝑁)

(𝑇𝑁+𝐹𝑃)
                                                                                 (11) 

             𝑃𝑃𝑉 =
(𝑇𝑃)

(𝑇𝑃+𝐹𝑃)
                                                                                              (12) 

             𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
                                                     (13) 

Results 

Figure 39, figure 40, figure 41, figure 42, table 21, table 22, table 23, table 24 

demonstrate the subject-specific testing accuracy, sensitivity/recall, specificity, 

precision, and F1 score (Fawcett et al., 2006) for detecting HLV/LLV and 

inspiration/expiration phases using SVM and XGBoost. Results showed that the 

average testing accuracy, sensitivity/recall, specificity, precision, F1 score were 91 ± 6 

%, 91 ± 9 %, 91 ± 8 %, 91 ± 7 %, 91 ± 6 %, respectively for inspiration/expiration and 

86 ± 6 %, 87 ± 8 %, 85 ± 10 %, 88 ± 6 %, 87 ± 5 %, respectively for HLV/LLV detection 

using SVM. For XGBoost, these parameters were 91 ± 6 %, 93 ± 6 %, 89 ± 9 %, 90 ± 

7 %, 91 ± 5%, respectively for inspiration/expiration and 87 ± 3 %, 92 ± 7 %, 82 ± 9 

%, 85 ± 6 %, 88 ± 3 %, respectively for HLV/LLV detection. 
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Figure 39 The accuracy, sensitivity/recall, specificity, precision, and F1 score for all 

participants when using SVM to detect inspiration/expiration phases.  

Table 21 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to 

detect inspiration/expiration phases using SVM 

                 

 

 

 

SVM: Insp/Exp Mean SD 

Testing accuracy 90.9 6.3 

Sensitivity 91.0 8.8 

Specificity 91.1 8.2 

Precision 91.4 6.9 

F1 score 91.0 6.1 
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Figure 40 The accuracy, sensitivity/recall, specification, precision, and F1 score for all 

subjects using XGBoost to detect inspiration/expiration phases.  

Table 22 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to 

detect inspiration/expiration phases using XGBoost. 

XG Boost: Insp/Exp Mean SD 

Testing accuracy 90.6 5.7 

Sensitivity 92.6 5.7 

Specificity 88.8 8.9 

Precision 89.6 6.6 

F1 score 90.9 5.3 
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Figure 41 The accuracy, sensitivity/recall, specification, precision, and F1 score for all 

individuals when using SVM to detect high lung volume/low lung volume phases.  

Table 23 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect to 

detect high lung volume/low lung volume phases using SVM. 

SVM: HLV/LLV Mean SD 

Testing accuracy 86.1 6.2 

Sensitivity 86.5 8.0 

Specificity 85.5 9.9 

Precision 88.0 5.6 

F1 score 87.0 4.7 
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Figure 42 The accuracy, sensitivity/recall, specification, precision, and F1 score for all 

individuals using XGBoost to detect high lung volume/low lung volume phases.  

Table 24 For all individuals, the mean and standard deviation of subject-specific 

testing accuracy, sensitivity/recall, specification, precision, and F1 score to detect 

high lung volume/low lung volume phases using XGBoost. 

XG Boost: HLV/LLV Mean SD 

Testing accuracy 87.1 3.1 

Sensitivity 91.6 6.5 

Specificity 81.9 9 

Precision 85.5 6.3 

F1 score 88.1 2.9 
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Conclusion 

The accuracy of detecting HLV/LLV or inspiration/expiration phases from SCG 

was tested using the supervised machine learning techniques SVM and XGBoost in this 

study. The average testing accuracy using SVM was 91 percent for 

inspiration/expiration and 86 percent for HLV/LLV detection. The precision of 

inspiration/expiration was 91 percent with XGBoost and 87 percent with HLV/LLV. 

