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ABSTRACT

The main focus of this doctoral thesis is to study the problem of robust and scalable data rep-

resentation and analysis. The success of any machine learning and signal processing framework

relies on how the data is represented and analyzed. Thus, in this work, we focus on three closely

related problems: (i) supervised representation learning, (ii) unsupervised representation learning,

and (iii) fault tolerant data analysis. For the first task, we put forward new theoretical results on

why a certain family of neural networks can become extremely deep and how we can improve this

scalability property in a mathematically sound manner. We further investigate how we can em-

ploy them to generate data representations that are robust to outliers and to retrieve representative

subsets of huge datasets. For the second task, we will discuss two different methods, namely com-

pressive sensing (CS) and nonnegative matrix factorization (NMF). We show that we can employ

prior knowledge, such as slow variation in time, to introduce an unsupervised learning component

to the traditional CS framework and to learn better compressed representations. Furthermore, we

show that prior knowledge and sparsity constraint can be used in the context of NMF, not to find

sparse hidden factors, but to enforce other structures, such as piece-wise continuity. Finally, for

the third task, we investigate how a data analysis framework can become robust to faulty data and

faulty data processors. We employ Bayesian inference and propose a scheme that can solve the CS

recovery problem in an asynchronous parallel manner. Furthermore, we show how sparsity can be

used to make an optimization problem robust to faulty data measurements. The methods investi-

gated in this work have applications in different practical problems such as resource allocation in

wireless networks, source localization, image/video classification, and search engines. A detailed

discussion of these practical applications will be presented for each method.
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CHAPTER 1: INTRODUCTION

Robust and scalable data representation and analysis can be succinctly described as the family

of signal processing and machine learning methods that are concerned with finding abstract and

meaningful representations of data for inference tasks, while being computationally efficient and

robust to deviations from assumptions. Technological advances in data gathering systems, as well

as emergence of powerful and inexpensive processors, have led to an everincreasing need for new

machine learning and signal processing techniques that not only can extract information from the

data, but also are able to compress/summarize it, detect outliers, and to create meaningful repre-

sentations of data in a low-dimensional space. The recent success of machine learning algorithms

can be arguably attributed to the new methods to find better data representations, also known as

features. It is safe to say that most of the efforts in designing new machine learning or signal

processing methods go into finding effective application-specific data representations, either by

using domain-specific knowledge or by consuming huge amounts of data for training. This work

presents new contributions on three important and closely related tasks: (i) supervised representa-

tion learning, (ii) unsupervised representation learning, and (iii) fault tolerant data analysis. In the

following, each of these tasks are discussed in detail and the contributions of this doctoral thesis

are outlined. A more detailed discussion of the prior work and the specific contributions of each

chapter is provided in the corresponding chapter text.

1.1 Supervised Representation Learning

The goal of representation learning is to find a useful, and oftentimes low dimensional, represen-

tation of data that makes the task at hand easier. For instance, in the classification task, if we can

transform the data into a space such that different classes are far from each other, the classification
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task becomes trivial. Supervised representation learning can be used whenever enough labelled

data is available for training and the desired transformation can be found by using the input-output

pairs to optimize a well-defined cost function, e.g., classification accuracy. The recent empiri-

cal success of machine learning is evidently owed to the rediscovery of neural networks, and in

particular deep neural networks (DNNs). Deep neural networks have progressed rapidly during

the last few years, achieving outstanding, sometimes super human, performance [9]. DNNs can

be described as composition of many nonlinear feature extractors, making them very efficient in

learning meaningful representation of data and in learning complex mappings of data. Each of the

feature extractors consists of a linear and a nonlinear transformation.

For the task of supervised representation learning, we investigate different aspects of DNNs.

Specifically, we discuss how some DNNs can become very deep (Chapter 3), how the embed-

ding space generated by them can become robust to outliers (Chapter 4), and how to use such

embedding spaces to retrieve a subset of samples in the context of summarization (Chapter 5) and

query-based search (Chapter 6).

It is known that the depth of the network, i.e., number of stacked feature extractors, is of decisive

significance. It is shown that as the networks become deeper, they are capable of representing more

complex mappings [10]. However, deeper networks are notoriously harder to train. As the number

of layers is increased, optimization issues arise and, in particular, avoiding vanishing/exploding

gradients is essential to optimization stability of such networks. Augmenting neural networks with

skip connections, as introduced in the so-called ResNet architecture[11, 12], surprised the commu-

nity by enabling the training of networks of more than 1,000 layers with significant performance

gains.

In Chapter 3, we decipher ResNet by analyzing the effect of skip connections, and put forward new

theoretical results on the advantages of identity skip connections in neural networks. We prove
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that the skip connections in the feature extractors facilitate preserving the norm of the gradient and

lead to stable back-propagation, which is desirable from optimization perspective. We also show

that as more feature extractors are stacked, the norm-preservation of the network is enhanced.

Furthermore, we propose an efficient method to regularize the singular values of the convolution

operator to make the ResNet extra norm-preserving. Our numerical investigations demonstrate that

the learning dynamics and the classification performance of ResNet can be improved by making it

even more norm preserving.

In Chapter 4, we show how we can manipulate DNNs, and in particular ResNets, to generate data

representations that are robust to outliers and anomalies. Many conventional machine learning

methods are being designed and deployed under closed-set assumptions, meaning that training

data contains samples from all the possible classes that the classifier will encounter during testing.

Of course, such assumption does not hold in many applications; as it may not be possible to cover

every potential input class in the training set. Thus, the goal of open-set classifiers is to detect

out-of-distribution (OOD) samples; the input instances that do not belong to any of the training

classes. In general, OOD detection techniques try to either use the class membership probabilities

as a measure of uncertainty [13–16], or define a measure of similarity between the input samples

and the training dataset in a feature space [17–19]. In Chapter 4, we argue that OOD samples can

be detected far more easily if the training data is embedded into a low-dimensional space, such that

the embedded training samples (or features) lie on a union of 1-dimensional subspaces.

We show that such embedding of the in-distribution (ID) samples provides us with two main ad-

vantages. First, due to compact representation in the feature space, OOD samples are less likely

to occupy the same region as the known classes. Second, the first singular vector of samples be-

longing to a 1-dimensional subspace is their robust representative. Motivated by these findings, we

train a deep neural network such that the ID samples are embedded onto a union of 1-dimensional

subspaces. At the test time, employing Monte Carlo sampling, input samples are detected as OOD
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if they occupy the region corresponding to the ID samples with probability 0. Spectral components

of the ID samples are used as robust representative of this region.

Chapter 5 investigates how we can use the representations generated by neural networks to ef-

fectively summarize huge dataset, by selecting a few representatives. As mentioned earlier, deep

learning based systems employ very large numbers of inputs. However, processing, labeling, and

communication of a large number of input data have remained challenging. Therefore, novel ma-

chine learning methods that make the best use of a significantly less amount of data are of great

interest. For example, active learning (AL) [20] aims at addressing this problem by training a

model using a small number of labeled data, testing the trained model on a large number of unla-

belled data, and then querying the labels of some selected data, which then are used for training

a new model. In this context, preserving the underlying structure of data by a succinct format is

an essential concern. Chapter 5 presents a fast and accurate data selection method, in which the

selected samples are optimized to span the subspace of all data. We show how our efficient al-

gorithm (linear complexity w.r.t. the number of data), in conjunction with deep feature extractors

can achieve superior performance in different application such as active learning for video action

recognition; learning using representatives; and video summarization.

Similarly, Chapter 6 discusses a framework that uses the embedding space generated by neural

networks to search and retrieve images from huge datasets. Specifically, we introduce a new face

image retrieval task, where the input face query is augmented by both a modification vector that

specifies the desired adjustments to the facial attributes and a preference vector that assigns differ-

ent levels of importance to different attributes. For example, a user can ask for retrieving images

similar a query image, but with a different hair color and no preference for absence/presence of

eyeglasses in the results. To achieve this, we propose to learn a set of disentangled basis vectors in

the latent space of Generative Adversarial Networks (GANs) [21]. We show how such basis vec-

tors can be employed to adjust the attributes, to define an attribute-weighted distance metric, and
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to retrieve similar face images. To disentangle various semantics, we propose to enforce orthogo-

nality and sparsity constraints on the basis vectors corresponding to the attributes. We show how

these constraints lead to more precise and easier control of attributes and better image retrieval.

1.2 Unsupervised Representation Learning

In many applications the input-output pairs are not available and the representation learning task

need to be carried out in an unsupervised setting. In such cases, prior knowledge on the sig-

nal of interest can be manipulated to reveal the hidden low-dimensional representations. Such

representations are preferred to be a succinct summary of the original raw data and are usually

employed for denoising, outlier rejection, missing data estimation, compression, and/or revealing

the latent structures. For the task of unsupervised representation learning, we introduce two new

methods, namely adaptive non-uniform compressive sensing (Chapter 7) and nonnegative matrix

factorization with piece-wise constant priors (Chapter 8). We will show how they can be used for

compression and missing data estimation.

In Chapter 7, adaptive non-uniform compressive sampling (ANCS) of time-varying signals, which

are sparse in a proper basis, is introduced. Compressed sensing (CS) [22, 23] states that most of

the signals of scientific interest can be approximated very accurately using a smaller number of

measurements, compared to the dimension of the signal. For that, the signal needs to be sparse

or have a sparse representation in terms of proper sparsifying bases. This observation has a huge

impact in signal processing, machine learning, and statistics. Chapter 7 considers the problem of

reconstructing a correlated time series of such compressible vectors from their noisy undersampled

measurement. In many applications, coefficients of the signal of interest have different importance

levels and the region of interest (ROI) is not known a priori. For instance, the salient area in

a sequence of video frames or support of a sparse signal can be considered as the ROI. ANCS
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employs the measurements of previous time steps to design the measurement matrix and distribute

the sensing energy among the coefficients more intelligently. To this aim, a Bayesian inference

method is proposed, which introduces an unsupervised learning component to the traditional CS

framework and improves the reconstruction ability in the ROI. ANCS has been shown to be an

effective method in designing sampling hardwares [24].

In Chapter 8, we will discuss how sparsity constraint can be exploited to facilitate imposing struc-

tures on the latent representation of the signal. We show the effectiveness of the method in estimat-

ing the missing entries in data collected by a network of spectrum sensors. Particularly, we propose

a missing spectrum data recovery technique using Nonnegative Matrix Factorization (NMF). It is

shown that the spectrum measurements collected from sensors can be factorized as product of a

channel gain matrix times an activation matrix. Then, an NMF method with piece-wise constant

activation coefficients is introduced to analyze the measurements and estimate the missing spec-

trum data. However, solving the factorization problem with piece-wise continuity constraint is not

an easy task. Thus, a Majorization-Minimization technique is developed to solve the proposed

optimization problem. The proposed technique is able to accurately and efficiently estimate the

missing spectrum data in the presence of noise and fading.

1.3 Fault Tolerant Data Analysis

Another desirable feature for machine learning and signal processing frameworks is the ability to

extract information from the raw data and/or the representations of the data in a robust, fault toler-

ant, manner. Due to the proliferation of inexpensive hardwares for data gathering and processing

units, the data is now being gathered and processed by many, possibly unreliable, devices. Thus, it

is necessary for any data analysis framework to be able to detect and handle faulty data, and even

faulty processing units. In this thrust, we discuss two possible approaches on how we can robustify

6



the data processing framework to faults in both the collection (Chapter 10) and processing (Chapter

9) phases.

Particularly, in Chapter 9, we will introduce an asynchronous parallel algorithm to solve a sparse

recovery problem. In parallel algorithms, the task is partitioned among many processing units to

reduce the computational and storage requirements, and/or to preserve the privacy. Asynchronous

methods are highly desirable, as some subset of the processing units does not need to wait for

another subset to finish their tasks, unlike synchronous techniques. This makes the asynchronous

parallel algorithms robust to slow and non-functioning nodes. However, asynchronous parallel

algorithms are often studied for separable optimization problems where the component objective

functions are sparse, or act on only a few components of the unknown variable. One challenge

to developing asynchronous approaches for sparse recovery is that the optimization formulation

of this problem has dense component objective functions. However, the assumed sparsity of the

signal may be exploited in an asynchronous parallel approach. In Chapter 9, we propose such

an approach where multiple processors asynchronously infer hidden variables that estimate the

support of the signal in a Bayesian manner.

Finally, in Chapter 10, we will discuss how a particular class of optimization problems known as

generalized trust region subproblems (GTRS) can be made robust against faulty measurements.

Particularly, the problem of target localization in the presence of outlying sensors is tackled. This

problem is important in practice because in many real-world applications the sensors might report

irrelevant data unintentionally or maliciously. We propose a localization method based on robust

statistics, seeking to eliminate the effect of outliers. The problem is formulated by applying robust

statistics techniques on squared range measurements and two different approaches to solve the

problem are proposed. The first approach is computationally efficient; however, only the objective

convergence is guaranteed theoretically. On the other hand, the whole-sequence convergence of

the second approach is established. To enjoy the benefit of both approaches, they are integrated
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to develop a hybrid algorithm that offers computational efficiency and theoretical guarantees. The

algorithms are evaluated for different simulated and real-world scenarios. The numerical results

show that the proposed methods meet the Cràmer-Rao lower bound (CRLB) for a sufficiently large

number of measurements. When the number of the measurements is small, the proposed position

estimator does not achieve CRLB though it still outperforms several existing localization methods.
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CHAPTER 2: BACKGROUND

In this chapter, we discuss some of the background needed to facilitate the understanding of the

contents of this dissertation. Specifically, in Chapter 3, Chapter 4, Chapter 5, and Chapter 6, we

study or modify the inner workings of deep neural networks and in Chapter 7 and Chapter 9 we

propose techniques to improve compressive sensing systems. Thus, it is worthwhile to go over a

brief summary of these machine learning and signal processing paradigms.

2.1 Deep Neural Networks

Deep neural networks can be considered as the generalization of classical classification methods,

such as support vector machines (SVMs). Their success during the last decade is largely owed to

the development of new optimization techniques, collection of large-scale datasets, and advance-

ments in processing hardwares. A simple binary classification problem can be defined as follows:

Given a set of vectors {xn}Nn=1, their corresponding binary labels {yn}Nn=1, and a new unlabelled

vector x, we want to be able to guess its label ŷ. To solve this problem, an SVM model can be

trained by optimizing the following objective function:

L =
1

n

N∑
n=1

max(0, 1− yn(wTxn − b)) + λ‖w‖2
2,

wherew and b are the learnable model parameters. The first term is the classification loss, namely

hinge loss, and the second term is `2-regularization term on the weights. At the test time, we

can estimate the label as ŷ = σ(wTx − b), where σ(.) is the step function or its differentiable

counterpart, the sigmoid function. In words, if the inner product of x with w is larger than b, we

will assign label 1 tox, and 0 otherwise. In this setting, the direction of vectorw is perpendicular to
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the decision boundary and b determines the position of the decision boundary along that direction.

Thus, w and b characterize the decision boundary of our classifier. Figure 2.1 illustrates this for a

simple example in a 2-dimensional space.

Figure 2.1: An illustration of the decision boundary learned by an SVM classifier for a binary classification
problem in a 2-dimensional space. The vector w is perpendicular to the decision boundary and the scalar b
determines its position with respect to the origin.

This formulation can be generalized to multiple classes, by finding a decision boundary for each

class, ŷ = σ(Wx− b), where each row of W is a vector perpendicular to the decision boundary

of its corresponding class, each element in b determines the position of its corresponding decision

boundary, and σ(.) is an elementwise nonlinear function. The classification function σ(Wx− b),

which is a composition of a linear operator and a nonlinear operator, divides the input space into

multiple regions, characterized by the learned decision boundaries. We can create exponentially

more regions if we stack several of these functions on top of each other. This is the idea behind

Multilayer Perceptron (MLP). MLP is one of the earliest versions of neural network and consists of

only a few hidden layers. Each layer has a linear operation (matrix multiplication), followed by an

element-wise nonlinear operator (activation function), similar to our SVM example σ(Wx− b).
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The next development in the neural network literature was the introduction of the convolutional

neural networks. In many applications, such as image, video, and audio processing, the signal of

interest is shift-invariant. Thus, by employing a shift-invariant linear operator, i.e. convolution, we

can hard-code this shift invariance assumption into our model. This leads to significant reduction

in the number of parameters, easier implementation, and reduction in the size of the solution space.

As mentioned earlier, deeper neural networks are able to separate their input space into exponen-

tially more linear response regions than their shallow counterparts, despite using the same number

of computational units [10]. In other words, a shallow network requires exponentially many more

hidden units that a deep network. Thus, in general, deeper neural networks are desirable, as they

lead to parameter and data efficiency.

To train such models, similar to the SVM example, the parameters of the model can be optimized

by minimizing some loss function using gradient descent. However, in the case of neural networks

with multiple layers we need to backpropagate the gradient through the layers using the chain rule.

Specifically, since the output of the lth layer can be written as xl = Fl(xl−1) = σ(W lxl−1 − bl),

the gradient of the loss L with respect to xl−1 can be calculated as

∂L

∂xl−1

=
∂xl
∂xl−1

∂L

∂xl
= W T

l σ
′(W lxl−1 − bl)

∂L

∂xl
.

Thus, given the gradient at lth layer, ∂L
∂xl

, we can calculate the the gradient at the (l − 1)th layer

∂L
∂xl−1

, using a matrix multiplication. However, in deeper neural networks, due to the multiplication

effect, the gradient can increase/decrease exponentially with l. This leads to stability issues and/or

complete of halt of the training. This phenomena, which is referred to as exploding/vanishing

gradient, makes the training of the deep neural networks very difficult. In other words, although

increasing the number of layers increases the representational ability of the model, it hurts the

performance, due to the optimization issues.
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This degradation problem was addressed by the deep residual learning framework [12]. In this

framework, each block in the model tries to fit a residual mapping, i.e., xl = xl−1 + Fl(xl−1),

instead of the mapping itself xl = Fl(xl−1). This means that the propagation of the gradients

through the layers will have an additive form, instead of a multiplicative form:

∂L

∂xl−1

= (1 +
∂Fl(xl−1)

∂xl−1

)
∂L

∂xl
=
∂L

∂xl
+
∂Fl(xl−1)

∂xl−1

∂L

∂xl
.

This modification in the model enabled the deep residual networks to be trained without difficulties

and lowered both the training and generalization error of neural networks. In this thesis, we will

discuss the learning dynamics of residual networks (ResNets) in more details in Chapter 3.

Neural networks have also been used to generate synthetic, but realistic, samples. To achieve this,

an adversarial training framework was proposed by Goodfellow et. al. [21]. In this scheme, two

neural networks, namely the generator and the discriminator, are trained simultaneously. The dis-

criminator is trained such that it can distinguish between real and fake images, while the generator

is trained to be able to generate realistic fake images and to fool the discriminator. During the

training, the discriminator network becomes better and better at detecting fake synthetic images,

while the generator network becomes better at fooling the discriminator, leading to more realistic

fake images. Such architecture, known as generative adversarial network (GAN), has proved to be

able to generate hyper-realistic images. In Chapter 6, we use the latent space created by a GAN to

devise an image retrieval framework.

2.2 Compressive Sensing

Many real-world signals, including images, videos, wideband radio signals, and biomedical sig-

nals, are sparse or can be sparsely represented in some proper basis, e.g. Fourier or wavelet domain.
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This means that the signal of interest can be written as a linear combination of only a few of the

basis vectors/functions in the basis set. Compressive sensing [22, 25] enables us to recover such

compressible signals from their undersampled random projections. This means that we can po-

tentially sample the signal at rates much lower than the Nyquist rate, while not losing much in

terms of reconstruction accuracy. This is specially important in cases where sampling the signal at

Nyquist rate is very expensive, such as wideband signals or infrared imaging.

Specifically, a vector x ∈ RN is considered sparse in some basis if it can be represented as a

linear combinaiton of only k � N of the basis vectors. According to the compressive sensing

paradigm, we can recover x from only M � N random measurements. Such measurements are

usually obtained as y = Φx, where Φ ∈ RM×N is a well-chosen random matrix. This means that

each entry in the measurement vector y is a random linear combination of the entries in the signal

of interest x. The recovery of the original signal involves solving an under-determined system of

equations, with possibly infinite solutions. But our prior knowledge of sparsity of x enables us

to find a unique solution. It has been shown that under certain conditions, we can recover x by

solving the following optimization problem:

min
x
‖x‖1 subject to y = Φx

where ‖.‖1 is the `1 norm operator, i.e., the sum of the absolute values of the vector. This optimiza-

tion problems is referred to as basis pursuit (BP) [22]. The condition under which BP can find the

solution with very high probability is referred to as restricted isometry property (RIP). Specifically,

if for any 2k-sparse vector v, the measurement matrix satisfies:

(1− δ2k)‖v‖2
2 ≤ ‖Φv‖2

2 ≤ (1 + δ2k)‖v‖2
2,

for some 0 < δ2k < 1, BP can recover k-sparse signals using Φ with very high probability.
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Intuitively, RIP states that the measurement matrix does not change the norm of any 2k-sparse

vector much. This is important because if we have two k-sparse signals x1 and x2, the difference

vector x1 − x2 can be a 2k-sparse vector. Thus, in order to be able to distinguish between x1 and

x2, Φ needs to preserve the distance between them, i.e., ‖x1 − x2‖2
2, as much as possible (smaller

the δ2k, the better). RIP is obeyed by many types of matrices such as Guassian random matrices.

In Chapter 7 and Chapter 9, we show how we can use Bayesian inference in measurement or

reconstruction steps to improve the performance.
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CHAPTER 3: NORM-PRESERVATION: WHY RESIDUAL NETWORKS

CAN BECOME EXTREMELY DEEP?

It is known that the depth of the network, i.e., number of stacked layers, is of decisive significance.

It is shown that as the networks become deeper, they are capable of representing more complex

mappings [10]. However, deeper networks are notoriously harder to train. As the number of layers

is increased, optimization issues arise and, in particular, avoiding vanishing/exploding gradients

is essential to optimization stability of such networks. Batch normalization, regularization, and

initialization techniques have shown to be useful remedies for this problem [26, 27]1.

Furthermore, it has been observed that as the networks become increasingly deep, the performance

gets saturated or even deteriorates [11]. This problem has been addressed by many recent network

designs [11, 12, 29, 30]. All of these approaches use the same design principle: skip connections.

This simple trick makes the information flow across the layers easier, by bypassing the activations

from one layer to the next using skip connections. Highway Networks [29], ResNets [11, 12], and

DenseNets [30] have consistently achieved state-of-the-art performances by using skip connections

in different network topologies. The main goal of skip connection is to enable the information to

flow through many layers without attenuation. In all of these efforts, it is observed empirically

that it is crucial to keep the information path clean by using identity mapping in the skip con-

nection. It is also observed that more complicated transformations in the skip connection lead

to more difficulty in optimization, even though such transformations have more representational

capabilities [12]. This observation implies that identity skip connection, while provides adequate

representational ability, has a great feature of optimization stability, enabling deeper well-behaved

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, N. Rahnavard, and M. Shah, “Norm-
Preservation: Why Residual Networks Can Become Extremely Deep?,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, p. 1, 2020, c© 2020 IEEE [28].
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networks.

Since the introduction of Residual Networks (ResNets) [11, 12], there have been some efforts on

understanding how the residual blocks may help the optimization process and how they improve the

representational ability of the networks. Authors in [31] showed that skip connection eliminates the

singularities caused by the model non-identifiability. This makes the optimization of deeper net-

works feasible and faster. Similarly, to understand the optimization landscape of ResNets, authors

in [32] prove that linear residual networks have no critical points other than the global minimum.

This is in contrast to plain linear networks, in which other critical points may exist [33]. Further-

more, authors in [34] show that as depth increases, gradients of plain networks resemble white

noise and become less correlated. This phenomenon, which is referred to as shattered gradient

problem, makes training more difficult. Then, it is demonstrated that residual networks reduce

shattering, compared to plain networks, leading to numerical stability and easier optimization.

In this chapter, we present and analytically study another desirable effect of identity skip connec-

tion: the norm preservation of error gradient, as it propagates in the backward path. We show

theoretically and empirically that each residual block in ResNets is increasingly norm-preserving,

as the network becomes deeper. This interesting result is in contrast to hypothesis provided in [35],

which states that residual networks avoid vanishing gradient solely by shortening the effective path

of the gradient.

Furthermore, we show that identity skip connection enforces the norm-preservation during the

training, leading to well-conditioning and easier training. This is in contrast to the initialization

techniques, in which the initialization distribution is modified to make the training easier [26, 36].

This is done by keeping the variance of weights gradient the same across layers. However, as

observed in [36] and verified by our experiments, using such initialization methods, although the

network is initially fairly norm-preserving, the norms of the gradients diverge as training pro-
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gresses.

We analyze the role of identity mapping as skip connection in the ResNet architecture from a the-

oretical perspective. Moreover, we use the insight gained from our theoretical analysis to propose

modifications to some of the building blocks of the ResNet architecture. Two main contributions

of this chapter are as follows.

• Proof of the Norm Preservation of ResNets: We show that having identity mapping in

the shortcut path leads to norm-preserving building blocks. Specifically, identity mapping

shifts all the singular values of the transformations towards 1. This makes the optimization

of the network much easier by preserving the magnitude of the gradient across the layers.

Furthermore, we show that, perhaps surprisingly, as the network becomes deeper, its building

blocks become more norm-preserving. Hence, the gradients can flow smoothly through very

deep networks, making it possible to train such networks. Our experiments validate our

theoretical findings.

• Enhancing Norm Preservation: Using insights from our theoretical investigation, we pro-

pose important modifications to the transition blocks in the ResNet architecture. The transi-

tion blocks are used to change the number of channels and feature map size of the activations.

Since these blocks do not use identity mapping as the skip connection, in general, they do

not preserve the norm of the gradient. We propose to change the dimension of the activations

in a norm preserving manner, such that the network becomes even more norm-preserving.

For that, we propose a computationally efficient method to set the nonzero singular values

of the convolution operator, without using singular value decomposition. We refer to the

proposed architecture as Procrustes ResNet (ProcResNet). Our experiments demonstrate

that the proposed norm-preserving blocks are able to improve the optimization stability and

performance of ResNets.
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The rest of the chapter is organized as follows. In Section 3.1, the theoretical results and the bounds

for norm-preservation of linear and nonlinear residual networks are presented. Then, in Section

3.2, we show how to enhance the norm preservation of the residual networks by introducing a new

computationally efficient regularization of convolutions. To verify our theoretical investigation

and to demonstrate the effectiveness of the proposed regularization, we provide our experiments in

Section 3.3. Finally, Section 3.4 draws conclusions.

3.1 Norm-Preservation of Residual Networks

Our following main theorem states that, under certain conditions, a deep residual network rep-

resenting a nonlinear mapping is norm-preserving in the backward path. We show that, at each

residual block, the norm of the gradient with respect to the input is close to the norm of gradi-

ent with respect to the output. In other words, the residual block with identity mapping, as the

skip connection, preserves the norm of the gradient in the backward path. This results in sev-

eral useful characteristics such as avoiding vanishing/exploding gradient, stable optimization, and

performance gain.

Suppose we want to represent a nonlinear mappingF : RN → RN with a sequence of L non-linear

residual blocks of form:

xl+1 = xl + Fl(xl). (3.1)

As illustrated in Figure 3.1(b), xl and xl+1 represent respectively the input and output at lth layer.

Fl(xl) is the residual transformation learned by the lth layer. Before presenting the theorem, we

lay out the following assumptions on F .

Assumption 3.1. The function F : RN → RN is differentiable, invertible, and satisfies the follow-

ing conditions:
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(i) ∀x,y, z with bounded norm, ∃α > 0, ‖(F ′(x)−F ′(y))z‖ ≤ α‖x− y‖‖z‖,

(ii) ∀x,y with bounded norm, ∃β > 0, ‖F−1(x)−F−1(y)‖ ≤ β‖x− y‖, and

(iii) ∃x with bounded norm such that Det(F ′(x)) > 0,

α and β are constants, independent of network size and architecture. Also, we assume that the

domain of inputs is bounded. By rescaling inputs, we can assume, without loss of generality, that

‖x1‖2 ≤ 1 for any input x1.

We would like to emphasize the point that these assumptions are on the mapping that we are

trying to represent by the network, not the network itself. Thus, assumptions are independent of

architecture. Assumptions (i) and (ii) mean that the function F is smooth, Lipschitz continuous,

and its inverse is differentiable. The practical relevance of invertibility assumption is justified by

the success of reversible networks [37–39]. Reversible architectures look for the true mapping F

only in the space of invertible functions and it is shown that imposing such strict assumption on the

architecture does not hurt its representation ability [38]. Thus, the mapping F is either invertible

or can be well approximated by an invertible function, in many scenarios. However, unlike the

reversible architectures, we do not assume residual blocks or the residual transformations, Fl(.),

are invertible, which makes the assumption less strict. Furthermore, our extensive experiments in

Section 3.3 show that our theoretical analysis, which is based on these assumptions, hold. This is

further empirical justification that these assumptions are relevant in practice. Finally, Assumption

(iii) is without loss of generality [32, 40].

Theorem 3.1. Suppose we want to represent a nonlinear mapping F : RN → RN , satisfying

Assumption 3.1, with a sequence of L non-linear residual blocks of form xl+1 = xl + Fl(xl).

There exists a solution such that for all residual blocks we have:

(1− δ)‖ ∂E
∂xl+1

‖2 ≤ ‖
∂E
∂xl
‖2 ≤ (1 + δ)‖ ∂E

∂xl+1

‖2,
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where δ = c log(2L)
L

, E(.) is the cost function, and c = c1 max{αβ(1 + β), β(2 + α) + α} for some

c1 > 0. α and β are constants defined in Assumption 3.1.

Proof. See Appendix A.1.

This theorem shows that the mapping F can be represented by a sequence of L non-linear residual

blocks, such that the norm of the gradient does not change significantly, as it is backpropagated

through the layers. One interesting implication of Theorem 3.1 is that as L, the number of lay-

ers, increases, δ becomes smaller and the solution becomes more norm-preserving. This is a very

desirable feature because vanishing or exploding gradient often occurs in deeper network archi-

tectures. However, by utilizing residual blocks, as more blocks are stacked, the solution becomes

extra norm-preserving.

Now that we proved such a solution exists, we show why residual networks can remain norm pre-

serving throughout the training. For that, we consider the case where Fl(xl) consists of two layers

of convolution and nonlinearity. The following corollary shows the bound on norm preservation

of the residual block depends on the norm of the weights. Therefore, if we bound the optimizer to

search only in the space of functions with small norms, we can ensure that the network will remain

norm preserving throughout the training. Therefore, any critical point in this space is also norm-

preserving. On the other hand, based on Theorem 3.1, we know that at least one norm preserving

solution exists. It is also known that, under certain conditions, any critical point achieved dur-

ing optimization of ResNets is a global minimizer, meaning that it achieves the same loss function

value as the global minimum[32, 40, 41]. Thus, this result implies that ResNets are able to maintain

norm-preservation throughout the training and if they converge, the solution is a norm-preserving

global minimizer. The conclusions of the corollary can be easily generalized for residual block

with more than two layers.
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Corollary 3.1. Suppose a network contains non-linear residual blocks of form xl+1 = xl +

W
(2)
l ρ(W

(1)
l ρ(xl)), where ρ(.) is an element-wise non-linear operator with bounded derivative,

i.e., 0 ≤ ∂ρn(xl)
∂xl,n

≤ cρ,∀n = 1, . . . , N . Then, we have:

(1− δ)‖ ∂E
∂xl+1

‖2 ≤ ‖
∂E
∂xl
‖2 ≤ (1 + δ)‖ ∂E

∂xl+1

‖2

and δ = c2
ρ‖W (1)

l ‖2‖W (2)
l ‖2.

Proof. See Appendix A.3

Here, ‖.‖2 is the induced matrix norm and is the largest singular value of the matrix, which is

known to be upper bounded by the entry-wise `2 norm. This means that norm-preservation is

enforced throughout the training process, as long as the norm of the weights are small, not just at

the beginning of the training by good initialization. This is the case in practice, since the weights of

the network are regularized either explicitly using `2 regularization, also known as weight decay,

or implicitly by the optimization algorithm [42, 43]. Thus, the gradients will have very similar

magnitudes at different layers, and this leads to well-conditioning and faster convergence [36].

Although Theorem 3.1 holds for linear blocks as well, we can derive tighter bounds for linear

residual blocks by taking a slightly different approach. For that, we model each linear residual

block as:

xl+1 = xl +W lxl, (3.2)

where, xl,xl+1 ∈ RN are respectively the input and output of the lth residual block, with dimension

N . The weight matrix W l ∈ RN×N is the tunable linear transformation. The goal of learning is

to compute a function y = M(x,W), where x = x1 is the input, y = xL+1 is its corresponding

output, andW is the collection of all adjustable linear transformations, i.e.,W 1,W 2, . . . ,W L. In
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the case of simplified linear residual networks, functionM(x,W) is a stack of L residual blocks,

as formulated in (3.2). Mathematically speaking, we have:

y =M(x,W) =
L∏
l=1

(I +W l)x, (3.3)

where I is anN×N identity matrix.M(x,W) is used to learn a linear mappingR ∈ RN×N from

its inputs and outputs. Furthermore, assume that y is contaminated with independent identically

distributed (i.i.d) Gaussian noise, i.e., ŷ = Rx + ε, where ε is a zero mean noise vector with

covariance matrix I . Hence, our objective is to minimize the expected error of the maximum

likelihood estimator as:

min
W
E(W) = E{1

2
‖ŷ −M(x,W)‖2

2}, (3.4)

where the expectation E is with respect to the population (x,y). The following theorem states the

bound on the norm preservation of the linear residual blocks.

Theorem 3.2. For learning a linear map, R ∈ RN×N , between its input x and output y contam-

inated with i.i.d Gaussian noise, using a network consisting of L linear residual blocks of form

xl+1 = xl + W lxl, there exists a global optimum for E(.), as defined in (3.4), such that for all

residual blocks we have

(1− δ)‖ ∂E
∂xl+1

‖2 ≤ ‖
∂E
∂xl
‖2 ≤ (1 + δ)‖ ∂E

∂xl+1

‖2

for L ≥ 3γ, where δ = c
L

, c = 2(
√
π+
√

3γ)2, and γ = max(| log σmax(R)|, | log σmin(R)|), where

σmax(R) and σmin(R), respectively, are maximum and minimum singular values ofR.

Proof. See Appendix A.2

Similar to the nonlinear residual blocks, the linear blocks become more norm-preserving as we
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increase the depth. However, the linear blocks become norm-preserving at a faster rate. The

gradient norm ratio for the linear blocks approaches 1 with a rate of O( 1
L

), while this ratio for

nonlinear blocks approaches 1 with a rate of O( log(L)
L

).

image conv transition
block

non-
transition
block

. . . transition
block

non-
transition
block

. . . transition
block

non-
transition
block

. . . fully con-
nected

(a) Block diagram of ResNet

xl conv conv conv + xl+1

(b) Residual block with identity mapping (non-transition
block)

conv

xl conv conv conv + xl+1

(c) Origianl ResNet transition block

xl conv* conv conv conv + xl+1

(d) Proposed transition block

xl conv conv conv xl+1

(e) Plain block (transition and non-transition block in a
network without skip connections)

Figure 3.1: ResNet architecture and its building blocks. Each conv block represents a sequence
of batch normalization, ReLU, and convolution layers. conv* block represents the regularized
convolution layer.

