
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Human Behavior in Domestic Environments: Prediction and Human Behavior in Domestic Environments: Prediction and

Applications Applications

Sharare Zehtabian
University of Central Florida

 Part of the Theory and Algorithms Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Zehtabian, Sharare, "Human Behavior in Domestic Environments: Prediction and Applications" (2021).
Electronic Theses and Dissertations, 2020-. 945.
https://stars.library.ucf.edu/etd2020/945

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/151?utm_source=stars.library.ucf.edu%2Fetd2020%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/945?utm_source=stars.library.ucf.edu%2Fetd2020%2F945&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

HUMAN BEHAVIOR IN DOMESTIC ENVIRONMENTS: PREDICTION AND
APPLICATIONS

by

SHARARE ZEHTABIAN
M.S. University of Tehran, 2016

B.S. Sharif University of Technology, 2012

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida, Orlando, Florida

Fall Term
2021

Major Professor: Ladislau Bölöni and Damla Turgut

© 2021 Sharare Zehtabian

ii

ABSTRACT

A longstanding goal of human behavior science is to model and predict how humans interact with

each other or with other systems. Such models are beneficial and have many applications, includ-

ing designing and implementing assistive technologies, improving users’ experiences and quality

of life and making better decisions to create public policies. Behavior is highly complex due to un-

certainties and a lack of scientific tools to measure it. Hence prediction of human behavior cannot

be 100% accurate. However, prediction is also not hopeless because the biological needs, as well

as cultural conventions (for instance, regarding meal times) set the general patterns of the humans’

daily behavior. Furthermore, while individual humans might adjust these patterns according to

their own preferences, they also show some degree of consistency in their daily routine.

In this dissertation, we focus on interrelated challenges of improving the prediction models for

human daily activities and developing techniques through which intelligent applications can benefit

from this improved prediction. We describe techniques for creating predictive models that can help

humans in their daily life using deep learning-based models. One of the challenges of learning

based approaches in this setting is the scarcity of data. If we are collecting information about

a given human in a home, our database will increase with exactly one sample a day – this is

insufficient for deep learning algorithms that are often trained on datasets with millions of samples.

We investigate three directions through which the paucity of samples can be overcome.

First, we discuss techniques through which, starting from a small number of representative sam-

ples, we can generate much larger synthetic datasets that capture the statistical properties of the

real world data, and can be used in training. We consider an application where we apply human

behavior prediction to the practical problem of improving the quality of experience. By learning

to predict the experience requested by the user, we are able to perform intelligent pre-caching, and

iii

achieve higher average quality of experience for a given available network bandwidth.

Another direction we investigate is the collection of data from multiple users. This creates mul-

tiple challenges. First, users would prefer to minimize the shared personal data. This requires us

to investigate techniques that learn predictive models from multiple user experiences without re-

quiring the users to upload their data to a common repository. We adapt the technique of federated

learning, which requires the users to only share the training gradients on a model that had been

sent by a central server, but not raw data. We investigate procedures that allow the user to obtain

the best possible model for her own prediction while minimizing the amount of data disclosed.

The second challenge is that not all the users benefit to the same degree from creating a central

learning model; by investigating how much the user can benefit, we can stop the learning process

and implicit privacy loss earlier.

Finally, we developed predictive models for the spread of pandemics and techniques that use these

predictions to recommend Non-Pharmaceutical Interventions (NPIs) to local stakeholders. We find

that the prediction of pandemics is also conditioned on the behavior of individual humans and the

actions taken by the governments and, especially in the early phases of the pandemic, suffers from

a lack of data. We used a combination of a deep learning-based predictive model with a compart-

mental model, which is trained on the months elapsed from the pandemic and predicts infection

rates for the next months. We used cultural and geographical attributes as constant features along

with the history of cases and deaths as context features and NPIs as action features to train a single

predictive model that can predict both the infection rate and the stringency of the NPIs deployed

by policymakers for all countries / regions. We found that the stringency is not always aligned with

the number of cases but also depends on political, economic and cultural factors.

iv

ACKNOWLEDGMENTS

First and foremost, I am grateful for my advisors Ladislau Bölöni and Damla Turgut for their

continuous guidance and support during my Ph.D. and giving me the opportunity to work on a

variety of problems. I would like to thank my committee members Liqiang Wang and Yue Zhao

for their time, support and valuable comments.

