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ABSTRACT 

Recent progress in nano optics, spurred by progress in nanofabrication, has allowed us to 

overcome these challenges. We use surface plasmon polaritons to break the optical diffraction 

limit and squeeze the photon energy into a local hot spot. The small mode volume of a plasmonic 

antenna or nanoaperature significantly enhances the local field and can be designed to resonate at 

a desired wavelength. By designing, fabricating, and testing these nanoapertures, I trap single 

nanoparticles with significantly reduced laser power by measuring the monochromatic 

transmission change of a resonant aperture. A freely diffused nanoparticle, behaving like a dipole 

antenna, interacts with the nanoaperture when trapped and shifts the resonance of the nanoaperture. 

By only monitoring a single wavelength, the presence of the particle changes the transmission 

signal. The effect of particle-induced transmission spectrum shift is called the self-induced back-

action effect. This particle-induced spectrum change increases the transmission amplitude and 

variance once trapped. Furthermore, the monochromatic transmission measurement is a faster 

detection method than the spectrum measurement. It is able to follow up the diffusion, folding or 

conformation change of the trapped particle. 

 

Key word: nanoaperture, trapping, single molecule, plasmonic effect, nanofabrication, focused 

ion beam 
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 CHAPTER ONE:  
INTRODUCTION 

The extensive development of nanotechnology involves high-resolution detection and 

calibration tool in nanomedicine[1], film morphology[2], neuron imaging[3], nanophotonic 

circuit[4], etc. Recent research has shown an abundance of proof that nanoparticles behave 

differently than bulk material. The surface-volume ratio of the nanomaterial is significantly larger 

than the bulk material, resulting in quantum confinement[5], unpaired spins[6] and uncompensated 

bonds[7]. The study of the molecules in nanosize attracts various attention in particle size 

distribution, diffusion dynamics, structure-function relationship, charge or energy transfer. These 

revolutionary results have led to great developments in nanotechnology.  

A lot of characterization methods have been developed to quantize the nanoparticle 

property. The light scattering techniques (dynamic light scattering (DLS)[8], fluorescence 

recovery after photobleaching (FRAP), X-ray diffraction and FT-IR spectroscopy) and FT-NMR 

are the ensemble measurement to characterize the molecules or crystals in the gas, liquid, and solid 

phases. Whereas some intrinsic properties of the single molecules (photobleaching, size or shape 

inhomogeneity) are hard to be identified. Optical diffraction also set a limitation to the spatial 

resolution. The optical beam is not able to resolve the nanosized particle when they are close to 

each other. Due to the optical diffraction limit, the DLS and FRAP are ensemble measurements, 

determined by statistical analysis. The measurement averages out the characteristics and function-

dependent heterogeneity of a single molecule[9]. The information from the heterogeneity might 

reveal the additional chemical or physical properties in diffusion, adsorption-desorption dynamics, 

folding–unfolding dynamics, trapping, or other processes. The broadening of the spectrum of x-
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ray diffraction from the size distribution and conformational heterogeneity is hard to quantify. The 

single-molecule experiments naturally offer the opportunity to these random processes (stochastic 

process). It can provide direct observation of the kinetic coefficient of a sequential dynamic 

process[10, 11]. Those complex assembly processes and polymerization can be out of phase and 

cancel each other in ensemble measurement losing the details of the individual steps. Furthermore, 

molecule properties are reflected by interacting with its environment and complexes. Single-

molecule method measures the short-lived or transient states that require higher temporal 

resolution by measurement of the binding strength, charge and mass[12].  

 

Figure 1: Time scale of single-molecule studies in biology. Reprint from ref[11] 

The single-particle tracking records the trajectory of the diffusion motion of a single 

nanoparticle with an optical microscope. The explains the catalysis and the solvent effect on the 

cell membrane and proteins[13]. The identification methods range from mass, polarizability, 

charge, etc. Interferometric scattering (iSCAT) uses the interference of the scatted beam from the 

sample and reference beam to track the particle motion in time[14]. The method discovers the 

myosin motion along the actin at nanometer precision and millisecond frame rate. Also, the recent 
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breakthrough has shown the mass measurement down to 3kDa with this technique[15]. Due to the 

scanning speed of the detector, this method is limited by the temporal resolution. AFM investigates 

single molecules employing force detection. The setup can be simplified as a tip-shaped (1~20nm) 

cantilever linked to a piezo actuator and a grounded planar substrate. Yang Zhao et al. probe the 

sub-piconewton chiral forces with an AFM tip of chiral structure, which boosts the resolution of 

chiral detection to 2 nm resolution[16]. However, the large stiffness of the AFM limits its 

application on conformation analysis, which is a promising field in drug development and 

functional characterization. 

Table 1: Recent emerging single molecule methods  

Single Molecule Method Temporal 
Resolution 

Observation 
Time 

Concentration 
limitation 

Label 
Free 

Tether 
Free Measurement 

atomic force microscopy >20ms minutes 20 µM Yes No Force 

interference scattering (iSCAT) 50 µs minutes 0.1 nM Yes Yes Scattering intensity 

Immobilization FRET (TIRF) 10 ms 1 – 3 minutes 10 nM No No Fluorescence 

Single Molecule FRET 1 – 10 µs 1 ms 1 – 2 nM No Yes Fluorescence 

Zero Mode Waveguide 10 ms > 1 minute 1 µM No No Fluorescence 

ABEL Trap 1 – 10 µs > 10 s 1 – 2 nM No Yes Fluorescence 

Nanoaperture Optical Trap 1 ns > 1 minutes No Limit Yes Yes Transmission 

To enrich the spectrum of measurement and compensate for the speed limitation and spatial 

resolution, the nanoaperture trap (NAOT) is now under study. Conventionally, Optical trapping 

uses focused laser beams has been applied in the manipulation of the micro-objects, atom cooling, 

microfluidics and micromotors[17]. However, there are three main challenges in the optical 

trapping technique. First, the trapping potential is inversely proportional to the fourth-order of the 

volume of the objects. The photon-induced beam power (intensity) can burn and destroy the 

micrometer or nanometer biomolecules in biology applications [18]. Thus, the mainstream of 
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single-molecule trapping techniques is prone to use non-destructive small power laser (~1mW) to 

manipulate the biomolecules. Second, the optical tweezer is restricted by the diffraction limit. The 

beam waist can contain a few nanoparticles but cannot guarantee the number of the trapped 

objects[19]. Thirdly, to control the particle number in the trap, the immobilization strategy[20], 

such as tethering and labeling, is applied to the particle of interest. The binding of one site of the 

protein changes the conformation or denature of the protein, which affects the sensitivity of other 

sites. This well-known phenomenon is called allosteric interaction[21-23]. The label-free trapping 

technique[24] levitates the interactions of the atomic local field of the protein with subtle trapping 

forces and thus overcoming the allosteric effect induced by unnecessary bindings. To cope with 

these problems, nanoaperture optical trap (NAOT) uses plasmonic effect to break the diffraction 

limit and do not need to tail the beads to the particles of interests. This method is able to avoid 

steric hindrance. 

This thesis is going to discuss the nanoaperture optical trap (NAOT) from design to 

measurement. It is arranged into six chapters: chapter one discusses the motivation and the history 

of the NAOT method; chapter two discusses the theory and the working principle of the NAOT; 

in chapter three, the simulation results give a numerical prediction of the nanoaperture property 

and the spectrum behaviors during the trapping; Chapter four focuses on the fabrication and 

nanoaperture calibration; in chapter five, I conclude all the sub-10nm trapping experiment with 

the NAOT and prove the trapping ability of this NAOT method. Chapter six is a summary of the 

work and leaves some hints for future work. 
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CHAPTER TWO:  
BACKGROUND 

Gradient force in optical tweezers 

The optical tweezer (OT), since its invention, has drawn a lot of attention to its ability in 

manipulating particles in air, vacuum and liquid[25]. The Nobel prize awardee, Arthur Ashkin 

demonstrated the first experiment to optically manipulate a micro-sized particle in water[26]. A 

variety of techniques have been developed to expand the application of the OT for bacteria[27], 

living organisms, chromosomes[28] and red blood cells in vivo[29]. Circularly polarized beams 

provide angular momentum to the particles to study viscoelastic properties of bio-fluids or create 

micromotors[30]. In a vacuum and at absolute zero temperature, the laser beam is used to cool the 

atom to negative absolute temperature and excite superfluid helium[31]. 

 

Figure 2:sketch of the gradient force in optical tweezer. Reprint from ref [25]. 

The OT is created by a tightly focused Gaussian beam, thereby forming a gradient force at 

the diffraction-limited focal point and radiation pressure force along the optical axis. Scattering 
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force is also created but it is negligible when trapping the small particles. When the trapped particle 

has a refractive index larger than the medium, the gradient force is pointing toward the focal point. 

On the contrary, the one with a smaller refractive index than the medium is pushed away from the 

intensity focal. The momentum is transferred from photons to the particle refracting the light.  

 

Figure 3: a sketch of the optical trapping where the gradient force is pointing to the beam waist (focus). The particle 
is able to be trapped within the vicinity of the equilibrium spot 

When the gradient force overcomes the radiation pressure force and the Brownian motion 

of the particle, the particle is trapped, oscillating about the equilibrium point but not the focal point. 

The optical forces, about tens of piconewtons, are significant on microparticles, even can slow 

down the blood flow[29]. The magnitude of the gradient force and its potential are  

𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔 = 1
2
𝛼𝛼∇𝐸𝐸2 = 2𝜋𝜋𝑛𝑛0𝑔𝑔3

𝑐𝑐
�𝑚𝑚

2−1
𝑚𝑚2+2

� ∇𝐼𝐼(𝑟𝑟) ( 1 ) 
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𝑈𝑈 = 1
2
𝑛𝑛𝑚𝑚𝑅𝑅𝑅𝑅[𝛼𝛼(𝜔𝜔)]𝐸𝐸2 ( 2 ) 

where 𝛼𝛼 is the polarizability of the particle. According to the Mie theory, the polarizability is 

proportional to the volume of the particles. 𝑚𝑚 is the ratio of the refractive index of the particle and 

medium. In Ashkin’s work, a stable trap needs a potential depth larger than 10𝑘𝑘𝐵𝐵𝑇𝑇 to overcome 

the Brownian motion[32].  

However, It is very challenging to trap the nano-size particle under 100nm with the optical 

gradient force. The decrease of volume diminishes the gradient force while Brownian motion is 

dominant. Increasing the beam power will deform the macromolecules with photon-induced 

thermal effect[33].  

Nanoaperture optical traps (NAOT) 

The free space OT is an innovative tool to study single particles. However, when the size 

of the trapping objects reduced to 100nm, the optical beam by nature has a diffraction limit where 

a few particles gather at the focal points break the single-molecule condition and change the local 

concentration significantly. Thus, the research has been migrated from the free space to nano 

resonators. Nanoaperture optical trap (NAOT), utilizing a metallic nanoaperture to break the 

diffraction limit and trap a single particle. In this section, we are going to discuss the major theories 

behind the NAOT. 

Polarizability  

Polarizability is a parameter describing how the external electric field changes the 

distribution of the electrons in the media. It provides one of several parameters in the description 

of molecular structures[34] and conformations[35]. In atoms with larger electron numbers are hard 
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to control the valence electrons in the outer orbit. When a dipole is posed in an external electric 

field, the electrons of the dipole have more tendency to move along the electric field (more 

polarizable) and vice versa. Based on the molecule polarizability, slowing, cooling and trapping 

neutral particles in the static field or high-frequency electromagnetic field is exploit[36].  

Different from the refractive index of bulk, polarizability (𝛼𝛼) is a molecular property 

related to molecule orientation and bond length (dipole momentum 𝑝𝑝) under the external field 𝐸𝐸.  

𝑝𝑝 =  𝛼𝛼 ∙ 𝐸𝐸 ( 3 ) 

For isotropic media (such as a gold sphere), polarizability can be simplified to scalar from 

polarizability tensor. The x-polarized external electric field only polarizes the atoms of the media 

along the x-direction but does not affect the atoms in other directions (y or z). Under this condition, 

the polarizability of a sphere can be related to the dielectric constant according to Clausius-

Mossotti relation: 

4𝜋𝜋
3
𝑁𝑁𝑔𝑔𝛼𝛼 = 𝑀𝑀

𝑝𝑝
(𝜀𝜀𝑟𝑟−1
𝜀𝜀𝑟𝑟+2

) ( 4 ) 

𝑁𝑁𝑔𝑔  is Avogadro constant. 𝑀𝑀  is molar weight. 𝜀𝜀𝑔𝑔  is relative dielectric constant. The 

permanent polarizability of a sphere isotropic beads can be calculated in the following equation: 

𝛼𝛼 = 4𝜋𝜋𝑟𝑟𝑐𝑐3(𝜀𝜀𝑟𝑟−1
𝜀𝜀𝑟𝑟+2

) ( 5 ) 

Light-matter interaction: metal, Drude model and plasmonics  

Metals are widely used in our daily life. They have free electrons in a lattice of positive 

ions. The electrons oscillate with the external field and collide with each other with a damping rate  

1/𝜏𝜏. The oscillating electrons form an effective dipole and generate polarization P. For most metal, 
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the damping rate fall in the range of hundreds of terahertz and close to plasma frequency. The real 

part of the permittivity is close to 0 and the penetration of the visible band is low. In low frequency, 

bulk metals are a good conductor of electricity, where the imaginary part of permittivity is 0. Free 

electrons transfer electricity along its surface. They are also used as mirrors due to the high 

reflectivity in the mid-infrared band and limited penetration depth through it. However, when the 

frequency reaches to the visible and near-infrared band, the penetration depth is increased 

depending on the wavelength and so does the dissipation. The amount of energy dissipation can 

be described with the complex dielectric function 𝜀𝜀 = 𝜀𝜀1 + 𝑖𝑖𝜀𝜀2 which shows the phase change with 

respect to the external driving field. 