SCG signals paired with machine learning algorithms were found to be capable of 

reliably detecting respiratory phases in normal persons. This information can also be 

used to calculate the respiratory rate. More testing in a larger sample of both healthy 

and cardiac disease patients is recommended. Other machine learning approaches, such 

as random forest, k-nearest neighbor, and artificial neural network, could be used to 

increase accuracy. 
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CHAPTER 4 – FINITE ELEMENT ANALYSIS OF SCG 

The measurement of vibrations on the chest surface generated by mechanical 

heart activity such as myocardial contractions, valve closure and opening, and blood 

momentum changes is known as seismocardiography (SCG) (Gurev et al., 2012; 

Korzeniowska-Kubacka et al., 2006). To measure SCG, an accelerometer is commonly 

positioned on the chest surface. Because of its low cost, non-invasive nature, and 

compatibility with telemedicine, SCG may have high potential for diagnosing and 

monitoring a variety of cardiac diseases. SCG analysis in the time and frequency 

domains has been investigated for cardiac diagnosis (Amirtaha Taebi, 2018; Amirtaha 

Taebi et al., 2018). SCG features have been used to estimate respiratory rate and 

monitor sleep apnea (Reinvuo et al., 2006; Morillo et al., 2010). 

The SCG signal is thought to represent a combination of complicated 3D cardiac 

motions observed on the chest wall surface during pumping action. Relating the SCG 

morphology to its vibration origin has been difficult due to the complexity of heart 

motions, as well as vibrations induced by cardiac muscle activity, blood flow, valve 

openings and closings, and other factors. Some researchers have used medical imaging 

to link different SCG signal characteristic points by matching their occurrence time to 

relevant cardiac events recorded during cardiac imaging (Crow et al., 1994; Giorgis et 

al., 2008), but the results are still unclear (Crow et al., 1994; Giorgis et al., 2008), but 

the results are still unclear (Akhbardeh et al., 2009). 

Cardiac structures (e.g., pericardium, Aorta wall) diaplace their surrounding 

tissues before the vibrations propagate to the chest surface (e.g., lung tissue, ribs, chest 

muscle, and skin). As a result, modeling the propagation of total cardiac wall motion to 

the chest surface could help us better understand SCG, perform parametric research 
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(e.g., on the effects of tissue features, etc. ), and investigate SCG origin by correlating 

feature points to cardiac wall motion. 

In a few articles, SCG has been computationally modelled. To assess the 

movements of the ventricles, one study (Akhbardeh et al., 2009) separated the ventricles 

frame by frame and fitted a deformable mesh to the segmented volume. By subtracting 

the displacement of a site on the ventricle wall from an observation point, the tissue 

movement signal was computed. Using an electro-mechanical model of a canine heart, 

the same study (Akhbardeh et al., 2009) discovered a SCG-like acceleration at the 

center of mass of the ventricles. This electromechanical model (Akhbardeh et al., 2009) 

was employed in another study (Tavakolian et al., 2012) to see how simple geometries 

affected the simulated SCG. These studies predicted SCG waveforms that matched the 

general shape of previously published SCG waveforms (Amirtahà Taebi et al., 2019). 

The current study aims to model the propagation of heart wall vibrations to the 

chest surface in order to simulate the SCG. The 3D motion of the heart wall was tracked 

using an optical flow-based motion tracking approach using short-axis cardiac cine 

MRI images (Peshala Gamage, 2020). The Finite Element Method (FEM) and the 

recorded heart wall movements boundary conditions were implemented to generate in 

a computer model  of SCG. A section of the lung, rib cage, intercoastal muscles (ICMs), 

and other chest wall musculature in the thorax were included in the model geometry. 

Shifting the location of the heart and relative to rib cage was used to duplicate 

the geometry of the  end inspiration and end expiration. The simulated morphological 

alterations of SCG wer compared to measured human SCG to study the effect of heart 

displacement with respiration. This study also looked into the effect of additional soft 
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tissue in the outer muscle on SCG signal. These studies may increeas our understanding 

of SCG propoagation, potentially increasing SCG's diagnostic utility.  

