
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Machine Learning Techniques for Topic Detection and Authorship Machine Learning Techniques for Topic Detection and Authorship

Attribution in Textual Data Attribution in Textual Data

Fereshteh Jafariakinabad
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Jafariakinabad, Fereshteh, "Machine Learning Techniques for Topic Detection and Authorship Attribution
in Textual Data" (2021). Electronic Theses and Dissertations, 2020-. 884.
https://stars.library.ucf.edu/etd2020/884

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd2020%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/884?utm_source=stars.library.ucf.edu%2Fetd2020%2F884&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MACHINE LEARNING TECHNIQUES FOR TOPIC DETECTION AND AUTHORSHIP
ATTRIBUTION IN TEXTUAL DATA

by

FERESHTEH JAFARIAKINABAD
B.S. Amirkabir University of Technology, 2013

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2021

Major Professor: Kien A. Hua

© 2021 Fereshteh Jafariakinabad

ii

ABSTRACT

The unprecedented expansion of user-generated content in recent years demands more attempts of

information filtering in order to extract high-quality information from the huge amount of available

data. In this dissertation, we begin with a focus on topic detection from microblog streams, which

is the first step toward monitoring and summarizing social data. Then we shift our focus to the

authorship attribution task, which is a sub-area of computational stylometry. It is worth mentioning

that determining the style of a document is orthogonal to determining its topic, since the document

features which capture the style are mainly independent of its topic.

We initially present a frequent pattern mining approach for topic detection from microblog streams.

This approach uses a Maximal Sequence Mining (MSM) algorithm to extract pattern sequences,

where each pattern sequence is an ordered set of terms. Then we construct a pattern graph, which

is a directed graph representation of the mined sequences, and apply a community detection al-

gorithm to group the mined patterns into different topic clusters. Experiments on Twitter datasets

demonstrate that the MSM approach achieves high performance in comparison with the state-of-

the-art methods.

For authorship attribution, while previously proposed neural models in the literature mainly focus

on lexical-based neural models and lack the multi-level modeling of writing style, we present a

syntactic recurrent neural network to encode the syntactic patterns of a document in a hierarchical

structure. The proposed model learns the syntactic representation of sentences from the sequence

of part-of-speech tags. Furthermore, we present a style-aware neural model to encode document

information from three stylistic levels (lexical, syntactic, and structural) and evaluate it in the

domain of authorship attribution. Our experimental results, based on four authorship attribution

benchmark datasets, reveal the benefits of encoding document information from all three stylistic

iii

levels when compared to the baseline methods in the literature. We extend this work and adopt a

transfer learning approach to measure the impact of lower-level linguistic representations versus

higher-level linguistic representations on the task of authorship attribution.

Finally, we present a self-supervised framework for learning structural representations of sen-

tences. The self-supervised network is a Siamese network with two components; a lexical sub-

network and a syntactic sub-network which take the sequence of words and their corresponding

structural labels as the input, respectively. This model is trained based on a contrastive loss objec-

tive. As a result, each word in the sentence is embedded into a vector representation which mainly

carries structural information. The learned structural representations can be concatenated to the

existing pre-trained word embeddings and create style-aware embeddings that carry both semantic

and syntactic information and is well-suited for the domain of authorship attribution.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Kien A. Hua for his guidance and support throughout the

process of completing my PhD research. I would also like to thank my dissertation committee

members, Dr. Yanjie Fu, Dr. Liqiang Wang, Dr. Beth Young, for their efforts in serving in my

dissertation committee and providing valuable guidance and suggestions on my dissertation.

v

TABLE OF CONTENTS

LIST OF FIGURES . xii

LIST OF TABLES . xiv

CHAPTER 1: INTRODUCTION . 1

Topic Detection . 1

Authorship Attribution . 2

Dissertation Organization . 7

CHAPTER 2: LITERATURE REVIEW . 9

Topic Detection . 9

Feature-pivot methods . 9

Document-pivot methods . 10

Probabilistic Models . 11

Authorship Attribution . 11

Traditional Methods . 12

Deep Learning Based Methods . 13

vi

CHAPTER 3: MAXIMUM SEQUENCE MINING APPROACH FOR TOPIC DETECTION

FROM MICROBLOG STREAMS . 15

Topic Detection with Frequent Pattern Mining approach 15

Mining of Maximal Sequences . 16

Pattern Clustering . 19

Pattern Graph . 20

Pattern Clustering . 21

Post-Processing . 22

Experimental Results . 22

Datasets . 22

Data Preprocessing . 23

Evaluation . 24

Parameter Tuning . 25

Results . 27

Summary . 29

CHAPTER 4: SYNTACTIC NEURAL MODEL FOR AUTHORSHIP ATTRIBUTION . . 30

POS Embedding . 30

vii

POS Encoder . 32

Short-term Dependencies . 32

Long-term Dependencies . 33

Sentence Encoder . 33

Classification . 34

Experimental Results . 35

Dataset . 35

Baselines . 36

Hyperparameter Tuning . 36

CNN for POS encoding . 37

LSTM for POS encoding . 38

Results . 39

Syntactic v.s. Lexical . 40

Short-Term v.s. Long-Term . 40

Short Documents v.s. Long Documents 40

Summary . 42

CHAPTER 5: STYLE-AWARE NEURAL MODEL FOR AUTHORSHIP ATTRIBUTION 43

viii

Lexical and Syntax Encoding . 44

Lexical Embedding . 45

Syntactic Embedding . 45

Hierarchical Model . 46

Word-level Encoder . 46

Sentence-level Encoder . 47

Lexical and Syntactic Representations Fusion . 49

Classification . 49

Experimental Studies . 50

Datasets . 50

Baselines . 51

Hyperparameter Tuning . 52

Performance Results . 53

Syntactic Representation . 53

Hierarchical Neural Model . 54

Lexical and Syntactic Model . 55

Training Syntactic and Lexical Networks 56

ix

Style Encoding . 57

Sensitivity to Sentence Length . 58

Sensitivity to Document Length . 59

Summary . 60

CHAPTER 6: TRANSFER LEARNING FOR AUTHORSHIP ATTRIBUTION USING DEEP

CONTEXTUALIZED WORD REPRESENTATIONS 62

Word Embeddings . 62

Static Embeddings . 63

Contextualized Embeddings . 63

Experimental Results . 64

Summary . 67

CHAPTER 7: A SELF-SUPERVISED REPRESENTATION LEARNING OF SENTENCE

STRUCTURE FOR AUTHORSHIP ATTRIBUTION 68

Proposed Framework : Lexicosynt Network . 68

Lexical Sub-network . 68

Syntactic Sub-network . 70

Loss Function . 70

x

Experimental Studies . 72

Data . 73

Training Data: . 73

Test Data: . 73

Training . 73

Representation Learning Evaluation: Probing Tasks 74

Surface Information . 76

Syntactic information . 76

Semantic information . 77

Representation Learning Evaluation: Comparing to the Baselines 79

Model Selection . 81

Test on Authorship Attribution Datasets . 82

Summary . 85

CHAPTER 8: CONCLUSION AND FUTURE WORK 87

LIST OF REFERENCES . 89

xi

LIST OF FIGURES

Figure 3.1: Term Vector: An entry of occurrence database 18

Figure 3.2: An example of mapping mined sequences into a pattern graph 20

Figure 3.3: Keyword performance measures across different values of L and Gap in the

Super Tuesday dataset . 26

Figure 3.4: Topic Recall measures of different values of L and Gap for three Twitter

datasets . 27

Figure 4.1: The Overall Architecture of Syntactic Neural Model 31

Figure 4.2: The performance of syntactic model across different receptive field sizes and

number of layers(n layers) . 37

Figure 4.3: The performance of syntactic model across different sentence lengths and

sequence lengths . 38

Figure 4.4: The performance of syntactic models when trained on different number of

segments per novel . 41

Figure 5.1: The overall architecture of Style-Aware Neural Model 44

Figure 5.2: Lexical and Syntactic Embedding . 45

Figure 5.3: Syntactic-CNN having three parallel convolutional layers with receptive field

sizes of 3,4, and 5. 47

xii

Figure 5.4: Cross Entropy loss over 50 epochs of training for syntactic, lexical, and style

models for (a) CCAT10, (b) CCAT50 , (c) BLOGS10 , and (d) BLOGS50

datasets . 56

Figure 5.5: The accuracy of Style-HAN model across different sentence length 59

Figure 5.6: The accuracy of Style-HAN model across different document length 60

Figure 6.1: The Architecture of ELMo Embedding . 64

Figure 6.2: The performance of different ELMo representations 66

Figure 7.1: The overall architecture of LexicoSynt network 69

Figure 7.2: An example of an input sentence and the corresponding (a) word sequence

representation (b) syntax parse tree representation (c) linearized parse tree

representation known as structural sequence 71

Figure 7.3: The training and validation loss and accuracy over 50 epochs of training . . . 75

Figure 7.4: The accuracy of learned surface information over 50 epochs of training . . . 77

Figure 7.5: The accuracy of syntactic information over 50 epochs of training 78

Figure 7.6: The accuracy of semantic information over 50 epochs of training 79

Figure 7.7: Lexical and Syntactic Embedding . 83

xiii

LIST OF TABLES

Table 3.1: Topic samples generated by MSM . 25

Table 3.2: Performance of topic detection methods in three Twitter datasets 28

Table 4.1: Corpus Statistics . 36

Table 4.2: The performance results of models on PAN 2012 dataset for authorship attri-

bution task . 39

Table 5.1: Dataset Statistics (|A| : the number of authors, s: the average number of

documents per author, w : the average number of words per doc, n: the

average number words per sentence, m: the average number of sentences per

document) . 51

Table 5.2: The model hyperprameters for each dataset 52

Table 5.3: The number of train and test samples for each dataset 53

Table 5.4: The accuracy of different syntactic representations 54

Table 5.5: The accuracy of syntactic (Syntactic-HAN), lexical (Lexical-HAN),and com-

bined (Style-HAN) models . 55

Table 5.6: The accuracy of different fusion approaches 57

Table 5.7: Test accuracy of models for each dataset . 58

xiv

Table 6.1: The accuracy of different lexical representations 65

Table 7.1: Probing task accuracies for different sentence representations 81

Table 7.2: Probing task accuracies for different model configurations 82

Table 7.3: The accuracy of different models for all datasets 84

xv

CHAPTER 1: INTRODUCTION

Topic Detection

The term ”microblogging” was coined in 2006-2007 and since then it has been used to describe

social media where users are able to share small units of content. The popularity of online mi-

croblogging social media in recent years has led to unprecedented growth in user-generated con-

tent, which is a rich source of information about real-world events. The availability of this huge

amount of data has initiated research on extracting high quality information by monitoring and

analyzing microblogging streams. The very first step towards extracting and summarizing useful

information from social streams is Topic Detection. Early work on Topic Detection and Tracking

(TDT), which was introduced in the late nineties, studied events in news streams [4]. TDT deals

with detection and tracking of events from the stream of stories. The input stream may or may

not be pre-segmented into stories and the events may or may not be known to the system; in other

words, the system may or may not be trained to recognize a specific event [4]. Detecting unknown

events from streams of stories is more challenging due to lack of any prior knowledge about the

event. Even though numerous methods of event detection for conventional news media have been

proposed in TDT, the noise of user-based contents and their short length, as well as heterogeneous

characteristics of social data streams make it a more challenging task when compared to news

streams.

General textual topic detection methods are classified into three classes: document-pivot methods,

feature-pivot methods, and probabilistic topic models. In this work, we focus on feature-pivot

methods, which cluster terms with respect to their co-occurrence in the corpus. Most of the meth-

ods that fall under this category leverage pairwise co-occurrences of terms which yield merged

topics in a corpus containing interconnected topics. Frequent Pattern Mining (FPM) is one of the

1

approaches which aims to address this issue by examining simultaneous co-occurrence of more

than two terms [33]. Soft Frequent Pattern Mining (SFPM) is a modified version of FPM where a

large number of terms must co-occur frequently, but not necessarily all, leading to a soft version

of FPM [66]. In this study, we aim to incorporate relative positional information of terms, as well

as distances between terms in a sequence. We argue that this strategy reduces the likelihood of

extracting incorrect correlations of terms because the pattern mining is based on term sequence

as a pattern which carries more semantic information about the content than an unordered list of

terms can. This improvement leads to more accurate topic detection results.

In general, any topic detection method which is based on statistical inferences is heavily reliant

on long documents, while user generated content in social media is usually in the form of short

texts. Aggregation is a common solution for addressing this problem in information retrieval.

Luca et al. [2] explored the effect of preprocessing steps and the topic detection algorithm itself on

social streams. According to their experiments, in most cases the time-aggregated datasets achieve

lower topic recall scores than non-aggregated datasets. The underlying reason behind this is that

the aggregated tweets may represent a mixture of topics rather than a single topic and are therefore

more likely to indicate an incorrect association of words. Transaction-level pattern mining not only

results in more informative patterns, but also decreases the likelihood of generating mixed topics

since it examines the co-occurrence of terms in the transaction rather than document. Hence,

aggregation of tweets does not affect the algorithm in this case. In order to reduce information

redundancy in mined patterns we utilize a maximal patterns scheme.

Authorship Attribution

Individuals express their thoughts in different ways due to many factors including the conventions

of the language, educational background, and the intended audience, etc. In written language, the

2

combination of consistent conscious or unconscious decisions in language production, known as

writing style, has been studied widely [47, 57]. Computational stylometry consists of three tasks;

authorship attribution (to determine the likelihood of a particular author having written a given

piece of text), authorship profiling (to detect characteristics of the author that has produced a given

piece of text e.g. gender, age, personality,...) and similarity detection (to compare multiple pieces

of work and decide if they have written by a single author or not). Stylistic features are generally

content-independent. They are consistent across different documents written by a specific author

(or author groups). Lexical, syntactic, and structural features are three main families of stylistic

features. Lexical features represent author’s character and word use preferences, while syntactic

features capture the syntactic patterns of the sentences in a document. Structural features reveal

information about how an author organizes the sentences in a document.

To date, the existing approaches in the domain of authorship attribution fall into two categories.

The first category adopts traditional machine learning techniques to identify the author of a given

document. In this approach the stylistic features are engineered and extracted from the documents

and are subsequently used as the inputs of different kind of classifiers [81, 20, 89, 95, 69, 82]. These

features reveal statistical information of documents in lexical, syntactic, and structural levels. For

instance, frequency of certain words, character distribution, function word distribution, frequency

of part of speech tags, the number of sentences per paragraph, etc. A limitation of this approach

is that the feature extracting process ignores rich sequential information in the sentences and the

document.

The second category of authorship attribution approach builds upon neural network models [85,

28, 39]. In this approach, the sequence of words or characters are the input of a neural network

which makes the proposed models utilize the sequential information. However, the proposed mod-

els in the literature mainly focus on lexical features despite the fact that lexical-based language

models have very limited scalability when dealing with datasets containing diverse topics. On the

3

other hand, syntactic models which are content-independent are more robust against topic vari-

ance. Zhang et. al. [100] introduces a strategy to incorporate syntactic information of documents

in authorship attribution task. They propose a novel scheme to encode a syntax tree into a learnable

distributed representation, and then integrate the syntax representation into a Convolutional Neural

Network (CNN)-based model. Different from their approach, we are interested in a neural model

which encodes the syntactic information without being equipped with explicit structural represen-

tation such as syntax parse tree. This is achieved by introducing a strategy to encode syntactic

information of sentences using only their Part of Speech (POS) tags. We present a syntactic recur-

rent neural network which hierarchically learns and encodes the syntactic structure of documents.

First, the syntactic representations of sentences are learned from the sequence of part-of-speech

(POS) tags and then they are aggregated into document representations using recurrent neural net-

works. Afterwards, we use attention mechanism to highlight the sentences which contribute more

to the detection of authorial writing style.

Furthermore, our motivation is to develop a neural model which preserves all the stylistic informa-

tion of documents from all three levels of language production: lexical, syntactic, and structural.

In the proposed model, we use lexical and syntactic embeddings to build two different sentence

representations. These lexical and syntactic representations of sentences are independently fed into

two parallel hierarchical neural networks to capture semantic and syntactic structure of sentences

in documents. The hierarchical attention network captures the hierarchical structure of documents

by constructing representations of sentences and aggregating them into document representations

[98]. We employ convolutional layers as the word-level encoder to represent each sentence by

its important lexical and syntactic n-grams, independent of their position in the sentence. For

the sentence-level encoder, we employ an attention-based recurrent neural network to capture the

structural patterns of sentences in the document. The primary reason for adopting recurrent archi-

tecture for sentence-encoder is because recurrent neural networks have been shown to be essential

4

for capturing the underlying hierarchical structure of sequential data [94]. Ultimately, lexical and

syntactic representations are fused and fed into a softmax classifier to predict the probability dis-

tribution over the class labels.

Additionally, we adopt a transfer learning approach and use deep contextualized word representa-

tion (ELMo) in our model to measure the impact of lower-level linguistic representations versus

higher-level linguistic representations of ELMo in the task of authorship attribution. According to

our experimental results, lower-level linguistic representations which mainly carry syntactic infor-

mation, demonstrate better performance in authorship attribution task when compared to higher-

level linguistic representations, which mainly carry semantic information.

Word embeddings which can capture semantic similarities have been extensively explored in a

wide spectrum of Natural Language Processing (NLP) applications in recent years. Word2Vec

[56], FastText [18], and Glove [63] are some examples. Even though distributional word embed-

dings produce high quality representations, representing longer pieces of text such as sentences and

paragraphs is still an open research problem. A sentence embedding is a contextual representation

of a sentence which is often created by transformation of word embeddings through a composition

function. There has been a large body of work in the literature which propose different approaches

to represent sentences from word embeddings. SkipThought [46], InferSent [24], and Universal

Sentence Encoder [22] are well-known examples.