A special thank you and feeling of gratitude towards my parents for all they have done for me

through the years of my studies. I am grateful for my sister, Shohre, who has always been a great

friend and mentor to me and has helped me a lot throughout my studies. Finally, this dissertation

was not possible without my loving husband’s support, Siavash. I am beyond grateful to have him

in my life.

v

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xiii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: RELATED WORK . 5

CHAPTER 3: HUMAN BEHAVIOR PREDICTION FOR CONTENT CACHING 17

User modeling . 18

Problem statement . 18

Modeling the users’ interaction with devices . 20

Real world and simulated datasets of user activities in homes 20

Real-world Datasets . 22

Simulated Dataset: Open Smart-Home simulated (OpenSHS) 23

Creating synthetic datasets using common-sense association 23

Methods . 25

Predictive Caching Algorithms . 25

vi

Probability-based caching . 25

LSTM-based caching . 26

Majority vote-based caching . 28

Baseline Caching Algorithms . 29

Oracle . 29

Cache everything . 29

Random caching . 29

Experimental Approach . 29

Prediction accuracy . 30

Long-short term memory network . 31

Experimental results of the overall predictive caching agent 37

CHAPTER 4: PRIVACY-PRESERVING LEARNING OF HUMAN BEHAVIOR PREDIC-

TORS . 41

Training Data for Collaborative Learning in Smart Environments 41

Learning the Activity Prediction Model . 44

A Long-Short Term Memory Based Activity Predictor 45

Local Training . 46

vii

Centralized Training . 47

Federated Training . 47

Predicting If Smart Environments Benefit from Federated Training 49

Experimental Study . 51

Datasets and Pre-processing . 51

Training the Activity Predictor . 54

Results: Accuracy, Crossover Point and Regret 54

Predicting the Benefits of Federated Training . 57

CHAPTER 5: PREDICTING COVID-19 PANDEMIC USING HUMAN’S CULTURAL

BEHAVIOR DIMENSIONS, COMPARTMENTAL MODELS AND DEEP LEARN-

ING . 64

Learning-based models for predicting the number of infections 64

Learning based epidemiological models . 66

LSTM-UT-Cogn . 66

LSTM-Baseline . 67

Taking into account culture . 69

Adding compartmental models . 70

LSTM based predictor using cultural dimensions and the SIR model 71

viii

Transformer encoder based predictor using cultural dimensions and the

SIR model . 72

Experimental Studies . 73

CHAPTER 6: CONCLUSION . 77

LIST OF REFERENCES . 79

ix

LIST OF FIGURES

3.1 The action distributions for each day. The x-axis shows time in hours during

a day . 21

3.2 The many-to-one neural network used in the LSTM-based caching algorithm. 27

3.3 The many-to-many neural network used in the LSTM-based caching algorithm. . . . 27

3.4 Train and validation F1-score by increasing the size of data. 32

3.5 The F1-score of the prediction, using many-to-one LSTM model for the train

(blue) and validation (orange) of real-world 1 (top) and real-world 2 (bottom)

based on history of 24 hours by using patience 70 and 1 hour time interval. . . 33

