
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Synthesis Methodologies for Robust and Reconfigurable Clock Synthesis Methodologies for Robust and Reconfigurable Clock

Networks Networks

Necati Uysal
University of Central Florida

 Part of the Computer and Systems Architecture Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Uysal, Necati, "Synthesis Methodologies for Robust and Reconfigurable Clock Networks" (2021).
Electronic Theses and Dissertations, 2020-. 941.
https://stars.library.ucf.edu/etd2020/941

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/259?utm_source=stars.library.ucf.edu%2Fetd2020%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/941?utm_source=stars.library.ucf.edu%2Fetd2020%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SYNTHESIS METHODOLOGIES FOR ROBUST AND RECONFIGURABLE CLOCK
NETWORKS

by

NECATI UYSAL
M.S. University of Central Florida, 2017

B.S. University of Gaziantep, 2013

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2021

Major Professor: Rickard Ewetz

© 2021 Necati Uysal

ii

ABSTRACT

In today’s aggressively scaled technology nodes, billions of transistors are packaged into a sin-

gle integrated circuit. Electronic Design Automation (EDA) tools are needed to automatically

assemble the transistors into a functioning system. One of the most important design steps in the

physical synthesis is the design of the clock network. The clock network delivers a synchronizing

clock signal to each sequential element. The clock signal is required to be delivered meeting timing

constraints under variations and in multiple operating modes. Synthesizing such clock networks

is becoming increasingly difficult with the complex power management methodologies and severe

manufacturing variations. Clock network synthesis is an important problem because it has a direct

impact on the functional correctness, the maximum operating frequency, and the overall power

consumption of each synchronous integrated circuit.

In this dissertation, we proposed synthesis methodologies for robust and reconfigurable clock net-

works. We have made three contributions to this topic. First, we have proposed a clock network

optimization framework that can achieve better timing quality than previous frameworks. Our pro-

posed framework improves timing quality by reducing the propagation delay on critical paths in a

clock network using buffer sizing and layer assignment. Second, we have proposed a clock tree

synthesis methodology that integrates the clock tree synthesis with the clock tree optimization.

The methodology improves timing quality by avoiding to synthesize clock trees with topologies

that are sensitive to variations. Third, we have proposed a clock network that can reconfigure the

topology based on the active mode of operation. Lastly, we conclude the dissertation with future

research directions.

iii

This dissertation is first dedicated to my family and then to Bekir Yilmaz, a senior member of my

family whom I have lost during my Ph.D. studies.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Dr. Rickard Ewetz. His guidance through my

research journey with his expertise and knowledge was invaluable. In addition, I am grateful for

his assistance and patience when I encounter difficulties. I would also like to extend my gratitude

to Dr. Ronald F. DeMara, Dr. Mingjie Lin, Dr. Murat Yuksel, and Dr. Damian Dechev for their

support, feedback, and their time to serve in my doctoral committee.

I would like to thank my friend, Baogang Zhang for his support during my PhD studies. Baogang

was always there for me when I needed help. It was a great pleasure for me to work with him in

the same research lab.

I would like to thank my dear friends, Ahmet Uzun, Ender Egri, Nazar Emirov, and Yunus Uzun.

Without their support and advice, it would be really difficult for me to tackle many problems that

I have faced in my life.

I would like to express my endless love to my parents, Turgut and Ayse Uysal. I am grateful to

them for their devotion and sacrifices in providing a good life for me. I would also like to thank

my dear sister and brother, Ayse Gul and Huseyin, for their continuous support and encouragement

throughout my entire life.

I would like to thank the ECE department at UCF and NSF (CCF-1755825, CNS-1908471, and

CNS-2008339 grants) for providing financial support during my Ph.D. studies.

v

TABLE OF CONTENTS

LIST OF FIGURES . xi

LIST OF TABLES . xv

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: PRELIMINARIES . 3

2.1 Timing constraints . 3

2.2 Variations in the timing . 4

2.3 Clock networks with different topologies . 5

CHAPTER 3: REVIEW OF PREVIOUS WORKS . 7

3.1 Elmore delay model . 7

3.2 Clock tree synthesis . 9

3.2.1 Construction of clock trees using the Elmore delay model [26] 10

3.2.2 Deferred merge embedding (DME) Algorithm 12

3.3 Clock tree optimization . 13

3.3.1 Timing slacks under OCVs . 14

vi

3.3.2 Predicted timing quality and CTO . 15

3.4 Gate sizing and layer assignment . 16

3.4.1 Van Ginneken’s algorithm . 16

3.5 Techniques of handling OCVs . 18

3.6 Clock network synthesis for multiple modes of operations 19

CHAPTER 4: LATENCY CONSTRAINT GUIDED BUFFER SIZING AND LAYER AS-

SIGNMENT FOR CLOCK TREES WITH USEFUL SKEW 21

4.1 Introduction . 21

4.1.1 Motivation and the overview of the BLU framework 21

4.1.2 Proposed framework . 23

4.2 The BLU framework . 23

4.2.1 Baseline of the BLU framework . 24

4.2.2 Relaxing the latency constraints . 25

4.2.3 Tightening the latency constraints . 26

4.3 Methodology . 28

4.4 Experimental evaluation . 29

4.4.1 Evaluation of positive delay adjustments 32

vii

4.4.2 Evaluation of negative delay adjustments 33

4.5 Summary and conclusion . 34

CHAPTER 5: AN OCV-AWARE CLOCK TREE SYNTHESIS METHODOLOGY 36

5.1 Introduction . 36

5.2 Motivation . 37

5.2.1 Limitations of previous works . 37

5.2.2 Proposed methodology . 37

5.3 Methodology . 40

5.3.1 The overview of the framework . 40

5.3.2 Enumeration of top-level trees . 42

5.3.3 Pruning of top-level trees . 43

5.3.4 Construction of virtual topology . 44

5.3.5 Insertion of non-uniform safety margins 44

5.3.6 Specification of latency ranges . 46

5.3.7 Construction of USTs . 47

5.4 Experimental Evaluations . 48

5.4.1 Evaluation of framework configurations 49

viii

5.4.2 Comparisons with state-of-the-art . 52

5.5 Summary and conclusion . 54

CHAPTER 6: SYNTHESIS OF CLOCK NETWORKS WITH A MODE RECONFIGURABLE

TOPOLOGY . 55

6.1 Introduction . 55

6.2 Preliminaries . 56

6.3 Problem formulation . 58

6.4 The limitations of the previous studies . 59

6.5 Proposed MRT Structure . 61

6.5.1 Overview of the MRT structure . 61

6.5.2 Improving the robustness in high performance modes 62

6.5.3 Reducing power in low performance modes 64

6.6 Methodology . 66

6.6.1 Insertion of OR-gates . 67

6.6.2 Construction of top-level clock trees . 68

6.6.2.1 Construction of Topology Relation Graph 69

6.6.2.2 Edge pruning . 70

ix

6.6.2.3 TRG guided Tree construction 71

6.6.3 Construction of the reconfigurable topology 72

6.6.4 Clock network optimization . 73

6.6.5 Supply voltage selection . 74

6.7 Experimental Results . 74

6.7.1 Evaluation of MRT design configurations 77

6.7.1.1 Selection of the number of top-level trees 77

6.7.1.2 Evaluation of the TRG guided top-level tree construction 78

6.7.1.3 Evaluation of topology reconfiguration 79

6.7.1.4 Evaluation of the negative-edge of the clock signal 81

6.7.2 Evaluation of MRT structures . 82

6.8 Summary and conclusion . 86

CHAPTER 7: FUTURE WORKS . 87

LIST OF REFERENCES . 88

x

LIST OF FIGURES

Figure 2.1: Setup and hold time constraints between a pair of flip-flops. 4

Figure 2.2: Clock networks with a) tree, b) near-tree and c) non-tree topology. 5

Figure 3.1: a) A clock tree topology and b) The RC representation of the clock tree topol-

ogy in (a). 7

Figure 3.2: a) A pair of subtrees and the embedding location are illustrated. b) The illus-

tration of embedding locations as merging segments (ms) of the correspond-

ing nodes in (a) for a zero skew merge. c) The illustration of embedding

locations as merging regions (mr) of the corresponding nodes in (a) for a

non-zero skew merge. 12

Figure 3.3: The illustration of the path that introduces OCV into the timing constraints

between FFi and FFj. 14

Figure 3.4: Extension of van Ginneken’s algorithm [36]. 17

Figure 4.1: (a) A specified delay adjustment. (b) Delay adjustment realized by buffer

insertion. (c) Proposed realization of delay adjustments using buffer sizing

and layer assignment. 22

Figure 4.2: (a) SG. (b) Ptns and Pwns and delay adjustments. (c) latency constraints. (d)

offsets. (e) van Ginneken’s algorithm. (f) selected candidate solution. 24

Figure 4.3: (a) Latency constraints. (b) Relaxed latency constraints. (c) Method to find lr
i . 25

xi

Figure 4.4: (a) Delay adjustments specified by Eq (3.9). (b) Clock tree after van Gin-

neken’s algorithm. lmax is violated by the path marked with a red dashed line.

(c) Generation of a delay adjustment constraint. 26

Figure 4.5: Proposed flow for the BLU framework. 28

Figure 5.1: (a) State-of-the-art CTS+CTO based synthesis flow. (b) Proposed OCV-

aware clock tree synthesis flow. 38

Figure 5.2: Detailed flow of proposed OCV-aware synthesis methodology. 40

Figure 5.3: (a) Multiple candidate top-level topologies are enumerated. (b) The top-level

topology is determined after pruning the candidate topologies. (c) The top-

level clock tree and the virtual topology are constructed. (d) The latencies

to the clock sinks are estimated using the virtual topology. (e) Non-uniform

safety margins are inserted in the skew constraints and a latency range is

specified for each clock sinks. (f) Bottom-level subtrees are iteratively con-

structed by inserting safety margins that are tailored to the topology. If the

latency constraints are not satisfied, the construction process returns to (c)

with improved timing predictions. 41

Figure 5.4: The illustration of (a) Uniform H-tree and (b) Non-uniform H-tree 42

Figure 5.5: Evaluation of the framework in terms of (a) Latency. (b) Capacitance. (c)

TNS. (d) WNS. 49

Figure 5.6: Sensitivity to scaling parameter cs on ecg. 50

xii

Figure 5.7: Evaluation of top-level tree construction using uniform H-tree vs. non-uniform

H-tree. 51

Figure 6.1: Clock networks with different topologies and the illustration of short circuit

current on each topology. 59

Figure 6.2: The arrival time distributions (for the positive-edge of the clock signal) at

different points with respect to an OR-gate are shown in (a), (b) and (c).

The variance of the arrival time distribution at the output of the OR-gate is

tighter than that of the variance at the inputs, which demonstrates that OR-

gates improve the robustness to variations. (d) The proposed MRT structure

is constructed using OR-gates to provide robustness to variations. 62

Figure 6.3: (a) Flow for constructing MRT structures. (b) Flow for construction of the

core top-level tree. (c) Flow for construction of the N− 1 subsequent top-

level trees. 66

Figure 6.4: Example flow for the construction of an MRT structure when N = 2. (a) First

stage subtrees. (b) Driver devices are inserted. (c) Core top-level clock tree

is constructed. The driver devices used to construct the core-top level tree

are colored in green. (d) The Topology Relation Graph (TRG) is constructed

with respect to the topology. (e) The TRG after edge pruning is applied.

(f) The second top-level clock tree is constructed using TRG. (g) The clock

network after the construction of top-level trees shown in (c) and (f). (h) The

clock network after constructing the reconfigurable topology. 68

Figure 6.5: The reconfigurable topology . 73

xiii

Figure 6.6: Evaluation of MRT structures with different number of top-level trees on the

circuits (a) dma and (b) aes. The performance is evaluated in terms of power

and robustness to variations. The clock network structure with 1 top-level

tree is equivalent to the traditional clock tree. 77

Figure 6.7: Evaluation of guiding the top-level tree construction using different cost met-

rics. The evaluation is performed in terms of normalized power and normal-

ized robustness (D). 79

Figure 6.8: Evaluation of DVFS vs reconfiguration combined with DVFS in terms of

average (a) supply voltage and switching capacitance and (b) total circuit

power for different ratios of Ccomb and Cclk. The experimental results shown

in the figure are the average values for the benchmarks in Table 6.3. 80

Figure 6.9: Evaluation of the MRT structure for the negative-edge and the positive-edge

of the clock signal. 81

Figure 6.10: Histogram of skews from Monte Carlo simulations of (a) Tree and (b) MRT

structures on usb f . 85

xiv

LIST OF TABLES

Table 4.1: Circuits in [31]. 29

Table 4.2: Evaluation of various tree structures in terms of total capacitance. 31

Table 4.3: Evaluation of various tree structures in terms of runtime. 31

Table 4.4: Evaluation of negative delay adjustments. 35

Table 5.1: Holistic guidelines and objectives for different parts of a clock tree. 39

Table 5.2: Evaluation of the clock tree structures in terms of performance and synthesis

time. 52

Table 6.1: Comparison between clock networks with tree, near-tree, and non-tree topolo-

gies. 60

Table 6.2: Comparison between DVFS and topology reconfiguration combined with

DVFS. 64

Table 6.3: Benchmarks in [7]. 75

Table 6.4: The properties of the structures. 75

Table 6.5: Evaluation of structures in terms of power consumption, supply voltage and

timing quality. 82

xv

CHAPTER 1: INTRODUCTION

Sequential VLSI circuits consist of combinational logic and sequential elements. The sequential

elements such as registers and flip-flops require a synchronization signal to capture and propagate

the correct data signal. The synchronization is facilitated using a clock network that delivers a clock

signal from a clock source to all sequential elements. There exists timing constraints between each

sequential element that are separated by combinational logic in the data and control paths. For

the functional correctness of the circuit, the clock signal must be delivered meeting the timing

constraints.

Clock skew is the difference in the arrival time between a pair of flip-flops. Ideally, the clock

signal is required to be delivered to the flip-flops at the same time to meet the timing constraints.

Therefore, early studies focused on synthesizing clock networks to meet zero-skew [1, 3–5, 23,

41] or bounded-skew [6, 51, 52] constraints in order to achieve minimum possible clock skew.

However, this may not be necessary because the timing constraints imposed by the combinational

logic between certain pairs of clock sinks may actually be looser. In such cases, the timing margins

can be allowed to be utilized by the clock skew. This is advantageous because there is a trade-off

between the clock skew and the hardware cost of a clock network. Consequently, lower cost

clock networks can be synthesized by utilizing available timing margins, which can be achieved

by constructing useful skew trees (USTs) [22, 31, 34, 53, 70].

Modern VLSI circuits are required to meet tight timing constraints under variations while op-

erating at high clock frequencies. Constructing clock networks with small nominal skews is

not too difficult [1, 3, 22, 23]. However, it is very challenging to meet tight skew constraints

while a clock network is under the influence of process, voltage and temperature (PVT) variations

[2, 20, 21, 64, 65, 68]. The main reason is that the variations result in deterioration in the timing of

1

the clock network, which introduces timing violations. To meet the timing constraints, the effects

of variations must be accurately accounted when synthesizing clock networks.

When the clock signal propagates through the interconnects of a clock network, the transition time

of the clock signal may severely degrade. To preserve the functionality of a circuit, the clock

signal must be delivered with a sharp transition. This can be ensured by meeting a maximum

transition time constraint when delivering the clock signal. To achieve this, typically clock buffers

and clock inverters are required to be inserted at the appropriate locations when constructing the

clock networks.

In today’s advanced technology nodes, modern VLSI circuits are required to operate in low and

high performance modes to cater to variable frequency and power requirements. Consequently,

the clock networks for such circuits must be synthesized meeting drastically different timing con-

straints in the different modes. This is particularly more challenging under the influence of varia-

tions. To meet both the timing constraints and the power budgets, advanced structures and synthesis

methodologies are required.

This dissertation focuses on techniques and methodologies to construct robust clock networks that

achieve high timing quality under the influence of variations. Clock network construction problems

are formulated and solved using various algorithms, clock network structures, and optimization

techniques. In this dissertation, an overview of the backgrounds and the previous works on the

construction of clock networks are reviewed in Chapter 2 and Chapter 3, respectively. In Chapter 4,

a buffer sizing and layer assignment framework is proposed to improve the timing quality of a

constructed clock tree. In Chapter 5, an On-chip variation-aware clock tree synthesis methodology

is proposed. Finally, a methodology to construct clock networks that can reconfigure its topology

based on the active mode of operation is proposed. The dissertation is concluded with the future

research directions in Chapter 7.

2

CHAPTER 2: PRELIMINARIES

In this chapter, the preliminaries are reviewed.

2.1 Timing constraints

Synchronous circuits are synchronized by delivering a clock signal from the clock source to flip-

flops (or clock sinks). There is a setup and hold time constraint between any pair of flip-flops

(FFs) that are only separated by combinational logic in the data and control paths, which is shown

in Figure 2.1. The clock signal must be delivered meeting setup and hold time constraints for the

functional correctness of the circuit. The setup and hold time constraints between the launching

flip-flop FFi and the capturing flip-flop FFj are formulated, as follows [26]:

ti + tCQ
i + tmax

i j + tS
j ≤ t j +T, (2.1)

ti + tCQ
i + tmin

i j ≥ t j + tH
j , (2.2)

where ti and t j are the arrival times of the clock signal to the FFi and FFj, respectively. tCQ
i is

the clock to output delay of the capturing flip-flop; T is the clock period; tS
j and tH

j are the setup

time and hold time of FFj, respectively. tmax
i j (tmin

i j) is the maximum (minimum) delay through

the combinational logic between FFi and FFj. The clock skew between the pair of clock sinks is

defined to be equal to skewi j = ti− t j. Using ubi j = T − tCQ
i − tmax

i j − tS
j and li j = tCQ

i + tmin
i j − tH

j ,

the setup and hold time constraints in Eq (2.1) and Eq (2.2) can be respectively reformulated as

explicit skew constraints, as follows:

lbi j ≤ skewi j ≤ ubi j (2.3)

3

Figure 2.1: Setup and hold time constraints between a pair of flip-flops.

2.2 Variations in the timing

The intrinsic variability in the semiconductor fabrication and fluctuations in the environmental

operating conditions introduces variations in the timing. The clock network that synchronizes each

circuit is naturally vulnerable to these variations because it spans across each chip. Consequently,

the variations in the timing must be accounted for when constructing clock networks.

The variations are introduced by the variability in the manufacturing process such as differences

in the channel lengths, wire widths, and oxide thickness; and the changes in the environmental

conditions such as temperature, supply voltage, and cross-talk noise.

The variations within a single die are spatially correlated and commonly referred to as On-Chip

variations (OCV). However, the variations between each die are directly dependent on the param-

eters of the process at the time of manufacturing. These process parameters are captured using

process corners. To account for the OCVs at a process corner, spatially correlated variations are

applied to the process parameters across the chip. Consequently, the timing quality of a clock

network can be evaluated by performing simulations for each corner using the process parameters

that are obtained after applying OCVs.

4

Clock networks can easily be constructed to meet the timing constraints under the nominal condi-

tions. However, it is challenging to meet the timing constraints under variations because variations

may severely shrink the timing margins. The variations in the timing can be integrated into the

explicit skew constraints in Eq (2.3), as follows:

lbi j +(δi +δ j)≤ skewi j ≤ ubi j− (δi +δ j) (2.4)

where δi and δ j are the timing deteriorates at FFi and FFj, respectively. The timing deteriorates are

directly correlated with the distance between FFi and FFj in the topology of the clock network [17,

35].

Non-tree

Cross-links

clock source

clock sinks

wire buffer

Tree Near-tree

(a) (b) (c)

Figure 2.2: Clock networks with a) tree, b) near-tree and c) non-tree topology.

2.3 Clock networks with different topologies

The overall power consumption and robustness to variations of a clock network is determined by

the topology, which can be in the form of a tree, near-tree, or non-tree, which are illustrated in

Figure 2.2. Clock trees consume the least power but are vulnerable to variations. Clock networks

with a non-tree or near-tree topology have multiple paths from the clock source to the clock sinks.

When inserted appropriately, the alternative paths neutralize the negative impact of variations.

However, clock networks with a non-tree topology (as clock meshes) may consume 3X-5X more

5

power than a clock tree [19, 25, 27]. Near-tree structures provide high robustness to variations,

while power consumption is only slightly higher than the power consumption of a clock tree.

Therefore, clock network structures in the form of a near-tree topology [9, 13, 15, 16, 24, 35, 69]

has been the focus of many recent studies. More details about the properties of the clock network

topologies are provided in Chapter 6.