There has been a growing interest in understanding what linguistic knowledge is encoded in deep

contextual representations of language. For this purpose, several probing tasks are proposed to un-

derstand what these representations are capturing [93, 38, 25, 64]. One of the interesting findings

is that, despite the existence of explicit syntactic annotations, these learned deep representations

encode syntax to some extent [17]. Hewitt et. al. provide an evidence that the entire syntax tree

is embedded implicitly in deep model’s vector geometry. Kuncoro et. al. [50] show that LSTMs

5

trained on language modeling objectives capture syntax-sensitive dependencies. Even though deep

contextual language models implicitly capture syntactic information of sentences, explicit model-

ing of syntactic structure of sentences has been shown to further improve the results in different

NLP tasks including neural language modeling [84, 35], machine comprehension [54], summariza-

tion [87], text generation [12], machine translation [99, 51], authorship attribution [100, 41, 42],

etc. Furthermore, Kuncoro et. al. provide evidence that models which have explicit syntactic

information result in better performance [50]. Of particular interest, one of the areas where syn-

tactic structure of sentences plays an important role is style-based text classification tasks, includ-

ing authorship attribution. The syntactic structure of sentences captures the syntactic patterns of

sentences adopted by a specific author and reveal how the author structures the sentences in a

document.

Inspired by the above observations, our initial work demonstrates that explicit syntactic informa-

tion of sentences improves the performance of a recurrent neural network classifier in the domain

of authorship attribution [41, 42]. We continue this work by investigating if structural representa-

tion of sentences can be learned explicitly. In other words, similar to pre-trained word embeddings

which mainly capture semantics, can we have pre-trained embeddings which mainly capture syn-

tactic information of words. Such pre-trained word embeddings can be used in conjunction with

semantics embeddings in different domains, including authorship attribution. For this purpose, we

propose a self-supervised framework using a Siamese network [23] to explicitly learn the struc-

tural representation of sentences. The Siamese network is comprised of two identical components;

a lexical sub-network and a syntactic sub-network; which take the sequence of words in the sen-

tence and its corresponding linearized syntax parse tree as the inputs, respectively. This model is

trained based on a contrastive loss objective where each pair of vectors (lexical and structural) is

close to each other in the embedding space if they belong to an identical sentence (positive pairs),

and are far from each other if they belong to two different sentences (negative pairs).

6

As a result, each word in the sentence is embedded into a vector representation which mainly car-

ries structural information. Due to the n-to-1 mapping of word types to structural labels, the word

representation is deduced into structural representations. In other words, semantically different

words (e.g. cold, hot, warm) are mapped to similar structural labels (adjective); hence, seman-

tically different words may have similar structural representations. These pre-trained structural

word representations can be used as complementary information to their pre-trained semantic em-

beddings (e.g. FastText and Glove). We use probing tasks proposed by Conneau et al. [25] to

investigate the linguistic features learned by such a training. The results indicate that structural

embeddings show competitive results compared to the semantic embeddings, and concatenation of

structural embeddings with semantic embeddings achieves further improvement. Finally, we in-

vestigate the efficiency of the learned structural embeddings of words for the domain of authorship

attribution across four datasets. Our experimental results demonstrate classification improvements

when structural embeddings are concatenated with the pre-trained word embeddings.

Dissertation Organization

The rest of this dissertation is organized as follows:

Chapter 2 presents the literature review, which consists of two parts: Topic Detection and Author-

ship Attribution.

Chapter 3 presents our proposed model for topic detection from microblog streams.

Chapter 4 presents our proposed syntactic neural network and its application for the task of author-

ship attribution.

Chapter 5 presents our proposed style-aware neural model for the task of authorship attribution.

Chapter 6 elaborates our strategy to adopt a transfer learning of deep contextualized word embed-

ding and fine-tune our model to measure the contribution of different linguistic features in the task

7

of authorship attribution.

Chapter 7 presents our proposed self-supervised representation learning framework for learning

the structural representation of sentence and its application in authorship attribution task.

Chapter 8 is the conclusion and future work.

8

CHAPTER 2: LITERATURE REVIEW

Topic Detection

General-purpose topic detection methods mainly fall into one of three classes: Feature Pivot Meth-

ods, Document Pivot Methods, and Probabilistic Models. Each of these three approaches has ad-

vantages and disadvantages. According to Fung. et al. [30], cluster fragmentation problem is

one of the common drawbacks of document pivot methods, which leads to incorrect clustering.

Probabilistic models usually produce good results; however, they are more computationally ex-

pensive. Feature pivot methods, based on analysis of terms correlation, often capture misleading

term correlation due to noise in the data set. We discuss these three approaches in more detail in

the following subsections.

Feature-pivot methods

Feature-pivot methods aim to find a group of terms which co-occur in a corpus. In these methods a

topic is represented by a set of terms. Generally, feature-pivot methods include two steps towards

detection of topics. First, a set of key terms is extracted from the corpus based on some importance

measure and then the co-occurrence patterns between these key terms are computed. Second, these

patterns are clustered based on some inter-term similarity measures, where each cluster represents

a specific topic.

For instance, M. Cataldi et al. [21] consider both term frequency and also social features of tweets,

like the popularity of the user, for selection of key terms. They utilize correlation vectors which

represent the pairwise co-occurrence of terms in the corpus and generate a graph where each node

identifies a term; the edge between two nodes represents the correlation vector of two terms. Fi-

9

nally, a graph-based algorithm is applied to generate the clusters.

J. Wang et al. [96] build frequency-based signals for individual terms and detects an event by

grouping terms with similar patterns into a set. First, they select bursty terms by filtering away

the trivial terms. Then for the clustering, a modularity-based graph partitioning is applied by

computing the cross-correlation measures. H. Sayyadi et al [78] introduced a new event detection

method which builds a keyword graph, ”KeyGraph”, based on the probability of pairwise term co-

occurances. The clustering method is a community detection algorithm which iteratively removes

the edges with high betweenness. Regardless of the employed techniques for term selection and the

clustering, most of the proposed methods attempt to examine pairwise correlation between terms.

Considering correlation of more than two patterns are proposed as follows. J.Guo et al [33] treat

the problem of topic detection as a Frequent Pattern Mining problem and propose a stream mining

algorithm to detect topics from Twitter streams. Petkos et al [66] propose a softer version of FPM

which represents the topic as frequent patterns.

Document-pivot methods

Document-pivot methods typically group together individual documents according to their simi-

larity. The similarity measure is computed between either pairs of documents or a document and

prototype cluster representation. In this approach a topic is represented by a set of documents.

If the similarity of the incoming document is higher than some threshold, then the document is

added to the cluster; otherwise a new cluster is created. The literature works which have adopted

this approach mainly differ in the methods they applied to compute the similarity. For instance

[68] compares the tf-idf vector of incoming tweets with the tf-idf vector of common terms in each

cluster. In [75] a variant of incremental clustering is adopted in which the temporal and textual sim-

ilarity of incoming tweets are considered. In this method the similarity between incoming news

10

and the clusters older than some limit, or those which do not share any textual information, is not

computed. This makes the method more appropriate for large databases. Another document-pivot

approach is [67], which aims to address scalability issues by utilizing a modified version of LSH. In

general, the document-pivot methods performance is dependent on the threshold parameter. These

methods also suffer from the fragmentation issue, for which different merging procedures can be

applied [14] [75].

Probabilistic Models

Probabilistic topic models deal with the distribution of topics and terms. In these approaches, the

topic is represented as a distribution over terms. Latent Dirichlet Allocation (LDA) and Probabilis-

tic Latent Semantic Analysis(PLSA) are two representative probabilistic topic models [40] [16]

which have been extended widely. They use variables which represent per-topic term distribution

and per-document topic distribution. In [71] the supervised version of LDA has been adopted for

detecting topics and predicting links in Twitter. H. Kim et al [45] combined the frequent pattern

mining method with probabilistic topic models and have reported performance improvements over

LDA and PLSA for the classification task.

Authorship Attribution

In the field of Natural Language Processing, authorship analysis is the process of examining the

linguistic style of a piece of text in order to draw some conclusions on its authorship. This sub-

field consists of three tasks; authorship attribution (to determine the likelihood of a particular

author having written a given piece of text), authorship profiling (to detect characteristics of the

author that has produced a given piece of text e.g. gender, age, personality,...) and similarity

11

detection (to compare multiple pieces of work and decide if they have been written by a single

author or not). Style-based text classification was introduced by Argamon-Engelson et al. [8]. The

authors used basic stylistic features (the frequency of function words and part-of-speech trigrams)

to classify news documents based on the corresponding publisher (newspaper or magazine) as well

as text genre (editorial or news item). Nowadays, computational stylometry has a wide range of

applications in literary science [31], forensics [6, 7, 73], social media analysis [13, 11, 37, 36],

psycholinguistics [59, 62], and even source code analysis [5, 26]. Computational stylometry has

been also explored in different languages including Chinese [83], Arabic [43, 34], Russian [53, 60],

and Turkish [1], among others [44, 92].

Traditional Methods

In the traditional machine learning approach the stylistic features are engineered and extracted

from the documents and are subsequently used as the inputs of different kinds of machine learning

classifiers [81, 89, 82]. The engineered features reveal statistical information of documents in

lexical, syntactic, and structural levels. Character/word n-grams, frequency of certain words and

character distribution are examples of lexical-level features. The frequency of function words,

punctuation, and syntactic n-grams are the most frequently used syntactic features. The number

of words/sentences/paragraphs in a document and averaged word/sentence/paragraph length are

instances of structural features.

Syntactic n-grams are shown to achieve promising results in different stylometric tasks including

author profiling [70] and author verification [48]. In particular, Raghahvan et al. investigated the

use of syntactic information by proposing a probabilistic context-free grammar for the authorship

attribution purpose, and used it as a language model for classification [72]. Sapkota and Bethard

et al. propose a model that feeds affix and punctuation n-grams as syntactic features to an SVM

12

classifier for the task of authorship attribution [76]. They demonstrate that character n-grams

that capture information about affixes and punctuation play a key role in the predictions in the

authorship attribution task. A combination of lexical and syntactic features has also been shown to

enhance the model’s performance. Sundararajan et al. argue that, although syntax can be helpful

for cross-genre authorship attribution, combining syntax and lexical information can further boost

the performance for cross-topic attribution and single-domain attribution [90]. Furthermore, it

has been shown that syntactic dependency and discourse features play a significant role in the

task of gender and author identification and author verification [86]. Schwartz et al. combine

lexical and syntactic features and use a linear classifier for writing style detection [80]. Kreutz et

al. explore different ways to combine classifiers trained on lexical features (word n-grams) and

syntactic features (PoS n-grams) to discriminate the language variety in written Dutch texts [49].

Deep Learning Based Methods

With recent advances in deep learning, there exists a large body of work in the literature which

employs deep neural networks in the authorship attribution domain. In this approach, the sequence

of words or characters are the input of a neural network which makes the proposed models utilize

the sequential information. However, the proposed models in the literature mainly focus on lexical

features despite the fact that lexical-based language models have very limited scalability when

dealing with datasets containing diverse topics. On the other hand, syntactic models which are

content-independent are more robust against topic variance.

Bagnall et al. have employed a recurrent neural network with a shared recurrent state which outper-

forms other proposed methods in PAN 2015 task [9]. Ge et al. used a feed forward neural network

language model on an authorship attribution task. The output achieves promising results compared

to the n-gram baseline [32]. Ruder et al. proposes a hybrid CNN that leverages character and

13

word sequences for the large-scale authorship attribution task. In their proposed model, characters

are represented as one-hot vectors (discrete representations) [74]. In contrast to previous work,

which uses discrete feature representations, Sari et al. presents a feed forward neural model which

encodes each character n-gram as a continuous vector representation[77]. Shrestha et al. applies

CNN based on character n-gram to identify the authors of tweets. Their proposed model takes a

sequence of character n-grams as input. Despite the previous neural network models that use either

a sequence of words or a sequence of characters as inputs, this model captures local interactions at

the character-level. [85].

Hitchler et al. propose a CNN based on pre-trained embedding word vector concatenated with

one-hot encoding of POS tags; however, they have not shown any ablation study to report the

contribution of POS tags on the final performance results [39]. Zhang et al. introduces a syntax

encoding approach using convolutional neural networks which combines with a lexical model and

applies it to the domain of authorship attribution [100]. Their proposed approach utilized the syntax

parse tree of sentences; however, we show that such an explicit annotation of hierarchical syntax

is not necessary for the authorship attribution task. We propose a simpler and more effective way

of encoding the syntactic information of documents for the domain of authorship attribution.

14

CHAPTER 3: MAXIMUM SEQUENCE MINING APPROACH FOR

TOPIC DETECTION FROM MICROBLOG STREAMS

Topic Detection with Frequent Pattern Mining approach

1 Mining frequent patterns in textual information for topic detection falls into the class of feature-

pivot methods. Early feature-pivot methods in the literature examined the pairwise co-occurrence

of terms. This approach suffers from producing mixed topics in heterogeneous streams where

several stories are evolving in parallel. One of the solutions for dealing with this challenge is to

take into account the co-occurrence of multiple terms rather than just a pair. Needless to say this

approach will lead to higher quality results. The idea of exploiting Frequent Pattern Mining for

detecting hot topics from Twitter was initiated by J. Guo et al. [33], who adopted an FP-stream

algorithm in order to discover the patterns in Twitter streams, where a pattern is a set of terms

which co-occur frequently.

G. Petkos et al. [66] proposed SFPM, a soft version of FPM, where a large number of terms in

the patterns co-occur frequently rather than necessitating all the terms to appear. It is expected

that using SFPM increases incorrectly correlated terms in the mining process, leading to lower

keyword precision. L. Aiello et al. [2] compared six different topic detection methods and reported

their corresponding keyword precision and recall. Inferred from the reported results, almost all

methods have lower keyword precision than recall. This observation implies that most of the terms

correlated incorrectly. Hence, we should use a mining algorithm that is able to capture the actual

correlation of terms.

1The findings from this research has been previously published: Jafariakinabad, Fereshteh, and Kien A. Hua.
”Maximal sequence mining approach for topic detection from microblog streams.” 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2016.

15

The relative positions of terms and the distance between the terms in the corpus can be employed

as additional filters for the mining process. In order to capture the relative position of terms in the

pattern, we propose to use a frequent sequence mining approach. Sequences are ordered lists of

terms that are capable of capturing more semantic information. We adapt the Vertica mining of

Maximal Sequential Patterns (VMSP) algorithm and propose a new text mining algorithm which

aims to mine maximal sequences. Subsequently, we map the mined sequences into a directed

graph and apply a community detection algorithm in order to cluster the patterns, where each

cluster represents a specific topic. In the post-processing step, a set of key terms are selected for

each cluster that represents the corresponding topic. In the following, we formulate the task of

topic detection from microblogging streams and then describe our approach in details.

Mining of Maximal Sequences

Let text batch BI be the set of all texts generated by a microbloging stream within a fixed time

interval up to the time stamp I . If Ti(i = 1, 2, . . . , N) denotes the topic detected from batch BI ,

BI can be modeled as a set of multiple topics TI = {T1, T2, . . . , TN}. The topic detection task in

this study is defined as the task of detecting set TI from the batch file BI .

For mining purposes, we consider each user post as an individual transaction. Adopting this ap-

proach results in reducing the number of candidates for pattern generation, leading to a lower

computational time. Moreover, it ultimately decreases the probability of generating mixed topics

since it is unlikely to correlate terms in the different topics.

Definition 0 (Sequence). Let T = {t1, t2, . . . , tk} be a set of terms. A sequence S =< s1, s2, . . . , sn >

(si ∈ T) is an ordered list of terms. Each user post in the batch is a sequence of terms.

Definition 1 (Sub-sequence). Given a sequence A =< a1, a2, . . . , an > and a sequence B =<

16

b1, b2, . . . , bm >, sequence A is sub-sequence of B (denoted by A v B) if there exist integers

1 ≤ i1 < i2 < . . . < in ≤ m, such that a1 = bi1 , a2 = bi2 , . . . , an = bin .

Definition 2 (Support). Given a batch file B = {S1, S2, . . . , Sn}, where Si is a sequence repre-

senting a transaction in B, |B| is the number of posts in batch B. Let S be a sequence. We call S

a sequence of B if there is a Si ∈ B such that S v Si. The support of S is the fraction of posts in

batch B that contain S, denoted as supp(S).

Definition 3 (Frequent Sequence). A sequence S is called frequent sequence if supp(s) is greater

than or equal to a user-predefined threshold, called the minimum support.

Definition 4 (Length of Sequence). The length of sequence S, denoted as len(S), indicates the

number of terms S contains.

In general, a frequent sequence mining algorithm may produce too many patterns. This prob-

lem not only makes the task of analyzing the pattern complicated and time consuming, but also

demands more storage space [29]. A proper pruning scheme can be used in order to reduce the

computational cost of the mining task and produce fewer but more representative patterns. Min-

ing closed sequences and mining maximal sequences are two solutions for dealing with inherent

redundancy of pattern mining algorithms. Sequences that are not included in any other sequence

with the same support are denoted as closed sequences. A maximal sequence is a closed sequence

which is not included in another closed sequence. Obviously, output space in the latter is smaller.

Definition 5 (Maximal Sequence). A frequent sequence S is a maximal sequence if there exist no

frequent sequence S ′ such that S v S ′.

Definition 6 (Occurrence Database). An occurrence database is a database where each entry rep-

resents a term vector and indicates the list of sequences where the term appears along with the

position of the term in the sequence. Figure 3.1 illustrates an entry of the occurrence database.