3.6 The F1-score of the prediction, using many-to-one LSTM model for the train

(blue) and validation (orange) of simulated dataset 1 and (top), and simulated

dataset 2 (bottom) based on history of 24 hours by using patience 70 and 1

hour time interval. 34

3.7 The F1-score of the prediction, using the proposed many-to-many LSTM

model for the train (blue) and validation (orange) of real-world dataset 1

(top), real-world dataset 2 (bottom) after 225 epochs and time interval length

= 1 hour. 35

x

3.8 The F1-score of the prediction, using the proposed many-to-many LSTM

model for the train (blue) and validation (orange) of simulated dataset 1 (top),

and simulated dataset 2 (bottom) after 225 epochs and time interval length =

1 hour. 36

3.9 Caching approaches scaled final score (Eq 3.3) results on real-world dataset

1 (top) and real-world dataset 2(bottom) for each delivery format. 39

3.10 Caching approaches scaled final score (Eq 3.3) results on simulated dataset 1

(top) and simulated dataset 2 (bottom) for each delivery format. 40

4.1 The data available for collaborative training for a group of users. The de-

ployment time of the system is modeled through a Poisson arrival starting

from January 1st. The users stop sharing data when further data sharing is

not justified by the advantage of collaborative learning. The red part of the

bars illustrates the data available for collaborative training on January 16th. . 59

4.2 Architecture of LSTM based prediction model. Each circle in the input layer

shows a single feature. A set of features is considered as the inputs in each

time step. Gray circles in the output of the model correspond to the activities.

h is the hidden state and c is the cell state. 60

4.3 Activity prediction approaches 1. local (in-home) training (top), 2. central-

ized training (middle), and 3. federated training (bottom). We used 70% of

each home’s data for training and 30% for testing. 61

xi

4.4 Accuracy on test data for a selection of 12 out of the 30 homes in our dataset

with local training (magenta) vs centralized training (blue) and federated

training (orange). The cross-point shows the first time that the local accuracy

reaches the federated accuracy. Regret is the area between local accuracy and

federated accuracy when local accuracy is lower. than federated accuracy. . . 62

4.5 Activity proportions for the same set of homes as shown in Fig 4.4. 63

5.1 The architecture of the compared models: LSTM-Baseline (top-left), LSTM-

UT-Cogn (bottom-left), LSTM-CultD-SIR (top-right) TRANSENC-CultD-

SIR (bottom-right). 68

5.2 Average of 7-day predicted daily new cases over all countries using our pre-

dictors, LSTM-CultD-SIR and TRANSENC-CultD-SIR and two baselines

LSTM-Baseline and LSTM-UT-Cogn. Top: E2020, Bottom: E2021. 74

5.3 Cumulative 7-day mean absolute error per 100k for each prediction approach.

Top: E2020. Bottom: E2021. 75

5.4 Color scaled cumulative 7-day mean absolute error per 100k per country or

region based on each prediction approach. Green color shows zero to 2k and

red color shows 8k or more cumulative 7-day mean absolute error per 100k. . 76

xii

LIST OF TABLES

3.1 Relative quality and caching cost levels of experience units and data chunk size for a

15 to 20 second experience unit. To compute the relative cost, we consider the worst

case for each type of format. 19

3.2 Mapping approach from daily task to daily request of the users for real-world dataset

1 (top), real-world dataset 2 (middle), and simulated dataset 1 and 2 (bottom) 24

3.3 Selected values for hyperparameters of majority vote-based prediction. 28

3.4 F1-score of the prediction, using the many-to-one LSTM model on real-world dataset

1, real-world dataset 2, simulated dataset 1, and simulated dataset 2 based on history

of activities with size of 24 hours by using early stopping with patience 70. 37

3.5 F1-score of the prediction, using the many-to-many LSTM model on real-world 1,

real-world 2, simulated dataset 1, and simulated dataset 2 after 225 epochs 38

4.1 Mapping the dataset activities to a higher level category 53

4.2 Local, centralized, and federated training hyperparameters. 55

4.3 Comparison of classifiers for predicting the benefit of collaborative learning . 58

xiii

CHAPTER 1: INTRODUCTION

Human behavior is defined as the way humans act and interact with each other or with other

systems. Human behavior is influenced by several factors, such as genetic, cultural, and individual

values and attitudes. Modeling human behaviors opens possibilities that can help us in different

aspects of the daily living [82]. In the last two decades, a large number of research and commercial

projects developed assistive technologies that aim to improve the quality of life for individuals

by choosing the appropriate assistive actions based on the log of the user’s activities of daily

living [77, 1]. The main aspects of these systems are that they are easy to understand and can

automatically adapt to behavioral patterns of the users in a specific context [71]. For example, we

can give the user real-time feedback to improve their task deployment, automate the use of tools

and devices to decrease costs, monitor users remotely, and provide e-health services according to

the characteristics and needs of each particular citizen or residents [5].