𝜀𝜀1 = 𝑛𝑛2 − 𝜅𝜅2 ( 6 ) 

𝜀𝜀2 = 2𝑛𝑛𝜅𝜅 ( 7 ) 

𝜅𝜅 is the extinction coefficient, determining the absorption of EM waves propagating through the 

medium. With Beer’s law, the absorption coefficient and extinction coefficient illustrate the 

exponential attenuation of the intensity of a beam propagation: 

𝛼𝛼(𝜔𝜔) = 2𝜅𝜅(𝜔𝜔)𝜔𝜔
𝑐𝑐

 （ 8 ） 

Thus, the imaginary part of the dielectric function 𝜀𝜀2  determines the absorption of the 

medium. Electromagnetic fields are transverse waves. Deriving from the dispersion relation, a 

longitudinal collective oscillation can only occur at: 

𝜀𝜀(𝜔𝜔) = 0 ( 9 ) 
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Metal, in the plasma model, can be explained as the free electron gas moves against a fixed 

background of positive ion cores. However, this model does not take lattice potential and electron-

electron interaction into consideration. The assumption is made that the electron with optical 

effective mass exists in a band structure. The electron follows the oscillation of the external EM 

field with a damped motion of collision frequency (damping rate) 𝛾𝛾 = 1/𝜏𝜏. At room temperature, 

this damping rate 𝛾𝛾  is about 100THz. The real and imaginary part of the dielectric function of the 

metal with the ideal free electron is 

𝜀𝜀1(𝜔𝜔) = 1 − 𝜔𝜔𝑝𝑝
2𝜏𝜏2

1+𝜔𝜔2𝜏𝜏2
 ( 10 ) 

𝜀𝜀2(𝜔𝜔) = 𝜔𝜔𝑝𝑝
2𝜏𝜏2

𝜔𝜔(1+𝜔𝜔2𝜏𝜏2)
 ( 11 ) 

𝜔𝜔𝑝𝑝2 = 𝑛𝑛𝑒𝑒2

𝜀𝜀0𝑚𝑚
 ( 12 ) 

This is also known as the Drude model.  𝜔𝜔𝑝𝑝 represents the plasma frequency and usually 

are 5~15eV in the ultraviolet regime. At plasma frequency, all the electrons move in phase and the 

wavevector is infinite. In the realm of gold film, when 𝜔𝜔 > 𝜔𝜔𝑝𝑝 and s free electrons dominant the 

optical response, the interband (d band) close to the Fermi surface leads to a highly polarized 

environment. Thus, the Drude model need a correction as  

𝜀𝜀(𝜔𝜔) = 𝜀𝜀∞ − 𝜔𝜔𝑝𝑝
2

𝜔𝜔2+𝑖𝑖𝑖𝑖𝜔𝜔
 ( 13 ) 

It is also, later on, experimentally determined by Johnson and Christy in 1972. Gold and 

silver can break down at the boundary at NIR and VIS band. For these noble metals, photons 
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efficiently excite interband transitions while the electrons are pumped from the band lower than 

the Fermi surface to higher bands. 

As shown in Figure 1, the simplest geometry of SPP is the single, flat interface of a 

dielectric media with positive real 𝜀𝜀2 and a conductor media with dielectric function 𝜀𝜀1. X axis is 

the propagation direction and the propagation wavevector 𝛽𝛽 is a complex number. At the condition 

of frequencies below the bulk plasmon frequency 𝜔𝜔𝑝𝑝, the conductor media dielectric function 𝜀𝜀1is 

required to fulfill the dispersion relation:  

𝛽𝛽 = 𝑘𝑘0�
𝜀𝜀1𝜀𝜀2
𝜀𝜀1+𝜀𝜀2

 ( 14 ) 

𝑘𝑘𝑧𝑧𝑖𝑖 = �𝛽𝛽 − 𝜀𝜀2(𝜔𝜔
𝑐𝑐

)2 ( 15 ) 

𝑘𝑘0 is the wavevector of the incident wave in a vacuum. From the equation, we find the real 

part of the dielectric function should be negative and large if the damping is neglectable. 𝑘𝑘𝑧𝑧𝑖𝑖 is 

imaginary. Thus, surface plasmon polaritons are electromagnetic excitations propagating at the 

dielectric-conductor interface. No SPP exists with TE mode. The TM wave around the interface 

excites the collective excitation of surface plasmonic polaritons along the metal-dielectric 

boundary. The evanescent field extends perpendicular to the interface. The imaginary 𝑘𝑘𝑧𝑧𝑖𝑖 leads to 

micron-scale field confinement in both dielectric and conductor sides. The plasmon propagation 

length L is inversely proportional to the magnitude of 𝛽𝛽. If the conductor has larger damping, the 

distinction coefficient and magnitude of the propagation wavevector are larger. As expected, the 

propagation length is accordingly smaller. 
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Figure 4: 2D layered geometry for SPP material 

To keep the propagation wavevector real, the magnitude of the SPR propagation 

wavevector should be smaller than the wavevector of the incident beam along the x-direction 

𝑘𝑘𝑥𝑥,𝑑𝑑 = √𝜀𝜀2𝑘𝑘0sin (𝜃𝜃). To excite the SPR, many methods are used to match the phase condition, 

such as gratings, prisms, and focused beams. 

Local surface plasmonic resonance and plasmonic cavity  

For the metallic nanoparticles (NP) with a size comparable to the metal skin depth, the 

electric field of the incidence light can penetrate the metal and polarize the conduction electrons. 

Compared with SPP, plasmons in NPs, much smaller than the optical wavelength, do not propagate 

along the surface, called localized surface plasmons resonance (LSPR). The surface-volume ratio 

of the NP is much larger than the counterpart in bulk. The electron-free mean path is much shorter. 

Thus, the damping in the NP is different from the one in bulk. 

 

𝛾𝛾 = 𝛾𝛾𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐴𝐴 𝑣𝑣𝐹𝐹
𝑑𝑑

 ( 16 ) 
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Here, 𝑑𝑑 is the mean free path and 𝑣𝑣𝐹𝐹 is Fermi-velocity. The former illustrates the collision-

free distance of an electron. Fermi velocity is corresponding to the Fermi energy level of the 

electrons. For the simplest case, the particle is a sphere. The multi-scattering and absorption 

process inside the NP triggers plasmons oscillation in the NP relating to the particle sizes. 

𝑄𝑄𝑔𝑔𝑏𝑏𝑎𝑎 = 12 2𝜋𝜋√𝜀𝜀2𝑔𝑔
𝜆𝜆0

 𝜀𝜀2 𝐼𝐼𝑚𝑚[𝜀𝜀1]
(𝑅𝑅𝑒𝑒[𝜀𝜀1]+2𝜀𝜀2)2+𝐼𝐼𝑚𝑚[𝜀𝜀1]2

 ( 17 ) 

𝑄𝑄𝑎𝑎𝑐𝑐𝑔𝑔 = 8
3

 2𝜋𝜋√𝜀𝜀2𝑔𝑔
𝜆𝜆0

4
 ( 𝜀𝜀1−𝜀𝜀2 
𝜀𝜀1+2𝜀𝜀2

)2 ( 18 ) 

𝑎𝑎 is the radius of the particle. Both scattering and absorption are related to the volume of the 

particle. The scattering dominants in relatively larger particles while absorption is turned on for 

smaller particles. And maximum absorption happens at the frequency where 𝑅𝑅𝑅𝑅[𝜀𝜀1] + 2𝜀𝜀2 = 0. 

This is the LSPR condition. Meanwhile, a phase delay, determined by the imaginary part of the 

metal permittivity, leaves are large damping and loss in LSPR. The line width of the resonance is 

wider than SPR. The quality factor of the LSPR is around 10~30.  

As for the particles of small sizes (less than 50nm), the LSPR can be simply modeled as a 

harmonic oscillator with effective mass parallel to the incident excitation. The incident beam needs 

to align with the oscillation frequency to excite the LSPR. The displacement of the electrons from 

the lattice generates a restoring field to pull back the polarized electrons as shown in Figure 2. The 

total field of an electromagnetic field is a sum of the external field and the restoring field from the 

particles. When the two LSP systems are posed close enough to each other, the coupling of the 

restoring field of the particles has an impact on the total field.  

The two particles sit along the polarization direction. Due to the confinement of the 

plasmon electrons, the LSPs oscillate with the external field. The inter-particle field is in the 
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opposite direction to the external field[37]. Despite the damping, this inter-particle field increases 

when the distance of the particles is decreased. When the alignment of the two particles is 

perpendicular to the polarization of the external field, the interparticle field is in the same direction 

as the external. The stronger coupling of the field leads to stronger energy of the near field and a 

blue-shift of the spectrum.  

 

Figure 5: Sketch of two closely spaced nanoparticles under an excitation field, (left) a pair of close particles with the 
polarization of the exciting field parallel to the long particle pair axis and (right) perpendicular to the long particle 
pair axis. 

A nanoaperture in a flat metallic surface can also confine an LSP while the whole is an 

inverse structure of a nanoparticle. the plasmonic nanoaperture acts as a dipole nanoantenna since 

its size is much smaller than the wavelength, acting like a dipole emitter[38]. The plasmonic effect 

confines the photon energy to a local collective free electron at the metal-dielectric interface. Due 

to the large losses (damping and heat), the plasmonic cavity features a small effective volume of 

the cavity and an abundant local field enhancement (20~100 times) and is called ‘hot spot’. The 

tiny spatial confinement and the damping also leads to a fast decay rate on the order of 

femtosecond. The LSP resonance can be tuned by changing the geometry of the nanoaperture. We 

will discuss the aperture design later in Chapter 2. 
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The excitation condition of LSP is much easier than SSP. The fabrication requirement is 

lower since SSP needs a monolayer structure. The LSP is dependent on the size of the particle 

where the spectrum is easier to be tuned based on appropriate design. 

Self-induced back-action effect 

Plasmonic traps uses resonant metallic pillars, breaks the diffraction limit and improves the 

spatial resolution down to angstrom. However, the near field enhancement creates the same 

gradient forces for trapping. Those isolated metallic pillars still do not solve the heat problem. This 

section introduces a concept of ‘self-induced back-action effect (SIBA)’ raised by Dr. Quidant and 

Dr. Gordon to relax the requirement in intensity[39, 40].  

The key physics in SIBA is the interaction between the metallic nanocavity and the 

nanoparticle (based on the particle position)[41]. The particle size much smaller than the optical 

wavelength can be regarded as a dipole (dipole approximation). The dipole induces a dipole 

moment under the effect of the EM field as mentioned in the Polarizability section. Within the 

range of plasmonic field, the particle couples with the nanocavity and alters the resonance 

frequency of the cavity. namely, the motion dynamics of the particle affect the intensity spectrum 

and also the trapping force. The particle can be trapped in a dynamical intensity minimum and 

reduce the effect of photo-thermal damage. The back-action parameter 𝜂𝜂 =  𝛼𝛼(𝜔𝜔)
𝜀𝜀0𝑉𝑉𝑚𝑚

𝑄𝑄 ∝ 𝑉𝑉𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑉𝑉𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐

 

characterizes the system performance, where Q is the resonator quality factor, ratio of the central 

frequency and linewidth: 

𝑄𝑄 = 𝜔𝜔𝑝𝑝
𝜅𝜅

 ( 19 ) 
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This quality factor reflects the decay time of the cavity κ−1. The photonic cavity of high Q 

is around 106 and its decay time is on the order of nanoseconds. The plasmonic cavity of the modest 

Q is below 100 and the decay time is up to terahertz. Both decay times are significantly shorter 

than the Brownian motion of the particles. The cavity can respond to the particle motion 

instantaneously. The plasmonic in this case is more superior to the photonic cavity. This feature 

makes it possible to break the time-resolution limitation for detecting protein-small molecule 

interaction with SIBA trapping. 