3.2 Procrustes Residual Network

As depicted in Figure 3.1(a), residual networks contain four different types of blocks: (i) convolu-

tion layer (first layer), (ii) fully connected layer (last layer), (iii) transition blocks (which change

the dimension) as depicted in Figure 3.1(c), and (iv) residual blocks with identity skip connec-

tion, as illustrated in Figure 3.1(b), which we also refer to as non-transition blocks. Theoretical

investigation presented in Section 3.1 holds only for residual blocks with identity mapping as the

skip connection. Such identity skip connection cannot be used in the transition blocks, since the
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size of the input is not the same as the size of output. If the benefits of residual networks can be

explained, at least partly, by norm-preservation, then one can improve them by alternative methods

for preserving the norm. In this section, we propose to modify the transition blocks of ResNet

architecture, to make them norm-preserving. Due to multiplicative effect through the layers, mak-

ing these layers norm-preserving may be important, although they make up a small portion of the

network. In the following, we discuss how to preserve the norm of the back-propagated gradients

across all the blocks of the network.

As depicted in Figure 3.1(c), in the original ResNet architecture, the dimension changing blocks,

also known as transition blocks, use 1 × 1 convolution with stride of 2 in their skip connections

to match the dimension of input and output activations. Such transition blocks are not norm-

preserving in general.

Figure 3.1(d) shows the block diagram of the proposed norm-preserving transition block. To

change the dimension in a norm-preserving manner, we utilize a norm preserving convolution

layer, conv*. For that, we project the convolution kernel onto the set of norm preserving kernels by

setting its singular values. Here, we show how we can make the convolution layer norm preserving

by regularizing the singular values, without using singular value decomposition. Specifically, the

gradient of a convolution layer with kernel of size k, with c input channels, and d output channels

can be formulated as:

∆x = Ŵ∆y, (3.5)

where ∆x and ∆y respectively are the gradients with respect to the input and output of the convo-

lution. ∆y is an n2d dimensional vector, representing n× n pixels in d output channels, and ∆x is

an n2c dimensional vector, representing the gradient at the input. Furthermore, Ŵ is an n2c×n2d

dimensional matrix embedding the back-propagation operation for the convolution layer. We can
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represent this linear transformation as:

∆x =
n2c∑
j=1

σjuj < ∆y,vj >, (3.6)

where {σj,uj,vj} is the set of singular values and singular vectors of Ŵ . Furthermore, since the

set of the right singular vectors, i.e., {vj}, is an orthonormal basis set for ∆y, we can write the

gradient at the output as:

∆y =
n2d∑
j=1

vj < ∆y,vj > .

Thus, we can compute the expected value of the norm of the gradients as:

E[‖∆x‖2
2] =

n2c∑
j=1

σ2
jE[| < ∆y,vj > |2],

E[‖∆y‖2
2] =

n2d∑
j=1

E[| < ∆y,vj > |2],

where we use the fact that uTi uj = vTi vj = 0 for i 6= j and uTj uj = vTj vj = 1 and the

expectation is over the data population. We propose to preserve the norm of the gradient, i.e.,

E[‖∆x‖2
2] = E[‖∆y‖2

2], by setting all the non-zero singular values to σ. It is easy to show that we

can achieve this by setting

σ2 =

∑n2d
j=1 E[| < ∆y,vj > |2]∑
j,σj 6=0 E[| < ∆y,vj > |2]

, (3.7)

where the summation in the denominator is over the singular vectors vj corresponding to the

nonzero singular values, i.e., σj 6= 0. The ratio in (3.7) is the ratio of expected energy of ∆y,

i.e. E[‖∆y‖2
2], divided by the portion of energy that does not lie in the null space of Ŵ . We

make the assumption that this ratio can be approximated by n2d
n2 min(d,c)

. This assumption implies
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that about n2 min(d,c)
n2d

of the total energy of ∆y will lie in the n2 min(d, c)-dimensional subspace,

corresponding to orthonormal basis set {vj|σj 6= 0}, of our n2d-dimensional space. It is easy to

notice that the assumption holds if the energy of ∆y is distributed uniformly among the directions

in the basis set {vj}. But, since we are taking the sum over a large number of bases, it can also

hold with high probability in cases where there is some variation in the distribution of energies

along different directions. This is not a strict assumption in high dimensional spaces and we will

investigate the practical relevance of this assumption in a real-world setting shortly. Thus, we can

achieve norm preservation by setting all the nonzero singular values to
√

d
min(d,c)

. We can enforce

this equality without using singular value decomposition. For that, we use the following theorem

from [44]. This theorem states that the singular values of the convolution operator can be calculated

by finding the singular values of the Fourier transform of the slices of the convolution kernels.

Theorem 3.3. (Theorem 6 from [44]) For any convolution kernelK ∈ Rk×k×d×c acting on an n×

n× d input, let Ŵ be the matrix encoding the linear transformation computed by a convolutional

layer parameterized byK. Also, for each u, v ∈ [n]× [n], let P (u,v) ∈ Cd×c be the matrix given by

P
(u,v)
i,j = (Fn(K :,:,i,j))u,v, where Fn(.) is the operator describing an n× n 2D Fourier transform.

Then, the set of singular values of Ŵ is the union (allowing repetitions) of all the singular values

of P (u,v) matrices ∀u, v.

Proof. See [44].

Hence, to satisfy the condition (3.7), we can set all the nonzero singular values of P (u,v) to√
d

min(d,c)
for all u and v. This can be done by finding the matrix P̂

(u,v)
that minimizes ‖P (u,v) −

P̂
(u,v)‖2

F , such that P̂
(u,v)T

P̂
(u,v)

= d
min(d,c)

I , where ‖.‖F denotes the Frobenius norm and I is a

c× c identity matrix. It can be shown that the solution to this problem is given by

P̂
(u,v)

=

√
d

min(d, c)
P (u,v)(P (u,v)TP (u,v))−

1
2 . (3.8)
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This is closely related to Procrustes problems, in which the goal is to find the closest orthogonal

matrix to a given matrix [45]. Finding the inverse of the square root of product P (u,v)TP (u,v) can

be computationally expensive, specifically for large number of channels c. Thus, we exploit an

iterative algorithm that computes the inverse of the square root using only matrix multiplications.

Specifically, one can use the following iterations to compute (P (u,v)TP (u,v))−
1
2 [46]:

T k = 3I −ZkY k,

Y k+1 =
1

2
Y kT k,

Zk+1 =
1

2
T kZk,

(3.9)

for k = 0, 1, . . . and the iterators are initialized as:

Y 0 = P (u,v)TP (u,v),Z0 = I.

It has been shown that Zk converges to (P (u,v)TP (u,v))−
1
2 quadratically [46]. Since the iterations

only involve matrix multiplication, they can be implemented efficiently on GPUs.

Algorithm 1 Update rules for transition kernels at each iteration
Input: Convolution kernelK at the current iteration

1: Perform the gradient descent step on the kernelK.
2: Calculate P (u,v) for each u, v ∈ [n]× [n] as P (u,v)

i,j = (Fn(K :,:,i,j))u,v.

3: Compute (P (u,v)TP (u,v))−
1
2 using (3.9).

4: Calculate P̂
(u,v)

using (3.8).
5: UpdateK using the inverse 2D Fourier transform of P̂

(u,v)
.

Thus, to keep the convolution kernels norm preserving throughout the training, at each iteration,

we compute the matrices P (u,v) and set the nonzero singular values using (3.8). Algorithm 1 sum-

marizes the operations performed at each iteration on the kernels of the regularized convolution

layers. To keep the desired norm-preservation property after performing the gradient descent step,

such as SGD, Adam, etc, the proposed scheme is used to re-enforce norm-preservation on the up-
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dated kernel. In this manner, we can maintain norm-preservation, while updating the kernel during

the training. Our experiments in Section 3.3 show that performing the proposed projection on the

transition block of deep ResNets increases the training time by less than 8%. Also, since the num-

ber of transition blocks are independent of depth, the deeper the network gets, the computational

overhead of the proposed modification becomes less significant. Figure 3.1(d) shows the diagram

of the proposed transition block, where a regularized convolution layer, conv*, is used to change

the dimension. Hence, we are able to exploit a regular residual block with identity mapping, which

is norm preserving.

Similar to [26], to take into the account the effect of a ReLU nonlinearity and to make a Conv-Relu

layer norm-presering, we just need to add a factor of
√

2 to the singular values and set them to√
2d

min(d,c)
. Intuitively, the element-wise ReLU sets half of the units to zero on average, making the

expected value of the energy of the gradient equal to E[‖∆x‖2
2] = 1

2

∑n2c
j=1 σ

2
jE[| < ∆y,vj > |2].

Therefore, to compensate this, we need to satisfy this condition:

1

2

n2c∑
j=1

σ2
jE[| < ∆y,vj > |2] =

n2d∑
j=1

E[| < ∆y,vj > |2]

It is also worthwhile to mention that since we are trying to preserve the norm of the backward

signal, the variable n in Theorem 3.3 represents the size of feature map size at the output of the

convolution.

To evaluate the effectiveness of the proposed projection, we design the following experiment. We

perform the projection on the convolution layers of a small 3-layer network. The network consists

of 3 convolutional layers, followed by ReLU non-linearity. To examine the gradient norm ratio

for different number of input and output channels, the second layer is a 3 × 3 convolution with c

input channels and d output channels. The first and third layers are 1 × 1 convolutions to change
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the number of channels and to match the size of the input and output layers. Figure 3.2 shows the

gradient norm ratio, i.e., ‖ ∂E
∂xl+1
‖2 to ‖ ∂E

∂xl
‖2, for different values of c and d at 10th training epoch

on CIFAR-10, with and without the proposed projection. The values are averaged over 10 different

runs.

It is evident that the proposed projection enhances the norm preservation of the Conv-ReLU layer,

as it moves the gradient norm ratios toward 1. The only failure case is for networks with very

small c and c � d. This is because, due to the smaller size of the space, our assumption that the

energy of the signal in the n2c dimensional subspace, corresponding to the n2c non-zero singular

values, is approximately n2c
n2d

of the total energy of the signal, is violated with higher probability.

However, in more practical settings, where the number of channels is large and the assumption is

held, the proposed projection performs as expected. This experiment illustrates the validity of our

analysis as well as the effectiveness of the proposed projection for such practical scenarios. In the

next section, we demonstrate the advantages of the proposed method for image classification task.
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Figure 3.2: The ratio of gradient norm at output to gradient norm at input, i.e., ‖ ∂E
∂xl+1
‖2 to ‖ ∂E

∂xl
‖2,

of a convolution layer for different number of input and output channels at 10th training epoch (a)
with, and (b) without the proposed regularization on the singular values of the convolution.
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3.3 Experiments

To validate our theoretical investigation, presented in Section 3.1, and to empirically demonstrate

the behavior and effectiveness of the proposed modifications, we experimented with Residual Net-

work (ResNet) and the proposed Procrustes Residual Network (ProcResNet) architectures on CI-

FAR10 and CIFAR100 datasets. Training and testing datasets contain 50,000 and 10,000 images

of visual classes, respectively [47]. Standard data augmentation (flipping and shifting), same as

[11, 12, 30], is adopted. Furthermore, channel means and standard deviations are used to normalize

the images. The network is trained using stochastic gradient descent. The weights are initialized

using the method proposed in [26] and the initial learning rate is 0.1. Batch size of 128 is used for

all the networks. The weight decay is 10−4 and momentum is 0.9. The results are based on the

top-1 classification accuracy.

Experiments are performed on three different network architectures: 1. ResNet contains one con-

volution layer, L residual blocks, three of which are transition blocks, and one fully connected

layer. Each residual block consists of three convolution layers, as depicted in Figure 3.1(b) and

Figure 3.1(c), resulting in a network of depth 3L + 2. This is the same architecture as in [12].

2. ProcResNet has the same architecture as ResNet, except the transition layers are modified, as

explained in Section 3.2. In this design, 3 extra convolution layers are added to the network. How-

ever, we can use the first convolution layer of the original ResNet design to match the dimensions

and only add two extra layers. This leads to a network of depth 3L + 4. 3. Plain network is also

same as ResNet without the skip connection in all the L residual blocks, as shown in Figure 3.1(e).

Furthermore, to decrease the computational burden of the proposed regularization, we perform

the projection, as described in Section 3.2, every 2 iterations. This reduces the computation time

significantly without hurting the performance much. In this setting, performing the proposed reg-

ularization increases the training time for ResNet164 about 7.6%. However, since we perform the
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regularization only on three blocks, regardless of the depth, as the network becomes deeper the

computational overhead becomes less significant. For example, implementing the same projec-

tions on ResNet1001 increases the training time by only 3.5%. This is significantly less computa-

tion compared to regularization using SVD, which leads to 53% and 23% training time overhead

for ResNet164 and ResNet1001, respectively2.

3.3.1 Norm-Preservation

In the first set of experiments, the behavior of different architectures is studied as the function

of network depth. To this end, the ratio of gradient norm at output to gradient norm at input,

i.e., ‖ ∂E
∂xl+1
‖2 to ‖ ∂E

∂xl
‖2, is captured for all the residual blocks3, both transition and non-transition.

Figure 3.3 shows the ratios for different blocks over training epochs. We ran the training for 100

epochs, without decaying the learning rate. Plain network (Figure 3.3.(g)) with 164 layers became

numerically unstable and the training procedure stopped after 10 epochs.

Several interesting observations can be made from this experiment:

• This experiment emphasizes the fact that one needs more than careful initialization to make the

network norm-preserving. Although the plain network is initially norm-preserving, the range of

the gradient norm ratios becomes very large and diverges from 1, as the parameters are updated.

However, ResNet and ProcResNet are able to enforce the norm-preservation during training

procedure by using identity skip connection.

• As the networks become deeper, the plain network becomes less norm preserving, which leads

to numerical instability, optimization difficulty, and performance degradation. On the contrary,

2An implementation of ProcResNet is provided here: https://github.com/zaeemzadeh/ProcResNet
3In Plain architecture, which does not have skip connections, the gradient norm ratio is obtained at the input and

output of its building blocks as depicted in Figure 3.1(e).
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Figure 3.3: Training on CIFAR10. Gradient norm ratio over the first 100 epochs for transition
blocks (blocks that change the dimension) and non-transition blocks (blocks that do not change
the dimension). The darker color lines represent the transition blocks and the lighter color lines
represent the non-transition blocks. The proposed regularization enhances the norm-preservation
of the transition blocks effectively.
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the non-transition blocks, the blocks with identity mapping as skip connection, of ResNet and

ProcResNet become extra norm preserving. This is in line with our theoretical investigation

for linear residual networks, which states that as we stack more residual blocks the network

becomes extra norm-preserving.

• Comparing Plain83 (Figure 3.3(d)) and Plain164 (Figure 3.3(h)) networks, it can be observed

that most of the blocks behave fairly similar, except one transition block. Specifically, in Plain83,

the gradient norm ratio of the first transition block goes up to 100 in the first few epochs. But

it eventually decreases and the network is able to converge. On the other hand, in Plain164, the

gradient norm ratio of the same block becomes too large, which makes the network unable to

converge. Hence, a single block is enough to make the optimization difficult and numerically

unstable. This highlights the fact that it is necessary to enforce norm-preservation on all the

blocks.

• In ResNet83 (Figure 3.3(e)) and ResNet164 (Figure 3.3(h)), it is easy to notice that only 3

transition blocks are not norm preserving. As mentioned earlier, due to multiplicative effect, the

magnitude of the gradient will not be preserved because of these few blocks.

• The behaviors of ResNet and Plain architectures are fairly similar for depth of 20. This was

somehow expected, since it is known that the performance gain achieved by ResNet is more

significant in deeper architectures [11]. However, even for depth of 20, ProcResNet architecture

is more norm preserving.

• In ProcResNet, the only block that is less norm preserving is the first transition block, where the

3 RGB channels are transformed into 64 channels. This is because, as we have shown in Figure

3.2, under such condition, where the number of input channels is very small, the assumption

that energy of the gradient signal in the low-dimensional subspace, corresponding to the few

non-zero singular values, is approximately proportional to the size of the subspace is violated
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with higher probability.

• The ratios of the gradients for all networks, even the Plain network, are roughly concentrated

around 1, while training is stable. This shows that some degree of norm preservation exists in

any stable network. However, as clear in the Plain network, such biases of the optimizer is not

enough and we need skip connections to enforce norm preservation throughout training and to

enjoy its desirable properties. Furthermore, although the transition blocks of ResNet tend to

converge to be more norm preserving, our proposed modification enforces this property for all

the epochs, which leads to stability and performance gain, as will be discussed shortly.

This experiment both validates our theoretical arguments and clarifies some of the inner workings

of ResNet architecture, and also shows the effectiveness of the proposed modifications in ProcRe-

sNet. It is evident that, as stated in Theorem 3.1, addition of identity skip connection makes the

blocks increasingly extra norm-preserving, as the network becomes deeper. Furthermore, we have

been able to enhance norm-preserving property by applying the changes proposed in Section 3.2.

3.3.2 Optimization Stability and Learning Dynamics

In the next set of experiments, numerical stability and learning dynamics of different architectures

is examined. For that, loss and classification error, in both training and testing phases, are de-

picted in Figure 3.4. This experiment illustrates that how optimization stability of deep networks

is improved significantly, and how it can be further improved by having norm preservation in mind

during the design procedure.

As depicted in Figure 3.4, unlike the plain network, training error and loss curves corresponding

to ResNet and ProcResNet architectures are consistently decreasing as the number of layers in-

creases, which was the main motivation behind proposing residual blocks [11]. Moreover, Figure

34



3.4(a) and Figure 3.4(d) show that the plain networks have a poor generalization performance.

The fluctuations in testing error shows that the points along the optimization path of the plain net-

works do not generalize well. This issue is also present, to a lesser extent, in ResNet architecture.

Comparing Figure 3.4(h) and 3.4(b), we can see that the fluctuations are more apparent in deeper

ResNet networks. However, in proposed ProcResNet architecture, the amplitude of the fluctua-

tions is smaller and does not change as the depth of the network is increased. This indicates that

ProcResNet architecture is taking a better path toward the optimum and has better generalization

performance.

To quantify this, we repeated the training 10 times with different random seeds and measured the

generalization gap, which is the difference between training and testing classification error, for the

first 100 epochs. Table 3.1 shows the mean and max generalization gap, averaged over 10 different

runs. This results indicate that generalization gap of ProcResNet is smaller. Furthermore, the

generalization gap fluctuates far less significantly for ProcResNet, as quantified by the difference

between mean generalization gap and maximum generalization gap.

Table 3.1: Mean and maximum generalization gap (%) during the first 100 epochs of trainingon
CIFA10 for different network architectures, averaged over 10 runs.

Depth
Plain ResNet ProcResNet

mean max mean max mean max
20 6.7 20.0 5.5 23.1 2.3 8.3
83 7.5 30.1 5.1 12.5 2.0 7.7
164 - - 5.2 18.7 3.3 8.7

The implication of this is that by modifying only a few blocks in an extremely deep network, it is

possible to make the network more stable and improve the learning dynamics. This emphasizes the

utmost importance of norm-preservation of all blocks in avoiding optimization difficulties of very

deep networks. Moreover, this sheds light on the reasons why architectures using residual blocks,
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Figure 3.4: Loss (black lines) and error (blue lines) during training procedure on CIFAR10. Solid
lines represent the test values and dotted lines represent the training values. This experiments
shows how the residual connections enhance the stability of the optimization and how the proposed
regularization enhances the stability even further.

or identity skip connection in general, perform so well and are easier to optimize.
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3.3.3 Classification Performance

In this section, we show the impact of the proposed norm-preserving transition blocks on the classi-

fication performance of ResNet. Table 3.2 compares the performance of ResNet and its EraseReLU

version, as proposed in [48], with and without the proposed transition blocks. The results for

standard ResNet are the best results reported by [12] and [48] and the results of ProcResNet are

obtained by making the proposed changes to standard ResNet implementation.

Table 3.2 shows that the proposed network performs better than the standard ResNet. This perfor-

mance gain comes with a slight increase the number of parameters (under 1%) and by changing

only 3 blocks. The total number of residual blocks for ResNet164 and ResNet1001 are 54 and 333,

respectively. Furthermore, Figure 3.5 compares the parameter efficiency of ResNet and ProcRes-

Net architectures. The results indicate that the proposed modification can improve the parameter

efficiency significantly. For example, ProcResNet274 (with 2.82M parameter) slightly outperforms

ResNet1001 (with 10.32M parameters). This translates into about 4x reduction in the number of

parameters to achieve the same classification accuracy. This illustrates that we are able to im-

prove the performance by changing a tiny portion of the network and emphasizes the importance

of norm-preservation in the performance of neural networks.
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Figure 3.5: Comparison of the parameter efficiency on CIFAR10 between ResNet and ProcResNet.
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Finally, Table 3.3 investigates the impact of changing the architecture, i.e., moving the convolution

layer from the skip connection to before the skip connection, and performing the proposed regular-

ization, separately. Each of these design components have positive impact on the performance of

the network, as both of them enhance the norm preservation of the transition block, which further

highlights the impact of norm preservation on the performance of the network.

Table 3.2: Performance of different methods on CIFAR-10 and CIFAR-100 using moderate data
augmentation (flip/translation). The modified transition blocks in ProcResNet can improve the
accuracy of ResNet significantly.

Architecture Setting # Params Depth
Error (%)

CIFAR10 CIFAR100

ResNet [12]
pre-activation

1.71M 164 5.46 24.33
10.32M 1001 4.62 22.71

ErasedReLU[48]
1.70M 164 4.65 22.41

10.32M 1001 4.10 20.63

ProcResNet
pre-activation

1.72M 166 4.75 22.61
10.33M 1003 3.72 19.99

ErasedReLU[48]
1.72M 166 4.53 21.91

10.33M 1003 3.42 18.12

Table 3.3: Ablation study on ResNet with 164 layers on CIFAR100.

Transition Block Projection Error (%)
Original No 24.33
Modified No 23.06
Modified Yes 22.61

3.4 Conclusions

This chapter theoretically analyzed building blocks of residual networks and demonstrated that

adding identity skip connection makes the residual blocks norm-preserving. This means that the
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norm-preservation is enforced during the training procedure, which makes the optimization stable

and improves the performance. This is in contrast to initialization techniques, such as [36], which

ensure norm-preservation only at the beginning of the training. Our experiments validated our

theoretical investigation by showing that (i) identity skip connection results in norm preservation,

(ii) residual blocks become extra norm-preserving as the network becomes deeper, and (iii) the

training can become more stable through enhancing the norm preservation of the network. Our

proposed modification of ResNet, Procrustes ResNet, enforces norm-preservation on the transition

blocks of the network and is able to achieve better optimization stability and performance. For

that we proposed an efficient regularization technique to set the nonzero singular values of the

convolution operator, without performing singular value decomposition. Our findings can be seen

as design guidelines for very deep architectures. By having norm-preservation in mind, we will be

able to train extremely deep networks and alleviate the optimization difficulties of such networks.
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CHAPTER 4: OUT-OF-DISTRIBUTION DETECTION USING UNION

OF 1-DIMENSIONAL SUBSPACES

The goal of out-of-distribution (OOD) detection is to handle the situations where the test samples

are drawn from a different distribution than the training data. In this work, we claim that we can

improve the OOD detection performance by constraining the representation of in-distribution (ID)

samples in the feature space. Particularly, if we embed the training samples such that the feature

vectors belonging to each known class lie on a 1-dimensional subspace, OOD samples can be

detected more robustly with higher probability, compared to a class-conditional non-degenerate

Gaussian embeddings. Such a union of 1-dimensional subspaces representation provides us with

two main advantages. First, due to compact representation in the feature space, OOD samples are

less likely to occupy the same region as the known classes. In other words, a random vector in a

high-dimensional space lies on a specific 1-dimensional line with probability 0. Second, we show

that the first singular vector of a 1-dimensional subspace is a robust representative of its samples.

We exploit these two desirable features and reject samples as OOD, if they occupy the region

corresponding to the training samples with probability 0. This region is identified by the set of

the first singular vectors of the training classes. To estimate the probability, we use Monte Carlo

sampling techniques used in Bayesian deep learning such as [49, 50]1.

Our work is primarily motivated by the rich literature of spectral methods in signal processing and

machine learning. Spectral techniques have been proven to be very effective for different tasks such

as robust estimation and detection [52, 53], learning mixture models [54], representative selection

[55], and defense against backdoor attacks [56]. We are also inspired by the OOD detection method

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, N. Bisagno, Z. Sambugaro, N. Conci,
N. Rahnavard, and M. Shah, “Out-of-Distribution Detection Using Union of 1-Dimensional Subspaces,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, c© 2021 IEEE [51]
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proposed in [19], in which authors use the ID feature vectors to estimate their distribution and to

detect OOD samples. In contrast, we engineer the distribution of ID feature vectors to minimize

the error probability, without knowing the distributions of OOD samples, and enforce our desired

distribution on the feature vectors. Our proposed method does not need extra information or a

subset of OOD examples for hyperparameter tuning or validation. This is in contrast to many

existing methods that use some subset of the OOD samples, either during validation [14, 15, 19,

57], or even during training [58, 59]. Despite improving the results, the availability of such extra

information is questionable in many real-world applications. Furthermore, our technique can be

easily deployed on many existing frameworks and different modalities, e.g. images, videos, etc. In

summary, this chapter makes the following contributions:

• We demonstrate that if feature vectors lie on a union of 1-dimensional subspaces, the OOD

samples can be robustly detected with high probability and we show how we can impose such

constraint on the ID feature vectors (Section 4.2);

• We propose a new OOD detection test, which exploits the first singular vector of the feature

vectors extracted from the training set, in conjunction with MC sampling (Section 4.3);

• Our framework does not have hyperparameters, does not need extra information, and can be

easily applied to existing methods with minimal change. Furthermore, the proposed method can

be applied to different domains such as images and videos.

4.1 Related Work

The problem of detecting outliers and anomalies in the data has been extensively studied in ma-

chine learning and signal processing communities and is closely related to outlier detection, a topic

that has been greatly studied both in the supervised [60] and unsupervised [61] settings. The liter-
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ature in this area is sizable. Thus, we mainly focus on the recent deep learning approaches. These

methods either estimate the distribution of ID samples [19, 57] or use a distance metric between

the test samples and ID samples to detect OOD samples [13, 14].

Many of the existing approaches employ the OOD datasets during training [58, 59] or validation

steps [14, 15, 19, 57, 62, 63]. For instance, in [59], the network is fine-tuned during the training

to increase the distance between ID and OOD distributions. Other interesting methods, such as

[14, 15, 19], apply a perturbation on each sample at test time to exploit the robustness of their

network in detecting ID samples. However, they use part of the OOD samples to fine-tune the per-

turbation parameters. On the other hand, methods that rely on generative models or autoencoders,

such as [57], also require hyperparameter tuning for loss terms, regularization terms, and/or latent

space size. Authors in [64] propose to use extra supervision, in particular several word embed-

dings, to construct a better latent space and to detect OOD samples more accurately. A table

summarizing the prior work and how they leverage extra information is provided in Appendix B.

Having access to extra information certainly helps with the performance. However, it can be ar-

gued that OOD detectors should be completely agnostic of unknown distributions, which is a more

realistic scenario in the wild. On the other hand, only a few approaches, such as [13, 18, 65–67], do

not require the OOD samples neither during training nor validation. For instance, Hendricks and

Gimpel [13] show how the softmax layer can be used to detect OOD samples, when its prediction

score is below a threshold. In [18], the authors rely on reconstructing the samples to produce a

discriminative feature space. However, methods that rely on either reconstruction or generation

[18, 57, 65] do not perform well in scenarios where sample generation or reconstruction is more

difficult, such as large-scale datasets or video classification.
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4.2 Union of 1-dimensional Subspaces for Out-of-Distribution Detection

Given a training dataset consisting of N sample-label pairs belonging to L known classes, our

goal is to train a neural network such that at the test time it can be determined if an unlabeled

sample is an out-of-distribution sample (not belonging to any of the L known classes) or not. We

are particularly interested in the scenarios where OOD samples are not available. Thus, we do

not use OOD samples during training or validation. We argue that OOD detection performance

can be improved if the feature vectors from the known classes lie on a union of 1-dimensional

subspaces. In short, such embedding has two main properties that we can take advantage for

OOD detection: (i) Due to the compactness of ID samples in the feature space, OOD samples can

be detected with higher probability, compared to conventional class-conditional non-degenerate

Gaussian embeddings, and (ii) First singular vector of the samples in each class can be used as a

robust representative of that class and can be effectively employed to distinguish between the ID

and OOD samples. Below, we discuss each of these advantages in more details.

Distribution-agnostic minimization of error probability: Computing the error probability for

OOD detection is a difficult task to carry out. This is due to the fact that, by definition, we do

not have much information about the probability distribution of the OOD samples. However, it

can be shown that the probability of error can be minimized by making the distribution of the

known classes as compact as possible. Specifically, consider the binary classification problem of

distinguishing between the OOD samples and samples from one of the known classes, following

multivariate Gaussian distributions with different means and covariance matrices N (µo,Σo) and

N (µi,Σi), respectively. It has been shown [68] that the classification error probability pe can be

upper bounded by: pe ≤ √pipoe−B, where pi and po are the probability of samples belonging to
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the known class and OOD samples, respectively. B is the Bhattacharyya distance defined as:

B =
1

8
∆T (

Σi + Σo

2
)−1∆ +

1

2
ln(

det(Σi+Σo

2
)√

det(Σi) det(Σo)
),

where ∆ = µi − µo is the distance between the means of the two distributions. The first term in

B represents the Mahalanobis distance between µi and µo, using Σi+Σo

2
as the covariance matrix.

The second term is a measure of compactness of the distributions. The larger the det(Σi) is, the

more its corresponding samples are spread out. Thus, even without any knowledge about µo, Σo,

pi, and po, one can increase B by making N (µi,Σi) as compact as possible. In the extreme case,

where the samples lie on a perfect 1-dimensional subspace, error probability will be 0, unless the

OOD feature vectors have the exact same distribution as the known class. To demonstrate this in

further details, consider the following toy examples:

Example 1: Let Σo =

1 0

0 1

 and Σi =

1 0

0 ε2

 , ε � 1, meaning that the ID samples occupy an

almost 1-dimensional subspace of the 2-dimensional space. In this example, the second term in

above equation becomes ln(1+ε2

2ε
), which approaches infinity as ε→ 0, making pe very small. This

is true even if µi = µo.

Example 2: Let Σo = Σi =

1 0

0 ε2

 , ε � 1,µi =

µi1
µi2

 ,µo =
µo1
µo2

, i.e., ID and OOD samples

have the same degenerate covariance matrix. In this case, the second term becomes 0, but the first

term, which is the Mahalanobis distance between the mean vectors, is 1
8
[(µi1 − µo1)2 + 1

ε2
(µi2 −

µo2)2]. If ε→ 0, pe approaches 0, unless (µi2−µo2)2 → 0 as well. This means that if the means of

the distribution have some mismatch along the degenerate direction, even though very small, OOD

samples can be detected with very small pe.

Thus, by enforcing the ID feature vectors to lie on 1-dimensional subspaces, we can detect slight

mismatches between the distribution of the OOD samples in feature space and the distribution of
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ID samples, which leads to better OOD detection.

First singular vector as a robust representative: In the context of robust statistics, the first

singular vector has been shown to be a great tool to define robust mean and covariance estima-

tors [52]. In addition, the first singular vector has been used to select the representatives of the

class[55]. It can be shown that the first singular vector is robust to perturbations and noise. Let

X l denote an M × N matrix containing N M -dimensional feature vectors belonging to class l.

Furthermore, consider the autocorrelation matrix of the class l defined as C l = X lX
T
l . Eigen-

vectors and eigenvalues ofC l are the left singular vectors and the square of singular values ofX l,

respectively. Adding noise or adding a new noisy column in X l perturbs C l, without changing

its dimensions. To quantify the sensitivity of eigenvectors of C l against perturbations, we use the

following Lemma.

Lemma 4.1. (from [55]) Assume square matrix C and its spectrum [λi,vi]. Then, ‖∂vi‖2 ≤√∑
j 6=i

1
(λi−λj)2 ‖∂C‖F , where ‖.‖F denotes Frobenius norm and the partial derivative is taken

with respect to any scalar variable.

If we take the partial derivative with respect to an entry in C, we can see that the sensitivity

of the ith spectral component, vi, to perturbations in C, is inversely related to the gap between

its corresponding eigenvalue λi and other eigenvalues λj, j 6= i. Therefore, we can define the

sensitivity coefficient of the ith eigenvector of a square matrix as si ,
√∑

j 6=i
1

(λi−λj)2 . In general,

the first singular component v1 is the least sensitive direction to the perturbations. This is because,

in many scenarios, the gap between consecutive eigenvalues is decreasing (see [69] and references

therein), which leads to s1 < si, ∀i ≥ 2. However, we can further increase the robustness, by

embedding the ID feature vectors onto a union of 1-dimensional subspaces. Since the singular

values represent the amount of energy concentrated along their corresponding singular vector, if

almost all of the energy of the data points in each class is concentrated along its corresponding
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first singular vector, we will have large λ1 and small λi, i ≥ 2 for all the classes. Therefore, if the

feature vectors belonging to the same class lie on a 1-dimensional subspace, we can use the first

singular vector of X l as a robust representative of the class subspace in the feature space and to

reject outliers, as shown in Section 4.3.
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Figure 4.1: Overall architecture of the proposed framework. A neural network (e.g., WideResnet28) maps
the input onto a feature space. Then, the cosine similarities between the extracted feature xn and the class
vectors wl are used to compute the class membership probabilities. wls are set to predefined orthonormal
vectors and are not updated during training. This leads to the desired embedding, union of uncorrelated
1-dimensional subspaces. At test time, the cosine similarity between the test samples and the first singular
vector corresponding to each class is used to distinguish between the ID and OOD samples.

4.2.1 Enforcing the Structural Constraints

Intraclass Constraint: We can make the feature vectors for each known class to lie on a 1-

dimensional subspace by employing cosine similarity. This can be achieved by modifying the

softmax function to predict the membership probability using pln = e| cos(θln)|∑
l e
| cos(θln)| , where pln is the

probability of membership of feature vector n in class l and cos(θln) =
wT
l xn

‖wl‖‖xn‖
is the cosine

similarity between the learned feature vector xn and the weights of the last fully connected layer

corresponding to class l, i.e.,wl. Note that, unlike other methods which employ angular margin
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[70, 71], we use the absolute value of the cosine similarity to compute the class memberships.

This is due to the fact that the subspace membership, and therefore the class membership, does not

change if a vector is multiplied by −1. By employing such activation function, the feature vectors

of each class are aligned to its corresponding weight vector wl. In other words, class l forms a

1-dimensional subspace along the direction of wl in the feature space. Therefore the final loss

function to be minimized is defined as:

L =
1

N

N∑
n=1

− log(
e| cos(θ∗n)|∑
l e
| cos(θln)| ), (4.1)

where θ∗n is angle between the nth feature vector and the weight vector corresponding to its true

label.