Methods: computational modeling  

By segmenting the voxel in chest images, the  geometry of a computational 

model was constructed (Gamage, 2020). Short-axis MRI slices were stacked to 

construct this voxel dataset (Gamage, 2020). This region includes the chest muscle, 

ribs, cartilage, and lung, as shown in figure 43 (a) (b). Although the position of the 

sternum could be observed in MRI images, the intensity contrast levels of available 

MRI imaging hindered effective segmentation of the ribs and cartilage. As a result, the 

ribcage was separately modeled using dimensions from the literature (Laurin, Jobin, & 

Bellemare, 2012). The geometry was then scaled and put into the model to match the 

size and alignment of the sternum and ribs. The intercostal muscles were modeled by 

connecting the muscle tissue between the ribs (Hamzah et al., 2013). On a human chest, 

Figure 44 demonstrates the placement and direction of computational geometry (c). The 

geometry was restricted to that region to save time and money while still incorporating 

regions of the chest surface where SCG is regularly recorded (Taebi et al., 2019). 

The computational modeling was done using the ANSYS (ANSYS Inc, 

Canonsburg, PA) transient structural analysis module, which uses the finite element 

method (FEM) to solve displacements in the computational domain. In FEM, the 

structural domain is divided into small (finite) elements that are assembled to satisfy 

boundary requirements and represent component interfaces (i.e., contacts). The forces 

and displacements acting on each constituent are governed by the equation of motion. 
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All of the component equations are combined into a system of equations, which is then 

solved to provide all of the element displacements (Gamage, 2019). 

Figure 43 (a) shows the resultant finite element mesh, which contained 45000 

elements and 84500 nodes and was produced in ANSYS. The observed motion of the 

cardiac surface was matched to the computer model, as shown in figure 43 (b). As 

shown in figure 43 (c) and (d), all degrees of freedom were set at the medial and lateral 

borders of the ribs (d). This could be explained by the exceedingly low (near-zero) 

vibrations of the rib cage (during breath-holding). Bonded connections were defined at 

the rib cage and muscle interfaces. A contact condition was created at the lung-chest 

wall interface to aid sliding between the lung and chest wall. 

 

Figure 43 The 3D modeled region's location and detailed structures (a) Muscular, bony, 

and lung regions (b) Ribs, ICM, cartilage, sternal, and xiphoid (c) placement and 

orientation of the modeled region (Gamage, 2020). 
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Figure 44 (a) Computational mesh, (b) MRI-mapped displacements of the heart surface, 

and (c) and (d) further 3D views of the computational model domain. The rib edges are 

in red color (Gamage, 2020).  

All components are assumed to have a linear elastic behavior, with the exception 

of the lung. The lung hyperplastic material properties were fitted to the Mooney-Rivlin 

5th order model using existing knowledge (Al-Mayah et al., 2007). Each component 

material properties are listed in Table 25. Even though the chest muscle and skin are 

made up of multiple separate components, they were modeled as a single component in 

this study (pericardial muscle, pectoralis major, and skin). Because previous studies 

(Chawla et al., 2006; Gefen & Dilmoney, 2007; Zigras, 2007) demonstrated a variety 

of elasticity values for these components, the impact of different elasticities on the 

simulated SCG was investigated. 

 

 

 

 

(a) (b) 

(c) (d) 
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Table 25 Material properties (Gamage, 2020) 

Component Young’s 

modulus 

Density 

(kg/m3) 

Poisson’s 

ratio 

References 

Chest Muscle 

(includes 

pericardial tissue, 

pectoralis major, 

Skin) 

2.5 (MPa) 1000 0.3 (Chawla, 

Mukherjee, & 

Karthikeyan, 

2006; Gefen 

& Dilmoney, 

2007; Zigras, 

2007 

Sternum, Ribs, 

Xiphoid 

12 (GPa) 2000 0.4 (Sundaram & 

Feng, 1977) 

Costal cartilage 3 (GPa) 2000 0.4 (Chawla et 

al., 2006) 

Intercostal muscle 3 (MPa) 1000 0.4 (Chawla et 

al., 2006) 

Lung Mooney Rivlin 

5th order 

C10=-859.78 

Pa C01= 947.5 

Pa C20=1783.2 

Pa C11=-

5440.5 Pa 

C02=4633.5 Pa 

1250 - (Al-Mayah, 

Moseley, & 

Brock, 2007; 

Zeng, Yager, 

& Fung, 

1987) 

 

Results 

Respiratory effect (heart location changes) 