Since the particle is much smaller than the incidence wavelength, the electric field is 

assumed as a constant for a single trapped particle. Thus, the particle is a point source with 

polarizability α(ω). It is natural to relate charge distribution and intensity and frequency of the 

incidence to polarizability. Despite the internal and external coupling, the aperture-particle system 

is featured with particle-position-induced fluctuation. When the particle is trapped in the 

nanocavity, the coupling in between is due to the superposition of quantum states and leads to a 

resonance shift △ from 𝜔𝜔𝑐𝑐 to ω. The charge distribution fluctuation of the particle has a much 

smaller frequency shift compared to the resonance frequency of the empty cavity. In experiments, 

the optical force is related to the intensity and the cavity and particle polarizability. Within the 

lowest order of the perturbation theory, we can compare the frequency shift of the cavity when the 

particle is present in the cavity: 

𝛿𝛿𝜔𝜔(𝑥𝑥) = 𝜔𝜔𝑐𝑐
𝛼𝛼

𝑉𝑉𝑚𝑚𝜀𝜀0
𝑓𝑓(𝑥𝑥) ( 20 ) 

where 𝜔𝜔𝑐𝑐 is the resonance frequency of the empty cavity, 𝑉𝑉𝑚𝑚 is mode volume in the cavity, 𝛼𝛼 is 

polarizability of the particle of interest. It is worth noting that the particle polarizability is 
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proportional to the volume and the shape of the particle. 𝑓𝑓(𝑥𝑥) is a normalized intensity linewidth 

of the empty cavity. Thus, the frequency shift 𝛿𝛿𝜔𝜔(𝑥𝑥) is on the order of central frequency and not 

negligible. All the parameters except the polarizability of the particle are positive. For most 

materials with positive polarizability, the spectrum is always redshifted. Herein, from the 

Hamiltonian equation and Heisenberg-Langevin equations, the transmission of the cavity-particle 

system can be derived as an equation of photon number of the particle-cavity system: 

𝑛𝑛(𝑥𝑥) =  4𝐸𝐸02
𝜅𝜅𝑝𝑝𝑒𝑒
𝜅𝜅

1
1+(𝜂𝜂𝜂𝜂(𝑥𝑥)+△)2

  ( 21 ) 

where 𝜅𝜅𝑒𝑒𝑥𝑥 refers to the decay rate of the external coupling of the cavity; 𝜂𝜂 ∝ 𝛼𝛼(𝜔𝜔)
𝑉𝑉𝑚𝑚

𝑄𝑄 is defined as 

a back-action parameter, proportional to the polarizability of the trapping particle, Q factor of the 

cavity and the inverse of the cavity mode volume; △= 2(𝜔𝜔𝑝𝑝−𝜔𝜔𝑝𝑝)
𝜅𝜅

 is a detuning factor, the difference 

between the excitation frequency 𝜔𝜔𝑏𝑏  and cavity resonance 𝜔𝜔𝑐𝑐 ; 𝑓𝑓(𝑥𝑥)  is the normalized beam 

profile. To get the maximum photon number out of the system, 𝜂𝜂𝑓𝑓(𝑥𝑥) +△= 0 is the resonance 

condition. The position x is the resonance position. When the particle locates at 𝑓𝑓(𝑥𝑥) ≪ 1, the 

coupling effect is weak and no spectrum shift occurs. 

When it comes to the dynamics of a trapped particle in the cavity, the time-averaged 

potential for an empty DNH system is 

𝑈𝑈(𝑥𝑥) = −2ℏ𝐸𝐸02
𝜅𝜅𝑝𝑝𝑒𝑒
𝜅𝜅
𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛 [𝜂𝜂𝑓𝑓(𝑥𝑥) +△]  ( 22 ) 

According to the potential function above, two extreme conditions can be discussed on the 

back-action parameter: Upon a small enough back-action parameter (𝜂𝜂 ≪ 1), the potential is 

reduced to U(x) = −Re(α)|E(x)|2. The system does not have a spectrum shift. Therefore, to trap 
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a dipole without a cavity, the system requires a larger incidence intensity. On the other hand, a 

high 𝜂𝜂 results in saturation of arctan() by ±𝜋𝜋
2
, which means the trapped particle is confined in an 

area with two high potential walls.  

When a laser beam at frequency 𝜔𝜔 launches into a cavity, the intracavity response is in the 

shape of a Lorentz curve. Then, in Taylor expansion the response refers to frequency is: 

𝐼𝐼(𝜔𝜔) = 𝐼𝐼0
(𝛤𝛤/2)2

(𝜔𝜔−𝜔𝜔𝑝𝑝−𝛿𝛿𝜔𝜔)2+(𝛤𝛤/2)2
≈ 𝐼𝐼𝑐𝑐𝑔𝑔𝑣𝑣 −

2𝛿𝛿𝜔𝜔(𝜔𝜔−𝜔𝜔𝑝𝑝)

(𝜔𝜔−𝜔𝜔𝑝𝑝)2+�𝛤𝛤2�
2 𝐼𝐼𝑐𝑐𝑔𝑔𝑣𝑣 + ⋯   ( 23 ) 

where 𝐼𝐼𝑐𝑐𝑔𝑔𝑣𝑣 = 𝐼𝐼0
(Γ/2)2

(𝜔𝜔−𝜔𝜔𝑝𝑝)2+(Γ/2)2
 is the intensity of the empty cavity. The Talyor expansion above 

shows the contribution of the empty cavity and the trapped particle. The second item shows the 

intensity fluctuation due to the position and polarizability of the particle[39]. The motion of cavity-

particle system is assumed to follow overdamped Langevin equation: 

𝛾𝛾�̇�𝑥(𝑎𝑎) + 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡𝑥𝑥(𝑎𝑎) = 𝜉𝜉(𝑎𝑎) ( 24 ) 

where γ is viscosity, 𝜅𝜅𝑡𝑡𝑡𝑡𝑡𝑡 refers to the stiffness of the trap (responsivity of the system) and 𝜉𝜉(𝑎𝑎) is 

thermal fluctuation due to Brownian motion. There is no requirement on the particle resonance but 

polarizability. 

0D semiconductor: quantum dots 

In semiconductor, the optical absorption is due to the photon-induced transitions from 

occupied electron states to available unoccupied states. The electron transition energy needed is 

the band gap. The occupied states are in conduction band while the unoccupied is valence band. 

Semiconductor has continuous band while metal is a two-state system. The term density of states 
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(DOS) is a term to illustrate the number of available states in the continuous energy band. Bohr 

radius, originally, is defined as the distance between the nucleus and the electron in a ground-state 

hydrogen atom model[42]. When a particle has a small enough size comparable to Bohr radius(kr 

~0), the energy band is not continuous anymore. Instead, the quantum effect is dominant. The 

particle has discrete energy states.  

Quantum dots (QD) are called artificial atoms for the tiny sizes. The size property of the 

quantum dots makes them superior in biological imaging[43], catalysis[44], optoelectronic 

devices, lasing[45, 46], and solar energy conversion[47-49]. They are considered as a dipole 

without dimension (dipole approximation). Thus, QDs are analyzed as particle in the box model. 

Photon illumination on a QD generates exciton(s). The exciton is an electron-hole pair in a bound 

state excited out of the valence band. The pair is bounded with Coulomb interaction like the 

hytrogen model mentioned before. The exciton Bohr radius is the distance of the exciton pair and 

depends on the material types. In this bound state the electron still has characteristics similar to 

that of free electrons, but its energy is a little lower than that of conduction band electrons. The 

binding energy of the exciton ranges from a few millielectronvolts to a hundred millielectronvolts, 

leading to absorption below the material bandgap. Due to the coulombic interaction, the linear 

optical response of the QD (under weak field) is govenerned by the size of the QD. When the 

radius of the particle is on the same order as the exciton Bohr radius (CdSe ~5.8nm), the QD 

behaves like a semiconductor with discrete quantized energy states. Those nanocrystals experience 

the quantum confinement of the exciton.  
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Figure 6: Sketch of the exciton generation (left) and band structure of the corresponding exciton states (right) 

The sum of the energy of an exciton is consisted of band gap energy, confinement energy 

and bound exciton energy. The confinement energy is dependent on the particle size[45]. The 

larger dots have a larger emission wavelength and vice versa. The bound exciton energy is 

inversely proportional to the second order of the dielectric constant and proportional to Rydberg’s 

energy. The latter is negligible unless the size of the particle is smaller than the Bohr radius.  

After photon absorption larger than bandgap, the electron and hole are generated but not 

stationary. the non-radiative electron needs a period of time to relax to the lowest level of the 

valance band (non-radiative decay time. Then spontaneous emission is from the recombination of 

the exciton and competes with the non-radiative process [7]. The rate of non-radiative (dim) state 

of the quantum dots is attributed to the Auger recombination and slow decay time (ns). Decline in 

the decay time of the non-radiative state results in higher photoluminescence efficiency. The 

external field introduces charge separation and exciton dissociation, which can quench the 

nanoparticle. The details will be discussed in the quenching section later. The electric field and 

quantum confinement Stark effect (non-radiative states broaden the discrete absorption and 

emission band) exhibits dipolar character both in the ground excited states[50]. The dipole moment 

is enhanced when the quantum dots is in a transition to the first exciton state[51]. The research in 
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blinking of the quantum dots shows that multiple excitons and the damping rate results in quantum 

efficiency and particle charging. This excited state also encompasses different multiexciton states 

of different polarizability, such as a trion (triplet exciton)[52], a biexciton and a triexciton. 

Compared to typical molecular, these excited state of the QD possess a polarizability as high as 

105 A3, which is 3 to 4 order larger than some typical molecules[53].  

To stabilize the quantum dots, shell-core structure (i.e. CdSe/CdS colloidal quantum dots) 

are designed. The shell is able to passivate the core and isolate it from the surrounding 

microenvironment, increase the potential energy barrier for exciton confinement within the core, 

and provide the protection against degradation or oxidation.  

Purcell effect  

The rate of the spontaneous emission of an emitter is attributed to the probability of 

transition in the optical states. This probability is concluded in Fermi’s golden rule, which is not 

only rely on the intrinsic properties of the emitter but also involves the photonic environment. The 

density of optical states (DOS) quantifies the number of the available states of the emitter in a 

homogeneous medium and decides frequency of the light to be emitted. Introducing 

inhomogeneity changes the photonic environment and leads to an altered local density of optical 

states (LDOS). Specifically, by creating a resonant environment for a certain frequency, the LDOS 

at that frequency dramatically increases.  

The interaction of a dipole and the light can be modified by changing the surrounding 

dielectric environment. When a system coupled to an electromagnetic resonator, the spontaneous 

emission probability exceeds the bulk material alone and the recombination time (decay time) is 
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reduced. An emitter experiences the increased LDOS and emits photons more efficiently; its 

excited state lifetime decreases on resonance with a cavity mode. In an off-resonant cavity, it is 

also possible to reduce the LDOS at a certain frequency, suppressing emission. This phenomenon 

was included in E. M. Purcell’s paper in 1946. The quantity of the spontaneous emission rate 

enhancement is defined as Purcell factor[54]: 

𝐹𝐹𝑝𝑝 = 3
4𝜋𝜋2

(𝜆𝜆𝑝𝑝
𝑛𝑛

)3 𝑄𝑄
𝑉𝑉𝑝𝑝𝑒𝑒𝑒𝑒

  ( 25 ) 

The parameter 𝑉𝑉𝑒𝑒𝜂𝜂𝜂𝜂 is the effective volume of the resonant mode. 𝑄𝑄 = 𝜔𝜔
∆𝜔𝜔

 is the quality 

factor as a ratio of the central emission frequency and bandwidth. 𝜆𝜆𝑝𝑝
𝑛𝑛

 is the wavelength in the 

resonator media with refractive index n. The enhancement in spontaneous emission due to an 

increased LDOS of the cavity is frequently referred to as the Purcell effect or Purcell enhancement. 

The coupling of a quantum emitter to a resonant cavity is a powerful concept which allows us to 

tune the interaction of light and matter down to the single photon level. This notion has led to 

intense research allowing the study and testing of fundamental concepts of quantum mechanics in 

the area of cavity quantum electrodynamics. The ability to enhance a quantum emitter’s emission 

rate while maintaining its pure quantum characteristics and strongly coupled and hybrid modes is 

of direct interest to the development of quantum information technologies.  

Photonics cavity has an extremely high quality factor Q and high selectivity of the cavity 

resonance. To maximize the coupling strength, the most common photonic structure is the Fabry 

Perot resonator. To reduce the cavity size, the Bragg stacks or gratings, photonic crystal or 

microrings are developed. Such cavities, designed on the micro- and nanoscale, squeeze the mode 
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volume down to the diffraction limit. No propagating mode is available under the diffraction limit 

The dielectric material along is not able to get the task done. 

Despite several demonstration of strong coupling in dielectric cavities, there are a couple 

of drawbacks makes the strong coupling a rare condition to be achieved[55]. First, the coupling 

strengths is restricted by the mode volume due to the diffraction limit. The optimized geometry 

cannot increase the photon output or brightness. Secondly, the coupling strength is an overlap 

function of the cavity and emitter, which is hard to match unless at low absolute temperature. 

Namely, the emitter spectrum should be narrow enough to match the cavity resonance. 

 

Figure 7: Sketches of photonics cavity and plasmonic cavities: (a) light trapped between two mirrors, to more 
sophisticated dielectric only options (to reduce metal losses), such as (b) microresonators and (c) micro-Bragg stacks 
or photonic crystals with defects; (d) trapped standing wave-type surface plasmon polariton cavities (e) with 
localized modes in nanocavity, (f) the dipole antenna and (g) gap plasmon. Reprint from ref[38] 

Compared with photonics cavity, the plasmonic structure has a modest Q factor but is 

compensated with a cubic nanometer volume. The Purcell effect is thus amplified by the mode 

volume of the plasmonic cavity. It is possible to achieve strong coupling with the nanosize 

plasmonic structure[56]. On the other hand, due to the lossy cavity, the bandwidth of the plasmonic 

nanoaperture is on one order larger than the photonic cavity. The week coupling is more efficient 

in the plasmonic nanoaperture. 
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Weak coupling regime  

Coupling by definition is to transfer the energy from one resonator to the other. The 

coupling in photonic system is the interaction of the two oscillators that involves scattering, 

absorption, and heat loss. The first resonator is a photonic cavity or a plasmonic cavity while the 

second oscillator is a two-level system (an atom or a quantum dot). 

Weak and strong coupling are the scenarios of the light-matter interaction that can and 

cannot fit in perturbation approximation. In weak coupling regime, the energy transfer from the 

resonator to the other but the two-level system radiatively decays. The energy transfer is 

nonreversible and lossy. The coupling rate is stronger than the two-level system but is not strong 

enough to overcome the decay rate of the cavity resonator. The energy has a highly fast and one-

direction flow. This regime is helpful to maximize the quantum efficiency of the quantum dots and 

maximize the brightness of the emiters. On the other hand, the strong coupling requires a coupling 

strength surpasses the cavity loss. The energy flow is fed back to the cavity and form a loop of the 

energy to compete with other decay rates. The application of the strong coupling are quatum 

circuitry and nanolasers. 