6

CHAPTER 3: REVIEW OF PREVIOUS WORKS

In this chapter, we present an overview of the backgrounds and the previous works.

3.1 Elmore delay model

The clock network synthesis process requires a delay model to propagate the clock signal in order

to evaluate the timing performance of a clock network. The interconnects of a clock network can

be represented as a lumped Resistor-Capacitor (RC) network. The delay of any node in an RC

network can be obtained by formulating and solving differential equation problems. In general,

Elmore delay model [50] is extensively used to obtain the delay in an RC network, which is based

on the first order approximation of the delay. There exists complex delay models that are used to

more accurately compute the delay in an RC network [14, 44–47, 60]. However, these techniques

are computationally expensive compared to the Elmore delay model.

 (a) (b)

x

y

Figure 3.1: a) A clock tree topology and b) The RC representation of the clock tree topology in
(a).

A clock network with a tree topology and its equivalent RC representation is illustrated in (a)

and (b) of Figure 3.1, respectively. The delay of a specific node in the RC network shown in

Figure 3.1(a) can be computed using the equation, as follows [50]:

7

tvs,vi = ∑
∀ j∈path(vs,vi)

R j ·Cd, j (3.1)

where vi is a node in the topology; tvs,vi is the propagation delay from the clock source (vs) to vi;

path(vs,vi) is the path from vs to vi; R j is the total resistance of a wire segment that connects two

nodes on the path(vs,vi); Cd, j is the total downstream capacitance on v j, i.e., the total capacitance

of the subtree rooted at v j.

The voltage at a certain time (t) on each node in the RC network can be computed using the

equation as follows:

Vi(t) =Vdd · (1− e−t/tvs,vi) (3.2)

where Vi(t) is the voltage at node i; Vdd is the supply voltage. The delay is generally defined as the

duration for the output capacitance to be charged from 0V to Vdd/2. Using the Eq (3.2), the total

elapsed time until the voltage reaches to Vdd/2 can be derived, as follows:

td,vi = ln(2) · tvs,vi (3.3)

where td,vi is the delay of the clock signal that propagates from vs to vi. The switching performance

of the interconnects can be evaluated using the transition time at each node. The transition time

at a certain node is the elapsed time that the voltage changes between 0.1Vdd and 0.9Vdd [26].

The transition time at any internal node in an RC network can be formulated using Eq (3.2), as

follows [54]:

ttr,vi = ln(9) · tvs,vi (3.4)

8

where ttr,vi is the transition time of the clock signal at vi. Using the Eq (3.3) and Eq (3.4), the delay

and the transition time of the clock signal can be respectively computed to evaluate the timing of

the clock network.

3.2 Clock tree synthesis

Clock tree synthesis (CTS) is a process that is performed to construct a clock tree that delivers a

clock signal from a clock source to each clock sinks. The inputs to this process are x-y coordinates

of clock sinks and a technology library. Given these inputs, a clock tree is constructed to connect

the clock source to the clock sinks using wires and devices from the technology library. Moreover,

the clock signal must be delivered meeting the skew constraints in Eq (2.3) for the functional

correctness of the circuits.

Early studies on CTS focused on the construction of zero skew trees (ZSTs) [5, 23, 56] and bounded

skew trees (BSTs) [6]. Later, the construction of useful skew trees (USTs) [22, 28, 32, 34] was

explored to meet the explicit (arbitrary) skew constraints imposed between each pair of sequential

elements (or clock sinks) that are only separated by combinational logic in the control logic and

data paths.

In the remaining of this section, the backgrounds for the clock tree synthesis process is presented.

We mainly focused on explaining the construction of the ZSTs. However, the details of the modifi-

cations required to synthesize BSTs and USTs are provided for different steps of the CTS process.

9

3.2.1 Construction of clock trees using the Elmore delay model [26]

In this section, it is explained how clock trees can be constructed using the Elmore delay model

in Section 3.1, which is described more detailed in [26]. Zero skew tree construction is proposed

in [5, 23, 56]. The construction is based on iteratively merging two subtrees (or clock sinks) into

a large subtree such that a target skew constraint is guaranteed to be satisfied under the Elmore

delay model. This is achieved by propagating the downstream delay of each subtree and finding a

tapping point where two subtrees are required to be merged to meet the skew constraint.

Let u and v be the two subtrees; r be the newly formed subtree that is constructed after merging

subtrees u and v; tmax
u,r (tmax

v,r) be the maximum downstream delay through the path from r to u (v).

tmax
u,r and tmax

v,r can be respectively computed, as follows:

tmax
u,r = tmax

u + x ·L ·Rwire · (x ·L ·Cwire +Cu)

tmax
v,r = tmax

v +(1− x) ·L ·Rwire · ((1− x) ·L ·Cwire +Cv) (3.5)

where tmax
u and tmax

v are the maximum downstream delay of subtrees u and v, respectively; L is the

shortest manhattan distance between u and v; x is the ratio of the wirelength between u and tapping

point r to the L. Cu and Cv are the downstream capacitance at u and v, respectively. Rwire and Cwire

are the resistance and capacitance per unit distance, respectively.

To construct zero skew trees, two subtrees are required to be merged such that tmax
u,r = tmax

v,r is

satisfied. Consequently, a zero skew merge can be achieved by solving the following equation to

find the required x, as follows [23, 26]:

x =
tmax
v − tmax

u +Rwire ·L · (Cwire ·L+Cv)

Rwire ·L · (Cwire ·L+Cu +Cv)
(3.6)

10

After finding x for a zero skew merge using Eq (3.6), the distance from u to the tapping point can

be computed as xL, which is shown in Figure 3.2(a). The embedding locations for a zero skew

merge can be represented as merging segments (ms), which is shown in Figure 3.2(b). Note that

a detour wire is required to be inserted to balance the delay of the subtrees when x < 0 or x > 1

conditions are obtained. Next, the maximum propagation delay of the subtree r is updated to be

the maximum of tmax
u,r and tmax

v,r , i.e., tmax
r = max{tmax

u,r , tmax
v,r }. Consequently, a zero skew clock tree

can be constructed by iteratively performing a zero-skew merge on a pair of subtrees until a single

subtree is obtained.

Similar to the zero skew merges, merges for non-zero skew constraints can be performed to con-

struct BSTs and USTs under the Elmore delay model. This can be achieved by propagating both the

maximum and minimum downstream delay of the subtrees as in Eq (3.5). Let tmin
u,r and tmin

v,r be the

minimum downstream delay through the path from r to u and v, respectively. Using the maximum

and minimum downstream delay of subtrees, multiple equations as in Eq (3.6) can be formulated

and solved to determine the possible embedding locations that ensure to meet |tmax
u,r −tmin

v,r |< skewu,v

and |tmax
v,r − tmin

u,r | < skewv,u. Let x+ and x− be the maximum and minimum possible x value that

meets the skew constraints. While performing merge operations in the construction of BSTs and

USTs, there exists a range of possible x values instead of a single x value due to that a non-zero

skew is allowed to be utilized. Therefore, the skew constraints are guaranteed to be satisfied by

selecting any x in the range of [x−,x+]. The embedding locations for a non-zero skew merge are

represented using merging regions (mr), which is shown in Figure 3.2(c).

In the next section, we review a well-known algorithm to construct clock trees with buffers, which

guarantees to meet both the skew constraints and the transition time constraint under the Elmore

delay model.

11

u

tu

v

tv
L

xL (1-x)L

r

msr

xL

(1-x)L

 (a) (b) (c)

mrr

x-L (1-x-)L

x+L (1-x+)L

msr

_

msr
+

msu

msv

msu

msv

Figure 3.2: a) A pair of subtrees and the embedding location are illustrated. b) The illustration of
embedding locations as merging segments (ms) of the corresponding nodes in (a) for a zero skew
merge. c) The illustration of embedding locations as merging regions (mr) of the corresponding
nodes in (a) for a non-zero skew merge.

3.2.2 Deferred merge embedding (DME) Algorithm

In [1, 4, 23], DME algorithm is proposed to construct ZSTs. The DME algorithm is extended

to construct BSTs [6] and USTs [22]. Given a clock tree topology and a set of clock sinks, the

DME algorithm constructs a clock tree while ensuring to meet the skew constraints under the

Elmore delay model. The algorithm is based on first iteratively performing a bottom-up merging

of subtrees phase and insertion of buffers phase. Next, a top-down embedding phase is performed

to determine the exact locations of the internal nodes in each subtree.

Merging of subtrees: The bottom-up merging of subtrees phase is based on iteratively merging the

pair of subtree (or clock sinks) that requires minimum wirelength to be joined while meeting the

skew constraint under the Elmore delay model. The embedding locations for each pair of subtree

is determined using the procedure explained in Section 3.2.1 and the corresponding pair of subtree

is merged at the embedding location. The merging process is facilitated by a nearest neighbour

graph (NNG) [5]. An NNG is used to capture the subtrees and the wirelength distances between

the pairs of subtrees. Iteratively, the pair of subtrees that require minimum amount of wirelength

12

to be joined is selected to be merged. The transition time is evaluated after each pair of subtrees

have been merged. If the transition time constraint is violated, subtrees are unmerged and locked

for further merging operations. Merging operations are performed until all the subtrees are locked.

Insertion of buffers: The input to the insertion of buffers step is a set of locked subtrees from

the merging of subtrees step. For each subtree, a minimum sized buffer that can drive the locked

subtree (without violating the transition time constraint) is inserted at the root. Next, a stem wire

is inserted between the buffer and the subtree [4].

The merging of subtrees and the insertion of buffers steps are repeated until there is one single

subtree left. Finally, a top-down embedding phase is performed to determine the exact locations

(x-y coordinates) of each internal node within each subtree. More details about the DME algorithm

and its variants are in [1, 4, 6, 22, 23, 26].

3.3 Clock tree optimization

Clock tree optimization (CTO) is a process that is performed to eliminate the timing violations that

are obtained after the CTS process. State-of-the-art CTO techniques are based on specifying and

realizing delay adjustments using buffers and detour wires to remove the timing violations [30,

38, 39]. In this section, we first present how the slacks in the timing constraints are captured

(see Section 3.3.1). Next, we explain how delay adjustments are specified to remove the timing

violations (see Section 3.3.2).

13

3.3.1 Timing slacks under OCVs

After a clock tree has been constructed, the slack in the constraints can be computed, as follows:

setup_slacki j = t j− ti +T − tS
j − tCQ

i j − tmax
i j −δi−δ j, (3.7)

hold_slacki j = ti− t j + tCQ
i j + tmin

i j − tH
j −δ j−δi, (3.8)

where setup_slacki j and hold_slacki j are respectively the slacks in the setup and hold time con-

straints in Eq (2.1) and Eq (2.2). A negative slack implies a violation of a timing constraint while a

positive slack implies available margins in a timing constraint. δi and δ j are the timing deteriorates

that are introduced by OCV.

Figure 3.3: The illustration of the path that introduces OCV into the timing constraints between
FFi and FFj.

The timing deteriorates δi and δ j are dependent on the distance between FFi and FF j in the clock

tree topology. A clock tree containing the flip-flops FFi and FF j is illustrated in Figure 3.3. Let the

closest common ancestor (CCA) between FFi and FF j in the clock tree be denoted CCA(i, j) [35].

Based on the model in [39], δi and δ j are equal to cocv · tCCA(i, j),i and cocv · tCCA(i, j), j, respectively.

tCCA(i, j),i and tCCA(i, j), j are the propagation delays from the CCA(i, j) to FFi and FF j, respectively.

cocv is a parameter determined by circuit simulations.

14

The slack in the timing constraints can be captured in a slack graph (SG) [30]. In an SG G= (V,E),

the vertices V represent clock sinks and the edge weights E represent the slack in the timing

constraints. An edge ei j with weight wi j = setup_slacki j is added for each setup time constraint.

An edge e ji with weight w ji = hold_slacki j is added for each hold time constraint. The timing

quality of a clock tree is measured in total negative slack (TNS) and worst negative slack (WNS),

i.e., the sum and the maximum of the negative timing slacks in Eq (3.7) and Eq (3.8).

3.3.2 Predicted timing quality and CTO

Timing violations in constructed clock trees are typically eliminated by realizing non-negative

delay adjustments [12, 30, 38, 39]. A delay adjustment is a change of the propagation delay through

a branch in the clock tree. Note that the use of delay adjustments is equivalent to specifying latency

constraints in the form of points [38, 39] or ranges [30] for the clock sinks.

Let 4k ≥ 0 be a delay adjustment at a location k in a clock tree. Delay adjustments are typically

restricted to locations where buffers are placed in the topology to avoid disrupting the overall

timing [39]. Next, the final timing quality is predicted by specifying a set of delay adjustments

using an LP formulation, as follows [30, 39]:

min ct ∑
k∈B
4k + cwnsPwns + ctnsPtns (3.9)

s.t. ∑
k∈path(CCA(i, j),i)

(1+ cocv)4k − ∑
h∈path(CCA(i, j), j)

(1− cocv)4h− si j ≤ wi j,

si j ≤ Pwns, (i, j) ∈ E,

∑
(i, j)∈E

si j = Ptns,

where path(i,CCA(i, j)) and path(j,CCA(i, j)) respectively denote the buffers on the paths from

15

CCA(i, j) to FFi and FF j. wi j is the weight of an edge in the SG. si j ≥ 0 is a timing violation

that is not eliminated by realizing the specified delay adjustments. Ptns and Pwns are respectively

the predicted TNS and WNS that is achieved by realizing the specified delay adjustments. The

ct , cwns and ctns parameters are used to balance the different terms in the objective function. The

(1+ cocv) and (1− cocv) factors account for the timing deteriorates introduced by the specified

delay adjustments.

3.4 Gate sizing and layer assignment

Gate sizing and layer assignment can be performed to save power while meeting constraints on

the maximum latency (or propagation delay). Buffer sizing and layer assignment for zero skew

and bounded skew clock trees has been studied in [29, 37, 41, 48]. Buffer sizing for USTs was

performed using a Taylor expansion and sequential linear programming in [33, 48]. Nevertheless,

it is difficult to handle discrete buffer sizes and layer assignments using linearization. In Sec-

tion 3.4.1, we explain an algorithm that is commonly used to perform discrete gate sizing and layer

assignment.

3.4.1 Van Ginneken’s algorithm

Van Ginneken’s algorithm is a well known dynamic programming algorithm that minimizes the

latency of an RC tree using buffer sizing and layer assignment under the Elmore delay model [43].

In [36], the algorithm was extended to find all Pareto optimal solutions in terms of power con-

sumption and latency while considering slew propagation. Moreover, it is straightforward to set

different latency constraints for different clock sinks.

The algorithm solves the problem of selecting a buffer size for each buffer and a layer assignment

16

for each wire in a clock tree by propagating candidate solutions from the leaf nodes to the source

node, which is illustrated in Figure 3.4. Each candidate ck stores the maximal downstream delay

dk, non-shielded downstream capacitance capk, and cost in terms of total capacitance costk, i.e.,

ck = (dk, capk, costk) [36]. First, a candidate solution with zero maximum downstream delay is

created at each clock sink. Both the non-shielded capacitance and the cost are set equal to the sink

capacitance, which is illustrated in the bottom-left of Figure 3.4.

pruning

enumeration

Cost

Cost

D
e
la

y
D

e
la

y

P
ro

p
a
g
a
ti

o
n
 o

f
c
a
n
d
id

a
te

s

Figure 3.4: Extension of van Ginneken’s algorithm [36].

The candidate solutions at the sinks are then propagated up towards the root of the tree. When a

candidate solution is propagated through an edge (buffer or wire), all possible realizations (buffer

sizes or layer assignments) are enumerated as candidates to realize the edge, shown in the bottom-

right of Figure 3.4. New candidates are also formed when two branches in the clock tree are joined.

Pruning is applied to eliminate non-Pareto optimal solutions, which is shown in the top-right of

Figure 3.4. Next, the minimum cost candidate solution that meets a defined latency requirement

is selected at the root. Lastly, the size for each buffer and the layer assignment for each wire is

determined based on the selected candidate.

17

3.5 Techniques of handling OCVs

In this section, an overview of previous works on the construction of clock trees under the influence

of OCVs is presented. Most common approaches to handle the OCVs in the literature are: i)

inserting safety margins into the timing constraints before (or during) the clock tree synthesis, ii)

applying a clock tree optimization phase to an initially constructed clock tree in order to eliminate

the timing violations, and iii) reconstructing the topology of a clock tree to reduce the effects of

OCVs.

Techniques of handling OCVs by inserting safety margins before (or during) the clock tree syn-

thesis process have been explored in [22, 32, 58]. The insertion of uniform safety margins was

investigated in [22, 32]. The limitation of that approach is that the required safety margins depend

on the clock tree topology and are therefore non-uniform. Consequently, the use of non-uniform

safety margins results in that many timing constraints will have excessive (or inadequate) timing

margins inserted, which translates into substantial hardware overheads (or timing violations). To

reduce the overheads, the magnitude of the safety margins can be tailored to the clock tree topol-

ogy during the synthesis process [31, 58]. Unfortunately, these techniques still result in clock trees

with timing violations [58] or unacceptable overheads [31].

The state-of-the-art methodology for synthesizing clock networks consists of a CTS phase and a

CTO phase, which are detailed in Section 3.2 and Section 3.3, respectively. In the CTS phase,

an initial clock tree is first constructed. Next, the impact of the OCVs and the associated tim-

ing violations are determined, which is explained in Section 3.3.1. An aggressive CTO phase is

subsequently applied to eliminate all timing violations [12, 30], which is based on specifying and

realizing delay insertions as explained in Section 3.3.2. The delay insertions improve timing by

redistributing timing margins from satisfied to unsatisfied timing constraints. While CTO is ca-

pable of significantly improving the timing quality of most clock trees, there is no guarantee that

18

the optimization process will converge to a solution without timing violations. In particular, it

may be impossible to close timing if the quality of the initial clock tree is poor. Advanced CTO

techniques have recently been investigated to solve this challenge. The reconstruction of the clock

tree topology with the objective of minimizing latency or placing certain clock sinks close in the

topology was explored in [39, 42, 55]. Nevertheless, CTO flows are still time consuming and often

require costly manual intervention. This stems from that the state-of-the-art design flows consider

the impact of OCVs too late in the synthesis process.

In Chapter 4, a framework that can realize both positive and negative delay adjustments using

buffer sizing and layer assignment is proposed. In addition, a clock tree synthesis methodology

that can account for the effects of OCVs early in the synthesis flow is proposed in Chapter 5.

3.6 Clock network synthesis for multiple modes of operations

Meeting tight skew constraints under the influence of PVT variations is particularly challenging

for circuits that are required to operate in low and high performance modes. In each mode, the

timing constraints are drastically different. For the functional correctness of the circuit, clock

networks must be synthesized such that the clock signal is delivered meeting timing constraints in

both modes of operation under variations.

Many recent studies are focused on constructing clock trees that utilize a combination of guard-

bands and useful skew to satisfy timing constraints under the variations in multiple modes [34].

However, for circuits with strict requirements on the clock frequency (in the high performance

modes), it may be impossible to satisfy the timing constraints using a clock network with a tree

topology.

As described in Section 2.2, the robustness to variations of a clock network is highly dependent on

19

the topology. The clock networks with a near-tree structure provides robustness to variations while

the power consumption is similar to that of a clock tree. In the past decade, clock networks with

near-tree topologies have been investigated, which promise significant improvements in robustness

while the power consumption is similar to that of a clock tree [9, 13, 15, 16, 24, 35]. In [13, 15, 24],

near-tree structures were constructed by inserting cross-links. In [35], multiple tree structures were

fused together in order to create a multilevel fusion tree. In [9], a locally-merged structure was

formed by fusing subtrees at internal nodes of a clock tree. The fusion was performed at internal

nodes instead of at the clock sinks to reduce hardware overheads. A drawback of all near-tree

structures is that there are multiple gates driving the same net of wires, which may result in short

circuit current. Moreover, the same topology is used in every operational mode, despite that the

robustness provided by a near-tree is only required in the high performance modes. It is easy to

understand that a clock network with a tree topology could easily meet the timing constraints with

much smaller power in the low performance modes.

In this dissertation, we addressed the problem of constructing clock networks for multiple modes

of operations under variations, and proposed a new synthesis methodology to solve this problem

in Chapter 6.