The SCG signal has been demonstrated to be influenced by breathing. Several 

research have looked into the morphological variability of the SCG due to respiration 

(Azad, Gamage, Sandler, Raval, & Mansy, 2019; Gamage et al., 2018; Gamage, Azad, 

Taebi, Sandler, & Mansy, 2020; Sandler et al., 2019; Sandler et al., 2019). To 

investigate the effect of heart position (due to breathing) on the SCG signal form, the 

relative position between the heart and the ribcage was changed to replicate the end-
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expiration and end-inspiration phases. In this scenario, the model geometry original 

position (derived from MRI imaging) provided the final inspiration. The rib cage was 

adjusted (with respect to the heart) to imitate end inspiration, based on prior work 

(Bogren et al., 1977) that analyzed the 3D respiratory movement of the heart using 

cineangiography. 

 

Figure 45 Surface acceleration distribution in the dorso-ventral direction at SCG 1 and 

SCG 2 peak times at: (a) & (c) end inspiration state; and (b) & (d) end expiration. The 

SCG peak tended to be louder at the end of inspiration. The SCG1 peak moved about 

3cm to the right at the end of expiration, which is comparable with the corresponding 

upward movement in the heart position; all data are in mm/s2 (Gamage, 2020). 

For the inspiratory and expiratory states, Figure 45 depicts the surface 

acceleration distribution of the chest surface at SCG1 and SCG2 peaks. There is a 

variation in the maximum amplitude regions between the two states. At the time of 

SCG1 peak, the region with the largest amplitudes for the end-inspiration state was 

concentrated along the left sternal border of the 4th ICS, and this region shifted laterally 

and upward to the 3rd ICS for the end-expiration state. At the moment of SCG 2 peak, 

End- Inspiration End- Expiration 

SCG2 

peak 

SCG1 

peak 

(a) (b) 

(c) (d) 
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the maximum amplitude region shifted somewhat laterally and superiorly with 

expiration. The heart's lateral and upward movement during expiration could be the 

cause of this occurrence. 

 

Figure 46  End-of-inspiration and end-of-expiration SCG signals simulated at various 

chest sites. The waveform variability (measured as the rms of the waveform difference) 

matched experimental results (Gamage, 2020). 

To investigate the effect of heart position (due to respiratory motion) on SCG 

morphology, the simulated SCG was created on the same surface location for end 

inspiration and end expiration simulations. There were little morphological variations 

between the end-inspiration and end-expiration phases. To quantify the dissimilarity of 

the SCG morphologies, the root mean square (rms) of the difference between two 

waveforms was used to examine the morphological changes of two SCG waveforms. 

Figure 46 depicts the SCG waveforms at the end of inspiration and end of expiration, 

as well as their relative rms differences. These differences were similar to experimental 

rms diff: 23.29 

rms diff: 22.5 

rms diff: 23.39 

rms diff: 20.25 
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breath-hold (i.e., measured during end-inspiration and end-expiration) SCG data 

collected in a previous study (Azad et al., 2019), which found an rms difference of 

(mean=28.24, SD=8.909 mm/s2) for measurements at the 4th ICM near the left 

Intercostal Border (ICB) on 5 healthy subjects (Azad et al., 2019). These data suggest 

that variations in SCG shape due to changes in the relative positioning of the heart and 

rib cage during breathing could be one of the variability causes (Azad et al., 2019; 

Gamage et al., 2020). 

Effect of extra soft tissue 

 

Figure 47 Surface acceleration distribution in dorso-ventral direction at: (a) &(c) 

original model in end inspiration state; and (b) & (d) 1 cm extra soft tissue on outer 

muscle during both SCG 1 and SCG 2 peak timing. 

             To see how extra soft tissue may affect the SCG signal, 1 cm of soft tissue was 

added to the outer chest surface. The chest surface acceleration distribution at the SCG1 

and SCG2 peaks is shown in Figure 47 for the original model and the model with added 

soft tissue. There was a variation in the maximum amplitude regions between the two 

states. 
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            The simulated SCG was created on the same surface as the original model at 

end inspiration, and the model with extra soft tissue was used to investigate the effect 

of extra soft tissue on SCG waveform. When compared to the original model, SCG of 

the model with more soft tissue had morphological differences and a lower amplitude. 