Interclass Constraint: By using the absolute cosine similarity as the classification criteria, we can

ensure the feature vectors are angularly distributed in the space and form a union of 1-dimensional

subspaces. To boost the interclass separation of the known classes, we need to decrease the inter-

class similarity, in terms of cosine similarity. Minimum interclass cosine similarity can be enforced

by ensuring thatwl are orthogonal to each other. We achieve this by simply initializing the weight

matrix with orthonormal vectors, as described in [72], and freezing them during the training. Or-

thogonal initialization requires that M > L, which is often the case in practice (feature space

dimension is larger than number of classes). In other words, the feature extractor, i.e., the deep

neural network, is trained such that it can map each input sample in class l onto a predefined

1-dimensional subspace represented by the direction of wl.

Figure 4.1 shows the overall architecture of the proposed framework. The neural network maps

the input sample onto a low-dimensional space, where the known classes are represented by a set

of orthonormal vectors. The cosine similarity between the extracted feature from the nth input

sample, xn, and the vector corresponding to the class subspace, wl, is used to determine the class
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Figure 4.2: 3-dimensional representation of the features belonging to the first 3 classes of CIFAR10 training
set, extracted from WideResNet with and without the proposed embedding: (a) features extracted from
a plain WideResnet, (b) features extracted after enforcing the proposed embedding, and (c) same as (b)
after `2-normalizing the feature vectors. The solid lines represent the direction of the first singular vector
corresponding to each class. All the figures contain 3, 000 feature vectors.

membership probability and therefore the label. Figure 4.2 demonstrates the effectiveness of the

proposed framework in enforcing the desired embedding. It shows a 3-dimensional embedding,

obtained by PCA, of the feature vectors belonging to the first 3 classes of CIFAR10. The neural

network, WideResnet28, is trained on all the classes of CIFAR10 with and without enforcing the

proposed structural constraints. Figure 4.2(a) shows that the feature vectors belonging to each

class extracted from a plain WideResnet have a fairly isometric Gaussian structure, meaning that

they are spread out in different direction uniformly. On the other hand, as shown in Figure 4.2(b),

the feature vectors extracted from the same network trained using our proposed technique lie on

a union of 1-dimensional subspaces. We also show the `2-normalized feature vectors in Figure

4.2(c) to remove the scale of the feature vectors and emphasize the angle between each vector and

the singular vector corresponding to its class.

4.3 Out-of-distribution Detection Test

If the feature vectors belonging to the known classes lie on a union of 1-dimensional subspaces,

their corresponding region in the feature space has no volume. Thus, the probability of OOD
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samples being in the region corresponding to any of the known classes, which is the probability of

false negative pfn, is zero. This can be seen using the Bhattacharyya bound, discussed in Section

4.2, pe = popfn + pipfp ≤ √pipoe−B. Therefore, if we make the known classes occupy a tiny

region with no volume in the space, we will have B → ∞ and pfn → 0. We use this property to

classify samples as OOD if they lie inside the region corresponding to any of the known classes

with probability 0. More specifically, given an input instance in and corresponding feature vector

xn, this probability can be estimated using the singular vectors of each class as p(φn ≤ φ∗|in),

where φn is defined as:

φn = min
l

arccos(
|xTnv(l)

1 |
‖xn‖

), (4.2)

which is the minimum angular distance of the test feature vector xn, from the first singular vector

of any of the classes. We name this measure as spectral discrepancy. φ∗ is a critical spectral dis-

crepancy and defines the region belonging to the known classes. Smaller values of φ∗ corresponds

to more compact regions. In the extreme case of φ∗ = 0, the input instance in is detected as

OOD, if it does not have the exact same direction as one of the singular vectors. It is worthwhile

to mention that in the ideal case, the first singular vector of class l, v(l)
1 , would be the same as

wl. However, in practice, the first singular vector is a better representative of the subspace after

training, as training feature vectors may not perfectly align with wl. v
(l)
1 can be computed using

the extracted features from training ID samples of class l. Time complexity order of computing

the first singular vector is linear w.r.t both the number and the dimensions of the feature vectors

[73, 74]. To estimate p(φn ≤ φ∗|in), we employ Monte Carlo sampling. Specifically:

p(φn ≤ φ∗|in) =

∫ φ∗

0

p(φn|in)dφn ≈
1

S

S∑
s=1

I(φsn < φ∗), (4.3)

where S is the number of the Monte Carlo samples and φsn is the spectral discrepancy of the sth

Monte Carlo sample, given input instance in. Furthermore, I(.) is the indicator function that takes
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value 1 if φsn < φ∗ and 0 otherwise. To obtain the samples, we can use the methods proposed

for approximate Bayesian inference in [49, 50]. φ∗ is the decision parameter, which can be set to

achieve a problem-specific precision and/or recall requirements using different methods such as

[75] or by using the training set (as will be discussed in Section 4.4).

Figure 4.3 demonstrates the effectiveness of employing spectral discrepancy in distinguishing be-

tween ID and OOD samples. Similar to Figure 4.2, this figure shows a 3-dimensional representa-

tion of the features that are close to the first 3 classes of the CIFAR10, meaning that the classifier

would classify them as one of these classes. The first two subfigures show the features extracted

from a plain WideResNet. Comparing ID samples (Figure 4.3(a)) with OOD samples (Figure

4.3(b)), it is clear that both ID and OOD samples follow a very similar structure, which makes OOD

detection more difficult. On the other hand, the last two subfigures illustrate the `2-normalized fea-

tures extracted from the WideResNet trained using our proposed embedding. Comparing the ID

(Figure 4.3(c)) and OOD (Figure 4.3(d)) samples, most of the OOD samples have larger angular

distance to their closest singular vector, compared to the ID samples, which can be exploited to

detect them more accurately. A quantitative evaluation of this example, including the histogram

of spectral discrepancies for ID and OOD samples, is provided in Section 4.4 (e.g., Figure 4.4).

Furthermore, an algorithmic description of the training and testing phases of our proposed method

is provided in Appendix B.

4.4 Experiments

Datasets: We train the WideResNet model on CIFAR-10 and CIFAR-100 [47] datasets, which

consist of 50,000 images for training and 10,000 images for testing, with an image size of 32× 32.

The testing set is used as the ID testing samples. Similarly to prior work [14, 19, 66], for the OOD

testing samples, we use the following datasets: (i) TinyImagenet: The Tiny ImageNet dataset
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Figure 4.3: 3-dimensional representation of the features extracted from a plain WideResNet and the same
network with our proposed embedding. (a) ID features extracted from plain network, (b) OOD features
extracted from plain network, (c) ID features extracted using our embedding, and (d) OOD features extracted
using our embedding. The solid lines represent the direction of the first singular vector corresponding to
each class. OOD samples, extracted using our embedding, have larger angular distance to their closest
singular vector. All the figures contain 3000 samples.

Table 4.1: A comparison of OOD detection results, in terms of F1-score, for different ID and OOD datasets.
† represents the results achieved by our re-run of the publicly available codes. The bottom section summa-
rizes the performance of the methods that use a subset of OOD samples for hyperparameter tuning, such as
finding the best perturbation magnitude. Our method does not have any parameters to be tuned.

ID dataset CIFAR10 CIFAR100
OOD dataset TINc TINr LSUNc LSUNr TINc TINr LSUNc LSUNr
SoftMax Pred. [13]† 0.803 0.807 0.794 0.815 0.683 0.683 0.664 0.693
Counterfactual [65] 0.636 0.635 0.650 0.648 - - - -
CROSR [18] 0.733 0.763 0.714 0.731 - - - -
OLTR [66]† 0.860 0.852 0.877 0.877 0.746 0.721 0.753 0.747
Ours 0.930 0.936 0.962 0.961 0.810 0.860 0.769 0.886
Methods that use OOD samples for validation and hyperparameter tuning.
ODIN [14]† 0.902 0.926 0.894 0.937 0.834 0.863 0.828 0.875
Mahalanobis [19]† 0.985 0.969 0.985 0.975 0.974 0.944 0.963 0.952

consists of 10,000 test images of size 36×36 belonging to 200 different classes, which are sampled

from the original 1,000 classes of ImageNet [5]. As in [14, 15] we construct two datasets from

TinyImagenet: TinyImagenet-crop (TINc) and TinyImagenet-resize (TINr), by either randomly

cropping or downsampling each image to a size of 32 × 32. (ii) LSUN: LSUN [76] consists
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of 10,000 test images from 10 different scene categories. Like before, we randomly crop and

downsample the LSUN test set to construct two datasets LSUN-crop (LSUNc) and LSUN-resize

(LSUNr).

Evaluation Metrics: We evaluate the OOD detection performance using the following metrics:

FPR at 95% TPR indicates the false positive rate (FPR) at 95% true positive rate (TPR). Detec-

tion Error indicates the minimum misclassification probability. It is computed by the minimum

misclassification rate over all possible values of φ∗. AUROC, defined as the Area Under the Re-

ceiver Operating Characteristic curve, is computed as the area under the FPR against TPR curve.

AUPR In is computed as the area under the precision-recall curve. For AUPR In, ID images are

treated as positive. AUPR Out is similar to the metric AUPR-In. Opposite to AUPR In, OOD

images are treated as positive. F1 Score is the maximum average F1 score over all possible critical

spectral discrepancy values φ∗.

Table 4.2: Performance of the proposed framework for distinguishing ID and OOD test set data for the
image classification task, using a WideResnet with depth 28 and width 10. ↑ indicates larger value is better
and ↓ indicates lower value is better. All the methods use the same network architecture.

Training OOD FPR at Detection AUROC AUPR In AUPR Out
dataset dataset 95% TPR Error

↓ ↓ ↑ ↑ ↑
Softmax. Pred. [13]/OLTR [66]/ Ours

CIFAR10

TINc 38.9/25.6/9.0 21.9/14.8/6.8 92.9/91.3/98.1 92.5/93.2/98.2 91.9/88.3/98.1
TINr 45.6/28.8/7.6 25.3/15.8/6.2 91.0/90.3/98.5 89.7/92.3/98.6 89.9/87.1/98.4

LSUNc 35.0/21.3/2.8 20.0/13.0/3.7 94.5/92.9/99.4 95.1/94.4/99.4 93.1/90.8/99.4
LSUNr 35.0/21.7/3.4 20.0/13.2/3.8 93.9/92.6/99.3 93.8/94.4/99.4 92.8/90.0/99.3

CIFAR100

TINc 66.6/63.8/41.7 35.8/29.0/18.9 82.0/77.4/88.6 83.3/78.7/89.1 80.2/74.4/87.0
TINr 79.2/72.9/29.42 42.1/32.1/14.2 72.2/73.1/93.7 70.4/73.8/94.0 70.8/69.8/93.8

LSUNc 74.0/59.2/38,8 39.5/29.1/13.9 80.3/76.9/93.8 83.4/80.0/93.6 77.0/72.9/93.1
LSUNr 82.2/61.9/20.3 43.6/29.2/11.3 73.9/77.0/95.7 75.7/79.2/96.0 70.1/73.3/95.7

We deploy WideResNet with depth 28 and width 10 as the neural network architecture. The net-

work parameters are set as the original implementations in [77, 78], except the last layer, which is

modified as discussed in Section 4.2. At the test time, unless otherwise stated, we draw 50 Monte
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Carlo samples to estimate p(φn ≤ φ∗) and to detect the OOD samples. To draw MC samples for the

image classification task, we employ the SWAG-Diag method proposed in [49]. Other uncertainty

estimation methods such as [50, 79–81] can also be used to estimate the uncertainty in conjunction

with our proposed method. Additional training details are provided in Appendix B.

Table 4.1 compares our results with recent OOD detection techniques in terms of F1-score. As

denoted in the table, we use the code provided by the authors from most of the baselines to generate

the results under a fair setting, i.e., same architecture, same datasets, and same metrics. For [18,

65], we provide the results reported by the authors, as these methods rely on reconstruction and/or

generation of samples and the same architecture cannot be used. In addition, since these methods

only report their performance using F1-score, we also use this metric for all the methods. Our

proposed method is able to consistently outperform the competing methods over different datasets,

and is the closest competitor to the techniques that use OOD sample for validation. Table 4.2

compares the performance of our proposed solution with two of the more competitive baselines

over different metrics, using the same network architecture for all the methods. Our results are

consistent over different OOD datasets and different metrics, meaning that our method can perform

well for different types of OOD samples, without any hyperparameter tuning for each OOD dataset.

Table 4.3: Ablation study of the proposed framework using CIFAR10 (ID) and TINr (OOD). While enforc-
ing the structure hurts the ID accuracy slightly, it improves the OOD detection performance significantly.
The remaining two combinations, (No, Yes, No) and (No, Yes, No), are not meaningful.

Union of 1D Orthogonal MC In Disribution OOD
Subspaces Subspaces Samples Accuracy (%) AUROC

No No No 96.0 95.2
No No Yes 96.0 96.3
Yes No No 95.4 95.6
Yes No Yes 95.4 96.8
Yes Yes No 95.4 95.9
Yes Yes Yes 95.4 98.5
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In the ablation study, Table 4.3 investigates the impact of enforcing structure on the OOD detection

using spectral discrepancy. AUROC is computed by using spectral discrepancy for the different

variants. This table shows that, while enforcing the proposed embedding slightly hurts the ID

classification accuracy and does not improve the representation ability of the network, it is an

effective technique to distinguish between ID and OOD samples. This table also shows the effect of

MC samples, which are used to compute the probabilities. As expected, introducing MC sampling

improves the OOD detection performance, regardless of the feature space structure. However, the

improvement is more significant for networks on which our proposed structure is enforced. Further,

MC sampling alone or enforcing 1D subspace alone does not make a significant difference. But the

combination of 1D subspaces and MC samples improves the results significantly. This is mainly

because our method is a probabilistic approach and only works in a probabilistic setting.
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Figure 4.4: (a) Empirical probability distribution of the spectral discrepancy of samples belonging to CI-
FAR10 (ID) and different OOD datasets. (b) Detection error for different values of critical spectral discrep-
ancy φ∗. Both the spectral discrepancy histogram and the best φ∗ do not change significantly for different
datasets.

As a guideline to set the value of the critical spectral discrepancy φ∗, Figure 4.4(a) shows the

histogram of the spectral discrepancy for samples belonging to CIFAR10, as the ID dataset, and

different real OOD datasets. It is evident that samples from both the testing and training set of

the ID dataset follow a very similar behaviour. Thus, the training set can be used to estimate

the possible interval of spectral discrepancies for the ID samples. For instance, about 98% of the
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samples in CIFAR10 have a spectral discrepancy of less than 2 degrees. On the other hand, Figure

4.4(b) demonstrates the detection error for different values of the critical spectral discrepancy φ∗.

This figure shows that best detection error is achieved by setting φ∗ to a value in range [1.3, 2]

degrees, regardless of the OOD dataset. Hence, this figure shows that φ∗ is not sensitive to the OOD

dataset and can be set using only the training set. However, it should be mentioned that in general

the best value for φ∗ depends on the task at hand and the precision and/or recall requirements. As

mentioned earlier, φ∗ can also be set by many of the threshold estimation techniques such as [75].

More experimental results such as quantifying the impact of the number MC samples, robustness

of the first singular vector to perturbations, and ROC curves are provided in Appendix B.

4.5 Conclusion

We showed that the distribution of the ID samples in the feature space plays an important role in

the OOD detection. Particularly, we proposed to embed the ID samples into a low-dimensional

feature space such that each known class lies on a 1-dimensional subspace. Such embedding gives

us two main advantages in the OOD detection task: (i) ID samples occupy a tiny region in the

space and (ii) ID samples have robust representatives. By exploiting these desirable features, our

proposed method is able to outperform state-of-the-art methods in several performance metrics and

different domains.
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CHAPTER 5: ITERATIVE PROJECTION AND MATCHING: FINDING

STRUCTURE-PRESERVING REPRESENTATIVES AND ITS

APPLICATION TO COMPUTER VISION

Due to the proliferation of data gathering devices, an everincreasing amount of data is being gener-

ated and processed in different learning tasks. However, the ability to summarize and select good

representatives from data is crucial in many applications. Furthermore, if a learning agent can

achieve the same performance with fewer data, it is desirable to reduce the data size, as it will ease

the requirements for data storage, communication, and processing. Thus, the goal of data selection

is to capture the most structural information from a set of data. However, selecting a few repre-

sentatives from a set of data points is not an easy task, as it might involve a combinatorial search

over all the possible subsets. Thus, many different approximate solutions have been proposed in

the literature. Approximate solutions has been proposed by exploiting either a convex [82, 83]

or a sub-modular [84] cost function. More recently, authors in [2] and [85] proposed algorithms

to select more representative samples, rather than focusing on diversity of the selected samples.

These approaches have been shown to be effective in some computer vision tasks. However, since

they rely on solving a convex optimization problem, their computational burden is not tractable

for large data sets such as ImageNet. Furthermore, to solve such optimization problems, one need

to set some hyperparameters, which is task- and dataset-dependant and oftentimes requires a grid

search over all possible values1.

This chapter presents a fast and accurate data selection method, in which the selected samples are

optimized to span the subspace of all data. We propose a new selection algorithm, referred to as

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, M. Joneidi, N. Rahnavard, and
M. Shah, “Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to
Computer Vision,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2019-June,
2019, c© 2019 IEEE [55].

56



iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and

without any parameter to be tuned 2. In our algorithm, at each iteration, the maximum information

from the structure of the data is captured by one selected sample, and the captured information

is neglected in the next iterations by projection on the null-space of previously selected samples.

Furthermore, the superiority of the proposed algorithm is shown on active learning for video action

recognition dataset on UCF-101; learning using representatives on ImageNet; training a genera-

tive adversarial network (GAN) to generate multi-view images from a single-view input on CMU

Multi-PIE dataset; and video summarization on UTE Egocentric dataset. In summary, this chapter

makes the following contributions:

• The complexity of IPM is linear w.r.t. number of original data. Hence, IPM is tractable for

larger datasets.

• IPM has no parameters for fine tuning, unlike some existing methods [2, 85]. This makes

IPM dataset- and problem-independent.

• The superiority of the proposed algorithm is shown in different computer vision applications.

5.1 Iterative Projection and Matching (IPM)

Let a1,a2, . . . ,aM ∈ RN be M given data points of dimension N . We define an M ×N matrix,

A, such that aTm is the mth row of A, for m = 1, 2, . . . ,M . The goal is to reduce this matrix into a

K×N matrix,AR, based on an optimality metric. Our proposed cost function for data selection is

the error of projecting all the data onto the subspace spanned by the selected data. Mathematically,

2This study was done collaboratively with my colleague Mohsen Joneidi.
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the optimization problem can be written as,

argmin
|T|=K

‖A− πT(A)‖2
F . (5.1)

πT(A) is the projection of all the data on to the subspace spanned by the K rows of A, indexed

by T. It is easy to show that πT(A) can be expressed by a rank-K factorization, UV T , where

U ∈ RM×K , V T ∈ RK×N , and V T includes the K rows of A, indexed by T, and normalized to

have unit length. Thus, our optimization problem can be rewritten as

argmin
U ,V

‖A−UV T‖2
F s.t. vk ∈ A, (5.2)

where, A = {ã1, ã2, . . . , ãM}, ãm = am/‖am‖2, and vk is the kth column of V . To solve

this problem in a tractable manner (linear time complexity with respect to M ), we take a greedy

approach and select only one sample at a time. In other words, we want to be able to represent

A as uvT , where u ∈ RM , v ∈ RN , and and v ∈ A. The solution to this reduced optimization

problem can be obtained efficiently by solving two consecutive problems as follows:

(u,v) =argmin
u,v

‖A− uvT‖2
F s.t. ‖v‖ = 1, (5.3a)

m(1) =argmax
m

|vT ãm|. (5.3b)

m(1) is the index of the first selected representative. The first subproblem relaxes the original

constraint vk ∈ A to ‖v‖ = 1. This subproblem can be solved by setting v as the first right singular
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vector of A. Time complexity order of computing the first singular vector of an M ×N matrix is

O(MN) [73], i.e., linear time complexity. The second subproblem re-enforces the constraint by

finding the closest sample in A to the solution of the first subproblem. To select more samples, we

first project the data matrix onto the null space of the selected sample and perform the same process

till enough samples are collected. This means that the next sample will be selected by searching

in the null space of the previous selected samples. This makes the overall time complexity of the

proposed methodO(KNM). Furthermore, the sequential nature of our algorithm can be employed

in applications such as active learning, where a new subset of data is added at each cycle. In the next

section, we will investigate the effectiveness of IPM in active learning, as well as non-sequential

scenarios such as video and dataset summarization.

To elaborate the steps in more details, Algorithm 2 demonstrates the proposed scheme in an algo-

rithmic format. It is also worthwhile to mention that the condition that needs to be satisfied for a

good performance is K ≤ N < M . This ensures that the calculated singular vector is reliable and

not impacted by noise. This condition is satisfied in subset selection scenarios, where the dataset

is large, the number of selected samples is a lot less than the number of samples (K � M ), and

we have freedom over the dimension of the samples/features (N ).

Algorithm 2 Iterative Projection and Matching Algorithm
Require: A and K

Output: AT
1: Initialization:
A(1) ←− A
T = {}
for k = 1, · · · , K

2: v ←− first right singular-vector ofA(k) by solving (5.3a)
3: m(k) ←− index of the most correlated data with v (5.3b)
4: T←− T ∪m(k)

5: A(k+1) ←−A(k)(I − ãm(k)ãTm(k)) (null space projection)
end
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Table 5.1: Classification accuracy (%) for action recognition on UCF-101, at different active learn-
ing cycles. The initial training set (cycle 1) is the same for all the methods. The accuracy for cycle
1 is 54.2% and the accuracy using the full training set (9537 samples) is 82.23%.

Mean samples/class 2 3 4 5 6 7 8

Random 60.1± 0.7 65.1± 1.2 68.2± 1.7 69.9± 1.4 71.7± 0.6 73.0± 0.6 74.8± 0.5
Spectral Clustering 62.3± 1.9 66.9± 1.1 68.1± 0.7 68.9± 0.3 70.8± 0.9 71.0± 2.2 71.6± 0.1
K-medoids 60.1± 2.2 65.3± 1.0 68.4± 1.6 69.2± 0.5 72.3± 0.7 73.6± 0.4 74.5± 0.6
OMP 64.2± 0.6 66.6± 0.7 70.8± 1.5 71.7± 0.4 74.3± 0.7 74.3± 0.3 75.4± 0.2
DS3 [2] 64.0± 1.5 66.5± 0.7 67.8± 1.2 68.3± 0.5 69.6± 1.1 70.9± 1.3 71.9± 0.9
Uncertainty [86] 59.5± 0.4 66.7± 1.6 69.4± 1.7 71.5± 1.5 73.9± 0.3 75.5± 0.7 75.9± 1.1
IPM 64.6± 0.7 68.7± 0.3 72.2± 1.0 73.4± 0.9 74.3± 0.4 74.7± 1.4 75.3± 0.6
IPM + Uncertainty 64.3± 0.4 69.4± 0.8 72.8± 1.0 73.8± 0.9 76.2± 1.0 76.3± 0.3 77.9± 0.2

5.2 Applications of IPM

To empirically demonstrate the behavior and effectiveness of the proposed selection technique, we

have performed extensive sets of experiments considering several different scenarios. We divide

our experiments into three different subsections. In Section 5.2.1, we use our algorithm in the

active learning setting and show that IPM is able to reduce the labelling cost significantly, by

selecting the most informative unlabeled samples. Next, in Section 5.2.2, we show the effectiveness

of IPM in selecting the most informative representatives, by training the classifier using only a

few representatives from each class. Lastly, in Section 5.2.3, the application of IPM for video

summarization is exhibited.

5.2.1 Active Learning

Active learning aims at addressing the costly data labeling problem by iteratively training a model

using a small number of labeled data, and then querying the labels of some selected data, using an

acquisition function.

In active learning, the model is initially trained using a small set of labeled data (the initial training
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set). Then, the acquisition function selects a few points from the pool of unlabeled data, asks an

oracle (often a human expert) for the labels, and adds them to the training set. Next, a new model

is trained on the updated training set. By repeating these steps, we can collect the most informative

samples, which often result in significant reductions in the labeling cost. Now, the fundamental

question in active learning is: Given a fixed labeling budget, what are the best unlabeled data

instances to be selected for labeling for the best performance?

In many active learning frameworks, new data points are selected based on the model uncertainty.

However, the effect of such selection only kicks in after the size of the training set is large enough,

so we can have a reliable uncertainty measure. In this section, we show that the proposed selection

method can effectively find the best representatives of the data and outperforms several recent

uncertainty-based and algebraic selection methods.

In particular, we study IPM for active learning of video action recognition, using the 3D ResNet18

architecture, as described in [87]. The experiments are run on UCF-101 human action dataset [6],

and the network is pretrained on Kinetics-400 dataset [88]. We provide the results on split 1.

To ensure that at least one sample per class exists in the training set, for the initial training, one

sample per class is selected randomly and the fully-connected layer of the classifier is fine tuned.

Then, at each active learning cycle, one sample per class is selected, without the knowledge of

the labels, and added to the training set. Next, using the updated training set, the fully connected

layer of the network is fine tuned for 60 epochs, using learning rate of 10−1, weight decay of 10−3,

and batch size of 24 on 2 GPUs. Rest of the implementation and training settings are the same as

[87]. Note that, in this experiment, fine-tuning is only performed to train the fully connected layer,

because it achieved the best accuracy during the preliminary investigation for very small training

sets, which is the scope of this experiment.

The selection is performed on the convolutional features extracted from the last convolutional
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layer of the network. Table 5.1 shows the accuracy of the trained network at each active learning

cycle for different selection methods. The high computational complexity of DS3 prevents its

implementation on all the data [2]. So, we provide the results for DS3 only for the clustered

version, meaning that one sample per cluster is selected using DS3 (clusters are obtained using

spectral clustering). For spectral clustering results, the extracted features are clustered into 101

clusters, and one sample from each cluster is selected randomly. Furthermore, OMP, which stands

for Orthogonal Matching Pursuit, selects the samples that are most correlated with the null space

of the selected samples [89, 90].

The OMP approach is very sensitive to the outliers. Random outliers have low correlation with the

samples and therefore a high correlation with the null space of the selected samples.

For uncertainty-based selection, Bayesian active learning [50, 86] is utilized. For that, a dropout

unit with parameter 0.2 is added before the fully-connected layer and the uncertainty measure is

computed by using 10 forward iterations (following the implementation in [50]). In our experi-

ments, we use variation ratio3 as the uncertainty metric, which is shown to be the most reliable

metric among several well-known metrics [86]. Also, for a fair comparison, the initial training set

is the same for all the experiments at each run.

It is evident that, during the first few cycles, since the classifier is not able to generate reliable

uncertainty score, uncertainty-based selection does not lead to a performance gain. In fact, random

selection outperforms uncertainty-based selection. On the other hand, IPM is able to select the

critical samples. In the first few active learning cycles, IPM is constantly outperforming other

methods, which translates into significant reductions in labeling cost for applications such as video

action recognition.

3Variation ratio of x is defined as 1−maxy p(y|x). which measures lack of confidence.
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As the classifier is trained with more data, it is able to provide us with better uncertainty scores.

Thus to enjoy the benefits of both IPM and uncertainty-based selection, we can use a compound

selection criterion. For the extremely small datasets, samples should be selected only using IPM.

However, as we collect more data, the uncertainty score should be integrated into the decision

making process. Our proposed selection algorithm, unlike other methods, easily lends itself to

such modification. At each selection iteration, instead of selecting the most correlated data with v

(line 3 in Algorithm 2), we can select the samples based on the following criterion:

m∗ = arg max
m

α |vT ãm|+ (1− α) q(am),

where q(.) is an uncertainty measure, e.g. variation ratios. Parameter α determines the relative

importance of the IPM metric versus the uncertainty metric. To gradually increase the impact of

q(.), as the model becomes more reliable, we start by setting α = 1 and multiply it by decay rate

of 0.95 at each active learning cycle. This compound selection criteria leads to better results for

larger dataset sizes.

5.2.2 Learning Using Representatives

In this experiment, we consider the problem of learning using representatives. We find the best

representatives for each class and use this reduced training set for learning. Finding representa-

tives reduces the computation and storage requirements, and can even be used for tasks such as

clustering. In the ideal case, if we collect the samples that contain enough information about the

distribution of the whole dataset, the learning performance would be very close to the performance

using all the data.
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5.2.2.1 Representatives To Generate Multi-view Images Using GAN

Here, we present our experimental results on CMU Multi-PIE Face Database [91]. We use 249

subjects from the first session with 13 poses, 20 illuminations, and two expressions. Thus, there

are 13× 20× 2 images per subject. To investigate the effectiveness of the proposed selection, we

use the selected samples to train a generative adversarial network (GAN) to generate multi-view

images from a single-view input. For that, the GAN architecture proposed in [1] is employed.

Following the experiment setup in [1], only 9 poses between π
6

and 5π
6

are considered. Furthermore,

the first 200 subjects are for training and the rest are for testing. Thus, the total size of the training

set is 72, 000, 360 per subject. All the implementation details are same as [1], unless otherwise is

stated.

Figure 5.1: Multi-view face generation results for a sample subject in testing set using CR-GAN
[1]. The network is trained on reduced training set (9 images per subject) using random selection
(first row), K-medoids (second row), DS3 [2] (third row), and IPM (fourth row). The fifth row
shows the results generated by the network trained on all the data (360 images per subject). IPM-
reduced dataset generates closest results to the complete dataset.

We select only 9 images from each subject (1800 total), and train the network with the reduced

dataset for 300 epochs using the batch size of 36. Figure 5.1 shows the generated images of

a subject in the testing set, using the trained network on the reduced dataset, as well as using

the complete dataset. The network trained on samples selected by IPM (fourth row) is able to
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generate more realistic images, with fewer artifacts, compared to other selection methods (rows

1-3). Furthermore, compared to the results using all the data (row 5), it is clear that IPM-reduced

dataset generates the closest results to the complete dataset. This is because samples selected by

IPM cover more angles of the subject, leading better training of the GAN. See Appendix C for

further experiments and sample outputs.

Table 5.2: Identity dissimilarities between real and generated images by network trained on re-
duced (using different selection methods) and complete dataset.

Method Random K-Medoids DS3 IPM
9 images / subject 0.5616 0.5993 0.6022 0.553
360 images / subject 0.5364

For a quantitative performance investigation, we evaluate the identity similarities between the real

and generated images. For that, we feed each pair of real and generated images to a ResNet18,

trained on MS-Celeb-1M dataset [92], and obtain 256-dimensional features. `2 distances of fea-

tures correspond to the face dissimilarity. Table 5.2 shows the normalized `2 distances between the

real and generated images, averaged over all the images in the testing set. Our method outperforms

other selection methods in this metric as well. Thus, from Figure 5.1 (qualitative) and Table 5.2

(quantitative), we can conclude that the IPM-reduced training set contains more information about

the complete set, compared to other selection methods.

5.2.2.2 Finding Representatives for UCF-101 Dataset

Here, similar to Section 5.2.1, we use a 3D ResNet18 classifier pretrained on Kinetics-400 dataset,

and the selection algorithms are performed on feature space generated by the output of the last

convolutional layer. To find the representatives, we use the selection methods to sequentially find

the most informative representatives from each class. After selecting the representatives, the fully
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connected layer of the network is finetuned in the same manner as described in Section 5.2.1. Table

5.3 shows the performance of different selection methods for different numbers of representatives

per class. As more samples are collected, the performance gap among different methods, including

random, decreases. This is expected, since finding only one representative for each class is a much

more difficult task, compared to choosing many, e.g. 6, representatives.

Table 5.3: Accuracy (%) of ResNet18 on UCF-101 dataset, trained using only the representatives
selected by different methods. The accuracy using the full training set (9537 samples) is 82.23%.

Samples / Class 1 2 3 4 5 6
Random 54.6 64.7 69.2 70.5 72.9 74.0
K-medoids 61.0 67.7 69.4 70.9 71.7 72.0
OMP 51.1 64.6 70.7 72.8 73.0 74.5
DS3[2] 60.8 69.1 74.0 75.2 74.8 75.3
IPM 65.3 72.6 74.9 77.6 77.0 78.5

Using only one representative selected by IPM, we can achieve a classification accuracy of 65.3%,

which is more than 10% improvement compared to random selection and more than 4% improve-

ment compared to other competitors.

Figure 5.2 shows the t-SNE visualization [3] of the selection process for two randomly selected

classes of UCF-101. To visualize the structure of the data, the contours represent the decision func-

tion of an SVM trained in this 2D space. Selection is performed on the original 512-dimensional

feature space. This experiment illustrates that each IPM sample contains new structural informa-

tion, as the selected samples are far away from each other in the t-SNE space, compared to other

methods. Moreover, it is evident that as we collect more samples, the structure of the data is better

captured by the samples selected by IPM, compared to other methods selecting the same number

of representatives. The decision boundaries of the classifier trained on 5 IPM-selected samples

look very similar to the boundaries learned from all the data. This leads to significant accuracy
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improvements, as already discussed and exhibited in Table 5.3.

(a)

IP
M

D
S
3

K
-m

ed
oi
ds

2 Samples 5 Samples 10 Samples

(b)

Figure 5.2: t-SNE visualization [3] of two randomly selected classes of UCF-101 dataset and
their representatives selected by different methods. ((a)) Decision function learned by using all
the data. The goal of selection is to preserve the structure with only a few representatives. ((b))
Decision function learned by using 2 (first column), 5 (second column), and 10 (third column)
representatives per class, using K-medoids (first row), DS3 [2] (second row), and IPM (third row).
IPM can capture the structure of the data better using the same number of selected samples.

5.2.2.3 Finding Representatives for ImageNet

In this section, we use ImageNet dataset [5] to show the effectiveness of IPM in selecting the

representatives for image classification task. For that, first, we extract features from images in an

unsupervised manner, using the method proposed in [93]. We then perform selection in the learned

128-dimensional space and perform k-nearest neighbors (k-NN) using the learned similarity met-

ric, following the experiments in [93]. Here, we show that we can learn the feature space and the

similarity metric in an unsupervised manner, as there is no shortage of unlabeled data, and use only

a few labeled representatives to classify the data.

Due to the volume of this dataset, selection methods based on convex-relaxation, such as DS3 [2]

and SMRS [85], fail to select class representatives in a tractable time. Table 5.4 shows the top-1

67



classification accuracy for the testing set using k-NN. Using less than 1% of the labels, we can

achieve an accuracy of more than 25%, showing the potential benefits of the proposed approach

for dataset reduction. Classification accuracy of k-NN, using the learned similarity metric, reflects

the representativeness of the selected samples, thus highlighting the fact that IPM-selected samples

preserve the structure of the data fairly well.

Table 5.4: Top-1 classification accuracy (%) on ImageNet, using selected representatives from
each class. Accuracy using all the labeled data ( 1.2M samples) is 46.86%. Numbers in () show
the size of the selected representatives as a % of the full training set.