20

CHAPTER 4: LATENCY CONSTRAINT GUIDED BUFFER SIZING AND

LAYER ASSIGNMENT FOR CLOCK TREES WITH USEFUL SKEW

4.1 Introduction

Closing timing using CTO is a tremendously challenging problem that may require designer in-

tervention. The timing constraints must be satisfied even while the circuit is under the influence

of OCVs. In addition, power consumption is a key design constraint in the advanced technol-

ogy nodes. To meet both timing constraints and power constraints, it is essential to utilize every

available timing margin by exploiting useful skew. In this chapter, we present a latency constraint

guided buffer sizing and layer assignment framework for clock trees with useful skew, called the

(BLU) framework. The proposed framework is applied after an initial clock tree has been con-

structed, and before traditional CTO is applied. The key idea is to perform a CTO by realizing

delay adjustments using buffer sizing and layer assignment. The proposed framework can realize

negative delay adjustments and handle discrete buffer sizes.

4.1.1 Motivation and the overview of the BLU framework

A delay adjustment is illustrated in Figure 4.1(a). The specified delay adjustments are traditionally

realized by inserting delay buffers (see Section 3.3), which is shown in Figure 4.1(b). In contrast,

this chapter proposes to realize delay adjustments using buffer sizing and layer assignment, which

is illustrated in Figure 4.1(c). Compared with buffer insertion, layer assignment is a more gentle

method of realizing delay adjustments that may result in lower power consumption.

This chapter is based on the paper that is published at 2019 Asia and South Pacific Design Automation Confer-
ence [59] © 2019 ACM.

21

+10

higher metal layer

lower metal layer

 (a) (b) (c)

Figure 4.1: (a) A specified delay adjustment. (b) Delay adjustment realized by buffer insertion. (c)
Proposed realization of delay adjustments using buffer sizing and layer assignment.

The BLU framework specifies a set of delay adjustments and predicts the final timing quality (Ptns,

Pwns) that would be achieved using traditional CTO. Ptns and Pwns are respectively the predicted

TNS and WNS. Next, the delay adjustments are translated into latency constraints without de-

grading Ptns and Pwns. Using the specified latency constraints, buffer sizing and layer assignment

is conducted using an extension of van Ginneken’s algorithm, i.e., delay adjustments are realized

while reducing the total capacitive cost. To further reduce power consumption, the BLU frame-

work attempts to relax each point constraint into a latency range without degrading Ptns and Pwns.

Moreover, a method of improving Ptns and Pwns by specifying tight latency constraints using neg-

ative delay adjustments is proposed. Lastly, traditional CTO is applied to realize remaining delay

adjustments such that TNS and WNS are reduced to Ptns and Pwns.

Compared with in [33, 48], the BLU framework allows buffer sizing and layer assignment to be

performed while utilizing discrete buffer and interconnect libraries. We consider the BLU frame-

work to be orthogonal to the techniques of realizing negative delay adjustments by reconstructing

the topology of a clock tree in [39, 42].

The experimental results demonstrate that the BLU framework is capable of reducing total capac-

itance, TNS and WNS with 13%, 58%, and 20%, respectively.

22

4.1.2 Proposed framework

Non-negative delay adjustments are realized by inserting buffers and detour wires during CTO,

which translates into overhead in terms of total capacitance. In contrast, van Ginneken’s algorithm

(with the extension in [36]) is capable of trading-off maximum delay for total capacitive cost.

The key idea of the BLU framework is to use buffer sizing and layer assignment to realize delay

adjustments. Consequently, the proposed framework has the potential to improve power consump-

tion while reducing TNS and WNS to Ptns and Pwns, respectively. Extensions to further improve

performance are presented in Section 4.2.

Van Ginneken’s algorithm requires maximum delay (or latency) constraints. The latency con-

straints are obtained from the delay adjustments specified using Eq (3.9). The obtained constraints

are in the form of points. Therefore, each delay adjustment is required to be realized exactly. Let

li denote the upper bound of the latency constraint to sink i. The constraints requires each arrival

time ti to be equal to the latency constraint li. However, van Ginneken’s algorithm only ensures

that ti ≤ li. Nevertheless, it is expected that the arrival times ti will be close to li, as increasing

the arrival time (or delay) typically results in a reduction of total capacitive cost. Moreover, the

difference between ti and li can be realized through traditional CTO after the proposed framework

has been applied.

4.2 The BLU framework

The baseline of the BLU framework is presented in Section 4.2.1. In Section 4.2.2, point con-

straints are relaxed into range constraints to save capacitive cost. In Section 4.2.3, the latency

constraints are tightened to improve Ptns and Pwns.

23

4.2.1 Baseline of the BLU framework

{ {+5 +20

o�1 o�2 o�3 o�4 o�5

(a) (b) (c)

{ {

lmax

l1 l2 l3 l4 l5

+20
+5

t1 t2 t3 t4 t5

:SG1

2 3

4
5

Solve LP

in Eq (3.9)

(d) (e) (f)

van Ginneken's

algorithm

selected

solution

(Ptns, Pwns)

and

Figure 4.2: (a) SG. (b) Ptns and Pwns and delay adjustments. (c) latency constraints. (d) offsets. (e)
van Ginneken’s algorithm. (f) selected candidate solution.

The BLU framework is illustrated with an example in Figure 4.2. First, an SG is formed based

on the timing and the topology of the initial clock tree, as illustrated in Figure 4.2(a). Next, the

LP formulation in Eq (3.9) is solved to specify delay adjustments and to predict Ptns and Pwns,

which is illustrated in Figure 4.2(b). The latency constraint li for each clock sink i is obtained by

floating down each delay adjustments to the clock sinks and combining the adjustments with the

current arrival time of the clock signal, which is shown in Figure 4.2(c). The maximum latency

constraint is denoted lmax. Next, an offset o f fi equal to, lmax− li, is introduced for each clock sink,

as illustrated in Figure 4.2(d). A candidate solution ci (in van Ginneken’s algorithm) is created

at each clock sink i with a maximum downstream delay equal to o f fi, which is illustrated in

Figure 4.2(e). Subsequently, van Ginneken’s algorithm is applied and the minimum cost candidate

solution that satisfies lmax is selected at the root. The latency constraint lmax at the root ensures that

24

each arrival time ti is smaller than li. Moreover, it is guaranteed that at least one candidate solution

will satisfy lmax at the root of the clock tree, i.e., the initial clock tree. Figure 4.2(f) shows the

clock tree after buffer sizing and layer assignment has been performed with respect to the selected

candidate solution. Compared with the clock tree in 4.2(a), the clock tree in Figure 4.2(f) will have

the same predicted timing quality but smaller capacitive cost.

4.2.2 Relaxing the latency constraints

In this section, the BLU framework is extended to enable further savings in capacitive cost by

relaxing the point constraints into latency range constraints. The latency constraints specified by

Eq (3.9) are shown in Figure 4.3(a). The relaxed latency range constraints are shown in Fig-

ure 4.3(b). The BLU framework specifies the range constraints while guaranteeing that Ptns and

Pwns are not degraded if every arrival time ti is within the respective latency range. lr
i is the relaxed

latency constraint for clock sink i and li ≤ lr
i .

l1 l2 l3 l4 l5

lr1 l
r
2 l

r
3 l

r
4 l

r
5

l1 l2 l3 l4 l5

li

i

lri
} 10

(1 + cocv)

pSG

10

15

0

5

(a) (b) (c)

Figure 4.3: (a) Latency constraints. (b) Relaxed latency constraints. (c) Method to find lr
i .

The method used to find the latency range constraint is illustrated in Figure 4.3(c). First, a pre-

dicted slack graph (pSG) is formed [42]. A pSG, captures the predicted slacks in the timing con-

straints after the delay adjustments specified by Eq (3.9) are realized. Moreover, the predicted

slack violations si j are added to the respective edges in the pSG such that all edges in the pSG are

25

non-negative. Next, a relaxed latency constraint lr
i is found, as follows:

lr
i = li +

wmin
ki

(1+ cocv)
, (4.1)

where wmin
ki is the edge with the minimum weight of all the fan-in edges of node i in the pSG, i.e.,

eki ∈ E. The (1+ cocv) factor used to compensate for the increased timing deteriorates δi and δ j.

4.2.3 Tightening the latency constraints

In this section, the BLU framework is extended by allowing negative delay adjustments to be

specified in the clock tree, which may improve Pwns and Ptns, as illustrated in Figure 4.4.

-10 {

(a) (b)
t1 t2 t3 t4 t5

-5

max

violation

-4

1

2

3

4

�1 + �2 + �4 >= 0 - 5 -10 +4

0

0

} }

path marked with

}

(c)

�h in path(s,k)�h >= Lsk +lvio

k

van Ginneken's

algorithm

Figure 4.4: (a) Delay adjustments specified by Eq (3.9). (b) Clock tree after van Ginneken’s
algorithm. lmax is violated by the path marked with a red dashed line. (c) Generation of a delay
adjustment constraint.

Compared with non-negative delay adjustments that are relatively easy to realize, it may be im-

possible to physically realize negative adjustments [39]. Consequently, it may be impossible to

satisfy the latency constraint lmax using Van Ginneken’s algorithm, which results in that TNS and

26

WNS cannot be reduced to the predicted Ptns and Pwns using traditional CTO. The BLU framework

solves this challenge by generating delay adjustment constraints to the LP formulation in Eq (3.9),

which ensures that only negative delay adjustments that can be realized are specified.

First, Eq (3.9) is solved while allowing both non-negative and negative delay adjustments, which

is shown in Figure 4.4(a). Negative delay adjustments are facilitated by replacing the expression

ct ∑k∈B4k with cp ∑k∈B4+−cn ∑k∈B4− in Eq (3.9), where4+≥ 0 and4−≥ 0 are non-negative

and negative delay adjustments, respectively. cp and cn are user defined parameters. Next, the

remainder of the BLU framework is applied and the resulting clock tree is shown in Figure 4.4(b).

If any candidate solution satisfies the latency constraint lmax at the root, the same flow as for non-

negative delay adjustments is applied (see Section 4.2.1).

If no candidate solution meets the latency constraint lmax, the BLU framework selects the candidate

solution that is closest to satisfying the latency constraint. Let lvio be the violation of the latency

constraint and let path(s,k) be the path from the source to clock sink k that created the largest

latency violation, which is illustrated with a dashed red line in Figure 4.4(b). It is straightforward to

find the path based on backtracking the candidate solutions generated by van Ginneken’s algorithm.

Next, a delay adjustment constraint is generated to force the delay adjustments on the path(s,k) to

be lvio larger than currently specified, as follows:

∑
h∈path(s,k)

4h ≥ Lsk + lvio, (4.2)

where Lsk is the sum of the delay adjustments on the path from the source to sink k in the current

solution of Eq (3.9). 4h are variables in Eq (3.9).

A new set of latency constraints are specified by solving the LP formulation in Eq (3.9) in com-

bination with the delay adjustment constraints in Eq (4.2), which is shown in Figure 4.4(c). The

27

process is iteratively repeated until the latency constraint lmax is satisfied. Ptns and Pwns are in-

creased in each iteration as additional constraints are introduced to the LP formulation. Latency

constraints are also introduced at internal nodes to speed up the convergence process. Violations of

latency constraints at internal nodes are accounted for by modifying the costk of a candidate to be

equal to costi = captot +cvio · ltot
vio, where ltot

vio is the sum of the violations in the downstream subtree

and cvio is a user specified parameter.

4.3 Methodology

The flow of the framework is illustrated in Figure 4.5. First, an initial clock tree is constructed using

CTS [30, 34], which is the input to the BLU framework. Next, the BLU framework is performed,

as described in Section 4.2. Lastly, CTO is performed to reduce TNS and WNS to Ptns and Pwns

using the techniques in [30]. The high level flow for the BLU framework is outlined below.

input

CTS in [31,34]

Specify latency point constraints

by solving LP

Specify latency range constraints

Size bu�ers and

perform layer assignment

output

latency constraints satis�ed?Yes
No

Generation of

delay adjustment

constraints

B
L
U

 f
ra

m
e
w

o
rk

{
Predict

Ptns and Pwns

Reduce

TNS and WNS

to Ptns and Pwns

CTO in [30]

Figure 4.5: Proposed flow for the BLU framework.

A specify latency point constraints step is performed to predict Ptns and Pwns and to specify a set

of latency constraints in the form of points. The point constraints are extended into latency ranges

28

in a specify latency range constraints step. Next, buffer sizing and layer assignment step is per-

formed using an extension of van Ginneken’s algorithm that utilizes three-dimensional sampling

and transition time constraints [40]. If the latency constraints are satisfied, buffer sizing and layer

assignment is performed. If the latency constraints are not satisfied, a generation of delay adjust-

ment constraints step is performed to introduce delay adjustment constraints. Next, the framework

returns to the specify point constraints step. The process is iteratively repeated until all the latency

constraints are satisfied.

4.4 Experimental evaluation

The experimental evaluation is performed on a quad core 3.4 GHz Linux machine with 32GB of

memory. The proposed algorithms are implemented in C++. IBM ILOG CPLEX is used to solve

the LP formulations in the framework [66].

Table 4.1: Circuits in [31].

Circuit Sinks Skew constraints
(name) (num) (num)
s1423 74 78
s5378 179 175
s15850 597 318

msp 683 44990
fpu 715 16263
usbf 1765 33438
dma 2092 132834

pci bridge32 3578 141074
ecg 7674 63440

des peft 8808 17152
eht 10544 450762
aes 13216 53382

The evaluation is performed using the framework proposed in [31], which is an extension of the

problem formulation used in the ISPD 2010 contest [20]. The properties of the buffers and the

29

wires are obtained from the 45 nm technology used in the ISPD 2010 contest. The non-uniform

skew constraints and the sink locations are generated using Synopsys DC and ICC. Moreover,

there is a transition time constraint at each buffer and clock sink. A summary of the circuits is

shown in Table 4.1. We construct and compare eight different tree structures to evaluate the BLU

framework.

(1) The UST structure is a clock tree constructed using the CTS engine provided by the authors

in [31]. (2) The UST-CTO structure is the structure obtained by applying the CTO in [30] to the

UST structure. (3) The UST-P structure is obtained by applying the BLU framework to the UST

structure using point constraints, i.e., the framework presented in Section 4.2.1. (4) The UST-P-

CTO is the structure obtained by applying CTO to the UST-P structure. (5) The UST-R structure is

the UST-P structure obtained by relaxing the point constraints into latency ranges, i.e., the method

described in Section 4.2.2. (6) The UST-R-CTO structure is the structure obtained by applying

CTO to the UST-R structure. (7) The UST-RT structure is the UST-R structure combined with the

technique of tightening the constraints proposed in Section 4.2.3. (8) The UST-RT-CTO structure

is obtained by applying CTO to the UST-RT structure.

We evaluate the tree structures in terms of total capacitance, timing performance and run-time.

It is well known that the power consumption of a clock tree is highly correlated with the total

capacitance. The timing quality is evaluated using TNS and WNS, which are computed using

Eq (3.7) and Eq (3.8); Ptns and Pwns are obtained from solving the Eq (3.9). The arrival times ti and

t j are obtained using NGSPICE simulations. All tree structures in the experimental results satisfy

the same transition time constraints as in [31]. In Section 4.4.1, we evaluate the BLU framework

on the clock trees in [31], which only requires non-negative delay adjustments. In Section 4.4.2,

we evaluate the BLU framework on the clock trees with strict timing constraints, which utilizes

both non-negative and negative delay adjustments.

30

Table 4.2: Evaluation of various tree structures in terms of total capacitance.

Circuit Capacitance (pF)
(name) UST [31] UST-CTO [31] UST-P UST-P-CTO UST-R UST-R-CTO
s1423 3.43 3.43 3.02 3.02 2.96 2.96
s5378 5.65 5.65 5.04 5.04 4.87 4.87
s15850 18.09 18.85 15.84 16.86 15.77 16.62

msp 1.41 1.41 1.35 1.35 1.20 1.20
fpu 1.60 1.60 1.52 1.52 1.35 1.35
usbf 4.55 4.55 4.14 4.14 4.07 4.07
dma 5.06 5.17 4.49 4.65 4.44 4.56
pci 7.65 7.65 7.02 7.06 6.71 6.71
ecg 23.44 23.66 20.39 20.96 20.54 20.84
des 18.82 18.84 16.58 16.62 16.62 16.64
eht 20.14 20.14 17.85 17.85 17.62 17.62
aes 151.70 152.91 132.91 135.28 132.91 135.60

Norm. 0.99 1.00 0.89 0.90 0.87 0.87

Table 4.3: Evaluation of various tree structures in terms of runtime.

Circuit Runtime (mins)
(name) UST [31] UST-CTO [31] UST-P UST-P-CTO UST-R UST-R-CTO
s1423 0.0 0.1 0.0 0.1 0.1 0.1
s5378 0.0 0.1 0.1 0.1 0.1 0.1

s15850 0.2 2.3 0.3 14.7 0.2 2.0
msp 0.0 0.0 0.5 0.0 3.7 0.1
fpu 0.0 0.2 0.7 0.0 1.2 0.0
usbf 1.0 0.2 0.4 0.2 2.4 0.2
dma 1.0 2.1 1.1 2.5 10.3 2.1
pci 2.0 0.2 2.3 0.8 15.8 0.2
ecg 8.0 11.3 1.7 15.5 5.0 12.8
des 4.0 1.1 1.3 0.9 3.9 0.4
eht 8.0 0.6 28.6 0.4 107.2 0.4
aes 45.0 110.5 7.2 65.7 15.4 84.3

Norm. 0.30 1.00 0.60 1.10 1.20 1.70

31

4.4.1 Evaluation of positive delay adjustments

The total capacitance and the runtime of each structure are shown in Table 4.2 and Table 4.3,

respectively. The normalized performances with respect to the UST-CTO structures are shown in

the row labeled as ‘Norm’. The run-times in Table 4.3 are the run-times of individual synthesis

steps. The normalized run-times are the cumulative run-times. The timing performance is not

shown because there are no timing violations after CTO.

First, we apply traditional CTO to the UST structures. All timing violations are eliminated at the

expense of an average 1% increase in capacitive cost. Compared with the UST structures, the

UST-P structures have 10% lower capacitance. The capacitance reduction stems from that van

Ginneken’s algorithm assigns interconnects to lower metal layers and that buffers are downsized

while still meeting the transition time constraints. Next, CTO is applied to the UST-P structures.

The UST-P-CTO structures have 10% lower capacitance than the UST-CTO structures, as the CTO

phase only resulted in a small increase in total capacitance. The capacitive improvements come at

an expense of a 10% increase in run-time.

Next, we compare UST-R structures with UST-P structures. The table shows that the UST-R

structures have 2% lower capacitance than the UST-P structures. The improvement in capacitance

is a result of the relaxation of point constraints into range constraints. Ideally, the UST-R structures

should have better capacitive performance than the UST-P structures on all circuits. However, the

sampling in van Ginneken’s algorithm may result in minor capacitance fluctuations (see circuits

des and aes). After CTO is applied, it can be observed that the UST-R-CTO structures have 3%

lower total capacitance than the UST-P-CTO structures. The average run-time of the UST-R-

CTO structures is 1.5X higher than the UST-P-CTO structures. The UST-R structures demonstrate

that the BLU framework is capable of performing buffer sizing and layer assignment to reduce

capacitive cost without degrading timing performance. The improvements are achieved at the

32

expense of overhead in run-time.

4.4.2 Evaluation of negative delay adjustments

In this section, we focus on how the BLU framework performs on clock trees with non-zero Ptns

and Pwns. The TNS, WNS, Ptns, and Pwns are respectively labeled ‘TNS’, ‘WNS’, ‘Ptns’ and ‘Pwns’

in Table 4.4. The evaluation is performed on the circuits ecg and aes. The synthesis tool in [31] is

used to generate clock trees with different guard bands (labeled ‘M’), which regulates a trade-off

between total capacitance and timing performance.

First, traditional CTO is applied to the UST structures. The UST-CTO structures have 72%, 67%

lower TNS and WNS than the UST structures, respectively. It can be observed that TNS and WNS

after CTO is strongly correlated with Ptns and Pwns before CTO. On the other hand, the timing

improvement result in a 10% increase in total capacitance, which stems from the insertion of delay

buffers.

Compared with the UST structure, the UST-R structures have 13%, 23%, 12%, lower total ca-

pacitance, Ptns, and Pwns, respectively. The Ptns, and Pwns improvements stem from that the layer

assignment of interconnects under the bottom most buffers. The TNS and WNS may be improved

or degraded. However, the timing performance is expected to be recovered after CTO, as Ptns and

Pwns are improved.

Compared with the UST-CTO structures, the UST-R-CTO structures have 10% lower capacitance

and 5% shorter run-time. The TNS is 29% lower and WNS is 13% higher. Compared with the

UST-R structures, the UST-RT structures have 43% and 28% lower Ptns and Pwns, respectively.

