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ABSTRACT

The main focus of this doctoral thesis is to study the problem of robust and scalable data rep-
resentation and analysis. The success of any machine learning and signal processing framework
relies on how the data is represented and analyzed. Thus, in this work, we focus on three closely
related problems: (1) supervised representation learning, (ii) unsupervised representation learning,
and (iii) fault tolerant data analysis. For the first task, we put forward new theoretical results on
why a certain family of neural networks can become extremely deep and how we can improve this
scalability property in a mathematically sound manner. We further investigate how we can em-
ploy them to generate data representations that are robust to outliers and to retrieve representative
subsets of huge datasets. For the second task, we will discuss two different methods, namely com-
pressive sensing (CS) and nonnegative matrix factorization (NMF). We show that we can employ
prior knowledge, such as slow variation in time, to introduce an unsupervised learning component
to the traditional CS framework and to learn better compressed representations. Furthermore, we
show that prior knowledge and sparsity constraint can be used in the context of NMF, not to find
sparse hidden factors, but to enforce other structures, such as piece-wise continuity. Finally, for
the third task, we investigate how a data analysis framework can become robust to faulty data and
faulty data processors. We employ Bayesian inference and propose a scheme that can solve the CS
recovery problem in an asynchronous parallel manner. Furthermore, we show how sparsity can be
used to make an optimization problem robust to faulty data measurements. The methods investi-
gated in this work have applications in different practical problems such as resource allocation in
wireless networks, source localization, image/video classification, and search engines. A detailed

discussion of these practical applications will be presented for each method.
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CHAPTER 1: INTRODUCTION

Robust and scalable data representation and analysis can be succinctly described as the family
of signal processing and machine learning methods that are concerned with finding abstract and
meaningful representations of data for inference tasks, while being computationally efficient and
robust to deviations from assumptions. Technological advances in data gathering systems, as well
as emergence of powerful and inexpensive processors, have led to an everincreasing need for new
machine learning and signal processing techniques that not only can extract information from the
data, but also are able to compress/summarize it, detect outliers, and to create meaningful repre-
sentations of data in a low-dimensional space. The recent success of machine learning algorithms
can be arguably attributed to the new methods to find better data representations, also known as
features. 1t is safe to say that most of the efforts in designing new machine learning or signal
processing methods go into finding effective application-specific data representations, either by
using domain-specific knowledge or by consuming huge amounts of data for training. This work
presents new contributions on three important and closely related tasks: (i) supervised representa-
tion learning, (i1) unsupervised representation learning, and (iii) fault tolerant data analysis. In the
following, each of these tasks are discussed in detail and the contributions of this doctoral thesis
are outlined. A more detailed discussion of the prior work and the specific contributions of each

chapter is provided in the corresponding chapter text.

1.1 Supervised Representation Learning

The goal of representation learning is to find a useful, and oftentimes low dimensional, represen-
tation of data that makes the task at hand easier. For instance, in the classification task, if we can

transform the data into a space such that different classes are far from each other, the classification



task becomes trivial. Supervised representation learning can be used whenever enough labelled
data is available for training and the desired transformation can be found by using the input-output
pairs to optimize a well-defined cost function, e.g., classification accuracy. The recent empiri-
cal success of machine learning is evidently owed to the rediscovery of neural networks, and in
particular deep neural networks (DNNs). Deep neural networks have progressed rapidly during
the last few years, achieving outstanding, sometimes super human, performance [9]. DNNs can
be described as composition of many nonlinear feature extractors, making them very efficient in
learning meaningful representation of data and in learning complex mappings of data. Each of the

feature extractors consists of a linear and a nonlinear transformation.

For the task of supervised representation learning, we investigate different aspects of DNNs.
Specifically, we discuss how some DNNs can become very deep (Chapter 3), how the embed-
ding space generated by them can become robust to outliers (Chapter 4), and how to use such
embedding spaces to retrieve a subset of samples in the context of summarization (Chapter 5) and

query-based search (Chapter 6).

It is known that the depth of the network, i.e., number of stacked feature extractors, is of decisive
significance. It is shown that as the networks become deeper, they are capable of representing more
complex mappings [10]. However, deeper networks are notoriously harder to train. As the number
of layers is increased, optimization issues arise and, in particular, avoiding vanishing/exploding
gradients is essential to optimization stability of such networks. Augmenting neural networks with
skip connections, as introduced in the so-called ResNet architecture[11, 12], surprised the commu-
nity by enabling the training of networks of more than 1,000 layers with significant performance

gains.

In Chapter 3, we decipher ResNet by analyzing the effect of skip connections, and put forward new

theoretical results on the advantages of identity skip connections in neural networks. We prove



that the skip connections in the feature extractors facilitate preserving the norm of the gradient and
lead to stable back-propagation, which is desirable from optimization perspective. We also show
that as more feature extractors are stacked, the norm-preservation of the network is enhanced.
Furthermore, we propose an efficient method to regularize the singular values of the convolution
operator to make the ResNet extra norm-preserving. Our numerical investigations demonstrate that
the learning dynamics and the classification performance of ResNet can be improved by making it

€ven more norm preserving.

In Chapter 4, we show how we can manipulate DNNSs, and in particular ResNets, to generate data
representations that are robust to outliers and anomalies. Many conventional machine learning
methods are being designed and deployed under closed-set assumptions, meaning that training
data contains samples from all the possible classes that the classifier will encounter during testing.
Of course, such assumption does not hold in many applications; as it may not be possible to cover
every potential input class in the training set. Thus, the goal of open-set classifiers is to detect
out-of-distribution (OOD) samples; the input instances that do not belong to any of the training
classes. In general, OOD detection techniques try to either use the class membership probabilities
as a measure of uncertainty [13—16], or define a measure of similarity between the input samples
and the training dataset in a feature space [17-19]. In Chapter 4, we argue that OOD samples can
be detected far more easily if the training data is embedded into a low-dimensional space, such that

the embedded training samples (or features) lie on a union of 1-dimensional subspaces.

We show that such embedding of the in-distribution (ID) samples provides us with two main ad-
vantages. First, due to compact representation in the feature space, OOD samples are less likely
to occupy the same region as the known classes. Second, the first singular vector of samples be-
longing to a 1-dimensional subspace is their robust representative. Motivated by these findings, we
train a deep neural network such that the ID samples are embedded onto a union of 1-dimensional

subspaces. At the test time, employing Monte Carlo sampling, input samples are detected as OOD



if they occupy the region corresponding to the ID samples with probability 0. Spectral components

of the ID samples are used as robust representative of this region.

Chapter 5 investigates how we can use the representations generated by neural networks to ef-
fectively summarize huge dataset, by selecting a few representatives. As mentioned earlier, deep
learning based systems employ very large numbers of inputs. However, processing, labeling, and
communication of a large number of input data have remained challenging. Therefore, novel ma-
chine learning methods that make the best use of a significantly less amount of data are of great
interest. For example, active learning (AL) [20] aims at addressing this problem by training a
model using a small number of labeled data, testing the trained model on a large number of unla-
belled data, and then querying the labels of some selected data, which then are used for training
a new model. In this context, preserving the underlying structure of data by a succinct format is
an essential concern. Chapter 5 presents a fast and accurate data selection method, in which the
selected samples are optimized to span the subspace of all data. We show how our efficient al-
gorithm (linear complexity w.r.t. the number of data), in conjunction with deep feature extractors
can achieve superior performance in different application such as active learning for video action

recognition; learning using representatives; and video summarization.

Similarly, Chapter 6 discusses a framework that uses the embedding space generated by neural
networks to search and retrieve images from huge datasets. Specifically, we introduce a new face
image retrieval task, where the input face query is augmented by both a modification vector that
specifies the desired adjustments to the facial attributes and a preference vector that assigns differ-
ent levels of importance to different attributes. For example, a user can ask for retrieving images
similar a query image, but with a different hair color and no preference for absence/presence of
eyeglasses in the results. To achieve this, we propose to learn a set of disentangled basis vectors in
the latent space of Generative Adversarial Networks (GANs) [21]. We show how such basis vec-

tors can be employed to adjust the attributes, to define an attribute-weighted distance metric, and

4



to retrieve similar face images. To disentangle various semantics, we propose to enforce orthogo-
nality and sparsity constraints on the basis vectors corresponding to the attributes. We show how

these constraints lead to more precise and easier control of attributes and better image retrieval.

1.2 Unsupervised Representation Learning

In many applications the input-output pairs are not available and the representation learning task
need to be carried out in an unsupervised setting. In such cases, prior knowledge on the sig-
nal of interest can be manipulated to reveal the hidden low-dimensional representations. Such
representations are preferred to be a succinct summary of the original raw data and are usually
employed for denoising, outlier rejection, missing data estimation, compression, and/or revealing
the latent structures. For the task of unsupervised representation learning, we introduce two new
methods, namely adaptive non-uniform compressive sensing (Chapter 7) and nonnegative matrix
factorization with piece-wise constant priors (Chapter 8). We will show how they can be used for

compression and missing data estimation.

In Chapter 7, adaptive non-uniform compressive sampling (ANCS) of time-varying signals, which
are sparse in a proper basis, is introduced. Compressed sensing (CS) [22, 23] states that most of
the signals of scientific interest can be approximated very accurately using a smaller number of
measurements, compared to the dimension of the signal. For that, the signal needs to be sparse
or have a sparse representation in terms of proper sparsifying bases. This observation has a huge
impact in signal processing, machine learning, and statistics. Chapter 7 considers the problem of
reconstructing a correlated time series of such compressible vectors from their noisy undersampled
measurement. In many applications, coefficients of the signal of interest have different importance
levels and the region of interest (ROI) is not known a priori. For instance, the salient area in

a sequence of video frames or support of a sparse signal can be considered as the ROI. ANCS



employs the measurements of previous time steps to design the measurement matrix and distribute
the sensing energy among the coefficients more intelligently. To this aim, a Bayesian inference
method is proposed, which introduces an unsupervised learning component to the traditional CS
framework and improves the reconstruction ability in the ROI. ANCS has been shown to be an

effective method in designing sampling hardwares [24].

In Chapter 8, we will discuss how sparsity constraint can be exploited to facilitate imposing struc-
tures on the latent representation of the signal. We show the effectiveness of the method in estimat-
ing the missing entries in data collected by a network of spectrum sensors. Particularly, we propose
a missing spectrum data recovery technique using Nonnegative Matrix Factorization (NMF). It is
shown that the spectrum measurements collected from sensors can be factorized as product of a
channel gain matrix times an activation matrix. Then, an NMF method with piece-wise constant
activation coefficients is introduced to analyze the measurements and estimate the missing spec-
trum data. However, solving the factorization problem with piece-wise continuity constraint is not
an easy task. Thus, a Majorization-Minimization technique is developed to solve the proposed
optimization problem. The proposed technique is able to accurately and efficiently estimate the

missing spectrum data in the presence of noise and fading.

1.3 Fault Tolerant Data Analysis

Another desirable feature for machine learning and signal processing frameworks is the ability to
extract information from the raw data and/or the representations of the data in a robust, fault toler-
ant, manner. Due to the proliferation of inexpensive hardwares for data gathering and processing
units, the data is now being gathered and processed by many, possibly unreliable, devices. Thus, it
is necessary for any data analysis framework to be able to detect and handle faulty data, and even

faulty processing units. In this thrust, we discuss two possible approaches on how we can robustify



the data processing framework to faults in both the collection (Chapter 10) and processing (Chapter

9) phases.

Particularly, in Chapter 9, we will introduce an asynchronous parallel algorithm to solve a sparse
recovery problem. In parallel algorithms, the task is partitioned among many processing units to
reduce the computational and storage requirements, and/or to preserve the privacy. Asynchronous
methods are highly desirable, as some subset of the processing units does not need to wait for
another subset to finish their tasks, unlike synchronous techniques. This makes the asynchronous
parallel algorithms robust to slow and non-functioning nodes. However, asynchronous parallel
algorithms are often studied for separable optimization problems where the component objective
functions are sparse, or act on only a few components of the unknown variable. One challenge
to developing asynchronous approaches for sparse recovery is that the optimization formulation
of this problem has dense component objective functions. However, the assumed sparsity of the
signal may be exploited in an asynchronous parallel approach. In Chapter 9, we propose such
an approach where multiple processors asynchronously infer hidden variables that estimate the

support of the signal in a Bayesian manner.

Finally, in Chapter 10, we will discuss how a particular class of optimization problems known as
generalized trust region subproblems (GTRS) can be made robust against faulty measurements.
Particularly, the problem of target localization in the presence of outlying sensors is tackled. This
problem is important in practice because in many real-world applications the sensors might report
irrelevant data unintentionally or maliciously. We propose a localization method based on robust
statistics, seeking to eliminate the effect of outliers. The problem is formulated by applying robust
statistics techniques on squared range measurements and two different approaches to solve the
problem are proposed. The first approach is computationally efficient; however, only the objective
convergence is guaranteed theoretically. On the other hand, the whole-sequence convergence of

the second approach is established. To enjoy the benefit of both approaches, they are integrated



to develop a hybrid algorithm that offers computational efficiency and theoretical guarantees. The
algorithms are evaluated for different simulated and real-world scenarios. The numerical results
show that the proposed methods meet the Cramer-Rao lower bound (CRLB) for a sufficiently large
number of measurements. When the number of the measurements is small, the proposed position

estimator does not achieve CRLB though it still outperforms several existing localization methods.



CHAPTER 2: BACKGROUND

In this chapter, we discuss some of the background needed to facilitate the understanding of the
contents of this dissertation. Specifically, in Chapter 3, Chapter 4, Chapter 5, and Chapter 6, we
study or modify the inner workings of deep neural networks and in Chapter 7 and Chapter 9 we
propose techniques to improve compressive sensing systems. Thus, it is worthwhile to go over a

brief summary of these machine learning and signal processing paradigms.

2.1 Deep Neural Networks

Deep neural networks can be considered as the generalization of classical classification methods,
such as support vector machines (SVMs). Their success during the last decade is largely owed to
the development of new optimization techniques, collection of large-scale datasets, and advance-
ments in processing hardwares. A simple binary classification problem can be defined as follows:
Given a set of vectors {x,, }/_,, their corresponding binary labels {y,}~_,, and a new unlabelled
vector &, we want to be able to guess its label §. To solve this problem, an SVM model can be

trained by optimizing the following objective function:
1 N
L=- 0,1 — yu(w'@, — b)) + A w3,
7 D max(0,1 = ynw', 0) + Mwl}

where w and b are the learnable model parameters. The first term is the classification loss, namely
hinge loss, and the second term is /5-regularization term on the weights. At the test time, we
can estimate the label as § = o(w’x — b), where o(.) is the step function or its differentiable
counterpart, the sigmoid function. In words, if the inner product of  with w is larger than b, we

will assign label 1 to &, and 0 otherwise. In this setting, the direction of vector w is perpendicular to



the decision boundary and b determines the position of the decision boundary along that direction.
Thus, w and b characterize the decision boundary of our classifier. Figure 2.1 illustrates this for a
simple example in a 2-dimensional space.

Uip)

Figure 2.1: An illustration of the decision boundary learned by an SVM classifier for a binary classification
problem in a 2-dimensional space. The vector w is perpendicular to the decision boundary and the scalar b
determines its position with respect to the origin.

This formulation can be generalized to multiple classes, by finding a decision boundary for each
class, y = o(Wa — b), where each row of W is a vector perpendicular to the decision boundary
of its corresponding class, each element in b determines the position of its corresponding decision
boundary, and o(.) is an elementwise nonlinear function. The classification function o(Wx — b),
which is a composition of a linear operator and a nonlinear operator, divides the input space into
multiple regions, characterized by the learned decision boundaries. We can create exponentially
more regions if we stack several of these functions on top of each other. This is the idea behind
Multilayer Perceptron (MLP). MLP is one of the earliest versions of neural network and consists of
only a few hidden layers. Each layer has a linear operation (matrix multiplication), followed by an

element-wise nonlinear operator (activation function), similar to our SVM example o(Wz — b).
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The next development in the neural network literature was the introduction of the convolutional
neural networks. In many applications, such as image, video, and audio processing, the signal of
interest is shift-invariant. Thus, by employing a shift-invariant linear operator, i.e. convolution, we
can hard-code this shift invariance assumption into our model. This leads to significant reduction
in the number of parameters, easier implementation, and reduction in the size of the solution space.
As mentioned earlier, deeper neural networks are able to separate their input space into exponen-
tially more linear response regions than their shallow counterparts, despite using the same number
of computational units [10]. In other words, a shallow network requires exponentially many more
hidden units that a deep network. Thus, in general, deeper neural networks are desirable, as they

lead to parameter and data efficiency.