17

Figure 3.1: Term Vector: An entry of occurrence database

The initial step towards detecting topics from batch BI is to find the set of maximal sequences S.

Maximal sequence mining is substantial and useful in a wide range of applications; however, few

algorithms have been proposed for this task since it is computationally expensive. We adapt the

VMSP algorithm in order to discover all the frequent patterns in the batch. VMSP is one of the

state-of-the-art algorithms for mining maximal sequences; by adopting a depth-first search method

in the database and it is twice as fast as than the previously proposed algorithms [29]. The following

text mining algorithm, Maximal Sequence Mining, is proposed to find maximal sequences from a

corpus of text:

Algorithm 1 Maximal Sequence Mining
Input: B: A batch of tweets

L: Maximum length of the sequence
G: The gap between two terms in a sequence.

Output: Set of mined sequences
Initialization:

1: Scan the batch of tweets to create the occurrence database and identify Sinit, the list of frequent
terms.

2: for each term t in Sinit do
3: Find Ssequels, the set of terms from Sinit which appears after t in batch B.
4: return FindMaximalSequence(t, Ssequels, L,G)
5: end for

The MSM algorithm is actually finding the longest common subsequences in the corpus and it

decreases redundancy of the mined patterns while preventing data loss. However, in most data

18

Algorithm 2 FindMaximalSequence()
1: for each term t

′ in Ssequels do
2: Stemp = ∅, pattern = extension of t with t′

3: if The extension of t with t′ is frequent and the length of pattern is less than L then
4: Stemp = Stemp ∪ t

Snext = Find Ssequels the set of terms from Sinit which appears after t in batch B
5: return FindMaximalSequence(pattern, Snext, L,G)
6: end if
7: end for

mining algorithms which adopt Apriori policy, long patterns tend not be mined due to the fact that it

is less likely to be able to match patterns when the length of the pattern is long [97]. Therefore, long

patterns are likely to encounter the low-frequency problem while using static minimum support

for all patterns. In order to deal with this challenge we set minimum support very close to 0,

which guarantees long patterns with low frequency will be mined. In order to examine the relative

positional information of terms in the topic detection process, we also consider two parameters:

maximum pattern length and maximum distance between terms.These parameters serve to control

the strictness of the mining procedure.

Pattern Clustering

Each mined pattern holds some information about a certain topic. In order to generate the final

topic, the patterns are clustered into groups where each group corresponds to a specific topic.

Initially we map mined patterns into a directed graph (pattern graph) and then apply a community

detection algorithm to cluster the patterns into different topics. In what follows, we describe each

step in details.

19

Pattern Graph

A pattern graph is a directed graph in which each node represents a term and the edge between

nodes indicates the co-occurrence of terms. Weight of the edge indicates pattern support and the

direction implies the order in the pattern. In order to cluster the mined patterns, we first map

the mined patterns into the pattern graph. Figure 3.2 illustrates the graph representation for some

instances of mined maximal sequences.

Figure 3.2: An example of mapping mined sequences into a pattern graph

20

Pattern Clustering

We use community detection techniques in order to cluster the pattern graph. Generally, a com-

munity in a graph is a subgraph where the nodes are densely connected. Community detection

algorithms, sometimes referred as graph partitioning methods, are aimed at dividing vertices of a

graph into a number of communities[58]. C. Claudio et al. [19] adopts an edge removal approach

for detecting communities, which finds the natural divisions of the vertices in a graph without re-

quiring any input parameters, e.g. number of detected communities. The algorithm divides a graph

into its subgraphs via iterative removal of the edges based on the edge clustering coefficient Cij .

Cij is the fraction of the number of cycles that include a certain edge [19]: and is defined as

C
(g)
ij =

z
(g)
ij + 1 ∗ Aij

s
(g)
i,j

, (3.1)

where z(g)ij is the number of cycles of order g that includes the edge (i, j) with the weight of

Aij and s(g)i,j is the number of possible cycles of order g in the given graph[19]. The underlying

idea is that the edges between two different communities are unlikely to belong to many short

loops. Therefore, inter community edges will have a low value of C(g)
ij . After removing an inter

community edge, the subgraph V is evaluated using the following definition of strong community

[19]:

kini > kouti , ∀i ∈ V, (3.2)

where kini is the number of edges that connect i to the nodes within V while kouti is the numebr of

edges which connect i to the nodes in the rest of the graph[19]. After applying the algorithm, the

graph will be divided into its subgraphs where the vertices are condensely correlated. Then each

subgraph presents a set of terms, which co-occur frequently in the corpus.

21

Post-Processing

Each cluster generated by the previous step ideally includes all the patterns corresponding to a

certain topic. The next step is to extract key terms for topic representation. We define a key node

in a graph as a node that has the highest degree. In a graph the degree of a node is defined as

follows:

Di = kini + kouti (3.3)

Therefore, each cluster can be represented by a set of key vertices which hold highest amount of

degree among all existing vertices in the subgraph. Ultimately, a topic is identified as a set of key

terms.

Experimental Results

Our method was compared against four other methods: a document pivot method (LDA), a graph-

based method, and two frequent pattern mining methods (FPM and SFPM). These methods were

tested on three Twitter datasets containing real-world events in different domains. In the following,

we first present the datasets and ground-truth data. Then we describe the evaluation method and

data preprocessing procedure respectively. Ultimately, we present the experimental results.

Datasets

The experiments conducted in this study extract topics from three different datasets of tweets in the

sport and political domains which were collected by L. Aiello et al.[2]. The datasets are collections

of tweets related to three real-world events in 2012: FA cup final, U.S.A. elections, and Super

Tuesday. Each collection is divided into different timeslots and the topics for all timeslots are

22

known. The ground-truth topics include 22, 13, and 64 topics for Super Tuesday, FA cup, and

USA Election datasets respectively. These topics are significant topics that are extracted manually

and rely on mainstream media reports[2]. It is worth mentioning that the extracted topics are

closely related, hence, the proposed datasets and the ground-truths are well-suited for examining

the co-occurrence patterns of terms. Each topic is represented by the following sets of terms:

• Mandatory terms: these terms must appear in the candidate topic in order to be considered

as correctly detected

• Optional terms: these terms may or may not appear in the topic

• Forbidden terms: these terms should not appear in the candidate topic. This set of terms is

included in order to distinguish between closely connected topics.

Data Preprocessing

The preprocessing step plays an important role in the task of topic detection due to the high nois-

iness of user generated content, and involves data cleansing and noise removal. We use a prepro-

cessing pipeline that includes the following steps:

• Tokenization: This step includes both sentence and word tokenization. A raw tweet is divided

into a sequence of terms with hyperlinks, stop words, and punctuations removed. Hence, a

sequence of cleaner terms is extracted from the raw posts.

• lemmatization: In information retrieval, stemming and lemmatization are used to reduce the

feature space. Stemming is the task of reducing words to their stem while lemmatization

aims to remove inflectional endings in order to return the base or dictionary form of a word,

23

known as lemma. Lemmatization commonly collapses the different inflectional forms of

a lemma while stemming most usually disintegrates derivationally related words. In this

study, we use lemmatization as it is expected to perform more accurately than stemming.

For example, stemming procedure of token saw might return just s, whereas lemmatization

would attempt to return see.

In order to implement the preprocessing pipeline, we use CoreNLP toolkit [55] to extract clean and

noise-free sets of term sequences from the raw datasets of tweets.

Evaluation

In order to evaluate MSM and compare it against different topic detection methods, we use an

evaluation script proposed by L. Aiello et al.[2] where topic recall, keyword precision, and keyword

recall are the reported evaluation metrics. According to the evaluation method, a topic is correctly

detected if it contains all the mandatory terms and none of the forbidden terms. Topic recall is the

fraction of ground-truth topics which are correctly detected. Keyword precision is the fraction of

correctly detected keywords over the total number of keywords in the candidate topics that have

been matched to some ground-truth topics. Keyword recall is the fraction of correctly detected

keywords over the total number of keywords in the ground-truth topic that have been matched to

some candidate topics. We added F-measure, which is the harmonic mean of keyword precision

and keyword recall and it is suitable for measuring overall performance of the methods.

Note that topic precision, which is the fraction of detected topics over the total number of topics

that took place at the specific time-slot, was not included in the evaluation. The reason behind

is that there is no practical way to produce a definitive list of all topics in the batch, making it

impossible to decide if a candidate topic is a real topic that took place in that time interval or not.

24

Table 3.1: Topic samples generated by MSM

Topic Topic relevant words in ground-
truth

Detected Topical Terms

Super Tuesday
Mitt Romney wins North Dakota [mitt romney @mittrom-

ney];north;dakota;[win project
call lead] cnn;ap

mitt,romney, win, dakota

Rick santorum makes a speech about
healthcare

[rick santorum @ricksanto-
rum];healthcare;speech

santorum,speech

FA Cup
Agger is shown yellow card for a tackle
to Mikel

agger;[booked yellow
card];tackle;mikel

mikel, yel-
low,agger,stoppage,chelsea

The final ends and chelsea wins liver-
polll with 2-1

[final whistle gone]; chelsea; cham-
pions; congratulations; [2-1 2 1];
win

whistle, go ,chelsea, 2, liverpool
,1 ,final

US Elections
Obama wins Wisconsin [barackobama barack obama]; [win

call project held]; [wisconsin wi]
cbs; fox

barackobama, win, first ,tweet

Jesse Jackson is re-elected in Chicago [jesse jackson]; [wins re-elected re-
election] ap; chicago; [rep repre-
sentatives]

barackobama , win

These measures are computed for the top N topics produced by the detection algorithms. The final

performance measure for a dataset is the micro-average of measures corresponding to all time-slots

in the dataset. Table 3.1 shows examples of ground-truth topics and also topics detected using the

proposed method.

Parameter Tuning

In this part, we examine the effect of different parameters on the performance of MSM. Owing

to space limitations, we only demonstrate the performance measure results tested on the Super

Tuesday dataset. The performance metrics show similar behavior in three different datasets. Figure

3.3 demonstrates the keyword precision, keyword recall, and keyword F-measure across different

values of maximum pattern length (L) and maximum distance between terms (Gap) where the

25

Figure 3.3: Keyword performance measures across different values of L and Gap in the Super
Tuesday dataset

minimum support for mining sequences is set to 0.01(minimum support is explained in Section

3). It can be inferred from the charts that precision decreases when increasing L, because longer

patterns are more likely to be wrongly correlated terms, causing the detected topics to contain more

unrelated terms to the real topics. However, the figure demonstrates that keyword-recall grows

when increasing the maximum pattern length. The reason is that the longer the mined patterns

are, the more information is revealed about the real topics. To see the overall effect of maximum

pattern length on the performance of MSM, F-measure is the metric to observe. We can observe

from the charts in the figure that F-measure initially grows and then decreases when enlarging L,

and generally peaks when L is set to 5. This is expected since F-measure is a trade off between

precision and recall.

On the other hand, Gap parameter shows similar behavior. It can be observed from the mentioned

figures that all three metrics including precision, recall and F-measure initially increase and then

decrease when increasing Gap. A low value of Gap indicates more strictness of the algorithm in

grouping terms, causing mined patterns to hold contiguous terms. However, when Gap is set to a

larger value, MSM will also group terms which are not strongly correlated.

Figure 3.4 illustrates the topic recall performance of three Twitter datasets across different values of

26

Figure 3.4: Topic Recall measures of different values of L and Gap for three Twitter datasets

Gap and L. According to the figure, topic recall initially grows when enlarging L, then decreases,

and finally trends towards stability when L is enlarged to a certain number e.g. 10. The reason

behind this is that patterns with the high value of L provide more information about the target

topic; however, longer patterns are more probable to wrongly associate terms. Additionally, topic

recall decreases when increasing Gap, since the low value of Gap yields to extracting strongly

correlated terms. According to the observations from the figures, MSM approach shows its highest

topic recall performance when Gap and L are set to 1 and 5 respectively.

Results

Table 3.2 shows the evaluation results of topic detection methods for the top N detected topics.

For US Elections and Super Tuesday, the top 10 detected topics are considered for evaluations;

however, in FA Cup, due to the smaller number of topics and shorter timeslots, the top 2 detected

topics are used. Performance evaluation of LDA, Graph-based, FPM and SFPM are reported by

G. Petkos et al. [66]. We use the same datasets and same open source evaluation script2. T-Recall,

K-Recall, and K-Precision refer to topic recall, keyword recall, and keyword precision respectively.

2http://www.socialsensor.eu/results/datasets/72-twitter-tdt-dataset

27

According to the results, MSM approach significantly outperforms the other methods with its best

topic recall score for all three datasets. Moreover, it performs well in keyword precision. This

indicates that, as we expected, the MSM approach captures more accurate term correlations due

to the use of relative positional information as a filter in the mining process. Although MSM

approach performs less in terms of keyword recall, overall it achieves the highest performance

in keyword F-measure compared to the other methods in the table. Therefore, MSM approach is

able to detect more topics and represent a topic in a more accurate manner. SFPM shows higher

performance in keyword recall because it is not as strict as MSM in grouping terms; hence, it

clearly correlates more terms. Using more accurate methods for selecting key terms from a topic

cluster may improve the performance of the MSM approach in keyword recall.

Table 3.2: Performance of topic detection methods in three Twitter datasets

Super Tuesday
Method T-Recall K-Precision K-Recall F-Measure

LDA 0.0000 0.0000 0.0000 0.0000
Graph-based 0.0455 0.3750 0.6000 0.4615

FPM 0.1364 1.0000 0.4091 0.5806
SFPM 0.1818 0.4717 0.8929 0.6117
MSM 0.4550 0.7500 0.5410 0.6285

US Elections
Method T-Recall K-Precision K-Recall F-Measure

LDA 0.1094 0.1654 0.6286 0.2618
Graph-based 0.0781 0.3750 0.4839 0.4225

FPM 0.0000 0.0000 0.0000 0.0000
SFPM 0.3594 0.2412 0.6953 0.3581
MSM 0.3910 0.6150 0.5400 0.5751

FA Cup
Method T-Recall K-Precision K-Recall F-Measure

LDA 0.6923 0.6585 0.1578 0.2545
Graph-based 0.2307 0.4285 0.2857 0.3428

FPM 0.6923 0.6428 0.2967 0.4060
SFPM 0.9230 0.6666 0.2186 0.3292
MSM 0.9230 0.6120 0.5560 0.5826

28

Summary

In this chapter, we presented a Maximum Sequence Mining (MSM) approach, which is a feature-

pivot topic detection method that examines the co-occurrence patterns of terms in the corpus. Its

novelty lies in the patterns used for the mining process that are sequences of terms, as opposed to

sets of terms without any particular order. The former pattern representation captures the positional

information of the terms in the sequence and is more accurate in reflecting the semantics of the

underlying content. Based on this sequence concept, a MSM algorithm is introduced to compute

the frequent sequences from a batch of social streams. A directed-graph representation of these

sequences, called pattern graph, can then be constructed; and a community detection algorithm

is used to partition the nodes in the pattern graph into clusters, each corresponding to a distinct

topic. Each topic is represented by a set of keywords selected from the corresponding cluster. Our

experiments indicate that the proposed technique performs well in keyword precision. Although it

performs less in terms of keyword recall, overall it outperforms current state-of-the-art techniques

in topic detection with its superior topic recall score.

29

CHAPTER 4: SYNTACTIC NEURAL MODEL FOR AUTHORSHIP

ATTRIBUTION

1 We introduce a syntactic neural model to encode the syntactic patterns of a document in a hier-

archical structure. First, we represent each sentence as a sequence of part-of-speech (POS) tags.

Each POS tag is embedded into a low dimensional vector which is fed into a POS encoder which

learns the syntactic representation of sentences. Subsequently, the learned sentence representa-

tions are aggregated into the document representation. Moreover, we use an attention mechanism

to highlight the sentences which contribute more to the prediction of labels. Finally, we use a soft-

max classifier to compute the probability distribution over class labels. The overall architecture of

the network is shown in figure 4.1. In the following sections, we elaborate on the main components

of the model.

POS Embedding

We assume that each document is a sequence of M sentences and each sentence is a sequence of

N words, where M and N are model hyperparameters and the best values of which are explored

through the hyperparameter tuning phase. Given a sentence, we convert each word into the corre-

sponding POS tag in the sentence and afterwards we embed each POS tag into a low dimensional

vector Pi ∈ Rdp using a trainable lookup table θP ∈ R|T |×dp , where T is the set of all possible POS

tags in the language. We use NLTK part-of-speech tagger [15] for the tagging purpose and use the

1The findings from this research has been previously published: Jafariakinabad, Fereshteh, Sansiri Tarnpradab, and
Kien A. Hua. ”Syntactic Neural Model for Authorship Attribution.” The Thirty-Third International Flairs Conference.
2020.

30

Figure 4.1: The Overall Architecture of Syntactic Neural Model

set of 47 POS tags2 in our model as follows.

T = { CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN, NNS, NNP, NNPS, PDT, POS, PRP, PRP$, RB,

RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, ‘,’, ‘:’, ‘...’, ‘;’, ‘?’,

‘!’, ‘.’, ‘$’, ‘(’, ‘)’, “‘ ’, ‘” ’}

One of the advantages of using POS tags instead of words is its low dimensional lookup table,

compared to the word embeddings where the size of vocabulary in large datasets usually surpasses

50,000 words. Compared to word embeddings, the size of POS embedding lookup table is signif-

icantly smaller, fixed, and independent of the dataset which makes the proposed model less likely

to have out-of-vocabulary words.