The timing improvements come from realizing negative delay adjustments. The total capacitance

of the UST-RT structures are 8% higher than the UST-R structures. The increase in total capaci-

33

tance stems from realizing negative delay adjustments using large buffers. It is expected that the

UST-RT structures and UST-R structures have similar performances on the clock trees with zero

Ptns and Pwns, as no negative delay adjustments are specified. Compared with the UST-R-CTO

structures, the UST-RT-CTO structures have 41%, 29%, lower TNS and WNS, respectively. The

timing improvements of the UST-RT-CTO structures come at an expense of a 6% increase in total

capacitance and a 27% increase in run-time.

The UST-R-CTO structures and UST-RT-CTO structures demonstrate that the BLU framework is

capable of exploring a trade-off between timing quality and capacitive cost using negative delay

adjustments. Moreover, the results of the UST-R-CTO structures and UST-RT-CTO structures are

notably better than the UST-CTO structures in [31].

4.5 Summary and conclusion

In this chapter, a latency constraint guided buffer sizing and layer assignment framework is pro-

posed. The proposed framework is capable of handling discrete buffer sizes and layer assignments

while utilizing useful skew under the influence of variations.

34

Table 4.4: Evaluation of negative delay adjustments.

Circuit M Structure TNS WNS Ptns Pwns Cap Run-time
(name) (ps) (name) (ps) (ps) (ps) (ps) (pF) (min)

UST [31] 643 18 0 0 23.4 8.0
UST-CTO [31] 0 0 0 0 23.7 11.3

30 UST-R 352 18 0 0 20.5 5.0
UST-R-CTO 0 0 0 0 20.8 12.8

UST-RT 414 15 0 0 20.5 8.0
UST-RT-CTO 0 0 0 0 20.8 7.1

UST [31] 2218 19 50 2 19.7 9.2
UST-CTO [31] 929 3 709 2 21.3 23.4

ecg 15 UST-R 4286 24 23 1 17.7 6.1
UST-R-CTO 150 4 86 3 19.5 17.6

UST-RT 1544 18 0 0 18.7 29.9
UST-RT-CTO 18 1 0 0 20.1 16.8

UST [31] 15059 33 5299 22 17.6 4.5
UST-CTO [31] 6259 25 5919 23 20.6 42.9

0 UST-R 14865 41 6121 25 15.0 5.0
UST-R-CTO 7136 28 6615 26 17.9 21.3

UST-RT 16553 35 2882 19 17.4 21.3
UST-RT-CTO 3332 20 3928 19 20.6 35.4

UST [31] 1315 22 0 0 151.7 45.0
UST-CTO [31] 0 0 0 0 152.9 172.5

50 UST-R 3045 26 0 0 132.9 15.4
UST-R-CTO 0 0 0 0 135.6 84.3

UST-RT 3028 26 0 0 132.9 19.0
UST-RT-CTO 0 0 0 0 135.5 86.4

UST [31] 9897 33 2604 12 135.6 12.1
UST-CTO [31] 3208 16 3064 14 145.8 110.6

aes 40 UST-R 25873 44 2200 11 119.1 21.6
UST-R-CTO 2972 17 2500 14 128.9 143.4

UST-RT 14118 36 2151 11 123.5 51.2
UST-RT-CTO 2498 14 2413 13 132.8 19.2

UST [31] 16041 32 7095 14 112.1 24.9
UST-CTO [31] 8448 18 7950 15 121.6 139.0

30 UST-R 36367 47 4478 13 97.8 9.2
UST-R-CTO 5697 19 5186 15 111.8 73.5

UST-RT 15685 36 2636 11 102.2 56.5
UST-RT-CTO 3569 16 3330 14 113.4 189.2

UST [31] 3.56 3.04 1.00 1.00 0.91 0.13
UST-CTO [31] 1.00 1.00 - - 1.00 1.00

Norm. - UST-R 6.33 3.84 0.77 0.88 0.79 0.26
UST-R-CTO 0.71 1.13 - - 0.90 0.95

UST-RT 4.24 3.19 0.44 0.63 0.85 0.60
UST-RT-CTO 0.42 0.80 - - 0.95 1.21

35

CHAPTER 5: AN OCV-AWARE CLOCK TREE SYNTHESIS

METHODOLOGY

5.1 Introduction

In this chapter, we propose an OCV-aware clock tree synthesis methodology that aims to rethink

how to account for OCVs. The key idea of the methodology is to predict the impact of the OCVs

early in the synthesis process. This will allow the OCVs to be compensated for using non-uniform

safety margins during the initial tree construction. The goal is to only leverage CTO to eliminate

minor timing violations arising from modeling errors, which results in that the synthesis flow is

almost correct-by-design. In contrast, the state-of-the-art methodologies account for OCVs using

aggressive CTO, which results in unpredictable optimization and timing results.

The proposed OCV-aware clock tree synthesis methodology consists of a top-down phase and a

bottom-up phase. In the top-down phase, numerous top-level tree topologies are enumerated and

pruned. Next, a virtual clock tree is formed to estimate the timing and variations within every tim-

ing constraint. Subsequently, non-uniform safety margins are inserted to account for the variations.

In the bottom-up phase, each virtual clock tree is refined into a real clock tree by constructing sub-

trees that connect the clock sinks to the top-level tree. If the constructed subtrees meet a set of

latency constraints imposed by the virtual clock tree, the timing constraints are guaranteed to be

satisfied by design. Otherwise, the virtual clock tree is updated with improved timing predictions

and the process is iteratively repeated. The experimental results demonstrate that the proposed

OCV-aware synthesis flow reduces the average TNS and WNS by 90% and 75%, respectively.

Moreover, the run-time of the proposed flow is 47% shorter when compared to the CTO based

This chapter is based on the paper that is published at 2021 International Conference on Computer Aided Design
conference [72] © 2021 IEEE.

36

flow.

The remainder of the chapter is organized as follows: Motivation is highlighted in Section 5.2.

Methodology is explained in Section 5.3. Experimental results are presented in Section 5.4. The

chapter is concluded in Section 5.5.

5.2 Motivation

In this section, we highlight the limitations of the previous works and provide an overview of the

proposed methodology.

5.2.1 Limitations of previous works

The state-of-the-art synthesis methodology for clock networks is shown in Figure 5.1(a). As the

OCVs depend on the timing and topology of the clock tree, uniform safety margins are first in-

serted into the timing constraints. Next, an initial clock tree is constructed. Given the topology and

timing of the initial clock tree, the negative impact of OCVs and the associated timing violations

are calculated. Finally, aggressive CTO is iteratively applied to eliminate timing violations. If

the timing cannot be closed, expensive manual feedback is performed using ECOs. It is not sur-

prising that ECOs are commonly required because the initial clock tree was constructed without

accounting for OCVs.

5.2.2 Proposed methodology

The flow of the proposed OCV-aware clock tree synthesis methodology is shown in Figure 5.1(b).

The methodology consists of a top-down phase and a bottom-up phase. In the top-down phase,

37

(a) (b)

Figure 5.1: (a) State-of-the-art CTS+CTO based synthesis flow. (b) Proposed OCV-aware clock
tree synthesis flow.

a top-level tree is constructed. (In the proposed framework, numerous top-level tree topologies

are enumerated to explore a larger solution space.) Next, a virtual clock tree is constructed based

on the top-level tree to estimate the non-uniform safety margin required in each timing constraint.

In the bottom-up phase, subtrees are constructed to connect the clock sinks to the top-level tree.

If the subtrees meet the constraints imposed by the virtual tree, the timing is satisfied by design.

Otherwise, the timing and impact of OCVs within the virtual tree are updated, and the bottom-up

phase is repeated. As the flow accounts for the impact of OCVs early in the synthesis process,

there is no need for costly manual intervention using ECOs. The subsequent CTO is only used to

38

eliminate minor violations introduced by modeling errors1.

Table 5.1: Holistic guidelines and objectives for different parts of a clock tree.

Part of Tree properties Objective Construction
Topology Timing Hardware method

& latency cost
Top-level Majority Minority Minimize Top-down

latency
Bottom-level Minority Majority Minimize Bottom-up

cost

The proposed flow is inspired by the holistic guidelines for clock tree synthesis shown in Table 5.1.

A clock tree can be decomposed into a top-part and a bottom-part. The table shows that the top-

part of a clock tree stands for a very small portion of the total capacitance and hardware overheads.

At the same time, it defines the overall timing of the clock tree. In contrast, the bottom part of

the clock tree accounts for a majority of the hardware resources and capacitance. On the other

hand, it has a limited impact on the timing. Therefore, we speculate that it would be advantageous

to construct the top-part of the clock tree first to define the timing and the negative impact of the

OCVs. While fixating the top-level tree (a restriction) may introduce some hardware overheads, the

overheads are expected to be small as the cost of the top-part of the clock tree is minor compared

with the bottom-part. Next, the bottom-part of the clock tree can be constructed in a cost efficient

manner bottom-up. The main challenge to this approach is that it is difficult to select the ideal top-

level tree. The larger the specified top-level tree is, the more predictable the OCVs become. On the

other hand, the introduced overheads become larger when the top-level tree is larger. Consequently,

designs with tight (loose) timing constraints require a larger (smaller) top-level tree. To solve this

challenge, the methodology enumerates and prunes out several different top-level tree topologies.

1The construction of clock trees is traditionally guided by less accurate delay models that can be evaluated quickly.
In contrast, CTO is commonly performed using computationally expensive delay models that are more accurate. We
refer to the difference in accuracy between the two models as modeling errors.

39

5.3 Methodology

In this section, we provide the details of the proposed OCV-aware clock synthesis methodology.

Figure 5.2: Detailed flow of proposed OCV-aware synthesis methodology.

5.3.1 The overview of the framework

The flow of the proposed methodology is shown in Figure 5.2 and illustrated with an example in

Figure 5.3. The flow consists of a top-down phase and a bottom-up phase. In the top-down phase, a

top-level tree is constructed by enumerating and pruning top-level tree topologies, which is shown

in (a) and (b) of Figure 5.3. The details are provided in Section 5.3.2 and Section 5.3.3. In the

40

Figure 5.3: (a) Multiple candidate top-level topologies are enumerated. (b) The top-level topology
is determined after pruning the candidate topologies. (c) The top-level clock tree and the virtual
topology are constructed. (d) The latencies to the clock sinks are estimated using the virtual topol-
ogy. (e) Non-uniform safety margins are inserted in the skew constraints and a latency range is
specified for each clock sinks. (f) Bottom-level subtrees are iteratively constructed by inserting
safety margins that are tailored to the topology. If the latency constraints are not satisfied, the
construction process returns to (c) with improved timing predictions.

bottom-up phase, a virtual clock tree is first formed based on the top-level tree, which is shown

in Figure 5.3(c) and detailed in Section 5.3.4. Next, the timing and OCV impact is estimated

based on the virtual tree. The estimates are used to insert non-uniform safety margins in the

timing constraints, as shown in Figure 5.3(d) and explained in Section 5.3.5. Next, the timing

constraints are converted into latency constraints, which is shown in Figure 5.3(e) and explained

in Section 5.3.6. A latency constraint is a lower and upper bound on the arrival time of the clock

signal to a clock sink. The conversion is motivated by that it is typically easier to construct clock

trees based on latency constraints than skew constraints. Finally, subtrees are constructed bottom-

up to connect the clock sinks to the leaf nodes of the top-level tree as shown in Figure 5.3(f) and

Section 5.3.7.

41

After bottom-level subtrees have been constructed, we compute the maximum latency to each clock

sink. If all the latency constraints are satisfied, the synthesis process has converged and timing is

closed in the presence of OCVs. Otherwise, the synthesis process returns to the insertion of non-

uniform safety margins step. However, the timing of the virtual tree is updated with timing from

the constructed subtrees. Hence, the timing and the impact of the OCVs can be computed more

accurately. In our future work, we plan to explore adjusting the topology of the top-level tree based

on feedback from the construction process.

5.3.2 Enumeration of top-level trees

In this section, it is explained how different top-level trees are enumerated. The top-level trees in

the proposed methodology are in the form of uniform and non-uniform H-trees [54]. While any

type of top-level trees could be used, we select H-trees because they have short latency, which in

turn results in smaller OCVs. The H-trees divide the die into multiple rectangular regions. Each

leaf node of the top-level tree is expected to drive all the clock sinks in the corresponding region.

(a) (b)

Figure 5.4: The illustration of (a) Uniform H-tree and (b) Non-uniform H-tree

42

In the proposed framework, all possible uniform and non-uniform top-level H-trees with a max-

imum of three levels are enumerated. A uniform H-tree have the same amount of levels from

the root node to each of the leaf node, which divides the die into a set of uniform regions as

shown in Figure 5.4(a). On the other hand, a non-uniform H-tree divides the die into a set of non-

uniform regions by constructing irregular level of H-trees, which is illustrated in Figure 5.4(b).

In our framework, we primarily use non-uniform H-trees to better adapt the top-level tree to the

properties of the input circuit. Note that we consider uniform H-trees are considered a subset of

non-uniform H-trees. We also limit the maximum level of an H-tree to be three. The maximum

level was selected to balance a trade-off between runtime and solution quality.

5.3.3 Pruning of top-level trees

In this section, we prune down the enumerated top-level tree topologies into a single top-level tree

topology. An alternative is to keep multiple promising topologies to improve the solution space

exploration at the expense of longer synthesis time. The pruning is performed by defining a cost

metric for each region. Next, the smallest top-level tree that satisfies a cost constraint on each

region is selected.

The cost metric attempts to limit the size of the subtrees that will be connected to each leaf node

of the top-level tree. If the subtrees become too large, the magnitude of the introduced OCVs

between different sink pairs will be large, requiring excessive safety margins. Consequently, it is

advantageous to limit the size of the subtrees. There are several features that determine the size of

the subtree constructed from the clock trees within a region of the die. We observe that the most

prevalent features are: i) the number of clock sinks, ii) the total sink capacitance, and iii) the region

43

die area. Therefore, we define the cost metric, as follows:

cost = α ·Nsink +β ·Ctotal + γ ·Adie (5.1)

where Nsink is the total number of clock sinks in a region; Ctotal is the total downstream capacitance

at the inputs of clock sinks in a region; Adie is the area of a region. α , β and γ are the parameters

to balance different terms in the cost function.

5.3.4 Construction of virtual topology

In this section, it is explained how the virtual clock tree topology is formed. The root node of

each region is located at the mid-point of a region and corresponds to the root node of a bottom-

level subtree. To obtain the virtual clock tree topology, first the clock sinks that are located at the

same region are clustered. Next, the virtual clock tree topology is formed by inserting a virtual

connection from each clock sink to its corresponding root node. The virtual clock tree topology

that is obtained after inserting the virtual connections is shown in Figure 5.3(c).

5.3.5 Insertion of non-uniform safety margins

In this section, we detail how the non-uniform safety margins are inserted in the timing constraints.

The magnitude of the OCVs in each timing constraint depends on the timing and topology of the

clock tree. In our framework, we utilize the virtual clock tree to predict the magnitude of the

OCVs. Next, we insert the appropriate non-uniform safety margins.

The timing of the clock tree and the latencies to the clock sinks are first estimated using the virtual

clock tree, which is shown in Figure 5.3(c). Let Th and Tk be the leaf node of the H-tree that is

44

located at the mid-point of region h and k, respectively. The latency on the path from CCA(h,k) to

the clock sinks in region h and k are respectively estimated as follows:

lCCA(h,k),h = lCCA(Th,Tk),Th
+ lh (5.2)

lCCA(h,k),k = lCCA(Th,Tk),Tk
+ lk

where lCCA(Th,Tk),Th
is the propagation delay on the path from CCA(Th,Tk) to Th; lCCA(Th,Tk),Tk

is the

propagation delay from CCA(Th,Tk) to Tk. lh and lk are the average latency of the bottom-level

subtrees in the virtual clock tree that are constructed in region h and k, respectively. The average

latency is used because the bottom-most subtrees are constructed without any internal restrictions

on the topology. Next, the safety margin M(h,k) is inserted in the timing constraints between clock

sinks in region h and k, as follows:

M(h,k) = cocv · (lCCA(h,k),h + lCCA(h,k),k) · cs (5.3)

where cs is a user specified parameter that can be used to scale the inserted safety margins. The

default value for the parameter cs is 1. Finally, the safety margins are inserted into the skew

constraints by replacing the δi and δ j terms in Eq (2.4) with M(h,k) in Eq (5.3) as follows:

lbi j +M(h,k) ≤ ti− t j ≤ ubi j−M(h,k) (5.4)

i ∈ h, j ∈ k

The latencies lCCA(h,k),h and lCCA(h,k),k are obtained using SPICE simulations of the top-level tree.

The average subtree latencies lh and lk are estimated to be zero in the first iteration. In subsequent

iterations, the average latency of the subtree constructed in the previous iteration is used. The

latencies of the subtrees are also obtained using SPICE simulations.

45

5.3.6 Specification of latency ranges

In this section, we explain how to specify latency constraints that ensure that the skew constraints

are satisfied. A set of latency constraints consist of a latency range for each clock sinks. A latency

range specifies a lower and upper bound on the arrival time of the clock signal to a clock sink.

Skew constraints specify a restriction on the relative arrival time of the clock signal in between a

pair of clock sinks. The motivation for converting the skew constraints into latency constraints is

that it is easier to construct clock trees with respect to latency constraints [57]. The specification

of the latency constraints is performed by capturing the skew constraints using a skew constraint

graph (SCG). Next, a latency range is specified for each clock sink by formulating and solving an

LP problem.

An SCG captures the skew constraints with non-uniform safety margins in Eq (5.4). In an SCG

G= (V,E), V is the set of clock sinks and E is the set of skew constraints. Let the flip-flops FFi and

FF j be represented by vertices i and j, respectively. For each constraint in Eq (5.4), edges ei j and

e ji are inserted to the SCG. Let wi j = ubi j−M(h,k) be the weight of edge ei j and w ji =−lbi j−M(h,k)

be the weight of edge e ji. Next, we formulate the LP formulation in [57] to specify latency ranges,

as follows:

minctns ·Ptns + cwns ·Pwns + ∑
i∈V

cr f (xub
i ,xlb

i)

xlb
i ≤ xub

i , ∀i ∈V

xub
i − xlb

j −Pi j ≤ wi j, ∀(i, j) ∈ E (5.5)

Ptns = ∑
(i, j)∈E

Pi j

Pwns ≥ Pi j,

46

where xlb
i and xub

i are the lower bound and upper bound of latency range for sink i, respectively.

f (.) is a piece-wise linear function that aims to maximize the length of the latency ranges. More

details about the piece-wise linear function is in [57]. Pi j is the term that captures the timing

violation (negative slack) in the skew constraint between FFi and FFj. Ptns and Pwns denote the

predicted total negative slack and predicted worst negative slack, respectively. cr, ctns and cwns are

respectively the parameters to balance the weights of latency range, total negative slack and worst

negative slack in the objective. In our framework, ctns and cwns are specified to be significantly

larger than cr to minimize timing violations.

5.3.7 Construction of USTs

In this section, it is explained how subtrees are constructed bottom-up to connect the clock sinks to

the top-level tree. A separate subtree construction is performed for the clock sinks assigned to each

leaf node in the top-level tree. The subtrees are constructed using the useful skew tree construction

algorithm in [57] that is based on the BST construction in [6]. Both algorithms are based on

the DME paradigm, where smaller subtrees are iteratively merged to create larger subtrees (see

Section 3.2.2).

The BST construction in [6] is based on keeping track of the minimum and maximum delay to a

clock sink within a subtree. This makes it easy to merge (or join) two subtrees while meeting a

skew bound B. The generalization to UST construction in [57] is based on converting the latency

ranges into a virtual minimum and maximum delay offset for each clock sink. Next, USTs can be

constructed while only checking that each subtree satisfies a skew bound B. Please refer to [57]

for the technical details of specifying the virtual delay offsets. The BST construction is based on

the DME paradigm and is performed exactly as in [6].

After all the clock sinks have been connected to the top-level tree, each subtree is simulated using

47

SPICE simulations. If the latency constraints are satisfied, the flow converges. Otherwise, the

framework returns to the insertion of non-uniform safety margins in Section 5.3.5. The latency

constraints are required to be checked because the UST construction only guarantees that the clock

signal is delivered within latency ranges with an arbitrary offset [57].

5.4 Experimental Evaluations

The proposed framework is implemented in C++ and evaluations are performed using a quad-

core 3.4 GHz Linux machine with 32GB of memory. The properties of buffers and wires are

obtained from a 45nm technology library in [20]. The clock tree methodology is evaluated using

the benchmarks in [7]. The details of each benchmark circuit is shown in Table 4.1. The timing

of the constructed clock trees are evaluated with circuit simulations using NGSPICE. The cocv

parameter is set to be 0.085 in our framework.