To train such models, similar to the SVM example, the parameters of the model can be optimized
by minimizing some loss function using gradient descent. However, in the case of neural networks
with multiple layers we need to backpropagate the gradient through the layers using the chain rule.

lth

Specifically, since the output of the [™ layer can be written as @; = Fj(x;_1) = (W x;_1 — b)),

the gradient of the loss L with respect to x;_; can be calculated as

oL
83:1 ’

ﬁwl,l - 8:131,1 Ekcl

= WZTO'/(WZIBI,1 — bl)

Thus, given the gradient at I layer, (%, we can calculate the the gradient at the (I — 1)™ layer
l
oL
Ox;_1°

using a matrix multiplication. However, in deeper neural networks, due to the multiplication
effect, the gradient can increase/decrease exponentially with /. This leads to stability issues and/or
complete of halt of the training. This phenomena, which is referred to as exploding/vanishing
gradient, makes the training of the deep neural networks very difficult. In other words, although
increasing the number of layers increases the representational ability of the model, it hurts the

performance, due to the optimization issues.
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This degradation problem was addressed by the deep residual learning framework [12]. In this
framework, each block in the model tries to fit a residual mapping, i.e., ¢, = x;_1 + Fj(x;_1),
instead of the mapping itself @; = Fj(x;_;). This means that the propagation of the gradients

through the layers will have an additive form, instead of a multiplicative form:

oL B (1+ 8Fl(ml_1) oL B oL 4 aﬂ(ml_l) oL
6&31_1 N 82135_1 6:131 N 6:13, &vl_l aml‘

This modification in the model enabled the deep residual networks to be trained without difficulties
and lowered both the training and generalization error of neural networks. In this thesis, we will

discuss the learning dynamics of residual networks (ResNets) in more details in Chapter 3.

Neural networks have also been used to generate synthetic, but realistic, samples. To achieve this,
an adversarial training framework was proposed by Goodfellow et. al. [21]. In this scheme, two
neural networks, namely the generator and the discriminator, are trained simultaneously. The dis-
criminator is trained such that it can distinguish between real and fake images, while the generator
is trained to be able to generate realistic fake images and to fool the discriminator. During the
training, the discriminator network becomes better and better at detecting fake synthetic images,
while the generator network becomes better at fooling the discriminator, leading to more realistic
fake images. Such architecture, known as generative adversarial network (GAN), has proved to be
able to generate hyper-realistic images. In Chapter 6, we use the latent space created by a GAN to

devise an image retrieval framework.

2.2 Compressive Sensing

Many real-world signals, including images, videos, wideband radio signals, and biomedical sig-

nals, are sparse or can be sparsely represented in some proper basis, e.g. Fourier or wavelet domain.
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This means that the signal of interest can be written as a linear combination of only a few of the
basis vectors/functions in the basis set. Compressive sensing [22, 25] enables us to recover such
compressible signals from their undersampled random projections. This means that we can po-
tentially sample the signal at rates much lower than the Nyquist rate, while not losing much in
terms of reconstruction accuracy. This is specially important in cases where sampling the signal at

Nyquist rate is very expensive, such as wideband signals or infrared imaging.

Specifically, a vector € R¥ is considered sparse in some basis if it can be represented as a
linear combinaiton of only k& < NN of the basis vectors. According to the compressive sensing
paradigm, we can recover & from only M < N random measurements. Such measurements are
usually obtained as y = ®x, where ® € RM*N s a well-chosen random matrix. This means that
each entry in the measurement vector y is a random linear combination of the entries in the signal
of interest . The recovery of the original signal involves solving an under-determined system of
equations, with possibly infinite solutions. But our prior knowledge of sparsity of & enables us
to find a unique solution. It has been shown that under certain conditions, we can recover € by

solving the following optimization problem:
min ||x||; subjectto y= Pz
x

where ||.||; is the ¢; norm operator, i.e., the sum of the absolute values of the vector. This optimiza-
tion problems is referred to as basis pursuit (BP) [22]. The condition under which BP can find the
solution with very high probability is referred to as restricted isometry property (RIP). Specifically,

if for any 2k-sparse vector v, the measurement matrix satisfies:
(1= da)llollz < [[@vllz < (14 d2)[[v]l2,

for some 0 < d9, < 1, BP can recover k-sparse signals using ® with very high probability.
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Intuitively, RIP states that the measurement matrix does not change the norm of any 2k-sparse
vector much. This is important because if we have two k-sparse signals x; and x,, the difference

vector ; — a5 can be a 2k-sparse vector. Thus, in order to be able to distinguish between x; and

@9, P needs to preserve the distance between them, i.e., || — 1| % as much as possible (smaller
the do, the better). RIP is obeyed by many types of matrices such as Guassian random matrices.
In Chapter 7 and Chapter 9, we show how we can use Bayesian inference in measurement or

reconstruction steps to improve the performance.

14



CHAPTER 3: NORM-PRESERVATION: WHY RESIDUAL NETWORKS
CAN BECOME EXTREMELY DEEP?

It is known that the depth of the network, i.e., number of stacked layers, is of decisive significance.
It is shown that as the networks become deeper, they are capable of representing more complex
mappings [10]. However, deeper networks are notoriously harder to train. As the number of layers
is increased, optimization issues arise and, in particular, avoiding vanishing/exploding gradients
is essential to optimization stability of such networks. Batch normalization, regularization, and

initialization techniques have shown to be useful remedies for this problem [26, 27]".

Furthermore, it has been observed that as the networks become increasingly deep, the performance
gets saturated or even deteriorates [11]. This problem has been addressed by many recent network
designs [11, 12, 29, 30]. All of these approaches use the same design principle: skip connections.
This simple trick makes the information flow across the layers easier, by bypassing the activations
from one layer to the next using skip connections. Highway Networks [29], ResNets [11, 12], and
DenseNets [30] have consistently achieved state-of-the-art performances by using skip connections
in different network topologies. The main goal of skip connection is to enable the information to
flow through many layers without attenuation. In all of these efforts, it is observed empirically
that it is crucial to keep the information path clean by using identity mapping in the skip con-
nection. It is also observed that more complicated transformations in the skip connection lead
to more difficulty in optimization, even though such transformations have more representational
capabilities [12]. This observation implies that identity skip connection, while provides adequate

representational ability, has a great feature of optimization stability, enabling deeper well-behaved

!Portions of this chapter is reprinted, with permission, from A. Zaecemzadeh, N. Rahnavard, and M. Shah, “Norm-
Preservation: Why Residual Networks Can Become Extremely Deep?,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, p. 1, 2020, © 2020 IEEE [28].
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networks.

Since the introduction of Residual Networks (ResNets) [11, 12], there have been some efforts on
understanding how the residual blocks may help the optimization process and how they improve the
representational ability of the networks. Authors in [31] showed that skip connection eliminates the
singularities caused by the model non-identifiability. This makes the optimization of deeper net-
works feasible and faster. Similarly, to understand the optimization landscape of ResNets, authors
in [32] prove that linear residual networks have no critical points other than the global minimum.
This is in contrast to plain linear networks, in which other critical points may exist [33]. Further-
more, authors in [34] show that as depth increases, gradients of plain networks resemble white
noise and become less correlated. This phenomenon, which is referred to as shattered gradient
problem, makes training more difficult. Then, it is demonstrated that residual networks reduce

shattering, compared to plain networks, leading to numerical stability and easier optimization.

In this chapter, we present and analytically study another desirable effect of identity skip connec-
tion: the norm preservation of error gradient, as it propagates in the backward path. We show
theoretically and empirically that each residual block in ResNets is increasingly norm-preserving,
as the network becomes deeper. This interesting result is in contrast to hypothesis provided in [35],
which states that residual networks avoid vanishing gradient solely by shortening the effective path

of the gradient.

Furthermore, we show that identity skip connection enforces the norm-preservation during the
training, leading to well-conditioning and easier training. This is in contrast to the initialization
techniques, in which the initialization distribution is modified to make the training easier [26, 36].
This is done by keeping the variance of weights gradient the same across layers. However, as
observed in [36] and verified by our experiments, using such initialization methods, although the

network is initially fairly norm-preserving, the norms of the gradients diverge as training pro-
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gresses.

We analyze the role of identity mapping as skip connection in the ResNet architecture from a the-
oretical perspective. Moreover, we use the insight gained from our theoretical analysis to propose
modifications to some of the building blocks of the ResNet architecture. Two main contributions

of this chapter are as follows.

e Proof of the Norm Preservation of ResNets: We show that having identity mapping in
the shortcut path leads to norm-preserving building blocks. Specifically, identity mapping
shifts all the singular values of the transformations towards 1. This makes the optimization
of the network much easier by preserving the magnitude of the gradient across the layers.
Furthermore, we show that, perhaps surprisingly, as the network becomes deeper; its building
blocks become more norm-preserving. Hence, the gradients can flow smoothly through very
deep networks, making it possible to train such networks. Our experiments validate our

theoretical findings.

e Enhancing Norm Preservation: Using insights from our theoretical investigation, we pro-
pose important modifications to the transition blocks in the ResNet architecture. The transi-
tion blocks are used to change the number of channels and feature map size of the activations.
Since these blocks do not use identity mapping as the skip connection, in general, they do
not preserve the norm of the gradient. We propose to change the dimension of the activations
in a norm preserving manner, such that the network becomes even more norm-preserving.
For that, we propose a computationally efficient method to set the nonzero singular values
of the convolution operator, without using singular value decomposition. We refer to the
proposed architecture as Procrustes ResNet (ProcResNet). Our experiments demonstrate
that the proposed norm-preserving blocks are able to improve the optimization stability and

performance of ResNets.
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The rest of the chapter is organized as follows. In Section 3.1, the theoretical results and the bounds
for norm-preservation of linear and nonlinear residual networks are presented. Then, in Section
3.2, we show how to enhance the norm preservation of the residual networks by introducing a new
computationally efficient regularization of convolutions. To verify our theoretical investigation
and to demonstrate the effectiveness of the proposed regularization, we provide our experiments in

Section 3.3. Finally, Section 3.4 draws conclusions.

3.1 Norm-Preservation of Residual Networks

Our following main theorem states that, under certain conditions, a deep residual network rep-
resenting a nonlinear mapping is norm-preserving in the backward path. We show that, at each
residual block, the norm of the gradient with respect to the input is close to the norm of gradi-
ent with respect to the output. In other words, the residual block with identity mapping, as the
skip connection, preserves the norm of the gradient in the backward path. This results in sev-
eral useful characteristics such as avoiding vanishing/exploding gradient, stable optimization, and

performance gain.

Suppose we want to represent a nonlinear mapping F : RY — R” with a sequence of L non-linear
residual blocks of form:

i1 =x + Fi(x). 3.1

As illustrated in Figure 3.1(b), x; and x;, ; represent respectively the input and output at /™

layer.
Fy(x;) is the residual transformation learned by the I layer. Before presenting the theorem, we

lay out the following assumptions on .

Assumption 3.1. The function F : RN — RY is differentiable, invertible, and satisfies the follow-

ing conditions:
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(i) Vx,y, z with bounded norm, 3o > 0,

(F'(x) = F(y)zll < aflz - ylll=

>

(ii) Vx,y with bounded norm, 33 > 0,

FHx) = F )l < Blz — yl|, and

(iii) Ja with bounded norm such that Det(F'(x)) > 0,

« and (3 are constants, independent of network size and architecture. Also, we assume that the
domain of inputs is bounded. By rescaling inputs, we can assume, without loss of generality, that

|z1||2 < 1 for any input x;.

We would like to emphasize the point that these assumptions are on the mapping that we are
trying to represent by the network, not the network itself. Thus, assumptions are independent of
architecture. Assumptions (i) and (ii) mean that the function F is smooth, Lipschitz continuous,
and its inverse is differentiable. The practical relevance of invertibility assumption is justified by
the success of reversible networks [37-39]. Reversible architectures look for the true mapping F
only in the space of invertible functions and it is shown that imposing such strict assumption on the
architecture does not hurt its representation ability [38]. Thus, the mapping F is either invertible
or can be well approximated by an invertible function, in many scenarios. However, unlike the
reversible architectures, we do not assume residual blocks or the residual transformations, F(.),
are invertible, which makes the assumption less strict. Furthermore, our extensive experiments in
Section 3.3 show that our theoretical analysis, which is based on these assumptions, hold. This is
further empirical justification that these assumptions are relevant in practice. Finally, Assumption

(i11) 1s without loss of generality [32, 40].

Theorem 3.1. Suppose we want to represent a nonlinear mapping F : RY — RY, satisfying
Assumption 3.1, with a sequence of L non-linear residual blocks of form x;.1 = x; + Fi(x)).

There exists a solution such that for all residual blocks we have:

o€
0x141

o0&
01y

(1 =9 I2,

o€
<=2 <
2 < ||awl||2 < (1+0)]
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where § = c%, E(.) is the cost function, and ¢ = c; max{af(1 + ), (2 + «) + a} for some

c1 > 0. a and (8 are constants defined in Assumption 3.1.

Proof. See Appendix A.1. [

This theorem shows that the mapping F can be represented by a sequence of L non-linear residual
blocks, such that the norm of the gradient does not change significantly, as it is backpropagated
through the layers. One interesting implication of Theorem 3.1 is that as L, the number of lay-
ers, increases, 0 becomes smaller and the solution becomes more norm-preserving. This is a very
desirable feature because vanishing or exploding gradient often occurs in deeper network archi-
tectures. However, by utilizing residual blocks, as more blocks are stacked, the solution becomes

extra norm-preserving.

Now that we proved such a solution exists, we show why residual networks can remain norm pre-
serving throughout the training. For that, we consider the case where Fj(x;) consists of two layers
of convolution and nonlinearity. The following corollary shows the bound on norm preservation
of the residual block depends on the norm of the weights. Therefore, if we bound the optimizer to
search only in the space of functions with small norms, we can ensure that the network will remain
norm preserving throughout the training. Therefore, any critical point in this space is also norm-
preserving. On the other hand, based on Theorem 3.1, we know that at least one norm preserving
solution exists. It is also known that, under certain conditions, any critical point achieved dur-
ing optimization of ResNets is a global minimizer, meaning that it achieves the same loss function
value as the global minimum([32, 40, 41]. Thus, this result implies that ResNets are able to maintain
norm-preservation throughout the training and if they converge, the solution is a norm-preserving
global minimizer. The conclusions of the corollary can be easily generalized for residual block

with more than two layers.
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Corollary 3.1. Suppose a network contains non-linear residual blocks of form x;.1 = x; +

Wl(2)p(Wl(1)p(:cl)), where p(.) is an element-wise non-linear operator with bounded derivative,

ie,0< %Z—fml) <c¢,,Vn=1,...,N. Then, we have:
o0& o0& o0&
1—96 < |l—ls < (1 +6
(1= Ol e < e < (14 0)

1 2
and 6= C,Z,HWZ( )H2HW1( )HQ'

Proof. See Appendix A.3 0

Here, ||.||2 is the induced matrix norm and is the largest singular value of the matrix, which is

known to be upper bounded by the entry-wise /5 norm. This means that norm-preservation is
enforced throughout the training process, as long as the norm of the weights are small, not just at
the beginning of the training by good initialization. This is the case in practice, since the weights of
the network are regularized either explicitly using ¢, regularization, also known as weight decay,
or implicitly by the optimization algorithm [42, 43]. Thus, the gradients will have very similar

magnitudes at different layers, and this leads to well-conditioning and faster convergence [36].

Although Theorem 3.1 holds for linear blocks as well, we can derive tighter bounds for linear
residual blocks by taking a slightly different approach. For that, we model each linear residual
block as:

T = o + Wiz, (3.2)

[t" residual block, with dimension

where, x;, ;.1 € RY are respectively the input and output of the
N. The weight matrix W; € RV*¥ is the tunable linear transformation. The goal of learning is
to compute a function y = M(x, V), where & = x; is the input, y = @ is its corresponding

output, and VV is the collection of all adjustable linear transformations, i.e., W, Wy, ... W . In
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the case of simplified linear residual networks, function M (x, W) is a stack of L residual blocks,

as formulated in (3.2). Mathematically speaking, we have:
L
y= =@ +wye (3.3)
=1

where I is an N x N identity matrix. Mz, W) is used to learn a linear mapping R € RY*" from
its inputs and outputs. Furthermore, assume that y is contaminated with independent identically
distributed (i.i.d) Gaussian noise, i.e., ¥ = Rx + €, where € is a zero mean noise vector with
covariance matrix I. Hence, our objective is to minimize the expected error of the maximum
likelihood estimator as:

1
min (W) = E{Z ||y — M(z, W)|i5}, (3.4)

where the expectation E is with respect to the population (x, y). The following theorem states the

bound on the norm preservation of the linear residual blocks.