The morphological difference between the two SCG waveforms (those with and 

without extra soft tissue) was measured by comparing the SCG 1 maximum peak ratio 

and SCG 2 maximum peak ratio between the original model and the model with extra 

soft tissue. For the original model and the model with added soft tissue, the SCG 1 

maximum peak ratio was 2 and the SCG 2 peak ratio was 3. Figure 48 shows the SCG 

waveforms for the original model and the model with added soft tissue. 

 

Figure 48 Simulated SCG signals at 4th intercostal space for the original model and 

model with extra soft tissue. SCG amplitude was decreased by 0.0305 m/s2 due to extra 

soft tissue in the model. 
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Conclusion 

The propagation of cardiac vibration from the heart wall boundary to the chest 

surface was modeled computationally. A region of the chest above the heart ventricles 

containing ribs, intercostal muscles, chest tissue, and lung was studied. Changes in the 

location of the heart relative to the rib cage was implemented to replicate end-

inspiratory and end-expiratory breath hold phases and  to explore the influence of heart 

displacement (due to respiration) on SCG. The morphological differences of SCG 

detected at these two states are equivalent to the differences seen in experimental 

measurements, implying that cardiac respiratory motion could be a contributing factor 

to the varied SCG morphologies described in prior studies. SCG amplitude also 

decreased as the thickness of the outer muscle was increased by introducing extra soft 

tissue. The study's findings should help us better understand the origins of SCG, which 

could lead to increased clinical utility for SCG. Future research could incorporate SCG 

modeling for failing hearts, which would provide more detailed information on SCG 

genesis. 

 

 

 

 

 

 

 

 

 



67 

 

APPENDIX A: TIME AND FREQUENCY DOMAIN ANALYSIS 

OF SCG EVENTS DURING DIFFERENT BREATHING 

MANEUVERS 
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Objective: The objective of this study is to perform SCG time and frequency domain 

analysis during different breathing maneuvers to investigate morphological variation in 

SCG signal between these breathing states.  

Methods: After segmenting SCG events from R peak, time and frequency domain 

analysis was performed for all breathing states. The analysis was performed on both 

unclustered and clustered normal breathing runs.  

 

Figure 49 Time domain analysis during 5 runs of normal breathing without performing 

clustering with events plotted on top of each other for a subject. Number of events and 

variability values in each run are also listed. 

 

Figure 50 Time domain analysis during 5 runs of normal breathing without performing 

clustering where events are plotted on top of previous SCG event for a subject. 
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Figure 51 Frequency domain analysis during 5 runs of normal breathing without 

performing clustering where the spectra of each SCG event are plotted on top of each 

other. 

Findings: Events and variability in each run during different breathing maneuvers were 

calculated when time domain analysis was performed for each subject. Figure 49 shows 

Time domain analysis during 5 runs of normal breathing without performing clustering 

with number of events where each events are plotted on top of each other. Waveform 

variability in each run can be seen. Figure 50 shows time domain analysis during 5 runs 

of normal breathing without performing clustering where each events events are plotted 

 

Figure 52 Time domain analysis during 5 runs of normal breathing cluster 1 with events 

plotted on top of each other for a subject. Number of events and variability values in 

each run are also listed. 
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on top of previous SCG event. Figure 51 shows Frequency domain analysis during 5 

runs of normal breathing without performing clustering where the SCG waveform are 

plotted on top of each other. 

 

Figure 53 Time domain analysis during 5 runs of normal breathing cluster 1 where 

events are plotted on top of previous SCG event for a subject. 

 

Figure 54 Frequency domain analysis during 5 runs of normal breathing cluster 1 where 

the spectra of each SCG event are plotted on top of each other. 

Figure 52 shows Time domain analysis during 5 runs of normal breathing cluster 1 with 

number of events where events are plotted on top of each other and variability can be 

seen in each run for another subject. Figure 53 shows time domain analysis during 5 
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runs of normal breathing cluster 1 where events are plotted on top each other. Figure 

54 shows Frequency domain analysis during 5 runs of normal breathing cluster 1 where 

frequency domain of each events are plotted on top of each other for aother subject. 