The structures are evaluated in terms of capacitance and timing quality. The timing quality is

evaluated using TNS and WNS. The performance of the proposed framework is evaluated by con-

structing three different clock tree structures. The UST-U-CTS structure is a useful skew tree

constructed with uniform safety margins inserted in the skew constraints [22, 31]. The structure is

obtained by performing multiple tree constructions with uniform safety margins of different mag-

nitude. The safety margin configuration that achieves the best timing quality is selected as the

UST-U-CTS structure. The UST-U-CTO structure is obtained by applying CTO [30] to the UST-

U-CTS structure. The UST-N structures are clock trees obtained using the proposed OCV-aware

methodology.

In Section 5.4.1, the configurations within the framework are evaluated. In Section 5.4.2, the

proposed methodology is compared with a state-of-art synthesis flow. The evaluation is performed

48

using the aforementioned tree structures.

5.4.1 Evaluation of framework configurations

In this section, we evaluate the algorithm design and parameter configurations within the proposed

methodology.

The iterative subtree construction is evaluated using the dma circuit in Figure 5.5. The evaluations

are performed by comparing the performance of each constructed clock tree within the iterative

construction process.

(a) (b)

(c) (d)

Figure 5.5: Evaluation of the framework in terms of (a) Latency. (b) Capacitance. (c) TNS. (d)
WNS.

49

The predicted latency and the actual latency of a bottom-level subtree with respect to the itera-

tion are shown in Figure 5.5(a). It can be observed that the gap between the predicted latency

and the actual latency is gradually reduced until the predicted latency is smaller than the actual

latency, which results in that the flow converges. In Figure 5.5(b), we evaluate the capacitance

of the constructed clock tree. It can be observed that the capacitance of the clock tree increases

with each iteration. This is easy to understand because the framework predicts larger and larger

latencies, which results in that gradually larger non-uniform safety margins are inserted in the

skew constraints. Intuitively, larger safety margins constrain the tree construction more, which

translates into the synthesis of clock trees with higher capacitive overheads. Next, we evaluate the

timing quality of the constructed clock trees using TNS and WNS in (c) and (d) of Figure 5.5,

respectively. The figures show that the timing quality of the constructed clock tree is improved

with each iteration. This stems from that better latency predictions are performed, which results in

that safety margins with adequate magnitude are specified. The figure shows that the framework

converges to a clock tree structure without timing violations after four iterations, which validates

the effectiveness of the proposed framework.

Figure 5.6: Sensitivity to scaling parameter cs on ecg.

We analyze the sensitivity of the framework to the cs parameter from Eq (5.3) in Figure 5.6. The

performance of the framework is evaluated in terms of total clock tree capacitance and the timing

50

cost on the ecg benchmark circuit. The timing cost is the combined cost that consists of both

TNS and WNS. The costs are weighted using ctns and cwns in Eq (5.5). The figure shows that the

timing cost of the clock tree reduces with the increase of the cs parameter. On the other hand,

the capacitance increases when the cs increases. This stems from that larger safety margins are

specified when cs is set to be larger, which constrains the clock tree construction.

Figure 5.7: Evaluation of top-level tree construction using uniform H-tree vs. non-uniform H-tree.

We evaluate the top-level tree construction based on uniform and non-uniform H-trees in Fig-

ure 5.7. The top-level tree construction technique using only uniform H-tree is based on construct-

ing 1-level, 2-level, 3-level H-trees and selecting the structure that provides the best performance

in terms of timing quality. The proposed top-level tree construction is based on enumerating and

pruning candidate topologies as explained in Section 5.3.2 and Section 5.3.3. The comparison is

performed in terms of run-time and total capacitance on the s15850 benchmark circuit. As it can be

observed in Figure 5.7, the proposed technique results in 61% shorter run-time without any capac-

itive overhead. The improvement in the run-time stems from that the clock tree can be constructed

by performing a single synthesis process using the proposed technique, while multiple clock trees

are required to be synthesized to select the uniform H-tree that performs best.

51

Table 5.2: Evaluation of the clock tree structures in terms of performance and synthesis time.

Benchmark Structure Safety margin Capacitance Latency TNS WNS Run-time
min avg max Buffer Wire Total
(ps) (ps) (ps) (pF) (pF) (pF) (ps) (ps) (ps) (min)

s15850 UST-U-CTS [22, 31] 40 40 40 5.4 14.8 23.1 374.0 66.1 14.8 1.7
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 6.6 15.0 24.6 378.5 31.8 6.1 36.3
UST-N 11.9 17.2 29.0 4.7 9.5 17.3 311.8 0.0 0.0 6.9

usbf UST-U-CTS [22, 31] 30 30 30 1.9 5.1 8.0 214.1 37.0 11.4 2.9
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 2.4 5.1 8.5 230.3 0.0 0.0 21.9
UST-N 9.7 17.7 24.4 3.2 4.4 8.7 228.8 0.0 0.0 11.8

ecg UST-U-CTS [22, 31] 35 35 35 7.7 22.4 34.8 267.1 685.4 18.9 44.4
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 11.2 23.1 39.0 283.7 31.7 3.6 416.7
UST-N 20.5 26.6 35.5 13.3 24.1 42.1 333.4 25.4 3.0 165.1

dma UST-U-CTS [22, 31] 20 20 20 1.8 4.5 7.6 180.2 144.9 8.1 5.3
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 2.6 4.6 8.5 180.2 25.9 4.4 29.8
UST-N 8.8 18.1 20.7 3.2 4.4 8.9 173.5 1.0 0.3 32.2

pci UST-U-CTS [22, 31] 30 30 30 2.5 6.5 11.2 267.1 38.9 7.3 7.3
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 3.0 6.5 11.8 276.1 2.8 0.7 67.9
UST-N 9.4 18.0 24.1 3.8 6.2 12.2 218.6 1.1 0.6 40.2

des UST-U-CTS [22, 31] 30 30 30 7.4 21.3 34.2 206.4 614.8 15.0 44.8
UST-U-CTO [30] ‘-’ ‘-’ ‘-’ 10.2 21.8 37.5 241.0 6.9 0.7 259.8
UST-N 15.8 17.6 28.7 10.4 19.0 34.9 236.3 1.7 0.5 91.1

Norm UST-U-CTS [22, 31] 0.92 0.95 1.00 1.00 0.12
UST-U-CTO [30] 1.00 1.00 0.13 0.21 1.00
UST-N 0.97 0.95 0.01 0.05 0.53

5.4.2 Comparisons with state-of-the-art

In Table 5.2, we evaluate the performance of the three clock tree structures in terms of total capac-

itance, timing quality and run-time. We evaluate the total capacitance of the structures because it

is well known to be highly correlated with the power consumption. The capacitance breakdown of

the constructed clock trees are reported in the ‘Capacitance’ column. The timing quality is evalu-

ated using latency, TNS and WNS. The latency, TNS and WNS of the structures are respectively

reported in the columns of ‘Latency’, ‘TNS’ and ‘WNS’. The minimum, average and maximum

safety margins that are used to construct the UST-U-CTS and UST-N structures are reported in

the ‘Safety margin’ column. The run-time of the synthesized clock trees are reported in the ‘Run-

time’ column. The run-times of the UST-U-CTS structure and the UST-N structure in the table

52

are the run-times of individual synthesis steps. The run-time of the UST-U-CTO structure is the

cumulative run-time, i.e., the sum of the run-time of both the UST-U-CTS structure and the CTO

process.

The normalized performance in terms of total capacitance, latency and run-time are normalized

with respect to the UST-U-CTO structure. The TNS and WNS performance of the structures are

normalized with respect to the UST-U-CTS structure. Note that all the synthesized clock trees in

Table 5.2 meet the transition time constraint.

Compared with the UST-U-CTS structure, the UST-U-CTO structure have 87% and 79% lower

TNS and WNS, respectively. The improvements in the timing quality stem from that CTO is

applied to remove the timing violations that are obtained from the UST-U-CTS structure. The

improvements in timing quality come at the expense of increasing the capacitance and the latency

respectively by 8% and 5%. This is expected because CTO inserts buffers and wires into the clock

tree to realize the delay adjustments, which introduces overheads in terms of total capacitance.

The run-time of the UST-U-CTO is 88% longer because CTO requires performing a vast amount

of timing analysis using SPICE simulations.

Next, we compare the performance of the UST-U-CTO structure with the UST-N structure. The

table shows that the UST-N structure has 90% and 75% lower TNS and WNS, respectively. The

improvements in the timing quality stem from synthesizing the clock tree by inserting non-uniform

safety margins that are tailored to the topology. It is promising that the capacitance and the latency

of the UST-N structure are respectively 3% and 5% lower when compared to the UST-U-CTO

structure. This stems from that the UST-U-CTO structure is constructed by inserting safety mar-

gins that are larger than required for certain skew constraints, which results in constructing larger

clock trees. On the other hand, the UST-N structure inserts only the required amount of safety

margins that are tailored to the topology, which are reported in Table 5.2. The run-time of the

53

UST-N structure is 48% shorter when compared to the UST-U-CTO structure. The run-time im-

provements stem from that the UST-N structure is obtained by synthesizing a single clock tree

while the UST-U-CTO structure is obtained by constructing multiple clock trees using different

safety margins and selecting the clock tree structure that performs best in terms of TNS and WNS.

Based on the evaluations above, the UST-N structure demonstrates that the proposed methodology

in Figure 5.1(b) outperforms the traditional clock tree construction methodology in Figure 5.1(a)

in terms of average timing quality, capacitance and run-time.

5.5 Summary and conclusion

In this chapter, we proposed an OCV-Aware clock tree synthesis methodology that is capable of

accounting the impact of OCV during the synthesis process. Moreover, the convergence of the

proposed synthesis flow is completely automated unlike the state-of-the-art synthesis flow that

often requires costly manual intervention in the form of ECOs to close timing. Compared to the

state-of-the-art flow, the proposed flow demonstrates higher timing quality with shorter run-time

and lower capacitance.

54

CHAPTER 6: SYNTHESIS OF CLOCK NETWORKS WITH A MODE

RECONFIGURABLE TOPOLOGY

6.1 Introduction

This chapter addresses the problem of constructing clock networks for circuits that are required to

operate in a low and high performance mode under PVT variations, which has been discussed in

Section 3.6. To solve this problem, a clock network with a mode reconfigurable topology (MRT) is

proposed for circuits that particularly have only positive-edge triggered sequential elements. The

main contributions are summarized, as follows:

• Reconfigurable Topology: The proposed MRT structure can reconfigure the topology of the

clock network based on the operational mode. In high performance mode, the MRT structure

delivers the clock signal using a near-tree topology to provide robustness to variations. In

low performance mode, power is saved by reconfiguring the clock network to deliver the

clock signal using a tree topology.

• Circuit Innovations: The reconfiguration of the topology of an MRT structure is facilitated

by OR-gates and a single clock gate. The OR-gates are used to construct alternative paths

to each clock sink, which improves the robustness to variations. The advantage of using

OR-gates to construct redundant paths is that no short circuit current is introduced, as there

is only a single gate driving each net of wires.

• Automated Synthesis Methodology: We propose an automated synthesis methodology to

construct MRT structures. The methodology balances hardware overhead and robustness to

This chapter is partially based on the paper that is published at 2020 International Symposium on Physical Design
Conference [71] © 2020 ACM.

55

variations.

• Experimental Validation: The experimental results show that MRT structures provide

higher robustness to variations and up to 25% lower power consumption than state-of-the-art

near-tree structures in the high performance mode. In the low performance mode, the power

consumption is 35% lower due to the ability of reconfiguring the topology into a tree.

The remainder of the chapter is organized, as follows: preliminaries are given in Section 6.2.

Problem formulation is provided in Section 6.3. Previous works are reviewed in Section 6.4.

The proposed MRT structure is introduced in Section 6.5 and the methodology is explained in

Section 6.6. The experimental results are presented in Section 6.7.

6.2 Preliminaries

Timing constraints for multiple modes: For circuits with multiple operational modes, the timing

constraints in Eq (2.1) and Eq (2.2) are required to be satisfied in all modes. The terms in Eq (2.1)

and Eq (2.2) have different values at each operational mode due to different clock frequencies and

supply voltages are used.

Let B be a lower bound on |lbi j| and |ubi j|. Note that lbi j is negative and ubi j is positive for the

circuits that are focused on this work. Similarly, let D be an upper bound of the timing deteriorates

(δi + δ j) for a clock network with a tree topology. D is determined after the clock network is

constructed and the timing deteriorations (δi+δ j) are known. This can be achieved by performing

timing analysis for each operational mode while applying various forms of variations and recording

the maximum (δi + δ j). Consequently, the skew constraints in Eq (2.4) can be reformulated, as

56

follows:

D−B≤ skewi j ≤ B−D. (6.1)

Meeting the explicit skew constraints under the nominal conditions is easy (D = 0). When D < B,

it is typically possible to construct a clock tree that satisfies the timing constraints under variations.

When D > B, it is in general necessary to construct a clock network with a near-tree topology1.

Near-tree clock networks have a tighter upper bound on (δi + δ j). The bound is tighter because

all pairs of clock sinks with timing constraints are located closer in the near-tree topology [35].

The near-tree structures are commonly synthesized with zero skew to maximize the robustness to

variations [20, 21].

Dynamic Voltage and Frequency Scaling (DVFS) : Circuits with multiple modes utilize a lower

clock frequency in the low performance modes. The scaled down clock frequency allows the

supply voltage to be scaled down to save power without introducing any timing violations. The

dynamic power consumption P is calculated, as follows [26]:

P = αsw ·CL ·V 2
DD · f , (6.2)

where αsw is the activity factor, CL is the switching capacitance, VDD is the supply voltage, and f

is the clock frequency.

When the clock frequency is reduced in the low performance modes, timing margins are introduced

in the limiting setup and hold time constraints. These timing margins allow the supply voltage to

be scaled down until the maximum propagation delay through the combinational logic becomes

too long. The relationship between the supply voltage and the propagation delay can be formulated

1Useful skew can be leveraged to enable clock trees to be constructed when D is only slightly larger than B [32].

57

as follows [49]:

tpd ∝
Vdd

(Vdd−Vt)2 , (6.3)

where tpd is the propagation delay of the combinational logic, Vt is the threshold voltage. It can

also be understood from the Eq (6.3) that scaling up the supply voltage reduces the propagation

delay, which introduces timing margins in the setup and hold time constraints. Consequently, sup-

ply voltage can be scaled up to meet the timing constraints in Eq (2.1) and Eq (2.2), which results

in increasing the power consumption. Furthermore, several recent studies attempt to squeeze out

additional power savings by performing clock tree optimization, where multiple modes are simul-

taneously optimized to improve both timing and power [8, 39].

6.3 Problem formulation

This chapter is focused on constructing clock networks for circuits that only have positive-edge

triggered sequential elements and are required to operate either in a low performance mode or in

a high performance mode. The clock frequency and the timing constraints are different for each

operational mode. Consequently, clock networks must meet the setup and hold time constraints in

Eq (2.1) and Eq (2.2) under PVT variations for each mode of operation. Moreover, the transition

time constraints are required to be satisfied. The objective is to minimize the weighted clock power

(PT) using the cost metric as follows:

PT = βPH + γPL, (6.4)

where PH and PL are the power consumption in high performance mode and low performance

mode, respectively. β and γ are user defined parameters, which are used to balance PH and PL in

58

Eq (6.4).

6.4 The limitations of the previous studies

In Table 6.1, we compare the properties of clock networks with different topologies.

Potential

short

circuit

current

Local merges

Near-tree Non-tree

Cross-links

clock source

clock sinks

wire buffer

Tree Near-tree

 (a) (b)

 (c) (d)

Figure 6.1: Clock networks with different topologies and the illustration of short circuit current on
each topology.

As discussed in Section 2.3 and Section 3.6, there is a trade-off between robustness and power

consumption for tree and non-tree (or near-tree) structures [9, 13, 15, 19, 27, 35]. The non-tree

(or near tree) structures have multiple alternative paths from the clock source to each clock sink,

which neutralizes the negative impact of variations. Naturally, the multiple paths introduce hard-

ware overheads with respect to a tree topology. The current trend is to insert the redundancy

at internal nodes of a tree structure to balance the robustness improvements with the hardware

overheads [9, 35]. Clearly, near-tree structures seem advantageous to non-tree structures as clock

59

meshes. Nevertheless, near-tree structures are not widely (or at all) adopted in the industry. This is

due to that i) near-tree structures introduce short circuit current and ii) near-tree structures can not

be constructed using the tree construction algorithms that are integrated into the EDA tools. These

challenges stem from that near-tree structures have multiple gates driving the same net of wires, as

shown in Figure 6.1. One of the reasons why clock meshes have been successfully adopted in the

industry is that symmetric clock trees are traditionally used to drive the mesh grid, which is easy

to construct. Moreover, there have already been substantial investments in specialized EDA tools

for the synthesis and analysis of such mesh structures. Nevertheless, the concept of sink-splitting

was recently proposed to allow near-tree structures to be constructed using tree construction al-

gorithms [35]. The technique involves splitting sinks (or the input pins to buffers) into multiple

virtual sinks (or pins). Next, after a tree structure has been constructed to deliver the clock signal to

each of the virtual sinks, the virtual sinks are fused to form a near-tree structure. An intuitive idea

to reduce the power consumption in the low performance modes is to turn-off part of the non-tree

(or near-tree) structure using clock gates while still guaranteeing that the clock signal is delivered

using at least one path from the clock source to each clock sink. However, this is impossible to

perform using state-of-the-art non-tree (or near-tree) structures because it would create static short

circuit current.

Table 6.1: Comparison between clock networks with tree, near-tree, and non-tree topologies.

Topology Work Robustness Power Based on Compatible with
to tree Voltage Reconfig-

variations structure scaling uration
Tree [1, 3, 23] low small Yes Yes No

Near-tree [9, 15, 35] high medium No Yes No
Non-tree [19, 25, 27] high very large No Yes No

MRT This high medium Yes Yes Yes
(near-tree) work

In this chapter, we propose a clock network with a mode reconfigurable topology (MRT) with

60

properties as labeled in Table 6.1. The MRT structure has similar performance as near-tree struc-

tures in earlier studies but multiple paths are joined using OR-gates instead of wires. Consequently,

there is only one gate driving each net of wires. Therefore, it is easy to understand that the MRT

structure can be reconfigured into a tree topology by gating the clock signal in part of the structure.

Moreover, the MRT structures can be constructed using the tree construction algorithms that are

adopted in the EDA tools. Consequently, the MRT structure is based on tree structures.

6.5 Proposed MRT Structure

In this section, we introduce the properties of the proposed MRT structure. The overview of the

MRT structure is given in Section 6.5.1. In Section 6.5.2, it is explained how MRT structure in the

form of near-tree topology improves robustness to variations. In Section 6.5.3, we explained how

MRT structures save power in the low performance mode.

6.5.1 Overview of the MRT structure

In this section, the proposed MRT structure is explained using the Figure 6.2. The MRT structure is

constructed to operate in two modes using buffers, wires, OR-gates and a clock gate. The structure

consists of two top-level trees that are joined using OR-gates to drive the bottom most subtrees.

The input to the MRT structure is a mode control signal and the clock signal from the clock source.

The mode control signal specifies the mode that the circuit should operate. In the high performance

mode 1, the clock gate is transparent and the entire MRT structure is used to deliver the clock signal

to the clock sinks, i.e., the topology is in the form of a near-tree. In the low performance mode 2,

the clock signal is gated and the part of the MRT structure that is used to deliver the clock signal to

the clock sinks is in the form of a tree topology. In Figure 6.2, a few gates and subtrees are labeled

61

‘1’ and ‘1 2’ to indicate the modes where the respective components are used to deliver the clock

signal.

Clock gate

Clock source

Buffer

1: High performance mode 1

 (near-tree topology)

0: Low performance mode 2

 (tree topology)

OR-gate

NAND-gate

In1

In2

In1 In2

Out

'1 2' '1 2' '1 2'

'1 2' '1 2''1' '1'

(a) (b)

(c) (d)

120 140 160 180 200

Arrival time (ps)

0

20

40

60

F
re

q
u

e
n

c
y

120 140 160 180 200

Arrival time (ps)

0

20

40

F
re

q
u

e
n

c
y

120 140 160 180 200

Arrival time (ps)

0

20

40

60

F
re

q
u

e
n

c
y

Figure 6.2: The arrival time distributions (for the positive-edge of the clock signal) at different
points with respect to an OR-gate are shown in (a), (b) and (c). The variance of the arrival time
distribution at the output of the OR-gate is tighter than that of the variance at the inputs, which
demonstrates that OR-gates improve the robustness to variations. (d) The proposed MRT structure
is constructed using OR-gates to provide robustness to variations.