Theorem 3.2. For learning a linear map, R € RN*N | between its input x and output y contam-
inated with i.i.d Gaussian noise, using a network consisting of L linear residual blocks of form
i1 = x; + W, there exists a global optimum for £(.), as defined in (3.4), such that for all

residual blocks we have

o€

(1= )l < gl < (14 O)l 5

2
1

for L > 3, where § = £, ¢ = 2(/7 +/37)? and v = max(|10g 0naz(R)], | 108 0pin (R)

Omaz(R) and 0., (R), respectively, are maximum and minimum singular values of R.

), where

Proof. See Appendix A.2 [

Similar to the nonlinear residual blocks, the linear blocks become more norm-preserving as we
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increase the depth. However, the linear blocks become norm-preserving at a faster rate. The
gradient norm ratio for the linear blocks approaches 1 with a rate of O(1), while this ratio for

nonlinear blocks approaches 1 with a rate of O(%).

image — } trygeition } txggtion % | trpgeiion } txggton % | treition % wrion % 1 e %
(a) Block diagram of ResNet
| — g
T conv J—’ conv J—> conv ®—> L+ T —— | conv J—> conv }H conv ®—> L1
(b) Residual block with identity mapping (non-transition (c) Origianl ResNet transition block
block)

|

T - conv¥ *{ conv }H{ conv }H{ conv —(B- Tit1 x

conv }—» conv }—» conv }—» Li4+1

(d) Proposed transition block (e) Plain block (transition and non-transition block in a
network without skip connections)

Figure 3.1: ResNet architecture and its building blocks. Each conv block represents a sequence
of batch normalization, ReLLU, and convolution layers. conv* block represents the regularized
convolution layer.

3.2 Procrustes Residual Network

As depicted in Figure 3.1(a), residual networks contain four different types of blocks: (i) convolu-
tion layer (first layer), (ii) fully connected layer (last layer), (iii) transition blocks (which change
the dimension) as depicted in Figure 3.1(c), and (iv) residual blocks with identity skip connec-
tion, as illustrated in Figure 3.1(b), which we also refer to as non-transition blocks. Theoretical
investigation presented in Section 3.1 holds only for residual blocks with identity mapping as the

skip connection. Such identity skip connection cannot be used in the transition blocks, since the

23



size of the input is not the same as the size of output. If the benefits of residual networks can be
explained, at least partly, by norm-preservation, then one can improve them by alternative methods
for preserving the norm. In this section, we propose to modify the transition blocks of ResNet
architecture, to make them norm-preserving. Due to multiplicative effect through the layers, mak-
ing these layers norm-preserving may be important, although they make up a small portion of the
network. In the following, we discuss how to preserve the norm of the back-propagated gradients

across all the blocks of the network.

As depicted in Figure 3.1(c), in the original ResNet architecture, the dimension changing blocks,
also known as transition blocks, use 1 x 1 convolution with stride of 2 in their skip connections
to match the dimension of input and output activations. Such transition blocks are not norm-

preserving in general.

Figure 3.1(d) shows the block diagram of the proposed norm-preserving transition block. To
change the dimension in a norm-preserving manner, we utilize a norm preserving convolution
layer, conv*. For that, we project the convolution kernel onto the set of norm preserving kernels by
setting its singular values. Here, we show how we can make the convolution layer norm preserving
by regularizing the singular values, without using singular value decomposition. Specifically, the
gradient of a convolution layer with kernel of size k, with ¢ input channels, and d output channels

can be formulated as:

~

A, = WA,, (3.5)

where A, and A, respectively are the gradients with respect to the input and output of the convo-
lution. A, is an n?d dimensional vector, representing n x n pixels in d output channels, and A, is
an n’c dimensional vector, representing the gradient at the input. Furthermore, W is an n2c x n%d

dimensional matrix embedding the back-propagation operation for the convolution layer. We can
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represent this linear transformation as:

TLQC

Ay = Zajuj < Ay,vj >, (3.6)
j=1
where {0, u;,v,} is the set of singular values and singular vectors of W . Furthermore, since the

set of the right singular vectors, i.e., {'vj}, is an orthonormal basis set for A,, we can write the

gradient at the output as:

2d
Ay = Z’Uj < Ay,'vj > .
Jj=1

Thus, we can compute the expected value of the norm of the gradients as:

TL2C

E[|Azl3] =) oTE[l < Ay,v; > [,
j=1
n2d

2 2
ElAyl5] =) Ell <Ay v; >,
j=1
where we use the fact that uj u; = vjv; = 0 fori # j and uju; = vjv; = 1 and the
expectation is over the data population. We propose to preserve the norm of the gradient, i.e.,
E[||Az|3] = E[||Ay 3], by setting all the non-zero singular values to o. It is easy to show that we

can achieve this by setting

,n2
SR < A >
Zj,aﬁéoE[’ <Ay, v; > P27

2

3.7

where the summation in the denominator is over the singular vectors v; corresponding to the
nonzero singular values, i.e., o; # 0. The ratio in (3.7) is the ratio of expected energy of A,,

i.e. E[||Ay|3], divided by the portion of energy that does not lie in the null space of W. We

n%d
n? min(d,c)

make the assumption that this ratio can be approximated by This assumption implies
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% of the total energy of A, will lie in the n? min(d, ¢)-dimensional subspace,

that about
corresponding to orthonormal basis set {v;|c; # 0}, of our n?d-dimensional space. It is easy to
notice that the assumption holds if the energy of A, is distributed uniformly among the directions
in the basis set {v;}. But, since we are taking the sum over a large number of bases, it can also
hold with high probability in cases where there is some variation in the distribution of energies
along different directions. This is not a strict assumption in high dimensional spaces and we will
investigate the practical relevance of this assumption in a real-world setting shortly. Thus, we can

achieve norm preservation by setting all the nonzero singular values to We can enforce

(d o)
this equality without using singular value decomposition. For that, we use the following theorem
from [44]. This theorem states that the singular values of the convolution operator can be calculated

by finding the singular values of the Fourier transform of the slices of the convolution kernels.

Theorem 3.3. (Theorem 6 from [44]) For any convolution kernel K € R¥>***4x¢ qcting on an n x
n X d input, let W be the matrix encoding the linear transformation computed by a convolutional
layer parameterized by K. Also, for each u,v € [n] x [n], let P™") € C¥*¢ be the matrix given by
PZ(-ZFU) = (Fu(K..ij))uv where F,(.) is the operator describing an n x n 2D Fourier transform.
Then, the set of singular values of W is the union (allowing repetitions) of all the singular values

of P matrices Vu, v.
Proof. See [44]. O

Hence, to satisfy the condition (3.7), we can set all the nonzero singular values of P (o

\ /# for all u and v. This can be done by finding the matrix P"" that minimizes | P
(u v) 19 ()" 2 (uv)

o mm(d c

12, such that P p

71, where ||| denotes the Frobenius norm and I is a

¢ x cidentity matrix. It can be shown that the solution to this problem is given by

~ (u,v d
P = |0 pu)(pao)’ pue)-;, (3.8)

min(d, c)
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This is closely related to Procrustes problems, in which the goal is to find the closest orthogonal
matrix to a given matrix [45]. Finding the inverse of the square root of product P’ pluv) capn
be computationally expensive, specifically for large number of channels c¢. Thus, we exploit an
iterative algorithm that computes the inverse of the square root using only matrix multiplications.

Specifically, one can use the following iterations to compute (P(“’”)TP(“’“))*% [46]:

T, =31 — Z,Y},
1

Yin= §Yka, (3.9)
1
Zi = §Tka,
for k = 0,1,... and the iterators are initialized as:

Y, = P pur) 7o — 1.

It has been shown that Z, converges to (P(“’”)TP(“’”))*% quadratically [46]. Since the iterations

only involve matrix multiplication, they can be implemented efficiently on GPUs.

Algorithm 1 Update rules for transition kernels at each iteration
Input: Convolution kernel K at the current iteration
1: Perform the gradient descent step on the kernel K.
. Calculate P for each u,v € [n] x [n] as PS}’U) = (Fu(K..i))uw-
: Compute (P(“’“)TP(“’”))*% using (3.9).
. Calculate P using (3.8).
: Update K using the inverse 2D Fourier transform of IB(W).

2
3
4
5

Thus, to keep the convolution kernels norm preserving throughout the training, at each iteration,
we compute the matrices P“*) and set the nonzero singular values using (3.8). Algorithm 1 sum-
marizes the operations performed at each iteration on the kernels of the regularized convolution
layers. To keep the desired norm-preservation property after performing the gradient descent step,

such as SGD, Adam, etc, the proposed scheme is used to re-enforce norm-preservation on the up-
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dated kernel. In this manner, we can maintain norm-preservation, while updating the kernel during
the training. Our experiments in Section 3.3 show that performing the proposed projection on the
transition block of deep ResNets increases the training time by less than 8%. Also, since the num-
ber of transition blocks are independent of depth, the deeper the network gets, the computational
overhead of the proposed modification becomes less significant. Figure 3.1(d) shows the diagram
of the proposed transition block, where a regularized convolution layer, conv*, is used to change
the dimension. Hence, we are able to exploit a regular residual block with identity mapping, which

is norm preserving.

Similar to [26], to take into the account the effect of a ReLU nonlinearity and to make a Conv-Relu

layer norm-presering, we just need to add a factor of v/2 to the singular values and set them to

2d
min(d,c)

. Intuitively, the element-wise ReLU sets half of the units to zero on average, making the

HZC

expected value of the energy of the gradient equal to E[[| A, [5] = 5 > "7 o?E[| < Ay, v; > .

Therefore, to compensate this, we need to satisfy this condition:

2 n2d

1 n-c
5 D El < Ayv; > ) = D Ell < Ay, ;> ]
j=1 j=1

It is also worthwhile to mention that since we are trying to preserve the norm of the backward
signal, the variable n in Theorem 3.3 represents the size of feature map size at the output of the

convolution.

To evaluate the effectiveness of the proposed projection, we design the following experiment. We
perform the projection on the convolution layers of a small 3-layer network. The network consists
of 3 convolutional layers, followed by ReLU non-linearity. To examine the gradient norm ratio
for different number of input and output channels, the second layer is a 3 X 3 convolution with ¢

input channels and d output channels. The first and third layers are 1 x 1 convolutions to change
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the number of channels and to match the size of the input and output layers. Figure 3.2 shows the

gradient norm ratio, i.e., || 52

2 to 2, for different values of ¢ and d at 10" training epoch
Ble

on CIFAR-10, with and without the proposed projection. The values are averaged over 10 different

runs.

It is evident that the proposed projection enhances the norm preservation of the Conv-ReL.U layer,
as it moves the gradient norm ratios toward 1. The only failure case is for networks with very
small ¢ and ¢ < d. This is because, due to the smaller size of the space, our assumption that the
energy of the signal in the n?c dimensional subspace, corresponding to the n%c non-zero singular
values, is approximately 755 of the total energy of the signal, is violated with higher probability.
However, in more practical settings, where the number of channels is large and the assumption is
held, the proposed projection performs as expected. This experiment illustrates the validity of our
analysis as well as the effectiveness of the proposed projection for such practical scenarios. In the
next section, we demonstrate the advantages of the proposed method for image classification task.

0 1 2 3 4 5
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= 4 o]
:
Z Z
5 24 = 2
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4 4

256 256 Output Channels 256 256 Output Channels
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(a) With the Proposed Regularization (b) Without Regularization

Figure 3.2: The ratio of gradient norm at output to gradient norm at input, i.e., || -2~ 3wz+1 |2 to || 25 52 |l2s

of a convolution layer for different number of input and output channels at 10" training epoch (a)
with, and (b) without the proposed regularization on the singular values of the convolution.
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3.3 Experiments

To validate our theoretical investigation, presented in Section 3.1, and to empirically demonstrate
the behavior and effectiveness of the proposed modifications, we experimented with Residual Net-
work (ResNet) and the proposed Procrustes Residual Network (ProcResNet) architectures on CI-
FAR10 and CIFAR100 datasets. Training and testing datasets contain 50,000 and 10,000 images
of visual classes, respectively [47]. Standard data augmentation (flipping and shifting), same as
[11, 12, 30], is adopted. Furthermore, channel means and standard deviations are used to normalize
the images. The network is trained using stochastic gradient descent. The weights are initialized
using the method proposed in [26] and the initial learning rate is 0.1. Batch size of 128 is used for
all the networks. The weight decay is 10~* and momentum is 0.9. The results are based on the

top-1 classification accuracy.

Experiments are performed on three different network architectures: 1. ResNet contains one con-
volution layer, L residual blocks, three of which are transition blocks, and one fully connected
layer. Each residual block consists of three convolution layers, as depicted in Figure 3.1(b) and
Figure 3.1(c), resulting in a network of depth 3L + 2. This is the same architecture as in [12].
2. ProcResNet has the same architecture as ResNet, except the transition layers are modified, as
explained in Section 3.2. In this design, 3 extra convolution layers are added to the network. How-
ever, we can use the first convolution layer of the original ResNet design to match the dimensions
and only add two extra layers. This leads to a network of depth 3L + 4. 3. Plain network is also

same as ResNet without the skip connection in all the L residual blocks, as shown in Figure 3.1(e).

Furthermore, to decrease the computational burden of the proposed regularization, we perform
the projection, as described in Section 3.2, every 2 iterations. This reduces the computation time
significantly without hurting the performance much. In this setting, performing the proposed reg-

ularization increases the training time for ResNet164 about 7.6%. However, since we perform the
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regularization only on three blocks, regardless of the depth, as the network becomes deeper the
computational overhead becomes less significant. For example, implementing the same projec-
tions on ResNet1001 increases the training time by only 3.5%. This is significantly less computa-
tion compared to regularization using SVD, which leads to 53% and 23% training time overhead

for ResNet164 and ResNet1001, respectively?.

3.3.1 Norm-Preservation

In the first set of experiments, the behavior of different architectures is studied as the function
of network depth. To this end, the ratio of gradient norm at output to gradient norm at input,
ie., || ag—il I|2 to || g—i ||2, is captured for all the residual blocks?, both transition and non-transition.
Figure 3.3 shows the ratios for different blocks over training epochs. We ran the training for 100
epochs, without decaying the learning rate. Plain network (Figure 3.3.(g)) with 164 layers became

numerically unstable and the training procedure stopped after 10 epochs.

Several interesting observations can be made from this experiment:

e This experiment emphasizes the fact that one needs more than careful initialization to make the
network norm-preserving. Although the plain network is initially norm-preserving, the range of
the gradient norm ratios becomes very large and diverges from 1, as the parameters are updated.
However, ResNet and ProcResNet are able to enforce the norm-preservation during training

procedure by using identity skip connection.

e As the networks become deeper, the plain network becomes less norm preserving, which leads

to numerical instability, optimization difficulty, and performance degradation. On the contrary,

2 An implementation of ProcResNet is provided here: https://github.com/zaecemzadeh/ProcResNet

3In Plain architecture, which does not have skip connections, the gradient norm ratio is obtained at the input and
output of its building blocks as depicted in Figure 3.1(e).
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Figure 3.3: Training on CIFAR10. Gradient norm ratio over the first 100 epochs for transition
blocks (blocks that change the dimension) and non-transition blocks (blocks that do not change
the dimension). The darker color lines represent the transition blocks and the lighter color lines
represent the non-transition blocks. The proposed regularization enhances the norm-preservation
of the transition blocks effectively.
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the non-transition blocks, the blocks with identity mapping as skip connection, of ResNet and
ProcResNet become extra norm preserving. This is in line with our theoretical investigation
for linear residual networks, which states that as we stack more residual blocks the network

becomes extra norm-preserving.

Comparing Plain83 (Figure 3.3(d)) and Plain164 (Figure 3.3(h)) networks, it can be observed
that most of the blocks behave fairly similar, except one transition block. Specifically, in Plain83,
the gradient norm ratio of the first transition block goes up to 100 in the first few epochs. But
it eventually decreases and the network is able to converge. On the other hand, in Plain164, the
gradient norm ratio of the same block becomes too large, which makes the network unable to
converge. Hence, a single block is enough to make the optimization difficult and numerically

unstable. This highlights the fact that it is necessary to enforce norm-preservation on all the

blocks.