2https://github.com/nltk/nltk/blob/develop/nltk/app/chunkparser_app.py

31

https://github.com/nltk/nltk/blob/develop/nltk/app/chunkparser_app.py

POS Encoder

POS encoder learns the syntactic representation of sentences from the output of POS embedding

layer. In order to investigate the effect of short-term and long-term dependencies of POS tags in

the sentence, we exploit both CNNs and LSTMs.

Short-term Dependencies

Let Si = [P1;P2; ...;PN] be the vector representation of sentence i and W ∈ Rrdp be the convolu-

tional filter with receptive field size of r. We apply a single layer of convolving filters with varying

window sizes as the of rectified linear unit function (ReLU) with a bias term b, followed by a tem-

poral max-pooling layer which returns only the maximum value of each feature mapCr
i ∈ RN−r+1.

Consequently, each sentence is represented by its most important syntactic n-grams, independent

of their position in the sentence. Variable receptive field sizes Z are used to compute vectors

for different n-grams in parallel and they are concatenated into a final feature vector hi ∈ RK

afterwards, where K is the total number of filters:

Cr
ij = relu(W TSj:j+r−1 + b), j ∈ [1, N − r + 1],

Ĉr
i = max{Cr

i },

hi = ⊕Ĉr
i ,∀r ∈ Z

32

Long-term Dependencies

Let Si = [P1;P2; ...;PN] be the vector representation of sentence i. As an alternative to CNN, we

use a bidirectional LSTM to encode each sentence. The forward LSTM reads the sentence Si from

P1 to PN and the backward LSTM reads the sentence from PN to P1. The feature vector hpt ∈ R2dl

is the concatenation of the forward LSTM and the backward LSTM, where dl is the dimensionality

of the hidden state. The final vector representation of sentence i, hsi ∈ R2dl is computed as the

unweighted sum of the learned vector representation of POS tags in the sentence. This allows us

to represent a sentence by its overall syntactic pattern.

−→
hpt = LSTM(Pt), t ∈ [1, N],

←−
hpt = LSTM(Pt), t ∈ [N, 1],

hpt = [
−→
hpt ;
←−
hpt]

hsi =
∑

t∈[1,N]

hpt

Sentence Encoder

Sentence encoder learns the syntactic representation of a document from the sequence of sentence

representations outputted from the POS encoder. We use a bidirectional LSTM to encode the

sentences of which the outputted vector is calculated as follows.

−→
hdi = LSTM(hsi), i ∈ [1,M],

←−
hdi = LSTM(hsi), i ∈ [M, 1],

33

hdi = [
−→
hdi ;
←−
hdi]

Clearly, not all sentences are equally informative about the authorial style of a document. There-

fore, we incorporate an attention mechanism to reveal the sentences that contribute more to detec-

tion of the writing style. We define a sentence level vector us and use it to measure the importance

of the sentence i as follows:

ui = tanh(Wsh
d
i + bs)

αi =
exp(uTi us)∑
i exp(u

T
i us)

V =
∑
i

αih
d
i

Where us is a learnable vector and is randomly initialized during the training process. V is the

vector representation of the document, which is the weighted sum of vector representations of all

sentences.

Classification

The learned vector representations of documents are fed into a softmax classifier to compute the

probability distribution of class labels. Suppose Vk is the vector representation of document k

learned by the attention layer. The prediction ỹk is the output of the softmax layer and is computed

as:

ỹk = softmax(WcVk + bc)

Where Wc, and bc are learnable weight and learnable bias, respectively, and ỹi is a C dimensional

vector (C is the number of classes). We use cross-entropy loss to measure the discrepancy of

predictions and true labels yk. The model parameters are optimized to minimize the cross-entropy

34

loss over all the documents in the training corpus. Hence, the regularized loss function over N

documents denoted by J(θ) is:

J(θ) = − 1

N

N∑
i=1

C∑
k=1

yiklogỹik + λ||θ||

Experimental Results

Dataset

We evaluate our proposed method on a commonly used benchmark dataset from PAN 2012 au-

thorship attribution shared task3. We chose Task I dataset which corresponds to the authorship

attribution among a closed set of 14 authors. The training set comprises 28 novel-length docu-

ments (two per candidate author), ranging from 32,000 words up to approximately 180,000 words.

The test set consists of 14 novels (one per candidate author) with the length ranging from 42,000

words up to 190,000 words. Table 4.1 reports the word count and the averaged sentence length of

documents in both train and test set for each candidate author(The numbers are rounded down).

In order to generate enough train/test samples, we have schematized the novels into the segments

with a M number of sentences (sequence length). The best value of M is explored through the

hyperparameter tuning phase. Accordingly, the performance measures include segment-level cat-

egorical accuracy as well as document-level categorical accuracy. In the latter, we use majority

voting to label a document based on the segment-level predictions.

3https://pan.webis.de/clef12/pan12-web/authorship-attribution.html

35

https://pan.webis.de/clef12/pan12-web/authorship-attribution.html

Table 4.1: Corpus Statistics

Training Data I Training Data II Test Data
Word Count Sentence Length Word Count Sentence Length Word Count Sentence Length

Candidate 01 73,449 17 76,602 19 70,112 20
Candidate 02 180,660 13 117,024 14 82,317 13
Candidate 03 158,306 17 121,301 19 151,049 15
Candidate 04 84,080 14 79,413 18 93,055 14
Candidate 05 109,857 18 141,086 15 96,663 15
Candidate 06 61,644 19 46,549 16 42,808 16
Candidate 07 71,106 16 70,563 18 84,996 21
Candidate 08 106,024 18 113,475 15 94,700 13
Candidate 09 66,840 15 41,093 15 194,547 15
Candidate 10 86,681 14 35,699 16 60,998 16
Candidate 11 53,960 19 48,037 13 80,330 24
Candidate 12 49,543 25 64,495 26 50,636 27
Candidate 13 32,900 21 153,994 32 77,780 27
Candidate 14 89,908 23 71,058 22 52,633 35

Baselines

For our baselines, we employ standard syntactic n-gram model as a syntactic approach and word

n-gram model as a lexical approach. For both models, we have used Support Vector Machine

(SVM) classifier with linear kernel. Moreover, in order to compare the performance of syntactic

recurrent neural network to the lexical based approaches, we fed the sequence of words to a neural

network with identical architecture. We use 300-dimensional pretrained Glove embeddings [63]

for the embedding layer in the network.

Hyperparameter Tuning

In this section, we examine the effect of different hyperparameters on the performance of the

proposed model. All the performance metrics are the mean of segment-level accuracy (on the test

set) calculated over 10 runs with 0.9/0.1 train/validation split. We use Nadam optimizer [91] to

36

optimize the cross-entropy loss over 30 epochs of training.

CNN for POS encoding

Figure 4.2 illustrates the performance of the syntactic recurrent neural network when CNN is used

as POS encoder, across different receptive field sizes and number of layers, while other parame-

ters are kept constant. We observe that increasing the number of convolutional layers generally

lessens the performance. Moreover, in one convolutional layer, the accuracy generally increases

by increasing the size of receptive fields. This can be due to the fact that receptive fields with the

larger sizes capture longer syntactic sequences which are more informative.

In our experiments, we also observed that having parallel convolutional layers with different re-

ceptive field sizes improves the performance. Therefore, in the final model, we use one layer of

multiple convolutional filters with the receptive field sizes of 3 and 5.

Figure 4.2: The performance of syntactic model across different receptive field sizes and number
of layers(n layers)

37

LSTM for POS encoding

Figure 4.3 demonstrates the accuracy of the proposed model when LSTM is employed as POS

encoder, across different values of sentence length (N) and sequence length (M : the number of

sentences in each segment). We observe from the figure that increasing the sequence length boosts

the performance and the model achieves higher accuracy on the segments with 100 sentences

(74.40%) than the segments with only 20 sentences (60.02%). This observation confirms that the

investigation of writing style in short documents is more challenging [57].

As shown in Table 4.1, the average sentence length in the dataset ranges from 13 to 35. Therefore,

we have examined the sentence length of 10, 20, 30, and 40 (the performance of the model is

identical when the sentence length is 30 and 40, so we have not included the latter results in the

figure). We observe that increasing the length of sentences to 30 words improves the performance,

primarily because decreasing the sentence length ignores several words in the sentence which leads

to notable information loss. To sum up, the syntactic neural network accepts segments as the inputs

where each segment contains 100 sentences and the length of each sentence is 30.

Figure 4.3: The performance of syntactic model across different sentence lengths and sequence
lengths

38

Table 4.2: The performance results of models on PAN 2012 dataset for authorship attribution task

Model Segment-Level Accuracy (%) Document-Level Accuracy(%)
Validation Test

Word N-grams-SVM 90.71 58.35 78.57 (11/14 novels)
Lexical CNN-LSTM 98.88 64.12 78.57 (11/14 novels)

LSTM-LSTM 96.83 63.92 85.71 (12/14 novels)
POS N-grams-SVM 89.60 69.66 92.85 (13/14 novels)

Syntactic CNN-LSTM 93.22 78.76 100.00 (14/14 novels)
LSTM-LSTM 95.00 74.40 100.00 (14/14 novels)

Results

We report both segment-level and document-level accuracy. As mentioned before, each document

(novel) has been divided into the segments of 100 sentences. Therefore, each segment in a novel

has been classified independently and afterwards the label of each document is calculated as the

majority voting of its constituent segments. Table 4.2 reports the performance results of baselines

and the proposed model (with both CNN and LSTM as POS encoder) on the PAN 2012 dataset.

According to the segment-level accuracy, the performance of all models has dropped significantly

on the test set, mainly because of insufficient training data. We expect that if the models are trained

on enough writing samples per author, the test results would be closer to the validation results.

Unsurprisingly, the syntactic CNN-LSTM model outperforms the conventional POS n-gram model

(POS N-gram-SVM) by 9.1% improvement in segment-level accuracy and 7.15% improvement in

document-level accuracy. This is primarily because syntactic CNN-LSTM not only represents a

sentence by its important syntactic n-grams but also learns how these sentences are structured in

a document. On the other hand, the POS N-gram-SVM model only captures the frequency of

different n-grams in the document.

39

Syntactic v.s. Lexical

According to Table 4.2, both syntactic recurrent neural networks (CNN-LSTM and LSTM-LSTM)

outperform the lexical models by achieving the highest document-level accuracy (100.00%). Syn-

tactic recurrent neural networks have correctly classified all the 14 novels in the test set while

lexical LSTM-LSTM achieves the highest document-level accuracy (85.71%) in the lexical mod-

els by correctly classifying 12 novels.

In segment-level classification, syntactic recurrent neural networks outperform the lexical models

in the test set with 14% higher accuracy; however, the lexical models achieve higher validation

accuracy. This observation may imply the lower generalization capability of lexical models com-

pared to the syntactic models in the style-based text classification.

Short-Term v.s. Long-Term

According to the results in table 4.2, syntactic CNN-LSTM model slightly outperforms syntactic

LSTM-LSTM by approximately 4% in segment-level accuracy. The primary difference between

the two models is the way they represent a sentence. In syntactic CNN-LSTM, each sentence

is represented by its important syntactic n-gram independent of their position in the sentence.

However, syntactic LSTM-LSTM mainly captures the overall syntactic pattern of a sentence by

summing up all the learned vector representations of POS tags in the sentence.

Short Documents v.s. Long Documents

We have conducted a controlled study on the effect of document length on the performance of

both CNN-LSTM and LSTM-LSTM models. For this purpose, we have trained each model on

40

only a specific fraction of each training document and afterwards tested the trained model on the

whole test set. We keep the number of model parameters in both models approximately equal

to eliminate the effect of data limitation on the training process. Figure 4.4 demonstrates the

performance results of models when trained on the first n% of segments in each document. For

example when n is equal to 10, it means the models are trained on only the first 10% of segments

in the documents rather than the whole.

Figure 4.4: The performance of syntactic models when trained on different number of segments
per novel

We observe that when the smaller portion of segments (< 30%) are used for training, LSTM-

LSTM models achieve higher test accuracy than CNN-LSTM models in both syntactic and lexical

settings. On the other hand, CNN-LSTM models slightly outperform LSTM-LSTM models when

the number of segments used for training in each document increases. In other words, LSTM-

LSTM models appear to be quicker in capturing authorial writing style than CNN-LSTM models.

This property, in particular, makes them a preferred potential model when investigating authorial

writing style in a dataset of short documents.

41

Summary

In this chapter, we presented a syntactic neural model in order to encode the syntactic patterns

of documents in a hierarchical structure and afterwards used the learned syntactic representation

of documents for the authorship attribution task. We investigated both long-term and short-term

dependencies of part-of-speech tags in sentences. According to our experimental results on PAN

2012 dataset, syntactic models outperform lexical-based models by 14% in terms of segment-level

accuracy. Moreover, we observed that LSTM-based POS encoders are quicker in capturing the

authorial writing style than CNN-based POS encoders. This property makes them a preferable

model when investigating authorial writing style in a dataset of short documents.

42

CHAPTER 5: STYLE-AWARE NEURAL MODEL FOR AUTHORSHIP

ATTRIBUTION

1

We introduce a neural network which encodes the stylistic information of documents from three

levels of language production (lexical, syntactic, and structural). We assume that each document

is a sequence of M sentences and each sentence is a sequence of N words, where M and N

are model hyperparameters and the best values are explored through the hyperparameter tuning

phase (Section 5). First, we obtain both lexical and syntactic representation of words using lex-

ical and syntactic embeddings respectively. These two representations are fed into two identical

hierarchical neural networks which encode the lexical and syntactic patterns of the documents in-

dependently and in parallel. Ultimately, these two representations are aggregated into the final

vector representation of the document, which is fed into a softmax layer to compute the probability

distribution over class labels.

Employing both lexical and syntactic information of documents, as well as using the hierarchical

neural network to encode the semantic and syntactic structure of sentences in documents, leads

to a neural network which is capable of capturing main stylistic features. The hierarchical neu-

ral network is comprised of convolutional layers as a word-level encoder to obtain the sentence

representations. They are then aggregated into document representation using recurrent neural

networks. Finally, we use an attention mechanism to reward the sentences which contribute more

to the detection of authorial writing style. The overall architecture of the proposed model is shown

1The findings from this research has been previously published: Jafariakinabad, Fereshteh, and Kien A. Hua.
”Style-aware neural model with application in authorship attribution.” 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA). IEEE, 2019 and Jafariakinabad, Fereshteh, and Kien A. Hua. ”Unify-
ing Lexical, Syntactic, and Structural Representations of Written Language for Authorship Attribution.” SN Computer
Science 2.6 (2021): 1-14.

43

Figure 5.1: The overall architecture of Style-Aware Neural Model

in figure 5.1. We elaborate each component in the following subsections.

Lexical and Syntax Encoding

We encode the semantic and syntactic information of documents independently using lexical and

syntactic embeddings, which is illustrated in figure 7.7. These two representations will feed into

two parallel hierarchical networks. Hence, the syntactic and semantic patterns of document are

learned independently from each other.

44

Figure 5.2: Lexical and Syntactic Embedding

Lexical Embedding

In the lexical-level we embed each word to a vector representation. We use pre-trained Glove em-

beddings [63] and represent each sentence as the sequence of its corresponding word embeddings.

Syntactic Embedding

Syntactic features play an important role in the domain of authorship attribution since they capture

the syntactic patterns adopted by a specific author and reveal how the author structures the sen-

tences in a document. This family of stylistic features is largely disregarded in the proposed deep

learning based models in the literature and they mostly focus on lexical features. Even though

word embeddings implicitly capture syntactic information of sentences, explicit modeling of the

syntactic structure of sentences has been shown to further improve the performance of classifiers

in different NLP tasks, including machine translation [54, 51], document summerization [87], text

generation [12], and authorship attribution [100]. Inspired by these observations, we propose a

simple way to encode the syntactic information of sentences for the domain of authorship attribu-

tion as the following.

45

Given a sentence, we convert each word into the corresponding POS tag in the sentence, and

then embed each POS tag into a low dimensional vector Pi ∈ Rdp using a trainable lookup table

θP ∈ R|T |×dp , where T is the set of all possible POS tags in the language. We use NLTK part-

of-speech tagger [15] for the tagging purpose and use the set of 47 POS tags2 in our model as

follows.

T = { CC, CD, DT, EX, FW, IN, JJ, JJR, JJS, LS, MD, NN, NNS, NNP, NNPS, PDT, POS, PRP, PRP$, RB,

RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, ‘,’, ‘:’, ‘...’, ‘;’, ‘?’,

‘!’, ‘.’, ‘$’, ‘(’, ‘)’, “‘ ’, ‘” ’}

Hierarchical Model

Word-level Encoder

The outputs of the lexical and syntactic embedding layers go into two identical convolutional layers

(lexical-CNN and Syntactic-CNN) which learn the semantic and syntactic patterns of sentences in

parallel. Due to the identical architecture of both networks, we only elaborate on the Syntactic-

CNN in what follows. Figure 5.3 illustrates the architecture of Syntactic-CNN.

Let Si = [P1;P2; ...;PN] be the vector representation of sentence i (Pi denotes the vector repre-

sentation of POS tag i from the embedding layer), and W ∈ Rrdp be the convolutional filter with

receptive field size of r. We apply a single layer of convolving filters with varying receptive field

sizes and the rectified linear unit function (relu) as the activation function with a bias term b. Then

a temporal max-pooling layer is applied which returns only the maximum value of each feature

2https://github.com/nltk/nltk/blob/develop/nltk/app/chunkparser_app.py

46

https://github.com/nltk/nltk/blob/develop/nltk/app/chunkparser_app.py

Figure 5.3: Syntactic-CNN having three parallel convolutional layers with receptive field sizes of
3,4, and 5.

map Cr
i ∈ RN−r+1. Each sentence is then represented by its most important syntactic n-grams,

independent of their position in the sentence. Variable receptive field sizes Z are used to com-

pute vectors for different n-grams in parallel; and they are concatenated into a final feature vector

hi ∈ RK afterwards, where K is the total number of filters:

Cr
ij = relu(W TSj:j+r−1 + b), j ∈ [1, N − r + 1],

Ĉr
i = max{Cr

i },

hi = ⊕Ĉr
i ,∀r ∈ Z

Sentence-level Encoder

The sentence encoder learns the lexical/syntactic representation of a document from the sequence

of sentence representations output from the word-level encoder. Let hsi be the output of the word-

47

level encoder where i denotes the index of the sentence in the document. We use a bidirectional

LSTM to capture how sentences with different syntactic patterns are structured in a document.