Images per Class 1 5 10 50
(0.08%) (0.4%) (0.8%) (4%)

Random 3.18 8.71 12.97 25.61
K-Medoids 11.78 17.01 17.56 26.86
IPM 12.50 21.69 25.26 30.77

5.2.3 Video Summarization

In this section, we evaluate the performance of the proposed selection algorithm on the video sum-

marization task. The goal is to select key frames/clips and create a video summary, such that it

contains the most essential contents of the video. We evaluate our approach on UT Egocentric

(UTE) dataset [94, 95]. It contains 4 first-person videos of 3-5 hours of daily activities, recorded

in an uncontrolled environment. Authors in [96] have provided text annotations for each 5-second

segment of the video, as well as human-provided reference text summaries for each video. Fol-

lowing [96–98], the performance is evaluated in text domain. For that, a text summary is created

by concatenating the text annotations associated with the selected clips. The generated summaries

are compared with the reference summaries using the ROUGE metric [99]. As in prior work, we

report f-measure and recall using the ROUGE-SU score with the same parameters as in [96–98].
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Table 5.5: F-measure and recall scores using ROUGE-SU metric for UT Egocentric video summa-
rization task. Results are reported for several supervised and unsupervised methods.

Method F-measure Recall
Selection Methods (Unsupervised)
Random 26.30 23.73
Uniform 28.68 25.76
K-medoids 30.11 27.30
DS3 30.13 27.34
IPM 31.53 29.09
Supervised Summarization Methods
SeqDPP [100] 28.87 26.83
Submod-V [98] 29.35 27.43
Submod-V+ [97] 34.15 31.59

Table 5.5 provides the results for two-minute-long summaries (24 5-second samples), generated by

different methods. To generate results using K-medoids, DS3, and IPM, we use 1024-dimensional

feature vectors extracted using GoogleNet [101], as described in [102]. Then, the features are clus-

tered into 24 clusters using K-means and one sample is selected from each cluster using different

selection techniques. The results are the mean results over all the 4 videos and over 100 runs.

Furthermore, for the supervised methods, the results are as reported in [97]. The proposed un-

supervised selection method, IPM, is the closest competitor to the state-of-art supervised method

proposed in [97], outperforming other unsupervised methods and some of the supervised methods.

These supervised methods split the dataset into training, and testing sets and use reference text

or video summaries of the training set to learn to summarize the videos from the test set. This

experiment demonstrates the strength of IPM and the potential benefits of employing it in more

advanced unsupervised or supervised schemes.
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5.3 Conclusions

A novel data selection algorithm, referred to as Iterative Projection and Matching (IPM) is pre-

sented, that selects the most informative data points in an iterative and greedy manner. We showed

that our greedy approach, with linear complexity wrt the dataset size, is able to outperform state-

of-the-art methods, which are based on convex relaxation, in several performance metrics such

as projection error and running time. Furthermore, the effectiveness and compatibility of our

approach are demonstrated in a wide array of applications such as active learning, video summa-

rization, and learning from representatives. This motivates further investigation of the potential

benefits and applications of IPM in other computer vision problems.
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CHAPTER 6: FACE IMAGE RETRIEVAL WITH ATTRIBUTE

MANIPULATION

The problem of image retrieval has been studied in many different applications such as product

search [103, 104] and face recognition [105]. The standard problem formulation for image to

image retrieval task is, given a query image, find the most similar images to the query image

among all the images in the gallery. However, in many scenarios, it is necessary to improve and/or

adjust the retrieval results by incorporating either the user’s feedback or by augmenting the query.

This is due to the fact, in many cases, a perfect query image might not be readily available. Thus,

it is desirable to give the user more control over the results. For example, in the context of fashion

products, authors in [104, 106] exploit the user’s feedback to refine the search results iteratively.

For instance, the method in [104] asks the user a series of visual multiple-choice questions to refine

the search results and to eliminate the semantic gap between the user and the retrieval system.

Another parallel approach is to augment the query with additional information, e.g., adjustment

text, to modify the search results [7]. This is most often done by mapping the multi-modal query

onto a joint embedding space [7, 107, 108]. These approaches treat different semantics the same

and cannot prioritize a subset of attributes. Thus, the user is not able to define a customized distance

metric and to assign importance to the attributes.

In this work, we introduce a new formulation for the image search task in the context of face image

retrieval; and augment the query with both an adjustment vector and a preference vector. The

adjustment vector is used to change the presence of certain attributes in the retrieved images, and

the preference vector is used to assign the importance of the attribute in the results. To the best

of our knowledge, this is the first work that can simultaneously adjust the attributes and assign

preference values to them. Employing a preference vector gives the user the ability to customize
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the similarity criteria. For instance, having eyeglasses might be more important to the user than

having the same hair color. This criteria cannot be specified using only the adjustment vector,

which is a limitation of existing retrieval methods. On the other hand, adjustment vector enables

the user to use an imperfect query image for the search and adjust the attributes to achieve the ideal

results. Furthermore, employing an adjustment vector, as opposed to an adjustment text, provides

us with more flexibility, as many facial attributes cannot be easily described in text, for example

different shades of brown hair.

Query

Default result (no attribute manipulation):

Emphasizing Eyeglasses (increased preference):

Emphasizing Eyeglasses (increased preference)
and adjusting Beard (no beard):

Figure 6.1: Example of face image retrieval by considering both the attribute adjustment and attribute
preference specified by the user.

In the example provided in Figure 6.1, the impact of assigning a larger preference value and adjust-

ing attributes are illustrated. In the middle row, the user has emphasized the attribute Eyeglasses,

by assigning a larger preference value to it, which leads to all the top-5 retrieved images contain-

ing eyeglasses. The user can further fine-tune the results by adjusting any subset of the attributes.

The bottom row shows the retrieved images after both emphasizing the attribute Eyeglasses

and adjusting the attribute Beard, that’s the beard has been removed and the eyeglasses are still
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present.

To achieve this, we employ the recent advancements in generative adversarial networks (GANs).

It has been shown that different semantic attributes are fairly disentangled in the latent space of

StyleGAN [109, 110], even if the generator is trained in an unsupervised manner. This has been

studied and experimentally verified in [8, 109]. This property provides us with an array of desirable

features for face image retrieval. First, since the generator can be trained in an unsupervised

manner, we do not need to have access to a lot of labeled data. A fairly small set of labelled

data can be utilized to interpret the latent semantics learned by the generator. Second, the latent

space provided by a well-trained StyleGAN provides us with an opportunity to both adjust the

attributes and to assign preference to them. For that, we propose to obtain a set of disentangled

attribute vectors in the latent space of StyleGAN. To disentangle the obtained attribute vectors,

we enforce both orthogonality and sparsity constraints on them. We argue that, by making the

attribute vectors sparse, we can decouple the entangled attributes even further. This is due to the

fact that such attribute vectors can manipulate their corresponding semantic by affecting only a

small subset of entries of the latent vector. This promotes selectivity among both the entries of

the latent vector and the layers of the generator of the StyleGAN. On the other hand, by enforcing

orthogonality, we can translate the dissimilarity between each image pair into dissimilarity between

the attributes, assign preference to attributes, and define an attribute-weighted distance metric. In

short, our contributions can be summarized as follows:

• We introduce a new face image retrieval framework that can simultaneously adjust the facial

attributes and assign preference to different attributes in the retrieval task, employing the latent

space of GANs (Section 6.2);

• We propose a new method to extract the directions of different attributes in the latent space,

by learning all the attribute directions simultaneously and enforcing orthogonality and sparsity
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constraints (Section 6.2.1);

• We utilize the learned attribute directions to define a weighted distance metric, to manipulate

semantic attributes of the query, and to assign preference to different attributes for retrieval (Section

6.2.2); and

• The proposed method for image retrieval outperforms the recent state-of-the-art methods that

use compositional learning or GANs for search (Section 6.3).

6.1 Related Work

Attribute-guided face image retrieval: There are many different approaches for image retrieval

task based on metric learning such as [111–115], however they do not consider the task of retrieval

with attribute manipulation. More similar to our attribute-guided retrieval setup, many of the

methods utilize a query image and augment it with either an attribute adjustment text [7, 103, 107,

108, 116] or vector [104, 117]. Some of the prior work focuses on dialog-based interaction between

the user and the retrieval agent, and improving the results in an iterative manner through user’s

feedback [104, 106, 107]. Most of the attribute-aware retrieval methods need huge amounts of

labelled data to generate a semantically meaningful latent space and distance metric [7, 103, 108,

116–118]. The method in [7] employs a new operation, referred to as residual gating, to create the

joint embedding space between the image and text queries, which leads to state-of-the-are results

among compositional learning methods such as [115, 119–123]. However, we propose to leverage

the recent advancements in GAN architectures [21, 109, 110] and use the latent space generated by

a GAN trained in an unsupervised manner, which significantly relaxes the requirements of access

to labelled data. Furthermore, to the best of our knowledge, there has been no image retrieval

method that can simultaneously adjust the attributes and assign preference to them.

Learning semantics in the latent space of GANs: Recent work have shown that the real image
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data can be represented in the latent space of GANs, and specifically StyleGAN, with manifolds

that have little curvature [8, 109, 124]. Such smooth behaviour can be enhanced by using loss

functions [109, 125] or by modifying the generator architecture [110, 126]. A major benefit of

the StyleGAN architecture [110] is the introduction of an intermediate latent space that does not

need to follow any fixed sampling distribution, and the linear behaviour in this space is further

enforced in [109] using path length regularization. It has been shown that this regularization leads

to better Perceptual Path Length (PPL) score, which measures the perceptual score of the generated

images after linear interpolation in the intermediate latent space. The authors in [8] employ this

property and learn linear latent subspaces corresponding to different attributes. The authors in

[8] proposed to orthogonalize the directions only during editing and in a sequential manner. This

means that if the user wants to adjust multiple attributes, each new attribute direction is projected

onto the null space of previous attributes. This approach has two main drawbacks. First, the final

result depends on the order of applying the attribute adjustments. On the other hand, the sequential

orthogonal projection makes it more difficult to define an attribute-guided distance metric and

make the image retrieval very computationally expensive. In contrast, we propose to learn the

latent subspaces simultaneously, and enforce orthogonality on the subspaces during the learning

process. Furthermore, we study the impact of enforcing sparsity on disentangling the attributes.

6.2 Our Approach

Assume we have a set of M predefined facial attributes. In this setting, the query can be defined

as a triplet (xq,aq,pq), where xq is the query image, aq ∈ [0, 1]M is the vector specifying the

intensity of each attribute (attribute adjustment vector), and pq ∈ R+M is a vector containing

positive real numbers indicating the preference for each attribute. The attribute adjustment vector

(aq) can be used to adjust the search query. For instance, if the user assigns an intensity of 0 to
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attribute smiling, the search results should not contain smiling faces, even though the query face

is smiling. Also, the preference vector pq is independent of the adjustment vector aq, meaning that

the value we assign as the preference value for each attribute does not depend on whether we are

adjusting the attribute or not. The larger the preference value, the more similar the attribute should

be to the query attribute. A preference value of 0 for a particular attribute means the user does

not care about the presence/absence of that attribute. In this extreme case, the assigned attribute

intensity will be ignored by the retrieval agent. The goal of our proposed framework is to rank the

images in a gallery dataset based on the similarity with the query image, while considering both

the adjustments and attribute preferences specified by the user.

To this end, we propose to perform the retrieval in the latent space of a StyleGAN [109]. This

provides us with an array of desirable properties. First, as discussed in Section 6.1, it has been

shown that different attributes can be manipulated fairly linearly in such a space [8, 109]. Second,

using an unconditional StyleGAN gives us the opportunity to train it and its corresponding encoder

using a large number of unlabeled data. We show how we can exploit a smaller number of labeled

data to interpret the latent semantics learned by the StyleGAN.

The defining feature of StyleGAN architecture is the introduction of an intermediate latent vector,

w ∈ W . In short, the generator of the StyleGAN consists of two main components: a mapping

network and a synthesis network. The mapping network transforms the input latent vector to

the intermediate latent space W . Then the intermediate latent vector w is used to modulate the

convolution weights of the synthesis network, which generates the image.

It has also been shown that this intermediate latent space is consistently more disentangled than

the input latent space, meaning that the attributes can be classified using a linear classifier more

accurately in W [109, 110]. This means that, given a binary attribute, there exists a hyperplane

in W that can separate the attribute classes. In other words, there exists a direction f , i.e., the
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direction orthogonal to the hyperplane, such that if we move the latent vectorw along f ,w+αf ,

the class boundary can be crossed and the attribute can be turned to the opposite. α is a scalar

which determines the displacement magnitude Such directions can be obtained by training a linear

classifier inW , using labelled data. We argue that if we obtain an orthogonal and sparse basis set

inW , where each basis vector corresponds to a single attribute, we can easily adjust the attributes

and define a weighted distance metric to retrieve images.
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Figure 6.2: The overall architecture of the proposed face image retrieval framework. The intermediate
latent space,W+, is generated by employing StyleGAN encoder proposed in [4]. Then, the orthogonal and
sparse basis vectors {fm}Mm=1 are extracted using a fairly small set of face images with attribute annotations.
Utilizing the basis vectors, we adjust the query, decompose the dissimilarity vectors, and assign preference
to different attributes.

The proposed retrieval framework can be summarized as follows. First, given a well-trained Style-

GAN encoder trained on unlabeled data, a small set of labeled data (face images annotated with

M attributes) are used to obtain an orthogonal basis set F = {fm}Mm=1,fm ∈ W ,∀m, such that

moving the latent vector along fm only affects the mth attribute (Section 6.2.1). Second, the ob-

tained basis set F is used to adjust the attributes, to define a weighted distance metric inW , and

to retrieve images (Section 6.2.2). The overall framework is shown Figure 6.2. Below, we discuss

each of these two steps in more details.
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6.2.1 Extracting Orthogonal Basis Set for Disentangled Semantics

As mentioned earlier, it has been empirically verified that different facial attributes can be manip-

ulated fairly linearly in the latent space of StyleGAN [8, 109, 110, 124]. However, when there is

more than one attribute, the obtained directions might be correlated with each other, meaning that

adjusting one attribute using its corresponding direction might affect other attributes as well. To

tackle this issue, let us examine how the intermediate latent vector is utilized to generate images.

The latent vector is transformed to generate styles for each convolution layer in the synthesis net-

work, using an affine transform, i.e., sl = Al(w). Here, sl stands for the style vector of lth layer

and Al(.) is the learned affine transform of the pretrained StyleGAN. Each entry in sl is used to

modulate the weights of a single convolution operator in the lth layer. It has also been shown that

instead of using a common latent vectorw for all the layers, we can extend the latent space and im-

prove the encoding performance by finding a separate latent vector for each layerwl and producing

the styles as sl = Al(wl). We refer to this space as the extended latent space W+ and represent

the latent vector as the concatenation of layer-wise codes, w+ = [wT
1 ,w

T
2 , . . . ,w

T
L]T ∈ Rd+ , and

the attribute directions as f+ ∈ Rd+ .

We argue that enforcing sparsity on the learned directions inW+ can effectively lead to disentan-

gling the semantics and improved performance both for conditional image editing and the attribute-

guided image retrieval. In other words, we look for attribute direction f+ ∈ W+ with minimum

number of non-zero entries, while being able to classify the attributes accurately. This provides us

with several advantages. First, it reduces the space of possible solutions and makes the learning

problem more data-efficient. Thus, we are able to use a smaller set of labeled data to find the direc-

tions. Second, to manipulate the attribute in the latent space,w+ + αf+, only a few entries ofw+

are modified. Therefore, the learned direction f+ represents the minimum change necessary to

manipulate the attribute. This leads to disentanglement of different attributes, as different attribute
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directions only modify a very small, probably non-overlapping, subset of the entries. Finally, en-

forcing sparsity on the filters learned in extended latent space W+ also encourages non-uniform

modification of the latent vectors across layers, as most of the entries are zeros. This is signifi-

cant because the first few layers generate coarse details and later layers generate the finer details.

Modifying a subset of layers means that the method is able to manipulate only the scales that are

relevant to the attribute, leading to better disentanglement and accuracy.

Motivated by this, we propose to find an orthogonal and sparse basis set in the extended latent

space, such that each basis vector corresponds to one of the attributes of interest. More specifically,

given a set of N latent vectors {w+
n }Nn=1 and their corresponding attribute labels {yn}Nn=1, we look

for F = {f+
m}Mm=1,f

+
m ∈ W+, such that f+

m
T
f+
m′ = 0,m 6= m′ and ‖f+

m‖0 ≤ δ, ∀m, where ‖.‖0

is the `0 norm of a vector and indicates its number of nonzero entries. The sparsity condition can

be enforced by regularizing the `1 norm of the attribute directions, which is the convex relaxation

of the `0 norm. For our experiments, we employ 20, 000 latent vectors (N = 20, 000). Compared

to many existing methods that use labelled data to create a semantically meaningful embedding,

this is a large reduction in supervision requirements. For example, for quantitative comparisons

with methods based on compositional learning in Section 6.3, their proposed models are trained

with the full CelebA [127] training set, which contains about 160, 000 faces.

To enforce the orthogonality constraint, at each iteration of learning the attribute vectors, we re-

place the learned set of attribute directions with its nearest orthogonal set. This problem is closely

related to Procrustes problems, in which the goal is to find the closest orthonormal matrix to a given

matrix [45]. Algorithm 3 summarizes the operations performed at each iteration on the learned at-

tribute directions to find their nearest orthogonal set. In short, a matrix F is created whose columns

are the `2-normalized version of learned directions. Then, the nearest orthonormal matrix to F is

calculated by finding the matrix F̂ that minimizes ‖F − F̂ ‖2
F , such that F̂

T
F̂ = I , where ‖.‖F

denotes the Frobenius norm and I is identity matrix. It can be shown that the solution to this prob-
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lem is given by F̂ = F (F TF )−
1
2 . Then, the columns of the orthonormal matrix F̂ are rescaled to

have the same norms as F .

Algorithm 3 Finding Nearest Orthogonal Set to a Set of Vectors.

Input: A set of vectors {fm}Mm=1

1: cm = ‖fm‖2,∀m
2: Create a matrix F whose columns are f 1/c1,f 2/c2, . . . ,f 1/cM
3: Compute F̂ = F (F TF )−

1
2

4: return {cmf̂m}Mm=1, where f̂m is the mth column of F̂

Algorithm 4 Extracting Orthogonal Basis Set for Disentangled Semantics

Input: Latent vectors {w+
n }Nn=1 and their attribute labels {yn}Nn=1,yn ∈ {0, 1}M , classification

loss function Lc, regularization parameter λ, and a learning rate β
Output: A set of M orthogonal and sparse vectors, each corresponding to an attribute direction

1: Initialize the attribute directions {f+
m}Mm=1 and biases bm randomly

2: repeat
3: for each attribute m = 1, . . . ,M do
4: Calculate ŷm,n = f+

m
T
w+
n + bm

5: Compute Loss Lm =
∑

n Lc(ym,n, ŷm,n) + λ‖f+
m‖1

6: f+
m = f+

m − β∇fLm
7: bm = bm − β∇bLm
8: end for
9: Replace {f+

m}Mm=1 with its nearest orthogonal set using Alg 3
10: until convergence
11: Normalize f+

m = f+
m/‖f+

m‖2,∀m
12: return {f+

m}Mm=1

Algorithm 4 provides all the steps to extract the orthogonal sparse basis set in more details. At each

iteration, after updating all the attribute directions using the gradient of the loss function, Algorithm

3 is used to enforce the orthogonality condition, by projecting the current iterate onto the feasible

set (set of orthonormal matrices). In optimization literature, this feasible set is referred to as Stiefel

manifold and the act of projection is referred to as retraction. It is shown that gradient descent

with retraction onto Stiefel manifold converges to a critical point, under very mild conditions (see

Theorem 2.5 in [128]). For our experiments, similar to prior research [8], we use hinge loss as the

classification loss function Lc.
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6.2.2 Retrieval Using Orthogonal Decomposition

Dissimilarity decomposition and preference assignment: Given the obtained set of orthonormal

directions, the query image w+
q , and any other latent vector w+, we decompose the dissimilarity

vectorw+
q −w+ into its components. This can be done by projecting the dissimilarity vector onto

each of the M attribute directions as:

dF = F T (w+
q −w+) = F Tw+

q − F Tw+, (6.1)

where columns of F ∈ Rd+×M contains the M orthonormal vectors obtained by Algorithm 4. mth

entry of dF ∈ RM represents the inner product ofw+
q −w+ with f+

m. dF is the component of the

dissimilarity vector that lies inside the subspace spanned by our M attribute directions. We can

also compute the residual displacement that is not represented in this subspace as:

dI = (w+
q −w+)−PF (w+

q −w+) = (I −PF )(w+
q −w+), (6.2)

where PF = FF T ∈ Rd+×d+ is the orthogonal projection matrix onto the subspace spanned by

these vectors. This residual subspace contains information on the identity as well as other visual

and semantic attributes not included in our M predefined facial attributes. Therefore, for a given

query latent vector w+
q and the attribute preference vector pq, we propose the following weighted

distance metric from any other latent vector w+ as:

d(w+
q ,w

+,pq) = dTFPdF + ‖dI‖2
2, (6.3)

where P is an M ×M diagonal matrix, whose diagonal entries contain the preference vector pq.

The first term is the weighted Euclidean distance across different attribute directions (weighted

attribute-aware distance), while the second term is the distance in the subspace not spanned by
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these directions (attribute-independent distance). This gives the user the ability to fine-tune the

contribution of each component to achieve the desired result. In the special case, where P is set

to identity matrix, this distance metric boils down to simple Euclidean distance in the latent space,

‖w+
q −w+‖2

2.
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Figure 6.3: Qualitative evaluation of the learned attribute directions. In each pair of images, the
image on the right is synthesized after moving the latent vector corresponding to the image on
the left along an attribute direction. For attributes Black Hair and Baldness, the baseline is
affecting the smile and the eyes as well, an artifact that is not present in the image manipulated by
our method. For attribute Mustache, our method is able to add mustache to the face while not
affecting the beard as much as the baseline.

Adjusting attributes: As mentioned earlier, we can adjust themth attribute in the query by moving

its latent vector, w+
q , along the direction corresponding to the mth attribute, f+

m, i.e., w+
q + αf+

m.

Due to the definition of dI and dF , this operation will not affect dI , as it represents the displace-

ment in the subspace not spanned by the attribute direction. Furthermore, such adjustment will

only affect the mth entry of dF . We can write dF for the adjusted latent vector as:

dF = F T (w+
q + αf+

m)− F Tw+, (6.4)

which, due to orthonormality, simply translates into adding α to the mth entry of F Tw+
q . Multiple

attributes can be adjusted at the same time by modifying their corresponding entries independently.
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Thus, we can manipulate the search results by updating dF as:

dF = T (aq,w
+
q ,F )− F Tw+,

where aq ∈ [0, 1]M is the attribute intensities provided by the user and T (.) is an affine transform

that maps the range [0, 1] to range of possible values for each entry of F Tw+
q . The range of

possible values, and therefore T (.), can be obtained using the training set. Specifically, the output

of T (aq,w
+
q ,F ) is an M -dimensional vector, whose mth entry is set as aq,m(ammax − ammin) + ammin,

where ammax and ammin are the maximum and minimum value of f+
m
T
wn over all the training feature

vectors wn, respectively.

Implementation Details: We encode the face images in the training, query, and gallery sets using

the StyleGAN encoder proposed in [4], trained in an unsupervised manner on FFHQ [110] dataset.

This encoder is trained using the StyleGAN generator in order to be able to map real images

onto the latent space,W+. The latent vectors, {w+
n }Nn=1, extracted from the training set are fed to

Algorithm 4 to obtain the attribute directions {f+
m}Mm=1. For latent vector of each query image,w+

q ,

the dissimilarity vector is calculated by subtracting the query latent vector from each gallery latent

vector. Using Equations (6.1) and (6.2), The dissimilarity vector, w+
q − w+, is decomposed into

dF and dI , which are then used to calculate the weighted distance (Equation (6.3)). This weighted

distance metric is used to sort all the faces in gallery and retrieve the most similar images. The

attributes can be adjusted either by moving the original latent vector, w+
q along the corresponding

attribute direct or, as shown in Equation (6.4), by modifying the projected latent vector.

83



Table 6.1: nDCG and identity similarity for different attribute-guided image retrieval methods, averaged
over 1000 queries.

Number of retrieved images 5 10 20

Method Preference nDCG Identity nDCG Identity nDCG Identity
Assignment Similarity Similarity Similarity

Attributes as Operators[120]

Not Applicable

0.730 0.824 0.720 0.823 0.711 0.824
TIRG [7] 0.794 0.847 0.781 0.844 0.776 0.840
Concat 0.804 0.841 0.806 0.838 0.805 0.822
Concat++ 0.812 0.829 0.814 0.827 0.795 0.835
TIRG++ [7] 0.822 0.830 0.813 0.827 0.814 0.824

InterFaceGAN [8]
No Preference 0.568 0.838 0.570 0.835 0.571 0.832

Identity Constrained 0.822 0.859 0.813 0.849 0.801 0.841
Best nDCG 0.905 0.824 0.893 0.820 0.881 0.817

Ours
No Preference 0.595 0.849 0.586 0.845 0.583 0.841

Identity Constrained 0.858 0.864 0.847 0.855 0.835 0.846
Best nDCG 0.923 0.848 0.917 0.827 0.909 0.833

6.3 Experiments

In this section, we evaluate our proposed face image retrieval framework. We employ the Style-

GAN architecture and the training details as discussed in [109]. For obtaining the attribute di-

rections, generating queries, and creating the gallery set, CelebA dataset [127] is used. 20, 000

samples, out of 160, 000 from the training set are used for training the attribute directions, while

the full test set, containing 19, 962 faces, is used for creating queries and as the gallery data set. To

the best of our knowledge, no other large-scale face dataset provides the ground truth for a large

number of facial attributes. However, for qualitative results, we generate a much larger gallery set,

containing 100, 000 faces, by sampling from the latent space.

The search performance is quantified using two evaluation metrics. Normalized discounted cu-

mulative gain (nDCG), which measures the similarity of the query attributes, after making the

adjustments specified by the user, with the search results, while giving more weight to the top

results. nDCG is closely related to top-k accuracy for binary attributes, while giving the top re-

sults larger weight in a logarithmic manner (which makes it more suitable for ranking problems).
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Furthermore, in contrast to top-k accuracy, nDCG can be used for real-valued attributes as well.

Identity Similarity is calculated by embedding all the images onto the feature space generated by

the Inception Resnet V1 architecture, as described in [129] and trained on VGGFace2 [130]. Then,

the average cosine similarity between the embedded feature vector of the query face and the search

results is used as a measure of identity similarity.

Unless otherwise stated, the regularization parameter λ and the learning rate β are set to 5× 10−3

and 10−2, respectively in Algorithm 4. λ is selected from the set {0, 10−3, 5 × 10−3, 10−2} by

validating the obtained directions on the validation set of CelebA dataset. Best results for both the

validation and test sets is achieved for λ = 5 × 10−3. The default value for attributes’ preference

is set to 1.

Qualitative Results: Figure 6.3 evaluates the obtained directions qualitatively for three attributes.

In each pair of images, the left image is the starting point (image synthesized using a latent vector),

and the image on the right shows the same image after adjusting a certain attribute (the image

synthesized after moving the latent vector along the direction corresponding to the attribute). The

top row illustrates the results obtained using the directions employing our proposed method and

the middle row shows the results obtained by method in [8]. We argue that our proposed sparse

attribute directions is able to preserve the identity better and also able to disentangle the attributes

more accurately. For example, for attributes Black Hair and Baldness, the direction obtained

by [8] is affecting the smile and shape of the eyes as well, an artifact that is not present in the image

manipulated by our method. For attribute Mustache, our method is able to add mustache to the

face while not affecting the beard as much as the baseline. This is due to the fact that, by enforcing

sparsity, only the most relevant entries, and therefore layers, of the latent vector are modified.

Figure 6.4 shows a few examples of retrieval results using the synthetic gallery set. It suggests that

our retrieval approach performs well on different attributes for both adjusting and emphasizing
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the attributes. It also shows that, our approach is able to adjust and emphasize multiple attributes

at the same time, without affecting the other attributes much. For example, the last row in Fig-

ure 6.4(a) shows the results after adjusting three attributes, namely Bangs, Black hair, and

Eyeglasses. Similarly, in the last row of Figure 6.4(b), the results are retrieved after adjusting

attribute Smile and emphasizing attribute Baldness, by assigning a larger value to it.

Quantitative Results: Table 6.1 shows the nDCG and identity similarity for adjusting a single at-

tribute using different attribute-guided image retrieval methods, averaged over 1000 queries. TIRG

stands for Text Image Residual Gating, which uses text input to adjust the attributes [7]. We use the

implementation provided by authors of [7, 120] to train the baseline models, using the full CelebA

dataset. Similar to TIRG, Concat uses text queries and concatenates the feature vector extracted

from the text input with feature extracted from the query image to perform the retrieval. TIRG++

and Concat++ stand for their improved versions, which does not use triplet loss, as discussed in

detail in [7]. Unlike our proposed method, text inputs are not able to adjust the attributes in a

continuous fashion and can only remove or add the attributes. Thus, for a fair comparison, we

limit the attribute intensity vector provided to our framework to a binary vector, i.e., aq ∈ {0, 1}M .

However, our framework can also be used for continuous adjustment of attributes aq ∈ [0, 1]M .

Furthermore, the compositional learning methods cannot assign different preference values to dif-

ferent attributes. Thus, we evaluate the GAN-based methods under four different settings: (i) Best

nDCG: This setting represents the case where the attribute preference for the changed attribute

(not all the attributes) is set such that the best nDCG is achieved for each query. In this scenario,

the nDCG of our method is significantly larger than the methods based on compositional learning,

while the achieving the same identity similarity. (ii) Identity constrained: The attribute prefer-

ence is set such that the identity similarity is at least as good as the best compositional learning

method for each query. In this scenario, our proposed framework outperforms other competitors

both in nDCG and identity similarity. As expected, the nDCG improvement is not as large as the
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Query

Default result (no manipulation):

Adding Bangs (adjustment):

+ Adding Black hair (adjustment):

+ Adding Eyeglasses (adjustment):

(a)

Query

Default result (no manipulation):

Emphasizing Baldness (attribute preference):

+ Removing Smile (adjustment):

(b)

Figure 6.4: Qualitative evaluation of face image retrieval by considering both the adjustment and attribute
preference. The user is able to both adjust multiple attributes in the query face and to customize the similarity
metric by assigning preference to the attributes.
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previous scenario. This shows that our method is able to preserve identities, while improving the

attribute similarities. (iii) No preference: This setting corresponds to the scenario where user

has no preference and all the attributes are treated the same. In this setting GAN-based methods

underperform compositional learning methods in terms of nDCG. This shows the importance of

assigning preference in the GAN-based methods. It is also worthwhile to mention that the com-

positional learning methods implicitly assign preference to the attribute being adjusted, as these

models are trained using losses to adjust attributes. (iv) Fixed attribute preference value: In this

setting, the preference value is the same for all the queries and does not depend on nDCG or iden-

tity similarity. Figure 6.5 illustrates the average top-5 nDCG and identity similarity for each value

of attribute preference, averaged over all the queries. As expected, as we increase the preference

for the target attribute, the attribute nDCG increases while the identity similarity decreases. How-

ever, even for the largest average nDCG, i.e., maximum attribute preference, the identity similarity

is still comparable to the baselines in Table 6.1. This shows how the user can utilize the attribute

preference to achieve the desired trade-off between identity and attribute retrieval. We want to

stress out the fact the preference value is application-specific and cannot be optimized using the

validation set.

0 20 40 60 80 100
Attribute Preference

0.6

0.7

0.8

0.9

nD
C

G

0.82

0.83

0.84

0.85

Id
en

ti
ty

Si
m

ila
ri

ty

Figure 6.5: Impact of attribute preference on nDCG and identity similarity of the search results
obtained by our method.
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Figure 6.6: The energy concentrated in the top, most relevant, entries of the attribute vectors,
averaged over all the attributes, for different values of the sparsity regularization parameter λ.

Table 6.2: Top-5 nDCG and identity similarity for different levels of sparsity, i.e., different values of the
regularization parameter λ, averaged over 1000 queries.

Regularization parameter nDCG Identity Similarity
λ = 0 (no sparsity constraint) 0.826 0.863
λ = 10−3 0.847 0.863
λ = 5× 10−3 0.858 0.864
λ = 10−2 0.849 0.866

Finally, to show the impact of sparsity on the selectivity of the attribute directions, Figure 6.6

illustrates the amount of energy in the most relevant entries of the attribute vectors for different

values of sparsity regularization parameter λ, averaged over all the attributes. For instance, for the

vectors trained using our method with λ = 5× 10−3, about 1000 entries contain 95% the energy of

the vector. This means that, in most cases, only 10% of the entries of a latent vector are modified

to adjust the corresponding attribute. On the other hand, for vectors obtained using [8], the same

amount energy is distributed over more than 5, 000 entries. Table 6.2 shows the impact of sparsity

on the image retrieval performance. It is clear that increasing λ up to 10−2 on the attribute direction

can increase the attribute retrieval accuracy, in terms of nDCG, while keeping the identity similarity

about the same. This shows that the sparse directions can successfully adjust the attribute, while
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preserving the identity. The first row of the table, i.e., λ = 0 can also serve as an ablation study on

the impact of enforcing only the orthogonality during the training. Comparing the results with the

result of InterFaceGAN from Table 6.1, we can notice that, by only enforcing orthogonality, the

same nDCG can be achieved with better identity similarity. It is worthwhile to mention that since

our retrieval method depends on orthogonal decomposition of distances, we cannot report results

without enforcing orthogonality. Additional implementation details and experiments, including

more retrieval results on both CelebA and synthetic images, editing multiple attributes, and ablation

study on number of training samples are provided in the supplementary materials.

6.4 Conclusion

In this chapter, a new setup for face image retrieval was proposed. The new setup considers a

query face image, attribute modifiers, and attribute preference as input constraints to retrieve the

most compatible face from a gallery set. While the attribute modifiers define which attributes

to manipulate in the query image, the attribute preference set the importance or weight assigned

to each attribute when compared to a gallery image. We proposed a model that leverages the

StyleGAN latent space characteristics to learn sparse and orthogonal attribute directions to increase

control over each attribute dimension and to allow adjusting multiple attributes at the same time,

while reducing unwanted changes in the rest of the attributes. The proposed setup was evaluated on

CelebA and compared to a set of state-of-the-art baselines showing better retrieval performance.
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CHAPTER 7: ADAPTIVE NON-UNIFORM COMPRESSIVE SAMPLING

FOR TIME-VARYING SIGNALS

The goal of the compressed sensing (CS) problem is to recover the signal x = [x1, x2, . . . , xN ]T

with length N from its undersampled random projections, also referred to as measurements. M

random projections are generated using a measurement matrix Φ ∈ RM×N from the linear mea-

surement process, y = Φx + n, where y = [y1, y2, . . . , yM ]T represents the measurement vector

and n denotes the corrupting noise1.

Signal x is said to be K-sparse if it has at most K non-zero entries in a proper basis. The sparsity

of x can be exploited to find a unique solution of the underdetermined system equation with high

probability from O(K log(N
K

)) measurements [23].

In this chapter, we consider the problem of reconstructing a correlated time series of such com-

pressible vectors from their noisy undersampled measurement. Particularly, we are interested in

approximating the time series {x(1),x(2), . . . } from the measurement time series {y(1),y(2), . . . }.

In many real-world applications, the signal of interest has a substantial correlation in time. The

main idea is to incorporate the knowledge from the previous estimates of the signal to achieve a

more accurate estimation of the signal at the current time step.

Moreover, in many applications, different parts of the signal have different recovery requirements.