In ResNet83 (Figure 3.3(e)) and ResNet164 (Figure 3.3(h)), it is easy to notice that only 3
transition blocks are not norm preserving. As mentioned earlier, due to multiplicative effect, the

magnitude of the gradient will not be preserved because of these few blocks.

The behaviors of ResNet and Plain architectures are fairly similar for depth of 20. This was
somehow expected, since it is known that the performance gain achieved by ResNet is more
significant in deeper architectures [11]. However, even for depth of 20, ProcResNet architecture

is more norm preserving.

In ProcResNet, the only block that is less norm preserving is the first transition block, where the
3 RGB channels are transformed into 64 channels. This is because, as we have shown in Figure
3.2, under such condition, where the number of input channels is very small, the assumption
that energy of the gradient signal in the low-dimensional subspace, corresponding to the few

non-zero singular values, is approximately proportional to the size of the subspace is violated
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with higher probability.

e The ratios of the gradients for all networks, even the Plain network, are roughly concentrated
around 1, while training is stable. This shows that some degree of norm preservation exists in
any stable network. However, as clear in the Plain network, such biases of the optimizer is not
enough and we need skip connections to enforce norm preservation throughout training and to
enjoy its desirable properties. Furthermore, although the transition blocks of ResNet tend to
converge to be more norm preserving, our proposed modification enforces this property for all

the epochs, which leads to stability and performance gain, as will be discussed shortly.

This experiment both validates our theoretical arguments and clarifies some of the inner workings
of ResNet architecture, and also shows the effectiveness of the proposed modifications in ProcRe-
sNet. It is evident that, as stated in Theorem 3.1, addition of identity skip connection makes the
blocks increasingly extra norm-preserving, as the network becomes deeper. Furthermore, we have

been able to enhance norm-preserving property by applying the changes proposed in Section 3.2.

3.3.2  Optimization Stability and Learning Dynamics

In the next set of experiments, numerical stability and learning dynamics of different architectures
is examined. For that, loss and classification error, in both training and testing phases, are de-
picted in Figure 3.4. This experiment illustrates that how optimization stability of deep networks
is improved significantly, and how it can be further improved by having norm preservation in mind

during the design procedure.

As depicted in Figure 3.4, unlike the plain network, training error and loss curves corresponding
to ResNet and ProcResNet architectures are consistently decreasing as the number of layers in-

creases, which was the main motivation behind proposing residual blocks [11]. Moreover, Figure

34



3.4(a) and Figure 3.4(d) show that the plain networks have a poor generalization performance.
The fluctuations in testing error shows that the points along the optimization path of the plain net-
works do not generalize well. This issue is also present, to a lesser extent, in ResNet architecture.
Comparing Figure 3.4(h) and 3.4(b), we can see that the fluctuations are more apparent in deeper
ResNet networks. However, in proposed ProcResNet architecture, the amplitude of the fluctua-
tions is smaller and does not change as the depth of the network is increased. This indicates that
ProcResNet architecture is taking a better path toward the optimum and has better generalization

performance.

To quantify this, we repeated the training 10 times with different random seeds and measured the
generalization gap, which is the difference between training and testing classification error, for the
first 100 epochs. Table 3.1 shows the mean and max generalization gap, averaged over 10 different
runs. This results indicate that generalization gap of ProcResNet is smaller. Furthermore, the
generalization gap fluctuates far less significantly for ProcResNet, as quantified by the difference

between mean generalization gap and maximum generalization gap.

Table 3.1: Mean and maximum generalization gap (%) during the first 100 epochs of trainingon
CIFAI1O for different network architectures, averaged over 10 runs.

Plain ResNet ProcResNet
mean | max | mean | max | mean | max
20 6.7 |200| 55 [231]| 23 8.3
83 7.5 | 30.1 5.1 125 | 2.0 7.7
164 - - 5.2 187 | 33 8.7

Depth

The implication of this is that by modifying only a few blocks in an extremely deep network, it is
possible to make the network more stable and improve the learning dynamics. This emphasizes the
utmost importance of norm-preservation of all blocks in avoiding optimization difficulties of very

deep networks. Moreover, this sheds light on the reasons why architectures using residual blocks,
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Figure 3.4: Loss (black lines) and error (blue lines) during training procedure on CIFAR10. Solid
lines represent the test values and dotted lines represent the training values. This experiments
shows how the residual connections enhance the stability of the optimization and how the proposed

regularization enhances the stability even further.

or identity skip connection in general, perform so well and are easier to optimize.
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3.3.3 Classification Performance

In this section, we show the impact of the proposed norm-preserving transition blocks on the classi-
fication performance of ResNet. Table 3.2 compares the performance of ResNet and its EraseReLU
version, as proposed in [48], with and without the proposed transition blocks. The results for
standard ResNet are the best results reported by [12] and [48] and the results of ProcResNet are

obtained by making the proposed changes to standard ResNet implementation.

Table 3.2 shows that the proposed network performs better than the standard ResNet. This perfor-
mance gain comes with a slight increase the number of parameters (under 1%) and by changing
only 3 blocks. The total number of residual blocks for ResNet164 and ResNet1001 are 54 and 333,
respectively. Furthermore, Figure 3.5 compares the parameter efficiency of ResNet and ProcRes-
Net architectures. The results indicate that the proposed modification can improve the parameter
efficiency significantly. For example, ProcResNet274 (with 2.82M parameter) slightly outperforms
ResNet1001 (with 10.32M parameters). This translates into about 4x reduction in the number of
parameters to achieve the same classification accuracy. This illustrates that we are able to im-
prove the performance by changing a tiny portion of the network and emphasizes the importance
of norm-preservation in the performance of neural networks.

6

ResNet

5.5 —e—ProcResNet |
5l 1
4.5 ~ 4x fewer parameters ]
4t 1

0 2 4 6 8 10
# Parameters (x10%)

Error (%)

Figure 3.5: Comparison of the parameter efficiency on CIFAR10 between ResNet and ProcResNet.
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Finally, Table 3.3 investigates the impact of changing the architecture, i.e., moving the convolution
layer from the skip connection to before the skip connection, and performing the proposed regular-
ization, separately. Each of these design components have positive impact on the performance of
the network, as both of them enhance the norm preservation of the transition block, which further

highlights the impact of norm preservation on the performance of the network.

Table 3.2: Performance of different methods on CIFAR-10 and CIFAR-100 using moderate data
augmentation (flip/translation). The modified transition blocks in ProcResNet can improve the
accuracy of ResNet significantly.

Architecture Setting # Params | Depth CIFARElgT((??F)ARloo
ore-activation | /M | 164 546 2433
ErasedReLU[48] | /OM | 164 |  4.65 2241
10.32M | 1001 | 4.10 2063
pre-activation 1.72M 166 4.75 22.61
ProcResNet 1033M | 1003 | 3.72 19.99
ErasedReLU[48] |2 | 106 | 4.53 2191
1033M | 1003 | 3.42 18.12

Table 3.3: Ablation study on ResNet with 164 layers on CIFAR100.

Transition Block | Projection | Error (%)
Original No 24.33
Modified No 23.06
Modified Yes 22.61

3.4 Conclusions

This chapter theoretically analyzed building blocks of residual networks and demonstrated that

adding identity skip connection makes the residual blocks norm-preserving. This means that the
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norm-preservation is enforced during the training procedure, which makes the optimization stable
and improves the performance. This is in contrast to initialization techniques, such as [36], which
ensure norm-preservation only at the beginning of the training. Our experiments validated our
theoretical investigation by showing that (i) identity skip connection results in norm preservation,
(i1) residual blocks become extra norm-preserving as the network becomes deeper, and (iii) the
training can become more stable through enhancing the norm preservation of the network. Our
proposed modification of ResNet, Procrustes ResNet, enforces norm-preservation on the transition
blocks of the network and is able to achieve better optimization stability and performance. For
that we proposed an efficient regularization technique to set the nonzero singular values of the
convolution operator, without performing singular value decomposition. Our findings can be seen
as design guidelines for very deep architectures. By having norm-preservation in mind, we will be

able to train extremely deep networks and alleviate the optimization difficulties of such networks.
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CHAPTER 4: OUT-OF-DISTRIBUTION DETECTION USING UNION
OF 1-DIMENSIONAL SUBSPACES

The goal of out-of-distribution (OOD) detection is to handle the situations where the test samples
are drawn from a different distribution than the training data. In this work, we claim that we can
improve the OOD detection performance by constraining the representation of in-distribution (ID)
samples in the feature space. Particularly, if we embed the training samples such that the feature
vectors belonging to each known class lie on a 1-dimensional subspace, OOD samples can be
detected more robustly with higher probability, compared to a class-conditional non-degenerate
Gaussian embeddings. Such a union of 1-dimensional subspaces representation provides us with
two main advantages. First, due to compact representation in the feature space, OOD samples are
less likely to occupy the same region as the known classes. In other words, a random vector in a
high-dimensional space lies on a specific 1-dimensional line with probability 0. Second, we show
that the first singular vector of a 1-dimensional subspace is a robust representative of its samples.
We exploit these two desirable features and reject samples as OOD, if they occupy the region
corresponding to the training samples with probability 0. This region is identified by the set of
the first singular vectors of the training classes. To estimate the probability, we use Monte Carlo

sampling techniques used in Bayesian deep learning such as [49, 50]'.

Our work is primarily motivated by the rich literature of spectral methods in signal processing and
machine learning. Spectral techniques have been proven to be very effective for different tasks such
as robust estimation and detection [52, 53], learning mixture models [54], representative selection

[55], and defense against backdoor attacks [56]. We are also inspired by the OOD detection method

!Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, N. Bisagno, Z. Sambugaro, N. Conci,
N. Rahnavard, and M. Shah, “Out-of-Distribution Detection Using Union of 1-Dimensional Subspaces,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, (¢) 2021 IEEE [51]
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proposed in [19], in which authors use the ID feature vectors to estimate their distribution and to
detect OOD samples. In contrast, we engineer the distribution of ID feature vectors to minimize
the error probability, without knowing the distributions of OOD samples, and enforce our desired
distribution on the feature vectors. Our proposed method does not need extra information or a
subset of OOD examples for hyperparameter tuning or validation. This is in contrast to many
existing methods that use some subset of the OOD samples, either during validation [14, 15, 19,
57], or even during training [58, 59]. Despite improving the results, the availability of such extra
information is questionable in many real-world applications. Furthermore, our technique can be
easily deployed on many existing frameworks and different modalities, e.g. images, videos, etc. In

summary, this chapter makes the following contributions:

e We demonstrate that if feature vectors lie on a union of 1-dimensional subspaces, the OOD
samples can be robustly detected with high probability and we show how we can impose such

constraint on the ID feature vectors (Section 4.2);

e We propose a new OOD detection test, which exploits the first singular vector of the feature

vectors extracted from the training set, in conjunction with MC sampling (Section 4.3);

e Our framework does not have hyperparameters, does not need extra information, and can be
easily applied to existing methods with minimal change. Furthermore, the proposed method can

be applied to different domains such as images and videos.

4.1 Related Work

The problem of detecting outliers and anomalies in the data has been extensively studied in ma-
chine learning and signal processing communities and is closely related to outlier detection, a topic

that has been greatly studied both in the supervised [60] and unsupervised [61] settings. The liter-
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ature in this area is sizable. Thus, we mainly focus on the recent deep learning approaches. These
methods either estimate the distribution of ID samples [19, 57] or use a distance metric between

the test samples and ID samples to detect OOD samples [13, 14].

Many of the existing approaches employ the OOD datasets during training [58, 59] or validation
steps [14, 15, 19, 57, 62, 63]. For instance, in [59], the network is fine-tuned during the training
to increase the distance between ID and OOD distributions. Other interesting methods, such as
[14, 15, 19], apply a perturbation on each sample at test time to exploit the robustness of their
network in detecting ID samples. However, they use part of the OOD samples to fine-tune the per-
turbation parameters. On the other hand, methods that rely on generative models or autoencoders,
such as [57], also require hyperparameter tuning for loss terms, regularization terms, and/or latent
space size. Authors in [64] propose to use extra supervision, in particular several word embed-
dings, to construct a better latent space and to detect OOD samples more accurately. A table
summarizing the prior work and how they leverage extra information is provided in Appendix B.
Having access to extra information certainly helps with the performance. However, it can be ar-
gued that OOD detectors should be completely agnostic of unknown distributions, which is a more
realistic scenario in the wild. On the other hand, only a few approaches, such as [13, 18, 65-67], do
not require the OOD samples neither during training nor validation. For instance, Hendricks and
Gimpel [13] show how the softmax layer can be used to detect OOD samples, when its prediction
score is below a threshold. In [18], the authors rely on reconstructing the samples to produce a
discriminative feature space. However, methods that rely on either reconstruction or generation
[18, 57, 65] do not perform well in scenarios where sample generation or reconstruction is more

difficult, such as large-scale datasets or video classification.
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4.2 Union of 1-dimensional Subspaces for Out-of-Distribution Detection

Given a training dataset consisting of N sample-label pairs belonging to L known classes, our
goal is to train a neural network such that at the test time it can be determined if an unlabeled
sample is an out-of-distribution sample (not belonging to any of the L known classes) or not. We
are particularly interested in the scenarios where OOD samples are not available. Thus, we do
not use OOD samples during training or validation. We argue that OOD detection performance
can be improved if the feature vectors from the known classes lie on a union of 1-dimensional
subspaces. In short, such embedding has two main properties that we can take advantage for
OOD detection: (i) Due to the compactness of ID samples in the feature space, OOD samples can
be detected with higher probability, compared to conventional class-conditional non-degenerate
Gaussian embeddings, and (ii) First singular vector of the samples in each class can be used as a
robust representative of that class and can be effectively employed to distinguish between the ID

and OOD samples. Below, we discuss each of these advantages in more details.

Distribution-agnostic minimization of error probability: Computing the error probability for
OQOD detection is a difficult task to carry out. This is due to the fact that, by definition, we do
not have much information about the probability distribution of the OOD samples. However, it
can be shown that the probability of error can be minimized by making the distribution of the
known classes as compact as possible. Specifically, consider the binary classification problem of
distinguishing between the OOD samples and samples from one of the known classes, following
multivariate Gaussian distributions with different means and covariance matrices N (u,, X,) and
N (u;, 3;), respectively. It has been shown [68] that the classification error probability p,. can be

upper bounded by: p. < \/p;poe 2, where p; and p, are the probability of samples belonging to
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the known class and OOD samples, respectively. B is the Bhattacharyya distance defined as:

pIPNES 3 1 det(ZitZe
i+ ) 1A + Lin et(=5=2)

2 \/det ;) det(X ))’

1
B=-A"(
8

where A = p, — p, is the distance between the means of the two distributions. The first term in

B represents the Mahalanobis distance between p, and g, using as the covariance matrix.

2
The second term is a measure of compactness of the distributions. The larger the det(X;) is, the
more its corresponding samples are spread out. Thus, even without any knowledge about p,, 3,
pi» and p,, one can increase B by making N (u;, X;) as compact as possible. In the extreme case,
where the samples lie on a perfect 1-dimensional subspace, error probability will be 0, unless the

OOD feature vectors have the exact same distribution as the known class. To demonstrate this in

further details, consider the following toy examples:

10 1 0
Example 1: Let 3, = and X; = ,€ < 1, meaning that the ID samples occupy an

0 1 0 €
almost 1-dimensional subspace of the 2-dimensional space. In this example, the second term in

1+€2

above equation becomes In (=3 ), which approaches infinity as ¢ — 0, making p. very small. This

is true even if p, = p,.

10 Hi1 Mol | .
Example 2: Let X, = X, = el = Sy = , 1.e., ID and OOD samples

0 € Hi2 o2
have the same degenerate covariance matrix. In this case, the second term becomes 0, but the first

term, which is the Mahalanobis distance between the mean vectors, is = [(,uzl ,u01)2 + E%(/L,g —
to2)?]. If € — 0, p. approaches 0, unless (j1;2 — pto2)* — 0 as well. This means that if the means of
the distribution have some mismatch along the degenerate direction, even though very small, OOD

samples can be detected with very small p.,.

Thus, by enforcing the ID feature vectors to lie on 1-dimensional subspaces, we can detect slight

mismatches between the distribution of the OOD samples in feature space and the distribution of
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ID samples, which leads to better OOD detection.