The vector output from the sentence encoder (hdi) is the concatenation of forward LSTM (
−→
hdi) and

backward LSTM (
←−
hdi) and is calculated as follows. In the equations, M denotes the total number

of sentences in the document.

−→
hdi = LSTM(hsi), i ∈ [1,M],

←−
hdi = LSTM(hsi), i ∈ [M, 1],

hdi = [
−→
hdi ;
←−
hdi]

Clearly, not all sentences are equally informative about the authorial style of a document. There-

fore, we incorporate an attention mechanism to reward the sentences that contribute more in de-

tecting the writing style. First, we feed the sentence vector hdi through a one-layer MLP with tanh

activation to get ui as a hidden representation of hdi . Then we define a sentence level vector us

to measure the importance of the sentence i and get a normalized importance weight αi through a

softmax function as follows:

ui = tanh(Wsh
d
i + bs)

αi =
exp(uTi us)∑
i exp(u

T
i us)

V =
∑
i

αih
d
i

Where Ws and bs are the learnable weight and learnable bias of the MLP layer, respectively. us is

a learnable vector and is randomly initialized during the training process; V is the vector represen-

48

tation of the document, which is the weighted sum of the vector representations of all sentences.

The primary reason for adopting recurrent architecture for sentence-encoder is because recurrent

neural networks have been shown to be essential for capturing the underlying hierarchical struc-

ture of sequential data [94]. By adopting this approach, sentence-encoder is able to encode how

sentences are structured in a document. Accordingly, structural information of documents are

incorporated into the final document representation.

Lexical and Syntactic Representations Fusion

In this phase, the semantic and syntactic representations of the document that have been learned

independently by the two parallel hierarchical neural networks, which are denoted as Vlexical and

Vsyntactic respectively, are concatenated into the final vector representation.

Vk = [Vlexical;Vsyntactic]

Classification

The learned vector representation of documents are fed into a softmax classifier to compute the

probability distribution of class labels. Suppose Vk is the final vector representation of document k

output from the fusion layer. The prediction ỹk is the output of softmax layer and is computed as:

ỹk = softmax(WcVk + bc),

whereWc and bc are the learnable weight and learnable bias, respectively; and ỹi is aC dimensional

vector, where C is the number of classes. We use cross-entropy loss to measure the discrepancy

49

of predictions and the true labels yk. The model parameters are optimized to minimize the cross-

entropy loss over all the documents in the training corpus. Hence, the regularized loss function

over X documents denoted by J(θ) is:

J(θ) = − 1

X

X∑
i=1

C∑
k=1

yiklogỹik + λ||θ||

Experimental Studies

First, we provide ablation studies to report the contribution of the three stylistic levels (lexical,

syntactic, and structural) in the final results. Then we show the performance of our proposed

method (Style-HAN) on several benchmark datasets in comparison with the existing baselines in

the literature.

Datasets

We evaluate the proposed approach on several benchmark datasets:

• CCAT10 , CCAT50: Newswire stories from Reuters Corpus Volume 1 (RCV1) written by

10 and 50 authors, respectively [88].

• BLOGS10, BLOGS50: Posts written by 10 and 50 top bloggers respectively, originated

from data set of 681,288 blog posts by 19,320 bloggers for blogger.com [79].

Some statistics on the sentence length and document length for each dataset are presented in Table

5.1.

50

Table 5.1: Dataset Statistics (|A| : the number of authors, s: the average number of documents
per author, w : the average number of words per doc, n: the average number words per sentence,
m: the average number of sentences per document)

Param CCAT10 CCAT50 BLOGS10 BLOGS50
|A| 10 50 10 50
S 100 100 874 682
W 580 584 380 331
N 27 26 18 17
M 21 21 24 21

Baselines

We compare our method with various baseline approaches which represent the current state of the

art in the authorship attribution problem. In what follows we describe each of the baselines. The

results reported in this paper are obtained from the corresponding papers.

• SVM-affix-punctuation 3-grams [76]: A traditional machine learning model that feeds

affix and punctuation n-grams as syntactic features to an SVM classifier.

• CNN-char [74]: A hybrid Convolutional Neural Network that leverages character and word

sequences. In this model, characters are represented as one-hot vectors (discrete representa-

tions).

• Continuous N-gram representation [77]: A feed forward neural model which encodes

each character n-gram as a continuous vector representation.

• N-gram CNN [85]: A Convolutional Neural Network that takes a sequence of character

n-grams as input. Despite the previous neural network models that use either a sequence

of words or a sequence of characters as inputs, this model captures local interactions at the

character level.

51

• Syntax-CNN [100]: A Convolutional Neural Network that encodes syntax tree of sentences

combined with character-level n-grams.

Hyperparameter Tuning

The model hyperparameters include the number of sentences per document(M) and the number of

words per sentence(N), with their best values obtained during the tuning phase. Table 5.2 shows

the corresponding values for each dataset. The networks are trained using mini-batches with size of

32. We use Nadam optimizer [91] to optimize the cross entropy loss over 50 epochs of training. We

use 100 dimensional pre-trained Glove embeddings [63] for the lexical layer and 100 dimensional

randomly initialized embeddings for the syntactic layer. In order to reduce the effect of the out-

of-vocabulary problem in the lexical layer, we retain only the 50,000 most frequent words. In

word-level encoders (Lexical-CNN and Syntactic-CNN), we use 3 parallel convolutional layers

with the receptive field sizes (r) of 3, 4, and 5 (Z = {3, 4, 5}). The total number of filters (K) in

each convolution layer is set to 300. In sentence-level encoders, the size of hidden layers in LSTM

is set to 128 and 256 for CCAT and BLOGS datasets respectively.

Table 5.2: The model hyperprameters for each dataset

Dataset M N
CCAT10 30 40
CCAT50 30 40

BLOGS10 20 40
BLOGS50 20 40

We partitioned the datasets into train/validation/test in all of our experiments in the same way as

they are used in the literature in order to have a fair comparison with the state-of-art methods

[74, 100]. All the performance metrics are the mean of accuracy (on the test set) calculated over

52

10 runs with a 0.9/0.1 train/validation split. For the BLOGS10, BLOGS50 datasets we followed

the literature and randomly split off 10% of the dataset as a stratified test set. For CCAT10 and

CCAT50, the test set and train set are separated in the original dataset and each author has 50

training samples and 50 test samples. Table 5.3 shows the number of train and test samples for

each dataset.

Table 5.3: The number of train and test samples for each dataset

CCAT10 CCAT50 BLOGS10 BLOGS50
Train 500 2,500 7,866 30,676
Test 500 2,500 875 3,409

Performance Results

Syntactic Representation

First, we compare our proposed syntax encoding method (POS encoding) to the prior method

syntax tree (ST) encoding [100]. In ST encoding, the syntax parse tree of sentences are utilized

to encode the syntactic information of sentences. Each word in the sentence is embedded through

the corresponding path in the syntax tree. In this approach, the hierarchical structure of sentences

are explicitly given as an input to the model. However, we argue if such an explicit annotation is

necessary for author attribution. In our proposed POS encoding model, each word is embedded by

only its part of speech tag and the neural model itself implicitly learns the dependencies between

the parts of speech in the sentences. Furthermore, utilizing only POS tags of words makes the

model computationally less expensive when compared to utilizing syntax parse tree structure.

Table 5.4 reports the accuracy of different syntactic representations for all the benchmark datasets.

In ST encoding, the authors uses a CNN-based neural model; hence, we employ the the identi-

53

Table 5.4: The accuracy of different syntactic representations

Model CCAT10 CCAT50 BLOGS10 BLOGS50
ST-CNN 22.8 10.08 48.64 42.91

POS-CNN 61.40 40.98 68.26 54.85
POS-HAN 63.14 41.30 69.32 57.76

cal network architecture proposed in the study in order to have a fair comparison of two different

syntactic representations. The results for ST encoding are reported from the corresponding pa-

per. The experimental results demonstrate that our proposed syntactic representation (POS-CNN)

outperforms the previously proposed method (ST-CNN) by a large margin in all the benchmark

datasets (38.6% in CCAT10, 30.80% in CCAT50, 19.62% in BLOGS10, 11.94% in BLOGS50).

This improvement in performance can be due two factors. First, the model complexity in POS

encoding has been remarkably decreased which makes it more capable of generalization. Second,

utilizing syntax tree imposes the positional factor of syntactic units in the sentences. Whereas the

authorship attribution task is interested to capture the frequent syntactic patterns, regardless of their

position in the sentences.

Hierarchical Neural Model

We have employed hierarchical attention network (HAN) in order to capture the structural in-

formation of documents. In order to understand the contribution of our network architecture to

the performance, we compare our network architecture (POS-HAN) to the previously proposed

CNN-based model (POS-CNN) when the syntactic representations are kept identical. Accord-

ing to Table 5.4, POS-HAN outperforms POS-CNN model consistently across all the benchmark

datasets (1.74% in CCAT10, 0.32% in CCAT50, 1.06% in BLOGS10, 2.91% in BLOGS50). This

observation indicates that hierarchical neural models which capture the hierarchical structure of

54

documents are a better choice for the authorship attribution task. This confirms our argument that

structural information of the document is important to reveal the authorial writing style.

Lexical and Syntactic Model

In order to understand the contribution of lexical and syntactic models to the final predictions,

we performed an ablation study. The results are reported in table 7.3. In Syntactic-HAN, only

syntactic representation of documents (Vsyntactic) is fed into the softmax layer to compute the final

predictions. Similarly, in Lexical-HAN, only lexical representation of documents (Vlexical) is fed

into the softmax classifier. The final stylometry model, Style-HAN, fuses both representations and

computes the class labels using a softmax classifier (Section 5). According to the table, lexical

model consistently outperforms the syntactic-model across all the benchmark datasets. Moreover,

combining the two representations further improves the performance results.

Table 5.5: The accuracy of syntactic (Syntactic-HAN), lexical (Lexical-HAN),and combined
(Style-HAN) models

Model CCAT10 CCAT50 BLOGS10 BLOGS50
Syntactic-HAN 63.14 41.30 69.32 57.76
Lexical-HAN 86.04 79.50 70.81 59.77
Style-HAN 90.58 82.35 72.83 61.19

Figure 5.4 illustrates the training loss of the syntax, lexical, and style encoding over 50 epochs of

training for all the datasets. As we observe, the lexical model maintains lower loss in the earlier

epochs and converges faster when compared to the syntactic model. However, combining them

into the style model reduces the loss and improves the performance.

Based on the observation from figure 5.4 and table 7.3, we realize that even if Syntactic-HAN

achieves comparable performance results, combining it with Lexical-HAN slightly improves the

55

overall performance (Style-HAN). This can be due to the fact that lexical-based recurrent neural

networks alone are able to encode significant amount of syntax, even in the absence of explicit syn-

tactic annotations [17]. However, explicit syntactic annotation further improves the performance

results when it’s compared to the lexical-based model. As shown in Table 7.3, the performance im-

provement in terms of accuracy is consistent across all the benchmark datasets (4.54% in CCAT10,

2.85% in CCAT50, 2.02% in BLOGS10, 1.42% in BLOGS50).

(a) (b)

(c) (d)

Figure 5.4: Cross Entropy loss over 50 epochs of training for syntactic, lexical, and style models
for (a) CCAT10, (b) CCAT50 , (c) BLOGS10 , and (d) BLOGS50 datasets

Training Syntactic and Lexical Networks

We examine two different approaches (combined and parallel) for fusing lexical and syntactic en-

coding into the final style network. In the combined approach, we concatenate the syntactic and

56

lexical embeddings and construct a unified representation for each word which contains both lex-

ical and syntactic information. Subsequently, this representation is fed to a hierarchical attention

network to learn the final document representation. In the parallel approach, the lexical and syn-

tactic embeddings are fed into two identical hierarchical neural networks and the syntactic and

lexical representations of documents, which are learned independently and in parallel, are con-

catenated into a final document representation. Figure 7.1 illustrates these two approaches. Table

5.6 reports the accuracy of the combined and the parallel fusion approaches. According to these

results, training two parallel networks for lexical and syntax encoding achieves higher accuracy

when compared to training the same network with combined embeddings. This observation can be

due to the fact that syntactic and lexical models contain almost complementary information, which

are language structure and semantics, respectively. Hence, training them independently delivers

better results.

Table 5.6: The accuracy of different fusion approaches

Dataset Combined Parallel
CCAT10 88.36 90.58
CCAT50 81.21 82.35
BLOG10 67.38 72.83
BLOG50 58.81 61.19

Style Encoding

We compare our proposed style-aware neural model (Style-HAN) with the other stylometric mod-

els in the literature. Table 5.7 reports the accuracy of the models on the four benchmark datasets.

All the results are obtained from the corresponding papers, with the dataset configuration kept

identical for the sake of fair comparison. The best performance result for each dataset is high-

lighted in bold. It shows that Style-HAN outperforms the baselines by 2.38%, 1.35%, 8.73%, and

57

Table 5.7: Test accuracy of models for each dataset

Model CCAT10 CCAT50 BLOGS10 BLOGS50
SVM-affix-punctuation 3-grams 78.8 69.3 # #

CNN-char # # 61.2 49.4
Continuous n-gram 74.8 72.6 61.34 52.82

N-gram CNN 86.8 76.5 63.74 53.09
Syntax-CNN 88.20 81.00 64.10 56.73
Style-HAN 90.58 82.35 72.83 61.19

4.46% over the CCAT10, CCAT50, BLOGs10, and BLOGS50 datasets, respectively. This indi-

cates the effectiveness of encoding document information in three stylistic levels including lexical,

syntactic and structural.

Sensitivity to Sentence Length

We examine our model’s sensitivity to the sentence length (M). We evaluate the performance of

the model on different sentence lengths of 10, 20, 30, and 40 words while the sequence length (N)

58

is kept constant. Figure 5.5 shows the performance results of the Style-HAN on the four datasets.

It shows that the model achieves the best performance in CCAT10 and CCAT50 when the sentence

length is equal to 30; while in BLOGS10 and BLOGS50, the highest performance is observed when

the sentence length is equal to 20. Table 5.1 shows the average sentence lengths in all samples in

CCAT10, CCAT50, BLOGS10, and BLOGS50 are 27, 26, 18, and 17, respectively. Accordingly,

the models perform better when the sentence length is close to the average sentence length in the

dataset. This is simply because a shorter sentence length results in information loss and, on the

other hand, a longer sentence length leads to capturing misleading features. Both situations result

in lower accuracy.

Figure 5.5: The accuracy of Style-HAN model across different sentence length

Sensitivity to Document Length

We examine the model’s performance across different numbers of sentences per document (docu-

ment length). Figure 5.6 illustrates the accuracy of the model when the number of sentences per

document is assumed to be 10, 20, 30, and 40, respectively. We observe that increasing the se-

59

quence length (the number of sentences in document) generally boosts the performance on all the

datasets. This observation confirms the fact that investigation of writing style in short documents

is more challenging [57].

Figure 5.6: The accuracy of Style-HAN model across different document length

Summary

In this chapter, we presented a style-aware neural model which encodes document information

from three stylistic levels: lexical, syntactic, and structural in order to better capture the autho-

rial writing style. First, we propose an efficient way to encode the syntactic patterns of sentences

using only their corresponding part-of-speech tags. Lexical and syntactic embeddings of words

are then used to create two different sentence representations. Subsequently, a hierarchical neural

network is employed to capture the structural patterns of sentences in the document, which takes

both syntactic and lexical information as input. Finally, these syntactic and lexical representation

of documents are concatenated in the fusion step to build the final document representation. Our

60

experimental results on the benchmark datasets in authorship attribution tasks confirm the bene-

fits of encoding document information from all three stylistic levels, and show the performance

advantages of our techniques.

61

CHAPTER 6: TRANSFER LEARNING FOR AUTHORSHIP

ATTRIBUTION USING DEEP CONTEXTUALIZED WORD

REPRESENTATIONS

1 We adopt a transfer learning approach using deep contextualized word representations (ELMo)

and fine-tune our previously proposed hierarchical neural model. This approach allows us to mea-

sure the contribution of lower-level linguistic representations (which mainly carry syntactic infor-

mation) versus higher-level linguistic representations (which mainly carry semantic information)

in the task of authorship attribution. In what follows, we elaborate on our approach.

Word Embeddings

Word embeddings, which are building blocks of any NLP tasks, fall into two categories: Static

word embeddings which are fixed pre-trained vector representations and contextualized word em-

beddings which are dynamic vector representations and address the polysemous and content-

dependent nature of words. In each category, several approaches have been developed to produce

word embeddings which mainly differ in how they model the semantics and context of the words.

The choice of word embeddings for any particular NLP tasks is still a matter of experimentation

and evaluation.

1The findings from this research has been previously published:Jafariakinabad, Fereshteh, and Kien A. Hua. ”Uni-
fying Lexical, Syntactic, and Structural Representations of Written Language for Authorship Attribution.” SN Com-
puter Science 2.6 (2021): 1-14.