6.5.2 Improving the robustness in high performance modes

In the high performance mode, the robustness to variations is improved by the two top-level trees

that are joined together using the OR-gates. However, OR-gates only improve the robustness of the

positive-edge of the clock signal. Nevertheless, positive-edge triggered sequential elements have

loose timing constraints on the negative-edge of the clock signal. Therefore, it can be concluded

that the MRT structure improves the overall robustness to variations.

62

The robustness of the positive-edge is improved because the OR-gates are implemented by NAND-

gates with one INV-gate connected to each their inputs, as illustrated in the bottom right part of

Figure 6.2. The two input NAND-gate has two parallel PMOS transistors that may charge the

net attached to the output of the NAND-gate. Under nominal conditions, the MRT structure is

designed such that the clock signal arrives at the same time to the separate input pins of each

OR-gate. Hence, both PMOS transistors in the NAND-gate will equally contribute to charging the

downstream net. Under variations, it is expected that the arrival time of the clock signal to the

separate input pins will be different. The end-result is that the PMOS transistor that is turned-on

first (last) will charge the net more (less) compared within the nominal case. A simple but effective

model to estimate the robustness improvement of an OR-gate is to approximate the effective arrival

time of the clock signal to the OR-gate with the mean of the two separate arrival times, i.e., an OR-

gate will improve the robustness to variations by averaging out the negative effect of the variations.

Of course, the model only holds when the last PMOS transistor to be turned-on is activated before

the net downstream of the OR-gate is completely charged by the other PMOS transistor. Therefore,

the proposed OR-gate is preferred to the traditional OR-gate consisting of a NOR-gate connected

in series with an INV-gate. The explanation is that the capacitance of the internal node in the

traditional OR-gate is smaller than the capacitance of the downstream subtree, which means that

the internal node will be charged faster, and fewer variations can be neutralized.

To confirm that OR-gates improve the robustness of the delivery of the positive-edge of the clock

signal, the structure in the figure is simulated using NGSPICE [14] while applying various forms

of correlated variations such as wire width, channel length, supply voltage, and temperature vari-

ations using the Monte Carlo framework in [9]. More details about the variations are provided in

Section 6.7. The arrival time distributions at the inputs of an OR-gate are shown in (a) and (b)

of Figure 6.2. It is concluded that the OR-gates improve the robustness to variations because the

variance of the arrival time distribution at the output of the OR-gate is close to half of the variance

63

of the distribution above the OR-gate, which is shown in Figure 6.2(c).

In terms of the negative-edge of the clock signal, it can be understood that the OR-gates act as a max

operator using the same simple model. Although we are targeting designs with only positive-edge

triggered sequential elements in this work, we experimentally observed that the MRT structures

also deliver the negative-edge of the clock signal with higher robustness than a clock tree (see

Section 6.7.1.4). The explanation is that the max operator effectively slows down the clock signal

on paths where the propagation delay has been sped-up by variations more than it further slows

down the propagation delay of paths that have become slower due to variations. Nevertheless,

we intend to perform further analyses of the impact on the setup and hold times for circuits with

negative-edge and dual-edge triggered sequential elements in our future work.

6.5.3 Reducing power in low performance modes

To save power in the low performance mode, the MRT structure can be reconfigured from near-

tree topology to a tree topology based on the active mode. The reconfiguration can be performed

without introducing any short circuit current because each net of wires is connected to only a single

driving gate. In fact, this is the first near-tree (or non-tree) structure that can be configured based

on the active mode. However, the reconfiguration introduces a trade-off between supply voltage

scaling and clock network switching capacitance, which is shown in Table 6.2.

Table 6.2: Comparison between DVFS and topology reconfiguration combined with DVFS.

Technique Vdd Cclk Power
DVFS very small full small

DVFS + Reconfiguration small reduced very small

64

The dynamic power consumption of a VLSI circuit is calculated, as follows:

P =Ccomb ·V 2
DD · f ·αcomb +Cclk ·V 2

DD · f ·αclk, (6.5)

where f is the clock frequency; Ccomb and Cclk are the total capacitance of the combinational logic

and the clock network, respectively. αcomb and αclk are the activity factors of the combinational

logic and clock network, respectively. VDD is the supply voltage.

Traditional DVFS technique is performed by scaling down the supply voltage to the minimum pos-

sible value that the timing constraints are guaranteed to be satisfied (as explained in Section 6.2).

For MRT structures, we propose to combine topology reconfiguration with DVFS in the low per-

formance mode. First, the MRT structure is reconfigured into a tree topology. Second, DVFS is

applied to the MRT structure.

The reconfiguration of the topology into a clock tree reduces the clock tree switching capacitance

(Cclk) by turning-off a large portion of the clock network. However, the reconfiguration may intro-

duce small nominal skews between pairs of clock sinks because the MRT structure has OR-gates

with a different number of inputs, which have different propagation delays. Therefore, the tim-

ing margins available for voltage scaling are reduced by the reconfiguration. Consequently, the

supply voltage will be slightly higher compared with only applying voltage scaling. Nevertheless,

the overall power is expected to be significantly lower. The explanation is that the propagation

delay of any gate is proportional to Eq (6.3). Therefore, large timing margins are required to only

slightly reduce the supply voltage when the supply voltage VDD is close to the Vt . Consequently,

the reduction in the Cclk is expected to translate into large power savings than reducing VDD slightly

more.

65

One root ?

No
Yes

Insertion of bu�ers

 First stage

construction

Merging of subtrees

Insertion of OR-gates

Construction of the

reconfigurable topology

Clock network

optimization

Merging of subtrees

Construction of the N-1

subsequent

 top-level trees

One root ?
No

Yes

Insertion of bu�ers

Merging of subtrees

using TRG

Construction of the

core top-level tree

Yes

(iter== N)

Edge pruning

TRG construction

TRG guided

top-level tree

construction

iter++

No

Constrcution

of top-level

trees

Supply voltage

selection

(a)

(b)

(c)

Figure 6.3: (a) Flow for constructing MRT structures. (b) Flow for construction of the core top-
level tree. (c) Flow for construction of the N−1 subsequent top-level trees.

6.6 Methodology

The flow for constructing the proposed MRT structures is shown in Figure 6.3. The flow is illus-

trated with an example in Figure 6.4. MRT structures are constructed bottom-up stage-by-stage

using a modification of the classic zero-skew DME paradigm [2, 4, 5]. The details of the DME

paradigm is previously explained in Section 3.2.2. A stage consists of a device (a buffer or an

OR-gate) driving a subtree of wires connected to the stage-sinks. The stage-sinks of the first stage

are the clock sinks. The stage-sinks of any other stage are the input pins of the devices driving

the previous stage. The bottom-up construction phase is followed by a top-down embedding of

internal nodes using the DME paradigm.

MRT structures consist of first stage subtrees that are driven by N top-level trees, where N ≥ 2 is

a user specified parameter. The first top-level tree is constructed with the objective of minimizing

66

wirelength while connecting each clock sink to the clock source. The first top-level tree is referred

to as the core top-level tree. The remaining N-1 top-level trees are constructed to improve the

robustness (see details in Section 6.6.2). The N top-level trees are joined to drive the first stage

subtrees using OR-gates. We choose to insert OR-gates to drive the subtrees of the first stage

because such procedure is known to balance robustness and capacitive cost [9]. The robustness

provided by inserting redundancy is higher when placed closer to the clock sinks. At the same

time, inserting redundancy closer to the clock sinks introduces larger hardware and performance

overheads. The roots of the N top-level trees are connected together using a clock gate in order to

enable the topology reconfiguration.

The flow in Figure 6.3 shows that the first stage of an MRT is constructed by merging subtrees (see

Section 3.2.2) and inserting OR-gates to drive the subtrees (see Section 6.6.1). Next, the construc-

tion of the core top-level tree step is performed. This is followed by performing the construction

of N-1 subsequent top-level trees step (see Section 6.6.2). The top-level trees are subsequently

joined, gated, and routed to the clock source (see Section 6.6.3). After constructing the recon-

figurable topology, the nominal skew of the MRT is tuned close to zero using a clock network

optimization step (see Section 6.6.4). Lastly, DVFS is applied to determine the supply voltage for

both modes of operation (see Section 6.6.5).

6.6.1 Insertion of OR-gates

In this section, we explain the insertion of OR-gates step. The input to this step are the first stage

subtrees. For each subtree, the minimum sized OR-gate (with N input pins) that can drive the

subtree without violating the transition time constraint is inserted at the root. The parameter N is

limited to 4 in order to limit the size of the NMOS transistors within each NAND-gate (inside each

OR-gate). A set of first stage subtrees are shown in Figure 6.4(a). After the OR-gate insertion step,

67

s3 s4

s1

s2

 (a) (b)

s5

s3 s4

s1

s2

s5

s1 s2 s3 s4 s5

 (e) (f)

2

2

2

 (g) (h)

s3 s4s1 s2
s5 s1 s2 s3 s4 s5

second
 stage

 (c) (d)

s1 s2 s3 s4 s5

s3 s4

s1

s2

s5

1
2

12

11

2

s1 s2 s3 s4 s5

Figure 6.4: Example flow for the construction of an MRT structure when N = 2. (a) First stage
subtrees. (b) Driver devices are inserted. (c) Core top-level clock tree is constructed. The driver
devices used to construct the core-top level tree are colored in green. (d) The Topology Relation
Graph (TRG) is constructed with respect to the topology. (e) The TRG after edge pruning is
applied. (f) The second top-level clock tree is constructed using TRG. (g) The clock network after
the construction of top-level trees shown in (c) and (f). (h) The clock network after constructing
the reconfigurable topology.

the resulting subtrees are shown in Figure 6.4(b).

6.6.2 Construction of top-level clock trees

In this section, we explained how the N top-level trees in an MRT structure are constructed. The

core top-level tree is constructed using the traditional zero-skew clock tree construction algorithm,

which involves iteratively merging subtrees with the objective of minimizing wirelength. Next,

the remaining N-1 top-level trees are constructed with the goal of improving the robustness to

variations. This is achieved by constructing the subsequent N-1 top-level trees with the following

two objectives:

i) Clock sinks (with skew constraints between them) that are distant in the base (first) top-level

68

tree should be placed close in at least one of the subsequent top-level trees.

ii) Subtrees that are close (topology-wise) in the core top-level tree should not be close in any

subsequent top-level tree.

The motivation for the first objective is that larger variations are introduced in skew constraints

between clock sinks that are distant in the topology. Therefore, the robustness can be significantly

improved by placing such clock sinks (or subtrees) close in a subsequent top-level tree. The mo-

tivation for the second objective is that clock sinks that are close in the initial tree topology have

no need of improving the robustness to variations. Therefore, the construction of such top-level

trees should be avoided in order to minimize hardware overheads. Moreover, the construction of

clock networks that are larger than necessary may actually degrade the overall robustness, as larger

clock networks are more vulnerable to variations [9]. We propose to achieve the two aforemen-

tioned objectives by introducing a topology relation graph (TRG). Next, the TRG is used to guide

the construction of the last N-1 top-level trees. The TRG is used to capture both skew constraints

and the distance between pairs of subtrees in the tree topology. The first objective is achieved by

encouraging subtree pairs with large edge weights in the TRG to be joined. The second objective

is achieved by pruning edges in the TRG.

The details of the TRG construction are explained in Section 6.6.2.1. The edge pruning step is

given in Section 6.6.2.2. The TRG guided clock tree construction is provided in Section 6.6.2.3.

These steps are performed iteratively to construct the last N-1 top-level trees.

6.6.2.1 Construction of Topology Relation Graph

A TRG G = (V,E) is constructed with respect to the first stage subtrees. The vertices V represent

the first stage subtrees. The weighted edges E represent the distance in the topology between

69

pairs of subtrees that are sequentially related. A pair of clock sinks are sequentially related if

there is a skew constraint between them. A pair of subtrees are called sequentially related if

they correspondingly contain a pair of sequentially related clock sinks. The edge weight between

sequentially related subtrees is defined to be equal to the minimum number of buffers that must

be traversed to find the closest common ancestor (CCA) of the subtree pair. For example, in

Figure 6.4(d) the edge weight between s2 and s3 is one because only one CCA buffer is required

to be traversed. On the other hand, the edge weight between s2 and s5 is 2 because two buffers are

required to be traversed. The arrows in the Figure 6.4(a) illustrate that the corresponding first stage

subtree pairs are sequentially related. The TRG with respect to the topology of the core top-level

tree in Figure 6.4(c) is illustrated in Figure 6.4(d).

After multiple top-level trees have been constructed, it can be understood that each subtree pair

may have multiple CCAs. When forming the TRG for the construction of the third or fourth top-

level tree, a candidate edge weight value is computed with respect to each of the previous top-level

trees. Next, the weight for each edge in the TRG is set to the minimum of the candidate values.

6.6.2.2 Edge pruning

In this section, the edge pruning technique is explained. The edge pruning is performed by re-

moving all edges in a TRG with a weight less or equal to one. This corresponds to avoiding to

join subtrees that are joined in the second stage of the initial tree topology. Figure 6.4(e) shows

the resulting TRG after performing edge pruning in the TRG of Figure 6.4(d). After pruning the

edges, there may exist vertices without any incident edges, which means that the clock signal is

already delivered with sufficient robustness. Consequently, there is no need for the corresponding

subtree to participate in the subsequent top-level tree construction. This is facilitated by reducing

the number of input pins of the corresponding OR-gate by one.

70

6.6.2.3 TRG guided Tree construction

In this section, we explained how the TRG is used to guide the construction of the top-level trees.

The input to the TRG guided clock tree construction step is one input pin from each OR-gate that

has been inserted to drive the first stage subtrees. The output is a top-level tree driving the input

pins. The top-level tree is constructed by iteratively performing the merging of subtrees and the

insertion of buffers steps, which is shown in Figure 6.3(c). However, when selecting subtrees to be

merged in the NNG, both the required wirelength and topology distance are considered (see details

below). Moreover, if no edge exists between a pair of vertices in the TRG, the corresponding

subtrees in the NNG cannot be merged. The top-level tree constructed by the TRG guided tree

construction is shown in Figure 6.4(f). The clock network structure that is obtained after the

construction of two top-level trees are shown in Figure 6.4(g).

The conventional zero-skew tree construction methodology is based on joining the subtrees that

require the minimum wirelength to be merged. In the TRG guided top-level tree construction, the

merging of the subtrees is based on a cost function that accounts for both wirelength and distance

in the topology. Let the cost of merging a subtree i and j be denoted ci j and defined, as follows:

ci j = αdi j− (1−α)pi j (6.6)

where di j is the wirelength required to join the subtrees i and j using a zero-skew merge. pi j is the

corresponding edge weight in the TRG. α is a user defined parameter to balance the importance of

the two objectives. It can be understood that setting α to 1 would result in constructing a top-level

tree using the traditional zero-skew metric. In our framework, we set α to be small (0.01) such

that the cost metric always prioritizes topological distance over the wirelength. The wirelength

component is used as a tie-breaker when there exist multiple edges with the same weight (pi j).

71

Note that when two subtrees are merged, the corresponding vertices in the TRG must be merged

into a single vertex. The incident edges of the two vertices are inserted between the newly formed

vertex and the corresponding adjacent vertices (without modifying the edge weights). This may

result in two parallel edges with different edge weights that are introduced between the newly

formed vertex and a single adjacent vertex. For such cases, the parallel edges are replaced with a

single edge with a weight equal to the minimum of the two edge weights.

6.6.3 Construction of the reconfigurable topology

In this section, we explained how the N constructed top-level trees are joined into an MRT struc-

ture. The top-level trees must be joined such that the MRT structure can be reconfigured between

a tree and a near-tree topology. The reconfiguration is performed by gating the clock signal in part

of the structure using a clock gate. In contrast with traditional clock gating that aims to completely

turn-off a portion of the clock network, the reconfiguration based clock gating is performed such

that there still exists at least one path from the clock source to each clock sink. Let the constructed

top-level trees be denoted t1 to tN . To facilitate the reconfiguration between the tree and near-tree

topology, we proposed to connect the top-level trees as illustrated in Figure 6.5. In high perfor-

mance mode, the MRT structure has a near-tree topology and all the top-level trees t1 to tN deliver

the clock signal to clock sinks. When the clock signal is gated in the low performance mode, the

top-level trees t2 to tN are turned-off and only the core top-level tree t1 delivers the clock signal to

all clock sinks. Note that t1 is the only top-level tree that is guaranteed to have a path to all the first

stage subtrees.

The structure in the figure is constructed by joining t2 to tN using zero-skew merges. Next, we

insert a clock gate to drive the resulting tree before merging the clock gate with the core top-level

tree t1 using a zero skew merge. Finally, we connect the resulting structure to the clock source. Of

72

t1 t2 t3 t4

source

Figure 6.5: The reconfigurable topology

course, the buffers are inserted to balance delay if a zero-skew merge cannot be performed without

violating the transition time constraints. This results in the MRT structure in Figure 6.4(h) which

is formed from the two top-level trees in Figure 6.4(g). Next, a clock network optimization step in

Section 6.6.4 is performed to balance the skew in the structure.

6.6.4 Clock network optimization

Clock network optimization (CNO) is performed to minimize the nominal skew in a clock network.

It is typically very difficult to construct large clock networks with small nominal skew without uti-

lizing clock network optimization. For MRT structures, clock network optimization is performed

with the objectives of: i) minimizing the nominal skew close to zero and to ii) minimizing the skew

between input pins of the same OR-gate, which improves the robustness to variations.

State-of-the-art clock tree optimization techniques are based on specifying and realizing delay

adjustments to remove the timing violations, which is also essential to meet the useful skew con-

straints [12]. The specified delay adjustments are realized by inserting delay buffers and detour

wires as explained in Section 3.3. For MRT structures, clock network optimization is performed

using a two-phase approach. In the first phase, the input pins of the OR-gates are viewed as the

clock sinks and the skew between pins of the same OR-gate is minimized by specifying and real-

73

izing delay adjustments, which improves the robustness of the MRT structures to variations. In the

second phase, the nominal skew is minimized by specifying and realizing delay adjustment below

the OR-gates. Note that it is easy to adapt clock tree optimization algorithms to the MRT structure

because there is only a single gate driving each net, which enables conventional EDA algorithms

and tools to be used.

6.6.5 Supply voltage selection

In this section, it is explained how the supply voltage is determined at each operational mode.

The objective is to select the supply voltage that meets the timing constraints with the minimum

possible power consumption while operating with the specified clock frequency for the operational

mode.

After applying CNO to the MRT structure, 250 Monte Carlo simulations are performed to obtain

the upper bound on the timing deteriorations (D) that the MRT structure achieves. Next, we tighten

the timing margins by the amount of D to provide guardbands to variations. Finally, we perform

DVFS by applying a binary search to determine the minimum supply voltage that meets the timing

constraints. In our framework, the supply voltage is allowed to be specified in the range of Vt to

1.02V . Note that the supply voltage can never be scaled down too close to the threshold voltage

because there are no excessive timing margins available in the evaluated designs.

6.7 Experimental Results

The proposed methodology was implemented in C++ and experimental evaluation was performed

on a quad-core 3.4 GHz Linux machine with 32GB of memory. The properties of the buffers,

the OR-gates and the wires were obtained from a 45 nm technology library [20]. The benchmarks

74

Table 6.3: Benchmarks in [7].

Circuit Sinks Skew constraints Clock period (ps) Clock cycle for guardbands
(name) (num) (num) TH TL (%)
s1423 74 78 200 1000 10
usbf 1765 33438 200 1000 10
dma 2092 132834 200 1000 10

pci bridge32 3582 141074 200 1000 10
ecg 7674 63440 200 1000 10

des peft 8808 17152 200 1000 10
aes 13216 53382 200 1000 10

in [7] were used to synthesize our clock networks. The details about benchmark circuits (number of

clock sinks, number of skew constraints, and clock period) are shown in Table 6.3. The transition

time constraint for all the structures was set to 100 ps. The clock periods correspond to a clock

frequency of 5GHz and 1GHz in the high and low performance modes, respectively. In each mode

of operation, a portion of the clock cycle was reserved for guardbands to variations, which is shown

in the ‘Clock cycle for guardbands’ column in Table 6.3.

Table 6.4: The properties of the structures.