First singular vector as a robust representative: In the context of robust statistics, the first
singular vector has been shown to be a great tool to define robust mean and covariance estima-
tors [52]. In addition, the first singular vector has been used to select the representatives of the
class[55]. It can be shown that the first singular vector is robust to perturbations and noise. Let
X denote an M x N matrix containing N M-dimensional feature vectors belonging to class [.
Furthermore, consider the autocorrelation matrix of the class [ defined as C; = X; X lT Eigen-
vectors and eigenvalues of C| are the left singular vectors and the square of singular values of X,
respectively. Adding noise or adding a new noisy column in X ; perturbs C’;, without changing
its dimensions. To quantify the sensitivity of eigenvectors of C'; against perturbations, we use the

following Lemma.

Lemma 4.1. (from [55]) Assume square matrix C and its spectrum [\;,v;]. Then, ||0v;|2 <
> WW)C |, where ||.||r denotes Frobenius norm and the partial derivative is taken
1T Aj

with respect to any scalar variable.

If we take the partial derivative with respect to an entry in C, we can see that the sensitivity
of the i™ spectral component, v;, to perturbations in C, is inversely related to the gap between
its corresponding eigenvalue ); and other eigenvalues A;,j # 7. Therefore, we can define the
sensitivity coefficient of the i eigenvector of a square matrix as s; = , /> ki m In general,
the first singular component v is the least sensitive direction to the perturbations. This is because,
in many scenarios, the gap between consecutive eigenvalues is decreasing (see [69] and references
therein), which leads to s; < s;, V¢ > 2. However, we can further increase the robustness, by
embedding the ID feature vectors onto a union of 1-dimensional subspaces. Since the singular
values represent the amount of energy concentrated along their corresponding singular vector, if

almost all of the energy of the data points in each class is concentrated along its corresponding
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first singular vector, we will have large A\; and small \;,7 > 2 for all the classes. Therefore, if the
feature vectors belonging to the same class lie on a 1-dimensional subspace, we can use the first
singular vector of X; as a robust representative of the class subspace in the feature space and to

reject outliers, as shown in Section 4.3.
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Figure 4.1: Overall architecture of the proposed framework. A neural network (e.g., WideResnet28) maps
the input onto a feature space. Then, the cosine similarities between the extracted feature x,, and the class
vectors w; are used to compute the class membership probabilities. w;s are set to predefined orthonormal
vectors and are not updated during training. This leads to the desired embedding, union of uncorrelated
1-dimensional subspaces. At test time, the cosine similarity between the test samples and the first singular
vector corresponding to each class is used to distinguish between the ID and OOD samples.

4.2.1 Enforcing the Structural Constraints

Intraclass Constraint: We can make the feature vectors for each known class to lie on a 1-
dimensional subspace by employing cosine similarity. This can be achieved by modifying the

ol cos(6y,,)]

softmax function to predict the membership probability using p;, = S Teor T where py, is the
T

probability of membership of feature vector n in class [ and cos(6;,) = % is the cosine

similarity between the learned feature vector x,, and the weights of the last fully connected layer

corresponding to class [, i.e.,w;. Note that, unlike other methods which employ angular margin
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[70, 71], we use the absolute value of the cosine similarity to compute the class memberships.
This is due to the fact that the subspace membership, and therefore the class membership, does not
change if a vector is multiplied by —1. By employing such activation function, the feature vectors
of each class are aligned to its corresponding weight vector w;. In other words, class [ forms a
1-dimensional subspace along the direction of w; in the feature space. Therefore the final loss

function to be minimized is defined as:

N el cos(67)]

1
L= Nz—log(w), (4.1)

n=1

where 6% is angle between the n' feature vector and the weight vector corresponding to its true

label.

Interclass Constraint: By using the absolute cosine similarity as the classification criteria, we can
ensure the feature vectors are angularly distributed in the space and form a union of 1-dimensional
subspaces. To boost the interclass separation of the known classes, we need to decrease the inter-
class similarity, in terms of cosine similarity. Minimum interclass cosine similarity can be enforced
by ensuring that w; are orthogonal to each other. We achieve this by simply initializing the weight
matrix with orthonormal vectors, as described in [72], and freezing them during the training. Or-
thogonal initialization requires that M > L, which is often the case in practice (feature space
dimension is larger than number of classes). In other words, the feature extractor, i.e., the deep
neural network, is trained such that it can map each input sample in class [ onto a predefined

1-dimensional subspace represented by the direction of w;.

Figure 4.1 shows the overall architecture of the proposed framework. The neural network maps
the input sample onto a low-dimensional space, where the known classes are represented by a set
of orthonormal vectors. The cosine similarity between the extracted feature from the n™ input

sample, x,,, and the vector corresponding to the class subspace, w;, is used to determine the class
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Figure 4.2: 3-dimensional representation of the features belonging to the first 3 classes of CIFAR10 training
set, extracted from WideResNet with and without the proposed embedding: (a) features extracted from
a plain WideResnet, (b) features extracted after enforcing the proposed embedding, and (c) same as (b)
after £o-normalizing the feature vectors. The solid lines represent the direction of the first singular vector
corresponding to each class. All the figures contain 3, 000 feature vectors.

membership probability and therefore the label. Figure 4.2 demonstrates the effectiveness of the
proposed framework in enforcing the desired embedding. It shows a 3-dimensional embedding,
obtained by PCA, of the feature vectors belonging to the first 3 classes of CIFAR10. The neural
network, WideResnet28, is trained on all the classes of CIFAR10 with and without enforcing the
proposed structural constraints. Figure 4.2(a) shows that the feature vectors belonging to each
class extracted from a plain WideResnet have a fairly isometric Gaussian structure, meaning that
they are spread out in different direction uniformly. On the other hand, as shown in Figure 4.2(b),
the feature vectors extracted from the same network trained using our proposed technique lie on
a union of 1-dimensional subspaces. We also show the /5-normalized feature vectors in Figure
4.2(c) to remove the scale of the feature vectors and emphasize the angle between each vector and

the singular vector corresponding to its class.

4.3  Out-of-distribution Detection Test

If the feature vectors belonging to the known classes lie on a union of 1-dimensional subspaces,

their corresponding region in the feature space has no volume. Thus, the probability of OOD
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samples being in the region corresponding to any of the known classes, which is the probability of
false negative py,,, is zero. This can be seen using the Bhattacharyya bound, discussed in Section
4.2, e = DoPfn + PiDfp < \/ngoe*B. Therefore, if we make the known classes occupy a tiny
region with no volume in the space, we will have B — oo and py,, — 0. We use this property to
classify samples as OOD if they lie inside the region corresponding to any of the known classes
with probability 0. More specifically, given an input instance %,, and corresponding feature vector
@, this probability can be estimated using the singular vectors of each class as p(¢,, < ¢*|i,),

where ¢,, is defined as:
| 2T (l)l

n

), (4.2)

¢, = min arccos(
l [ |

which is the minimum angular distance of the test feature vector «,,, from the first singular vector
of any of the classes. We name this measure as spectral discrepancy. ¢* is a critical spectral dis-
crepancy and defines the region belonging to the known classes. Smaller values of ¢* corresponds
to more compact regions. In the extreme case of ¢* = 0, the input instance ¢, is detected as
OOD, if it does not have the exact same direction as one of the singular vectors. It is worthwhile

)

to mention that in the ideal case, the first singular vector of class [, vgl , would be the same as

w;. However, in practice, the first singular vector is a better representative of the subspace after
training, as training feature vectors may not perfectly align with w;. 'vgl) can be computed using
the extracted features from training ID samples of class /. Time complexity order of computing

the first singular vector is linear w.r.t both the number and the dimensions of the feature vectors

[73, 74]. To estimate p(¢,, < ¢*|i,,), we employ Monte Carlo sampling. Specifically:

o* 15
ng *-n: n.ndn%— ]Ifl *’ 4'3
pou < lin) = [ lntinldon ~ 3267 < ) @3

where S is the number of the Monte Carlo samples and ¢ is the spectral discrepancy of the s

Monte Carlo sample, given input instance %,,. Furthermore, I(.) is the indicator function that takes
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value 1 if ¢ < ¢* and 0 otherwise. To obtain the samples, we can use the methods proposed
for approximate Bayesian inference in [49, 50]. ¢* is the decision parameter, which can be set to
achieve a problem-specific precision and/or recall requirements using different methods such as

[75] or by using the training set (as will be discussed in Section 4.4).

Figure 4.3 demonstrates the effectiveness of employing spectral discrepancy in distinguishing be-
tween ID and OOD samples. Similar to Figure 4.2, this figure shows a 3-dimensional representa-
tion of the features that are close to the first 3 classes of the CIFAR10, meaning that the classifier
would classify them as one of these classes. The first two subfigures show the features extracted
from a plain WideResNet. Comparing ID samples (Figure 4.3(a)) with OOD samples (Figure
4.3(b)), it is clear that both ID and OOD samples follow a very similar structure, which makes OOD
detection more difficult. On the other hand, the last two subfigures illustrate the ¢5-normalized fea-
tures extracted from the WideResNet trained using our proposed embedding. Comparing the ID
(Figure 4.3(c)) and OOD (Figure 4.3(d)) samples, most of the OOD samples have larger angular
distance to their closest singular vector, compared to the ID samples, which can be exploited to
detect them more accurately. A quantitative evaluation of this example, including the histogram
of spectral discrepancies for ID and OOD samples, is provided in Section 4.4 (e.g., Figure 4.4).
Furthermore, an algorithmic description of the training and testing phases of our proposed method

is provided in Appendix B.

4.4 Experiments

Datasets: We train the WideResNet model on CIFAR-10 and CIFAR-100 [47] datasets, which
consist of 50,000 images for training and 10,000 images for testing, with an image size of 32 x 32.
The testing set is used as the ID testing samples. Similarly to prior work [14, 19, 66], for the OOD

testing samples, we use the following datasets: (i) TinyImagenet: The Tiny ImageNet dataset
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Figure 4.3: 3-dimensional representation of the features extracted from a plain WideResNet and the same
network with our proposed embedding. (a) ID features extracted from plain network, (b) OOD features
extracted from plain network, (c) ID features extracted using our embedding, and (d) OOD features extracted
using our embedding. The solid lines represent the direction of the first singular vector corresponding to
each class. OOD samples, extracted using our embedding, have larger angular distance to their closest
singular vector. All the figures contain 3000 samples.

Table 4.1: A comparison of OOD detection results, in terms of F1-score, for different ID and OOD datasets.
T represents the results achieved by our re-run of the publicly available codes. The bottom section summa-
rizes the performance of the methods that use a subset of OOD samples for hyperparameter tuning, such as
finding the best perturbation magnitude. Our method does not have any parameters to be tuned.

ID dataset CIFAR10 CIFAR100

OOD dataset TINc | TINr | LSUNc | LSUNr | TINc | TINr | LSUNc | LSUNr
SoftMax Pred. [13]" | 0.803 | 0.807 | 0.794 0.815 | 0.683 | 0.683 | 0.664 0.693
Counterfactual [65] | 0.636 | 0.635 | 0.650 0.648 - - - -

CROSR [18] 0.733 | 0.763 | 0.714 | 0.731 - - - -
OLTR [66]" 0.860 | 0.852 | 0.877 | 0.877 | 0.746 | 0.721 | 0.753 | 0.747
Ours 0.930 | 0.936 | 0.962 0.961 | 0.810 | 0.860 | 0.769 | 0.886
Methods that use OOD samples for validation and hyperparameter tuning.

ODIN [14]f 0.902 | 0.926 | 0.894 | 0.937 | 0.834 | 0.863 | 0.828 | 0.875

Mahalanobis [19] 0.985 | 0969 | 0985 | 0975 | 0974 | 0.944 | 0.963 | 0.952

consists of 10,000 test images of size 36 x 36 belonging to 200 different classes, which are sampled
from the original 1,000 classes of ImageNet [S5]. As in [14, 15] we construct two datasets from
TinyImagenet: TinyImagenet-crop (TINc) and Tinylmagenet-resize (TINr), by either randomly

cropping or downsampling each image to a size of 32 x 32. (ii)) LSUN: LSUN [76] consists
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of 10,000 test images from 10 different scene categories. Like before, we randomly crop and
downsample the LSUN test set to construct two datasets LSUN-crop (LSUNCc) and LSUN-resize
(LSUNI).

Evaluation Metrics: We evaluate the OOD detection performance using the following metrics:
FPR at 95% TPR indicates the false positive rate (FPR) at 95% true positive rate (TPR). Detec-
tion Error indicates the minimum misclassification probability. It is computed by the minimum
misclassification rate over all possible values of ¢*. AUROC, defined as the Area Under the Re-
ceiver Operating Characteristic curve, is computed as the area under the FPR against TPR curve.
AUPR In is computed as the area under the precision-recall curve. For AUPR In, ID images are
treated as positive. AUPR Out is similar to the metric AUPR-In. Opposite to AUPR In, OOD
images are treated as positive. F1 Score is the maximum average F1 score over all possible critical

spectral discrepancy values ¢*.

Table 4.2: Performance of the proposed framework for distinguishing ID and OOD test set data for the
image classification task, using a WideResnet with depth 28 and width 10. 1 indicates larger value is better
and | indicates lower value is better. All the methods use the same network architecture.

Training (010)); FPR at Detection AUROC AUPR In AUPR Out
dataset dataset 95% TPR Error
| | 1) T 1)
Softmax. Pred. [13]/OLTR [66]/ Ours

TINc 38.9/25.6/9.0 21.9/14.8/6.8 | 92.9/91.3/98.1 | 92.5/93.2/98.2 | 91.9/88.3/98.1
CIFARILO TINr 45.6/28.8/7.6 25.3/15.8/6.2 | 91.0/90.3/98.5 | 89.7/92.3/98.6 | 89.9/87.1/98.4
LSUNc 35.0/21.3/2.8 20.0/13.0/3.7 | 94.5/92.9/99.4 | 95.1/94.4/99.4 | 93.1/90.8/99.4
LSUNr 35.0/21.7/3.4 20.0/13.2/3.8 | 93.9/92.6/99.3 | 93.8/94.4/99.4 | 92.8/90.0/99.3
TINc 66.6/63.8/41.7 | 35.8/29.0/18.9 | 82.0/77.4/88.6 | 83.3/78.7/89.1 | 80.2/74.4/87.0
CIFAR100 TINr 79.2/72.9/29.42 | 42.1/32.1/14.2 | 72.2/73.1/93.7 | 70.4/73.8/94.0 | 70.8/69.8/93.8
LSUNc | 74.0/59.2/38,8 | 39.5/29.1/13.9 | 80.3/76.9/93.8 | 83.4/80.0/93.6 | 77.0/72.9/93.1
LSUNr | 82.2/61.9/20.3 | 43.6/29.2/11.3 | 73.9/77.0/95.7 | 75.7/79.2/96.0 | 70.1/73.3/95.7

We deploy WideResNet with depth 28 and width 10 as the neural network architecture. The net-
work parameters are set as the original implementations in [77, 78], except the last layer, which is

modified as discussed in Section 4.2. At the test time, unless otherwise stated, we draw 50 Monte
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Carlo samples to estimate p(¢,, < ¢*) and to detect the OOD samples. To draw MC samples for the
image classification task, we employ the SWAG-Diag method proposed in [49]. Other uncertainty
estimation methods such as [50, 79-81] can also be used to estimate the uncertainty in conjunction

with our proposed method. Additional training details are provided in Appendix B.

Table 4.1 compares our results with recent OOD detection techniques in terms of Fl-score. As
denoted in the table, we use the code provided by the authors from most of the baselines to generate
the results under a fair setting, i.e., same architecture, same datasets, and same metrics. For [18,
65], we provide the results reported by the authors, as these methods rely on reconstruction and/or
generation of samples and the same architecture cannot be used. In addition, since these methods
only report their performance using F1-score, we also use this metric for all the methods. Our
proposed method is able to consistently outperform the competing methods over different datasets,
and is the closest competitor to the techniques that use OOD sample for validation. Table 4.2
compares the performance of our proposed solution with two of the more competitive baselines
over different metrics, using the same network architecture for all the methods. Our results are
consistent over different OOD datasets and different metrics, meaning that our method can perform

well for different types of OOD samples, without any hyperparameter tuning for each OOD dataset.

Table 4.3: Ablation study of the proposed framework using CIFAR10 (ID) and TINr (OOD). While enforc-
ing the structure hurts the ID accuracy slightly, it improves the OOD detection performance significantly.
The remaining two combinations, (No, Yes, No) and (No, Yes, No), are not meaningful.