62

Static Embeddings

We use pre-trained Glove [63] and FastText [18] embeddings and represent each sentence as the

sequence of its corresponding word embeddings. Glove is a count-based model which relies on the

distributional language hypothesis in order to capture the semantics. FastText is a character-based

model in which a word is represented as a bag of character n-grams and the final word vector is

the sum of these representations. One of the advantages of this representation is the capability of

handling out-of-vocabulary words.

Contextualized Embeddings

Even though the static word embeddings capture semantics of words to some extent, they fail to

capture polysemy and disregard the context in which the word appears. To address the polyse-

mous and context-dependent nature of words, the contextualized word embeddings are proposed

[27, 3, 65]. Embeddings from Language Modeling Objective (ELMo) proposes a deep contextu-

alized word representation in which each representation is a function of the input sentence. The

objective function is a 2-layer bidirectional language model (BiLM) and the final representations

are a linear combination of all of the internal layers of the BiLM and the weights are learnable for

a specific task [65] (Fig 6.1). One of the interesting characteristics of ELMo embedding is that

different layers in this language model learn different kinds of representation. The higher-level

BiLM mainly capture context-dependent information while the lower-level states mainly capture

syntactic information [65]. This scheme allows us to measure the contribution of semantics versus

syntactic aspects of the words in our authorship attribution task.

The ELMo model learns the contextualized representation of words from three levels. The first

layer is the context-free representation which are the inputs of a bidirectional language model

63

consisting of two bidirectional LSTMs. The final ELMo embedding is the weighted linear com-

bination of these three layers. Let’s assume that the hidden state of the model corresponding to

the kth word in the layer i is denoted as hLMk,i , hence the final contextualized representation is

calculated as ELMotaskk = γtask
∑2

i=0 s
task
i hLMk,i , where staski are trainable task-specific weights

for each layer and γtask is a scalar parameter to scale the final ELMo vector representations.

Figure 6.1: The Architecture of ELMo Embedding

Experimental Results

In this section we experiment with different pre-trained word-embeddings. In all of the exper-

iments, we use previously proposed hierarchical neural model presented in Chapter 5. First, in

order to compare the effects of lower-level linguistic representations to the higher-level linguistic

representations, we use a transfer learning approach and fine-tune our hierarchical model by using

pre-trained ELMo embeddings in the lexical level. In ELMo model, the higher-level states mainly

capture context-dependent information while the lower-level states mainly capture syntactic in-

formation [65]. This scheme allows us to measure the contribution of semantics versus syntactic

64

aspects of the words in our authorship attribution task. During the training phase, task-specific

weights (γtask) are learned.

Figure 6.2 illustrates the performance of context-free embeddings (word-level), the first LSTM

layer (lstm1 layer), the second LSTM layer(lstm2 layer), the weighted sum of all layers (weighted layers),

and the fixed mean-pooling of layers 2.

According to the results, word-level representation which is a context-free representation of ELMo

consistently achieves higher performance compared to the two BiLM layers which are both context-

dependent representations. In BiLM layers the first layer achieves better performance across all

datasets when compared to the second layer. Hence, it is observed from the results that lower-

level linguistic representations of ELMo which mainly capture syntactic information demonstrate

a better performance in authorship attribution task when compared to higher-level representations

of ELMo which mainly carry semantic information. Finally the weighted sum of all layers or

mean-pooling of layers do not improve the performance when compared to individual layers and,

unsurprisingly, the weighted sum of all layers shows a better performance compared to the mean-

pooling.

Table 6.1: The accuracy of different lexical representations

Model CCAT10 CCAT50 BLOGS10 BLOGS50
ELMo word level 77.00 62.44 75.41 66.27
ELMo lstm1 73.20 59.12 75.24 57.62
ELMo lstm2 62.20 48.56 73.07 42.10
ELMo Weighted 70.20 53.40 66.49 65.13
ELMo mean 55.60 45.76 59.86 36.65
FastText-HAN 81.00 70.44 68.21 58.38
Glove-HAN 86.04 79.50 70.81 59.77

2https://tfhub.dev/google/elmo/3

65

https://tfhub.dev/google/elmo/3

Figure 6.2: The performance of different ELMo representations

We have also experimented with two static word-embeddings, Glove [63] and Fasttext [18]. Table

6.1 reports the performance of different word representations across four datasets. Glove con-

sistently outperforms Fasttext across all the datasets. When comparing Glove against ELMo

embeddings, none of them outperforms the other consistently. According to the results, Glove

achieves higher accuracy compared to ELMo in CCAT datasets by 9.04% in CCAT10 and 17.06%

in CCAT50. However, ELMo word-level embedding performs better in BLOGS datasets by 4.6%

in BLOGS10 and 6.5% in BLOGS50 when compared to Glove embeddings. This is due to the fact

that ELMo is a dynamic complex neural network and training such a model demands more train-

ing samples to achieve a higher performance. Consequently, due to the lower number of training

samples in the CCAT datasets, ELMo does not achieve higher performance results.

66

Summary

In this chapter, we presented a transfer learning approach using deep contextualized word represen-

tation in order to measure the impact of different linguistic representation in the task of authorship

attribution. According to our experimental results, lower-level linguistic representations which

mainly carry syntactic information, demonstrate better performance in authorship attribution task

when compared to higher-level linguistic representations, which mainly carry semantic informa-

tion.

Additionally, we compared the performance of static word embeddings (Glove, FastText) against

deep contextualized word embeddings(ELMo). Our experimental results indicates that the perfor-

mance of ELMo is highly dependent on the size of dataset. This is observation is due to the fact

that ELMo is a dynamic complex neural network and training such a model demands more training

samples to achieve its potential performance.

67

CHAPTER 7: A SELF-SUPERVISED REPRESENTATION LEARNING

OF SENTENCE STRUCTURE FOR AUTHORSHIP ATTRIBUTION

Proposed Framework : Lexicosynt Network

1 The Lexicosynt network is a Siamese network [23] which comprises lexical and syntactic sub-

networks and a loss function. Figure 7.1 illustrates the overall architecture of framework. The input

to the system is a pair of sequences (lexical and syntactic) and a label. The lexical and syntactic

sequences are passed through the lexical and syntactic sub-networks, respectively, yielding two

outputs which are passed to the cost module. In what follows, we elaborate each component.

Lexical Sub-network

The lexical sub-network encodes the sequence of words in a sentence (Figure 7.2 (a)). Each word in

the sentence (denoted as S) is embedded into a trainable vector representation (Wi) and is fed into

the lexical sub-network. This network consists of two main parts; bidirectional LSTM (H which

is concatenation of forward LSTM
−→
ht and backward LSTM

←−
ht) and a self-attention mechanism

(A) proposed by Lin et al. [52]. The self-attention mechanism provides a set of summation weight

vectors (Ws2,Ws1) which are dotted with the LSTM hidden states, resulting weighted hidden states

(M). Finally, a pooling layer followed by a multilayer perceptron is used to generate the final

vector representation.

1The findings from this research has been accepted for publication in ACM Transactions on Knowledge Discovery
from Data. Jafariakinabad, Fereshteh, and Kien A. Hua. ”A self-supervised representation learning of sentence
structure for authorship attribution.” arXiv preprint arXiv:2010.06786 (2020).

68

Figure 7.1: The overall architecture of LexicoSynt network

S = (W1,W2, ...,Wn),

−→
ht =

−−−−→
LSTM(Wt,

−−→
ht−1),

←−
ht =

←−−−−
LSTM(Wt,

←−−
ht+1),

H = (h1, h2, ..., hn),

A = softmax(Ws2tanh(Ws1H
T)),

M = AH.

69

Syntactic Sub-network

The syntactic sub-network aims to encode the syntactic information of sentences. For this purpose,

we use syntax parse trees. Syntax parse trees represent the syntactic structure of a given sentence.

An example of such a syntax tree is given in Figure 7.2 (b). To adapt the tree representation to

recurrent neural networks, we linearize the syntax parse tree to a sequence of structural labels.

Figure 7.2 (c) shows the structural label sequence of Figure 7.2 (b) following a depth-first traversal

order. Each structural label in the sequence is embedded into a trainable vector representation and

subsequently is fed into the syntactic sub-network which has an identical architecture as the lexical

sub-network. Needless to say the structural sequence which is the linearized syntax parse tree is

longer than the word sequence of a sentence.

Loss Function

Given a sentence, we aim to minimize the distance of two learned vector representations from the

lexical and syntactic sub-networks. The distance of two vectors (dn) are maximized if they are not

representations of an identical sentence. In other words, the output of the lexical and the syntactic

sub-networks are similar (yn = 1) for genuine pairs (positive samples), and different (yn = 0)

for false pairs (negative samples). We propose to use the contrastive loss, originally proposed for

training of Siamese networks [23], as the following:

E =
1

2N

N∑
n=1

ynd
2
n + (1− yn)max(margin− dn, 0)2

where :

dn = ||Vlexical − Vstructural||2

70

Figure 7.2: An example of an input sentence and the corresponding (a) word sequence representa-
tion (b) syntax parse tree representation (c) linearized parse tree representation known as structural
sequence

Vlexical and Vstructural are the learned sentence representations from lexical and syntactic sub-

networks, respectively, and dn is the Euclidean distance of Vlexical and Vstructural. y ∈ [0, 1] is

the binary similarity metric between the input pairs; y is 1 if the syntactic and lexical pairs belong

to an identical sentence and 0 if they belong to different sentences. Parameter margin is the min-

imum distance between negative pairs and is set to 1 in our implementation. Hence, the negative

samples only contribute to the loss if their distance is less than the margin.

Training the network by such objective function generates similar vector representations for sen-

71

tences with identical syntactic structures but different semantics. In other words, the contrastive

loss objective pushes the sentences with identical syntactic structures close to each other in the

embedding space. As a result, the learned vector representations from the lexical network does

not mainly carry semantic relationships any more, but more structural information. Finally, the

learned structural representations of words from this self-supervised framework can be simply

used as complementary information to the existing ordinary pre-trained word embeddings to better

suit the neural models for the domain of authorship attribution.

Experimental Studies

In order to evaluate the effectiveness of our proposed framework, we conduct two sets of eval-

uations: intrinsic evaluation and extrinsic evaluation. In the former, we investigate the different

linguistic properties captured by the learned structural representations and compare them against

the existing pre-trained word embeddings. In the latter, we utilize the learned structural representa-

tions for the domain of authorship attribution and compare it against the existing baselines. In what

follows, we elaborate the implementation details and the experimental configurations. To make the

experiments reported in this paper reproducible, we have made our framework implementations

publicly available 2.

2https://github.com/fereshtehjafarii/StructuralSentenceRepresentation

72

Data

Training Data:

The proposed model has been trained on LAMBADA (LAnguage Modeling Broadened to Account

for Discourse Aspects) dataset [61] which contains the full text of 2,662 unpublished novels from

16 different genres. The fact that the training data comes from the wide range of genres maximizes

the potential efficacy for learning diverse sentence structures. The total number of sentences in the

training set is 14,746,838 where 1000 sentences are randomly selected for the development set.

Test Data:

We evaluate the proposed approach on the following authorship attribution benchmark datasets:

• CCAT10 , CCAT50: Newswire stories from Reuters Corpus Volume 1 (RCV1) written by

10 and 50 authors respectively [88].

• BLOGS10, BLOGS50: Posts written by 10 and 50 top bloggers respectively, originated

from data set of 681,288 blog posts by 19,320 bloggers for blogger.com [79].

Training

For the input data of the syntactic sub-network, we have generated the parse tree of each sentence

in the training set using CoreNLP parser [55]. Each sentence and its corresponding linearized parse

tree is fed into the network as a genuine (or positive) pair. To generate the false (negative) pairs, we

have paired each sentence in the batch with a randomly selected linearized parse tree in the same

73

batch. Hence, the number of training samples is twice as the number of sentences in the training

set (14, 746, 838× 2 = 29, 493, 676). For the validation set 1000 pairs are chosen randomly.

We have used batch size of 400 and learning rate of 5e-4 with Adam optimizer for all the exper-

iments. All the weights in the neural networks are initialised using uniform Xavier initialization.

Both the lexical and structural embeddings are initialized from U [−0.1, 0.1] and their dimension

has been set to 300 and 100 respectively. We limit the maximum input length for lexical and syn-

tactic sub-networks to 40 and 80 respectively. The inventory of structural labels include 77 phrase

labels. Figure 7.3 illustrates the loss and accuracy of the model across 50 epochs of training re-

spectively. As shown in the figures, the training loss converges to 0.0029, the training accuracy

is 99.70%, and the validation loss and accuracy are 0.0023 and 99.83% respectively. The low

value of loss indicates that positive samples are successfully encoded to similar representations

and negative samples are encoded to different representations. The model performs better on the

validation set compared to the training set primarily due to the fact that the training set is signifi-

cantly larger (∼ 29, 000 times) than the validation set. This is inevitable in our training scenario

since training contrastive loss objective requires a huge amount of data in order to learn the proper

representations.

Representation Learning Evaluation: Probing Tasks

We use 10 probing tasks introduced by Conneau et al. [25] to investigate the linguistic features

that the learned structural representations capture. We use the structural embeddings of words to

create the Bag of Vectors (BoV) representation for each sentence and we evaluate these sentence

embeddings in each task. The experiments are configured according to the recommended settings

using logistic regression 3. The probing tasks are grouped into three classes including surface in-

3https://github.com/facebookresearch/SentEval

74

Figure 7.3: The training and validation loss and accuracy over 50 epochs of training

formation, syntactic information, and semantic information. The tasks in the surface information

group do not require any linguistic knowledge while the tasks in the syntactic information group

test if the sentence embeddings are sensitive to the syntactic properties. The tasks in the semantic

information group not only rely on syntactic information but also require understanding of seman-

tics about sentences. In what follows we elaborate each probing task and report the corresponding

evaluation results.

75

Surface Information

• SentLen: To predict the length of sentences in terms of number of word.

• WC: To recover the information about the original word from its embedding.

Figure 7.4 illustrates how surface information accuracy changes in the function of training epochs.

According to the figure, the sentence length accuracy increases with epochs. Unsurprisingly, the

WC accuracy is mostly flat and about 2.42% since the model encodes structural information rather

than semantic information. In other words in this model all the words with an identical syntactic

role in the sentence (for instance Nouns) are mapped to a single identical vector. This way of

encoding is an n-to-1 mapping ; hence, recovering the original word from its structural embedding

is almost impossible. However, concatenating the structural embedding of words with their general

embeddings (BoV structural+FastText and BoV structural+Glove) enhances the performance of

WC compared to when only their general embeddings are used (Table 7.1). This implies that

structural information of words in the sentence improves the recovery of its content.

Syntactic information

• BShift: To predict if the two adjacent words in the sentences were inverted. This task tests if

the encoder is sensitive to the word order.

• TreeDepth: To classify sentences based on the depth of the longest path from the root to any

leaf. This task investigates if the encoder infers the hierarchical structure of sentences.

• TopConst: To classify the sentences based on the sequence of top constituencies immediately

below the sentence. This Task tests the ability of encoder in capturing the latent syntactic

structure.

76

Figure 7.4: The accuracy of learned surface information over 50 epochs of training

Figure 7.5 illustrates how syntactic information accuracy changes in terms of training epochs. Ac-

cording to the figure, TreeDepth and TopConst performance keep increasing with epochs. How-

ever, BShift curve is mostly flat, suggesting that what Bidirectional LSTM is able to capture about

this task is already encoded in its architecture and further training does not help much.

Semantic information

• Tense: To predict the tense of the main-clause verb. This task tests if the encoder captures

the structural information about the main clause.

• SubjNum: To predict the number of the subject of main clause. This task tests if the encoder

captures the structural information about the main clause and its arguments.

• ObjNum: To predict the number of direct object of the main clause. This task tests if the

encoder captures the structural information about the main clause and its arguments.

77

Figure 7.5: The accuracy of syntactic information over 50 epochs of training

• SOMO: To predict whether an arbitrary chosen noun or verb in the sentences has been mod-

ified or not. This task tests if the encoder has captured semantic information to some extent.

• CoordInv: To predict whether the order of clauses in the sentences are intact or modified.

This task tests if the encoder has the understanding of broad discourse and pragmatic factors.

Figure 7.6 illustrates how the accuracy of semantic information captured by the model changes in

function of training epochs. According to the figure, the accuracy of Tense, SubjNum, and Ob-

jNum increases when the number of epochs increase. It is worth mentioning that the accuracy

of these probing tasks, which heavily rely on structural information of sentences, show more in-

crease during the training process. On the other hand, SOMO and CoordInV which mostly rely

on semantic information have flat curves, indicating that the further training does not improve

their performance. This is clearly due to the fact that these two tasks deeply rely on semantic

information of sentences while structural embeddings lack such information.

An interesting observation is that the structural representations generally demonstrate a better per-

78

Figure 7.6: The accuracy of semantic information over 50 epochs of training

formance in the tasks where both semantic and structural information is required (e.g. Tense,

SubjNum, and ObjNum) compared to the tasks that either only rely on syntactic information(e.g.

TreeDepth, TopConst) or semantic information (e.g. SOMO, CoordInv). This feature can be due

to the co-supervision of lexical and syntactic sub-networks in the representation learning process.

Representation Learning Evaluation: Comparing to the Baselines

In this section, we compare the performance of structural embeddings learned from our model to

two other pre-trained general word embeddings, including Glove [63] and FastText [18]. We use

BoV representation of sentences for both its simplicity and its capability at capturing sentence level

properties [25]. Table 7.1 reports the results of different sentence embeddings for all the 10 probing

tasks and the best results are highlighted in bold. Human. Eval. results report the human validated

upper bounds for all the tasks (refer to [25] for more details). In BiLSTM Structural, we have

used the syntactic sub-network as the encoder. Using BiLSTM encoder to generate the structural

79

sentence embeddings does not show any improvement in terms of accuracy when compared to

BoV structural representations except for BShift (0.07% increase) and CoordInv (2.65% increase)

simply due to the fact that these tasks are heavily sensitive to the word orders in the sentence and

BiLSTM preserves orders in the input sequence while BoV does not.