Thus, different coefficients of the signal have different importance levels. For instance, in video

processing, it is desired to recover the salient area more accurately. Moreover, if the signal is

sparse in canonical basis, we are interested in reconstructing the large coefficients with less error.

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, “Adap-
tive non-uniform compressive sampling for time-varying signals,” in 51st Annual Conference on Information Sciences
and Systems, CISS 2017, 2017, c© 2017 IEEE [131].
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Non-uniform acquisition and recovery of signal is desirable in many applications such as image

processing [132], camera sensor networks [133, 134], wireless sensor networks [135], collabora-

tive vector estimation [136], component analysis [137, 138], and internet of things [139].

In this work, we propose an adaptive framework to design a non-uniform measurement matrix,

which contrast with dynamic CS algorithms [140–142] focusing only on the recovery step. Our

method is also distinct from the adaptive CS [143–145] methods that are concerned with recon-

structing signals, which are static over time. Here, similar to adaptive CS, the main idea is to

concentrate the sensing energy on the more important coefficients, by designing a proper mea-

surement matrix. However, due to dynamic nature of the problem, the algorithm should not make

firm decisions about the location of more important coefficients. Hence, soft importance level in-

formation is advantageous. To infer the importance level of each coefficient at each time step, a

generative model is imposed on the coefficients and the parameters of the model are updated in an

online fashion.

Figure 7.1: Overall block diagram of the proposed framework.Reconstructed signal, at each time
step, is utilized to generate the measurement matrix.

Figure 7.1 shows the overall architecture of the proposed method. At each time step, after recon-

structing the signal, by using a conventional CS recovery algorithm, the importance levels of the

coefficients are inferred mathematically. The importance levels are further employed to design the

measurement matrix for the next time step.
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The rest of this chapter is organized as follows. In Section 7.1, the system model is presented.

Then, the generative model of the proposed Bayesian framework is introduced in Section 7.2. In

Section 7.3, the inferred importance level information are used to design the measurement matrix

for sensing. Finally, Section 7.4 presents the simulation results and Section 7.5 draws conclusions.

7.1 System Model

We consider recovery of a vector-valued time series {x(1),x(2), . . . } from the linear measurements

given by

y(t) = Φ(t)x(t) + n(t), t = 1, 2, . . . (7.1)

wheren(t) ∈ RM represents the noise and is modeled as an additive white Gaussian noise (AWGN)

with n(t) ∼ N (0, σ2
nIM).

It is assumed that the signal of interest x(t) is compressible and contains coefficients with differ-

ent importance levels, which are not known a priori. In many scenarios, it is desirable to have

non-uniform recovery performance on different parts of signal. More important coefficients may

correspond to support of a sparse vector or the salient area in a video frame.

We also assume that, at each time step, using the estimation of the signal x̂(t), more important

coefficients are tagged using a possibly erroneous algorithm. The variable α(t) marks the detected

region of interest (ROI) in the signal at time t. Specifically, α(t)
n = 1, if the nth coefficient of the

signal is detected to be in the ROI, and α(t)
n = 0 otherwise. However, due to sensing failure, error

in recovery of x̂(t), and/or misdetection of the ROI, α(t) may contain erroneous elements.

As mentioned earlier, the signal of interest often exhibits substantial temporal correlation. Here,

we assume that ROI, and therefore the support of non-zero entries in α(t), changes slowly in time.
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Our goal is to employ the temporal correlation to infer reliable importance level information and

employ the importance levels to design a non-uniform measurement matrix.

7.2 Bayesian Inference of Importance Levels

To extract reliable information from possibly faulty ROI dataα(t) , we propose to employ Bayesian

inference. In Bayesian framework, the goal is to infer the probability distribution of hidden vari-

ables given the observations. The hidden variables are often the parameters that are desired to be

estimated. Specifically, in our model, the following hidden variables are introduced:

1. Coefficient-specific reliability un ∈ {0, 1}, which is either 0 or 1 and describes the reliability

of ROI data of the nth coefficient.

2. Overall reliability r ∈ [0, 1], denoting the overall trustworthiness of the ROI detection algo-

rithm. For small values of r, the algorithm is more prone to reporting faulty data. A generally

reliable algorithm will report trustworthy measurements on most of the coefficients.

3. Importance level for each coefficient cn ∈ [0, 1], describing the probability that coefficient n

is in ROI.

As mentioned earlier, in the proposed generative model, αn is the observed variable. If αn = 1, the

nth coefficient is detected to be in ROI, and αn = 0 otherwise. In this model, coefficient-specific

reliability and overall reliability model the faulty data. Without them, all the observations would

be assumed to be trustworthy, which is not the case in real-world scenarios.

Figure 7.2 illustrates the graphical representation of the proposed generative model. The arrows in

the graph represent the dependency among the variables. Hence, the observed ROI data depends

on the actual importance level of the coefficients and the reliability of algorithm in detecting the
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Figure 7.2: Graphical representation of the generative model.

ROI coefficients. The goal of the inference algorithm is to obtain the probability distribution of the

overall reliability, coefficient-specific reliability, and the importance levels, given the ROI data. At

each time step t, the proposed model can be formulated as follows, for n = 1, . . . , N :

r ∼ Beta(b1, b0)

un ∼ Bernoulli(r)

cn ∼ Beta(β1
n, β

0
n)

α(t)
n ∼ un Bernoulli(cn) + (1− un) Bernoulli(1− cn)

(7.2)

The observed variable α(t)
n is modeled with summation of two Bernoulli distributions. This means

that if the ROI data for nth coefficient is reliable, i.e. un = 1, αn will be sampled from a Bernoulli

distribution with true parameter for importance level, i.e. cn. Otherwise, it will be sampled from

Bernoulli(1−cn) and will be more probable to report faulty data. Since cn is used as the parameter

of a Bernoulli distribution, it is the natural choice to model it with a Beta distribution. This is due

to the fact that the conjugate prior for Bernoulli distribution is Beta distribution.

Similarly, the variable representing the overall reliability, i.e. r, is modeled with a Beta distribution.

This is because the coefficient-specific reliability variables are sampled from Bernoulli(r). This
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means that if the ROI detection is reliable in general, ROI data on most of the coefficients will be

reliable. This prior links the performance of the algorithm on different coefficients and reduces the

chance of overfitting the coefficient-specific reliability.

As mentioned earlier, the goal of the inference algorithm is to obtain the distribution of hid-

den variables, given the observations, i.e. P{c,u, r|A}. For compactness of notation, we set

c = {c1, c2, . . . , cN}, u = {u1, u2, . . . , uN}, and A = {α(1),α(2), . . . }. At each time step, after

receiving the ROI data, the distribution of hidden variables are inferred by exploiting the data and

the prior belief, represented by the prior distribution P{c,u, r}.

For that, we need to specify the joint distribution of the observation and the hidden variables.

Specifically, using the model formulated in (7.2), we have:

P{A,u, c, r} =
∞∏
t=1

N∏
n=1

P{α(t)
n |un, cn}P{un|r}P{cn|β1

n, β
0
n}P{r|b1, b0} (7.3)

However, due to obvious practical reasons and to limit the history of the inference, the inference is

performed using a few of recent observations. For that, a sliding window of length W is utilized

and the parameters of the posterior distributions are inferred using only the last W observations.

To infer the importance level of the coefficients as well as the reliability of the ROI data, we

need to find the posterior distribution given the ROI data, i.e., P{u, c, r|A}. However, directly

obtaining the posterior distributions is not computationally feasible and results in explosive number

of probability factors growing exponentially with number of coefficients. To handle the intractable

integrals of the inference procedure, variational inference is often employed [146–148].

In variational inference, the posterior distribution is assumed to be fully factorized over all the

hidden variables. In other words, the posterior distribution is being approximated by a family of

96



distributions, for which the inference procedure is tractable. For our model, the fully factorized

approximation of the posterior distribution, also referred to as the variational distribution, is defined

as:

Q{c,u, r} =
∏
n

Q{cn|β̂1
n, β̂

0
n}Q{un|τn}Q{rn|b̂1, b̂0}. (7.4)

where b̂1, b̂0, β̂1
n, β̂0

n, and τn are the parameters of the factorized distributions. By introducing

the variable τn, we are seeking the best approximate of P{u, c, r|A} among all the distributions

Q{c,u, r}, by factorizing the distribution over disjoint groups of hidden variables. u, c, and r.

It is worthwhile to mention that we make no further assumption about the distributions and their

functional forms.

Specifically, we aim to find the best set of distributions and parameters that maximizes the lower

bound of log likelihood of the observations [147, 149]. The lower bound of log-likelihood of the

observations can be written as [149, Chapter 10]:

ln(P{A}) ≥
∫

Q{c,u, r} ln(P{A, c,u, r})−
∫

Q{c,u, r} ln(Q{c,u, r})

= E{ln(P{A, c,u, r})} − E{ln(Q{c,u, r})} , L(Q{c,u, r}),
(7.5)

where the expected value is with respect to variational distribution. Hence, the problem boils down

to maximizing L(Q{c,u, r}) to find the best variational distributions. Since the lower bound

is concave with respect to each of the factorized distributions, i.e., Q{cn|β̂1
n, β̂

0
n},Q{un|τn},and

Q{rn|b̂1, b̂0}, we can determine the best approximate distributions by maximizing L(Q{c,u, r})

with respect to one factor at a time [149]. Thus, at each step, the lower bound is maximized over

one factor, keeping all the other distributions. This procedure is repeated until convergence.

For simplicity of notation, let us denote the whole set of hidden variables withZ = {{cn}, {un}, r}.

In (7.4), Z is divided into disjoint groups Zi, i = 1, . . . , where each Zi is representing one of the

hidden variables in Z. By maximizing the lower bound L(Q{Z}), the variational distribution of
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each partition Q{Zi} is given by [149, Chapter 10]:

ln(Q{Zi}) = Ej 6=i{ln(P{A,Z})}+ const, (7.6)

where Ej 6=i{.} is the expectation with respect to distributions Q{Zj}, j 6= i. Then by plugging

in P{A,Z} = P{A, c,u, r} from (7.3) and employing the exponential form of the distributions,

the variational distributions can be obtained. The constant value is determined by normalizing the

distribution.

Using (7.6), we can derive closed form expressions for parameters of the variational distributions.

At each time step, after receiving the new observation vector, α(t), the distribution of the hidden

variables are updated using the derived update rules. Then, the updated distributions are used to

concentrate the sensing energy on the more important coefficients of the signal.

7.3 Measurement Matrix Design

In this section, the distributions of the importance levels are exploited to design the measurement

matrix at each time step Φ(t). The idea is to employ the information extracted from the previous

measurements and focus the sensing energy on the ROI coefficients.

In conventional compressive sensing methods, the sensing energy is distributed uniformly among

the coefficients of the signal. In many standard methods, it is assumed that the column of the

measurement matrix are scaled to be of unit norm. Thus, the total amount of sensing energy is

‖Φ‖2
F = N . In this work, we also assume that the available sensing energy is N . A constraint

on the available sensing energy is necessary for any practical implementation. Also, without the

constraint, the issue of noise would be irrelevant.
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In adaptive sensing procedures [143–145, 150], no energy is allocated to the coefficients that are

not likely to be in support of the signal, i.e., ROI. However, in our problem, since we are dealing

with time-varying signals, such hard decisions should be avoided.

The key aspect of the proposed method is the allocation of sensing energy across the coefficients

of the signal. In Section 7.2, a Bayesian framework is introduced to obtain the distribution of the

importance of each coefficient. Specifically, the norm of the nth column of the measurement matrix

Φ(t) is given as:

γ(t)
n =

√
N
c̄n
η

(7.7)

where c̄n is the expected value of the importance level of the nth coefficient of the signal, i.e.

c̄n = EQ{cn}{cn}. and η is a constant to ensure that the energy constraint is met. Specifically, for

η =
√∑

n c̄
2
n, we will have ‖Φ‖2

F = N .

Thus, at each time step the estimate of the signal is used to update the distribution of the hidden

variables. Then, the inferred importance levels are exploited to tune the energy allocated to each

coefficient of the signal.

7.4 Numerical Experiments

In this section, a series of numerical experiments are presented to highlight the performance gain

of the ANCS. The primary performance metric used in our studies is time averaged normalized

MSE (TNMSE), which is defined as 1
T

∑T
t=1

‖x(t)−x̂(t)‖22
‖x(t)‖22

. where T is the number of time slots of

the signal, ‖.‖2 is the `2-norm of a vector, and x̂(t) is the estimate of x(t) at time t.

The parameters of the algorithm are set as follows. Since, no prior information is assumed on the

importance levels of the coefficients, the parameters are initialized as β1
n = 1 = β0

n = 1, ∀n. This
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choice of parameters results in a uniform distribution for the importance levels. To initialize b1 and

b0, it is reasonable to assume that at least half of the measurements are reliable. In our numerical

experiments, we initialized b1 = 3 and b0 = 1, which means on average 75% of the measurements

are trustworthy. The maximum number of iterations for the inference algorithm is set to 40, with

possibility of early termination if
∑
n(c̄

(k)
n −c̄

(k−1)
n )2∑

n(c̄
(k−1)
n )2

≤ 10−6 at kth iteration. Moreover, a window

length of W = 5 is used.

In all the simulations to construct the measurement matrices, elements of the matrix were drawn

from an i.i.d zero mean Gaussian distribution. For uniform sampling, the columns of the matrices

are scaled to have unit norm. On the other hand, for ANCS, (7.7) is used to realize the non-uniform

distribution of energy among the columns. The total sensing energy of all the methods is assumed

to be the same, i.e. ‖Φ(t)‖2
F = N, ∀t.

As a performance benchmark and to quantify the performance improvement obtained by the ANCS,

we exploit the proposed method as the sampling step of an `1 minimization recovery algorithm.

Specifically, the estimate of the signal is obtained by solving an `1 minimization problem, given

by:

x̂(t) = arg min ‖x‖1, s.t. ‖y(t) −Φ(t)x‖2 ≤ c,

where ‖x‖1 =
∑

n |xn| and c is set to be equal to σn
√
M . To solve the problem, CVX [151, 152],

which is a toolbox for specifying and solving convex problems, is used.

7.4.1 Performance evaluation for sparse signals in canonical basis

For the first experiment, the performance gain of ANCS is quantified for the signals that are sparse

in canonical basis. To model the temporal correlation, both in amplitude and support of the signal,

the signal is assumed to be outcome of two random processes. Specifically, a binary vector s(t) =
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[s
(t)
1 , . . . , s

(t)
N ]T describes the support of the signal at time t. sn = 1 indicates the coefficients

in the support and s(t)
n = 0 denotes the zero coefficients. Coefficients of s(t) are assumed to be

independent and a Markov chain process is defined for each of the coefficients. The Markov chain

processes are described by p01 = P{s(t)
n = 1|s(t−1)

n = 0} and λ = P{s(t)
n = 1}, ∀n, t. Thus, λ is

related to the sparsity level of signal.

Furthermore, a second process models the amplitude of the large coefficients. We employ an

independent Gauss-Markov process for each of the coefficients of the signal. Amplitude of the

nth coefficient evolves over time as: a(t)
n = (1 − ρ)a

(t−1)
n + ρν

(t)
n . Here, ρ is a constant between 0

and 1 and controls the degree of correlation. For ρ = 1, the amplitude would be an uncorrelated

Gaussian random process. ν(t)
n is the amount of variation among two consecutive time steps and is

modeled with N (0, σ2
L). Thus the mean of the process is assumed to be 0. At each time step, the

coefficients of the signal are constructed as x(t)
n = a

(t)
n s

(t)
n .

The simulation parameters are set as follows, unless otherwise is stated. We assume that the signal

of interest is of length N = 200 with sparsity level of λ = K
N

= 0.1. The variance of noise, i.e., σ2
n,

is set to have a signal-to-noise ratio (SNR) of 20 dB. Other model parameters are set as ρ = 0.2,

p01 = 0.02, σL = 10, and T = 30.

To detect the ROI, i.e., support of the signal, after determining the estimate of the signal x̂(t), a

simple thresholding is performed. Specifically, α(t)
n is set to 1, if x̂(t)

n ≥ 1.

Figure 7.3 shows the evolution of the inferred importance levels, i.e., c̄n, over time for n =

1, 2, . . . , 30. In other words, this figure illustrates how the sensing energy is distributed among

the coefficients at each time step. As it is clear, at the first time step, c̄n = 0.5, ∀n, indicating un-

biased estimate of importance levels when no further information is available. However, as more

measurements are received, uncertainty decreases and the support of the signal is revealed. It is

also worthwhile to point out that an error in the ROI detection procedure can potentially impact up
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to W = 5 time slots. Error propagation, as well as computational complexity, are the main reasons

that choosing large values for W should be avoided.
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Figure 7.3: (a) Support of the signal and (b) the expected value of the inferred importance levels,
i.e., c̄n, for the first 30 coefficients of the signal. M = 60, N = 200, SNR = 20 dB, and W = 5.
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Figure 7.4: Performance of ANCS for different values of p01. The total sensing energy is the same
for all the methods. N = 200, SNR = 20 dB, and T = 30, and M = 60.

To study the performance of ANCS for different levels of temporal correlation, Figure 7.4 illus-

trates the TNMSE of ANCS for different values of p01. The results are averaged over substan-

tially large number of Monte-Carlo Trials. Here, ANCS is employed also as the sampling step

of Support-aware MMSE, as well as the `1 minimization recovery method. SA-MMSE calculates

the minimum mean square error estimate of the signal when the support of the sparse signal is

known. The actual support of the signal, σ2
L, σ2

n, and ρ are provided as the inputs of the SA-MMSE

algorithm. The performance of SA-MMSE is an indicator of lowest MSE achievable by a recovery

algorithm.
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For small values of p01, the signal is nearly static over time. Thus, the method is able to detect

the support accurately and the TNMSE is decreased significantly. Furthermore, since the signal is

sparse in canonical basis and the support of the signal is set to be the ROI, overall recovery error

is the same as the recovery error of the ROI coefficients. It is due to the fact that whole energy

of the signal is concentrated in the ROI. As it can be noticed in the figure, for p01 = 0, ANCS

can enhance the performance of the `1 minimization algorithm substantially. As p01 increases, the

support of the signal changes over time and the observations of previous time steps become less

informative about the signal and the performance gain of ANCS decreases. However, for values of

p01 < 0.3, nonuniform recovery of the signal is still achieved.
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Figure 7.5: TNMSE (in dB) for of different recovery algorithm with and without ANCS as the
sampling step for N = 200, SNR = 20 dB, and T = 30.

Figure 7.5 compares the performance of different recovery algorithms with uniform sampling and

ANCS as the sampling step for different number of measurements. As it is clear, ANCS can de-

crease the TNMSE up to 7 dB, compared to `1 minimization recovery, and can reduce the required

number of measurements. As an example, to achieve a TNMSE of −15 dB, ANCS employs about

50% of the measurements required by uniform sampling, highlighting one of the major benefits

of ANCS: for a sparse signal in canonical basis, ANCS is able to reduce the recovery error and

number of required measurements substantially.

To highlight the performance gain achieved by ANCS in low SNR regimes, Figure 7.6 depicts
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TNMSE of different methods versus SNR. It is easy to notice that the performance of ANCS

is very close to SA-MMSE with uniform sampling, which is MSE-optimal. This is one of the

main benefits of adaptive CS. It is known that adaptive CS provides the opportunity to detect and

estimate signals at lower SNRs. Furthermore, performance of SA-MMSE algorithm in Figure 7.5

and Figure 7.6 illustrates that ANCS is able reduce the lower bound of recovery error by up to 6

dB.
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Figure 7.6: Performance of `1 minimization and SA-MMSE with and without ANCS as the sam-
pling step in terms of TNMSE (in dB). of different methods forN = 200, p01 = 0.02, andM = 60.

7.4.2 Performance evaluation for sparse signals in the DCT domain

In this series of experiments, the performance gain achieved by ANCS is evaluated for signals that

are not sparse in canonical basis, but has a sparse representation in some proper domain. In our

numerical experiments, we employed DCT domain as the sparsifying basis.

To generate the sparse signal in DCT domain, the same procedure explained in Section 7.4.1 is

exploited. Specifically, letu(t) = Ψx(t) represent the sparse representation of the signal of interest,

x(t), in DCT domain. Ψ denotes the DCT transform matrix. To generate a time correlated signal,

elements of u(t) are constructed as u(t)
n = s

(t)
n a

(t)
n , where s(t)

n and a(t)
n are outcome of two random
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processes described in Section 7.4.1. To reconstruct the signal, we use x̂(t) = ΨT û(t), where

û(t) = arg min ‖u‖1, s.t. ‖y(t) −Ξ(t)u‖2 < c,

and Ξ(t) = Φ(t)ΨT .

Furthermore, to model the variation of ROI over time, a new set of binary Markov processes is

employed. This means that the probability of a coefficient being in the ROI is independent from

its location and its value. To describe this Markov process, for simplicity, we use the same set of

parameters as the random process corresponding to the support of the signal, i.e., λ and p01. Hence,

the rates of change for support of u(t) and the ROI in x(t) are assumed to be the same. It is also

assumed that the ROI detection algorithm may report erroneous observations to ANCS.

In Figure 7.7, we evaluate the performance of ANCS versus the number of measurements M for

fault rate of 10%. This experiment also shows that the proposed ANCS is able to decrease the

error of ROI coefficients up to 3-4 dB for different number of measurements. This benefit comes

at the cost of losing performance on total recovery error. Interestingly, for smaller values of M ,

this benefit comes at almost no cost and without losing any performance for non-ROI entries.
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Figure 7.7: TNMSE (in dB) versus M of ANCS. N = 200, SNR = 20 dB, and T = 30, and
M = 60.

Finally, as it was expected, Figure 7.8 illustrates that as ANCS receives more faulty data from the

105



ROI detection algorithm, its performance becomes more similar to conventional CS with uniform

sampling. This is because the faulty data prevents the inference algorithm from gaining certainty

on the location of ROI coefficients. However, even for fault rates of as much as 50%, non-uniform

recovery of the signal is achieved.
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Figure 7.8: Plot of TNMSE (in dB) of ANCS for different values of fault rate. N = 200, SNR
= 20 dB, and T = 30, and M = 60.

7.5 conclusions

This chapter presented adaptive non-uniform compressive sampling (ANCS) for time-varying

sparse signals. The main idea is to employ the observations of previous time slots to infer the

region of interest (ROI) in the signal and concentrate the sensing energy on the corresponding co-

efficients. For that, we presented a Bayesian framework, by modeling the overall and coefficient-

specific reliability of the ROI detection algorithm.

The results show that the proposed framework is able to achieve the desired non-uniform recovery

and can decrease the error in ROI significantly for signals that are sparse or have a sparse repre-

sentation in a proper basis. The results also illustrated that the proposed method is particularly

advantageous for signals that are sparse in canonical basis. For such signals, ANCS results in

substantial improvement in accuracy of estimation.
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CHAPTER 8: MISSING SPECTRUM-DATA RECOVERY IN

COGNITIVE RADIO NETWORKS USING PIECEWISE CONSTANT

NONNEGATIVE MATRIX FACTORIZATION

Recent advances in wireless communications and microelectronic devices are leading the trend of

research toward cognitive radios (CRs) [153]. The main feature of CRs is the opportunistic usage

of spectrum. CR systems try to improve the spectrum efficiency by using the spectrum holes in

frequency, time, and space domains [153, 154]. This means that secondary users (SUs) are allowed

to utilize the spectrum, provided that their transmissions do not interfere with the communication

of primary users (PUs) [155]. The fundamental components of CR systems that allow them to

avoid interference are spectrum sensing and resource allocation1.

However, in a practical CR network, spectrum occupancy measurements for all the frequency

channels at all times are not available. This is partially because of energy limitations and network

failures. Another highly important and very common reason for occurrence of missing entries in

the data set is the hardware limitation. Each SU may want to use different frequency channels, but

it may not be capable of sensing all the channels simultaneously [157, 158]. On the other hand,

a complete and reliable spectrum sensing data set is needed for a reliable resource allocation.

Therefore, we need to develop a method to estimate the missing spectrum sensing measurements.

This task is especially more challenging in dynamic environments.

There are different approaches toward the problem of data analysis in the CR networks. In [159],

a learning approach is introduced based on support vector machine (SVM) for spectrum sensing in

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, M. Joneidi, B. Shahrasbi, and N. Rah-
navard, “Missing spectrum-data recovery in cognitive radio networks using piecewise constant Nonnegative Matrix
Factorization,” in Proceedings - IEEE Military Communications Conference MILCOM, vol. 2015-Decem, pp. 238–
243, IEEE, 10 2015, c© 2015 IEEE [156].
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multi-antenna cognitive radios. SVM classification techniques are applied to detect the presence of

PUs. Several algorithms have been been proposed using dictionary learning framework [160, 161].

These approaches try to find the principal components of data using dictionary learning and exploit

the components to extract information.

The goal of this chapter is to estimate the missing spectrum sensing data as accurate as possible

in the time varying environments. An approach is introduced based on Nonnegative Matrix Fac-

torization (NMF) [162, 163] to represent the spectrum measurements as additive, not subtractive,

combination of several components. Each component reflects signature of one PU, therefore the

data can be factorized as the product of signatures matrix times an activation matrix.

Dimension reduction is an inevitable pre-processing step for high dimensional data analysis. NMF

is a dimension reduction technique that has been employed in diverse fields [164, 165]. The most

important feature of NMF, which makes it distinguished from other component analysis methods,

is the non-negativity constraint. Thus the original data can be represented as additive combination

of its parts.

In our proposed method, a new framework is introduced to decompose the spectrum measurements

in CR networks using a piecewise constant NMF algorithm in presence of missing data. Piecewise

constant NMF and its application in video structuring is introduced in [166]. In the proposed

method, we try to handle the missing entries in the data and also take a different approach to solve

the corresponding optimization problem using an iterative reweighed technique.

In the context of CR networks, NMF is utilized in [167] to estimate the power spectra of the

sources in a CR network by factorizing the Fourier Transform of the correlation matrix of the

received signals. Our proposed method estimates the missing entries in power spectral density

measurements by enforcing a temporal structure on the activity of the PUs and can be used in

scenarios when the number of the PUs is not known.
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The introduced method takes advantage of a prior information about the activity of the PUs and

exploits piecewise constant constraint to improve the performance of the factorization. More-

over, a solution for the introduced minimization problem is suggested using the Majorization-

Minimization (MM) framework.

The rest of the chapter is organized in the following order. In Section 8.1, the system model and

the problem statement are introduced. Section 8.2 describes the proposed new NMF problem. In

Section 8.3, a method is presented to solve the piecewise constant NMF problem in MM frame-

work with missing data. Section 8.4 presents the simulation results and finally Section 8.5 draws

conclusions.

8.1 System Model

Due to the nature of wireless environments, trustworthy information cannot be extracted from

measurements of a single SU. To find the spectrum holes in frequency, time, and space, there exists

a fusion center that collects and combines the measurements from all the SUs [157]. Cooperative

spectrum sensing makes the missing data estimation algorithm more robust. Fusion center predicts

the missing entries by using the collected measurements.However, since each SU is not able to

sense the whole spectrum all the time, the data set collected from the SUs contains missing entries.

Network failures, energy limitations, and shadowing can also cause loss of data.

Without loss of generality, we want to reconstruct the power map in a single frequency band. The

network consists of NP primary transmitters and NR spectrum sensors that are randomly spread

over the entire area of interest. Figure 8.1 illustrates an example of a network with NP = 2 PUs

and NR = 10 SUs in a 100× 100 area.
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Figure 8.1: The power distribution of 2 PUs (squares) and deployment of 10 SUs (triangles) with-
out considering shadowing effect.

The received power of the rth sensor at time t can be written as

sr(t) =

NP∑
j=1

pj(t)γrj(t) + zr(t), (8.1)

where pj(t) is the transmit-power of the jth PU at time t, γrj is the channel gain from the jth PU to

the rth SU, and zr(t) is the zero-mean Gaussian measurement noise at the rth sensor with variance

σ2
r . Considering a Rayleigh fading model, the channel gain coefficient can be modeled as:

γrj =
C|hrj|2
drj

α , (8.2)

where the channel constant C = GPGRc
2

(4πf)2
, f is the carrier frequency, c is the speed of light, and

GP and GR are the transmitter and receiver antenna gains. α is the path loss exponent which

determines the rate at which power decays with the separation distance drj between the rth SU and

the jth PU and |hrj|2 models the fading effect.
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At time slot t, measurements from SUs can be stacked in a vector s(t), given as

s(t) =

NP∑
j=1

pj(t)γj(t) + z(t), (8.3)

where s(t) =

[
s1(t) s2(t) ... sNR(t)

]T
, γj(t) =

[
γ1j(t) γ2j(t) ... γNRj(t)

]T
, and

z(t) =

[
z1(t) z2(t) ... zNR(t)

]T
. At each time slot, only a few SUs observe the power lev-

els and report them to the fusion center. Therefore the vector s(t) contains some missing entries.

Furthermore, each PU can be active or inactive in each time slot.

Some of the characteristics of the environment can be exploited to simplify the problem. It is

assumed that channel gains are slowly time varying such that they can be considered as constant

in a time window. Therefore, matrix representation of (8.3) can be written as:

S = ΓP +Z, (8.4)

where S is an NR × T matrix, which includes measurements from sensors in T time slots,

Γ = [γ1, . . . ,γNP
] is a NR × NP matrix, which consists of NP channel gain vectors in the NR-

dimensional space of data, and P is an NP × T matrix that indicates the power levels of PUs in

each time slot (pjt = 0 if the jth PU is inactive at time t).

Here, the goal is to estimate the missing data using the partial observations. To achieve this goal,

the data is decomposed using piecewise constant NMF. Then the components of data and the

activation matrix are used to estimate the missing data.
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8.2 PC-NMF: Piecewise Constant Nonnegative Matrix Factorization

Promoted by (8.4), it is easy to see that the measurements of each time slot can be represented

as an additive, not subtractive, combination of few vectors. This algebraic representation has a

geometric interpretation. Figure 8.2 helps us to visualize the structure of data in a 3-dimensional

space of data. In this figure, 3 SUs are measuring power levels in an area with 3 PUs. It is easy

to notice that measurement vectors lie within a pyramid in the positive orthant with NP = 3 edges

proportional to γj . This is due to fact that all the points in the pyramid can be written as an additive

combination of the edges.

Figure 8.2: Structure of data generated by NP = 3 PUs in NR = 3 dimensional space.

Although it is assumed that the channel gains are stationary for a time window of length T , PUs

can become activated/deactivated in this time window any number of times and can change their

transmission power in each activation. Hence, the power levels of PUs tend to be piecewise con-
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stant.

NMF is a widely-used technique to decompose data to its nonnegative components. Here, the

structure of the power level matrix P is exploited while handling the missing entries. As a result,

the general objective function is presented as follows:

minimize
Γ,P

DW (S|ΓP ) + βF (P ),

subject to Γ ≥ 0,P ≥ 0,

(8.5)

where DW (S|ΓP ) is a weighted measure of fit and F (P ) is a penalty, which favors piecewise

constant solutions. β is a nonnegative scalar weighting the penalty. The constraints denote that all

the entries of Γ and P are nonnegative. W is an NR× T weight matrix that is used to estimate the

weighted distance between S and ΓP . The coefficients of the weight matrix denote the presence

of data (wrt = 0/wrt = 1 if the measurement of the rth SU at time slot t is unavailable/available).

NMF algorithms utilize different measures of fit such as Euclidean distance, generalized Kullback-

Leibler (KL) divergence, and the Itakura-Saito divergence . In all the cases, the distance can be

calculated as the sum of the distances between different coefficients [168–170].

DW (S|ΓP ) =
T∑
t=1

NR∑
r=1

wrtd(srt|
NP∑
j=1

γrjpjt), (8.6)

In our case, Euclidean Distance is used as the measure of fit. This objective function is commonly

used for problems with Gaussian noise model, a common noise model in communication systems,

hence:

d(srt|
NP∑
j=1

γrjpjt) =
1

2
(srt −

NP∑
j=1

γrjpjt)
2. (8.7)

Since there exist sharp transitions in power level of PUs and power level of each PU is constant in
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each transmission period, rows of P tend to be piecewise constant. In order to favor the piecewise

constant solutions, the penalty function is defined as:

F (P ) =
T∑
t=2

NP∑
j=1

lim
n→0
|pjt − pj(t−1)|n. (8.8)

When n tends to 0, this penalty function represents the sum of `0 norm of the transition vectors, i.e.

pt − p(t−1), where pt is an NP × 1 vector containing power levels of PUs in time t. This penalty

favors the solutions with a lower number of transitions. However, since it is not differentiable, it

can be replaced with a differentiable approximation:

Fε(P ) =
T∑
t=2

NP∑
j=1

ρε(pjt − pj(t−1)),

with ρε(x) =
x2

x2 + ε2
,

(8.9)

where ε2 is a small positive constant and is much less than all the non-zero elements of (pjt −

pj(t−1))
2 ∀j, t to avoid division by zero.

In Section 8.3, an algorithm is derived to find the minimizer of the following problem:

minimize
Γ,P

DW (S|ΓP ) + βFε(P ),

subject to Γ ≥ 0,P ≥ 0.

(8.10)

After estimating P and Γ, the missing entries of S can be approximated using the equation Ŝ '

ΓP .
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8.3 Majorization-Minimization for Piecewise Constant NMF

In this section, an iterative algorithm is described to find the solution of the optimization problem

proposed in (8.10). For that, Majorization-Minimization (MM) framework is employed [168, 169].

MM algorithm and its variants have been used in various applications such as parameter learning

and image processing [171, 172]. The update rules are derived to calculate the entries of P given

the entries of Γ and then the entries of Γ given the entries of P , using an iterative reweighed

algorithm.

First, the update rules for P given Γ are derived. Then, the update rules for Γ will be derived in a

similar manner.

As it is clear in (8.6), we can write the distance measure as a sum of different time slots:

DW (S|ΓP ) =
T∑
t=1

C(pt), (8.11)

where C(pt) is the weighted Euclidean distance between st and Γpt, given st and Γ. In MM

framework, the update rules are derived by minimizing an auxiliary function [168]. By definition,

G(pt, p̂t) is an auxiliary function ofC(pt) if and only ifG(pt, p̂t) ≥ C(pt) andG(pt,pt) = C(pt)

for ∀pt. If G(pt, p̂t) is chosen such that it is easier to minimize, the optimization of C(pt) can be

replaced with iterative minimization of G(pt, p̂t) over pt. Thus, in the literature, convex functions

are frequently used as the auxiliary functions [164, 168]. It is shown in [168] that C(pt) is non-

increasing under the update

pi+1
t = argmin

pt

G(pt,p
i
t). (8.12)

This is due to the fact that in the ith iteration we have C(pi+1
t ) ≤ G(pi+1

t ,pit) ≤ G(pit,p
i
t) =

C(pit).
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Following a similar approach as [168], the auxiliary function for the weighted Euclidean distance

can be formulated as:

G(pt,p
i
t) = C(pit) + (pt − pit)∇C(pit) +

1

2
(pt − pit)TK(pit)(pt − pit), (8.13)

where K(pit) is an NP ×NP diagonal matrix with

kjj(p
i
t) =

qijt
pijt
,

qit = ΓT (wt � Γpit),

(8.14)

and kjj is the jth diagonal entry of K(pit) and � is element-wise multiplication.