Besides, we can design systems that can predict users’ needs and provide information regarding

various simple daily in-home scenarios. Examples include checking the news for major sport

events, weather or traffic report, parking status, and checking online information for daily tasks

such as appropriate cooking recipes. In these scenarios, we need a higher rate for content delivery,

large bandwidth, increased capacity, low latency, and high throughput [80]. An intelligent strategy

would be to predict what experience the user will need and in which time frame of the day this

request will happen, so the system can cache the necessary content in advance to deliver that

experience to the user. Therefore, an ability to model routine behaviors and their variations could

help researchers improve such assistive technologies.

In addition to using predictive models for assistive technologies or improving user experiences,

decision makers need to know about the prediction models, why they work and why they might not

1

work for decision making. Usually, a good predictive model provides one or more prescriptions for

potential future actions that enable decision-makers to make better decisions. A practical example

is predicting Covid-19 pandemic.

As manually creating a model of user behavior is prohibitively expensive, we propose to learn the

predictive model from collected data. Machine learning, in particular deep learning models, made

significant progress in the last decade. However, many deep learning algorithms work best under

big data regimes, where the number of data samples is counted from the tens of thousands (e.g. the

MNIST dataset) to 500 billion (the Common Crawl dataset used to train the GPT-3 model). The

activity logs of assistive environments, in contrast, are an example of small data: the number of

individual activities performed by a user each day is counted in dozens, and we expect the model to

yield actionable predictions in matter of weeks after the system deployment. As another example,

the prediction of pandemics such as Covid-19 pandemic is also conditioned on the behavior of

individual humans and the actions taken by the governments and, especially in the early phases of

the pandemic, suffers from a lack of data.

One potential solution for this challenge is generating synthetic data. Creating synthetic datasets

has been applied to different problems in machine learning, such as Question-Answering chal-

lenges [86] and visual reasoning [106]. Synthetic human behavior data should capture the statisti-

cal properties of real-world behavior, but provide additional variation that helps with the training

of machine learning models. Examples of technologies that can be used to generate such mod-

els include sampling from Markov chains, Poisson distributions [38] as well as generative models

such as generative adversarial networks (GANs) [33].

Another solution to the problem of data scarcity is the use of collaborative learning which, by

building a common model Mshared from the data of a pool of users, operates closer to the big data

regimes favored by deep learning algorithms. The simplest choice of collaborative learning is

2

centralized learning: the environments transfer their logs to a cloud-based central authority that

combines these logs into a common training set. A different variant of collaborative learning, fed-

erated learning [50], also relies on a cloud-based central authority but requires the environments

to perform learning locally and transfer only parameters of the learned model to the central sys-

tem. Having access, directly or indirectly, to more data, collaborative learning promises faster

convergence.

A very important aspect of learning human behavior predictive models is the consideration of

privacy. One of the fundamental principles of privacy is that of data minimization. In the context of

machine learning, this principle means that the minimum amount of training data must be collected

from users in order to acquire the specific benefits of the application. This principle was stated,

among others, in the consumer privacy report of the US White House in 2012 [15], by the UK

Information Commissioner’s office [97] and it is also embedded in the European Union’s General

Data Protection Regulation (GDPR) [98].