The performance results of word embeddings alone show that FastText outperforms Glove in all

the tasks by the average of 1.26% . This indicates that FastText embeddings capture slightly more

linguistic features compared to Glove. Moreover, concatenating Glove/FastText embeddings with

the structural embeddings (BoV Structural+Glove / BoV Structural+FastText) improves the the

performance in all the tasks by the average of 2.37% / 2.39%. Hence, concatenating structural em-

beddings with the pre-trained word embeddings further improves the linguistic features captured

compared to when the word embeddings are used alone.

According to the results, BoV representation of sentences from structural embeddings outperforms

FastText embeddings in SentLen and TreeDepth by 12.8% and 1.3%, respectively. Furthermore,

combining structural embeddings and FastText embeddings enhances the accuracy in all tasks

compared to when only either of them is used. For instance, it improves the accuracy of ObjNum by

2.7%, SubjNum by 2.00%, TopConst by 4.5%, TreeDepth by 2.6%, SentLen by 10.7% compared

to when only FastText embeddings are used. Unsurprisingly, combining FastText embeddings with

structural embeddings does not significantly improve accuracy in WC, SOMO, and CoordInv tasks

due to the fact that these tasks are heavily reliant on semantics and structural embeddings do not

result in further improvements. Finally, BoV representation of sentences by combining structural

embedding and FastText embeddings consistently outperforms the baseline representations in all

the tasks, with an average improvement over BoV Glove and BoV FastText of 6% and 3.9%,

respectively.

80

Table 7.1: Probing task accuracies for different sentence representations

Model SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Baseline Representations

Majority vote 20.0 0.5 17.9 5.0 50.0 50.0 50.0 50.0 50.0 50.0
Hum. Eval. 100 100 84.0 84.0 98.0 85.0 88.0 86.5 81.2 85.0
BoV Glove 58.1 75.5 30.0 49.7 49.8 83.8 77.2 76.3 49.4 49.9
BoV FastText 53.3 79.8 31.0 52.6 50.1 86.7 79.2 79.4 50.2 50.0

Our Proposed Structural Representations

BiLSTM Structural 77.8 0.2 23.7 17.2 50.3 57.2 50.3 51.8 49.9 52.4
BoV Structural 66.1 2.4 32.3 45.9 50.1 85.5 78.5 79.8 50.3 49.8
BoV Structural+Glove 64.0 75.1 31.3 54.5 50.0 85.4 80.7 81.9 50.1 50.4
BoV Structural+FastText 64.0 79.9 33.6 57.1 50.1 87.3 81.2 82.1 50.8 50.1

Model Selection

We have performed an ablation study on different components of the model: the self-attention

mechanism, the pooling mechanism, and the length of structural sequences. Table 7.2 reports

the result of our experiments. In the NoATT seq4040 configuration, we do not use any atten-

tion mechanism and set the length of both lexical and structural sequence to 40. In Weighte-

dATT seq4040, we use the traditional attention mechanism [10]. In SelfATT AVGPool seq4040

and SelfATT MaxPool seq4040, we incorporate Self-attention mechanism [52] and use average-

pooling and max-pooling respectively to generate the final representations. Finally, in

SelfATT MaxPool seq4080, we use self-attention mechanism with max-pooling where the length

of lexical and structural sequence is 40 and 80, respectively . In all of the configurations other com-

ponents of the network including BiLSTM and loss function, have been kept identical. According

to the results, using self-attention mechanism improves the performance in most of the tasks com-

pared to when no attention or traditional attention mechanism is used. When using self-attention

mechanism, max-pooling performs better than average-pooling in most of the tasks. We observe

that increasing the length of the structural sequence to 80 slightly improves the performance. This

81

Table 7.2: Probing task accuracies for different model configurations

Model config SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv
Model Architecture for Structural Representation Learning

NoATT seq4040 61.6 5.3 29.7 43.0 49.7 85.2 69.5 71.7 49.9 49.7
WeightedATT seq4040 62.6 5.1 30.4 43.4 50.0 85.3 68.8 71.4 49.9 49.0
SelfATT AVGPool seq4040 62.8 6.6 31.4 45.7 49.7 86.2 71.9 74.4 49.9 49.7
SelfATT MaxPool seq4040 65.9 2.1 31.6 45.4 49.9 85.2 77.9 79.5 50.0 49.5
SelfATT MaxPool seq4080 66.1 2.4 32.3 45.9 50.1 85.5 78.5 79.8 50.3 49.8

is due to the fact that structural sequence, which is a linearized syntax parse tree, is longer than the

original sentence. Ultimately, the self-attention mechanism with max-pooling, and the structural

sequence of length 80 is used as the final configuration (SelfATT MaxPool seq4080).

Test on Authorship Attribution Datasets

In our previous work [41], we have introduced a neural network which encodes the stylistic infor-

mation of documents from three levels of language production (lexical, syntactic, and structural).

First, we obtain both lexical and syntactic representation of words using lexical and syntactic

embeddings as shown in Figure 7.7. For lexical representations, we embed each word into a pre-

trained Glove embeddings and represent each sentence as the sequence of its corresponding word

embeddings. For syntactic representations, we convert each word into the corresponding part-of-

speech (POS) tag in the sentence, and then embed each POS tag into a low dimensional vector

Pi ∈ Rdp using a trainable lookup table θP ∈ R|T |×dp , where T is the set of all possible POS tags

in the language. Subsequently, these two representations are fed into two identical hierarchical

neural networks which encode the lexical and syntactic patterns of documents independently and

in parallel. Ultimately, these two representations are aggregated into the final vector representation

of the document which is fed into a softmax layer to compute the probability distribution over class

labels.

82

Figure 7.7: Lexical and Syntactic Embedding

We have compared our proposed style-aware neural model (Style-HAN) with the other stylometric

models in the literature, including Continuous N-gram representation [77], N-gram CNN [85], and

syntax-CNN [100]. Table 7.3 reports the accuracy of the models on the four benchmark datasets.

All the results are obtained from the corresponding papers, with the dataset configuration kept

identical for the sake of fair comparison. In Syntactic-HAN [41], only syntactic representation of

documents is fed into the softmax layer to compute the final predictions. Similarly, in Lexical-

HAN [41], only lexical representation of documents is fed into the softmax classifier. The final

stylometry model, Style-HAN, fuses both representations. In order to examine the efficacy of

our proposed structural embeddings in this paper against the previously proposed POS-encoding

(Syntactic-HAN) and style-aware neural network (Style-HAN), we adopt the same neural net-

work architecture with two different settings; (1) using only structural embedding of the words

(Structural-HAN) and (2) using pre-trained Glove word embeddings concatenated with the struc-

tural embeddings (Structural+Lexical-HAN). We chose to use Glove (instead of FastText) for our

performance study in order to have a fair comparison with the current state-of-the-art Lexical-HAN

and Style-HAN methods, which used Glove embeddings as their lexical embeddings.

In Table 7.3, the best performance result for each dataset is highlighted in bold. It shows that

83

Table 7.3: The accuracy of different models for all datasets

Model CCAT10 CCAT50 BLOGS10 BLOGS50
Baselines

Continuous n-gram 74.8 72.6 61.3 52.8
N-gram CNN 86.8 76.5 63.7 53.0
Syntax-CNN 88.2 81.0 64.1 56.7
Lexical-HAN 86.0 79.5 70.8 59.8

Our Proposed Models
Syntactic-HAN 63.1 41.3 69.3 57.8

Syntactic+Lexical-HAN (Style-HAN) 90.6 82.3 72.8 61.2
Structural-HAN 65.4 45.2 70.6 59.5

Structural+Lexical-HAN 92.4 83.2 73.5 61.7

the proposed Structural+Lexical-HAN consistently outperforms all the baselines. The average

improvement over Continuous n-gram, N-gram CNN, Syntax-CNN, and Lexical-HAN is 18.9%,

11%, 7.2%, and 5%, respectively. These significant results confirm that explicit representation

learning of syntactic structure of sentences improves the performance of lexical-based neural mod-

els in the task of authorship attribution. Among the proposed models, Structural-HAN constantly

outperforms Syntactic-HAN. This observation indicates the effectiveness of the learned structural

representation of words in our proposed self-supervised framework. It is worth mentioning that

the learned structural embeddings from our self-supervised framework not only improves the per-

formance of the syntactic neural model but also eliminates the necessity of syntactic parsing in the

sentence representation step in style-aware neural network; hence, it is computationally more effi-

cient. Finally, Structural+Lexical-HAN is consistently the best among the proposed models across

all datasets.

It is worth mentioning that in Syntactic-HAN, the syntactic units are part-of-speech tags which

are embedded into randomly initialized vector representations. These syntactic representations

are learned during the training phase of the Syntactic-HAN model on the authorship attribu-

84

tion datasets. However, in the LexicoSynt network, the units in the syntactic sub-network are

part-of-speech tags which are sequenced based on the syntactic structure of sentences (linearized

syntax parse tree). These structural units have been pre-trained on almost 29 million sentences

in the LAMBADA dataset and subsequently used as the initialization for the Structural-HAN

model. Hence, structural representations are pre-trained vector representations of part-of-speech

tags which carry both structural and syntactic features of sentences. Combining structural and

syntactic features of sentences is one of the advantages of Structural-HAN.

The explicit representation learning of sentence structure using the LexicoSynt network has im-

proved the performance results of the previously proposed model in the authorship attribution

task; however, learning the structural representations can be improved in different ways. The

current design of the LexicoSynt network utilizes a fixed length for the lexical and structural se-

quences. Truncating and padding the sentences to fit this fixed length can affect their intended

semantics and structures. An adaptive approach that can tailor this length to the specific case is

desirable. Another limitation of the current design is due to its training on the dataset of a variety

of novels. Even though the training dataset for the LexicoSynt network contains numerous novels

from 16 different genres and ensures the learning of diverse sentence structures, this might limit its

applicability to other domains. Domain-specific representation learning can address this limitation.

Summary

In this paper, we have proposed a self-supervised framework for learning structural representation

of sentences for the domain of authorship attribution. The result of training this self-supervised

framework is pre-trained structural embeddings which capture information regarding the syntactic

structure of sentences. Subsequently, these structural embeddings can be concatenated to the exist-

ing pre-trained word embeddings and create a style-aware embedding which carries both semantic

85

and syntactic information and is well-suited for the domain of authorship attribution. Moreover,

structural embeddings eliminate the necessity of syntactic parsing for training syntactic neural net-

works; therefore, training a neural model using pre-trained structural embeddings is computation-

ally more efficient. According to our experimental results on four benchmark datasets in authorship

attribution, using structural embedding improves the performances of the proposed neural model.

86

CHAPTER 8: CONCLUSION AND FUTURE WORK

This dissertation addressed topic detection and authorship attribution for user-generated textual

data. In Chapter 3, we presented a maximal sequence mining approach for the problem of topic

detection from microblog streams. Experiments on Twitter datasets demonstrate that the proposed

model achieves high performance in comparison with the state-of-the-art methods. Afterward, we

mainly focus on the task of authorship attribution. Generally, the problem of determining the style

of a document is orthogonal to the problem of determining its topic, since the document features

which capture the style are mainly independent of the document’s topic.

Writing style in written language is a combination of consistent decisions associated with a spe-

cific author at different levels of language production: lexical, syntactic, and structural. The recent

works in neural network-based style analysis mainly focus on lexical-based neural models and

lack the multi-level modeling of writing style. In Chapter 4, we presented our proposed neural

models to encode syntactic and structural patterns of sentences for the task of authorship attribu-

tion. In Chapter 5, we presented a unified neural model that encodes documents in three stylistic

levels. Our experimental results, based on four authorship attribution benchmark datasets, reveal

the benefits of encoding document information from all three stylistic levels when compared to

the baseline methods in the literature. In Chapter 6, we elaborated on how to utilize deep con-

textualized word representations (ELMo) and adopt a transfer learning approach to fine-tune our

previously proposed model. The proposed approach is utilized to measure the performance of

lower-level linguistic representations versus higher-level linguistic representations of ELMo in the

task of authorship attribution. Finally, in Chapter 7 we presented a self-supervised representation

learning framework to learn the structural representation of sentences. Such pre-trained syntactic

embeddings can be used in conjunction with lexical embeddings in the domain of authorship at-

tribution. It is worth mentioning that pre-trained syntactic embeddings eliminate the necessity of

87

syntactic parsing of the input sentences in our previously proposed model; hence, the model will

be computationally more efficient.

In this dissertation, we have shown the benefits of multi-level modeling of writing style in neural

network-based models in the authorship attribution task which was previously lacking in the liter-

ature. Potential future extensions of this work can explore different model architectures, extracting

and representing additional stylistic features, and adapting the proposed model to the other areas of

computational stylometry, including authorship profiling and similarity detection tasks. Moreover,

pre-training of both lexical and syntactic embeddings on the target domain is desirable to further

improve the performance of the proposed models in the authorship attribution task.

88

LIST OF REFERENCES

[1] H. V. Agun, S. Yilmazel, and O. Yilmazel. Effects of language processing in turkish au-

thorship attribution. In 2017 IEEE International Conference on Big Data (Big Data), pages

1876–1881, 2017. doi: 10.1109/BigData.2017.8258132.

[2] L. M. Aiello, G. Petkos, C. Martin, D. Corney, S. Papadopoulos, R. Skraba, A. Göker,

I. Kompatsiaris, and A. Jaimes. Sensing trending topics in twitter. IEEE Transactions on

Multimedia, 15(6):1268–1282, 2013.

[3] A. Akbik, D. Blythe, and R. Vollgraf. Contextual string embeddings for sequence labeling.

In Proceedings of the 27th International Conference on Computational Linguistics, pages

1638–1649, 2018.

[4] J. Allan, J. G. Carbonell, G. Doddington, J. Yamron, and Y. Yang. Topic detection and

tracking pilot study final report. 1998.

[5] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, and R. Greenstadt. Source code author-

ship attribution using long short-term memory based networks. In European Symposium on

Research in Computer Security, pages 65–82. Springer, 2017.

[6] K. Apoorva and S. Sangeetha. Deep neural network and model-based clustering technique

for forensic electronic mail author attribution. SN Applied Sciences, 3(3):1–12, 2021.

[7] K. Apoorva and S. Sangeetha. Forensic analysis of e-mail for authorship attribution: Re-

search perspective. In Proceeding of First Doctoral Symposium on Natural Computing

Research: DSNCR 2020, volume 169, page 281. Springer Nature, 2021.

[8] S. Argamon-Engelson, M. Koppel, and G. Avneri. Style-based text categorization: What

89

newspaper am i reading. In Proc. of the AAAI Workshop on Text Categorization, pages 1–4,

1998.

[9] D. Bagnall. Authorship clustering using multi-headed recurrent neural networks. arXiv

preprint arXiv:1608.04485, 2016.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to

align and translate. arXiv preprint arXiv:1409.0473, 2014.

[11] R. Banga and P. Mehndiratta. Authorship attribution for textual data on online social net-

works. In 2017 Tenth International Conference on Contemporary Computing (IC3), pages

1–7, 2017. doi: 10.1109/IC3.2017.8284311.

[12] Y. Bao, H. Zhou, S. Huang, L. Li, L. Mou, O. Vechtomova, X. Dai, and J. Chen. Generating

sentences from disentangled syntactic and semantic spaces. In Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, pages 6008–6019, 2019.

[13] S. Barbon, R. A. Igawa, and B. B. Zarpelao. Authorship verification applied to detection of

compromised accounts on online social networks. Multimedia Tools and Applications, 76

(3):3213–3233, 2017.

[14] H. Becker, M. Naaman, and L. Gravano. Beyond trending topics: Real-world event identi-

fication on twitter. ICWSM, 11:438–441, 2011.

[15] S. Bird, E. Klein, and E. Loper. Natural language processing with Python: analyzing text

with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of machine

Learning research, 3(Jan):993–1022, 2003.

[17] T. Blevins, O. Levy, and L. Zettlemoyer. Deep rnns encode soft hierarchical syntax. arXiv

preprint arXiv:1805.04218, 2018.

90

[18] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5:135–146,

2017.

[19] C. Castellano, F. Cecconi, V. Loreto, D. Parisi, and F. Radicchi. Self-contained algorithms

to detect communities in networks. The European Physical Journal B-Condensed Matter

and Complex Systems, 38(2):311–319, 2004.

[20] E. Castillo, D. Vilarino, O. Cervantes, and D. Pinto. Author attribution using a graph

based representation. In 2015 International Conference on Electronics, Communications

and Computers (CONIELECOMP), pages 135–142. IEEE, 2015.

[21] M. Cataldi, L. Di Caro, and C. Schifanella. Emerging topic detection on twitter based on

temporal and social terms evaluation. In Proceedings of the Tenth International Workshop

on Multimedia Data Mining, page 4. ACM, 2010.

[22] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M. Guajardo-

Cespedes, S. Yuan, C. Tar, et al. Universal sentence encoder. arXiv preprint

arXiv:1803.11175, 2018.

[23] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with

application to face verification. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[24] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of

universal sentence representations from natural language inference data. In Proceedings of

the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–

680, 2017.

[25] A. Conneau, G. Kruszewski, G. Lample, L. Barrault, and M. Baroni. What you can cram

91

into a single \&# vector: Probing sentence embeddings for linguistic properties. In ACL

2018-56th Annual Meeting of the Association for Computational Linguistics, volume 1,

pages 2126–2136. Association for Computational Linguistics, 2018.