Structure Redundancy insertion Synthesis is Topology
using guided by

Tree [1, 4, 23] ‘-’ NNG Tree
Near-Tree-SS [9] Sink splitting NNG + Local merges Near-tree

Near-Tree-OR OR-gates NNG + Local merges Near-tree
MRT OR-gates NNG + TRG Near-tree

To demonstrate the effectiveness of the proposed framework, four different structures are con-

structed and evaluated. The properties of each structure are summarized in Table 6.4. For each

structure, the techniques used to insert redundancy and guide the synthesis process are reported

along with the topology. Specifically, we construct one tree structure (labeled ‘Tree’), two near-

tree structures (labeled ‘Near-tree-SS’ and ‘Near-Tree-OR’), and the proposed MRT structure (la-

75

beled ‘MRT’). The tree structures were constructed using the methodology in Section 3.2.2, which

is similar to that for the zero-skew clock trees in [1, 4, 23]. The Near-Tree-SS structures were

constructed to mimic the locally-merged structures in [9], which are illustrated in Figure 6.1(c).

The locally-merged structures were selected because they were reported to outperform clock trees

with cross-links and clock meshes in [9]. The Near-Tree-OR structures were constructed to mimic

the Near-Tree-SS structures. However, alternative redundant paths were joined using OR-gates

instead of using sink-splitting. The MRT structures were constructed using the proposed flow in

Figure 6.3(a). Based on the experiments performed in Section 6.7.1, the MRT structures were

constructed using 2 top-level trees, i.e., the MRT structures were obtained using N = 2.

The structures are evaluated in terms of power consumption, supply voltage and timing quality

that are obtained in high and low performance modes. The power consumption is evaluated us-

ing circuit simulations. The timing quality of the structures are evaluated by performing Monte

Carlo simulations using NGSPICE. Each structure is simulated with 250 Monte Carlo simulations

while applying wire width variations (±5%), voltage variations (±7.5%), channel length varia-

tions (±5%) and temperature variations (±15%) around the nominal values. The variations are

spatially correlated and generated using a five-level quad-tree where equal magnitudes of varia-

tions are specified for each level of the constructed quad-tree [9, 67]. In each simulation, skew and

transient time constraints are evaluated. If the chip meets timing constraints, the chip is classified

as good. Otherwise, the chip is classified as defective. For all structures, no yield loss is obtained

from the transition time constraints. The proposed setup overcomes the well-known deficiencies

of the ISPD 2010 contest, which have been discussed at length in [2, 9, 35]. Therefore, we have

not reported extensive comparisons with the contest results.

The MRT design configurations are evaluated in Section 6.7.1. The performance of the MRT

structures are evaluated in Section 6.7.2.

76

6.7.1 Evaluation of MRT design configurations

In this section, we evaluate the impact of the MRT design configurations. The selection of the

number of top-level trees is evaluated in Section 6.7.1.1. The TRG guided the top-level tree con-

struction is evaluated in Section 6.7.1.2. The use of topology reconfiguration is evaluated in Sec-

tion 6.7.1.3. The delivery of the negative-edge of the clock signal is evaluated in Section 6.7.1.4.

N
o
rm

.
P
o
w

e
r

N
o
rm

.
P
o
w

e
r

N
o
rm

.
D

N
o
rm

.
D

Number of top-level

 trees

Number of top-level

 trees

(a) (b)

Figure 6.6: Evaluation of MRT structures with different number of top-level trees on the circuits
(a) dma and (b) aes. The performance is evaluated in terms of power and robustness to variations.
The clock network structure with 1 top-level tree is equivalent to the traditional clock tree.

6.7.1.1 Selection of the number of top-level trees

The selection of the number of top-level trees (N) is evaluated in Figure 6.6. The figure shows

the performance of the MRT structure for different numbers of top-level trees on the circuits dma

and aes. The performance is evaluated in terms of power and robustness to variations. The values

presented in Figure 6.6 are normalized with respect to an MRT structure with N = 1, i.e., a clock

network in the form of a clock tree. The robustness to variations is evaluated using D. The figure

shows that D is improved when N is increased until a turning point from where the robustness is

degraded. This is because each additional top-level tree improves the robustness to variations by

77

placing clock sinks that are distant in the initial tree topology close in at least one of the subsequent

top-level tree topology. However, with each top-level tree that is constructed, the clock network

becomes larger and more vulnerable to variations. Therefore, the robustness to variations is typi-

cally saturated when N is equal to three. Intuitively, the power consumption is increased with the

number of top-level clock trees that are constructed, which can easily be observed in the figure.

Clearly, a fundamental problem for MRT structures becomes that of selecting N such that the

minimum constraint on D is satisfied using the minimum amount of power consumption. This

could potentially be solved using static timing analysis [35]. However, we consider this problem

out of the scope of the chapter, as the chapter is focused on the concept and synthesis of MRT

structures. Instead, we choose to evaluate the MRT structure with 2 top-level trees on all circuits

because it provides the best trade-off between robustness and power consumption. Moreover, the

MRT structures with more than 2 top-level trees introduce undesirable overheads in terms of both

power consumption and runtime. Hence, the MRT structure with 2 top-level trees is selected to

be the baseline for the proposed framework. In the remaining of this chapter, the MRT structure

refers to the MRT structure that is obtained by constructing 2 top-level trees.

6.7.1.2 Evaluation of the TRG guided top-level tree construction

The TRG guided top-level tree construction is evaluated in Figure 6.7. In the figure, we compare

constructing the top-level trees with the objective of minimizing wirelength and using the proposed

metric in Eq (6.6). The comparison is performed in terms of average power consumption and

average robustness to variations (D) over all the benchmarks in Table 6.3.

Compared with minimizing wirelength, the figure shows that the proposed metric improves D with

4% for the MRT structures. The robustness improvements stem from the proposed cost metric that

encourages clock sinks (with skew constraints) that are distant in the initial tree topology to be

78

placed close in the subsequent tree topology. The robustness improvements come at the expense

of a 2% overhead in power consumption. This is expected because subtrees that are distant in the

initial tree topology are typically also distant spatially. Consequently, more wirelength is required

to merge such subtrees, which intuitively increases power consumption.

Figure 6.7: Evaluation of guiding the top-level tree construction using different cost metrics. The
evaluation is performed in terms of normalized power and normalized robustness (D).

Clearly, the proposed cost metric introduces a trade-off between robustness and power consump-

tion. We consider the small overheads in power consumption to be acceptable for the slight im-

provements in robustness. Consequently, we choose to guide the construction of the top-level trees

using the proposed cost metric. Note that the trade-off between robustness (D) and power con-

sumption is regulated by the parameter α . In our implementation, we set α to prioritize topology

distance over wirelength, i.e., α is set close to zero (α = 0.01).

6.7.1.3 Evaluation of topology reconfiguration

In this section, we evaluate the effectiveness of saving power using topology reconfiguration com-

bined with DVFS. In Figure 6.8(a), we compare the proposed technique with only applying DVFS

in terms of supply voltage and clock network switching capacitance. The figure shows that the

79

proposed technique results in 1% higher supply voltage and 12% lower clock network switching

capacitance. This is because the topology reconfiguration introduces small nominal skews, which

reduces the available timing margins by 2%. The smaller timing margins translate to requiring a

1% higher supply voltage to be used. Compared with only applying DVFS, it is not surprising that

the proposed technique results in only marginally higher supply voltage, as large timing margins

are required to slightly reduce VDD, when VDD is close to Vt , as discussed in Section 6.5.3.

N
o
rm

.

P
e
rf

o
m

a
n
c
e

N
o
rm

.
 P

o
w

e
r

Ccomb/Cclk ratio

(a) (b)

Figure 6.8: Evaluation of DVFS vs reconfiguration combined with DVFS in terms of average (a)
supply voltage and switching capacitance and (b) total circuit power for different ratios of Ccomb
and Cclk. The experimental results shown in the figure are the average values for the benchmarks
in Table 6.3.

In Figure 6.8(b), we compare the proposed technique with DVFS in terms of total circuit power.

The total circuit power is computed using Eq (6.5) for different ratios of switching capacitance

between the combinational logic (Ccomb) and the clock network (Cclk). The figure shows that the

proposed technique reduces the total circuit power by about 11%. The power saving is relatively

independent of the ratio between the capacitance of the combinational logic and the clock network.

The power saving is obtained due to the lower clock network switching capacitance. Consequently,

we conclude that topology reconfiguration combined with DVFS is advantageous to only applying

DVFS. The only drawback of the reconfiguration is that a mode control signal is required to be

delivered to the clock gates. Nevertheless, the overhead is limited because there is only one clock

gate in the MRT structures. Moreover, the wirelength used to deliver the mode control signal does

80

not contribute significantly to the dynamic power consumption. The results in the figure were

obtained using αcomb and αclk respectively set to 0.1 and 1. Vt for the technology is 0.4V [20].

6.7.1.4 Evaluation of the negative-edge of the clock signal

In this section, we evaluate the robustness in the delivery of the positive-edge and negative-edge of

the clock signal. The comparison is performed in terms of D in Figure 6.9. The results shown in the

figure are the average values obtained from the MRT structures for the benchmarks in Table 6.3.

N
o
rm

.
D

Figure 6.9: Evaluation of the MRT structure for the negative-edge and the positive-edge of the
clock signal.

The figure shows that MRT structure delivers both the positive-edge and negative-edge of the

clock signal with higher robustness to variations than a Tree structure. However, the robustness

improvements are higher for the positive-edge of the clock signal than for the negative-edge of

the clock signal. As it is shown in Figure 6.9, the MRT structure delivers the positive-edge of the

clock signal with 39% lower D while the negative-edge is only delivered with 24% lower D. The

difference in the robustness improvements stem from that the OR-gates act as average operators

and max operators for the positive-edge and negative-edge of the clock signal, respectively. This

was discussed and analyzed in Section 6.5.2. Consequently, the MRT structures are ideal for

circuits with only positive-edge triggered sequential elements. However, they can also be used for

81

circuits with both positive-edge and negative-edge triggered sequential elements. Nevertheless, a

slightly lower clock frequency will be required to be used.

Table 6.5: Evaluation of structures in terms of power consumption, supply voltage and timing
quality.

Benchmark Structure High Performance Mode Low Performance Mode Timing PT Runtime
Supply Power Supply Power Constraints in Eq (6.4)
Voltage Voltage Satisfied?

(name) (name) (V) (mW) (V) (mW) (Yes/No) (mW) (mins)
Tree [1, 4, 23] 1.02 35.97 0.61 2.25 No 29.23 2.1

Near-tree-SS [9] 1.02 48.18 0.61 2.99 No 39.14 1.4
s1423 Near-tree-OR 0.99 38.06 0.61 2.40 Yes 30.93 0.9

MRT 0.99 36.27 0.61 2.06 Yes 29.43 0.9
Tree [1, 4, 23] 1.01 38.00 0.61 2.53 Yes 30.91 6.6

Near-tree-SS [9] 0.98 55.66 0.61 3.65 Yes 45.25 5.4
usbf Near-tree-OR 0.98 48.06 0.62 3.24 Yes 39.10 3.6

MRT 0.98 42.24 0.61 2.57 Yes 34.31 3.2
Tree [1, 4, 23] 1.00 48.44 0.61 3.20 Yes 39.39 10.0

Near-tree-SS [9] 0.98 71.02 0.61 4.80 Yes 57.78 7.3
dma Near-tree-OR 0.99 70.68 0.64 4.76 Yes 57.49 7.5

MRT 0.98 54.47 0.62 3.33 Yes 44.24 5.6
Tree [1, 4, 23] 1.01 72.97 0.61 4.84 Yes 59.35 13.2

Near-tree-SS [9] 0.98 98.53 0.61 6.65 Yes 80.15 16.8
pci_bridge32 Near-tree-OR 0.99 120.16 0.63 7.92 Yes 97.71 18.3

MRT 0.99 83.54 0.62 5.04 Yes 67.84 10.1
Tree [1, 4, 23] 1.02 175.10 0.61 11.35 No 142.35 62.0

Near-tree-SS [9] 0.99 227.66 0.61 15.06 Yes 185.14 86.5
ecg Near-tree-OR 1.02 257.65 0.63 15.65 No 209.25 85.7

MRT 1.02 220.18 0.62 12.07 Yes 178.56 49.1
Tree [1, 4, 23] 1.02 176.36 0.61 11.43 No 143.37 133.0

Near-tree-SS [9] 1.01 228.75 0.61 14.32 Yes 185.86 89.4
des Near-tree-OR 0.99 196.65 0.62 12.91 Yes 159.90 53.8

MRT 0.99 177.76 0.61 11.08 Yes 144.42 53.5
Tree [1, 4, 23] 1.02 334.18 0.62 21.62 No 271.67 300.0

Near-tree-SS [9] 1.01 466.89 0.61 29.72 Yes 379.45 293.2
aes Near-tree-OR 1.02 527.13 0.64 31.43 No 427.99 283.5

MRT 1.01 386.55 0.62 21.01 Yes 313.44 213.0
Tree [1, 4, 23] 1.00 1.00 1.00 1.00 3 1.00 1.00

Near-tree-SS [9] 0.98 1.37 1.00 1.37 6 1.37 0.90
Norm Near-tree-OR 0.99 1.37 1.02 1.35 5 1.37 0.80

MRT 0.98 1.12 1.00 1.00 7 1.11 0.60

6.7.2 Evaluation of MRT structures

In Table 6.5, we evaluate the performance of MRT structures in both high performance mode

and low performance mode. The structures are evaluated in terms of supply voltage, power con-

82

sumption and the timing quality under variations. Recall that the MRT structures are obtained by

performing the flow in Figure 6.3(a) using N = 2.

The supply voltage and power consumption of the structures are listed in the columns as ‘Supply

Voltage’ and ‘Power’, respectively. The timing quality of the structures are evaluated based on

the timing constraints in Eq (2.1) and Eq (2.2) in both modes of operation. The timing quality

is reported as ‘Yes’ or ‘No’ in the column labeled ‘Timing Constraints Satisfied?’. The weighted

clock power in Eq (6.4) is reported in the column labeled as ‘PT ’. The runtime of each structure is

reported in minutes in the column labeled as ‘Runtime’. In the experimental setup, β and γ are set

to be 0.8 and 0.2, respectively. The normalized results are shown in the bottom of the table and the

best results in each column are shown in bold. The normalized results for the timing quality are

reported as the total number of benchmarks that each structure meets the timing constraints.

Compared with the Tree structures, the Near-Tree-SS structures meet the timing constraints on 3

more benchmarks in both modes of operation. This is easy to understand because the Near-Tree-SS

structures have alternative paths from clock source to clock sinks, which improves the robustness

to variations. The Near-Tree-SS structures operate in 2% lower supply voltage in the high perfor-

mance mode, when compared to the Tree structures. The reason is that the Near-Tree-SS structures

have more timing margins available due to the alternative paths from clock source to clock sinks,

which enables the supply voltage to be scaled down slightly more when compared to the Tree

structures. However, the supply voltage for the Tree structures and the Near-Tree-SS structures

are similar in the low performance mode because the timing constraints are significantly looser

in the low performance mode due to the lower operating frequency. The power consumption of

the Near-Tree-SS structures is 37% higher than the Tree structures in both modes of operation,

which results in a 37% higher PT . The explanation for this is that the Near-Tree-SS structures have

alternative paths from the clock source to the clock sinks, which introduce significant capacitive

overheads. The runtime of the Near-Tree-SS structures are 10% shorter. The explanation is that

83

clock tree optimization using SPICE simulations is more time-consuming for Tree structures than

for Near-Tree-SS structures.

The Near-Tree-SS structures meet the timing constraints on 6 benchmarks while the Near-Tree-OR

structures meet the timing constraints on 5 benchmarks. This stems mainly from that OR-gates

are slightly more vulnerable to variations than clock buffers. Recall that the only difference be-

tween the two structures is that OR-gates are used to join alternative redundant paths instead of

sink-splitting. The Near-Tree-SS structures operate in 1% and 2% lower supply voltage than the

Near-Tree-OR structures in the high performance mode and the low performance mode, respec-

tively. This is because the Near-Tree-SS structures have more timing margins available than that

of the Near-Tree-OR structures, which enables the supply voltage to be scaled down slightly more.

The power consumption of the Near-Tree-OR structure is similar to the Near-Tree-SS structures in

the high performance mode. In the low performance mode, the Near-Tree-OR structures have 2%

lower power consumption than the Near-Tree-SS structures. The lower power consumption in the

low performance mode is a result of the Near-Tree-OR structures consume no short circuit power

as there is only one gate driving each net. PT is similar for both structures. The runtime of the

Near-Tree-OR structures is 10% shorter than the Near-Tree-SS structures.

The MRT structures meet timing constraints on all benchmarks while the Near-Tree-OR structures

fail to meet timing constraints on aes and ecg. The improvements in timing quality stem from that

redundancy are inserted using top-level trees instead of using local-merges. The local-merges tech-

nique only considers if pairs of subtrees are sequentially related while the proposed TRG guided

top-level tree construction attempts to place every pair of clock sinks with timing constraints close

in at least one tree topology. The supply voltage for the MRT structures is respectively 1% and

2% lower, as compared to the supply voltage for the Near-Tree-OR structures in the high perfor-

mance mode and the low performance mode. The MRT structures have 25% and 35% lower power

consumption than the Near-Tree-OR structures in the high performance mode and the low perfor-

84

mance mode, respectively. Thus, the MRT structures have 26% lower PT than the Near-Tree-OR

structures. The improvement in PT is a result of that the Near-Tree-OR structures have an exces-

sive amount of redundant paths, which translates into larger clock networks with higher power

consumption. Moreover, the MRT structures reconfigure the topology into a tree by turning-off

the redundant paths, which results in significant power savings in the low performance mode. The

MRT structures have similar power consumption with the Tree structures in the low performance

mode, which validates the effectiveness of the reconfiguration of the topology. The runtime of the

MRT structures is 20% shorter than the runtime of the Near-Tree-OR structures.

To illustrate the robustness improvements of the MRT structures over the Tree structures, we show

a histogram of the skew introduced by variations for both the Tree structure and the MRT structure

on the circuit usb f in Figure 6.10. As it can be observed, the MRT structure has a tighter skew

distribution than the Tree structure, i.e., higher robustness to variations.

0 10 20 30

Skew (ps)

0

20

40

60

F
re

q
u
e
n
c
y

0 10 20 30

Skew (ps)

0

50

100

150

F
re

q
u
e
n
c
y

(a) Tree (b) MRT

Figure 6.10: Histogram of skews from Monte Carlo simulations of (a) Tree and (b) MRT struc-
tures on usb f .

Intuitively, a clock tree is always the best clock network solution if it can satisfy the timing con-

straints without excessive guardbands. In this chapter, we focus on circuits where a higher ro-

bustness to variations is required. For such circuits, we have observed that the MRT structures

85

are capable of providing higher robustness to variations when compared to the state-of-the-art

Near-Tree-SS structures. Moreover, the MRT structures can provide significantly lower power

consumption in both modes of operation. Consequently, we conclude that the proposed MRT

structures are advantageous to the Near-Tree structures [9], which have been demonstrated to out-

perform clock trees with cross-links. Recall that clock meshes have 3X-5X high power consump-

tion than a clock tree. Therefore, the MRT structures are also advantageous to non-tree structures

as the power overhead is as low as 12% in the high performance mode. Furthermore, the topology

of the MRT structure can be reconfigured to save additional power in the low performance mode.

6.8 Summary and conclusion

In this chapter, we proposed the construction of clock networks with a mode reconfigurable topol-

ogy for positive-edge triggered sequential elements. In high performance modes, the MRT struc-

ture is reconfigured into a near-tree to provide the required robustness to variations. In low per-

formance modes, power is saved by reconfiguring the MRT structure into a tree topology using a

single clock gate. To the best of the authors’ knowledge, this is the first clock network that can be

reconfigured from a near-tree into a tree topology. Compared to the state-of-the-art near-tree struc-

tures, the experimental results demonstrate improvements in power consumption and robustness to

variations.

86

CHAPTER 7: FUTURE WORKS

In this chapter, the direction of the future research is outlined. The future research direction is

mainly focused on the development of the OCV-Aware clock tree construction methodologies.

In Chapter 5, an OCV-aware CTS methodology is proposed. Based on our experimental evalua-

tions, we speculate that there exists a great opportunity to further extend the proposed methodology.

Specifically, we observed that the selection of the top-level topology have a huge impact on the

final timing quality. In addition, the latency prediction for the bottom-level subtrees can be im-

proved to more accurately account for the impacts of OCVs within a shorter amount of time using

machine learning models.