Quenching 

When a fluorescent emitter is close to a metallic surface, the emitter starts to lose its 

brightness. The non-radiative channel competes with the radiative channel and causes a quenching 

of the emitter despite of the high optical LDOS. This happens to both the flat metallic surface and 

metallic particles. In reality, the quantum emitter is barely a two-level system. The light is normally 

couples to radiative bright mode on resonance. Instead, the coupling excites the higher-order dark 

modes, losing energy to ohmical heat. The mode volumes of the plasmonic systems are very small 
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to enhance the coupling strength. The distance of the emitter should be less than the decay length 

of the plasmonic field, usually tens of nanometers. Instead of the enhanced spontaneous emission 

in Purcell effect, in this system, the quenching process dominants as the coupling strength 

increased with the decreased plasmonic mode volumes. The stronger coupling results in the 

absorption of non-radiative dark mode and the light output is drastically reduced. The 

measurement of the photoluminescence is hard to be detected. therefore, the detection of the strong 

coupling of this system is of plasmonic scattering spectra. By modulating the coupling strength, 

the emitter intensity is easy to be controlled in quantum computing. Some research suggests that 

the coupling between the plasmonic resonator and the quantum dots is able to modify the lifetime 

of the radiative mode. The plasmonic mode obtain teraherz decay rate fastening the lifetime of the 

quantum dots, which diminishes the blinking effect in quantum dots. 

Nonradiative Decay Channels in Emitters 

The quantum emitter might have several absorption channel instead of an ideal two-level 

system. Apart from quenching to the metal, the emitter has internal nonradiative decay channels 

and the radiative ones. Through internal conversion, a molecule can decay to the ground state 

without photon emission. This kind of internal conversion form a triplet excited state. Due to the 

golden rule, the transition from the triplet back to the singlet ground or excited state is forbidden. 

Herein, the lifetime of the triplet is as long as micro to milli seconds. The quantum dots in the dark 

state is called blinking and loses its quantum yield. This could heavily impede any useful 

application.  
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Fano resonance 

Damping is originated from the ohmic losses or scattering losses due to the coupling to 

other modes. Here the frequency is a complex of the original central frequency and linewidth of 

the cavity. The imaginary part is the phase of the oscillators. The interaction between the oscillators 

leads to the shift of their eigenfrequency (a complex quantity has phase). The real part of this 

frequency shift is the emission frequency shift while the imaginary part represents the Purcell 

effect which modify the spontaneous emission rate in the cavity. Now assume one of the resonator 

1 (cavity) has a larger damping and is driven by the external field. The corresponding linewidth of 

the spectrum is very broad relative to the undamped emitter, therefore, serving as a continuum. 

The phase of the undamped emitter changes by π at the resonance while the strongly damped cavity 

has slow phase change. Coupled spectrum of the cavity shows asymmetry with a dip and a peak 

as shown in Figure 8: sketch of the Fano resonance 

 

Figure 8: sketch of the Fano resonance 
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The two oscillators can be regarded as the interference of the two waves from the two 

oscillators. Damping induces absorption along with a phase delay. At the antiphase wavelength 

the cavity behaves a dip in the emission spectrum of the cavity; This phenomenom can be observed 

in photonics cavity and periodic structure to correct the Purcell effect. 

Exciton-polariton  

Polariton is formed when the optical excitation coupled with the matter excitation. The 

electrons, excitons, phonons and plasmons of the matter excitation (depends on the materials) 

oscillate following the optical electromagnetic field. For example, TM wave (magnetic field 

parallel to the interface) around the interface excites the collective excitation of surface plasmonic 

polaritons along the metal-dielectric boundary. The evanescent field extends perpendicular to the 

interface. Due to the high dispersion and high loss of the metal, these polariton modes are much 

smaller than the wavelength but extremely high local density of optical states, leading to strong 

light-matter interaction.  

The condition of the excitation of polariton is not only limited to the metal but also the 

material with a negative permittivity[57]. The negative permittivity refers that the electric 

displacement vector has the same direction as the electric field vector. It is a simplified model 

noted in John Hopfield’s paper as ‘excitonic polarization’, a mixed excitation mode of both matter 

and photon[58]. This model is very useful to describe the light-matter coupling in quantum dots 

and photonic cavities. For the polariton at semiconductor and dielectric interface, the excitons 

(electron and hole pairs), other than electrons, provides the oscillation with the photons. The 

external EM wave induces the optical absorption process and triggers an allowed electric dipole 
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transition. The excitons in the intrinsic QD state is created from the filled valence band. These are 

called as exciton-polaritons. Their similar behavior to plasmonic-polariton in metal suggests a 

negative permittivity of the free carriers and following a strong absorption of photons[59]. 

However, the exciton state is not necessary related to the radiation[110]. The exciton excitation 

might includes the phonon-assisted process and hence nonradiative Auger recombination. 
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CHAPTER THREE  
SIMULATION  

Finite element method (FEM) 

Many engineering phenomena in stress, heat transfer, fluid flow and electrostatics can be 

expressed by a governing differential function and the boundary conditions. FEM is a method 

using spatial discretization to give approximate solutions to partial differential equations. It cuts 

the structure into several elements and connects the element at nodes as shown in Figure 9. The 

field quantity can be interpolated by a polynomial over the elements. The process creates a set of 

simultaneous algebraic equations. The adjacent elements share the degree of freedom at the 

connecting node. The complex mathematical problem can be simplified to a linear problem. 

 

Figure 9: sketch of meshing in the FEM method. 

In this study, I use COMSOL 5.3 commercial packet, which is a full-vector modal solver 

based on the finite element method (FEM). Instead of solving the partial differential equation of 

the Helmholtz function, a test function in Hilbert spaces is multiplied to both sides of the equation 

and the equation is integrated over all the domains. The weak formulation is obtained by requiring 
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this equality to be true for all test functions in the Hilbert space. It only requires in an integral sense 

rather than in all points in the partial differential equation. After that, an approximate solution to 

the weak formulation equation is expressed as a linear combination of a set of basic functions that 

belong to a finite-dimensional subspace to the Hilbert space. After substituting it into the equation, 

we get the discretized version of the equation, which contains a set of equations of the same 

dimension as the finite-dimensional function space.[48] The set of basic functions can be selected 

such that each of them has a triangle shape and is 1 at certain node and 0 elsewhere. Thus, the 

integrals in the discretized equation are nonzero only if the functions overlap, which leads to a 

sparse matrix for the set of equations. Boundary conditions are applied to solve this linear system 

of equations using linear algebra. 

The continuum is diced into a number of elements. Those elements are mapped in the 

topological order, which is called meshes. The total number of nodes is 𝑁𝑁𝑛𝑛𝑡𝑡𝑑𝑑𝑒𝑒𝑎𝑎 = 𝑁𝑁𝑒𝑒𝑏𝑏𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎 + 1 

for linear elements. It may be necessary to have extra nodes inside each element. Those elements 

is not necessarily of the same length. The accuracy depends on the size of the mesh. The calculation 

time is accordingly increased with a larger mesh number. To optimize the mesh distribution, it is 

better to follow the physics and the geometry as a non-uniform mapping[60].  

Model and method 

Wavelength 

For many applications involving nanoapertures, it is important to find the antenna geometry 

that has the highest near-field enhancement at the working wavelength. The spectrum of the near 

field enhancement lines up with the transmission spectrum of the aperture. Since in an experiment 
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one measures the transmission through the nanoaperture this paper will focus on maximizing the 

transmission resonance. In order to increase the SIBA trapping potential at 1064 nm and 1550 nm, 

the optical resonance peaks of the nanoapertures should be close to the target laser wavelength. 

Specifically, for SIBA trapping the resonance peak of the antennas should be blue shifted from the 

excitation wavelength. This is because once a nanoparticle is trapped, the transmission peak is red-

shifted for particles with positive polarizability [61]. Therefore, optical trapping with a 1064 nm 

and 1565 nm laser should have nanoapertures whose geometries are optimized to have un-trapped 

native transmission resonances at 1050 nm and 1550 nm respectively.  

 

Figure 10: (a) the 3D geometry of the simulation layers; two different design of nanoapertures: (b) Double nanohole 
with parameters: corner radii r, gap size G, edge-edge distance of the two holes W, the diameter of the holes D, the 
thickness of the film t; (c) Inverted bowtie with additional sweeping parameters: inner corner radii R and outline 
parameter L. 

Geometric Design 

The schematic of our sample is a multilayer structure as shown in Figure 4. The material 

stack used in the simulation starts with glass followed by the metallic layer with the nanoaperture 

and then water, with water also filling the void of the nanoaperture.  

Each layer is parallel to the XY plane for this simulation. The refractive indices of water 

and glass are set to be 1.33 and 1.52 respectively. A monochromatic plane wave propagates along 

the z axis from the glass side. The long axis of the nanoaperture is along the y direction. Since the 
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structure of the aperture is not centrosymmetric, the polarization of light perpendicular to the long 

axis of the aperture has a larger local field enhancement than parallel to long axis [62]. Thus, the 

polarization of the incidence is along the x axis.  

Structure of the nanoaperture 

We mainly compare two different structures, inverted bowtie and double nanohole (DNH) 

as shown in Figure. 1. The inverted bowtie is mainly characterized by the outline parameter L and 

gap size G. The angle of the corner of the bowtie is chosen as 45o due to the results by Qiao et al 

[63]. The DNH is characterized as the diameter of the holes, the gap size G and the edge-edge 

distance between the two holes. Expanding on other simulations[64] , the corner radius r of the 

gap region and R of the inner corners for the inverted bowtie are also taken into account. These 

corner radii are important and due to fabrication limitations, there can be a smoothing effect of the 

corners. The corner radii of both structures are always kept to 2nm if not specified.  

The simulations start with a 100 nm thick gold layer or an 80 nm thick aluminum layer as 

the material for the film. These materials were chosen for their high absorption coefficient, 

prevalence in plasmonic based devices, and ease of fabrication. It has so far been standard practice 

to use thin gold film for its low loss, convenient functionalization process [65], biocompatibility 

and temperature stability in visible and NIR wavelength range [61, 62, 66]. Similar to gold, 

aluminum is biocompatible and durable [67], it may be seen as a less expensive material for use 

in nanoaperture optical traps. Moreover, aluminum naturally is coated with a thin layer of oxide 

which protects the layer from contamination and is easy to clean. The refractive index of gold and 

aluminum are taken from the interpolation of data from Johnson and Christy [68] and McPeak [69] 

respectively. Table 1 shows the thicknesses of gold and aluminum films we choose for our design 
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and the transmission of the films. The thickness of the aluminum layer is smaller than gold layer 

due to its larger imaginary refractive index k. A thinner layer is preferable because it is easier to 

fabricate nanoscale features than in a thicker film. The major part of design is based on the gold 

material and we will compare gold and aluminum nanoapertures at the end.  

Table 2: Optical constants used for gold and aluminum 

Wavelength (nm) 1064 1565 

Au Real part of refractive index n 0.258 1.029 

Imaginary part of refractive index k 6.965 9.252 

Transmission (100 nm film) 2.59e-04 1.59e-04 

Al Real part of refractive index n 0.533 1.368 

Imaginary part of refractive index k 10.859 14.272 

Transmission (100 nm film) 3.17e-05 4.87e-05 

Simulation model 

The simulation tool is COMSOL Multiphysics, a finite element method (FEM) software 

program. The boundary conditions used are perfectly matched layers (PML). The simulation 

volume is set to be big enough to avoid artifacts (6 times the aperture size in XY plane and 3 µm 

in both the negative and positive z directions).  All the simulation domains are meshed using 

tetrahedron except the PML which uses swept mesh.  The minimum mesh size for the simulated 

geometry is less than 3 nm. A probe is placed in the center of the geometry to get the near field 

enhancement � 𝐸𝐸𝑒𝑒
𝐸𝐸𝑝𝑝𝑖𝑖
� (𝐸𝐸𝑥𝑥 is the electric field along x direction in the center of the aperture and 𝐸𝐸𝑖𝑖𝑛𝑛 is 

the incident electric field) and the transmission is measured at the far field after the aperture. Since 

these nanoapertures utilize near-field enhancement, only the plasmonic peaks (0th order peaks) are 

considered.  
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Simulation results 

Polarization simulation 

Due to the non-centrosymmetric geometry of the DNH, the nanoaperture has a polarization 

direction preference. The transmission remains the maximum when the polarization is aligned to 

short axis (across the gap area). The minimum transmission is at the direction along long axis of 

the DNH.  

 

Figure 11: simulation spectra of a DNH aperture with an incidence of different polarization direction. The 
polarization direction 0o is aligned to the short axis of the DNH. 

Inverted bowtie nanoapertures 

We first optimize the structure of the inverted bowtie. All the inner corner radii are kept as 

R = 1nm. For convenience, we set the gap area as a square with its length G equal to its width W. 