The principle of data minimization, applied to a smart environment means that the environment

should not disclose information unless it provides a quantifiable benefit. When this is not feasible,

and everything else being equal, the system should prefer techniques such as federated learning,

which can be used in ways to achieve differential privacy [31] to techniques such as centralized

learning where privacy depends on assumptions about the central authority. However, the choice

is not clear cut: attacks against federated learning systems had been recently demonstrated [6]

and, even in the absence of attack, information can still leak through, sometimes simply by the

participation of a home in a given federated learning pool.

As an application area, our topic is part of the field of human activity modeling and prediction

that can be used in a decision making problem in a larger environment such as a city or a country.

As the final step in this dissertation, we study the applications in predicting Covid-19 infection

3

rate during the pandemic that can help local stakeholders in decision making and recommending

intervention plans.

The contributions of this dissertation have three distinct intellectual lineages.

• In one research direction, we investigate several strategies for predicting the information

needs of a user in a smart-home [101, 103]. The paucity of datasets is a major challenge

in such studies. We synthetically generate realistic content requests starting from real-world

databases of user activities in smart homes. Using these synthetic datasets, we develop

techniques for demand prediction and content caching that aim to optimize the quality of

user satisfaction while minimizing the cost of caching and storing the data.

• In the second research direction, we focus on learning a predictive model of human activities

in smart environments using collaborative learning [104]. We use state-of-the-art deep neural

network-based techniques to learn predictive human activity models in the local, centralized,

and federated settings. We track the temporal evolution of the data available to the learner

and the data shared by the user and considered users that aim to preserve their privacy.

• Finally, we investigate human behavior modeling and prediction problem in a larger envi-

ronment such as a city or a country. More specifically, we study the modeling and predicting

of the infections in the Covid-19 pandemic, which was also found to be highly dependant

on humans’ behavior and interactions [102]. Such system could help regional governments,

communities, and organizations to minimize harm when reopening during a pandemic. We

take into account features dependent on social, cultural and geographical aspects alongside

features created by using compartmental models in order to improve the prediction model.

4

CHAPTER 2: RELATED WORK

Human behavior definition. According to Nature’s website, human behavior is defined as the

way humans act and interact with each other or with other systems. Human behavior is influenced

by several factors, such as genetic, cultural, and individual values and attitudes. When we study

other topics in science such as physics, chemistry, or biology, we study organized information that

has been collected during years of experiments. We might think of a scientist working in his or

her laboratory with equipment such as telescopes, microscopes, and cyclotrons. The science of

behavior is not one of those subjects which we can access it by using an instrument such as a

telescope or microscope. We all are already very familiar with this subject since we have observed

various behaviors for many years and as a result, we know so many facts about behaviors. However,

this familiarity might be a disadvantage for the science of behavior since it might make us biased

and might lead us to jump to conclusions [83]. Therefore, behavior is a difficult subject to study

because not only cannot we access it by a specific instrument, but it contains uncertainties and is

very complicated to be analyzed.

In literature, there are other descriptions of human behaviors. Pentland and Liu [74] described

human behaviors as a set of dynamic models. They considered a human as a device with a large

number of internal mental states. In this definition, each mental state has its own control behavior

and interstate transition probabilities. Such a model of human behavior could be used to create

better systems in which humans and machines can easily and naturally interact with each other. If

the machine could recognize the human’s behavior or, even better, if it could anticipate the human’s

behavior, it could adjust itself to serve the humans’ needs better.

One of the best tools for understanding and managing complex systems such as human behaviors

is computational modeling and simulation. In the following paragraphs, we describe the modeling

5

strategies for humans and the users of technologies in different contexts.

Modeling of human behavior/users. Human-centered technologies are systems that are built for

humans based on human behavior models. The most important aspects of these systems is that they

are simple to use and understand and they adapt automatically to behavioral patterns of the users

and the context in which they are being used [71]. Behavioral modeling can help to enhance the

user experience of these systems. For example, in the concept of online social networks, a social

graph can be used as a classic and effective mathematical model to represent the connectivity and

interaction between users [44].