Union of 1D | Orthogonal MC In Disribution | OOD
Subspaces | Subspaces | Samples | Accuracy (%) | AUROC
No No No 96.0 95.2
No No Yes 96.0 96.3
Yes No No 95.4 95.6
Yes No Yes 95.4 96.8
Yes Yes No 95.4 95.9
Yes Yes Yes 95.4 98.5
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In the ablation study, Table 4.3 investigates the impact of enforcing structure on the OOD detection
using spectral discrepancy. AUROC is computed by using spectral discrepancy for the different
variants. This table shows that, while enforcing the proposed embedding slightly hurts the ID
classification accuracy and does not improve the representation ability of the network, it is an
effective technique to distinguish between ID and OOD samples. This table also shows the effect of
MC samples, which are used to compute the probabilities. As expected, introducing MC sampling
improves the OOD detection performance, regardless of the feature space structure. However, the
improvement is more significant for networks on which our proposed structure is enforced. Further,
MC sampling alone or enforcing 1D subspace alone does not make a significant difference. But the
combination of 1D subspaces and MC samples improves the results significantly. This is mainly

because our method is a probabilistic approach and only works in a probabilistic setting.
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Figure 4.4: (a) Empirical probability distribution of the spectral discrepancy of samples belonging to CI-
FARI10 (ID) and different OOD datasets. (b) Detection error for different values of critical spectral discrep-

ancy ¢*. Both the spectral discrepancy histogram and the best ¢* do not change significantly for different
datasets.

As a guideline to set the value of the critical spectral discrepancy ¢*, Figure 4.4(a) shows the
histogram of the spectral discrepancy for samples belonging to CIFAR10, as the ID dataset, and
different real OOD datasets. It is evident that samples from both the testing and training set of
the ID dataset follow a very similar behaviour. Thus, the training set can be used to estimate

the possible interval of spectral discrepancies for the ID samples. For instance, about 98% of the
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samples in CIFAR10 have a spectral discrepancy of less than 2 degrees. On the other hand, Figure
4.4(b) demonstrates the detection error for different values of the critical spectral discrepancy ¢*.
This figure shows that best detection error is achieved by setting ¢* to a value in range [1.3, 2]
degrees, regardless of the OOD dataset. Hence, this figure shows that ¢* is not sensitive to the OOD
dataset and can be set using only the training set. However, it should be mentioned that in general
the best value for ¢* depends on the task at hand and the precision and/or recall requirements. As
mentioned earlier, ¢* can also be set by many of the threshold estimation techniques such as [75].
More experimental results such as quantifying the impact of the number MC samples, robustness

of the first singular vector to perturbations, and ROC curves are provided in Appendix B.

4.5 Conclusion

We showed that the distribution of the ID samples in the feature space plays an important role in
the OOD detection. Particularly, we proposed to embed the ID samples into a low-dimensional
feature space such that each known class lies on a 1-dimensional subspace. Such embedding gives
us two main advantages in the OOD detection task: (i) ID samples occupy a tiny region in the
space and (ii) ID samples have robust representatives. By exploiting these desirable features, our
proposed method is able to outperform state-of-the-art methods in several performance metrics and

different domains.
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CHAPTER 5: ITERATIVE PROJECTION AND MATCHING: FINDING
STRUCTURE-PRESERVING REPRESENTATIVES AND ITS

APPLICATION TO COMPUTER VISION

Due to the proliferation of data gathering devices, an everincreasing amount of data is being gener-
ated and processed in different learning tasks. However, the ability to summarize and select good
representatives from data is crucial in many applications. Furthermore, if a learning agent can
achieve the same performance with fewer data, it is desirable to reduce the data size, as it will ease
the requirements for data storage, communication, and processing. Thus, the goal of data selection
is to capture the most structural information from a set of data. However, selecting a few repre-
sentatives from a set of data points is not an easy task, as it might involve a combinatorial search
over all the possible subsets. Thus, many different approximate solutions have been proposed in
the literature. Approximate solutions has been proposed by exploiting either a convex [82, 83]
or a sub-modular [84] cost function. More recently, authors in [2] and [85] proposed algorithms
to select more representative samples, rather than focusing on diversity of the selected samples.
These approaches have been shown to be effective in some computer vision tasks. However, since
they rely on solving a convex optimization problem, their computational burden is not tractable
for large data sets such as ImageNet. Furthermore, to solve such optimization problems, one need
to set some hyperparameters, which is task- and dataset-dependant and oftentimes requires a grid

search over all possible values'.

This chapter presents a fast and accurate data selection method, in which the selected samples are

optimized to span the subspace of all data. We propose a new selection algorithm, referred to as

Portions of this chapter is reprinted, with permission, from A. Zaeemzadeh, M. Joneidi, N. Rahnavard, and
M. Shah, “Iterative Projection and Matching: Finding Structure-preserving Representatives and Its Application to
Computer Vision,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2019-June,
2019, (© 2019 IEEE [55].
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iterative projection and matching (IPM), with linear complexity w.r.t. the number of data, and
without any parameter to be tuned 2. In our algorithm, at each iteration, the maximum information
from the structure of the data is captured by one selected sample, and the captured information
is neglected in the next iterations by projection on the null-space of previously selected samples.
Furthermore, the superiority of the proposed algorithm is shown on active learning for video action
recognition dataset on UCF-101; learning using representatives on ImageNet; training a genera-
tive adversarial network (GAN) to generate multi-view images from a single-view input on CMU
Multi-PIE dataset; and video summarization on UTE Egocentric dataset. In summary, this chapter

makes the following contributions:

e The complexity of IPM is linear w.r.t. number of original data. Hence, IPM is tractable for

larger datasets.

e [PM has no parameters for fine tuning, unlike some existing methods [2, 85]. This makes

IPM dataset- and problem-independent.

e The superiority of the proposed algorithm is shown in different computer vision applications.

5.1 TIterative Projection and Matching (IPM)

Let a;,as,...,ay € RY be M given data points of dimension N. We define an M x N matrix,
A, such that aﬁ is the m'" row of A, form = 1,2,..., M. The goal is to reduce this matrix into a
K x N matrix, Ag, based on an optimality metric. Our proposed cost function for data selection is

the error of projecting all the data onto the subspace spanned by the selected data. Mathematically,

’This study was done collaboratively with my colleague Mohsen Joneidi.
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the optimization problem can be written as,

argmin|| A — 7 (A)||3. (5.1

IT|=K
mr(A) is the projection of all the data on to the subspace spanned by the K rows of A, indexed
by T. It is easy to show that 7p(A) can be expressed by a rank-K factorization, UV, where
U € RM*E vT ¢ REXN ‘and V7 includes the K rows of A, indexed by T, and normalized to

have unit length. Thus, our optimization problem can be rewritten as

argmin |A — UV ||% s.t. vy, € A, (5.2)
UV
where, A = {ay,as,...,ay}, @Gn = an/|anl2, and vy is the kM column of V. To solve

this problem in a tractable manner (linear time complexity with respect to M), we take a greedy
approach and select only one sample at a time. In other words, we want to be able to represent
A as uv”, where u € RM, v € RY, and and v € A. The solution to this reduced optimization

problem can be obtained efficiently by solving two consecutive problems as follows:

(u,v) =argmin ||A — uv’ ||} s.t. [|v] = 1, (5.3a)
mY =argmax |v7 a,,|. (5.3b)

m(Y is the index of the first selected representative. The first subproblem relaxes the original

constraint vy € A to ||v|| = 1. This subproblem can be solved by setting v as the first right singular
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vector of A. Time complexity order of computing the first singular vector of an M x N matrix is
O(MN) [73], i.e., linear time complexity. The second subproblem re-enforces the constraint by
finding the closest sample in A to the solution of the first subproblem. To select more samples, we
first project the data matrix onto the null space of the selected sample and perform the same process
till enough samples are collected. This means that the next sample will be selected by searching
in the null space of the previous selected samples. This makes the overall time complexity of the
proposed method O (K N M ). Furthermore, the sequential nature of our algorithm can be employed
in applications such as active learning, where a new subset of data is added at each cycle. In the next
section, we will investigate the effectiveness of IPM in active learning, as well as non-sequential

scenarios such as video and dataset summarization.

To elaborate the steps in more details, Algorithm 2 demonstrates the proposed scheme in an algo-
rithmic format. It is also worthwhile to mention that the condition that needs to be satisfied for a
good performance is K’ < N < M. This ensures that the calculated singular vector is reliable and
not impacted by noise. This condition is satisfied in subset selection scenarios, where the dataset
is large, the number of selected samples is a lot less than the number of samples (K < M), and

we have freedom over the dimension of the samples/features (V).

Algorithm 2 Iterative Projection and Matching Algorithm

Require: A and K
Output: Ar
1: Initialization:
AV A
T = {}
fork=1,--- | K

2: v < first right singular-vector of A® by solving (5.3a)

3: m® « index of the most correlated data with v (5.3b)

4: T « TUm®

500 ARTD AW — @,, @, ) (null space projection)
end
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Table 5.1: Classification accuracy (%) for action recognition on UCF-101, at different active learn-
ing cycles. The initial training set (cycle 1) is the same for all the methods. The accuracy for cycle
1 is 54.2% and the accuracy using the full training set (9537 samples) is 82.23%.

[ Mean samples/class [ 2 [ 3 [ 4 [ 5 [ 6 [ 7 [ 8 ]
Random 60.1 £0.7 65.1 1.2 68.2 £ 1.7 69.9+1.4 71.7+ 0.6 73.0£0.6 74.8 £0.5
Spectral Clustering 62.3+1.9 66.9+ 1.1 68.1 £0.7 68.9+0.3 70.8+0.9 71.0 £ 2.2 71.6 £0.1
K-medoids 60.1 £ 2.2 65.3 £ 1.0 68.4+1.6 69.2 £ 0.5 72.3+0.7 73.6 £ 0.4 74.5 £ 0.6
OMP 64.2 0.6 66.6 0.7 70.8+ 1.5 71.7+04 743+ 0.7 74.3+£0.3 75.4+0.2
DS3 [2] 64.0 £ 1.5 66.5 £ 0.7 67.8+1.2 68.3 £0.5 69.6 £ 1.1 709+ 1.3 71.9+£0.9
Uncertainty [86] 59.5+ 0.4 66.7 1.6 69.4 + 1.7 715+ 1.5 73.9+0.3 75.5£0.7 759+ 1.1
IPM 64.6 0.7 68.7 £ 0.3 72.2+ 1.0 73.4+09 74.3+04 747+14 75.3£0.6
IPM + Uncertainty 64.3 +£0.4 694+08 | 728+1.0 | 713.8+09 | 76.2+1.0 | 76.3+£0.3 | 77.9+0.2

5.2 Applications of IPM

To empirically demonstrate the behavior and effectiveness of the proposed selection technique, we
have performed extensive sets of experiments considering several different scenarios. We divide
our experiments into three different subsections. In Section 5.2.1, we use our algorithm in the
active learning setting and show that IPM is able to reduce the labelling cost significantly, by
selecting the most informative unlabeled samples. Next, in Section 5.2.2, we show the effectiveness
of IPM in selecting the most informative representatives, by training the classifier using only a
few representatives from each class. Lastly, in Section 5.2.3, the application of IPM for video

summarization is exhibited.

5.2.1 Active Learning

Active learning aims at addressing the costly data labeling problem by iteratively training a model
using a small number of labeled data, and then querying the labels of some selected data, using an

acquisition function.

In active learning, the model is initially trained using a small set of labeled data (the initial training
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set). Then, the acquisition function selects a few points from the pool of unlabeled data, asks an
oracle (often a human expert) for the labels, and adds them to the training set. Next, a new model
is trained on the updated training set. By repeating these steps, we can collect the most informative
samples, which often result in significant reductions in the labeling cost. Now, the fundamental
question in active learning is: Given a fixed labeling budget, what are the best unlabeled data

instances to be selected for labeling for the best performance?

In many active learning frameworks, new data points are selected based on the model uncertainty.
However, the effect of such selection only kicks in after the size of the training set is large enough,
so we can have a reliable uncertainty measure. In this section, we show that the proposed selection
method can effectively find the best representatives of the data and outperforms several recent

uncertainty-based and algebraic selection methods.

In particular, we study IPM for active learning of video action recognition, using the 3D ResNet18
architecture, as described in [87]. The experiments are run on UCF-101 human action dataset [6],

and the network is pretrained on Kinetics-400 dataset [88]. We provide the results on split 1.

To ensure that at least one sample per class exists in the training set, for the initial training, one
sample per class is selected randomly and the fully-connected layer of the classifier is fine tuned.
Then, at each active learning cycle, one sample per class is selected, without the knowledge of
the labels, and added to the training set. Next, using the updated training set, the fully connected
layer of the network is fine tuned for 60 epochs, using learning rate of 10!, weight decay of 1073,
and batch size of 24 on 2 GPUs. Rest of the implementation and training settings are the same as
[87]. Note that, in this experiment, fine-tuning is only performed to train the fully connected layer,
because it achieved the best accuracy during the preliminary investigation for very small training

sets, which is the scope of this experiment.

The selection is performed on the convolutional features extracted from the last convolutional
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layer of the network. Table 5.1 shows the accuracy of the trained network at each active learning
cycle for different selection methods. The high computational complexity of DS3 prevents its
implementation on all the data [2]. So, we provide the results for DS3 only for the clustered
version, meaning that one sample per cluster is selected using DS3 (clusters are obtained using
spectral clustering). For spectral clustering results, the extracted features are clustered into 101
clusters, and one sample from each cluster is selected randomly. Furthermore, OMP, which stands
for Orthogonal Matching Pursuit, selects the samples that are most correlated with the null space

of the selected samples [89, 90].

The OMP approach is very sensitive to the outliers. Random outliers have low correlation with the

samples and therefore a high correlation with the null space of the selected samples.

For uncertainty-based selection, Bayesian active learning [50, 86] is utilized. For that, a dropout
unit with parameter 0.2 is added before the fully-connected layer and the uncertainty measure is
computed by using 10 forward iterations (following the implementation in [50]). In our experi-
ments, we use variation ratio®> as the uncertainty metric, which is shown to be the most reliable
metric among several well-known metrics [86]. Also, for a fair comparison, the initial training set

is the same for all the experiments at each run.

It is evident that, during the first few cycles, since the classifier is not able to generate reliable
uncertainty score, uncertainty-based selection does not lead to a performance gain. In fact, random
selection outperforms uncertainty-based selection. On the other hand, IPM is able to select the
critical samples. In the first few active learning cycles, IPM is constantly outperforming other
methods, which translates into significant reductions in labeling cost for applications such as video

action recognition.

3Variation ratio of z is defined as 1 — max,, p(y|z). which measures lack of confidence.
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As the classifier is trained with more data, it is able to provide us with better uncertainty scores.
Thus to enjoy the benefits of both IPM and uncertainty-based selection, we can use a compound
selection criterion. For the extremely small datasets, samples should be selected only using IPM.
However, as we collect more data, the uncertainty score should be integrated into the decision
making process. Our proposed selection algorithm, unlike other methods, easily lends itself to
such modification. At each selection iteration, instead of selecting the most correlated data with v

(line 3 in Algorithm 2), we can select the samples based on the following criterion:

m* = argmax o |[v'a,,| + (1 — a) ¢(a,),

where ¢(.) is an uncertainty measure, e.g. variation ratios. Parameter o determines the relative
importance of the IPM metric versus the uncertainty metric. To gradually increase the impact of
q(.), as the model becomes more reliable, we start by setting & = 1 and multiply it by decay rate
of 0.95 at each active learning cycle. This compound selection criteria leads to better results for

larger dataset sizes.

5.2.2 Learning Using Representatives

In this experiment, we consider the problem of learning using representatives. We find the best
representatives for each class and use this reduced training set for learning. Finding representa-
tives reduces the computation and storage requirements, and can even be used for tasks such as
clustering. In the ideal case, if we collect the samples that contain enough information about the
distribution of the whole dataset, the learning performance would be very close to the performance

using all the data.
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5.2.2.1 Representatives To Generate Multi-view Images Using GAN

Here, we present our experimental results on CMU Multi-PIE Face Database [91]. We use 249
subjects from the first session with 13 poses, 20 illuminations, and two expressions. Thus, there
are 13 x 20 x 2 images per subject. To investigate the effectiveness of the proposed selection, we
use the selected samples to train a generative adversarial network (GAN) to generate multi-view
images from a single-view input. For that, the GAN architecture proposed in [1] is employed.
Following the experiment setup in [1], only 9 poses between £ and ‘% are considered. Furthermore,
the first 200 subjects are for training and the rest are for testing. Thus, the total size of the training
set is 72,000, 360 per subject. All the implementation details are same as [1], unless otherwise is

stated.