 

Figure 55 Time domain analysis during 5 runs of normal breathing cluster 2 with events 

plotted on top of each other for a subject. Number of events and variability values in 

each run are also listed. 

 

Figure 56 Time domain analysis during 5 runs of normal breathing cluster 2 where 

events are plotted on top of previous SCG event for a subject. 
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Figure 57 Frequency domain analysis during 5 runs of normal breathing cluster 2 where 

the spectra of each SCG event are plotted on top of each other. 

Figure 55 shows Time domain analysis during 5 runs of normal breathing cluster 2 with 

number of events where events are plotted on top of each other and variability in each 

run for another subject. Figure 56 shows time domain analysis during 5 runs of normal 

breathing cluster 2 where events are plotted on top of previous SCG event for another 

subject. Figure 57 shows Frequency domain analysis during 5 runs of normal breathing 

cluster 2 where frequency domain of events are plotted on top of each other. Time and 

frequency domain results from Figure 49-57 shows that by performing clustering 

variability is reduced.  

 

Figure 58 Time domain analysis during 3 runs of breath holding at end inspiration with 

events plotted on top of each other for a subject. Number of events and variability values 

in each run are also listed. 
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Figure 59 Time domain analysis during 3 runs of breath holding at end inspiration 

where events are plotted on top of previous SCG event for a subject. 

 

Figure 60 Frequency domain analysis during 3 runs of breath holding at end inspiration 

where the spectra of each SCG event are plotted on top of each other. 

Figure 58 shows Time domain analysis during 3 runs of breath holding at end 

inspiration with number of events where events are plotted on top of each other and 

variability in each run can be seen. Figure 59 shows time domain analysis during 3 runs 

of breath holding at end inspiration where events are plotted on top of each otehr for 

another subject. Figure 60 shows Frequency domain analysis during 3 runs of breath 

holding at end inspiration where the spectrum of each events are plotted on top of each 

other. 

 

Figure 61 Time domain analysis during 3 runs of breath holding at end expiration with 

events plotted on top of each other for a subject. Number of events and variability values 

in each run are also listed. 
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Figure 62 Time domain analysis during 3 runs of breath holding at end expiration where 

events are plotted on top of previous SCG event for a subject. 

 

Figure 63 Frequency domain analysis during 3 runs of breath holding at end expiration 

where the spectra of each SCG event are plotted on top of each other. 

Figure 61 shows Time domain analysis during 3 runs of breath holding at end expiration 

with number of events where events are plotted on top of each other and variability in 

each run for a subject. Figure 62 shows time domain analysis during 3 runs of breath 

holding at end expiration where events are plotted on top of previous SCG event for a 

subject. Figure 63 shows Frequency domain analysis during 3 runs of breath holding at 

end expiration where frequency domain of events are plotted on top of each other. Time 

and frequency domain results from Figure 58-63 shows that by performing breath 

holding variability is further reduced. 

 

Figure 64 Time domain analysis during 3 runs of end inspiration at positive 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 
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Figure 65 Time domain analysis during 3 runs of end inspiration at positive 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 66 Frequency domain analysis during 3 runs of end inspiration at positive 2-4 

cm water pressure where the spectra of each SCG event are plotted on top of each other. 

Figure 64 shows Time domain analysis during 3 runs of end inspiration at positive 2-4 

cm water pressure with number of events where events are plotted on top of each other 

for another subject. Figure 65 shows time domain analysis during 3 runs of end 

inspiration at positive 2-4 cm water pressure where events are plotted on top of previous 

events for another subject. Figure 66 shows Frequency domain analysis during 3 runs 

of end inspiration at positive 2-4 cm water pressure where frequency domain of each 

events are plotted on top of each other. 

Figure 67 shows Time domain analysis during 3 runs of end inspiration at negative 2-4 

cm water pressure with number of events where events are plotted on top of each other 

for a subject. Figure 68 shows time domain analysis during 3 runs of end inspiration at 

negative 2-4 cm water pressure where events are plotted on top of previous SCG event 
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for another subject. Figure 69 shows Frequency domain analysis during 3 runs of end 

inspiration at negative 2-4 cm water pressure where frequency domain of  

events are plotted on top of each other. 