Another crucial aspect of these systems is that they promote independent and convenient living

for the people such as the elderly population. The aging populations all around the world are

increasing and as a result of that, the number of people who are dependent on others for their

daily tasks and suffer from a reduced level of autonomy is elevating [70, 29]. In addition to the

elderly population, human-centered and goal-oriented technologies can improve the quality of life

for people with disabilities, people with hearing or speech difficulty, visually impaired people, and

people on the spectrum. Routine behaviors are specific behaviors that are defined as frequent and

goal-oriented actions that people perform in different situations [40]. An ability to model routine

behaviors and their variations could help researchers improve technologies that influence routine

tasks to help people improve the quality of their lives [7].

To study human behaviors, we need large activity datasets. Data mining algorithms can be used to

extract patterns from such datasets [58]. Also, visualization of the data could help researchers to

extract information on human behaviors [93]. Also, machine learning provides new tools for re-

searchers to better understand human behavior. With the recent advances in artificial intelligence,

we can assist humans through different aspects of engineering such as biomedical, industrial, and

robotics. Therefore, conceptualizing the behavior of humans becomes more important to enhance

6

the interaction between humans and machine [73]. The concept of user modeling has been mainly

discussed in the context of human–computer interaction. For example, we model the users’ be-

havior when we want to design an intelligent system for a group of users to improve the user

experience with the system. In this model, the gathered data from the history of the interaction

between the user and the systems are analyzed to estimate the intended actions of the users in the

future [24].

Predictive statistical models enable the anticipation of different aspects of human behavior, such

as intents, actions, and preferences [110]. Generally, user modeling can be classified into three

classes: behavioral modeling, interest modeling, and intent modeling. User modeling can be de-

fined as learning a latent representation for each user and extracting meaningful latent features

from users’ data. In order to learn this representation, we can use features of the system or charac-

teristics of the user, and a user-system response matrix that can be applied to predict the response,

recommendations, and so on [54]. The data could be either static data (e.g., tabular data) or se-

quential data (e.g., time-series data). In user modeling applications, user data are often organized

in structured static datasets (e.g., user-movie rating matrix) or unstructured sequences (e.g., the

purchase history of customers). To achieve representation learning, we could use either shallow

models or deep models.

To inspire and improve user loyalty and developing a meaningful one-to-one relationship, per-

sonalization approaches are being considered in building technologies. To this end, we need to

understand the needs of each individual and help them to efficiently achieve their goal and accord-

ingly address each individual’s need in a given context [78]. If we can gather more information to

model the users, we can easily build personalized services for the users [30].

Predicting human behavior. Advances in machine learning can help to understand offline and on-

line human behavior. Accuracy is an important metric for evaluating machine learning algorithms;

7

however, no single machine learning algorithm can appropriately solve everything. This means

that an acceptable accuracy would be enough for certain problems. AI researchers usually explain

why their prediction models are working but they say less about why their prediction models might

not work. Decision-makers need to know about both of these aspects to make better decisions. For

example, in high-risk situations, we need to provide a deeper understanding of the understudy sit-

uation [85]. In addition, usually, a good predictive model provides one or more prescriptions for

potential future actions that enable decision-makers to make better decisions.

Predicting human behavior relies on both psychological studies and data science [75]. This means

that social scientists and data scientists can learn from each other. Many social scientists focus on

understanding and explaining the behavior without considering quantitative predictions. On the

other hand, most data scientists avoid careful examination of human behavior, and they mainly

concentrate on big data.

Several techniques have been generated by machine learning and reasoning under uncertainty for

predictive statistical modelings such as decision trees, neural networks, classification and rule-

induction methods, and Bayesian networks [110]. Chen et al. [13] proposed a data mining ap-

proach to model user intention in which proper concepts of linguistic features are extracted using

rule association and classified with a Naive Bayes classifier. Guha et al. [35] deployed a user mod-

eling system for Google Now personal assistant based on long-term user history with thousands

of queries and clicks. They showed that identifying contexts such as user’s interests and habits is

critical to building a useful personal assistant.