Random

DS3  K-medoids

Full dataset ~ IPM

Figure 5.1: Multi-view face generation results for a sample subject in testing set using CR-GAN
[1]. The network is trained on reduced training set (9 images per subject) using random selection
(first row), K-medoids (second row), DS3 [2] (third row), and IPM (fourth row). The fifth row
shows the results generated by the network trained on all the data (360 images per subject). IPM-
reduced dataset generates closest results to the complete dataset.

We select only 9 images from each subject (1800 total), and train the network with the reduced
dataset for 300 epochs using the batch size of 36. Figure 5.1 shows the generated images of
a subject in the testing set, using the trained network on the reduced dataset, as well as using

the complete dataset. The network trained on samples selected by IPM (fourth row) is able to

64



generate more realistic images, with fewer artifacts, compared to other selection methods (rows
1-3). Furthermore, compared to the results using all the data (row 5), it is clear that IPM-reduced
dataset generates the closest results to the complete dataset. This is because samples selected by
IPM cover more angles of the subject, leading better training of the GAN. See Appendix C for

further experiments and sample outputs.

Table 5.2: Identity dissimilarities between real and generated images by network trained on re-
duced (using different selection methods) and complete dataset.

Method Random | K-Medoids | DS3 | IPM
9 images / subject 0.5616 0.5993 0.6022 | 0.553
360 images / subject 0.5364

For a quantitative performance investigation, we evaluate the identity similarities between the real
and generated images. For that, we feed each pair of real and generated images to a ResNet18,
trained on MS-Celeb-1M dataset [92], and obtain 256-dimensional features. /5 distances of fea-
tures correspond to the face dissimilarity. Table 5.2 shows the normalized /5 distances between the
real and generated images, averaged over all the images in the testing set. Our method outperforms
other selection methods in this metric as well. Thus, from Figure 5.1 (qualitative) and Table 5.2
(quantitative), we can conclude that the IPM-reduced training set contains more information about

the complete set, compared to other selection methods.

5.2.2.2 Finding Representatives for UCF-101 Dataset

Here, similar to Section 5.2.1, we use a 3D ResNet18 classifier pretrained on Kinetics-400 dataset,
and the selection algorithms are performed on feature space generated by the output of the last
convolutional layer. To find the representatives, we use the selection methods to sequentially find

the most informative representatives from each class. After selecting the representatives, the fully

65



connected layer of the network is finetuned in the same manner as described in Section 5.2.1. Table
5.3 shows the performance of different selection methods for different numbers of representatives
per class. As more samples are collected, the performance gap among different methods, including
random, decreases. This is expected, since finding only one representative for each class is a much

more difficult task, compared to choosing many, e.g. 6, representatives.

Table 5.3: Accuracy (%) of ResNet18 on UCF-101 dataset, trained using only the representatives
selected by different methods. The accuracy using the full training set (9537 samples) is 82.23%.

’Samples/Class\ 1 \ 2 \ 3 \ 4 \ 5 \ 6 ‘

Random 54.6 | 64.7 | 69.2 | 70.5 | 72.9 | 74.0
K-medoids 61.0 | 67.7 | 69.4 | 709 | 71.7 | 72.0
OMP 51.1 | 64.6 | 70.7 | 72.8 | 73.0 | 74.5
DS3[2] 60.8 | 69.1 | 74.0 | 75.2 | 74.8 | 75.3
IPM 65.3 | 72.6 | 749 | 77.6 | 77.0 | 78.5

Using only one representative selected by IPM, we can achieve a classification accuracy of 65.3%,
which is more than 10% improvement compared to random selection and more than 4% improve-

ment compared to other competitors.

Figure 5.2 shows the t-SNE visualization [3] of the selection process for two randomly selected
classes of UCF-101. To visualize the structure of the data, the contours represent the decision func-
tion of an SVM trained in this 2D space. Selection is performed on the original 512-dimensional
feature space. This experiment illustrates that each IPM sample contains new structural informa-
tion, as the selected samples are far away from each other in the t-SNE space, compared to other
methods. Moreover, it is evident that as we collect more samples, the structure of the data is better
captured by the samples selected by IPM, compared to other methods selecting the same number
of representatives. The decision boundaries of the classifier trained on 5 IPM-selected samples

look very similar to the boundaries learned from all the data. This leads to significant accuracy
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improvements, as already discussed and exhibited in Table 5.3.

2 Samples 5 Samples 10 Samples

° $ £ ]

K-medoids

DS3
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IPM
®

Figure 5.2: t-SNE visualization [3] of two randomly selected classes of UCF-101 dataset and
their representatives selected by different methods. ((a)) Decision function learned by using all
the data. The goal of selection is to preserve the structure with only a few representatives. ((b))
Decision function learned by using 2 (first column), 5 (second column), and 10 (third column)
representatives per class, using K-medoids (first row), DS3 [2] (second row), and IPM (third row).
IPM can capture the structure of the data better using the same number of selected samples.

5.2.2.3 Finding Representatives for ImageNet

In this section, we use ImageNet dataset [5] to show the effectiveness of IPM in selecting the
representatives for image classification task. For that, first, we extract features from images in an
unsupervised manner, using the method proposed in [93]. We then perform selection in the learned
128-dimensional space and perform k-nearest neighbors (£-NN) using the learned similarity met-
ric, following the experiments in [93]. Here, we show that we can learn the feature space and the
similarity metric in an unsupervised manner, as there is no shortage of unlabeled data, and use only

a few labeled representatives to classify the data.

Due to the volume of this dataset, selection methods based on convex-relaxation, such as DS3 [2]

and SMRS [85], fail to select class representatives in a tractable time. Table 5.4 shows the top-1
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classification accuracy for the testing set using k-NN. Using less than 1% of the labels, we can
achieve an accuracy of more than 25%, showing the potential benefits of the proposed approach
for dataset reduction. Classification accuracy of £-NN, using the learned similarity metric, reflects
the representativeness of the selected samples, thus highlighting the fact that IPM-selected samples

preserve the structure of the data fairly well.

Table 5.4: Top-1 classification accuracy (%) on ImageNet, using selected representatives from
each class. Accuracy using all the labeled data ( 1.2M samples) is 46.86%. Numbers in () show
the size of the selected representatives as a % of the full training set.

Images per Class 1 5 10 50
(0.08%) | (0.4%) | (0.8%) | (4%)
Random 3.18 8.71 12.97 | 25.61
K-Medoids 11.78 17.01 | 17.56 | 26.86
IPM 1250 | 21.69 | 25.26 | 30.77

5.2.3  Video Summarization

In this section, we evaluate the performance of the proposed selection algorithm on the video sum-
marization task. The goal is to select key frames/clips and create a video summary, such that it
contains the most essential contents of the video. We evaluate our approach on UT Egocentric
(UTE) dataset [94, 95]. It contains 4 first-person videos of 3-5 hours of daily activities, recorded
in an uncontrolled environment. Authors in [96] have provided text annotations for each 5-second
segment of the video, as well as human-provided reference text summaries for each video. Fol-
lowing [96-98], the performance is evaluated in text domain. For that, a text summary is created
by concatenating the text annotations associated with the selected clips. The generated summaries
are compared with the reference summaries using the ROUGE metric [99]. As in prior work, we

report f-measure and recall using the ROUGE-SU score with the same parameters as in [96-98].
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Table 5.5: F-measure and recall scores using ROUGE-SU metric for UT Egocentric video summa-
rization task. Results are reported for several supervised and unsupervised methods.

’ Method \ F-measure \ Recall ‘
Selection Methods (Unsupervised)
Random 26.30 23.73
Uniform 28.68 25.76
K-medoids 30.11 27.30
DS3 30.13 27.34
IPM 31.53 29.09
Supervised Summarization Methods
SeqDPP [100] 28.87 26.83
Submod-V [98] 29.35 27.43
Submod-V+ [97] 34.15 31.59

Table 5.5 provides the results for two-minute-long summaries (24 5-second samples), generated by
different methods. To generate results using K-medoids, DS3, and IPM, we use 1024-dimensional
feature vectors extracted using GoogleNet [101], as described in [102]. Then, the features are clus-
tered into 24 clusters using K-means and one sample is selected from each cluster using different
selection techniques. The results are the mean results over all the 4 videos and over 100 runs.
Furthermore, for the supervised methods, the results are as reported in [97]. The proposed un-
supervised selection method, IPM, is the closest competitor to the state-of-art supervised method
proposed in [97 ], outperforming other unsupervised methods and some of the supervised methods.
These supervised methods split the dataset into training, and testing sets and use reference text
or video summaries of the training set to learn to summarize the videos from the test set. This
experiment demonstrates the strength of IPM and the potential benefits of employing it in more

advanced unsupervised or supervised schemes.
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5.3 Conclusions

A novel data selection algorithm, referred to as Iterative Projection and Matching (IPM) is pre-
sented, that selects the most informative data points in an iterative and greedy manner. We showed
that our greedy approach, with linear complexity wrt the dataset size, is able to outperform state-
of-the-art methods, which are based on convex relaxation, in several performance metrics such
as projection error and running time. Furthermore, the effectiveness and compatibility of our
approach are demonstrated in a wide array of applications such as active learning, video summa-
rization, and learning from representatives. This motivates further investigation of the potential

benefits and applications of IPM in other computer vision problems.
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CHAPTER 6: FACE IMAGE RETRIEVAL WITH ATTRIBUTE
MANIPULATION

The problem of image retrieval has been studied in many different applications such as product
search [103, 104] and face recognition [105]. The standard problem formulation for image to
image retrieval task is, given a query image, find the most similar images to the query image
among all the images in the gallery. However, in many scenarios, it is necessary to improve and/or
adjust the retrieval results by incorporating either the user’s feedback or by augmenting the query.
This is due to the fact, in many cases, a perfect query image might not be readily available. Thus,
it is desirable to give the user more control over the results. For example, in the context of fashion
products, authors in [104, 106] exploit the user’s feedback to refine the search results iteratively.
For instance, the method in [104] asks the user a series of visual multiple-choice questions to refine
the search results and to eliminate the semantic gap between the user and the retrieval system.
Another parallel approach is to augment the query with additional information, e.g., adjustment
text, to modify the search results [7]. This is most often done by mapping the multi-modal query
onto a joint embedding space [7, 107, 108]. These approaches treat different semantics the same
and cannot prioritize a subset of attributes. Thus, the user is not able to define a customized distance

metric and to assign importance to the attributes.

In this work, we introduce a new formulation for the image search task in the context of face image
retrieval; and augment the query with both an adjustment vector and a preference vector. The
adjustment vector is used to change the presence of certain attributes in the retrieved images, and
the preference vector is used to assign the importance of the attribute in the results. To the best
of our knowledge, this is the first work that can simultaneously adjust the attributes and assign

preference values to them. Employing a preference vector gives the user the ability to customize
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the similarity criteria. For instance, having eyeglasses might be more important to the user than
having the same hair color. This criteria cannot be specified using only the adjustment vector,
which is a limitation of existing retrieval methods. On the other hand, adjustment vector enables
the user to use an imperfect query image for the search and adjust the attributes to achieve the ideal
results. Furthermore, employing an adjustment vector, as opposed to an adjustment text, provides
us with more flexibility, as many facial attributes cannot be easily described in text, for example
different shades of brown hair.

Default result (no attribute manipulation):

B

Emphasizing Eyeglasses (increased preference):

=TI

Emphasizing Eyeglasses (increased preference)
and adjusting Beard (no beard):

Query

Figure 6.1: Example of face image retrieval by considering both the attribute adjustment and attribute
preference specified by the user.

In the example provided in Figure 6.1, the impact of assigning a larger preference value and adjust-
ing attributes are illustrated. In the middle row, the user has emphasized the attribute Eyeglasses,
by assigning a larger preference value to it, which leads to all the top-5 retrieved images contain-
ing eyeglasses. The user can further fine-tune the results by adjusting any subset of the attributes.
The bottom row shows the retrieved images after both emphasizing the attribute Eyeglasses

and adjusting the attribute Beard, that’s the beard has been removed and the eyeglasses are still
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present.

To achieve this, we employ the recent advancements in generative adversarial networks (GANs).
It has been shown that different semantic attributes are fairly disentangled in the latent space of
StyleGAN [109, 110], even if the generator is trained in an unsupervised manner. This has been
studied and experimentally verified in [8, 109]. This property provides us with an array of desirable
features for face image retrieval. First, since the generator can be trained in an unsupervised
manner, we do not need to have access to a lot of labeled data. A fairly small set of labelled
data can be utilized to interpret the latent semantics learned by the generator. Second, the latent
space provided by a well-trained StyleGAN provides us with an opportunity to both adjust the
attributes and to assign preference to them. For that, we propose to obtain a set of disentangled
attribute vectors in the latent space of StyleGAN. To disentangle the obtained attribute vectors,
we enforce both orthogonality and sparsity constraints on them. We argue that, by making the
attribute vectors sparse, we can decouple the entangled attributes even further. This is due to the
fact that such attribute vectors can manipulate their corresponding semantic by affecting only a
small subset of entries of the latent vector. This promotes selectivity among both the entries of
the latent vector and the layers of the generator of the StyleGAN. On the other hand, by enforcing
orthogonality, we can translate the dissimilarity between each image pair into dissimilarity between
the attributes, assign preference to attributes, and define an attribute-weighted distance metric. In

short, our contributions can be summarized as follows:

e We introduce a new face image retrieval framework that can simultaneously adjust the facial
attributes and assign preference to different attributes in the retrieval task, employing the latent

space of GANSs (Section 6.2);

e We propose a new method to extract the directions of different attributes in the latent space,

by learning all the attribute directions simultaneously and enforcing orthogonality and sparsity
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constraints (Section 6.2.1);

e We utilize the learned attribute directions to define a weighted distance metric, to manipulate
semantic attributes of the query, and to assign preference to different attributes for retrieval (Section

6.2.2); and

e The proposed method for image retrieval outperforms the recent state-of-the-art methods that

use compositional learning or GANSs for search (Section 6.3).

6.1 Related Work

Attribute-guided face image retrieval: There are many different approaches for image retrieval
task based on metric learning such as [111-115], however they do not consider the task of retrieval
with attribute manipulation. More similar to our attribute-guided retrieval setup, many of the
methods utilize a query image and augment it with either an attribute adjustment text [7, 103, 107,
108, 116] or vector [104, 117]. Some of the prior work focuses on dialog-based interaction between
the user and the retrieval agent, and improving the results in an iterative manner through user’s
feedback [104, 106, 107]. Most of the attribute-aware retrieval methods need huge amounts of
labelled data to generate a semantically meaningful latent space and distance metric [7, 103, 108,
116-118]. The method in [7] employs a new operation, referred to as residual gating, to create the
joint embedding space between the image and text queries, which leads to state-of-the-are results
among compositional learning methods such as [115, 119-123]. However, we propose to leverage
the recent advancements in GAN architectures [21, 109, 110] and use the latent space generated by
a GAN trained in an unsupervised manner, which significantly relaxes the requirements of access
to labelled data. Furthermore, to the best of our knowledge, there has been no image retrieval

method that can simultaneously adjust the attributes and assign preference to them.

Learning semantics in the latent space of GANs: Recent work have shown that the real image
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data can be represented in the latent space of GANs, and specifically StyleGAN, with manifolds
that have little curvature [8, 109, 124]. Such smooth behaviour can be enhanced by using loss
functions [109, 125] or by modifying the generator architecture [110, 126]. A major benefit of
the StyleGAN architecture [110] is the introduction of an intermediate latent space that does not
need to follow any fixed sampling distribution, and the linear behaviour in this space is further
enforced in [109] using path length regularization. It has been shown that this regularization leads
to better Perceptual Path Length (PPL) score, which measures the perceptual score of the generated
images after linear interpolation in the intermediate latent space. The authors in [8] employ this
property and learn linear latent subspaces corresponding to different attributes. The authors in
[8] proposed to orthogonalize the directions only during editing and in a sequential manner. This
means that if the user wants to adjust multiple attributes, each new attribute direction is projected
onto the null space of previous attributes. This approach has two main drawbacks. First, the final
result depends on the order of applying the attribute adjustments. On the other hand, the sequential
orthogonal projection makes it more difficult to define an attribute-guided distance metric and
make the image retrieval very computationally expensive. In contrast, we propose to learn the
latent subspaces simultaneously, and enforce orthogonality on the subspaces during the learning

process. Furthermore, we study the impact of enforcing sparsity on disentangling the attributes.