To solve the problem presented in (8.10), the contribution of Fε(P ) should be considered in the

auxiliary function. For that, a convex version of Fε(P ) is employed:

Fε(P ) =
T∑
t=2

NP∑
j=1

yjt(pjt − pj(t−1))
2,

with yjt =
1

(p
(i−1)
jt − p(i−1)

j(t−1))
2 + ε

.

(8.15)

Now the update rules can be obtained using the iterative version of (8.15). This means that yjt is

updated in each iteration using the values of P in the previous iteration.

To form the penalized auxiliary function, Gβ(pt,p
i
t), we add up G(pt,p

i
t) with the contribution of

pt to F (P ). Thus, Gβ(pt,p
i
t) can be written as:

Gβ(pt,p
i
t) = G(pt,p

i
t) + β[

NP∑
j=1

yijt(pjt − pij(t−1))
2 +

NP∑
j=1

yij(t+1)(p
i
j(t+1) − pjt)2]. (8.16)
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It is worthwhile to mention that yj1 = yj(T+1) = 0 ∀j. Since Gβ(pt,p
i
t) is convex, it can be easily

minimized over pt by setting the gradient to zero. Hence the update rule is attained as:

pi+1
jt =

−∇jC(pit) + pijtkjj(p
i
t) + 2βyijtp

i
j(t−1) + 2βyij(t+1)p

i
j(t+1)

kjj(pit) + 2βyijt + 2βyij(t+1)

,

∇C(pit) = −ΓT (wt � st −wt � (Γpit)),

(8.17)

where∇jC(pit) is the jth element of the gradient∇C(pit).

Finding the update rule for Γ is simple. This is due to the fact that F (P ) is not a function of Γ.

Hence, the update rule for Γ is similar to the update rule for standard NMF, except the missing

entries must be taken into account [173]. The update rules can be written in matrix form as:

Γi+1 = Γi � (W � S)P T

(W � (ΓiP ))P T
(8.18)

where � is the element-wise multiplication and the division is also performed in an element-wise

manner.

The obtained update rules in (8.17) and (8.18) are exploited alternatively to estimate Γ and P .

Then the missing entries of S are predicted by Ŝ = ΓP .

However, by using the objective function in (8.10), the optimization problem results in solutions

with entries ofP tend toward 0 and ‖Γ‖ tends toward∞. We take advantage of the scale ambiguity

between Γ and P to avoid this issue. Let Λ be a diagonal NP × NP matrix with its jth diagonal

entry equal to ‖γj‖2. In each iteration, the rescaled matrix pair (ΓΛ−1,ΛP ) is used instead of the

original matrix pair (Γ,P ).

As a practical scenario, we should also consider the case when the secondary network has no

information about the number of the PUs, i.e. NP . In this case, the common dimension of matrices
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Γ and P is not known. There have been some efforts in model order selection in NMF [170]. In

the numerical experiments,K > NP is used as the common dimension to factorize the data in such

conditions. This is only possible if the secondary network has some information about the upper

bound of NP .

8.4 Numerical Results

For the numerical experiments, one frequency channel is considered with Np = 3 active PUs in the

area. Figure 8.3 illustrates the topology of the network. Incomplete measurements are collected

from NR = 20 SUs.

Figure 8.3: Network topology consisting of 3 PUs and NR = 20 SUs marked by triangles.

We use the same simulation environment and the same network topology as in [161]. The simula-

tion parameters are set as follows, unless otherwise is stated. The path loss is computed as ( d
d0

)α,

where d is the distance, d0 = 0.01, and α = 2.5. γrj is computed by multiplying the pathloss by
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the fading coefficient |hrj|2 where

hrj(t) = ηhrj(t− 1) +
√

1− η2νrj(t), (8.19)

η = 0.9995, and νrj(t) is circulary symmetric zero mean complex Gaussian noise with variance 1

[161].

PUs’ activity is modeled by a first order Markov model. All the PUs utilize the spectrum λ = 0.3

of the time slots. Transition matrix of the jth PU is

 1− aj aj

bj 1− bj

 and λ =
bj

aj+bj
. aj is the

probability that the jth PU stops transmitting from time t− 1 to t and bj is the probability that the

PU activates transmitting. The parameter aj is uniformly distributed over [0.05, 0.15].

Each time a PU becomes activated, it chooses the transmission power from a uniform distribution

with support [100, 200]. Each SU makes a measurement with 70% of chance. The measurements

are contaminated by additive white Gaussian noise. The noise variance is 10−5 for all the SUs.

Partial measurements are generated for T = 600 time slots. To reduce the computational burden,

the first 300 time slots are used to estimate Γ. Next, by using the obtained Γ and the update rule

(8.17), P is estimated for all 600 time slots. The regularization factor β is set to 5 × 10−3 and

K = 5 factors are used to factorize the data.

Figure 8.4 shows the true power levels and the reconstructed one at a randomly selected SU versus

time for the time window of T = 300 samples. It can be seen that the missing entries are accurately

recovered through the proposed method, and it is evident that the proposed algorithm can easily

track abrupt changes in power level.

Figure 8.5 compares the RMSE, averaged over SUs, of the proposed method with two similar
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methods. The method introduced in [161] exploits the spatial correlation between adjacent SUs’

measurements and semi-supervised dictionary learning (SS-DL) to estimate the missing entries.

For the numerical results, the batch version of SS-DL is employed and the parameters are set

to their optimal values. Furthermore, to emphasize the effect of the piecewise constant penalty,

the results are also compared with the weighted NMF, i.e. WNMF [173, 174]. WNMF employs

binary weight matrix to deal with the missing entries. This figure shows that the proposed method

outperforms its competitors in different noise levels (Figure 8.5.(a)) and different probabilities of

miss (Figure 8.5.(b)). Pmiss denotes the ratio of the missing entries among the spectrum data.
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Figure 8.4: Power levels of a single SU.
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Figure 8.5: Performance of the proposed method for different noise levels and probability of miss,
averaged over 200 Monte Carlo trials.

This figure shows that WNMF and SS-DL almost perform the same for low noise variance and low

120



Pmiss. However, for harsh environments with high noise variance or high Pmiss, SS-DL produces

more accurate results. The PC-NMF method outperforms both methods in different noise levels

and different probabilities of miss. For instance, PC-NMF has 11.6% less RMSE compared to the

SS-DL method for σ2
noise = 10−5 and Pmiss = 0.3.

This improvement in the performance does not increase the computational burden of the algorithm.

Table 8.1 shows the running times2 for different methods averaged over 100 Monte Carlo trials for

σ2
noise = 10−5 , Pmiss = 0.3, and K = 5.

Table 8.1: Average Running Time

Method Average Running Time (s)
SS-DL 10.3039
WNMF 0.0944

PC-NMF 0.0952

It is known that the NMF methods converge much faster than methods based on gradient descent

[173]. However, Table 8.1 also illustrates that the proposed method does not require more compu-

tational resources compared with WNMF.

To study the effect of the piecewise constant penalty on the output of the algorithm, Figure 8.6

depicts the power level of two PUs and the estimated activation levels using the introduced method

and WNMF. Both methods can estimate the power levels up to a scale factor. The number of

factors is set to 3, i.e. K = NP .

This figure illustrates the fact that the proposed method produces a more accurate factorization by

taking advantage of piecewise constant constraint as a prior information. As it was expected, power

2All simulations have been performed under MATLAB 2014a environment on a PC equipped with Intel Xeon
E5-1650 processor (3.20 GHz) and 8 GB of RAM.
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levels estimated by PC-NMF are piecewise constant, while the results generated by WNMF are

noisy. In fact, the piecewise constant penalty decreases the effect of noise and fading. Moreover,

the sharp transitions are preserved in the factors returned by PC-NMF.
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Figure 8.6: Original power levels of different PUs and the estimated activation levels with PC-NMF
and WNMF.

8.5 Conclusions

By exploiting inherent structural feature of cognitive radio networks, we proposed a piecewise

constant NMF approach that can decompose the data set into its components. Majorization-

Minimization framework is utilized to solve the optimization problem of the piecewise constant

NMF. Numerical simulations suggest that this method is able to predict the missing entries in the

spectrum sensing database accurately.
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CHAPTER 9: A BAYESIAN APPROACH FOR ASYNCHRONOUS

PARALLEL SPARSE RECOVERY

Sparse recovery problems have received significant attention in the past decade, particularly in

the compressed sensing (CS) literature [22, 23]. CS techniques have revolutionized sensing and

sampling, with applications in image reconstruction [132, 175], hyper spectral imaging [176],

wireless communications [177, 178], and analog to digital conversion [179]. Meanwhile, complex

data-gathering devices have been developed, leading to the rapid growth of big data. For instance,

the size of problems in hyperspectral imaging [176] are so large that they cannot be stored or

solved in conventional computers. This, as well as the proliferation of inexpensive multi-processor

computing systems, has motivated the study of parallel sparse recovery1.

In parallel sparse recovery, the goal is to solve a large-scale sparse recovery problem by partitioning

it among multiple processing nodes, thus reducing both the storage and computation requirements

[181]. However, many recent studies [181–186] focus on synchronous parallel recovery of the

sparse signal, meaning that some subset of the processing nodes need to wait for another subset of

the nodes to complete their tasks. Of course, this approach is sensitive to slow or nonfunctional

nodes.

Thus, it is natural to look for algorithms that divide the large-scale sparse recovery problems among

several computing nodes and solve it asynchronously. Recently, in [187], the authors proposed a

strategy to utilize the stochastic hard thresholding (StoIHT) [188, 189] in an asynchronous manner.

Instead of sharing the current solution among the processors, which is the conventional approach

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, J. Haddock, N. Rahnavard, and
D. Needell, “A Bayesian Approach for Asynchronous Parallel Sparse Recovery,” in Conference Record - Asilomar
Conference on Signals, Systems and Computers, vol. 2018-Octob, pp. 1980–1984, IEEE, 10 2019, c© 2019 IEEE
[180].
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[181–183], an estimate of the support of the signal is shared. Then, the iteration number of each

processor is used to assign weight to faster cores.

In this chapter, inspired by [187], we propose an asynchronous StoIHT [188] which incorporates

a probabilistic framework that assigns reliability scores to each processor. This score is calculated

by considering both the processor’s estimate of the support and its iteration number. Therefore,

not only do we ignore the information from unreliable slow cores, but we are also able to utilize

the reliable information from slower cores and disregard unreliable information from faster cores.

The update rules for reliability scores and the support estimation is derived in a mathematical, less

heuristic, manner, using variational inference [147]. This leads to simple closed form update rules

for the parameters of the posterior distributions of the hidden variables with very low computational

overhead. The convergence of our algorithm is theoretically analyzed in [190].

9.1 System Model

We consider the sparse recovery problem of reconstructing x ∈ RN from few nonadaptive, linear,

and noisy measurements, y = Ax+z, whereA ∈ Rm×N is the measurement matrix and z ∈ Rm

is noise. One challenge to developing an asynchronous parallel approach to recovering the s-sparse

signal x via the optimization problem

min
x̂∈RN

1

2m
‖y −Ax̂‖2

2 subject to ‖x̂‖0 ≤ s

is that the cost function 1
2m
‖y −Ax̂‖2

2 is defined by the matrix A, which is not generally sparse

(e.g., standard i.i.d. Gaussian A is common). A naive asynchronous approach would frequently

overwrite the s non-zero entries learned by faster and more reliable processors. Our goal is to

solve this problem in an asynchronous manner, while reducing the effects of slow processors on
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the estimated signal. Note that the problem can be rewritten as

min
x̂∈RN

1

M

M∑
B=1

1

2b
‖yB −ABx̂‖2

2 subject to ‖x̂‖0 ≤ s,

where y and A are partitioned into M non-overlapping sub-vectors yB and sub-matrices AB. At

each iteration, each processor solves a subproblem by using the b = m/M equations defined by

AB and yB. We do not assume that the number of subproblems M and processors P is the same.

9.2 Probability Model

Our Bayesian algorithmic framework makes use of a tally vector φ ∈ RN which records infor-

mation on the current estimated support of x. This vector and several reliability estimates are the

hidden variables in our model:

1. Tally score, φn ∈ [0, 1], describing the probability that coefficient n is in support.

2. Reliability score for each processor, ri ∈ [0, 1], denoting the trustworthiness of the measure-

ments of processor i.

3. Observation reliability, uni ∈ {0, 1}, which indicates if coefficient n reported by processor

i is reliable.

Our estimates of these hidden variables are updated according to the following observed variables:

1. The support observations, oni which indicates if processor i detects coefficient n in the

support.

2. The maximum number of iterations completed by any processor since the last reporting of

processor i, ki.
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The posterior probability distribution of these hidden variables (referred to asH) are inferred from

the observed variables reported by the processors, oni and ki (referred to as D), according to the

following generative model where variables are indexed for i = 1, . . . , P and n = 1, . . . , N .

ri ∼ Beta(β1
i , β

0
i )

uni ∼ Bernoulli(ri)

φn ∼ Beta(a1
n, a

0
n)

oni ∼ uni Bernoulli(φn)

+ (1− uni) Bernoulli(1− φn)

ki ∼ Binomial(Ki, ri)

(9.1)

The variable for the reliability score, ri, is modeled with a Beta distribution with parameters β1
i

and β0
i . This is the natural choice since ri is used as the parameter of the Bernoulli distribution of

the observation reliability and the conjugate prior for a Bernoulli distribution is Beta distribution.

The observation reliability is modeled as a Bernoulli distribution with parameter ri. If a processor

is generally reliable (ri close to 1) it is more likely to be reliable on other coefficients.

The tally score is also defined as a random variable sampled from a Beta distribution with param-

eters a1
n and a0

n. This is also because φn is later used as the parameter of the Bernoulli distribution

that describes the observations.

The observed variable, oni, is defined as the summation of two Bernoulli distributions. If an obser-

vation of the processor is reliable, uni = 1, the distribution would be Bernoulli(φn). This means

that oni will be sampled from a Bernoulli distribution with true parameter, i.e., φn. By definition,

φn is defined as the probability that coefficient n belongs to the support of the signal. Otherwise,

for uni = 0, it will be sampled from Bernoulli(1− φn), which means it reports faulty data.
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Finally, ki, the number of iterations completed by processor i is modeled with Binomial(Ki, ri)

whereKi is the maximum number of iterations completed by any processor since the last reporting

of processor i. Thus, we have ki ≤ Ki. Reliable processors (ri close to 1) are likely to report ki

close to Ki.

The goal of our sequential Bayesian updating inference algorithm is to infer the distribution of H

given D.

9.3 Inference via Sequential Bayesian Updating

Using Bayes’ rule, the posterior distribution is

P{H|D} ∝ P{D|H}P{H} = P{D,H}.

where P{D,H} is calculated using the model described in (9.1). Specifically, the last two expres-

sions in (9.1), are used to build P{D|H} and the other terms represent our prior belief, P{H}.

The posterior distribution is the updated distribution of the hidden variables after receiving the

observations.

In sequential Bayesian updating, the prior knowledge of the model is represented as the prior dis-

tribution, which is the distribution of the hidden variables before collecting data. After observing

the first set of measurements, the posterior distribution is determined using Bayes’ rule. Then, the

posterior distribution can be used as the prior when the next set of observations becomes avail-

able. Thus, we must update the distribution of the hidden variables using the observations. In this

approach, all the information is stored in the current distribution of the hidden variables.

To handle the intractable integrals arising in the inference procedure, variational inference is em-
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ployed [146, 147]. In variational inference, the posterior distribution is approximated by a family

of distributions for which the calculations are tractable. The approximate distribution is assumed to

be fully factorized over all the hidden variables [149, Chapter 10]. Specifically, the fully factorized

variational distribution Q{H} is defined as

Q{H} =
∏
i

Q{ri|β̂1
i , β̂

0
i }
∏
n,i

Q{uni|τni}
∏
n

Q{φn|â1
n, â

0
n}, (9.2)

where β̂1
n, β̂0

n, â1
n, â0

n, and τni are the parameters of the factorized distributions. Our goal is to

obtain Q{H} such that it approximates the posterior distribution P{H|D}.

Thus, at each step, the optimization problem

max E{ln(P{D,H})} − E{ln(Q{H})}

(where the expected value is with respect to variational distribution) is solved with respect to one

of the factorized distributions, keeping all other distributions fixed. The procedure is repeated until

convergence. Each step results in a closed form update rule for one of the variables. Since the

objective function is convex with respect to each of the factorized distributions, convergence is

guaranteed [149, Chapter 10]. The derivations of the updating rules are presented in the Appendix

E. After receiving each set of new measurements, the probability distributions of the unknown

variables are updated using the closed form update rules. In this framework, the tally score for

each coefficient, φn, is a random variable. Thus, the expected value of the random variable is used

as a point estimate of the tally score and is denoted by

φ̄n = EQ{φn}{φn} =
â1
n

â1
n + â0

n

. (9.3)

Furthermore, we indicate the tally vector by φ = [φ̄1, φ̄2, . . . , φ̄N ]. Details of the proposed frame-

128



work can be found in Algorithm 5 and the performance of the algorithm is evaluated in Section

9.4.

Algorithm 5 Bayesian Asynchronous StoIHT Iteration

Require: Number of subproblems, M , and probability of selection p(B). The parameters of
distribution of the reliability score, β̂1

i and β̂0
i , and the parameters of tally scores, â1

n and â0
n,

are available to each processor.
Each processor performs the following at each iteration:

1: randomize: select Bt ∈ [M ] with probability p(Bt)
2: proxy: b(t) = x(t) + γ

Mp(Bt)
A∗Bt(yBt −ABtx

(t))

3: identify: Ŝ(t) = supps(b
(t)) and T̃ (t) = supps(φ)

4: estimate: x(t+1) = b
(t)

Ŝ(t)∪T̃ (t)

5: repeat
6: update EQ{uni}{uni} = Q{uni = 1} as described in Appendix E.3
7: update β̂1

i and β̂0
i using (E.6), â1

n and â0
n using (E.5)

8: until convergence
9: update φ using (9.3)

10: t = t+ 1

It is clear that the inference algorithm is an iterative method. However, we will show in Section

9.4 that the framework performs well even if we run the update rules only once.

9.4 Numerical Experiments

9.4.1 Experiments in MATLAB

In these experiments, we take the signal dimension N = 1000, the sparsity level s = 20, and

the number of measurements m = 300. Also, initial values for β1
i , β0

i , a1
n, and a1

n are set to 1,

which results in uniform distribution for all ri and φn and indicates unbiased estimate of processor

reliability and tally score in absence of further information. For Stochastic IHT, the block size b is

set to be same as the sparsity level s and γ = 1. The convergence criteria is ‖y −Axt‖ ≤ 10−7

and the maximum number of iterations is 1500.
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Figure 9.1 shows the mean number of time steps over 50 trials when (a) all processors take the

same amount of time to complete an iteration, and (b) half of the processors are slow, meaning

that they complete an iteration every four time steps. It is evident that time steps required using

the Bayesian update rules have decreased compared to standard non-parallel Stochastic IHT and

Tally-based asynchronous IHT [187].
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Figure 9.1: Comparison of the number of time steps until convergence versus the number of pro-
cessors used in different methods, when (a) all processors complete an iteration in a single time
step and (b) half of the processors complete an iteration every four time steps.

As mentioned in Section 9.3, the proposed inference algorithm is an iterative algorithm and needs

to run the update rules alternatively to reach convergence. However, we also evaluate the perfor-

mance of the non-iterative inference algorithm in which, at each StoIHT iteration, the inference

runs the update rule for each variable only once. Figure 9.1 shows that the non-iterative and itera-

tive algorithms performs similarly.

9.4.2 Experiments in C++

In this set of experiments, to have a better understanding of the behavior of the algorithms in a

real parallel environment, different sparse recovery methods are implemented and tested using the

C++ programming language and OpenMP [191], a multiprocessor shared memory programming
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platform. Here, we take N = 10000, m = 3000, and s = 200. All other simulation parameters are

same as Section 9.4.1. Running time reflects the time required to execute all the steps of the algo-

rithms, including initialization, preprocessing, convergence, and post-processing. All simulations

have been performed in the Ubuntu 16.04 environment on a PC equipped with an Intel Xeon E5-

1650 processor (3.20 GHz) with 12 processors and 8 GB of RAM. Parallel AMP, a synchronous

sparse recovery algorithm, is a row-wise multi-processor approximate message passing algorithm,

as described in [181]. Here, we use the non-iterative version of the Bayesian asynchronous Sto-

IHT algorithm. All the results are based on 50 Monte-Carlo trials.
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Figure 9.2: Performance of different multi-processor sparse recovery algorithm implemented using
C++ programming language and OpenMP platform. Twenty percent of the processors are slow.

Figure 9.2(a) and Figure 9.2(b) show the execution time per iteration and total convergence time,

respectively, for different numbers of processors. In this experiment, slow processors sleep for

100 ms at each StoIHT iteration and make up 20% of the processors; i.e., no slow processors

for P < 5, one for 5 ≤ P < 10, and two for P = 10. After adding the first slow processor,

the execution time for parallel AMP increases significantly, illustrating the fact that synchronous

parallel algorithms suffer from the presence of slow processors. On the other hand, the execution

time of the asynchronous algorithms does not change significantly. It is worthwhile to mention

that at P = 10, when the second slow processor is added to the system, there is no increase in
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the execution time of any of the algorithms, since more slow cores with the same sleep time does

not increase the wait time of the system. Figure 9.2(b) shows that although the execution time

per iteration of the asynchronous algorithms is decreasing after adding more processors, the total

convergence time increases slightly, since more cores increases the processor/thread scheduling

overhead and takes the inference algorithm longer to converge.
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Figure 9.3: Mean convergence time of different multi-processor sparse recovery algorithms over
50 trials. Ten processors are solving the sparse recovery problem and two cores are slow.

Figure 9.3 demonstrates the effect of the sleep time of the two slow processors (of ten) on the exe-

cution time. Note that the convergence times of synchronous multi-processor algorithms increase

linearly as the processors become slower, since all processors need to wait for slower processors

at each iteration. The convergence time of the asynchronous algorithms depend less on the sleep

time of the slow cores.

9.5 Conclusions

In this work, we modified the stochastic iterative hard thresholding algorithm to solve the sparse

recovery problem in an asynchronous parallel manner. We proposed a Bayesian framework to

assign reliability scores to the processing nodes, using both their current estimate of the support and

their iteration number. The update rules for the reliability score and the support estimate are derived
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in closed form using variational inference. This computationally inexpensive inference makes the

algorithm more robust to slow, unreliable processing nodes. An interesting future direction is to

utilize this framework for other sparse recovery algorithms such as AMP [192], which is known to

have a better phase-transition threshold.
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CHAPTER 10: ROBUST TARGET LOCALIZATION BASED ON

SQUARED RANGE ITERATIVE REWEIGHTED LEAST SQUARES

The problem of localization arises in different fields of study such as wireless networks, navigation,

surveillance, and acoustics [193–195]. There are many different approaches to localization based

on various types of measurements such as range and squared-range (SR), time-of-arrival (ToA),

time-difference-of-arrival (TDoA), two-way time-of-flight (TW-ToF), direction-of-arrival (DoA),

and received-signal-strength (RSS) [194, 196–199]1.

In [194], localization from range measurements and range-difference measurements are consid-

ered and least-squares (LS) estimators are exploited. Authors in [193–195, 199] have established

methods to find the exact or approximate solution in the maximum likelihood (ML) framework.

Usually finding the solution for ML estimators is a difficult task or computationally burdensome

[195, 199].

In this chapter, the problem of robust target localization is considered. In sensor networks, some

nodes may report faulty data to the processing node unintentionally or maliciously. This may occur

because of network failures, low battery, physical obstruction of the scene, and attackers. Thus, the

processing node should not simply aggregate measurements from all sensors. It is more efficient

to disregard the outlier measurements and localize the target based on reliable measurements.

There are different approaches toward robust localization. The method in [196] is obtained by

modeling the ToA estimation error as Cauchy-Lorentz distribution. In [200], robust statistics, and

specifically Huber norm, is exploited to localize sensors in a network in a distributed manner using

1Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, M. Joneidi, B. Shahrasbi, and N. Rah-
navard, “Robust Target Localization Based on Squared Range Iterative Reweighted Least Squares,” in 2017 IEEE 14th
International Conference on Mobile Adhoc and Sensor Systems, IEEE Computer Society, 2017, c© 2017 IEEE [190].
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the location of a subset of nodes. Authors in [198] try to minimize the worst-case likelihood

function and employ semidefinite relaxation to attain the estimate using TW-ToF measurements.

The authors in [201] have developed a robust geolocation method by estimating the probability

density function (PDF) of the measurement error as a summation of Gaussian kernels. This method

works best when the measurement error is drawn from a Gaussian mixture PDF.

In this chapter, the goal is to localize a single target in the presence of outlier range measurements

in a centralized manner. We aim to achieve outlier distributional robustness, which means the

estimator performs well for different outlier probability distributions. A least squares methodology

is applied to the squared range measurements. Although, this formulation is not optimal in the ML

sense [195], it provides us with the opportunity to find the estimate efficiently.

The contributions of this work can be summarized as follows. First, a robust optimization problem

is formulated, which disregards unreliable measurements, using squared-range formulation. Next,

two different algorithms are proposed to find the solution of the optimization problem. In the first

algorithm, which is based on iteratively reweighted least squares (IRLS), the proposed optimiza-

tion problem is transformed into a special class of optimization problems, namely Generalized

Trust Region Subproblems (GTRS) [202]. Numerical simulations show that this algorithm has fast

objective convergence. However the whole-sequence convergence is not established theoretically.

The second algorithm is based on gradient descent. This algorithm is globally convergent, but

needs more iterations to converge. By using these two algorithms, we proposed a hybrid method,

which has desirable theoretical and practical features, such as fast whole-sequence convergence.

The rest of this chapter is organized in the following order. In Section 10.1, the system model is

introduced. Section 10.2 describes the robust localization problem and two methods to tackle the

problem are presented. Section 10.3 presents the simulation results and finally Section 10.4 draws

conclusions.

135



10.1 System Model

Since the problem of source localization arises in different fields such as wireless networks, surveil-

lance, navigation, and acoustics, a general system model is exploited. In the generalized model, the

system is comprised of R sensors, with known locations, and the location of the target is estimated

using the range measurements reported by these sensors. A central processing node collects the

measurements and computes the location of the target.

Each sensor reports a range estimate, denoted by ri, given by

ri = ‖x− ai‖2 + vi, i = 1, ..., R, (10.1)

where ‖.‖2 denotes Euclidean distance, x ∈ Rn is the coordinates of the target, ai ∈ Rn is the lo-

cation of the ith sensor and vi models the measurement error. It is clear that for the aforementioned

applications n = 2 or 3.

The measurement errors vi are assumed to be independent and identically distributed random vari-

ables. To model the outlier measurements, a two-mode mixture PDF is assigned to the measure-

ment errors, which can be written as:

pV (v) = (1− β)N (v; 0, σ2) + βH(v). (10.2)

In other words, measurement errors are drawn from the distribution N (v; 0, σ2) with probability

1 − β or the distribution H(v) with probability β. N (v; 0, σ2) models the measurement noise

for the outlier-free measurements, which is assumed to be a zero mean Gaussian distribution with

variance σ2, and H(v) models the outlier errors. Thus, the probability β denotes the ratio of out-

lier measurements to all the measurements, also known as the contamination ratio. The outlier
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error distribution, H(v), is commonly modeled with a Uniform distribution [203, 204], a shifted

Gaussian distribution [201, 205, 206], a Rayleigh distribution [206], or an exponential distribu-

tion [207]. However, it is worthwhile to mention that our proposed method does not rely on the

distribution ofH(v).

Here, the goal is to estimate x using the measurements ri i = 1, . . . R, while disregarding the

measurements from outlier sensors. The processing node has no information about the number of

the outlier sensors and the distribution of outlier measurements. Moreover, it is assumed that all

the reported measurements including the noisy and irrelevant measurements are positive. For that,

we exploit robust statistics and propose methods to obtain the solution.

10.2 Robust Localization From Squared Range Measurements

In this section, a localization method is developed by applying robust statistics to the squared range

measurements. Although this formulation is not optimal in the ML sense, unlike the methods based

on range measurements, the solution can be attained easily.

The conventional square-range-based least squares (SR-LS) formulation is as follows [194]:

minimize
x

R∑
i=1

(‖x− ai‖2
2 − r2

i )
2. (10.3)

It is clear that the problem stated in (10.3) is not convex. However, we can transform (10.3) into a

special class of optimization problems by reformulating it as a constrained minimization problem

given by [194, 202]

minimize
x,α

R∑
i=1

(α− 2ai
Tx+ ‖ai‖2 − r2

i )
2,

subject to ‖x‖2 = α.

(10.4)
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It is worthwhile to mention that α is also an outcome of the optimization procedure, not a parameter

to be set. In this formulation, the unreliable measurements from outlier sensors affect the accuracy

of localization significantly. We plan to use robust statistics to decrease the sensitivity of the

estimator to the common assumptions. Here, robustness signifies insensitivity to small deviation

from the common assumption, which is the Gaussian distribution for noise. In (10.2), the parameter

β represents the deviation from this assumption. Our goal is to deal with the unknown distribution

H(v) and to achieve distributional robustness.

As described in [208], a proposed statistical procedure should have the following features. It must

be efficient, in the sense that it must have an optimal or near optimal performance at the assumed

model, i.e., the Gaussian distribution for noise. It must be stable, i.e., robust to small deviations

from the assumed model. Also, in the case of breakdown, or large deviation from the model, a

catastrophe should not occur. In the numerical experiments, we will look for these features in the

proposed methods.

The general recipe to robustize any statistical procedure is to decompose the observations to fitted

values and residuals [208]. In our proposed methods, we will try to find the residuals and re-fit

iteratively until convergence is obtained. Each term of summation in (10.4) corresponds to the

residual from a single sensor. These residuals can be exploited to re-fit the observations iteratively.

Specifically, we use the residuals to assign weights to each observation. If an observation is fitted

to the model, it should have a larger weight in the procedure of decision making. Inspired by [209],

we define the objective function as:

J (y,w) =
R∑
i=1

wi(ãi
Ty − bi)2 +

R∑
i=1

ε2wi − lnwi, (10.5)
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where ãi
T =

[
−2ai

T 1

]
, y =

[
x α

]T
, bi = r2

i −‖ai‖2, andw ∈ RR is the weight vector

with wi > 0,∀i. The value of the parameter ε is a function of the standard deviation of the noise,

we set ε = 1.34
√

3σ based on the discussion presented in Appendix F.

The first summation of the objective function (10.5) is the weighted version of the objective in

(10.4). The other terms are added in such a way that result in the commonly used class of M-

estimators known as Geman-McClure (GM) function [210, 211]. The aim of GM function is reduce

the effect of large errors, by interpolating between `2 and `0 norm minimizations [210]. There are

other M-estimatiors with similar behavior as the Geman-McClure such as Tukey, Welsch, and

Cauchy estimators. These types of M-estimators are known to be more robust to large errors than

Huber M-estimator [210]. The desirable feature of Huber function is the convexity, unlike all the

other mentioned estimators. However, our numerical results show that the proposed algorithms

perform well for different scenarios and different values of contamination ratio.

Our goal is to minimize J (y,w) over y and w. Specifically, we are solving the following opti-

mization problem:

minimize
y,w

J (y,w),

subject to yTDy + 2fTy = 0,

wi > 0,∀i,

(10.6)

where

D =

 In 0n×1

01×n 0

 , f =

 0n×1

−0.5

 . (10.7)

Our algorithms will exploit an alternative approach to update the weights and y. We initialize by

taking w(0)
i = 1,∀i. Then at the kth iteration, the following optimization problem is solved to
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update the value of y:

y(k+1) = arg min J (y,w(k)),

subject to yTDy + 2fTy = 0.

(10.8)

Likewise, the weights are updated as follows:

w(k+1) = arg min J (y(k+1),w),

subject to wi > 0,∀i.
(10.9)

This problem is convex and the global minimizer can be obtained easily. As a result, the weights

are given by:

w
(k)
i =

1

(e
(k)
i )2 + ε2

,

where e
(k)
i = ãi

Ty(k) − bi.
(10.10)

Choosing such weights is common in iteratively reweighted least square (IRLS) methods [156,

208, 210, 212, 213].

In robust statistics terms, the measurements are decomposed into the fitted values y(k) and residuals

e(k) at each iteration k. Then, the residuals are exploited to tune the weights of the observations.

For large residuals, i.e., ei � ε, each term of the first summation in (10.5), tends to 1 . Similarly,

for small residuals each term in summation tends to zero. In other words, we are minimizing the

number of the observations with large residuals.

Now, two different approaches to find the solution of (10.8) are introduced. In the first approach, we

show that (10.8) can be mapped into a special class of optimization problems known as Generalized

Trust Region Subproblems (GTRS) [202]. Then at each iteration, the exact solution is derived by
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employing the GTRS formulations. In the second approach, a method based on gradient descent

is introduced to solve the problem. This method is not as computationally efficient as the first

approach, but offers an array of desirable theoretical features.

10.2.1 The Squared Range Iterative Reweighted Least Squares (SR-IRLS) Approach

The optimization problem in (10.8) can be formulated in the matrix form as:

minimize
y

(Ay − b)TW (k−1)(Ay − b),

subject to yTDy + 2fTy = 0,

(10.11)

with

A =


−2a1

T 1

...
...

−2aR
T 1

 , b =


r2

1 − ‖a1‖2

...

r2
R − ‖aR‖2

 , (10.12)

and W (k) is a diagonal weighting matrix in the kth iteration and w(k)
i is the ith diagonal entry of

W (k), i = 1, . . . , R.

Note that in (10.11), a quadratic objective function is being minimized subject to a quadratic

equality constraint. This special class of optimization problems is called Generalized Trust Re-

gion Subproblem (GTRS) [202]. The equality constraint makes this optimization problem non-

convex. However, it is shown that the global solution of GTRS problems can be obtained efficiently

[194, 202].

Theorem 10.1. Let q : Rn → R and c : Rn → R be quadratics and assume {x ∈ Rn : c(x) = 0}

is not empty. If

v 6= 0,vTCv = 0⇒ vTQv > 0, (10.13)
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where

Q = ∇2q,C = ∇2c,

then the optimization problem min{q(x) : c(x) = 0} has a global minimizer.

Theorem 10.2. Let q : Rn → R and c : Rn → R be quadratics and assume that min{c(x) : x ∈

Rn} < 0 < max{c(x) : x ∈ Rn} and ∇2c 6= 0. A vector x∗ is a global minimizer of problem

min{q(x) : c(x) = 0} if and only if c(x∗) = 0 and there is a multiplier λ∗ ∈ R such that the

Kuhn-Tucker condition

∇q(x∗) + λ∗∇c(x∗) = 0

is satisfied with

∇2q(x∗) + λ∗∇2c(x∗)

positive semidefinite.

Specifically, using Theorem 10.1 and the definitions ofA,W (k), andD, we can easily verify that

(10.13) holds for the proposed optimization problem in (10.11). Thus, the optimization problem

(10.11) has a global minimizer for all the iterations. Also by using Theorem 10.2, y(k) is an optimal

solution of (10.11) if and only if there exists λ ∈ R such that:

(ATW (k−1)A+ λD)y(k) = ATW (k−1)b− λf ,

y(k)TDy(k) + 2fTy(k) = 0,

ATW (k−1)A+ λD � 0.