The transmission of the light is defined as the ratio between the transmitted power of the far field 

with and without the aperture. For a smaller gap size, the outline length of the aperture must 

decrease accordingly to maintain the same frequency resonance[70]. Due to the asymmetry of the 

geometry, the nanoaperture is sensitive to the polarization of the incidence. With a polarization 

perpendicular to the long axis of the aperture a smaller gap size will result in a stronger coupling 
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across the gap between the metallic cusps and a higher near field enhancement. This stronger field 

is repulsive to the incident field, leading to a lower resonance frequency whereas the outline length 

of the aperture is shortened (along the long axis) to compensate the resonance frequency[37]. As 

shown in Figure 5(a, d), with the polarization perpendicular to the long axis of the aperture, the 

larger gap sizes lead to higher transmission. On the other hand, the optical enhancement within the 

center of the gap decreases as the gap size increases. Figure 5(c, f) shows the near field electric 

field profile in the center of the aperture. Actually the maximum near field enhancements are not 

exactly at 1550 nm when optimizing the transmission peaks at 1550 nm[71]. However, since the 

differences between the peaks of near field enhancement and far field are less than 5 nm, the near 

field pictures of 1050 nm and 1550 nm are shown. These show the near field enhancement is large 

at the center of the inverted bowtie. Moreover, the nanoaperture with a smaller gap and a smaller 

gap width results in a smaller transmission bandwidth. This can be explained by the quality (Q) 

factor of the cavity. The Q factor is inversely proportional to the transmission bandwidth of the 

cavity. The surface area of the gold cavity is smaller when decreasing the length of the 

nanoaperture, therefore the loss is lower. Furthermore, as the confinement increases the resulting 

bandwidth decreases. Here, we refer to transmission bandwidth rather than near field enhancement. 

For surface enhanced fluorescence or Raman spectroscopy, the near field enhancement and Q 

factor are important figures of the merit to characterize the near field signal[72]. However, self-

induced back-action trapping does not rely on the gradient force to trap particles, as a result a 

strong resonance, but not a strong near field enhancement is required. The optical characteristics 

of the nanoaperture is based on its geometry, which in turn determines the profile of the 

transmission resonance[73].  
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Figure 12: Transmission, near field enhancement spectra and field distribution of the optimized inverted bowtie 
structure for transmission peaks at (a-c) 1050 nm and (d-f) 1550 nm. (a) Transmission for 1050 nm inverted bowtie 
with different gap size G. (b) Near field enhancement for 1050 nm inverted bowtie. (c) The near field enhancement 
profile for nanoaperture resonating at 1050nm with a 20nm gap size. (d) Transmission for 1550 nm inverted bowtie. 
(e) Near field enhancement for 1550 nm inverted bowtie. (f) The near field enhancement profile for nanoaperture 
resonating at 1550nm with a 20nm gap size. 

Any change to the nanoaperture geometry, including a trapped nanoparticle, will change 

the transmission resonance. When measuring SIBA trapping, detection of the transmission in the 

far field is enough to accurately measure the trapping event. It is easy to misunderstand the role of 

the near field optical enhancement which enhances the gradient field and therefore would result in 

higher gradient force trapping. However, SIBA trapping does not utilize this enhancement as the 

trapping mechanism[74]. As shown in Figure 5 and Table 3, the optimized outline length of the 

bowtie L is kept to 106.5 nm for 1050 nm structure and L = 188 nm for 1550 nm structure. The 

gap size G are 20 nm for both wavelengths. 

 

 

 



37 
 

Table 3: The geometries of inverted bowtie structure after optimization 

Gap size W (nm) Outline length L for 1050 nm 
geometry 

Outline length L for 1550 nm 
geometry 

5 72.5 148.5 

10 88.5 167.0 

15 98.5 179.0 

20 106.5 188.5 

 

Due to the limitation of fabrication techniques, the four internal corners of the inverted 

bowtie structure are barely sharp enough. For example, helium FIB technique can give less than 2 

nm radius with 0.35 nm resolution [75] while with a gallium FIB one can obtain a radius of 5 nm 

[61] in ideal conditions. Therefore, in this part, we first study the corner effect of the inverted 

bowtie structure. The inner corner radius is swept from R = 2 nm, R = 6 nm, and R = 10 nm. The 

results show that larger inner corner radius leads to a blue-shifted of the far field resonance 

wavelength and slight decrease in transmission. The resonance peak shifts 45 nm when changing 

the bowtie radius by 4 nm for the 1050 nm structure. In the same case, the near field enhancement 

dips from 26 to 18 when increasing R from 2 nm to 6 nm. Therefore, the inverted bowtie structure 

is very sensitive to the fabrication resolution due to the four internal corners. Thus, we want to 

compare this geometry to a double nanohole which will have an easier process for precise 

fabrication. 
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Figure 13: Internal corner effect of inverted bowtie structure. (a) Geometries of 1050 nm structure when R=2nm, 
6nm, 10nm. (b) Transmission spectra and (c) near field enhancement of 1050 nm inverted bowtie structure of 
different inner corner radii while L = 106.5 nm. (d) Geometries of 1550 nm structure when R=2nm, 6nm, 10nm. (e) 
Transmission spectra and (f) near field enhancement of 1550 nm inverted bowtie structure of different corner radii 
while L = 188 nm. 

Double nanohole nanoapertures 

Compared with the inverted bowtie, the DNH structure is easier to fabricate because there 

is no need to consider any internal corners. Figure 7 shows the transmission and near field 

enhancement curves after optimization. Table 3 shows the geometries after optimized for the 

specific wavelength. The gap sizes G of the nanoapertures are set as 5 nm, 10 nm, 15 nm, 20 nm 

which are reasonable and plausible for nanofabrication [76, 77]. The bigger the gap size is, the 

more the peaks shift to a shorter wavelength. This phenomenon agrees well with Qiao’s research 

[63]. One of the most important factors is the peak height of the near field. When optimizing the 

peak position at a specific wavelength, the center frequency is higher for the smaller gap. From 

Figure 7, one can compare the near field enhancement of the structure at two different wavelengths. 
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Comparing these two wavelengths, the near field enhancement of 1550 nm structure is two times 

larger than that of 1050 nm structure. This implies the potential for greater trapping strength. 

 

Figure 14: Transmission and near field enhancement spectra of the optimized DNH structure for transmission peaks 
at (a-c) 1050 nm and (d-f) 1550 nm. (a) Transmission for 1050 nm DNH. (b) Near field enhancement spectrum and 
(c) field distribution for 1050 nm DNH. (d) Transmission for 1550 nm DNH. (e) Near field enhancement spectrum 
and (f) field distribution for 1550 nm DNH.  

Table 4: The geometries of optimized DNH structure 

Gap size W (nm) D for 1050 nm geometry D for 1550 nm geometry 

5 53.0 109.0 

10 62.5 119.0 

15 68.0 124.5 

20 72.0 128.0 

 

Previous simulation process steps set the gap size and gap length as the same. Here, we 

also investigate the gap length as a parameter for the structure resonance. As shown in Figure 8, 

the scale bar is shared by both (b) and (c). A red shift of the wavelength results from a larger edge-

edge distance W of the two nanoholes. The electric fields of resonance wavelength have large 
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enhancement around the gap area. however, for different length of the edge-edge distance, the 

electric field enhancement does not change much. 

 

Figure 15: (a) simulation spectra with different edge-edge distance of the two nanoholes W; the normalized electric 
field distribution when (b) W=5nm, (c) W=20nm with both figures share the same legend on the right. 

To further compare the two structures, two main factors are considered as shown in Table 

5. The first is the near field enhancement. The near field enhancement of the inverted bowtie is 

comparable to that of the DNH structure. The second is the full width half maximum (FWHM): 

the FWHM of the inverted bowtie is also comparable to that of the DNH. As a result, the DNH is 

an acceptable alternative to the inverted bowtie structure with the fabrication of the DNH being 

much easier and less sensitive to error. 

Table 5: Comparison between the near field enhancement and FWHM of DNH and inverted bowtie 

Gap size W (nm) 5 10 15 20 

DNH structure Near field Ex at 1050 nm 94.4 56.2 37.5 27.9 

FWHM 1050 nm (nm) 111.0 133.0 163.5 186.0 

Near field Ex at 1550 nm 195.7 104.3 68.7 51.1 

FWHM 1550 nm (nm) 211.5 247.0 278.5 306.0 

Inverted bowtie structure Near field Ex at 1050 nm 82.3 49.7 35.4 26.2 

FWHM 1050 nm (nm) 105.0 118.5 133.0 153.0 

Near field Ex at 1550 nm 169.9 92.0 62.7 47.4 

FWHM 1550 nm (nm) 189.0 214.5 238.0 257.5 
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Nanoaperture with nanospheres 

The NAOT employs the SIBA theory, where the nanoparticle induces a red shift of the 

resonance spectrum. In our simulation shown in Figure 9, the 20nm gold nanoparticle shift the 

resonance spectrum of the nanoaperture by 90nm. In the figure, the situation with an incident laser 

beam wavelength in the pink section is defined as red-shifted region, where the transmission 

decreases after trapping. In the blue section means the transmission will increase with a wavelength 

larger than 1210nm, named blue-shifted regime. At the interception point of the two spectra, the 

transmission does not change its amplitude once trapped. 

 

Figure 16: simulation on the transmission spectrum for 1064nm aperture with 22nm gap size (red) and an aperture 
with a 20nm-diameter gold sphere  

Nanoaperture with nanorods 

In the previous sections, spherical particles in a nanoaperture are simulated. However, most 

of natural particles are inhomogenous in shape. Therefore, the study of elongated particles is 

necessary. This sets a foundation of the orientation analysis for the following experiment of the 

elongated particles. 
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I used COMSOL to simulate the transmission spectra of a gold rod in a 22nm gap aperture 

resonating around 1330nm. The gold rod is 10nm in diameter, 20nm in length. As shown in the 

Figure 12, empty cavity (the black dash line) and the nanorod at 125nm from the glass substrate 

(olive dot line) has the same spectrum. Namely, when the particle is over 5nm away from the 

metal-water interface, the coupling between the two is zero. The same red-shifted spectra appears 

at the presence of the nanorod inside the gap area at 62.5nm from the metal-glass interface (blue 

line). The orientation of the nanorod behaves differently along x,y and z axes.  

 

Figure 17: the sketch and the simulated transmission spectrum of DNH with a nanorod orientation a) along z 
direction, b) along y direction and c) along x direction. The different colored spectra represents different nanorod 
position in the gap area where 0 is at glass-metal interface, 100 is at water-metal interface, and 125 is in the water 
region above the metal. 

When the particle is oriented along z direction, the presence of the nanorod redshifted the 

transmission spectrum. The center of the spectra is not significant changed when the particle is at 

0nm, 31nm and 62nm. When the particle moves closer to the metal-water surface (at 93nm), the 

spectrum is shifted less than the ones close to the glass-metal interface. The spectrum is very 

sensitive to the position of the particles. Compare the blue line (62nm) Figure 12 a) and b), the 



43 
 

spectrum shifts more with a y-axis (from 1340nm to 1430nm) oriented nanorod than the z-axis 

oriented (from 1340 to 1360nm). The x-axis orientation shows the same number of spectra shift 

as the z-axis orientation. The strong field between the nanorod and the gap is significantly squeezed 

when the particle is in the y-direction. The coupling in the system is much strong than the other 

two cases. Therefore, the DNH is able to recognize the orientation of the nanorod by measuring 

the transmission spectrum. 
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CHAPTER FOUR:  
NANOFABRICATION  

In our daily life, nanostructures are widely spread in our daily life, such as the information 

storage on silicon integrated circuit chips, display, telecommunication, 3D printing, vaccine and 

etc. All these products rely on the stability and reliability of nanofabrication technology in 

synthesis and characterization. With the development of the nanofabrication, it becomes possible 

to manipulate atoms and program the structures and surface properties. Those fabrication methods 

to generate the nanostructures are categorized in the top-down (reactive ion etching, electron beam 

lithography) and bottom up (self-assembly, self-organization) fabrication process. The top-down 

method uses lithography to carve the nanostructures out of the substrate[78]. On the other hand, 

the bottom-up method uses molecule interaction or colloidal particle to self-assemble the discrete 

nano structures in two or three dimensions. This method works well for the periodic geometry in 

thin films. It can be applied to mass production by making a mask and stamping the geometry 

duplicates continuously. 

To reach the consistency of the fabrication and design, the main challenges in the project 

are the sub-10nm lateral resolution of the geometry and the material property improvement. This 

sub-1nm resolution has received much attention due to the development of the plasmonics study. 

The scalability, controllability and reproducibility of the fabrication are essential in fabrication 

efficacy. In lithography, the lateral resolution is declined due to the increase depth (or height) of 

the feature. The simulation-fabrication consistency helps the accuracy of the following 

experiments. Furthermore, in different fabrication process, the material might change its properties 

due to the existence of the intrinsic strain, grain size and morphology. In this chapter, I would like 
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to introduce some top-down nanofabrication process to set a foundation for the NAOT and other 

plasmonic devices. 

Physical vapor deposition 

The fabrication process for manufacturing nanoapertures requires the deposition of a thin 

film of metal onto a glass substrate. Epitaxial growth is the deposition of a layer of material that 

preserves a particular crystallographic orientation.  The orientation of the lattice during the 

deposition process is affected by the substrate temperature, the orientation of the substrate[79], 

lattice misfit of the coating material and substrate, etc.[80] Physical vapor deposition (PVD) 

usually consists of thermal evaporation, electron beam evaporation and sputtering. On a single 

crystal substrate, a lot of researches succeed in growing crystals with parallel epitaxy and form a 

large single crystal with sufficient care and control[79]. However, due to the atom mobility and 

the surface tension, random orientation and rotation of the(material). 