6.2 Our Approach

Assume we have a set of M predefined facial attributes. In this setting, the query can be defined
as a triplet (x,, a,, pq), where x, is the query image, a, € [0,1]" is the vector specifying the
intensity of each attribute (attribute adjustment vector), and p, € R is a vector containing
positive real numbers indicating the preference for each attribute. The attribute adjustment vector

(a,) can be used to adjust the search query. For instance, if the user assigns an intensity of 0 to
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attribute smiling, the search results should not contain smiling faces, even though the query face
is smiling. Also, the preference vector p,, is independent of the adjustment vector a,, meaning that
the value we assign as the preference value for each attribute does not depend on whether we are
adjusting the attribute or not. The larger the preference value, the more similar the attribute should
be to the query attribute. A preference value of 0 for a particular attribute means the user does
not care about the presence/absence of that attribute. In this extreme case, the assigned attribute
intensity will be ignored by the retrieval agent. The goal of our proposed framework is to rank the
images in a gallery dataset based on the similarity with the query image, while considering both

the adjustments and attribute preferences specified by the user.

To this end, we propose to perform the retrieval in the latent space of a StyleGAN [109]. This
provides us with an array of desirable properties. First, as discussed in Section 6.1, it has been
shown that different attributes can be manipulated fairly linearly in such a space [8, 109]. Second,
using an unconditional StyleGAN gives us the opportunity to train it and its corresponding encoder
using a large number of unlabeled data. We show how we can exploit a smaller number of labeled

data to interpret the latent semantics learned by the StyleGAN.

The defining feature of StyleGAN architecture is the introduction of an intermediate latent vector,
w € V. In short, the generator of the StyleGAN consists of two main components: a mapping
network and a synthesis network. The mapping network transforms the input latent vector to
the intermediate latent space V. Then the intermediate latent vector w is used to modulate the

convolution weights of the synthesis network, which generates the image.

It has also been shown that this intermediate latent space is consistently more disentangled than
the input latent space, meaning that the attributes can be classified using a linear classifier more
accurately in WV [109, 110]. This means that, given a binary attribute, there exists a hyperplane

in W that can separate the attribute classes. In other words, there exists a direction f, i.e., the
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direction orthogonal to the hyperplane, such that if we move the latent vector w along f, w + o f,
the class boundary can be crossed and the attribute can be turned to the opposite. « is a scalar
which determines the displacement magnitude Such directions can be obtained by training a linear
classifier in WV, using labelled data. We argue that if we obtain an orthogonal and sparse basis set
in VW, where each basis vector corresponds to a single attribute, we can easily adjust the attributes

and define a weighted distance metric to retrieve images.

Intermediate latent space with sparse and Query attribute
orthogonal basis vectors preferences

#
)

Query face

Query
modification

(:J @Z

)

Decompose
Dissimilarity vector
Weighted Distance [«—

Sort

]

StyleGAN (e N
Encoder :

Figure 6.2: The overall architecture of the proposed face image retrieval framework. The intermediate
latent space, W, is generated by employing StyleGAN encoder proposed in [4]. Then, the orthogonal and
sparse basis vectors { f,,, } %:1 are extracted using a fairly small set of face images with attribute annotations.
Utilizing the basis vectors, we adjust the query, decompose the dissimilarity vectors, and assign preference
to different attributes.

The proposed retrieval framework can be summarized as follows. First, given a well-trained Style-
GAN encoder trained on unlabeled data, a small set of labeled data (face images annotated with
M attributes) are used to obtain an orthogonal basis set F = {f,, }*_,. f,. € W,Vm, such that
moving the latent vector along f,, only affects the m™ attribute (Section 6.2.1). Second, the ob-
tained basis set JF is used to adjust the attributes, to define a weighted distance metric in VV, and

to retrieve images (Section 6.2.2). The overall framework is shown Figure 6.2. Below, we discuss

each of these two steps in more details.
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6.2.1 Extracting Orthogonal Basis Set for Disentangled Semantics

As mentioned earlier, it has been empirically verified that different facial attributes can be manip-
ulated fairly linearly in the latent space of StyleGAN [8, 109, 110, 124]. However, when there is
more than one attribute, the obtained directions might be correlated with each other, meaning that
adjusting one attribute using its corresponding direction might affect other attributes as well. To
tackle this issue, let us examine how the intermediate latent vector is utilized to generate images.
The latent vector is transformed to generate styles for each convolution layer in the synthesis net-

lth

work, using an affine transform, i.e., s, = A;(w). Here, s; stands for the style vector of /™" layer

and A;(.) is the learned affine transform of the pretrained StyleGAN. Each entry in s; is used to

modulate the weights of a single convolution operator in the [

layer. It has also been shown that
instead of using a common latent vector w for all the layers, we can extend the latent space and im-
prove the encoding performance by finding a separate latent vector for each layer w; and producing
the styles as s; = A;(w;). We refer to this space as the extended latent space W+ and represent

the latent vector as the concatenation of layer-wise codes, wt = [w?, wl,... wl]” € R?", and

the attribute directions as f € R4

We argue that enforcing sparsity on the learned directions in W can effectively lead to disentan-
gling the semantics and improved performance both for conditional image editing and the attribute-
guided image retrieval. In other words, we look for attribute direction f* € YW+ with minimum
number of non-zero entries, while being able to classify the attributes accurately. This provides us
with several advantages. First, it reduces the space of possible solutions and makes the learning
problem more data-efficient. Thus, we are able to use a smaller set of labeled data to find the direc-
tions. Second, to manipulate the attribute in the latent space, w* + af ", only a few entries of w™
are modified. Therefore, the learned direction f1 represents the minimum change necessary to

manipulate the attribute. This leads to disentanglement of different attributes, as different attribute
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directions only modify a very small, probably non-overlapping, subset of the entries. Finally, en-
forcing sparsity on the filters learned in extended latent space YW* also encourages non-uniform
modification of the latent vectors across layers, as most of the entries are zeros. This is signifi-
cant because the first few layers generate coarse details and later layers generate the finer details.
Modifying a subset of layers means that the method is able to manipulate only the scales that are

relevant to the attribute, leading to better disentanglement and accuracy.

Motivated by this, we propose to find an orthogonal and sparse basis set in the extended latent

space, such that each basis vector corresponds to one of the attributes of interest. More specifically,

N

—1, we look

given a set of NV latent vectors {w;" }»_, and their corresponding attribute labels {y,, }

for F = {fFIM_ £+ e W+ suchthat 17 f5, = 0,m # m and ||f7]lo < 8,¥m, where ||.|o
is the ¢y norm of a vector and indicates its number of nonzero entries. The sparsity condition can
be enforced by regularizing the ¢; norm of the attribute directions, which is the convex relaxation
of the ¢y norm. For our experiments, we employ 20, 000 latent vectors (N = 20, 000). Compared
to many existing methods that use labelled data to create a semantically meaningful embedding,
this is a large reduction in supervision requirements. For example, for quantitative comparisons

with methods based on compositional learning in Section 6.3, their proposed models are trained

with the full CelebA [127] training set, which contains about 160, 000 faces.

To enforce the orthogonality constraint, at each iteration of learning the attribute vectors, we re-
place the learned set of attribute directions with its nearest orthogonal set. This problem is closely
related to Procrustes problems, in which the goal is to find the closest orthonormal matrix to a given
matrix [45]. Algorithm 3 summarizes the operations performed at each iteration on the learned at-
tribute directions to find their nearest orthogonal set. In short, a matrix F' is created whose columns
are the /5-normalized version of learned directions. Then, the nearest orthonormal matrix to F' is
calculated by finding the matrix F' that minimizes | F — F||, such that FFP=1 , where ||.||

denotes the Frobenius norm and 1 is identity matrix. It can be shown that the solution to this prob-

79



lem is given by F= F(FTF)_%. Then, the columns of the orthonormal matrix F are rescaled to

have the same norms as F'.

Algorithm 3 Finding Nearest Orthogonal Set to a Set of Vectors.

Input: A set of vectors { f,, }M_,

t = [ F 2, Y

. Create a matrix F' whose columns are f,/ci, fo/coy ..., F1/cm
Compute F' = F(F'F)~:

return {c,,f, }*_,, where f, is the m™ column of F

—_—

Bl

Algorithm 4 Extracting Orthogonal Basis Set for Disentangled Semantics

Input: Latent vectors {w; }»_, and their attribute labels {y,}»_,,y, € {0,1}M, classification
loss function L., regularization parameter A\, and a learning rate (3
Output: A set of M orthogonal and sparse vectors, each corresponding to an attribute direction
1: Initialize the attribute directions { f;"}¥_, and biases b,, randomly
2: repeat
3:  foreachattribute m =1,..., M do
4 Calculate 3, , = f;QTw;L +b,,
5 Compute Loss L, = > Lo (Ymns Gmn) + M| Fik |1
6
7
8
9

fo=Fm—0ViLn
bm = bm - Bvbﬁm
end for
Replace {f," }M_, with its nearest orthogonal set using Alg 3
10: until convergence
11: Normalize £, = £ /|| £ 12, Vm
12: return {f}}M

m=1

Algorithm 4 provides all the steps to extract the orthogonal sparse basis set in more details. At each
iteration, after updating all the attribute directions using the gradient of the loss function, Algorithm
3 is used to enforce the orthogonality condition, by projecting the current iterate onto the feasible
set (set of orthonormal matrices). In optimization literature, this feasible set is referred to as Stiefel
manifold and the act of projection is referred to as retraction. It is shown that gradient descent
with retraction onto Stiefel manifold converges to a critical point, under very mild conditions (see
Theorem 2.5 in [128]). For our experiments, similar to prior research [8], we use hinge loss as the

classification loss function ..
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6.2.2 Retrieval Using Orthogonal Decomposition

Dissimilarity decomposition and preference assignment: Given the obtained set of orthonormal
. . . + + . . . .
directions, the query image w,, and any other latent vector w™, we decompose the dissimilarity
vector w; —aw™ into its components. This can be done by projecting the dissimilarity vector onto

each of the M attribute directions as:

dp = F'(w} —w") = Flw} - Flw", (6.1)
where columns of F' € R?"*M contains the M orthonormal vectors obtained by Algorithm 4. m™
entry of dp € R represents the inner product of w, — w* with /.. dp is the component of the
dissimilarity vector that lies inside the subspace spanned by our M attribute directions. We can
also compute the residual displacement that is not represented in this subspace as:

dr = (w; — w") = Pplw —w*) = (I - Pr)(w] - w"), (62)

q

where Pr = FFT € R¥"™%4" is the orthogonal projection matrix onto the subspace spanned by
these vectors. This residual subspace contains information on the identity as well as other visual
and semantic attributes not included in our M predefined facial attributes. Therefore, for a given
query latent vector w; and the attribute preference vector p,, we propose the following weighted

distance metric from any other latent vector w™ as:
dwy, w*,p,) = dpPdp + |di|3, (6.3)

where P is an M x M diagonal matrix, whose diagonal entries contain the preference vector p,.
The first term is the weighted Euclidean distance across different attribute directions (weighted

attribute-aware distance), while the second term is the distance in the subspace not spanned by
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these directions (attribute-independent distance). This gives the user the ability to fine-tune the
contribution of each component to achieve the desired result. In the special case, where P is set
to identity matrix, this distance metric boils down to simple Euclidean distance in the latent space,

[y — w* 3.

InterFaceGAN [8]

(a) Baldness (b) Black Hair (c) Mustache

Figure 6.3: Qualitative evaluation of the learned attribute directions. In each pair of images, the
image on the right is synthesized after moving the latent vector corresponding to the image on
the left along an attribute direction. For attributes Black Hair and Baldness, the baseline is
affecting the smile and the eyes as well, an artifact that is not present in the image manipulated by
our method. For attribute Mustache, our method is able to add mustache to the face while not
affecting the beard as much as the baseline.

Adjusting attributes: As mentioned earlier, we can adjust the m™ attribute in the query by moving
its latent vector, 'w;, along the direction corresponding to the m™ attribute, f", i.e., w;r +aft.
Due to the definition of d; and dp, this operation will not affect d;, as it represents the displace-
ment in the subspace not spanned by the attribute direction. Furthermore, such adjustment will

only affect the m™ entry of dr. We can write d for the adjusted latent vector as:
dr = FT(w} +af}) - Flw™, (6.4)

which, due to orthonormality, simply translates into adding « to the m™ entry of FTw;. Multiple

attributes can be adjusted at the same time by modifying their corresponding entries independently.

82



Thus, we can manipulate the search results by updating dr as:
dp = T(ag,w),F)— Flwt,

where a, € [0, 1] is the attribute intensities provided by the user and 7'(.) is an affine transform
that maps the range [0, 1] to range of possible values for each entry of FTw;;. The range of
possible values, and therefore 7'(.), can be obtained using the training set. Specifically, the output
of T(ag, w;, F) is an M-dimensional vector, whose m™ entry is set as aqm (ajy, — ap,) + s,

. . . T . .
and ™ are the maximum and minimum value of f,’~ w,, over all the training feature

min

m
where a;

vectors w,,, respectively.

Implementation Details: We encode the face images in the training, query, and gallery sets using
the StyleGAN encoder proposed in [4], trained in an unsupervised manner on FFHQ [110] dataset.

This encoder is trained using the StyleGAN generator in order to be able to map real images

N
n=1>

onto the latent space, W. The latent vectors, {w } extracted from the training set are fed to

Algorithm 4 to obtain the attribute directions { £ }M_ . For latent vector of each query image, 'w;r,
the dissimilarity vector is calculated by subtracting the query latent vector from each gallery latent
vector. Using Equations (6.1) and (6.2), The dissimilarity vector, wj — w™, is decomposed into
dr and d; , which are then used to calculate the weighted distance (Equation (6.3)). This weighted
distance metric is used to sort all the faces in gallery and retrieve the most similar images. The

attributes can be adjusted either by moving the original latent vector, 'w;r along the corresponding

attribute direct or, as shown in Equation (6.4), by modifying the projected latent vector.
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Table 6.1: nDCG and identity similarity for different attribute-guided image retrieval methods, averaged
over 1000 queries.

[ Number of retrieved images [ 5 [ 10 [ 20 ]

Preference Identity Identit Identit

Method Assignment nDCG | Gimilarity | "PCC Simﬂariyty nbCG Similari}tly
Attributes as Operators[120] 0.730 0.824 0.720 0.823 0.711 0.824
TIRG [7] 0.794 0.847 0.781 0.844 0.776 0.840
Concat Not Applicable 0.804 0.841 0.806 0.838 0.805 0.822
Concat++ 0.812 0.829 0.814 0.827 0.795 0.835
TIRG++ [7] 0.822 0.830 0.813 0.827 0.814 0.824
No Preference 0.568 0.838 0.570 0.835 0.571 0.832
InterFaceGAN [8] Identity Constrained 0.822 0.859 0.813 0.849 0.801 0.841
Best nDCG 0.905 0.824 0.893 0.820 0.881 0.817
No Preference 0.595 0.849 0.586 0.845 0.583 0.841
Ours Identity Constrained 0.858 0.864 0.847 0.855 0.835 0.846
Best nDCG 0.923 0.848 0.917 0.827 0.909 0.833

6.3 Experiments

In this section, we evaluate our proposed face image retrieval framework. We employ the Style-
GAN architecture and the training details as discussed in [109]. For obtaining the attribute di-
rections, generating queries, and creating the gallery set, CelebA dataset [127] is used. 20,000
samples, out of 160, 000 from the training set are used for training the attribute directions, while
the full test set, containing 19, 962 faces, is used for creating queries and as the gallery data set. To
the best of our knowledge, no other large-scale face dataset provides the ground truth for a large
number of facial attributes. However, for qualitative results, we generate a much larger gallery set,

containing 100, 000 faces, by sampling from the latent space.

The search performance is quantified using two evaluation metrics. Normalized discounted cu-
mulative gain (nDCG), which measures the similarity of the query attributes, after making the
adjustments specified by the user, with the search results, while giving more weight to the top
results. nDCG is closely related to top-k accuracy for binary attributes, while giving the top re-

sults larger weight in a logarithmic manner (which makes it more suitable for ranking problems).
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Furthermore, in contrast to top-k accuracy, nDCG can be used for real-valued attributes as well.
Identity Similarity is calculated by embedding all the images onto the feature space generated by
the Inception Resnet V1 architecture, as described in [129] and trained on VGGFace?2 [130]. Then,
the average cosine similarity between the embedded feature vector of the query face and the search

results is used as a measure of identity similarity.

Unless otherwise stated, the regularization parameter \ and the learning rate 3 are set to 5 x 1073
and 1072, respectively in Algorithm 4. \ is selected from the set {0,1072,5 x 1073, 1072} by
validating the obtained directions on the validation set of CelebA dataset. Best results for both the
validation and test sets is achieved for A = 5 x 1073. The default value for attributes’ preference

is set to 1.

Qualitative Results: Figure 