 

Figure 67 Time domain analysis during 3 runs of end inspiration at negative 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 68 Time domain analysis during 3 runs of end inspiration at negative 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 69 Frequency domain analysis during 3 runs of end inspiration at negative 2-4 

cm water pressure where the spectra of each SCG event are plotted on top of each other. 

Figure 70 shows Time domain analysis during 3 runs of end inspiration at positive 15-

20 cm water pressure with number of events where events are plotted on top of each 
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other for a subject. Figure 71 shows time domain analysis during 3 runs of end 

inspiration at positive 15-20 cm water pressure where events are plotted on top of 

 

Figure 70 Time domain analysis during 3 runs of end inspiration at positive 15-20 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 71 Time domain analysis during 3 runs of end inspiration at positive 15-20 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 72 Frequency domain analysis during 3 runs of end inspiration at positive 15-20 

cm cm water pressure where the spectra of each SCG event are plotted on top of each 

other. 

previous SCG event for a subject. Figure 72 shows Frequency domain analysis during 

3 runs of end inspiration at positive 15-20 cm water pressure where frequency domain 

of events are plotted on top of each other. 
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Figure 73 shows Time domain analysis during 3 runs of end inspiration at negative 15-

20 cm water pressure with number of events where events are plotted on top of each 

other for another subject. Figure 74 shows time domain analysis during 3 runs of end 

 

Figure 73 Time domain analysis during 3 runs of end inspiration at negative 15-20 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 74 Time domain analysis during 3 runs of end inspiration at negative 15-20 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 75 Frequency domain analysis during 3 runs of end inspiration at negative 15-

20 cm cm water pressure where the spectra of each SCG event are plotted on top of 

each other. 

inspiration at negative 15-20 cm water pressure where each events are plotted on top of 

previous SCG event for a subject. Figure 75 shows Frequency domain analysis during 

3 runs of end inspiration at negative 15-20 cm water pressure where frequency domain 
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of each events are plotted on top of each other. Time and frequency domain results from 

Figure 64-75 shows that by performing positive and negative normal and increased 

airway pressure after end inspiration variability is further increased compared to breath 

holding at end inspiration. 

 

Figure 76 Time domain analysis during 3 runs of end expiration at positive 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 77 Time domain analysis during 3 runs of end expiration at positive 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 78 Frequency domain analysis during 3 runs of end expiration at positive 2-4 

cm water pressure where the spectra of each SCG event are plotted on top of each other. 

Figure 76 shows Time domain analysis during 3 runs of end expiration at positive 2-4 

cm water pressure with number of events where each events are plotted on top of each 
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other and variability in each run for a subject. Figure 77 shows time domain analysis 

during 3 runs of end expiration at positive 2-4 cm water pressure where each events are 

plotted on top of previous SCG event for a subject. Figure 78 shows Frequency domain 

analysis during 3 runs of end expiration at positive 2-4 cm water pressure where 

frequency domain of each events are plotted on top of each other. 

 

Figure 79 Time domain analysis during 3 runs of end expiration at negative 2-4 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 80 Time domain analysis during 3 runs of end expiration at negative 2-4 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 81 Frequency domain analysis during 3 runs of end expiration at negative 2-4 

cm water pressure where the spectra of each SCG event are plotted on top of each other. 

Figure 79 shows Time domain analysis during 3 runs of end expiration at negative 2-4 

cm water pressure with number of events where each events are plotted on top of each 
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other and variability in each run for a subject. Figure 80 shows time domain analysis 

during 3 runs of end expiration at negative 2-4 cm water pressure where each events 

are plotted on top of previous SCG event for a subject. Figure 81 shows Frequency 

domain analysis during 3 runs of end expiration at negative 2-4 cm water pressure 

where frequency domain of each events are plotted on top of each other. 