Gold particles have significant diffusion at the surface of the Si and Ge substrate[81]. As 

for thin film less than 30nm, gold islands are prone to cluster together without proper control of 

the substrate and environment control. With the increase of the thickness of the film, the edge of 

the islands touches with each other. However, due to the orientation, the mismatch of the boundary 

forms defects and results in polycrystalization. Fast sputtering is able to obtain a small grain size 

of less than 20nm in diameter[82]. Thermal evaporation, without substrate temperature control, 

results in 30nm for average grain size.  
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Annealing 

Twin grain is the grains that is a reflected image of its neighbors or is rotated with respect 

to it during the intergrowth. The individuals usually comprise a twin have atomic structures with 

different orientations, but they have certain common planes or directions. 

Twin grains are divided into two main categories, annealing and mechanical twins. The 

defects of the grain boundary are low-energy boundary. It can be mitigated by energy introduction, 

such as elevated temperature or pressure. These two factors vary the atom diffusion, modify the 

boundary orientation and coalescence the grain. The method is so called annealing. 

At the same time of increasing grain size, annealing causes surface roughness and wetting 

problem of the exposed side of the coating material. 

Grain size and optical property 

Crystallographic factor is an important constant for lattices structure, such as milling rate, 

thermal dynamics and conductivity of the material. The propagation of EM field is based on the 

behavior of the local electrons. The grain and the surface roughness affect the propagation of the 

electrons due to the scattering at the boundary. Thus, the grain size affects the resistivity of the 

thin film[83]. However, if the electron is not affected by those material defect, namely when grain 

size is much larger than mean free path (scattering happens), the microscopic scale is comparable 

to the bulk material[84].  

Focused ion beam 

The lithography is the key patterning procedure in nanofabrication. Focused ion beam is a 

kind of scanning beam lithograpy. It was first proposed by Feynman around 1959 but is realized 
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in 1973 by Seliger and Fleming[85]. Compared to photolithography, it is slow and expensive. But 

the biggest advantages of the FIB are its straight-forward use that can mill almost any conductive 

material and has high spatial resolution[86, 87]. A relatively new FIB has been developed that uses 

helium and neon ions that can mill with much higher spatial resolution and control[88, 89]. This 

tool has enabled the fabrication of new nanoscale devices with even smaller feature sizes. 

Ion source 

The most common ions in FIB, from light to heavy, are He+, Ne+, Ga+ and Xe+. The 

bombardment of ions transfers the kinetic energy to sample material surface. The ion etching are 

widely used in industry for microfabrication (i.e. reactive ion etching and ion implantation). It was 

not until the discovery of liquid metal ion sources (LMIS). Under a strong electric field (high 

extractor voltage around 30keV), the metal heated up to the liquid phase is droped from a sub10nm 

tip. The ‘droplet’ has high surface tension emits ions instead of droplet. Then the ions are 

accelerated theough a column at voltages from 500V-50kV and got focused by  electrostatic lenses. 

The ions are concentrated at a beam current around 1pA to tens of nA. Based on the LMIS source, 

FIB (of Ga+) is capable of generating ion beam of tens of nanometer in size (keV)[90]. This LMIS 

source also works for alloy at its low temperature eutectic composition and obtain the liquid phase. 

The Ga+ FIB performs very well in both nano- and micro milling and deposition. However, 

it induces a lateral expansion. The resolution of the conventional galium FIB has a resolution 

limitation at 10nm. To solve the problem, a gas field ionization source (GFIS) is developed to 

usestable inert gases such as helium and neon. Those light mass ions has a beam size roughly 

0.5~1.9nm, which is sufficient enough to fabricate sub-10nm features[91, 92]. Both of the methods 
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(GFIS and LMIS) suffers from spherical aberration that limit their efficiency in micro and macro-

milling.  

Ion-solid interaction 

Ions with kiloelectron volt energies incident on a solid surface makes atom sputted off, 

electrons emitted, induces chemical reation and ion implatation. During the penatraion of the ions, 

energy is transferred to the target due to the ion-solid interaction.  

To simulate the implantation of the ions, the stopping and range of ions in matter (SRIM) 

Monte Carlo simulations of ion trajectories and multiple scattering is developed. In the flight of 

the ions, it continuously lose energy to the interaction with electrons and nuclei. The the energy 

loss per unit pathlength is defined as ‘stopping power’. The interaction with electrons are elastic 

while the one with nucleus is inelastic. The ions are assumed to be accelated by same energy 

30keV. The interaction volume is propotional to the mass of the ions. The light mass ions, such as 

helium, is dominated by the electronic stopping while heavy mass ions by the nuclear stopping. 

Therfore, He+ compared with Ga+ has longer penertration length and less lateral surface scattering. 

For a thin film, the implantation of hellium is much less than neon and gallium. Hellium ion beam 

is premium in the imaging, nanomilling and nanodeposition resolution. 

Fabrication results 

Sample morphology 

In the annealing process, the heat increases the lateral diffusion in the vicinity of the grain 

boundary. The silicon wafer has a native oxide layer, which prevents the distribution of gold 

vertically into the wafer and the formation of silicide[93]. Without using any adhesion layer 
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(titanium or chromium), the gold atoms are free to diffuse on the surface of the silicon wafer [94]. 

The first step is to evaporate gold onto a cleaned glass slide. After which it is then placed into a 

vacuum oven. The temperature is ramped up to a set maximum and held there for some time. It is 

essential to control the cooling speed to better affect grain growth and distribution. Quenching, the 

immediate cooling of the material, will result in a nanocrystalline structure as the tiny grains are 

quickly locked in place. However, by slowly cooling, the grains are allowed to grow, and areas of 

single crystal can be 100s of nm in size.  As the temperature decreases, the lateral gold atoms 

modify their orientation and coalesce the separated small grains into larger ones. The higher 

temperature leads to better surface diffusion of the particles and more grains fusion, as shown in 

Figure 11. The typical temperature of gold film heat treatment is from 200 oC to 550 oC. The higher 

the temperature does give rise to larger grain sizes. However, nano-sized holes emerge while more 

material is required to fill the pitch and trench in between the grains. Those nano-pinholes are 

small at the exposure side but large at the buried side, forming a cone-shape in the film. In this 

case, the trade-off between large grain size and the following pinhole is essential in this process. 

Due to the size of our desired aperture, the annealing temperature is set at the range of 200~250 

ºC where grain size reaches 500 nm with no nanoaperture. The grain size is much larger than the 

mean free path of the gold layer, suggesting the consistency of the dielectric function and electric 

resistance with the bulk material[84].  
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Figure 18 SEM image of grains and pinholes in gold film after annealing at temperature a) 300 ºC, b) 320 ºC, d) 340 
ºC, e) 360 ºC, f) 250 ºC; c) cone shape aperture after annealing at 320 ºC and template stripping; g) diagram of grain 
size and aperture size vs. annealing temperature; h) diagram of pinhole distances v.s. annealing temperature. Reprint 
from [95] 

As shown in Figure 12(a, b), the different orientations of grains are interpreted in different 

brightness by scanning electron microscopy. The annealing treatment induces orientation 

modification and fuses them. On average, the grain size expands from 20~30nm to 500nm in 

diameter after 2-hour annealing treatment in vacuum. Figure 12(c-f) is the surface characterization 

of the sample after template stripping. The result of the atomic force microscope shows that the 

unannealed sample has spike shape grains with a maximum height of 53nm. As a comparison, the 

deviation of the processed sample only ranges from 0 to 12nm. The average line roughness of the 

surface decrease from 1.52nm per line to 0.267nm per line. After the template stripping, the buried 

side of the gold film exposes. Because of the thickness of 100nm, the surface roughness is 

dependent on the surface cleaning and condition of the silicon wafer instead of the evaporation 

process. 
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Figure 19: SEM image comparison of grain size on thermal evaporated samples (a) without annealing and (b) with 
annealing treatment at 310oC for 5 hours; 2D roughness study with atomic force microscopy (c) on unannealed 
sample and (d) on annealed sample after template stripping; 2D roughness study with atomic force microscopy (e) 
on unannealed sample and (f) on annealed sample after template stripping. Reprint from [95] 

Focused ion beam lithography 
In this part, we compare the experimental results of the conventional Gallium FIB and 

Helium ion microscope (HIM). Artifacts are also arisen due to the heat effect of the high current 

beam[96]. In our experiment, the gold film plays a role in the heat and electron distribution, which 

eliminates the effects. The beam currents are both controlled under 7pA for high precision and low 

local heat effect. The dosage of the Gallium ion beam is 2.5 pA for 0.5 seconds. The dosage of the 

Helium beam is 7 pA for 8 seconds. The same beam energy 30keV is used to facilitate direct 

milling comparison. All the in-house samples in use are carefully prepared through the progress 

mentioned in section 3.1. The commercial samples are used to compare the effect of the grain 

boundary. These commercial samples are sputtered with 100nm gold film and adhesive layer Ti. 
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The grain size is around 20nm in diameter. The same geometry of the double nanohole (DNH) is 

set to observe the ion beam performance.  

Without the perturbation from grain boundary, both gallium and helium beam are able to 

mill precise DNH geometry with a sub-20nm gap feature, as shown in Figure 13 (c, d, g and h). 

Since the long axis of the double nanohole is less than 200nm, the shape fits in a single grain, and 

the corners of the gap area are clear and sharp. However, HIM is more superior to Ga FIB in terms 

of consistency. The comparison between Figure 13(b) and (f) shows that the Ga FIB induces 

asymmetric deck area when the gap distance is down to 12nm. In contrast, the one fabricated with 

HIM remains straight edges. It can be explained that the conventional focused ion beam utilizes 

gallium liquid metal ion source to remove the target material while the HIM uses gas field ion 

source (GFIS) to create a sharper Gaussian beam[97]. Note the milling rate of the ion beam also 

performs slightly differently due to the orientation of the grain.  

 

Figure 20: (a-d)SEM image of boundary effect on in-house annealed samples with  Gallium ion beam and (e-h) HIM 
image of nanoaperture milled with Helium ion beam within a single grain. The gallium ion fabricated DNH has a 
visible effect of the round corner effect at the gap area and the asymmetric mutation of the two decks of the gap 
area.  
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As mentioned before, the dislocation of the grain affects fabrication precision. As shown 

in Figure 13(a), the grain boundary hits the gap of the double nanohole and the nanohole on the 

right. The nanohole is slightly elongated at the right end. In Figure 14(a and c), commercial 

samples with ~20nm grains show the shape mutation due to the grain boundary. The fabricated 

gap feature is even more than 20nm. Nevertheless, the asymmetric deck area and corner smoothing 

effect are also inferior to most of the in-house samples in terms of fabrication resolution. The strain 

at the grain boundary behaves differently based on the orientation and material of the grains on 

each side[98]. When the ion beam interacts with the grain and surface, the strain in the film leads 

to different mutations. In this case, our proposed sample preparation process does have a positive 

effect on the fabrication resolution.  

 

Figure 21: The top view and tilled view of the sidewall feature of the double nanoholes fabricated (a, e) on an 
unannealed sample with Ga ion beam; (b, f) on an annealed sample with Ga ion beam; (c, g) on an unannealed 
sample with Helium ion beam; (d,h) on an annealed sample with Helium ion beam. 

We also investigate the sidewall of the double nanohole, which affects the optical property 

of the nanoaperture and plasmonic response mentioned in our previous work. In Figure 14(e and 

f), the cusps of the double nanohole fabricated by Ga ion has a slippery sidewall of approximately 
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53o and 61o angle. As a comparison in Figure 14(g and h), the HIM sample has a straight sidewall 

feature. It is explained by the longer stopping distance of the lighter ions (He+). According to other 

researches on Monte Carlo SRIM simulation, the helium ions scatter much less than the tear-drop 

shaped gallium ion beam[99]. This lateral scattering simulation and experiments result by STEM-

XEDS mapping propose a local thinning and lateral mill expansion, which agrees with our results. 

Also, the GFIS of the HIM tightened the Gaussian beam, strengthening the central beam and 

weakening the tail. Thus, the fabrication result by HIM is more consistent and stable than Ga FIB. 

For larger grain samples like Figure 14(g, h), the nanoapertures in the annealed sample have a 

straighter cusp than the unannealed sample. The brighter outline in Figure 14 (c, d) also suggests 

a sharper edge of the nanoholes. In Figure 14 (a,b,e and f) are imaged with a scanning electron 

microscope at an angle. Although the eccentric point is calibrated by the instrument, the contrast 

of the image is still not optimized. This can also be the result of the implantation of gallium ion.  

Moreover, the sidewall of the double nanohole is also affected by the grain size in depth. 

In Figure 11 (b and c), the grains at the buried side are usually slightly smaller than the ones on 

the exposure ones because of lower thermal dynamics and substrate lattice.  

Spectrum measurement  

To calibrate the fabricated double nanohole, I use a linear-polarized tunable telecom laser 

focused onto the nanoaperture sample with an intensity of 0.2 mW/µm2. A half-wave plate is 

placed before the objective to control the polarization of the beam perpendicular to the long axis 

of the double nanohole in order to get the maximum transmission of the nanoaperture. As shown 

in Figure 7(c), the experiment results line up well with our numerical results on resonance shape 
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and position. Although the experimental data is slightly red shifted from the simulation, the corner 

smoothing of the gap-circle corner explains this result. The grain size of the gold layer may also 

have impact on the spectrum and fabrication[100].  