(10.14)

The last expression means thatATW (k−1)A+λD is positive semidefinite. The first two equalities

in (10.14) can be exploited to obtain a solution for λ, i.e. λ∗. To ensure that ATW (k−1)A + λ∗D
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is positive semidefinite, it is easy to show that we need to seek for λ∗ in the interval

λ∗ ≥ − 1

λ1(D,ATW (k−1)A)
, (10.15)

where λ1(D,ATW (k−1)A) is the largest generalized eigenvalue of the matrix pair (D,ATW (k−1)A).

It is shown that if (10.13) holds, thenATW (k−1)A+λD � 0 for some λ ∈ R [202, Theorem 2.2].

Moreover, the resulting characteristic function needed to be solved to find λ∗ is strictly decreasing

over this interval [202, Theorem 5.2]. Thus, at each iteration, λ∗ can be obtained using a bisection

algorithm. The interval for starting point of the bisection algorithm is specified as (λl,∞), where

λl = max{−(ATW (k−1)A)ii, i = 1, . . . , n} [202].

Then, y is updated using the estimated λ∗. Algorithm 6 illustrates the procedure to calculate the

estimate of (10.11) using the equations in (10.14). The convergence of the algorithm is analyzed

in Theorem 10.3.

Algorithm 6 Calculating the SR-IRLS estimate
Require: ai, ri for i = 1, . . . , R, ε, maximum number of iterationsmaxIter, and the convergence

tolerance ∆.
1: ComputeA, b,D, and f using (10.12) and (10.7).
2: Initialize w(0)

i = 1,∀i, and k = 1.
3: repeat
4: λl = max{−(ATW (k−1)A)ii, i = 1, . . . , n}.
5: Find λ∗ : solve y(λ)TDy(λ)+2fTy(λ) = 0 using a bisection algorithm in interval (λl,∞),

where y(λ) = (ATW (k−1)A+ λD)−1(ATW (k−1)b− λf).
6: Update y : y(k) = y(λ∗).
7: Update w(k) using (10.10).
8: until Convergence, i.e., if |J (y(k),w(k))− J (y(k−1),w(k−1))| < ∆ or the maximum number

of iterations maxIter is reached.

Theorem 10.3. The sequence {J (y(k),w(k))} generated by by Algorithm 6 converges to a con-

stant value and every limit point of the iterates {y(k),w(k)} is a stationary point of (10.6).

Proof. See Appendix G.
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Inspection of the algorithm reveals that the matrix inversions are only needed for (n+ 1)× (n+ 1)

matrices, where n is the space dimension and is equal to 2 or 3. Thus the main computational

burden of the algorithm stems from the matrix multiplications. The per iteration complexity of the

algorithm is O(R2). Similarly, the growth rate for the legacy least square problem is also O(R2).

Thus, the main computational burden of the SR-IRLS algorithm arises from the number of the

iterations.

Our numerical experiments show that the SR-IRLS method needs a few iterations to solve the

problem. The convergence of the objective is also proven in Appendix G. However, due to the

lack of convexity, the standard convergence analysis tools cannot be used to show the convergence

of the whole-sequence of the iterates. The problem becomes more difficult when the objective

function is not a linear or a quadratic function of the previous iterates. Thus, in Appendix G,

the convergence of a subsequence of the iterates to a critical point is proved, although the whole-

sequence convergence is almost always observed.

This motivates us to propose a globally convergent algorithm. In Section 10.2.2, an algorithm,

referred to as SR-GD, is introduced to find the solution of (10.11) based on gradient descent.

Then, we will integrate SR-IRLS and SR-GD to derive a computationally efficient and globally

convergent algorithm.

10.2.2 The Squared Range Gradient Descent (SR-GD) Approach

In this section, a new algorithm for solving the optimization problem in (10.8) is proposed based

on gradient descent (SR-GD), for which the convergence of the whole-sequence of the iterates has

been proven theoretically [214]. For that, the Lipschitz continuity of the gradient of the objective

function as well as the special form of the objective and the constraint are employed. The numerical

experiments show that this algorithm needs more iterations to converge than the SR-IRLS. Our goal
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will be to employ SR-GD and SR-IRLS to propose a hybrid fast converging algorithm.

Inspired by [214], at each iteration, the value of y(k) is updated as follows:

y(k) = arg min
y
〈∇yJ (ŷ(k),w(k−1)),y − ŷ(k)〉

+ l(k)‖y − ŷ(k)‖2
2,

subject to yTDy + 2fTy = 0,

(10.16)

where

ŷ(k) = y(k−1) + ω(k)(y(k−1) − y(k−2)),

and l(k) is the Lipschitz constant of ∇yJ (y,w(k−1)) at the kth iteration. By the definition of

Lipschitz continuity, we have

‖∇yJ (u,w(k−1))−∇yJ (v,w(k−1))‖ ≤ l(k)‖u− v‖.

Intuitively, the first term of the objective finds the steepest descent, while the second term prevents

large changes in the magnitude of the gradient. The Lipschitz constant of the gradient function

limits the step size of the algorithm and the new estimate y(k) is enforced to be around the pre-

diction ŷ(k). The prediction is constructed using the previous iterates and an extrapolation factor

ω(k) = 1
12

√
l(k−1)

l(k)
[214]. The update rule for w is the same as (10.10).

This problem is not convex as well, but authors in [214] have proven the convergence of the whole-

sequence of the algorithm by exploiting the properties of the objective.

It is easy to notice that the minimization problem stated in (10.16) is a GTRS problem. This is

because a quadratic objective is minimized subject to a quadratic equality constraint. By exploiting

the definition of D and l(k), we can show that (10.13) holds. Thus the optimization problem in
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(10.16) has global minimizer for all iterations. Also Theorem 10.2 states that y(k) is an optimal

solution of (10.16) if and only if there exists λ ∈ R such that:

(l(k)In+1 + λD)y(k) = −ATW (k−1)(Aŷ(k) − b)

+ l(k)ŷ(k) − λf ,

y(k)TDy(k) + 2fTy(k) = 0,

λ ≥ max{−l(k),− 1

λ1(D,ATW (k−1)A)
}

(10.17)

At each iteration, after finding the predicted value for the iterate ŷ(k), the equality expressions in

(10.17) are used to find λ and to update the values of y and w. We should look for the solution

of λ in an interval that satisfies the positive semidefiniteness constraint. Since (10.13) holds, this

interval exists and the characteristic function is strictly decreasing over this interval [202, Theorem

2.2, Theorem 5.2]. Algorithm 7 shows the steps to find the solution of the localization problem

using the SR-GD method.

Algorithm 7 Calculating the SR-GD estimate
Require: ai, ri for i = 1, . . . , R, ε, maximum number of iterationsmaxIter, and the convergence

tolerance ∆.
1: ComputeA, b,D, and f using (10.12) and (10.7).
2: InitializeW (0) with identity matrix, y(−1) = y(0) = A†b, l(0) = 0, and k = 1.
3: repeat
4: l(k) = 2‖ATW (k−1)A‖F .

5: ω(k) = 1
12

√
l(k−1)

l(k)
.

6: ŷ(k) = y(k−1) + ω(k)(y(k−1) − y(k−2)).
7: Find λ∗ : solve y(λ)TDy(λ) + 2fTy(λ) = 0 using a bisection algorithm in interval

(−l(k),∞), where y(λ) = (l(k)In+1 + λD)−1(−ATW (k−1)(Aŷ(k) − b) + l(k)ŷ(k) − λf).
8: Update y : y(k) = y(λ∗).
9: Update w(k) using (10.10).

10: until Convergence, i.e., if ‖y(k)−y(k−1)‖ < ∆ or the maximum number of iterationsmaxIter
is reached.
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The numerical experiments show that the SR-GD method needs more time to find the solution

than SR-IRLS. This is due to the fact that in SR-GD, the value of the new iterate is bounded to be

around the previous iterate, unlike the SR-IRLS method.

To take advantage of the fast convergence of the SR-IRLS and the whole sequence convergence

of the SR-GD, we propose a hybrid method. Specifically, we can start with the SR-IRLS method

and update the iterates by steps stated in Algorithm 6. After convergence of the objective function,

which is proven in Appendix G, the update rules in Algorithm 7 are employed to find the final

solution. The performance, convergence rate, and computational cost of this hybrid method is

evaluated and compared with other methods in Section 10.3.

10.3 Numerical Results

In this section, we present the simulation results to evaluate the performance of our proposed

methods. We will seek for the main features of a robust estimator, which are discussed in Section

10.3. We will examine the performance of the algorithms at the assumed model (β = 0), small

deviations from model (small β), and large deviations from the model (large β). Moreover, we

check distributional robustness of the proposed algorithms, which means that the performance of

the methods will be evaluated for different outlier noise distributionsH(v).

Two different simulation scenarios will be investigated. In Scenario I, a general system model

is considered and the outlier measurements obey a uniform distribution, which models a harsh

environment. In Scenario II, localization of a target in a cellular radio network is investigated. The

geometry of sensors is taken from an operating network and the measurement errors are drawn

from a Gaussian mixture distribution to model the non-line-of-sight (NLOS) measurements.

The performances of the proposed methods are compared with existing least-square-based [194]
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and robust [201] methods.

10.3.1 Scenario I

The simulation parameters are as follows, unless otherwise is stated. In a 4000 × 4000 m2 area,

there exist 10 sensors trying to localize a target. The sensors and the target are distributed uni-

formly at random, The range measurements are corrupted by the additive white Gaussian noise

with standard deviation of σ = 55 m. Moreover, among the sensors, there exist 4 outlier sensors.

The noise of the outlier sensors are uniformly distributed in range [−4000
√

2, 4000
√

2]. Mathe-

matically speaking, the distribution of the measurement error is as follows:

pV (v) = (1− β)N (v; 0, σ2) + βU(v;−Dmax, Dmax), (10.18)

where U(v;−Dmax, Dmax) is a uniform distribution with support [−Dmax, Dmax], which is mod-

eling the outlier measurements. N (v; 0, σ2) is a zero mean Gaussian distribution with variance

σ2.

To ensure that all the range measurements are positive, we set the non-positive values equal to a

small value, i.e. 10−5. Localization is performed in a 2-dimensional space, i.e. n = 2.

The performances of the proposed methods SR-IRLS, SR-GD, and the hybrid version are com-

pared with the performance of SR-LS [194], a least-square-based method, as well as a robust

method, namely Robust Iterative Nonparametric (RIN) [201]. The performances are compared

according to the root mean square error (RMSE),

√
1

n
‖x− x̂‖2

2, (10.19)
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averaged over sufficiently large random simulations. x̂ is the estimated value of the target location

x.

In our first numerical experiment, the convergence of SR-IRLS and SR-GD are compared. Figure

10.1 depicts ‖y
(k)−y(k−1)‖
‖y(k)‖ at different iterations. Moreover, the labels show the elapsed time for

some of the iterations. Although the convergence of the SR-GD method is theoretically provable,

Figure 10.1 shows that it needs more iterations and more time to converge. The hybrid version of

the algorithm (SR-Hybrid) uses the update rules of SR-IRLS until the convergence of the objective

function, then it employs the update rules of SR-GD. As a result, it needs less iterations than

SR-GD, while its convergence is still theoretically provable.
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Figure 10.1: Convergence of SR-IRLS, SR-GD, and the hybrid method. Labels show the execution
time of different algorithms at different iterations.

To study the influence of the number of outlier sensors, Figure 10.2 exhibits the RMSE of the

estimate for different number of outlier sensors, or equivalently different values of β. In this study,

the results are based on 200 Monte Carlo (MC) trials. It is clear that as the number of outliers

increases, the performance of the SR-LS method deteriorates significantly. SR-IRLS and SR-GD

perform closely for small values of β, but the difference becomes more noticeable as β increases.

This was expected since SR-GD is more likely to result in local optimum solutions caused by the

outliers, because of the smooth convergence of the iterates. However, the hybrid version, which

only uses small step size when it is sufficiently close to the limit point, performs the best for
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different values of contamination ratio. This figure shows that the proposed methods are efficient

at the assumed method (β = 0) and stable for small deviations. Also, for large deviations, a

catastrophe is not occurred.
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Figure 10.2: Robustness against outliers for 200 Monte Carlo trials, σ = 55 and R = 10. Number
of outlier sensors is set to β ×R.

To estimate the target location, the RIN method [201] approximates the PDF of the measurement

error with a summation of Gaussian kernels. For that, it needs a considerable number of mea-

surements. Hence, unlike our proposed methods, it cannot produce proper results with R = 10

measurements. Further, since the RIN method employs Gaussian kernels, it works most accurately

when the measurement errors are drawn from a Gaussian mixture distribution (see Section 10.3.2).

Using the Gaussian kernels decreases the distributional robustness of the RIN method significantly.

To elaborate the point, Figure 10.3 illustrates the impact of the number of sensors on performance

of different methods. In this experiment, 40% of the sensors are reporting unreliable data to the

processing node, i.e. β = 0.4. This figure exhibits that the accuracy of the localization methods

improves as the number of sensors increases. As it was expected, the RMSE of the estimates

produced by the RIN method decreases significantly as the number of sensors increases.

Moreover, It is clear that the proposed methods meet the Cràmer-Rao lower bound (CRLB) for

large number of measurements. From Figure 10.3(a) and Figure 10.3(b), we can infer that the pro-
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posed methods are efficient for this simulation parameters, because they meet the CRLB and they

are unbiased. The CRLB is approximated by using Monte Carlo integration techniques explained

in [201].
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Figure 10.3: Performance of the localization methods versus number of sensors for 1000 Monte
Carlo trials and β = 0.4.

Figure 10.3(c) shows the running times2 for different number of sensors. Clearly, the iterative

methods requires more computation time than the least square method. Also, as it was expected

and can be noticed in Figure 10.1, the running time of the hybrid method is less than SR-GD, but

more than SR-IRLS.

2Running time reflects the time required to execute all the steps of the algorithms, including initialization, prepro-
cessing, convergence, and post-processing. All simulations have been performed under MATLAB 2014a environment
on a PC equipped with Intel Xeon E5-1650 processor (3.20 GHz) and 8 GB of RAM.
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It is also worthwhile to compare the performance of the localization methods for the case when no

sensor is reporting unreliable measurements and the range measurements are corrupted only by an

additive Gaussian noise, i.e. β = 0. As it can be seen in Figure 10.4, the LS method outperform

the robust methods. This was expected since the LS methods are particularly tailored to deal with

Gaussian noise, while the robust methods are customized to handle the unreliable measurements.

We are sacrificing efficiency for β = 0, to achieve stability in deviation from the model. However,

it is easy to notice that the RMSE of the proposed robust methods is close to the RMSE of the

SR-LS method, which implies the near optimal performance for Gaussian noise.
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Figure 10.4: Comparison of the RMSEs in an environment with no outlier sensor, β = 0.

10.3.2 Scenario II

In this section, the problem of localizing a target in a radio cellular network is considered. The

network consists R = 8 base stations (BSs), which are trying to estimate the location of a target in

a city center area. The configuration of the BSs and the city center, as depicted in Figure 10.5, is

taken from a realistic network [201].

The outlier-free measurements are result of line-of-sight (LOS) sensings. On the other hand NLOS

sensings produce unreliable measurements. Field trials have indicated that the measurement errors
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in harsh LOS/NLOS environments can be modeled as a Gaussian mixture distribution [201],

pV (v) = (1− β)N (v; 0, σ2) + βN (v;µNL, σ
2
NL), (10.20)

where N (v;µNL, σ
2
NL) is a Gaussian distribution with mean µNL and variance σ2

NL, modeling the

NLOS measurements.
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Figure 10.5: Geometry of the sensors, marked as triangle, and the city center area, marked as gray
square, in a real world operating cellular radio network.

For each BS, we obtain K measurements and stack them in the measurement vector as follows:

b =



r1(1)2 − ‖a1‖2

...

r1(K)2 − ‖a1‖2

...

rR(1)2 − ‖aR‖2

...

rR(K)2 − ‖aR‖2



, A =



−2a1
T 1

...
...

−2a1
T 1

...
...

−2aR
T 1

...
...

−2aR
T 1



. (10.21)

In the simulations, it is assumed that each BS reports K = 20 samples. The measurement errors

are drawn from the distribution in (10.20) with σ = 55, µNL = 380, and σNL = 120. The position

of the target is uniformly generated in the city center area.
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Figure 10.6 illustrates the performance of different localization methods versus the contamination

ratio for 0 ≤ β ≤ 1. This figure shows that SR-GD outperforms its competitors. Moreover, the

hybrid version and SR-IRLS perform the same in this configuration and are able to handle NLOS

measurements up to a certain amount and meet the CRLB up to a certain β. For, Large values of β,

the SR-IRLS method breaks down, but still works better than the least square method. However,

in this scenario SR-GD is able to localize the target for even large contamination ratios.
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Figure 10.6: Mean RMSE of different localization methods versus contamination ratio, for 100
MC trials.

Moreover, the RIN method performs accurately in this scenario, in comparison with the previous

scenario. In this scenario, the RIN can estimate the PDF of the error more accurately. This was

expected because, firstly, we are collecting R ×K = 160 measurements, secondly, the measure-

ment error has a mixture Gaussian distribution. As a result, the RIN method can produce a better

estimate of the target location. With 160 measurements, RIN is able to approximate the measure-

ment error distribution. Thus, the its RMSE does not change considerably for different values of β.

This fact is vividly clear for the extreme case. For β = 1, the RIN method is able to approximate

N (v;µNL, σ
2
NL) as the PDF of the measurement error. As a result, this method outperforms the

competitors for the special case of β = 1.
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10.4 Conclusions

In this chapter, we have considered the problem of localizing a single target in the presence of un-

reliable measurements with unknown probability distribution. For that, the squared-range formu-

lation is exploited. To disregard the outlier measurements and find the estimate using the reliable

measurements, we have used robust statistics. Then the problem is converted into a known class of

optimization problems, namely GTRS, using the concepts in robust statistics. Two algorithms and

a hybrid method are proposed to solve the problem. Convergence of the algorithms is analyzed

theoretically.

The simulation results suggest that the proposed methods outperform the existing methods, while

providing a near optimal performance for Gaussian noise.
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CHAPTER 11: CONCLUSION

11.1 Contributions

In this dissertation, we discussed the problem of robust and scalable data representation and analy-

sis as three major tasks. In the first task, supervised representation learning, we mainly focused on

deep neural networks, which have been proven to be very efficient in finding abstract and useful

representations of the data whenever huge amount of data are available. Deep neural networks

consist of composition of many nonlinear transformations and are notoriously difficult to train,

as they become deeper. We studied the optimization dynamics of a certain family of deep neural

networks and illustrated how such dynamics can be improved by regularizing the singular values

of the linear operators in the network. We also showed how we can robustify the learned represen-

tations to outliers, by enforcing certain structures on the embedding space learned by the neural

network. Next, we showed how we can employ the feature space generated by neural networks to

select a representative subset of our data set.

On the other hand, in the scenarios when a large amount of data is not available, specific domain

knowledge can be employed to find useful representations in an unsupervised manner. Thus, for

the second task, unsupervised representation learning, we discussed methods that do not need la-

belled data to reveal the latent structures. For example, compressive sensing (CS) states that the

compressed representations of the signal, achieved by simple random projections, contain enough

information to reconstruct the original signal, as long as it has a sparse representation in any sparsi-

fying basis. We showed that how we can use Bayesian inference to incorporate our prior knowledge

to obtain better random projections and to improve the reconstruction accuracy. We also showed

that we can use sparsity constraint to enforce structures, such as piece-wise continuity, on the la-

tent factors of data. However, optimization with sparsity constraint is not a trivial task. Thus,
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we proposed an optimization technique, employing Majorization-Minimization, to guarantee the

convergence.

For the third task, we examined how we can make a data processing system fault-tolerant both in

the data collection and the data processing phases. Due to recent advancements in the production of

inexpensive data processing and collection devices, many of the experiments in machine learning

consist of processing thousands of samples over thousands of processing nodes. But oftentimes the

cost function of optimization problems does not lend itself to asynchronous parallel computation,

which makes the framework sensitive to faulty processors. Thus, we proposed a new framework

to solve the CS recovery problem in an asynchronous manner. We also showed how sparsity

constraint can be used during optimization to disregard the outlier measurements. For that, we

study a certain family of optimization problems, namely Generalized Trust Region Subproblem,

and show how we can robustify it with a provably convergent approach.

For each method, we showed the effectiveness of the proposed approach in real-world problems

such image/video classification, active learning, dataset summarization, video summarization, face

image retrieval, and wireless sensor networks. Here, we summarize the contributions of this dis-

sertation in more details:

11.1.1 Analyzing and Improving the Optimization Dynamics of Deep Residual Networks

We analyzed the optimization dynamics of Residual Networks [12] and showed how adding skip

connections to the network helps with the optimization stability. Specifically, we proved that the

norm of the gradient vector is preserved, as it is propagated through the layers via the chain rule.

We derived bounds for the norm-preservation of the neural network and showed that residual

blocks become more norm-preserving as the number of block increases. Our theoretical analy-

sis was verified by extensive empirical studies. We also proposed a new regularization to improve
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this norm-preservation behaviour in the network. Such regularization leads to more stable opti-

mization and better performance. Our proposed scheme is based on setting the singular values of

the convolution operator such that on average the norm of the gradient vector is preserved under

the backpropagation. We showed that, by employing our proposed regularization, we can achieve

same classification accuracy by using up to 4 times smaller networks.

11.1.2 Union of Low-Dimensional Subspace for Outlier Detection Using Deep Neural Networks

We showed that by engineering the embedding space generated by a deep neural network, we

can make it more robust to the outlier samples. It has been shown that the samples embedded

into a feature space generated by a conventional softmax classifier follow a mixture of Gaussian

distributions [19]. However, such embeddings do not necessarily make the outlier samples more

distinguishable. We also know that, due to the sheer representation ability of neural networks,

they can generate embedding spaces with different pre-defined structures. Thus, we proposed to

embed the samples from each class onto a 1-dimensional subspace in the embedding space. We

showed that enforcing such structure helps us to detect samples that do not belong to any of the

classes/subspaces with higher accuracy, compared to the conventional class-condition Gaussian

distribution. Our proposed scheme can be easily applied to different architectures and different

data modalities. For example, in [51], we showed how we can use our proposed scheme in both

image and video classification tasks.

11.1.3 Design and Analysis of a Linear-Time Subset Selection Algorithm for Large-Scale Data

We proposed and analyzed a new subset selection algorithm, whose time complexity increases

linearly with the number of samples. This is an important property as the size of the datasets is

growing larger and larger. Thus, the task of selecting the most representative or the most informa-
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tive subset of data in tractable time is becoming more difficult. We showed that our approach can

produce results in tractable time for datasets containing more than a million samples. We showed

the effectiveness of our proposed algorithm in different tasks such active learning for human action

recognition, dataset summarization, and video summarization.

11.1.4 Design and Analysis of Provably Convergent Optimizers for Problems with Sparsity

Constraint

We showed how we can use sparsity constraint to both reveal latent structures in the data and how

to make an optimization problem more robust to faulty data points. For instance, we used sparsity

to obtain piece-wise continuous latent factors in a non-negative matrix factorization problem. We

also derived a provably convergent optimizer for the proposed problem and showed how we can

use our scheme in a wireless sensor network to separate the signals from different transmitters.

As another example, we used sparsity constraint to disregard the faulty measurements in a source

localization problem. For that, we proposed an optimization problem that looks for a solution that

satisfies as many measurements as possible, instead of considering all the measurements. We also

proposed an algorithm to solve this problem in a provably convergent manner. We showed that

our proposed scheme can meet the Cràmer-Rao lower bound for a sufficiently large number of

measurements.

11.1.5 Bayesian Inference for Efficient and Robust Compressive Sensing

We studied the application of graphical models in both the sampling and reconstruction steps of

Compressive Sensing. For the sampling phase, we proposed to employ our prior knowledge of slow

variation in the signal over time to distribute the sampling energy more efficiently over the signal

components. For that, we designed a graphical model that can assign importance scores to each
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signal component. Therefore, we can reconstruct the more important parts of the signal with higher

accuracy, at the expense of losing some accuracy on the less important parts of the signal. For the

reconstruction phase, we used a similar graphical model to solve the Compressive Sensing recovery

problem in an asynchronous parallel manner. This means that our proposed recovery scheme can

tolerate existence of slow and faulty processors among the processing nodes. To achieve this, we

designed a graphical model that is able to assign reliability scores to the processors and share the

information among processors, while considering the reliability scores and without waiting for the

slower ones. We analyzed the convergence of our proposed Bayesian inference component both

theoretically and empirically.

11.2 Future Directions

We presented an array of supervised and unsupervised techniques to improve the scalability and

robustness of the data processing systems. The current state-of-the-art supervised techniques have

a few drawbacks. First, they are very data hungry. This makes them expensive both in terms of

data collection and computation time. One possible solution that has been gaining momentum re-

cently is to reduce the data collection cost by allowing some noise in the data. It is a well-known

fact that the recent success of the neural networks is due to the emergence of large-scale datasets.

Deep neural networks often require huge, and sometimes impractical, amount of data to perform

well. However, crowd sourcing platforms and data collection bots have provided the opportunity

to collect a large number of samples in a very cost-efficient manner. Such approaches inevitably

introduce some error during the labelling or annotation process. Such mislabeled samples can eas-

ily cause severe performance degradation for any classifier, and specially for deep neural networks.

It has been shown that the deep neural networks have the representational ability to memorize data

points with completely random labels [215], which emphasizes their sensitivity to label noise and
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the need for robustifying techniques. A robust deep neural network provides us with the opportu-

nity of using large amounts of inexpensive noisy data to achieve very high classification accuracy.

In Chapter 4, we discussed techniques to detect outliers samples at testing time, also known as

out-of-distribution detection. Similar ideas can be employed to prune the training set and to detect

outliers at training time. For example, the proposed spectral discrepancy measure can be used to

assign weights to the training sample and de-emphasize the outlier samples. It is also worthwhile to

mention that enforcing the union of 1-dimensional structure, discussed in Chapter 4, does not nec-

essarily require labeled data. Thus, it is possible to constrain the feature vectors in the embedding

space employing a large number of unlabelled data points and a few labelled samples.

Another drawback of current learning systems is lack of theoretical guarantees for optimization

success and the generalization error. It is still not clear why and how very deep neural networks

with millions of parameters are able to converge to a solution to a non-convex problem using fairly

simple optimization techniques. In Chapter 3, we tried to provide some insight for a specific case,

but more theoretical insight to this problem is very much needed. The regularization framework

proposed in this chapter provided us with some insight to the inner workings of residual networks,

but faster, more efficient, techniques are needed to make such regularization more practical. The

main computational cost of our proposed regularization is the calculation of all the singular values

of the convolution operator. Calculating or approximating the singular values in a computationally

lightweight manner can lead to a new wave of regularization methods in deep neural network

literature. Such methods can be used to control how the neural networks preserve the distance

between data points or how smooth they warp the input space to create the feature space. This is

an important property to study and regularize, as it has been shown that the neural network can

be easily fooled by adding a very small, barely visible, noise to the input sample. Thus, having

some control over singular values can help us to detect outliers and to robustify the system against

adversarial attacks.
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A.1 Proof of Theorem 3.1

For a cost function E(.) and the Jacobian J of xl+1 with respect to xl, applying chain rule, follow-

ing is true:
∂E
∂xl

= J
∂E
∂xl+1

,

J =
∂xl+1

∂xl
= I +DFl(xl),

where D is the differential operator and for any v with bounded norm we have:

DFl(xl)v = lim
t→0+

Fl(xl + tv)− Fl(xl)
t

To prove Theorem 3.1, we first state a lemma.

Lemma A.1. For any non-singular matrix I +M , we have:

1− σmax(M) ≤ σmin(I +M) ≤ σmax(I +M) ≤ 1 + σmax(M),

where σmin(M ) and σmin(M ) represent the minimum and maximum singular values of M , re-

spectively.

Proof. Since σmin(I +M ) > 0, the lower bound is trivial for σmax(M ) ≥ 1. For σmax(M ) < 1,

it is known that |λmax(M )| < 1, where λmax(M) is the maximum eigenvalue of M [216]. Thus,

we can show that:

σmin(I +M ) = (σmax((I +M )−1))−1 = ‖(I +M )−1‖−1
2

(a)
= ‖

∞∑
k=0

(−1)kM k‖−1
2

≥ (
∞∑
k=0

‖(−1)kM k‖2)−1 ≥ (
∞∑
k=0

‖M‖k2)−1 = (
1

1− ‖M‖2

)−1 = 1− σmax(M ).

Identity (a) is known as Neuman series of a matrix, which holds when |λmax(M )| < 1 and ||.||2
represents the l2-norm of a matrix.
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The upper bound is easier to show. Due to triangle inequality:

σmax(I +M ) = ‖I +M‖2 ≤ ‖I‖2 + ‖M‖2 = 1 + σmax(M).

Thus, knowing that

σmin(J)‖ ∂E
∂xl+1

‖2 ≤ ‖J
∂E
∂xl+1

‖2 ≤ σmax(J)‖ ∂E
∂xl+1

‖2,

using Lemma A.1, we conclude that

(1− δ′)‖ ∂E
∂xl+1

‖2 ≤ ‖
∂E
∂xl
‖2 ≤ (1 + δ′)‖ ∂E

∂xl+1

‖2.

where, δ′ = σmax(DFl(xl)). Furthermore, we have:

σmax(DFl(xl)) = sup
v

‖DFl(xl)v‖2
‖v‖2

= sup
v

1

‖v‖2
‖ lim
t→0+

Fl(xl + tv)− Fl(xl)
t

‖2

= lim
t→0+

sup
v

1

‖v‖2
‖Fl(xl + tv)− Fl(xl)

t
‖2 = lim

t→0+
sup
v

‖Fl(xl + tv)− Fl(xl)‖2
t‖v‖2

≤ ‖Fl‖L,

where ‖f‖L is the Lipschitz seminorm of function f and is defined as

‖f‖L := sup
x6=y

‖f(x)− f(y)‖2

‖x− y‖2

.

To conclude the proof, we use the following lemma:

Lemma A.2. (Theorem 1 in [40]) Suppose we want to represent a nonlinear mapping F : RN →

RN , satisfying Assumption 3.1, with a sequence of L non-linear residual blocks of form xl+1 =
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xl + Fl(xl). There exists a solution such that for all residual blocks we have ‖Fl‖L ≤ c log(2L)
L

.

Therefore, δ′ = σmax(DFl(xl)) ≤ ‖Fl‖L ≤ c log(2L)
L

= δ, which concludes the proof.

A.2 Proof of Theorem 3.2

In the classical back-propagation equation, for a cost function E(.) and the Jacobian J of xl+1 with

respect to xl, applying chain rule, following is true:

∂E
∂xl

= J
∂E
∂xl+1

,

J =
∂xl+1

∂xl
= I +W T

l ,

(A.1)

To prove the theorem, using Lemma A.1 and knowing that

σmin(J)‖ ∂E
∂xl+1

‖2 ≤ ‖J
∂E
∂xl+1

‖2 ≤ σmax(J)‖ ∂E
∂xl+1

‖2,

we conclude that

(1− δ′)‖ ∂E
∂xl+1

‖2 ≤ ‖
∂E
∂xl
‖2 ≤ (1 + δ′)‖ ∂E

∂xl+1

‖2.

where, δ′ = σmax(W l). To conclude the proof, we use the following lemma.

Lemma A.3. (Theorem 2.1 in [32]) Suppose L ≥ 3γ. Then, there exists a global optimum for

E(W), such that we have

σmax(W l) ≤
2(
√
π +
√

3γ)2

L
,∀l = 1, 2, . . . , L,

where γ is max(| log σmax(R)|, | log σmin(R)|).
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Using the results from this lemma and setting δ = 2(
√
π+
√

3γ)2

L
, Theorem 3.2 follows immediately.

A.3 Proof for Corollary 3.1

Here, Jacobian matrix is J = I + F ′W (1)TF ′W
(2)
l

T
, where F ′ is the Jacobian of ρ(.) with

respect to its input. Since we know that 0 ≤ ∂ρn(x)
∂xn′

≤ cρ,∀n = n′ and ∂ρn(x)
∂xn′

= 0,∀n 6= n′, we

have ‖F ‖2 ≤ cρ. Therefore:

‖F ′W (1)
l

T
F ′W

(2)
l

T‖2 ≤ ‖F ′‖2‖W (1)
l

T‖2‖F ′‖2‖W (1)
l

T‖2 ≤ c2
ρ‖W (1)

l ‖2‖W (2)
l ‖2

and using Lemma A.1 and setting δ = c2
ρ‖W (1)

l ‖2‖W (2)
l ‖2, Corollary 3.1 follows immediately.
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B.1 Implementation Details

For the image classification task, we deploy WideResNet with depth 28 and width 10 as the neural

network architecture for our method. All the network parameters are set as the original implemen-

tation in [77], except the last layer which is modified as proposed in Chapter 4. Stochastic gradient

descent (SGD) with momentum of 0.9 is used to train the network for 200 epochs with batch size

of 128. At the beginning of the training, the learning rate is set to 0.1 and it is then dropped by a

factor of 10 at 50% and 75% of the progress. Weight decay is set to 5 × 10−4. At the test time,

we draw 50 Monte Carlo samples to estimate p(φn ≤ φ∗) and to detect the OOD samples. To

enforce the structure, the last fully-connected layer is initialized with orthonormal weights, using

the method discussed in [72]. Then, to assign class membership probabilities, softmax function is

used on the cosine similarities between the feature vector and the rows the fully-connected layer

using pln = e| cos(θln)|∑
l e
| cos(θln)| . Algorithm 8 summarizes the training and testing phases of the proposed

approach.

Algorithm 8 OOD detection using Union of 1D Subspaces.
Input: ID training dataset, testing set, critical spectral discrepancy φ∗, Number of Monte Carlo samples S
Training:

Interclass constraint: Freeze weights in the last FC layer such that wT
l wl′ = 0, l 6= l′,∀l, l′ = 1, . . . , L

Intraclass constraint: use (4.1) as the loss function
Testing:
1: Compute v(l)1 for each class l using training feature vectors
2: for in in the testing set do
3: Sample S feature vectors xs

n, s = 1, . . . , S
4: Compute φsn for each sample xs

n using (4.2)
5: Estimate p(φn ≤ φ∗) using (4.3)
6: if p(φn ≤ φ∗) = 0 then
7: Classify in as an OOD sample
8: else
9: Use pln = e| cos(θln)|∑

l e
| cos(θln)| to assign class membership

10: end if
11: end for

168



B.2 Additional Experiments

Here, we report additional experimental results. The dataset and the evaluation metrics are the

same as Chapter 4.
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Figure B.1: Energy Ratio of the training samples along the first 100 singular vectors of features extracted
using WideResNet with and without our proposed embedding trained on (a) CIFAR10 and (b) CIFAR100.
The proposed embedding increases the energy along the first singular vector from 98.3% to 99.9% for
CIFAR 10 and from 91.8% to 99.8% for CIFAR100.