 

Figure 82 Time domain analysis during 3 runs of end inspiration at positive 15-20 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 

 

Figure 83 Time domain analysis during 3 runs of end inspiration at positive 15-20 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 84 Frequency domain analysis during 3 runs of end inspiration at positive 15-20 

cm cm water pressure where the spectra of each SCG event are plotted on top of each 

other. 
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Figure 82 shows Time domain analysis during 3 runs of end expiration at positive 15-

20 cm water pressure with number of events where each events are plotted on top of 

each other and variability in each run for a subject. Figure 83 shows time domain 

analysis during 3 runs of end expiration at positive 15-20 cm water pressure where each 

events are plotted on top of previous SCG event for a subject. Figure 84 shows 

Frequency domain analysis during 3 runs of end expiration at positive 15-20 cm water 

pressure where frequency domain of each events are plotted on top of each other. 

Figure 85 shows Time domain analysis during 3 runs of end expiration at negative 15-

20 cm water pressure with number of events where each events are plotted on top of 

each other and variability in each run for a subject. Figure 86 shows time domain 

analysis during 3 runs of end expiration at negative 15-20 cm water pressure where 

each events are plotted on top of previous SCG event for a subject. Figure 87 shows 

Frequency domain analysis during 3 runs of end expiration at negative 15-20 cm water 

pressure where frequency domain of each events are plotted on top of each other. Time 

and frequency domain results from Figure 76-87 shows that by performing positive and 

negative normal and increased airway pressure after end expiration variability is further 

increased compared to breath holding at end expiration. 

 

Figure 85 Time domain analysis during 3 runs of end expiration at negative 15-20 cm 

water pressure with events plotted on top of each other for a subject. Number of events 

and variability values in each run are also listed. 
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Figure 86 Time domain analysis during 3 runs of end expiration at negative 15-20 cm 

water pressure where events are plotted on top of previous SCG event for a subject. 

 

Figure 87 Frequency domain analysis during 3 runs of end expiration at negative 15-20 

cm cm water pressure where the spectra of each SCG event are plotted on top of each 

other. 
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APPENDIX B: CLUSTER ANALYSIS OF SCG EVENTS DURING 

NORMAL BREATHING 
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Objective: The objective of this study is to perform cluster distribution for each subjects 

to show how SCG can accurately cluster during normal breathing. 

Methods: Unsupervised k-medoid clustering was performed and clustering accuracy 

was calculated for each subjects after SCG segmentation.  

Findings: Cluster distribution and clustering accuracy for normal breathing of 1 min are 

shown for some sample subjects. Figure 88 shows cluster distribution and accuracy of 

normal breathing for 5 runs for subject 2. Here, the accuracy of cluster distribution are 

 

Figure 88 Cluster distribution and the accuracy of normal breathing for 5 runs (1 min 

each) for subject 2. 
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99, 95, 97, 87 and 96%, respectively. Figure 89 shows cluster distribution and accuracy 

of normal breathing for 5 runs for subject 4. Here, the accuracy of cluster distribution 

for 5 runs are respectively 82, 90, 96, 93 and 94%. Figure 90 shows cluster distribution 

and accuracy of normal breathing for 5 runs for subject 7. Here, the accuracy of cluster 

distribution for 5 runs are respectively 100, 99, 95, 94 and 91%. Figure 91 shows cluster 

distribution and accuracy of normal breathing for 5 runs for subject 14. 

 

Figure 89 Cluster distribution and the accuracy of normal breathing for 5 runs (1 min 

each) for subject 4. 
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Here, the accuracy of cluster distribution for 5 runs are respectively 98, 100, 98, 97 and 

92%. Figure 92 shows cluster distribution and accuracy of normal breathing for 5 runs 

for subject 15. Here, the accuracy of cluster distribution for 5 runs are respectively 83, 

94, 100, 94 and 98%. 

 

Figure 90 Cluster distribution and the accuracy of normal breathing for 5 runs (1 min 

each) for subject 7. 
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Figure 91 Cluster distribution and the accuracy of normal breathing for 5 runs (1 min 

each) for subject 14. 
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Figure 92 Cluster distribution and the accuracy of normal breathing for 5 runs (1 min 

each) for subject 15. 
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APPENDIX C: IRB INFORMATION 
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APPENDIX D: IRB APPROVAL 
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