Top-level topology exploration: In our preliminary study, the top-level of the clock trees are

constructed by enumerating and pruning various candidate non-uniform H-trees, which provided

promising improvements in terms of timing quality and runtime. We believe that the cost metric

that is used to prune the candidate topologies can be further improved by integrating the timing

slacks. In addition, modifying the top-level topology based on the feedback from the clock tree that

is obtained in the previous iteration may provide a great opportunity to improve both the timing

quality and the cost of the clock trees. Moreover, various clock tree structures and techniques can

be explored to construct the top-level topology.

Latency predictions based on machine learning models: In the proposed methodology, the OCV

predictions at each iteration are based on the actual latencies of the clock tree that is obtained in

the previous iteration. Therefore, each bottom-level subtree is required to be constructed multiple

times until the flow converges to a solution, which introduces an overhead in terms of runtime. To

overcome this problem, various machine learning models can be used to accelerate the convergence

of the proposed framework while accurately predicting the latency (OCVs) [61–63].

87

LIST OF REFERENCES

[1] K.D. Boese and A.B. Kahng. 1992. Zero-skew clock routing trees with minimum wirelength.

In Proceedings of the IEEE International ASIC Conference and Exhibit. 17–21.

[2] Shashank Bujimalla and Cheng-Kok Koh. 2011. Synthesis of Low Power Clock Trees for

Handling Power-Supply Variations. In Proceedings of the International Symposium on Phys-

ical Design (ISPD ’11). 37–44.

[3] T.-H. Chao, Y.-C. Hsu, and J.-M. Ho. 1992. Zero skew clock net routing. In Proceedings of

the Design Automation Conference. 518–523.

[4] Y. P. Chen and D. F. Wong. 1996. An Algorithm for Zero-Skew Clock Tree Routing with

Buffer Insertion. In Proceedings of the European Conference on Design and Test (EDTC

’96). 230.

[5] M. Edahiro. 1993. A Clustering-Based Optimization Algorithm in Zero-Skew Routings. In

Proceedings of the Design Automation Conference (DAC). 612–616.

[6] J. Cong, A. B. Kahng, C.-K. Koh, and C.-W. A. Tsao. Bounded-skew clock and steiner

routing. ACM Transactions on Design Automation of Electronic Systems, 3(3):341–388, July

1998.

[7] Rickard Ewetz, Shankarshana Janarthanan, Cheng-Kok Koh, and Chuan Yean Tan.

2015. Benchmark circuits for clock scheduling and synthesis. ([Available Online]

https://purr.purdue.edu/publications/1759).

[8] Rickard Ewetz, Shankarshana Janarthanan, and Cheng-Kok Koh. 2015. Construction of re-

configurable clock trees for MCMM designs. In Proceedings of the Design Automation Con-

ference (DAC). 1–6.

88

[9] Rickard Ewetz and Cheng-Kok Koh. 2015. Cost-Effective Robustness in Clock Networks

Using Near-Tree Structures. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 34, 4 (2015), 515–528.

[10] Chau-Chin Huang et al. 2016. Timing-driven Cell Placement Optimization for Early

Slack Histogram Compression In Proceedings of the Design Automation Conference, 2016.

(DAC’16). 81:1–81:6.

[11] Myung-Chul Kim et al. 2015. ICCAD-2015 CAD Contest in Incremental Timing-driven

Placement and Benchmark Suite In Proceedings of the International Conference On Com-

puter Aided Design, 2015. (ICCAD’15). 921–926.

[12] Jianchao Lu and Baris Taskin. 2009. Post-CTS clock skew scheduling with limited delay

buffering. In IEEE International Midwest Symposium on Circuits and Systems. 224–227.

[13] Tarun Mittal and Cheng-Kok Koh. 2011. Cross Link Insertion for Improving Tolerance to

Variations in Clock Network Synthesis. In Proceedings of the International Symposium on

Physical Design (ISPD ’11). 29–36.

[14] NGSPICE. 2012. [Available Online] http://ngspice.sourceforge.net/. (2012).

[15] A. Rajaram, Jiang Hu, and R. Mahapatra. 2004. Reducing clock skew variability via cross

links. In Proceedings of the Design Automation Conference, 2004. (DAC). 18–23.

[16] Anand Rajaram, David Z. Pan, and Jiang Hu. 2005. Improved Algorithms for Link-Based

Non-Tree Clock Networks for Skew Variability Reduction. In Proceedings of the Interna-

tional Symposium on Physical Design (ISPD ’05). 55–62.

[17] Subhendu Roy, Pavlos M. Mattheakis, Laurent Masse-Navette, and David Z. Pan. 2014.

Clock Tree Resynthesis for Multi-Corner Multi-Mode Timing Closure. In Proceedings of

the International Symposium on Physical Design (ISPD ’14). 69–76.

89

[18] Hyungjung Seo, Juyeon Kim, Minseok Kang, and Taewhan Kim. 2015. Synthesis for power-

aware clock spines. In Procceedings of the International Conference on Computer-Aided

Design (ICCAD’15). 126–131.

[19] Xin-Wei Shih, Hsu-Chieh Lee, Kuan-Hsien Ho, and Yao-Wen Chang. 2010. High variation-

tolerant obstacle-avoiding clock mesh synthesis with symmetrical driving trees. In Procceed-

ings of the International Conference on Computer-Aided Design (ICCAD’10). 452–457.

[20] C. N. Sze. 2010. ISPD 2010 High Performance Clock Network Synthesis Contest: Bench-

mark Suite and Results. In Proceedings of the International Symposium on Physical Design

(ISPD ’10). 143.

[21] C. N. Sze, Phillip Restle, Gi-Joon Nam, and Charles Alpert. 2009. Ispd2009 Clock Network

Synthesis Contest. In Proceedings of the International Symposium on Physical Design (ISPD

’09). 149–150.

[22] Chung-wen Albert Tsao and Cheng-kok Koh. 2002. UST/DME: A Clock Tree Router for

General Skew Constraints. ACM Transactions on Design Automation of Electronic Systems

7, 3 (2002), 359–379.

[23] R.-S. Tsay. 1991. Exact zero skew. In Proceedings of the International Conference on

Computer-Aided Design Digest of Technical Papers. 336–339.

[24] G. Venkataraman, N. Jayakumar, J. Hu, P. Li, Sunil Khatri, Anand Rajaram, P. McGuin-

ness, and C. Alpert. 2005. Practical techniques to reduce skew and its variations in buffered

clock networks. In Proceedings of the International Conference on Computer-Aided Design

(ICCAD). 592–596.

[25] Ganesh Venkataraman, Zhuo Feng, Jiang Hu, and Peng Li. 2006. Combinatorial Algorithms

90

for Fast Clock Mesh Optimization. In Proceedings of the International Conference on Com-

puter Aided Design. (ICCAD) 563–567.

[26] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting (Tim) Cheng. 2009. Electronic De-

sign Automation: Synthesis, Verification, and Test. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

[27] Linfu Xiao, Zigang Xiao, Zaichen Qian, Yan Jiang, Tao Huang, Haitong Tian, and Evangeline

F. Y. Young. 2010. Local clock skew minimization using blockage-aware mixed tree-mesh

clock network. In Proceedings of the International Conference on Computer-Aided Design

(ICCAD). 458–462.

[28] Christoph Albrecht et al. 2002. Maximum Mean Weight Cycle in a Digraph and Minimizing

Cycle Time of a Logic Chip. Discrete Applied Mathemathics 123, 1-3 (2002), 103–127.

[29] Krit Athikulwongse, Xin Zhao, and Sung Kyu Lim. 2010. Buffered Clock Tree Sizing for

Skew Minimization Under Power and Thermal Budgets. In Proceedings of the Asia and

South Pacific Design Automation Conference) (ASP-DAC’10). 474–479.

[30] Rickard Ewetz. 2017. A Clock Tree Optimization Framework with Predictable Timing Qual-

ity In Proceedings of the Design Automation Conference (DAC’17). 13–18.

[31] Rickard Ewetz and Cheng-Kok Koh. 2018. Scalable Construction of Clock Trees with Useful

Skew and High Timing Quality. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (2018).

[32] J.P. Fishburn. 1990. Clock skew optimization. IEEE Transaction on Computers 39, 7 (1990),

945–951.

[33] Matthew R. Guthaus, Dennis Sylvester, and Richard B. Brown. 2006. Clock Buffer and Wire

91

Sizing Using Sequential Programming In Proceedings of the Design Automation Conference

(DAC’06). 1041–1046.

[34] S. Held, B. Korte, J. Massberg, M. Ringe, and J. Vygen. 2003. Clock scheduling and clock-

tree construction for high performance ASICs. In ICCAD-2003. International Conference on

Computer Aided Design (IEEE Cat. No.03CH37486). 232–239.

[35] Dong-Jin Lee and Igor L. Markov. 2011. Multilevel tree fusion for robust clock networks. In

Proceedings of the International Conference on Computer-Aided Design (ICCAD). 632–639.

[36] J. Lillis, Chung-Kuan Cheng, and T. T. Y. Lin. 1996. Optimal wire sizing and buffer insertion

for low power and a generalized delay model. IEEE Journal of Solid-State Circuits 31, 3

(1996).

[37] Logan Rakai et al. 2013. Buffer Sizing for Clock Networks Using Robust Geometric Pro-

gramming Considering Variations in Buffer Sizes. In Proceedings of the International Sym-

posium on Physical Design, (ISPD’13). 154–161.

[38] Venky Ramachandran. 2012. Construction of Minimal Functional Skew Clock Trees In

Proceedings of the International Symposium on Physical Design, (ISPD’12). 119–120.

[39] Subhendu Roy, Pavlos M. Mattheakis, Laurent Masse-Navette, and David Z. Pan. 2015.

Clock Tree Resynthesis for Multi-Corner Multi-Mode Timing Closure. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 34, 4 (2015), 589–602.

[40] King Ho Tam et al. 2008. Dual-Vdd Buffer Insertion for Power Reduction. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 27 (2008), 1498–1502.

[41] Jeng-Liang Tsai, Tsung-Hao Chen, and C. C. P. Chen. 2004. Zero skew clock-tree opti-

mization with buffer insertion/sizing and wire sizing. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 23, 4 (2004), 565–572.

92

[42] Necati Uysal and Rickard Ewetz. 2018. OCV Guided Clock Tree Topology Reconstruction.

In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’18),

1–6.

[43] L. P. P. P. van Ginneken. 1990. Buffer placement in distributed RC-tree network for minimal

Elmore delay. In Proceedings of the IEEE International Symposium on Circuits and Systems,

865–868.

[44] Du Zhong, Wen Zhiping and Yu lixin. A delay metric for VLSI interconnect. In Proceedings

of the International Conference on ASIC, 2005, pp. 1042-1046.

[45] Tao Lin, E. Acar and L. Pileggi. h-gamma: an RC delay metric based on a gamma distribution

approximation of the homogeneous response. In Proceedings of the International Conference

on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287), 1998,

pp. 19-25.

[46] Alpert, Charles J. and Devgan, Anirudh and Kashyap, Chandramouli. A Two Moment RC

Delay Metric for Performance Optimization. In Proceedings of the International Symposium

on Physical Design, 2000, pp. 69-74.

[47] B. Tutuianu, F. Dartu and L. Pileggi. An explicit RC-circuit delay approximation based on

the first three moments of the impulse response. In Procceedings of the Design Automation

Conference, 1996, pp. 611-616.

[48] Kai Wang and Malgorzata Marek-Sadowska. 2004. Buffer Sizing for Clock Power Min-

imization Subject to General Skew Constraints In Proceedings of the Design Automation

Conference. (DAC’04). 159–164.

[49] V. Stojanovic, D. Markovic, B. Nikolic, M. A. Horowitz, and R. W. Brodersen. 2002. Energy-

93

delay tradeoffs in combinational logic using gate sizing and supply voltage optimization. In

Proceedings of the European Solid-State Circuits Conference. 211–214.

[50] W-C. Elmore. 1948. The Transient Analysis of Damped Linear Networks with Particular

Regard to Wideband Amplifiers. In Applied Physics. vol. 196, 1.

[51] Dennis J.-H. Huang and Andrew B. Kahng and Chung-Wen Albert Tsao. On the Bounded-

Skew Clock and Steiner Routing Problems. In Proceedings of the Design Automation Con-

ference, 1995. (DAC’95), 508–513, 1995.

[52] Cong, Jason and Kahng, Andrew B. and Koh, Cheng-Kok and Tsao, C.-W. Albert. Bounded-

skew clock and Steiner routing under Elmore delay. In Proceedings of the International

Conference on Computer-Aided Design (ICCAD), 66–71, 1995.

[53] Ewetz, Rickard and Koh, Cheng-Kok. A Useful Skew Tree Framework for Inserting

Large Safety Margins. In Proceedings of the International Symposium on Physical Design

(ISPD’15), 85–92, 2015.

[54] H. Bakoglu. Circuits, interconnects, and packaging for VLSI. Reading, MA:Addison-Wesley.,

1990.

[55] T.-B. Chan, K. Han, A. B. Kahng, J.-G. Lee, and S. Nath. OCV-aware top-level clock tree

optimization. In Proceedings of the Great Lakes Symposium on VLSI. (GLSVLSI’14), pages

33–38, 2014.

[56] M. Edahiro. Minimum skew and minimum path length routing in VLSI layout design. In

NEC Research and Development, pages 569–575, 1991.

[57] R. Ewetz and C.-K. Koh. Clock tree construction based on arrival time constraints. In Pro-

ceedings of the International Symposium on Physical Design (ISPD’17), pages 67–74, 2017.

94

[58] W.-C. D. Lam and C.-K. Koh. Process variation robust clock tree routing. In Proceedings of

the Asia and South Pacific Design Automation Conference (ASP-DAC’05), pages 606–611,

2005.

[59] N. Uysal, W.-H. Liu, and R. Ewetz. Latency constraint guided buffer sizing and layer as-

signment for clock trees with useful skew. In Proceedings of the Asia and South Pacific

Design Automation Conference (ASP-DAC’19), pages 761–766, 2019. https://doi.org/

10.1145/3287624.3287681

[60] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. Technical

Report ERL-M520, University of California, Berkeley, CA, May 1975.

[61] A. B. Kahng, U. Mallappa, L. Saul, and S. Tong. Unobserved Corner’ Prediction: Reducing

Timing Analysis Effort for Faster Design Convergence in Advanced-Node Design. In Pro-

ceedings of the 2019 Design, Automation Test in Europe Conference Exhibition (DATE’19),

pp. 168–173, 2019.

[62] A. B. Kahng, U. Mallappa, and L. Saul. Using Machine Learning to Predict Path-Based Slack

from Graph-Based Timing Analysis. In Proceedings of the 2018 IEEE 36th International

Conference on Computer Design (ICCD), pp. 603–612, 2018.

[63] S. Bian, M. Hiromoto, M. Shintani, and T. Sato. LSTA: Learning-based static timing analysis

for high-dimensional correlated on-chip variations. In Proceedings of the Design Automation

Conference (DAC), pp. 1–6, 2018.

[64] D. Mangiras, P. Mattheakis, P.-O. Ribet, and G. Dimitrakopoulos. Soft-Clustering Driven

Flip-flop Placement Targeting Clock-induced OCV. In Proceedings of the 2020 International

Symposium on Physical Design (ISPD’20), pp. 25–32, 2020.

[65] A. Farshidi, L. Rakai, L. Behjat, and D. Westwick. Variation-aware clock network buffer

95

https://doi.org/10.1145/3287624.3287681
https://doi.org/10.1145/3287624.3287681

sizing using robust multi-objective optimization. In Optim Eng , vol. 17, no. 2, pp. 473–500,

2016.

[66] IBM. ILOG CPLEX Optimization studio. 2016.

[67] A. Agarwal, D. Blaauw, and V. Zolotov. 2003. Statistical timing analysis for intra-die pro-

cess variations with spatial correlations. In ICCAD-2003. Proceedings of the International

Conference on Computer Aided Design (IEEE Cat. No.03CH37486). 900–907.

[68] D. Lee, M. Kim, and I. L. Markov. 2006. Low-power clock trees for CPUs. In Proceedings

of the International Conference on Compter Aided Design (ICCAD ’10). pp. 444-451.

[69] A. Rajaram and D. Z. Pan. 2006. Variation tolerant buffered clock network synthesis with

cross links. In Proceedings of the International Symposium on Physical Design (ISPD ’06).

pp. 157–164.

[70] R. Ewetz, C. Y. Tan, and C.-K. Koh. 2016. Construction of Latency-Bounded Clock Trees.

In Proceedings of the International Symposium on Physical Design (ISPD ’16). pp. 81–88.

[71] Necati Uysal, Juan Ariel Cabrera, and Rickard Ewetz. 2020. Synthesis of Clock Networks

with a Mode Reconfigurable Topology and No Short Circuit Current. In Proceedings of the

International Symposium on Physical Design (ISPD ’20). 103–110.

[72] Necati Uysal and Rickard Ewetz. 2021. An OCV-Aware Clock Tree Synthesis Methodol-

ogy. In Proceedings of the International Conference on Computer Aided Design [accepted]

(ICCAD ’21) .

96

	Synthesis Methodologies for Robust and Reconfigurable Clock Networks
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: PRELIMINARIES
	2.1 Timing constraints
	2.2 Variations in the timing
	2.3 Clock networks with different topologies

	CHAPTER 3: REVIEW OF PREVIOUS WORKS
	3.1 Elmore delay model
	3.2 Clock tree synthesis
	3.2.1 Construction of clock trees using the Elmore delay model wang2009electronic
	3.2.2 Deferred merge embedding (DME) Algorithm

	3.3 Clock tree optimization
	3.3.1 Timing slacks under OCVs
	3.3.2 Predicted timing quality and CTO

	3.4 Gate sizing and layer assignment
	3.4.1 Van Ginneken's algorithm

	3.5 Techniques of handling OCVs
	3.6 Clock network synthesis for multiple modes of operations

	CHAPTER 4: LATENCY CONSTRAINT GUIDED BUFFER SIZING AND LAYER ASSIGNMENT FOR CLOCK TREES WITH USEFUL SKEW
	4.1 Introduction
	4.1.1 Motivation and the overview of the BLU framework
	4.1.2 Proposed framework

	4.2 The BLU framework
	4.2.1 Baseline of the BLU framework
	4.2.2 Relaxing the latency constraints
	4.2.3 Tightening the latency constraints

	4.3 Methodology
	4.4 Experimental evaluation
	4.4.1 Evaluation of positive delay adjustments
	4.4.2 Evaluation of negative delay adjustments

	4.5 Summary and conclusion

	CHAPTER 5: AN OCV-AWARE CLOCK TREE SYNTHESIS METHODOLOGY
	5.1 Introduction
	5.2 Motivation
	5.2.1 Limitations of previous works
	5.2.2 Proposed methodology

	5.3 Methodology
	5.3.1 The overview of the framework
	5.3.2 Enumeration of top-level trees
	5.3.3 Pruning of top-level trees
	5.3.4 Construction of virtual topology
	5.3.5 Insertion of non-uniform safety margins
	5.3.6 Specification of latency ranges
	5.3.7 Construction of USTs

	5.4 Experimental Evaluations
	5.4.1 Evaluation of framework configurations
	5.4.2 Comparisons with state-of-the-art

	5.5 Summary and conclusion

	CHAPTER 6: SYNTHESIS OF CLOCK NETWORKS WITH A MODE RECONFIGURABLE TOPOLOGY
	6.1 Introduction
	6.2 Preliminaries
	6.3 Problem formulation
	6.4 The limitations of the previous studies
	6.5 Proposed MRT Structure
	6.5.1 Overview of the MRT structure
	6.5.2 Improving the robustness in high performance modes
	6.5.3 Reducing power in low performance modes

	6.6 Methodology
	6.6.1 Insertion of OR-gates
	6.6.2 Construction of top-level clock trees
	6.6.2.1 Construction of Topology Relation Graph
	6.6.2.2 Edge pruning
	6.6.2.3 TRG guided Tree construction

	6.6.3 Construction of the reconfigurable topology
	6.6.4 Clock network optimization
	6.6.5 Supply voltage selection

	6.7 Experimental Results
	6.7.1 Evaluation of MRT design configurations
	6.7.1.1 Selection of the number of top-level trees
	6.7.1.2 Evaluation of the TRG guided top-level tree construction
	6.7.1.3 Evaluation of topology reconfiguration
	6.7.1.4 Evaluation of the negative-edge of the clock signal

	6.7.2 Evaluation of MRT structures

	6.8 Summary and conclusion

	CHAPTER 7: FUTURE WORKS
	LIST OF REFERENCES