Figure B.1 demonstrates the impact of the proposed training scheme on the spectrum of the feature

vectors. This figure shows the ratio of the energy concentrated along each singular vector averaged

over all the classes. The energy ratio along the ith singular vector is calculated as λi∑
j λj

. As dis-

cussed in Section 4.2, our goal is to make the feature vectors of each class to lie on a 1-dimensional

subspace and to make the gap between the first eigenvalue λ1 and other eigenvalues λj, j > 1 as

large as possible. Figure B.1 illustrates that the proposed training scheme can effectively achieve

this by increasing the energy ratio along the first singular vector and reducing the energy concen-

trated along the rest of the singular vectors. Consequently, the first singular vector of each class

will be more robust to noise.

Figure B.2 demonstrates the robustness of the first singular vector to outliers in a toy scenario. For

this experiment, the feature vectors from a single class of CIFAR10 are extracted using the network
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trained with our proposed structure. Then, some percentage of the vectors are replaced by feature

vectors from the other classes, which act as outliers. The figure shows the correlation between

the singular vectors of contaminated and clean data for different noise levels, averaged over 10

trials. Correlation of 1 means that the direction of the singular vector has not changed at all after

the introduction of the outliers. This experiments illustrate the fact that the first singular vector

of the data is very robust to outliers and its direction does not change much even after replacing

about half of the samples. This experiment validates the motivation behind our method, which

is the robustness of the first singular vector. It is worthwhile to mention that, in OOD detection

setting studied in this work, we do not have such severe contamination, as v(l)
1 is extracted from

the training set and only a small subset of the feature vectors might be noisy due to training error

or misclassification.
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Figure B.2: Correlation of different singular vectors of noisy data with the same singular vector of clean
data, averaged over 10 trials. Feature vectors corresponding to the first class of CIFAR10 act as the data and
the feature vectors belonging to other classes are used as outliers. Noise levels up to 50% have almost no
impact on the direction of the first singular vector.

Figure B.3 examines the number of Monte Carlo samples necessary for a good estimation of

p(φn < φ∗). It shows that having as low as 10 samples can improve the results. However, as

expected, having more samples always leads to better estimation and better performance. It is also

worthwhile to mention that since the samples can be drawn concurrently, drawing more samples
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does not increase the running time much.
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Figure B.3: Area Under ROC curve using the proposed framework versus the number of the Monte Carlo
samples used for estimating p(φn < φ∗). The networks are trained on CIFAR10 and CIFAR100 and tested
on TINr as the OOD dataset.
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Figure B.4: ROC curves for different variants of the proposed scheme in logarithmic scale, using CIFAR10
(ID) and TINr (OOD). WideResNet (WRN) with depth of 28 and width of 10 is used as the deep feature
extractor.

Figure B.4 shows the true positive rate against false positive rate, also known as the receiver op-

erating characteristic (ROC) curve, for different variants of the proposed architecture. This figure
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demonstrates how each component of the method, such as intraclass constraint, interclass con-

straint, and number of Monte Carlo (MC) samples S, affect the ROC.

In this study, CIFAR10 is used as the in-distribution (ID) dataset and the resized version of the

TinyImagenet (TINr) is used as the out-of-distribution (OOD) dataset. p(φn < φ∗) is used for OOD

detection in all the different variants, even for the baseline, i.e., Plain WideResnet. However, no

MC sampling is performed for the baseline architecture. Specifically, enforcing only the intraclass

constraint on the model and using only S = 10 MC samples increases the area under the ROC

curve (AUROC) by about 3%, from 94.7% to 96.3%. On the other hand, imposing the interclass

constraint, i.e., enforcing orthogonality on the subspaces, improve the AUROC by another 1.%.

Finally, as expected, using more samples to estimate p(φn < φ∗) can also increase the AUROC.

For example, increasing the number of samples from 10 to 50 can improve the results by another

1.2%, leading to AUROC of 98.5%.

Table B.1: Detection errors and f1-scores achieved by setting φ∗ using the training set, compared to the
best achievable values, on different pairs of ID and OOD datasets.

Training OOD Detection Error F1 Score
dataset dataset Fixed φ∗ Best φ∗ Fixed φ∗ Best φ∗

CIFAR10

TINc 10.4 6.8 90.5 93.0
TINr 7.6 6.2 92.5 93.6

LSUNc 8.6 3.7 93.1 96.2
LSUNr 4.1 3.8 95.0 96.1

CIFAR100

TINc 19.8 18.9 79.2 81.0
TINr 17.6 14.2 83.2 86.0

LSUNc 14.9 13.9 76.1 76.9
LSUNr 12.9 11.3 85.3 88.6

AUROC, as well as the area under the precision-recall curve (AUPR) and false positive rate at

true positive rate of 95% that are reported in Chapter 4, is independent of the value of the critical

spectral discrepancy φ∗. However, f1-score and detection error do depend on φ∗. In Chapter 4,
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we reported the best detection errors and f1-scores achievable by the baselines and our proposed

method. Here, we investigate the impact of choosing φ∗ using the training set. In general, having φ∗

as a parameter gives us the freedom to tune the precision and recall according to the requirements

of the application at hand. To fix φ∗ using the training set, we choose a value for which most,

say 98%, of the training samples have a spectral discrepancy of less than this value. Table B.1

summarizes the results and compares them with the best achievable detection errors and f1-scores.

It is evident that the results are not far from the best achievable results. This indicates that the

training set can be used to set the value of φ∗ or to estimate the general proximity of best φ∗.

Table B.2: Performance of different OOD detection tests, in term of AUROC, for distinguishing ID and
OOD test set data.

Training OOD OOD Test
dataset dataset p(φn ≤ φ∗) E{φn} ≤ φ∗ φn ≤ φ∗

CIFAR10

TINc 98.1 95.8 95.6
TINr 98.5 95.5 95.6

LSUNc 99.4 96.5 96.9
LSUNr 99.3 96.6 96.4

CIFAR100

TINc 89.1 87.0 85.7
TINr 93.7 85.9 85.2

LSUNc 93.8 88.0 87.0
LSUNr 95.7 93.0 91.2

Finally, Table B.2 compares the results, in terms of AUROC, for different OOD detection tests.

Motivated by our theoretical investigation in Section 4.2, we proposed to use p(φn ≤ φ∗) for

OOD detection. This is because if the feature vectors belonging to the known classes lie on 1-

dimensional subspaces, the OOD feature vectors will occupy the same region with probability

0, unless they are drawn from the exact same distribution. Here, we demonstrate the results for

a few more OOD detection tests. In particular, expected spectral discrepancy of each sample

E{φn} can also be used for OOD detection. E{φn} can be estimated using a similar MC sampling

technique. Furthermore, one can perform a single conventional forward pass and calculate a point
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estimate of φn. This table shows the performance for each of these tests. This table confirms our

theoretical investigation and shows that using p(φn ≤ φ∗) is the most accurate OOD test. This is

partly because ID test samples might have an expected spectral discrepancy outside the tiny region

occupied by ID training samples, but they will have a nonzero probability in that region. While

on the hand, the OOD samples will rarely have nonzero probability inside the same region. This

also shows that addition of MC sampling and using probabilistic OOD tests, such as expected

value, is not enough for good detection performance. The OOD detection test needs to reflect the

underlying structure of data in the feature space and co-design of the embedding function and the

OOD test can lead to significant improvements.

Method Extra Information Used

Discrepancy Loss [59] OOD samples during training
Outlier Exposure [58] OOD samples during training
Word Embedding [64] Auxiliary text data to achieve better embedding during training

ODIN [14] OOD samples for validation (to tune perturbation magnitudes for adversarial examples)
Mahalanobis [19] OOD samples for validation (to tune hyperparameters or perturbation magnitudes for adversarial examples)

GPND [57] OOD samples for validation (to tune penalty terms and latent space size)
Confidence Loss [62] OOD samples for validation (to tune penalty term)
Likelihood Ratio [63] OOD samples for validation (to tune hyperparameter µ)

Ensemble [15] OOD samples for validation (hyper parameter tuning)
OLTR [66] None (but is able to leverage OOD samples for validation)

Softmax Pred. [13] None
Conterfactual [65] None

Generalized ODIN [67] None
CROSR [18] None

Table B.3: A non-exhaustive summary of recent OOD detection methods. The information provided in the
table is extracted from their corresponding manuscript or the code provided by authors.

B.3 Related Methods: Leveraging OOD Data for OOD Detection

In scenarios where a subset of OOD samples is available at the training time, they can be used

to improve the performance. Authors in [58, 59] have shown the advantage of the using OOD

samples during training. The main idea is to create a feature space such that the ID samples are

as distinguishable as possible from OOD samples, by maximizing the distance between the ID
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samples and OOD samples. Other modalities of data, such as text, can also be leveraged to obtain

a better embedding [64].

However, most of OOD detection methods make the assumption that OOD samples are not avail-

able during training, but a very small subset is available to tune some of the hyperparameters. For

instance, ODIN [14] uses perturbed test samples and temperature scaling to reject the samples that

are less robust to perturbations. OOD samples are used to tune the magnitude of the adversarial

perturbation. The method proposed in [19] is more related to our proposed approach. In [19], the

Mahalanobis distance between the test feature vectors and the training ID samples is used to detect

OOD samples. Similar to ODIN, the method in [19] uses OOD samples to find the best values for

their proposed OOD classifier. For the scenario where adversarial examples are used to tune the

hyperparameters, a subset of OOD samples is used to find the best magnitude of the adversarial

perturbation. Similarly, [63] adds perturbations, which needs to be tuned using OOD samples, to

the input samples and uses the likelihood ratio to detect OOD samples. Furthermore, there are

many methods that do not use off-the-shelf classifiers and train new classifiers, autoencoders, or

generative models to enforce their desired structure on the feature space. While most of the hyper-

parameters can be tuned using ID validation set, some of the hyperparameters such as the latent

space size, loss terms, and regularization terms need to be tuned by OOD samples[15, 57, 62]. For

instance, [15] exploits OOD samples for early stopping of the ensemble of the classifiers, as well

as hyperparameter tuning, and [57] uses them to find the best latent space size and penalty terms

for the loss functions.

A few OOD detection methods rely only on ID validation set to tune hyperparameters. For exam-

ple, the approach in [13] uses the softmax output to discriminate between the OOD and ID samples

and, similar to our method, does not have any hyperparameters to be tuned by OOD validation set.

Open Long-Tailed Recognition (OLTR) [66] creates a meta-embedding and employ the similarity

to the known classes to reject OOD samples. Authors in [66] have shown that their method is
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able to perform well with and without using OOD samples for hyper-parameter tuning. Similarly,

methods in [18, 65, 67] only use ID validation set to tune the parameters of their model. Table B.3

provides a non-exhaustive summary of prior work and if/how they use extra information during

training and validation phases.
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In this chapter, more experiments are provided to further investigate the performance of the pro-

posed approach and to support the arguments presented in chapter 5. The implementation details

are the same as in chapter 5, unless otherwise noted.

(a) Screwdriver

(b) Siberian husky

(c) Cleaver

(d) Hatchet

(e) Organ, pipe organ

Figure C.1: Selected images by IPM (left) and K-medoids (right) from five sample classes of
ImageNet [5]. Note that the IPM-selected samples are less cluttered with other objects, making
them better representatives of the class.

C.1 Finding Representatives for ImageNet Dataset

Figure C.1 shows the selected samples using IPM and K-medoids from different classes of the

ImageNet training set. DS3 and SMRS are too computationally expensive and do not generate
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results for ImageNet in a tractable time. In this experiment, 5 images are selected as the represen-

tatives from each class. The implementation details are the same as given in Section 5.2.2.3. For

each class, left row shows the images selected by IPM and right row shows the images selected

by K-medoids. IPM-selected images are sorted by the order of selection, left-most sample being

the first selected sample. Images selected by IPM are less cluttered with other objects and more

representative of their corresponding classes. This leads to better classification accuracy, when

the IPM-reduced representatives are used as the only labeled data available. This is demonstrated

and discussed in Table 5.4. On the other hand, K-medoids, and other diversity-based selection

methods, may select outliers or samples that may not be useful for classificaton task.

C.2 Finding Representatives for UCF-101 Dataset

Table C.1: Accuracy (%) of ResNet18 on UCF-101 dataset, trained using only the representatives
selected by different methods. The accuracy using the full training set (9537 samples) is 82.23%.

Samples per class 1 2 3 4 5 6 7 8 9 10
Random 54.6 64.7 69.2 70.5 72.9 74.0 76.0 75.6 76.0 77.0
K-medoids 61.0 67.7 69.4 70.9 71.7 72.0 72.5 75.2 73.6 73.5
DS3[2] 60.8 69.1 74.0 75.2 74.9 75.3 75.8 77.0 77.6 76.6
IPM 65.3 72.6 74.9 77.6 77.0 78.5 78.4 78.4 79.0 78.2

Table C.1 shows the classification accuracy of ResNet18 trained using the representatives selected

by different methods (extended version of Table 5.3). We compare IPM with DS3[2], K-medoids,

and random selection as the baseline. To achieve accuracy of 77%, the closest competitor, i.e.

DS3, requires 8 samples per class, while IPM achieves the same accuracy using half of that data.

IPM adds the samples that contain the most information about the previously unseen space. This is

because it selects the samples that are maximally correlated with the null space of currently selected

samples. In contrast, methods such as K-medoids, that do not consider the current selected samples
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fail to find the most critical samples, as we collect more samples.

This can be illustrated by t-SNE [3] visualization of the selection process. Figure C.2(Left) shows

the 2D embedding of the points and the decision function learned by an SVM of different ran-

domly selected pairs of UCF-101 dataset. On the right, the decision function learned by the same

classifier, trained only on a few representatives, is demonstrated. This experiment demonstrates

the fact that the representatives selected by IPM contain more information about the structure of

the data. Compared to other selection methods and using the same number of samples, decision

function learned by the classifier trained on the IPM-selected samples looks more similar to the

decision function learned from all the data. This results in more accurate classification, as reported

in Table C.1.

For a more qualitative investigation, Figure C.3 shows frames from the first selected representative

by IPM (top row) and DS3 (bottom row) for a few classes of UCF-101 dataset. In this experiment,

the first selected representative by K-medoids is the same as DS3 for all the classes. In general, in

the clip selected by IPM, the critical features of the action, such as barbell, violin, kayak, and bow,

are more visible and/or the bounding box for the action is bigger.

180



IP
M

D
S
3

K
-m

ed
oi
ds

2 Samples 5 Samples 10 Samples

IP
M

D
S
3

K
-m

ed
oi
ds

2 Samples 5 Samples 10 Samples

IP
M

D
S
3

K
-m

ed
oi
ds

2 Samples 5 Samples 10 Samples

Figure C.2: t-SNE visualization [3] of different randomly selected pairs of classes of UCF-101
dataset and their representatives selected by different methods. (Left) Decision function learned by
using all the data. The goal of selection is to preserve the structure with only a few representatives.
(Right) Decision function learned by using 2 (first column), 5 (second column), and 10 (third
column) representatives per class, using K-medoids (first row), DS3 [2] (second row), and IPM
(third row). IPM can capture the structure of the data better using the same number of selected
samples.
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(a) Clean and Jerk

(b) Kayaking

(c) Playing Violin

(d) Breast Stroke

(e) Archery

Figure C.3: Frames of the selected video clips by IPM (left) and DS3[2] (right), for a few sample
classes of UCF-101 dataset[6]. Different actions are more visible and/or less cluttered, in the clip
selected by IPM.
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D.1 Implementation Details

Query generation: For CelebA [127] dataset, the standard testing set is used to both generate the

queries and as the gallery set. For the synthetic dataset, the latent space of the StyleGAN [109]

is sampled to produce the 100, 000 images. In Chapter 6, the synthetic images are used for the

qualitative evaluations, as the gallery set is much larger.

To generate the queries, we randomly select 1000 images from the gallery set as the query face.

We make sure that, after changing one attribute in these query images (the query attribute), there

is at least one similar image the gallery set. Here, we use the ground truth attributes to define

similarity. For our experiments, we consider two images similar if they have the exact same

ground truth attribute values. Then, we use the query face and the query attribute to create ei-

ther the modification vector (used by the GAN-based methods) or the modification text (used by

the compositonal leaning methods). Out of 40 attributes in the CelebA data, 5 attributes are not

related to facial features and are removed. These attributes are: blurry, necktie, earrings,

hat, and necklace. Furthermore, to generate modification text and to generate queries, the

attributes that describe the same feature are considered as one attribute. For example, CelebA con-

tains ground truth for black hair, brown hair, blonde hair, and grey hair. We consider these four

attribute as one, when generating the queries. Here are some example query modification texts:

add/remove eyeglasses, make hair black/brown/blonde/grey, make face

young/old, add/remove hair, and change gender to male/female.

To generate the modification vector for our method, we just set the corresponding entry to 0 or 1.

We use binary modification vector in our experiments for a fair comparison with the text based

methods. However, our method is capable of accepting any value between 0 and 1 for the modifi-

cation vector, which will be illustrated shortly.
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To retrieve images using the method in [120], we first use the image embeder to embed the query

face. Then, the attribute operator corresponding to the attribute being adjusted is applied to obtain

the modified query. The closest faces to this modified query vector in the gallery set are then

retrieved and sorted using their Euclidean distance. For the feature extractor, which is a building

block of the image embeder architecture in [120], we use Inception Resnet V1 architecture, as

described in [129] and trained on VGGFace2 [130].

Training: For the compositional learning baselines, the full training set is used. For each training

image, we generate all the possible query modification texts, as discussed earlier. All these possible

queries are used to train the model using the code provided by the authors. On the other hand, for

our method, we use a subset of CelebA training set and its corresponding attribute ground truth to

obtain the attribute direction in a pretrained StyleGAN. For that, we first select a subset of images

such that we have both positive and negative for all the attributes. Then, the selected samples are

encoded onto the latent space using the encoder proposed in [4]. Then the latent vectors are used to

obtain the sparse and orthogonal attribute directions as proposed in Chapter 6. The same number of

samples and same encoder are used to extract the attribute directions for the GAN-based baseline

[8], using the code provided by the authors.

D.2 Additional Experiments

Figure D.1 illustrates a retrieval example using synthetic images and real-valued modification vec-

tor, as opposed to binary. In this example, the user is modifying the attribute Pale Skin. The

estimated intensity of this attribute in the query is 0.12, but the user is able to modify the retrieval

results by increasing it to 0.5 or 1. Here, we have first emphasized this attribute in the results, by

increasing the preference value, to make the changes in attribute intensity more dominant. This

example shows how our method can successfully utilize a modification vector to manipulate the
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results in a continuous manner, a capability which modification text cannot provide.

Query

Default result (no manipulation):

Emphasizing Pale Skin (increased attribute preference):

+ Modifying Pale Skin (increase value to 0.5):

+ Modifying Pale Skin (increase value to 1.):

Figure D.1: An example of modifying the retrieval results using continuous, real-valued, modification
vector. The attribute intensity for Pale Skin for the query face is estimated as 0.12. The user is able to
modify the results by increasing it to 0.5 and then to 1.

To compare the retrieved images using our method and the baseline in [7], Figure D.2 shows a

few examples of retrieved images and their corresponding performance metrics using the CelebA

dataset and after modifying an attribute. For a fair comparison with the text-based baseline, we

only use binary values as the modification for this experiment. For example, in Figure D.2(a), we

want to retrieve images similar to the query images, while changing the value for attribute Young

to 0. Note that our method is able to preserve most the other attributes, such as skin tone, hair

color, makeup, smiling, etc, while being able to modify the specified attribute, i.e. age. Similarly,

for the other examples, the retrieved images by our method are more similar to the query images

and to the other retrieved images, both in terms of identity and facial attributes. We argue that this
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Query image: O
ur

s Identity: 0.92
nDCG: 0.7

T
IR

G
[7

] Identity: 0.88
nDCG: 0.65

(a) Modification: setting Young to 0

Query image: O
ur

s Identity: 0.90
nDCG: 1.

T
IR

G
[7

] Identity: 0.82
nDCG: 0.72

(b) Modification: setting Heavy makeup to 1

Query image: O
ur

s Identity: 0.90
nDCG: 1.

T
IR

G
[7

] Identity: 0.87
nDCG: 0.85

(c) Modification: setting Mouth slightly open to 0

Figure D.2: Examples of retrieved images by our method and the compositional learning method in [7]
and their corresponding nDCG and identity similarity. (a) Changing the attribute Young to 0, (b) Changing
the attribute Heavy makeup to 1, and (c) Changing the attribute Mouth slightly open to 0. In all
of these examples, our method outperforms the baseline in both the evaluation metrics. Qualitatively, the
retrieved images by method can modify the attribute, while preserving the other attributes, such as skin tone,
hair color, smiling, etc, better.
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because the latent space of GAN contains all the necessary information necessary to reconstruct the

image, while the embedding space generated by the compositional learning methods does not need

to satisfy such requirement. Also, our method is able to disentangle the attributes more effectively

and can modify an attribute, while preserving other attributes and the identity.

Ours InterFaceGan [8]
(a)

Ours InterFaceGan [8]
(b)

Figure D.3: Attribute manipulation results using our method and the method proposed in [8] on two syn-
thetic images. The latent vector corresponding to the starting point, marked with red square, is gradually
moved along to different attributes’ directions. Notice the impact of adjusting attributes Chubby and Pale
skin on the smile in images edited using [8].

Ours InterFaceGan [8]
(a)

Ours InterFaceGan [8]
(b)

Figure D.4: Attribute manipulation results using our method and the method proposed in [8] on two images
from CelebA dataset. The latent vector corresponding to the starting point, marked with red square, is
gradually moved along to different attributes’ directions. The obtained directions by the baseline leads to
more artifacts compared to the directions obtained by our method.

To illustrate this, Figure D.3 and Figure D.4 show a few examples of editing multiple attributes in
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faces using the obtained attribute directions for synthetic and real faces, respectively. To achieve

this, the latent vector corresponding to the starting point face, marked with the red square, is moved

along two attribute directions. these figures show that our obtained attribute directions are more

disentangled, compared to the method proposed in [8]. For example, in Figure D.3, attributes Pale

Skin and Chubby affect the attribute Smiling in faces edited using the baseline directions, an

artifact that is not present in faces edited by our obtained directions. Furthermore, in Figure D.3(b),

manipulating the attribute Black Hair using the method in [8] affect the identity. The difference

is even more apparent for real faces, Figure D.4, where the baseline modifications lead to a lot more

artifacts and more impact on the identity, compared to ours.
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(a) Baldness
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(b) Black Hair
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(c) Eyeglasses
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(d) Smiling
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(e) Bangs
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(f) Pale Skin
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(g) Chubby
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(h) Mustache

Figure D.5: Ratio of `2 norm of different attribute vectors in each layer over the total `2 norm of the vector,
for our method and InterFaceGAN [8]. Our method often concentrates most of the energy of the vector in
a few layers. For example, vectors corresponding to Bangs and Baldness have a similar energy profile
and only manipulated the layers corresponding to the coarse structures, i.e., first few layers. On the other
hand, vectors corresponding to Black hair and Pale skin mainly change the last few layers, which
are responsible for finer structures in the face.

The quantitative results presented in Table 6.1 in Chapter 6 also suggest that the directions obtained

by our method are more disentangled compared to [8], as our method is able to consistently achieve

better nDCG, while having similar or better identity similarity. This means that our sparse attribute
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directions affect the identity and other attributes less. We argue that this is due to the fact that the

direction obtained by our method are sparse, meaning that they affect as few entries in the latent

vector as possible. This encourages the learned directions to only affect the entries that are most

relevant to their corresponding attribute. Figure 6.6 in Chapter 6 shows how the energy of the

sparse attribute directions are concentrated on a small percentage of the entries. Similarly, Figure

D.5 in this document shows the how the energy of the attribute vector is distributed across the

layers. The energy ratio for each layer is calculated as the ratio of the `2 norm of the latent vector

in that layer to the overall norm, i.e., ‖wl‖2
‖w+‖2 . For example, the energy of the attribute vectors that

only affect color of skin or hair, Black Hair and Pale Skin, is mostly concentrated in the

layers that are responsible for fine features of the face, i.e., the last few layers of the synthesis

network. On the other hand the attribute vectors that affect the coarse structures in the face, such

as Eyeglasses, Bangs, Baldness, Smiling, etc, are mainly concentrated in the first few

layers.

Table D.1: Normalized discounted cumulative gain (nDCG) and identity similarity for the GAN-based
methods using different number of training faces to obtain the attribute directions, averaged over 1000
queries. Here we are calculating the metrics on the top-5 images

Number of training samples 3,500 14,000 20,000

Method nDCG Identity nDCG Identity nDCG Identity
Similarity Similarity Similarity

InterFaceGAN [8] (Identity constrained) 0.79 0.817 0.81 0.860 0.82 0.859
Ours (Identity constrained) 0.82 0.830 0.83 0.864 0.85 0.864
InterFaceGAN [8] (best nDCG) 0.83 0.831 0.88 0.839 0.90 0.841
Ours (best nDCG) 0.85 0.840 0.90 0.847 0.92 0.848

Finally, Table D.1 compares the GAN-based methods’ performance, in terms of nDCG and identity

similarity, for different number of training samples used to obtain the attribute directions. Our

proposed method is consistently more data-efficient compared to the baseline. This can be due

to the fact that we enforce both orthogonality and sparsity constraints during the training, which
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makes the solution space much smaller. Also, comparing the results with Table 6.1 in Chapter 6,

our proposed method can compete with the compositional-learning methods even with only 3, 500

training samples, while these baselines use the full training set, containing more than 160, 000

samples.
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APPENDIX E: DERIVATION OF UPDATE RULES FOR THE

ALGORITHM PRESENTED IN CHAPTER 9
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In this chapter, the derivations of the update rules for the inference algorithm are presented. As

discussed in Section 9.3, the posterior distribution is approximated by a family of distributions for

which the calculations are tractable, employing the naive mean field approach [146].

In (9.2), H is divided into disjoint groups Hk, k = 1, . . . , where each Hk is representing one of

the hidden variables in H. The variational distribution of each partition Q{Hk} is given by [149,

Chapter 10]

ln(Q{Hk}) = Ej 6=k{ln(P{D,H})}+ const, (E.1)

where Ej 6=k{.} is the expectation with respect to distributions Q{Hj}. Plugging in P{D,H} and

using the exponential form of the distributions, we obtain the variational distributions. The constant

is determined by normalizing the distribution.

It is worthwhile to state that if x ∼ Bernoulli(p), then

ln(P{x}) = ln(
p

1− p)x+ ln(1− p) (E.2)

and if x ∼ Binomial(n, p), we have

ln(P{x}) = ln(
p

1− p)x+ n ln(1− p) + ln(

(
n

x

)
). (E.3)

Also, if x ∼ Beta(b1, b0), we have

ln(P{x}) = (b1 − 1) ln(x) + (b0 − 1) ln(1− x) + const

E{ln(x)} = ψ(b1)− ψ(b1 + b0),

E{ln(1− x)} = ψ(b0)− ψ(b1 + b0),

(E.4)

where ψ(·) is the digamma function. We now present the update rules to obtain the approximate
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posterior distributions.

E.1 Tally Score

Using (E.1), (E.2), (E.4) and integrating out all variables but φn, we have

ln(Q{φn}) = E{ln(P{D,H})}+ const.

= const+ ln(P{φn|a1
n, a

0
n}) + EQ{uni}{ln(P{oni|uni, φn})}

= const+ (a1
n − 1) ln(φn) + (a0

n − 1) ln(1− φn)

+ EQ{uni}{uni}(ln(
φn

1− φn
)oni + ln(1− φn))

where i is the updating processor index. The prior knowledge on the tally and (E.4) provide the

first two terms; the last combines processor information, given the observation reliability.

This expression can be further written in the form of (â1
n−1) ln(φn)+(â0

n−1) ln(1−φn)+const,

which is a Beta distribution with parameters

â1
n = a1

n + EQ{uni}{uni}oni,

â0
n = a0

n + EQ{uni}{uni}(1− oni).
(E.5)

Here, EQ{uni}{.} is expectation with respect to Q{uni} and EQ{uni}{uni} can be calculated using

Q{uni}, which will be discussed shortly. This update rule simply means that if oni = 1, we will

increase the positive count by EQ{uni}{uni}; if oni = 0, we will increase the negative count by

EQ{uni}{uni}.
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E.2 Processor Reliability Score

Similarly, to update reliability of each processor i, we have

ln(Q{ri}) = const+ (β1
i − 1) ln(ri) + (β0

i − 1) ln(1− ri)

+ ln(
ri

1− ri
)ki + ln(1− ri)Ki

+
∑
n

EQ{uni}{ln(
ri

1− ri
)uni + ln(1− ri)}

= const+ ln(ri)(β
1
i +

∑
n

EQ{uni}{uni}+ ki − 1)

+ ln(1− ri)(β0
i +

∑
n

[1− EQ{uni}{uni}] +Ki − ki − 1).

Comparing this to the exponential form of the Beta distribution, we see that Q{ri} is a Beta distri-

bution with parameters

β̂1
i = β1

i +
∑
n

EQ{uni}{uni}+ ki

β̂0
i = β0

i +
∑
n

[1− EQ{uni}{uni}] +Ki − ki.
(E.6)

The sum is only over coefficients with a new observation.

E.3 Observation Reliability

Again, by integrating out all the variables except uni, we have

ln(Q{uni}) = const+ EQ{ri}{ln(P{uni|ri})}

+ EQ{φn}{ln(P{oni|uni, φn})}.
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By employing (E.2) and (E.4), we have

ln(Q{uni}) = uniEQ{ri}{ln(ri)}+ (1− uni)EQ{ri}{ln(1− ri)}

+ (1− uni) ln(0.5) + uni[oniEQ{φn}{ln(φn)}

+ (1− oni)EQ{φn}{ln(1− φn)}] + const.

This update rule, like the others, is a simple expression, as the observations are either 0 or 1. The

inference algorithm cannot update uni if processor i has not reported a measurement on coeffi-

cient n. Thus, the update rule is employed for each coefficient on which processor i has a new

observation.

To update the distribution, we evaluate the expression for uni = 0 and uni = 1. Since Q{φn} and

Q{ri} are Beta distributions, EQ{φn}{ln(φn)}, EQ{φn}{ln(1−φn)}, EQ{ri}{ln(ri)}, and EQ{ri}{ln(1−

ri)} can be calculated using (E.4).

After normalizing the probabilities to have a valid Bernoulli distribution, the parameter of the

distribution can be updated as τni = EQ{uni}{uni} = Q{uni = 1}.

196



APPENDIX F: CHOOSING HYPERPARAMETER FOR ALGORITHM

PROPOSED IN CHAPTER 10
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Here, we establish a connection between the objective function introduced in (10.5) with Huber

norm and use the results in robust statistics to tune ε. The first summation in (10.5) can be seen as

an iterative approximation of
∑

i ρε(ei), where

ρε(x) =
x2

x2 + ε2
. (F.1)

ρε(.) indicates a measurement as an outlier if the residual is greater than a threshold and this

threshold is a function of ε. Robustness to noise is improved by increasing the value of ε, at the

expense of losing robustness to the outlier measurements. Hence, as the variance of noise increases,

we should assign a larger ε to ρε(.). To set the value of ε, a link between the proposed problem and

the Huber norm is established.

In robust statistics [208], Huber norm, ρHτ (.), is utilized to disregard the outlier measurements.

ρHτ (.) is defined as

ρHτ (x) =


1
2
x2 : |x| < τ

τ |x| − τ2

2
: |x| ≥ τ

(F.2)

Assuming that the additive measurement noise is Gaussian, the estimator would be 95% asymp-

totically efficient, meets Cràmer-Rao bound, by setting the parameter τ to 1.34σ, where σ2 is the

variance of the noise [208].

The Huber norm is a convex function. To use the results of robust statistics in the proposed prob-

lem, a convex version of the cost function in (F.1) should be employed. The function ρε(.), can be

surrogated by its closest convex approximation,

ρcε(x) =


x2

x2+ε2
: |x| < ε0

1
8

( 3
ε0
|x| − 1) : |x| ≥ ε0

(F.3)

with ε0 = ε√
3
. Figure F.1 illustrates the similarity between the Huber norm and the convex approxi-
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mation of ρε(.), i.e., ρcε(x). The cost functions resemble a least square estimator for errors less than

a cut-off parameter, which is the optimal cost function for Gaussian noise. On the other hand, for

large values of error, the cost functions resemble the `0 or `1 norms, which are known to promote

sparsity.

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

x

 

 

ρ
ǫ
(x) with ǫ = 1

ρ
c

ǫ
(x) with ǫ = 1

ρ
H

τ
(x) with τ = 1

√

3

Figure F.1: Comparison of the IRLS weight function, its convex approximation, and the Huber
norm.

By extending the results of robust statistics to the proposed problem, we utilize the same cut-

off parameter for ρcε(x) as the Huber norm. It means that for the case of Gaussian noise, we

set ε = 1.34
√

3 σ, assuming that the nominal noise variance is available. If σ is unknown, an

estimation of it can be used [217, Sec. 4.4]. The numerical experiments in Section 10.3 show

that the estimator meets the Cràmer-Rao lower bound for sufficiently large number of sensors, by

setting ε = 1.34
√

3 σ.
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APPENDIX G: PROOF OF THEOREM 10.3
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Algorithm 6 alternates between two subproblems introduced in (10.9) and (10.11). As discussed

in Section 10.2.1, the optimization problem in (10.11) is a GTRS and has a global minimizer for

all the iterations. Moreover, y(k), the global minimizer of (10.11), is obtained by exploiting the

conditions in (10.14).

Also the optimization problem in (10.9) is strictly convex and the global minimizer, w(k), can be

calculated using the update rule in (10.10) at each iteration.

Lemma G.1. {J (y(k),w(k))} is non-increasing using the update rules in Algorithm 6, i.e.,

J (y(k+1),w(k+1)) ≤ J (y(k),w(k)), ∀k = 1, 2, . . .

Proof. Using the update rules in Algorithm 6, we have

J (y(k+1),w(k+1)) ≤ J (y(k+1),w(k)) ≤ J (y(k),w(k)).

The first inequality uses the fact that w(k+1) is the global minimizer of J (y(k+1),w). Likewise,

the second inequality uses the fact that y(k+1) is the global minimizer of J (y,w(k)).

Since J (y(1),w(0)) < ∞ and J (y(k),w(k)) is non-increasing, then either {J (y(k),w(k))} →

−∞ , or {J (y(k),w(k))} converges to some limit and {J (y(k+1),w(k+1)) − J (y(k),w(k)) → 0}

as k →∞.

Here, by setting the constant ε > 0, we can assure that − lnwi > −∞,∀i. Then, it is easy

to notice that {J (y(k),w(k))} is bounded and the sequence {J (y(k),w(k))} will converge to a

constant value. To study the convergence of the iterates {y(k),w(k)}, the definition of a limit point

is presented [218].
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Definition G.1. x̄ is a limit point of {x(k)} if there exists a subsequence of {x(k)} that converges

to x̄. Note that every bounded sequence in Rn has a limit point (or convergent subsequence).

Now there exist a subsequence {(y(ks),w(ks))} that converges to a limit point (y∗,w∗). By plug-

ging in y∗ and w∗ into the update rules, we will have

ATW ∗(Ay∗ − b) + λ∗(Dy∗ + f) = 0,

(ãi
Ty∗ − bi)2 + ε2 − 1

w∗i
= 0,∀i,

which are the derivatives of the Lagrange function of (10.6) w.r.t. y and wi. Thus, (y∗,w∗) is a

stationary point of (10.6).
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