 

Figure 22: spectrum measurement of a DNH: a) SEM image of the DNH; b)the according simulation and 
experimental data of the DNH. 
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CHAPTER FIVE:  
TRAPPING EXPERIMENT 

After Bethe’s theory in extraordinary optical transmission of subwavelength metallic 

nanoaperture, increasing research and application of the property has been explored. The zero-

mode waveguide using the whispering mode in the thick film has been applied to DNA sequencing 

detection. However, the metallic film in this method is too thick to have a propagate mode in far 

field. Different from Bethe’s perfect electric conductor model, Ebbesen elaborate the theory with 

a finite permittivity that enables the photon penetration in a real metal. The different geometries 

of the nanoapertures lift the cut-off wavelength to longer wavelength. Also, the wavelength of the 

cavity is geometry invariant, which the different geometry might have the same transparency 

window but different bandwidth.  

The metallic nanoaperture have several benefits during interaction with dipoles: 1) The 

Heat conductivity of the gold protects the particles from photon-induced heat. 2) the nanozied 

volume surpass the background noise. 3) The small size also enhances the local electricmagnetic 

field and also boosts the coupling with the close-by particles. The cavity is extremely sensitive to 

the dielectric environment, even the particles are not on resonance. 4) The response time of the 

cavity is as fast as terahertz.  

In this chapter, the demonstration shows the coupling of the nanoaperture and the particles 

with a small non-destructive power.  
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Setup  

To separate the setup from external mechanical vibration, the trapping setup sits on a 

vibration isolation stage (Minus K Technology) inside a noise-insulated box. As shown in Figure 

1 a), a narrow-bandwidth 1064nm laser (NKT Photonics Koheras AdjustiK) launches the beam 

through a 1064nm polarization-maintained optical fiber. A triplet collimator (Thorlabs TC06FC-

1064) matches the beam to 1.33mm for the back-aperture size of the excitation objectives 

(Olympus MIR PLAN 100X, NA0.95, dry). A neutral density filter (Thorlabs NENIR02A) lowers 

the incident intensity to 1~4mW before a 100X excitation objective. A zero-mode halfwave plate 

rotates the polarization of the excitation beam perpendicular to the long axis of the double nanohole 

as shown in Figure 1c). The sample is placed on a nano-driver and a micro-driver from Mad Lab 

City, moving horizontally in an XY plane. The excitation objective is attached to the z-axis piezo 

driver. #2 coverslips are used during the fabrication of the metallic nanoaperture chips. The water-

based solution layer is sandwiched in between a 1mm glass and the chip with the imaging spacers 

by Grace Bio-Labs as shown in Figure 1b). A 20X condenser (Olympus LMPlan IR) is used for 

signal collection and 625nm LED illumination. Note that in the following experiments, the 

excitation beam is lauched from the #2 glass slide and gold film to water-based solution (substrate 

incidence). This configuration is used to protect the nanoparticle from the excitation power. As 

shown in Figure 1d), the transmission of the water incident is about half of the substrate incident 

but the resonance wavelength remains the same. A single-pixel high-speed InGaAs Avalanche 

photodiode records the transmission signal over time. LabJack U60-Pro digitizes the signals with 

a 50~100Hz sampling rate. To find the nanoaperture, alignment markers are fabricated on the gold 

film. A CMOS camera is used to find the position of the alignment markers under LED 
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illumination. Note those makers, far away from nanoapertures (80~90 microns in diameter), do 

not affect the trapping process compared to 1um beam size. LED illumination is turned off during 

the formal experiments. All the wires and optical fibers are carefully wrapped and taped down to 

keep experiment consistency. Lenses are coated with a 1064nm antireflection (AR) coating if not 

specified. 

 

Figure 23: Setup of the trapping experiment. a) schematics of the trapping setup where APD is short for avalanche 
photodiode, ND filter is short for neutral density filter and PM fiber is polarization-maintained fiber; b) sample 
configuration of substrate excitation: the incident beam propagates along z-direction through a #2 coverslip, a gold 
film with DNH and then the solution and 1mm glass slide; c) nearfield simulation of the DNH; sample 
configuration that d) beam incident from the water solution than gold film and e) beam incident from gold substrate 
side then solution. 

The quantum dot solution is 0.01~0.2% w/v from 1mg/1mL water-based CdSe/ZnS 

quantum dot solution (NN Labs, CZW-O). The core diameter is 6.9nm, coated with carboxylic 

acid. The emission band is 590nm which is not resonant to the 1064nm excitation beam. 
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The 1mm glass slide is treated with 1M KOH solution for 20min to minimize non-specific 

binding and maximize the lifetime of the sample. Usually, the sample lasts for 1~2 days in its 

original status where the particles are freely floating in the solution without adsorbed in the vicinity 

of the observation area (gap area). 

Dynamic light scattering  

Dynamic light scattering is a useful and mature technology to study the hydrodynamic 

diameter of particles suspended in the solution. The light is split into a reference beam and a sample 

beam. The sample beam encounters the particles and scatters in all directions. The two beams have 

a phase shift due to the scattering. So the field amplitude of the two beams is either constructive 

or destructive, of which visibility of the interference can be illustrated by the first-order correlation 

function:  

〈𝐼𝐼〉 = 2𝐼𝐼0[1 + |𝑔𝑔1(𝜏𝜏)| 𝑎𝑎𝑐𝑐𝑐𝑐� 𝜔𝜔0𝑎𝑎 + 𝜑𝜑(𝜏𝜏)�                                    ( 26 ) 

𝑔𝑔1(𝜏𝜏) = 〈𝐸𝐸(𝑡𝑡)𝐸𝐸(𝑡𝑡+𝜏𝜏)〉
〈𝐸𝐸(𝑡𝑡)𝐸𝐸(𝑡𝑡)〉

= |𝑔𝑔1(𝜏𝜏)|𝑅𝑅𝑖𝑖(𝜔𝜔0𝑡𝑡+𝜑𝜑(𝜏𝜏) =  𝛽𝛽𝑅𝑅𝑖𝑖(𝜔𝜔0𝑡𝑡+𝜑𝜑(𝜏𝜏))                       ( 27 ) 

𝑔𝑔1(𝜏𝜏) or 𝛽𝛽  is the line shape of the beam. 𝛽𝛽 =1 when monochromatic light. 𝛽𝛽 = 𝑅𝑅−( 𝜏𝜏𝜏𝜏𝑝𝑝
)2 when the 

source is a broadband light and 𝜏𝜏𝑎𝑎 stands for coherence time. According to Siegert relation[101], 

the second-order and first-order correlation is coupled: 

𝑔𝑔2(𝜏𝜏) = 𝐵𝐵 + 𝛽𝛽|𝑔𝑔1(𝜏𝜏)|2                                                ( 28 ) 

𝑔𝑔2(𝜏𝜏) = 〈𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡+𝜏𝜏)〉
〈𝐼𝐼(𝑡𝑡)𝐼𝐼(𝑡𝑡)〉

                                                    ( 29 ) 
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As shown in the equation,  𝑔𝑔2(𝜏𝜏) is the intensity correlation of the two beams. In this case, 

the experiment is simplified by using intensity detectors instead of field interference 

measurement[102]. B is the baseline of the experiment determined by the system calibration. The 

temporal correlation result of the two beams reflect the diffusion behavior of the particle of 

interest[103].  

In the solution, the particle is pushed by the solvent particle and moves randomly and 

continuously in the solvent (Brownian motion). When interacting with the beam, the particle 

scatters the light and creates a phase delay of the scattered beam. The movement of the particle 

can be in or out of the direction of the beam[104]. Namely, the delay forms a Doppler broadening 

of the beam. The diffusion coefficient 𝐷𝐷𝜏𝜏 can be obtained from the photon correlation of the DLS. 

The term in equation 3.5.2.3 is  

𝑔𝑔2(𝜏𝜏) = 𝐵𝐵+ 𝛽𝛽2𝑅𝑅−2𝐷𝐷𝜏𝜏𝑞𝑞2𝜏𝜏                                                 ( 30 ) 

𝑞𝑞 = 4𝜋𝜋𝑛𝑛
𝜆𝜆

sin (𝜃𝜃
2

)                                                       ( 31 ) 

𝑞𝑞 is a Bragg wavevector related to the solvent refractive index 𝑛𝑛. The detection angle 𝜃𝜃 is 

usually 90o for small particles to diminish the rotational diffusion effect in the autocorrelation. 

This back-scattering technique also allows the detection of a high-concentration sample with less 

multiple-scattering effect. 

The diffusion coefficient 𝐷𝐷𝜏𝜏  is essential to measure the hydrodynamic radius 𝑅𝑅ℎ  of the 

particle according to the Einstein equation: 

𝐷𝐷𝜏𝜏 = 𝑘𝑘𝐵𝐵𝑇𝑇
6𝜋𝜋𝜂𝜂𝑅𝑅ℎ

                                                              ( 32 ) 
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𝑘𝑘𝐵𝐵 is Boltzmann coefficient. 𝑇𝑇 is the absolute temperature. 𝜂𝜂 is the viscosity of the solvent. 

Also, the second application of the diffusion coefficient 𝐷𝐷𝜏𝜏 is to determine the shape coefficient of 

the particles. 

𝑓𝑓 = 𝑅𝑅𝑅𝑅
𝑁𝑁𝐴𝐴𝐷𝐷𝜏𝜏

                                                               ( 33 ) 

𝑅𝑅 is gas constant and 𝑁𝑁𝐴𝐴 is Avogadro’s number. According to Rayleigh's theory, the mass 

of the particle is proportional to its volume. the larger sizes of the particles result in a different  𝐷𝐷𝜏𝜏 

and can be converted to a volume-weighted distribution. The DLS are widely used to detect 

aggregation of proteins (~100kDa), protein-small molecules interactions, conformation dynamics. 

However, DLS also has some limitations in temperature sensitivity, difficulty to different 

particle sizes in similar sizes. It also requires transparent, non-radiative samples at a certain 

concentration. The high concentration sample might trigger a multi-scattering effect and leads to 

a lower resolution. 

Hydrodynamic diameter 

The soft matter is built up, ions or molecules between the surface of the charged particle 

and the water. As dissolved in water, the adsorbed double layer (electric double layer, EDL) is 

developed on the surface of the particle[105]. As shown in Figure 24, due to the electrostatic field 

of the charged NPs, a diffuse layer consisting of both the same and opposite charged 

ions/molecules grow beyond the Stern layer which along with the Stern layer forms the EDL. The 

inner layer with all opposite-charged ions is the Stern layer. Beyond the Stern layer, the 

electrostatic potential of the dispersant decreases exponentially as the distance from the particle 

surface increases. The zeta potential reflects the potential difference between the electric double 
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layer and the layer of dispersant around them at the slipping plane. Experimentally, the dispersant 

layer is only several nanometers from the Stern layer. The structure of this outer layer is dynamic 

and varies by a variety of factors e.g., pH, ionic strength, concentration, etc. An applied electric 

field can guide the charged particle towards the opposite electrode. This EDL affects the friction 

or viscosity of the liquid around the particle and changes the electrophoretic mobility of the 

particle. In DLS, the diameter of the particle is determined from the cumulants analysis and the 

scattered beam intensity. Therefore, the mobility change affects the measured size (hydrodynamic 

diameter). The hydrodynamic radius is a radius of the hypothetical hard-sphere, which also 

provides the information on the solvent effect. 

 

Figure 24: hydrodynamics of the negatively charged nanoparticles with different ligands. Sketch of the 
hydrodynamics around the inorganic core is made of soft matter and ions, where the hydrodynamic diameter is 
defined at the plan of zeta potential. 

Quantum dots with ligands 

To avoid aggregation in water solution, some monodisperse particles (quantum dots, gold 

nanoparticles etc.) are engineered with ligands on the surface[106]. The Van de Waals force and 

the electrostatic repelling force due to the zeta potential between the particles are balanced by the 
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ligand engineering process. The ligands also help to improve the stability of QD in biological 

buffers (ion and pH), maintain high quantum yield, protect the QD from quenching and have 

functional groups to conjugate with biomolecules. As we measured, the commercial CdSe/ZnS 

quantum dots have a hydrodynamic diameter of 21nm~24nm, which is much larger than the core 

size of the quantum dots 6.9nm. The Mn-doped ZnS QD shows different hydrodynamic diameters 

under different concentrations while the core size is 3nm as shown in Figure 25b) and c). The 

hydrodynamic size is dropped with an increasing concentration of the QD. 

 

Figure 25: the dynamic light scattering measurement of b) commercial quantum dots with a core size 6.9nm and d) 
and e) the hydrodynamics diameter of Mn-doped ZnS quantum dots in different concentrations. a) and b) are of 
semilogical scale. 

The hydrodynamic size on the other hand means the interaction volume of the quantum 

dots with the free space beam. The size of the monodispersed particles should be smaller than the 

gap size of the nanoparticle in the following trapping experiment. 

Trap sub 10nm gold nanoparticles 

In the experiments, we find the concentration does not affect much in terms of the trapping 

signal[107]. However, the solution concentration changes the waiting time for trapping events. In 

most experiments of the quantum dots and gold sphere, the concentration is above 109 particles 
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per milliliter or 0.2~1% w/v concentration from the 1mg/mL original sample solution. The 

nanoaperture is first tested with gold nanoparticles for its high polarizability. To avoid particles 

sticking in the gap, the size of the nanogold sphere (AuNP) is below 10nm and the gap size is 

15~27nm. The size of the AuNP ranges from 5~10nm in a dynamic light scattering measurement 

as shown in Figure 26 c). 

 

Figure 26:trapping event of 5nm gold particles: a) simulation of the position of the gold particle along the z and x-
axis of the gap area, b) time trace of DNH transmission with the 5nm gold particle trapped; d) DLS result of 5nm 
gold particles. 