[26] E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt. Poster: Git blame who?: Stylistic

authorship attribution of small, incomplete source code fragments. In 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion), pages

356–357, 2018.

[27] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[28] E. Ferracane, S. Wang, and R. Mooney. Leveraging discourse information effectively for au-

thorship attribution. In Proceedings of the Eighth International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), volume 1, pages 584–593, 2017.

[29] P. Fournier-Viger, C.-W. Wu, A. Gomariz, and V. S. Tseng. Vmsp: Efficient vertical mining

of maximal sequential patterns. In Canadian Conference on Artificial Intelligence, pages

83–94. Springer, 2014.

[30] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events detection in text

streams. In Proceedings of the 31st international conference on Very large data bases, pages

181–192. VLDB Endowment, 2005.

[31] C. Gallagher and Y. Li. Text categorization for authorship attribution in english poetry. In

Science and Information Conference, pages 249–261. Springer, 2018.

[32] Z. Ge, Y. Sun, and M. J. Smith. Authorship attribution using a neural network language

model. In AAAI, pages 4212–4213, 2016.

92

[33] J. Guo, P. Zhang, L. Guo, et al. Mining hot topics from twitter streams. Procedia Computer

Science, 9:2008–2011, 2012.

[34] M. Hajja, A. Yahya, and A. Yahya. Authorship attribution of arabic articles. In International

Conference on Arabic Language Processing, pages 194–208. Springer, 2019.

[35] S. Havrylov, G. Kruszewski, and A. Joulin. Cooperative learning of disjoint syntax and se-

mantics. In Proceedings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 1118–1128, 2019.

[36] M. Heidari and J. H. Jones. Using bert to extract topic-independent sentiment features for

social media bot detection. In 2020 11th IEEE Annual Ubiquitous Computing, Electronics

Mobile Communication Conference (UEMCON), pages 0542–0547, 2020. doi: 10.1109/

UEMCON51285.2020.9298158.

[37] M. Heidari, J. H. Jones, and O. Uzuner. Deep contextualized word embedding for text-based

online user profiling to detect social bots on twitter. In 2020 International Conference on

Data Mining Workshops (ICDMW), pages 480–487, 2020. doi: 10.1109/ICDMW51313.

2020.00071.

[38] J. Hewitt and C. D. Manning. A structural probe for finding syntax in word representations.

In Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4129–4138, 2019.

[39] J. Hitschler, E. van den Berg, and I. Rehbein. Authorship attribution with convolutional

neural networks and pos-eliding. In Proceedings of the Workshop on Stylistic Variation,

pages 53–58, 2017.

93

[40] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in information retrieval,

pages 50–57. ACM, 1999.

[41] F. Jafariakinabad and K. A. Hua. Style-aware neural model with application in authorship

attribution. In 2019 18th IEEE International Conference On Machine Learning And Appli-

cations (ICMLA), pages 325–328. IEEE, 2019.

[42] F. Jafariakinabad, S. Tarnpradab, and K. A. Hua. Syntactic neural model for authorship

attribution. In The Thirty-Third International Flairs Conference, 2020.

[43] P. Juola, J. Milička, and P. Zemánek. Authorship and time attribution of arabic texts using

jgaap. In Intelligent Natural Language Processing: Trends and Applications, pages 325–

349. Springer, 2018.

[44] J. Kabala. Computational authorship attribution in medieval latin corpora: the case of the

monk of lido (ca. 1101–08) and gallus anonymous (ca. 1113–17). Language Resources and

Evaluation, 54(1):25–56, 2020.

[45] H. D. Kim, D. H. Park, Y. Lu, and C. Zhai. Enriching text representation with frequent

pattern mining for probabilistic topic modeling. Proceedings of the American Society for

Information Science and Technology, 49(1):1–10, 2012.

[46] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler.

Skip-thought vectors. In Advances in neural information processing systems, pages 3294–

3302, 2015.

[47] M. Koppel, J. Schler, and S. Argamon. Computational methods in authorship attribution.

Journal of the American Society for information Science and Technology, 60(1):9–26, 2009.

94

[48] M. Krause. A behavioral biometrics based authentication method for mooc’s that is robust

against imitation attempts. In Proceedings of the first ACM conference on Learning@ scale

conference, pages 201–202. ACM, 2014.

[49] T. Kreutz and W. Daelemans. Exploring classifier combinations for language variety iden-

tification. In Proceedings of the Fifth Workshop on NLP for Similar Languages, Varieties

and Dialects (VarDial 2018), pages 191–198, 2018.

[50] A. Kuncoro, C. Dyer, J. Hale, D. Yogatama, S. Clark, and P. Blunsom. Lstms can learn

syntax-sensitive dependencies well, but modeling structure makes them better. In Proceed-

ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1426–1436, 2018.

[51] J. Li, D. Xiong, Z. Tu, M. Zhu, M. Zhang, and G. Zhou. Modeling source syntax for neural

machine translation. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 688–697, 2017.

[52] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A structured

self-attentive sentence embedding. arXiv preprint arXiv:1703.03130, 2017.

[53] T. Litvinova, O. Litvinlova, O. Zagorovskaya, P. Seredin, A. Sboev, and O. Romanchenko.

”ruspersonality”: A russian corpus for authorship profiling and deception detection. In 2016

International FRUCT Conference on Intelligence, Social Media and Web (ISMW FRUCT),

pages 1–7, 2016. doi: 10.1109/FRUCT.2016.7584767.

[54] R. Liu, J. Hu, W. Wei, Z. Yang, and E. Nyberg. Structural embedding of syntactic trees for

machine comprehension. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 815–824, 2017.

[55] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The

95

stanford corenlp natural language processing toolkit. In ACL (System Demonstrations),

pages 55–60, 2014.

[56] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of

words and phrases and their compositionality. In Advances in neural information processing

systems, pages 3111–3119, 2013.

[57] T. Neal, K. Sundararajan, A. Fatima, Y. Yan, Y. Xiang, and D. Woodard. Surveying stylom-

etry techniques and applications. ACM Computing Surveys (CSUR), 50(6):86, 2017.

[58] M. E. Newman. Detecting community structure in networks. The European Physical Jour-

nal B-Condensed Matter and Complex Systems, 38(2):321–330, 2004.

[59] M. L. Newman, J. W. Pennebaker, D. S. Berry, and J. M. Richards. Lying words: Predicting

deception from linguistic styles. Personality and social psychology bulletin, 29(5):665–675,

2003.

[60] P. Panicheva and T. Litvinova. Authorship attribution in russian in real-world forensics

scenario. In International Conference on Statistical Language and Speech Processing, pages

299–310. Springer, 2019.

[61] D. Paperno, G. Kruszewski, A. Lazaridou, N.-Q. Pham, R. Bernardi, S. Pezzelle, M. Ba-

roni, G. Boleda, and R. Fernández. The lambada dataset: Word prediction requiring a broad

discourse context. In Proceedings of the 54th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 1525–1534, 2016.

[62] J. W. Pennebaker and L. A. King. Linguistic styles: Language use as an individual differ-

ence. Journal of personality and social psychology, 77(6):1296, 1999.

[63] J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word representation.

96

In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), pages 1532–1543, 2014.

[64] C. S. Perone, R. Silveira, and T. S. Paula. Evaluation of sentence embeddings in downstream

and linguistic probing tasks. arXiv preprint arXiv:1806.06259, 2018.

[65] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.

Deep contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

[66] G. Petkos, S. Papadopoulos, L. Aiello, R. Skraba, and Y. Kompatsiaris. A soft frequent

pattern mining approach for textual topic detection. In Proceedings of the 4th International

Conference on Web Intelligence, Mining and Semantics (WIMS14), page 25. ACM, 2014.

[67] S. Petrović, M. Osborne, and V. Lavrenko. Streaming first story detection with application

to twitter. In Human Language Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational Linguistics, pages 181–189. Asso-

ciation for Computational Linguistics, 2010.

[68] S. Phuvipadawat and T. Murata. Breaking news detection and tracking in twitter. In Web In-

telligence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International

Conference on, volume 3, pages 120–123. IEEE, 2010.

[69] S. R. Pillay and T. Solorio. Authorship attribution of web forum posts. In 2010 eCrime

Researchers Summit, pages 1–7. IEEE, 2010.

[70] J.-P. Posadas-Durán, I. Markov, H. Gómez-Adorno, G. Sidorov, I. Batyrshin, A. Gelbukh,

and O. Pichardo-Lagunas. Syntactic n-grams as features for the author profiling task. Work-

ing Notes Papers of the CLEF, 2015.

[71] D. Quercia, H. Askham, and J. Crowcroft. Tweetlda: supervised topic classification and

97

link prediction in twitter. In Proceedings of the 4th Annual ACM Web Science Conference,

pages 247–250. ACM, 2012.

[72] S. Raghavan, A. Kovashka, and R. Mooney. Authorship attribution using probabilistic

context-free grammars. In Proceedings of the ACL 2010 Conference Short Papers, pages

38–42. Association for Computational Linguistics, 2010.

[73] A. Rocha, W. J. Scheirer, C. W. Forstall, T. Cavalcante, A. Theophilo, B. Shen, A. R. B.

Carvalho, and E. Stamatatos. Authorship attribution for social media forensics. IEEE Trans-

actions on Information Forensics and Security, 12(1):5–33, 2017. doi: 10.1109/TIFS.2016.

2603960.

[74] S. Ruder, P. Ghaffari, and J. G. Breslin. Character-level and multi-channel convolutional

neural networks for large-scale authorship attribution. arXiv preprint arXiv:1609.06686,

2016.

[75] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling. Twitter-

stand: news in tweets. In Proceedings of the 17th ACM SIGSPATIAL international confer-

ence on advances in geographic information systems, pages 42–51. ACM, 2009.

[76] U. Sapkota, S. Bethard, M. Montes, and T. Solorio. Not all character n-grams are created

equal: A study in authorship attribution. In Proceedings of the 2015 conference of the

North American chapter of the association for computational linguistics: Human language

technologies, pages 93–102, 2015.

[77] Y. Sari, A. Vlachos, and M. Stevenson. Continuous n-gram representations for authorship

attribution. In Proceedings of the 15th Conference of the European Chapter of the Associa-

tion for Computational Linguistics: Volume 2, Short Papers, pages 267–273, 2017.

98

[78] H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams. In

Icwsm, 2009.

[79] J. Schler, M. Koppel, S. Argamon, and J. W. Pennebaker. Effects of age and gender on

blogging. In AAAI spring symposium: Computational approaches to analyzing weblogs,

volume 6, pages 199–205, 2006.

[80] R. Schwartz, M. Sap, I. Konstas, L. Zilles, Y. Choi, and N. A. Smith. The effect of different

writing tasks on linguistic style: A case study of the roc story cloze task. arXiv preprint

arXiv:1702.01841, 2017.

[81] S. Segarra, M. Eisen, and A. Ribeiro. Authorship attribution through function word adja-

cency networks. IEEE Transactions on Signal Processing, 63(20):5464–5478, 2015.

[82] Y. Seroussi, I. Zukerman, and F. Bohnert. Authorship attribution with latent dirichlet alloca-

tion. In Proceedings of the fifteenth conference on computational natural language learning,

pages 181–189. Association for Computational Linguistics, 2011.

[83] Shaokang Wang and Baoping Yan. Authorship attribution for chinese text based on sen-

tence rhythm features. In 2010 IEEE Youth Conference on Information, Computing and

Telecommunications, pages 61–64, 2010. doi: 10.1109/YCICT.2010.5713152.

[84] Y. Shen, Z. Lin, C.-W. Huang, and A. Courville. Neural language modeling by jointly

learning syntax and lexicon. arXiv preprint arXiv:1711.02013, 2017.

[85] P. Shrestha, S. Sierra, F. Gonzalez, M. Montes, P. Rosso, and T. Solorio. Convolutional neu-

ral networks for authorship attribution of short texts. In Proceedings of the 15th Conference

of the European Chapter of the Association for Computational Linguistics: Volume 2, Short

Papers, volume 2, pages 669–674, 2017.

99

[86] J. Soler and L. Wanner. On the relevance of syntactic and discourse features for author

profiling and identification. In Proceedings of the 15th Conference of the European Chapter

of the Association for Computational Linguistics: Volume 2, Short Papers, volume 2, pages

681–687, 2017.

[87] K. Song, L. Zhao, and F. Liu. Structure-infused copy mechanisms for abstractive summa-

rization. In Proceedings of the 27th International Conference on Computational Linguistics,

pages 1717–1729, 2018.

[88] E. Stamatatos. Author identification: Using text sampling to handle the class imbalance

problem. Information Processing & Management, 44(2):790–799, 2008.

[89] E. Stamatatos and M. Koppel. Plagiarism and authorship analysis: introduction to the spe-

cial issue. Language Resources and Evaluation, 45(1):1–4, 2011.

[90] K. Sundararajan and D. Woodard. What represents” style” in authorship attribution? In Pro-

ceedings of the 27th International Conference on Computational Linguistics, pages 2814–

2822, 2018.

[91] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and

momentum in deep learning. In International conference on machine learning, pages 1139–

1147, 2013.

[92] P. Szwed. Authorship attribution for polish texts based on part of speech tagging. In In-

ternational Conference: Beyond Databases, Architectures and Structures, pages 316–328.

Springer, 2017.

[93] I. Tenney, P. Xia, B. Chen, A. Wang, A. Poliak, R. T. McCoy, N. Kim, B. Van Durme, S. R.

Bowman, D. Das, et al. What do you learn from context? probing for sentence structure in

contextualized word representations. arXiv preprint arXiv:1905.06316, 2019.

100

[94] K. Tran, A. Bisazza, and C. Monz. The importance of being recurrent for modeling hierar-

chical structure. arXiv preprint arXiv:1803.03585, 2018.

[95] P. Varela, E. Justino, and L. S. Oliveira. Selecting syntactic attributes for authorship attri-

bution. In The 2011 International Joint Conference on Neural Networks, pages 167–172.

IEEE, 2011.

[96] J. Weng and B.-S. Lee. Event detection in twitter. ICWSM, 11:401–408, 2011.

[97] S.-T. Wu. Knowledge discovery using pattern taxonomy model in text mining. 2007.

[98] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy. Hierarchical attention networks

for document classification. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pages 1480–1489, 2016.

[99] M. Zhang, Z. Li, G. Fu, and M. Zhang. Syntax-enhanced neural machine translation with

syntax-aware word representations. In Proceedings of NAACL-HLT, pages 1151–1161,

2019.

[100] R. Zhang, Z. Hu, H. Guo, and Y. Mao. Syntax encoding with application in authorship attri-

bution. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 2742–2753, 2018.

101

	Machine Learning Techniques for Topic Detection and Authorship Attribution in Textual Data
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	Topic Detection
	Authorship Attribution
	Dissertation Organization

	CHAPTER 2: LITERATURE REVIEW
	Topic Detection
	Feature-pivot methods
	Document-pivot methods
	Probabilistic Models

	Authorship Attribution
	Traditional Methods
	Deep Learning Based Methods

	CHAPTER 3: MAXIMUM SEQUENCE MINING APPROACH FOR TOPIC DETECTION FROM MICROBLOG STREAMS
	Topic Detection with Frequent Pattern Mining approach
	Mining of Maximal Sequences
	Pattern Clustering
	Pattern Graph
	Pattern Clustering

	Post-Processing

	Experimental Results
	Datasets
	Data Preprocessing
	Evaluation
	Parameter Tuning
	Results

	Summary

	CHAPTER 4: SYNTACTIC NEURAL MODEL FOR AUTHORSHIP ATTRIBUTION
	POS Embedding
	POS Encoder
	Short-term Dependencies
	Long-term Dependencies

	Sentence Encoder
	Classification
	Experimental Results
	Dataset
	Baselines
	Hyperparameter Tuning
	CNN for POS encoding
	LSTM for POS encoding

	Results
	Syntactic v.s. Lexical
	Short-Term v.s. Long-Term
	Short Documents v.s. Long Documents

	Summary

	CHAPTER 5: STYLE-AWARE NEURAL MODEL FOR AUTHORSHIP ATTRIBUTION
	Lexical and Syntax Encoding
	Lexical Embedding
	Syntactic Embedding

	Hierarchical Model
	Word-level Encoder
	Sentence-level Encoder

	Lexical and Syntactic Representations Fusion
	Classification
	Experimental Studies
	Datasets
	Baselines
	Hyperparameter Tuning
	Performance Results
	 Syntactic Representation
	 Hierarchical Neural Model
	 Lexical and Syntactic Model
	 Training Syntactic and Lexical Networks
	 Style Encoding
	 Sensitivity to Sentence Length
	 Sensitivity to Document Length

	Summary

	CHAPTER 6: TRANSFER LEARNING FOR AUTHORSHIP ATTRIBUTION USING DEEP CONTEXTUALIZED WORD REPRESENTATIONS
	Word Embeddings
	Static Embeddings
	Contextualized Embeddings

	Experimental Results
	Summary

	CHAPTER 7: A SELF-SUPERVISED REPRESENTATION LEARNING OF SENTENCE STRUCTURE FOR AUTHORSHIP ATTRIBUTION
	Proposed Framework : Lexicosynt Network
	Lexical Sub-network
	Syntactic Sub-network
	Loss Function

	Experimental Studies
	Data
	Training Data:
	Test Data:

	Training
	Representation Learning Evaluation: Probing Tasks
	Surface Information
	Syntactic information
	Semantic information

	Representation Learning Evaluation: Comparing to the Baselines
	Model Selection
	Test on Authorship Attribution Datasets

	Summary

	CHAPTER 8: CONCLUSION AND FUTURE WORK
	LIST OF REFERENCES