The AuNP is freely diffused in the solution reservoir above the gold film. The beam 

wavelength is 1064nm and the resonance of the nanoaperture is around 1100nm. This is called a 

red-shifted regime where the wavelength of the DNH is larger than the trapping beam wavelength. 

Based on the simulation map of the particle position relevant to the DNH in Figure 26a), the 

transmission amplitude is changed when the particle diffuses close to the gap area. The X-direction 

is along the long axis of the DNH, where the 20nm gap area is from x = 0nm to x=4nm. The Z-

direction represents the direction of beam propagation. The film thickness is from z = 0nm to z = 

100nm. The negative Z is the cover glass and above z = 100nm is the water reservoir. The beam 

is propagated from negative z to positive z. Namely, from the cover glass to film and then the 

water. Due to the Brownian motion, the variance change of the trapping signal represents the 
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Brownian motion of the particle. The particle moving close to the corner of the gap at the water-

metal interface induces a deep drop in the transmission of a red-shifted nanoaperture. Also, the 

transmission changes significantly when at the glass-metal interface. At the corners, the near field 

coupling is very strong, and the k-space is large while the transmission is higher. This results in a 

stronger transmission shift. In the ring area, however, the particle does not induce a strong 

amplitude change. Therefore, the observation area of the DNH is only at the 20nm gap area but 

not the rings. Meanwhile, the transmission signal is dropped several times in the 160s trace, 

suggesting the NAOT is not an invasive method and observe the particle freely diffused in the 

solvent. The observation period is around the 20s to 30s.  

Trap 6.9nm quantum dots 

To explore the trapping ability, the second step is to trap a different material. I choose off-

resonant quantum dots as an experiment object for their comparable size to the AuNP. I also test 

different nanoapertures of different resonances relative to the beam wavelength. As mentioned 

before, the aperture resonance is larger than beam wavelength is called the red-shifted regime. 

Meanwhile, the aperture resonance is around 950~990nm is called the blue-shifted regime. These 

two regimes have opposite direction of the amplitude shift according to the theory as discussed in 

Chapter 2. To exam the DNH, the experiments are designed as followed. 

Three regimes of traps 

Figure 27 shows the time evolution of the transmitted optical power through a double-

nanohole with 20 ± 2 nm tip separation. For different regimes, the nanoapertures resonate at 950nm 

for the blue-shifted regime, 1040nm for the coincidence regime and 1100nm for the red-shifted 
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regime. We used a 500Hz sampling rate with a Savitzky-Golay algorithm applied for noise 

reduction. The signal has a 0.2~0.5% jump in the blue and red-shifted regimes. In the blue-shifted 

regime, the transmission is increased. In the red-shifted regime, the particle induces a dip in 

amplitude. All three regimes show significant standard deviation changes due to the Brownian 

motion of the trapped nanoparticles. The position and conformation of the particle slightly affect 

the resonance spectrum and transmission amplitude as discussed in Chapter 3. The transition from 

an empty to an occupied trap is clear and faster than 2 seconds in general. The trapping signal lasts 

over 40 seconds, even up to minutes. Note that the regime of the trapping is based on the sign of 

the amplitude change instead of the detuning of the wavelength. the coincidence regime happens 

at a 1040nm DNH for the CdSe QD while the red- and blue- shifted regimes are the DNH resonant 

above and below 1040nm accordingly. Due to the different polarizability of the particle (material, 

shape, size and etc.), the spectrum shift is different.  

 

Figure 27: CdSe/ZnS quantum dots trapped in the nanoapertures of (b) red-shifted regime, (c) coincidence regime, 
(d) blue-shifted regime. 
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Figure 27d) shows the trapping of a single 6.9 nm quantum dot. 0.7% transmission 

decreases when the particle is trapped in the nanoaperture in the blue-shifted regime. Although the 

trapping signal looks periodically fluctuating, the autocorrelation result shows the randomness of 

the signal. This result is reasonable for the particle, randomly diffusing in the solvent due to 

Brownian motion. In other words, the NAOT system might have few impacts on the particle and 

does not intrude on the particle behavior in solution. As shown in Figure 28, the standard deviation 

(SD) of the trapping signal reflects the Brownian motion of the particle. For the same QD size, the 

standard deviation increases when the nanoaperture rensonance close to coincidence regime. on 

the contraray, the SD is smaller within an off-resonant particle. The nanoaperture is more sensitive 

to the position change in the blue-shifted regime close to the coincidence regime. The nanoaperture 

should be designed at 1000 ± 15nm for better sensitivity of the blue-shifted regime. 

960 1000 1040
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

St
an

da
rd

 D
ev

.

Wavelength (nm)

 QD

 

Figure 28:The standard deviation of the trapping signal of the quantum dots vs the resonance wavelength of the 
DNH. The coincidence regime happens to the 1040nm DNH.  
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The amplitude shift is shown in Figure 29. The experimental data follows the simulation 

curves of a nanoaperture with a 12nm CdSe sphere (black solide line) and a 8nm CdSe sphere 

(black dot line). The measurement shows the QD size falls into 8~10nm in diameter. Compared 

with the DLS result, the measured diameter is close to the core size of the QD. Therefore, NAOT 

can easily derive the particle size by measuring the amplitude shift. NAOT does not need the 

complex calibration and calculation of the diffusion coefficient. The measured diameter is a little 

bit larger than the core size due to the ligand size. Those ions around the particle might be in effect 

to the interaction volume of the particle-nanoaperture system. 
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Figure 29: experiment data of the quantum dot trapped in different nanoapertures with different resonance and 
simulation result of the amplitude change due to the CdSe induced spectrum change. The black lines (both solid and 
dot) are the simulation data. The orange circles and the blue dots are the experimental data with low and higher 
power.  
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Comparison of gold and quantum dots trapping signals 

In our experiment, the 5nm gold sphere is calculated as 3.4x105 Å3. The polarizability of 

the 6.9nm colloidal CdSe/ZnS quantum dot is calculated as 8.0 x104 Å3, which agrees with Wang 

et al’s result ~104 Å3[36]. 

The spectrum shift of the cavity is due to the polarizability of the particle, where the local 

near field of the nanoaperture is coupled with the electrons (of the metal sphere) or exciton pair 

(of semiconductor) as shown in Figure 28a~c). The transmission shift depends on the material of 

the particles. Figure 28d) shows the simulation of the transmission spectrum of the same size gold 

nanoparticle (red) and QD (pink) inside a DNH. The gold nanoparticles red-shift the spectrum over 

twice a time than QD. To validate the simulation, the solution of 5nm gold nanoparticle and QD 

is measured. Note these two experiments are done with different DNH chips but the same DNH 

geometry. The different background signal is due to the APD gain and software scaling. The result 

shows, the gold particle triggers over a 2% amplitude shift while the QD has less than 0.5% shift. 

This signal difference of one order of magnitude the potential of the NAOT to identify different 

material due to the difference of the particle polarizability. 
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Figure 30: comparison of the trapping signals of the gold sphere and quantum dots: near field simulation of a) empty 
cavity, b) 16nm gold sphere and c) 16nm CdSe sphere; transmission spectrum of the empty cavity and occupied 
cavity with 16nm polystyrene, AuNP and QD; time trace of e) AuNP and f) QD. 

Exciton-polariton from the QD trapping 

What happens to the transmission of the nanoaperture with a relative stronger field in the 

nanoaperture? Two methods can be used to achieve the condition: 1) to increase the incident power 

and the ad-hoc enhancement in the gap area will increase accordingly. 2) to increase the size of 

the particle and the field between the particle surface and gap is significantly increased. Under a 

weak field, the optical wavelength is far from the absorption of the QD. The electrons of the QD 

is in the ground state. The CdSe QD induces a positive polarizability in the dielectric 

environment[108]. Under a relative stronger field, the optical absorption of the QD is not linear 
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and the exciton is generated. The dipole interaction from the QD should not be ignore[109]. The 

strength of the absorption is depended on the polarization of the field in the aperture. The 

polarization is characterized by its amplitude and phase. The incoherent field has no phase 

information. The phase determines the optical absorption spectrum and therefore the strength of 

the exciton resonances. The amplitude determines the optically induced refractive index changes. 

The free carrier has a lifetime before its recombination, introducing a phase difference to the 

external field. The excited exciton-polariton requires negative permittivity which induces a 

negative polarizability to the nanoaperture.  

In the experiments, we also observe the larger local field amplitude in two different 

nanoapertures with similar geometry parameters (gap size 15nm, gap length 17nm and ring 

diameter 60nm). The power is above >3.9mW at the sample. The nanoaperture is resonant at 

990nm, the QD triggers an amplitude dip instead of a surge as shown in Figure 29 c). Two 

explanations can be applied here: 1) the phase retardation of the QD leads to the asymmetric profile 

of the transmission spectrum. Compared with the damping rate of QD (ns), the DNH has a much 

faster damping rate (ps). Thus, under the drive of the external field, QD absorbs the energy with a 

phase shift. The opposite phases between the QD and the DNH cavity interfere with each other, 

lead to Fano-shape transmission spectra, and have a decrease of the transmission upon trapping. 

2) TM wave at the interface excites surface plasmonic polaritons along the metal-dielectric 

boundary. The evanescent field extends perpendicular to the interface. Due to the high dispersion 

[57], these polariton modes on the QD are much smaller than the wavelength but extremely high 

local density of optical states, leading to strong light-matter interaction. For the polariton at 

semiconductor and dielectric interface, the free carriers, other than electrons, provides the 
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oscillation with the photons. These are called exciton-polaritons. Their similar behavior to 

plasmonic-polariton in metal suggests a negative permittivity of the free carriers and following a 

strong absorption of a photon, which agrees with other literature[59].  

 

Figure 31: the experimental result of negative polarizability: a) transmission simulation of nanoaperture with 
different incident energies shows the Fano-shape of the coupling; b) helium ion microscope image of the double 
nanohole with gap size = 60nm, Gap distance = 15nm and diameter = 60nm where the scale bar is 100nm; c) two 
transmission traces from two nanoapertures shows repeatable dips in amplitude upon trapping. Trace 1 has 0.01s 
time resolution while trace 2 has 0.5s. 

In weak coupling, the quantum dot is simply a dipole in a plasmonic cavity, the same as 

gold. It follows the same phenomena in different DNHs. However, when the incident power 

increases and the gap size is similar to the particle, the near field enhancement in the gap area 

surges. The strong field affects the quantum dot and triggers other absorption. In this case, the 

dipole approximation does not work. Instead, the quantum dot should be regarded as an oscillator. 

The absorption of the quantum dots might from exciton generation or two-photon absorption. 

Thus, the quantum dots behave differently from the weak coupling regime, namely, a dip of 

amplitude upon trapping. 

In this experiment, the result suggests that the local EM field increases the transmission. 

however, the strong local field might also interfere with particle absorption. The hydrodynamic 
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diameter serves as an interaction volume of the quantum dot suggests the size of the gap should be 

larger than (4nm for 20nm gap) the QD. 



74 
 

CHAPTER SIX: CONCLUSION  

In this thesis, we discussed the theory, design, fabrication and experimental results of the 

NAOT. The plasmonic effect excites the local near field and increases the transmission through a 

subwavelength nanoaperture. The geometry design of the nanoaperture shows that the 

transmission spectrum is not limited to a certain geometry. The different structures can have 

similar transmission central wavelengths, but the bandwidths can be affected. The DNH has a 

better performance in corner-smoothing effect in the transmission spectrum than the bowtie 

structure. Therefore, the DNH is much easier and more robust for fabrication. 

I also promote the fabrication resolution by using a three-step sample preparation 

procedure: evaporation, low-temperature annealing and template stripping. The grain boundary 

increases the intrinsic strain in the material and the multi-scattering of the electrons. This procedure 

significantly increases the grain sizes to 1micron in diameter and decreases the surface roughness 

to 0.2nm. The sample preparation improves the optical property of the film and leaves a better 

playground for the following lithography of the double nanohole. The total length of the double 

nanohole is about 200nm, which can be fit in a single grain. With the help of the helium ion beam 

lithography, the fabricated geometry has good consistency with the design. The sidewall of the 

nanoaperture is clean and smooth.  

By using the sensitivity of the plasmon-polariton on the dielectric-metal interface, the 

transmission spectrum of the nanoaperture is applied to observe the presence of the nanoparticles. 

Detuning the wavelength of the excitation beam and the nanoaperture results in the opposite 

transmission amplitude shift, suggesting the transmission spectrum shift to a longer wavelength. 

The amplitude of the transmission change and the standard deviation can  both be used to measure 
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the size of the particle with a priori of the permittivity of the material without complex calculation 

of diffusion coefficient. The comparison between the quantum dots and gold particles finds the 

polarizability can be reflected in the transmission evolution. The transmission of the gold is one 

order larger than the quantum dot. In the last experiment, we find the volume ratio of the particle 

and gap size is also important to the trap. When the two oscillators are close in size, the coupling 

becomes stronger. The Purcell effect would increase the amplitude of the spontaneous emission of 

the cavity but the phase interference between the two oscillators might cancel each other and result 

in a decrease in amplitude. Also, the local intensity should be limited for trapping purposes. The 

nonlinear effect and heat are easier to disturb the NAOT efficiency with a higher local field. With 

the test of different material of the particle, this thesis leaves fundamental guidance of the NAOT 

for further application such as protein, DNA and other biomolecules. It leaves a solid foundation 

for NAOT to study the conformation, shape of the biomolecules. NAOT also take advangtage of 

the fast response of the cavity (picosecond). The measurement limitation is attributed to the 

detector speed. With a GHz single pixel APD, this method can be applied to study fast 

disassociation process and protein-small molecule interaction. 
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