In the context of smart environments, predicting future events is very important to improve daily

living and help individuals to live independently. Also, human activity learning is critical for de-

signing human-centric technologies and understanding human behavior [17]. Most of the research

in prediction in smart environments can be grouped into two categories: predicting the activities

8

of daily living and predicting the location of events [94]. We can monitor residents’ activities in

smart environments and/or when they are using smart devices to evaluate the current state of health

conditions and for detecting abnormal behaviors on an ongoing basis. For example, such smart

environments and devices are used to analyze eating behavior and whether people are taking pre-

scribed medication, or to detect periods of depression and anxiety and suggest interventions using

computer-based therapy [88, 68]. Also, it is important to monitor activities of people with visual

or mobility impairment to predict falls, detect unsafe activities and provide real-time responses for

them [105, 49, 27, 67, 66].

To build such smart environments and devices, it is important to store and utilize long-term data

to predict future health conditions in advance and to make the necessary arrangements proac-

tively [69].

In many domains, we can collect enormous datasets by scraping the Internet and hiring people to

label and clean those datasets by tools such as Amazon Mechanical Turk. However, it is signifi-

cantly harder to gather such a dataset for a human-inhabited system in which humans physically

interact with the environment such as smart-home. This is not just an issue of cost, but also many

people do not allow collecting data of their daily living due to obvious privacy concerns. One of

the most complete datasets for smart-home research is CASAS (Center for Advanced Studies in

Adaptive Systems) dataset that encouraged many research ideas. The dataset is built from smart

homes’ data and is maintained publicly. Minor, Doppa, and Cook [64] trained activity predictors

by CASAS dataset. Some studies focus on a current activity recognition task from sensory data in

CASAS dataset [56]. Furthermore, Choi et al. [14] proposed two deep learning algorithms based

on deep belief networks [53] and restricted Boltzman machines [52] to predict the behaviors of

residents using MIT home dataset [87]. We can loosely divide the studies on these datasets into

two categories. The first set of algorithms are classification problems in which the predictor model

predicts the probability of the next event given the current state. The second category includes the

9

regression models that predict the particular time delays when the next event or activity occurs.

The intelligent process and prediction for IoT-based smart-homes has significant benefits; however,

there are some challenges and concerns that are required to be considered [100]:

• Hardware limitation such as positions of sensors, cameras or other devices, lack of memory.

• Device connectivity such as standardize the communication protocols, different devices from

manufacturers and companies.

• Data management to transfer sensor data from raw form into higher abstraction representa-

tions, trigger-responding actions, acquire daily life activities and human behavior, accessible

and understandable to humans and interpretable by machines.

• Methods from machine learning and accuracy to provide excellent reasoning, enable decision

making, understand the time of the day and seasonal changes, and analysis and prediction

based on historical data.

• User behavior, lifestyle, and habit modeling to make sure to improve comfort and satisfac-

tion.

• Security issues such as privacy of data, cyber-attacks.

Data collection and data management for user modeling. To predict user behavior or activities,

we need to gather information from actuators and sensors while the user is interacting with them.

Collecting this data allows us to create intelligent and automated systems. Many research groups

collect data in real-world environments [26]. During data collection, a good indicator of cognitive

and physical capabilities are activities of daily living such as sleeping, bathing, cooking, and so

on. To create intelligent models from sensor data, we can use machine learning algorithms and

train them on train and validation datasets to learn patterns and distributions. One challenge is that

10

real-world sensor-driven data collection is limited both in terms of availability and variety. Thus,

we can use simulated or scaled models of smart environments to collect data [57, 25, 11, 62, 10].

These datasets can be used to train machine learning based predictive models that predict the next

state of the environments based on the previous actions.

Also, synthetic data that can reflect the same patterns and human behavior can be generated [19].

For example, Dahmen et al. [20] generated synthetic data that is reflective of real-world data for

activity learning and anomaly detection tasks in smart environments as they stated that anomalies

are rare and are not well documented in real-world smart environment data. To create synthetic

data, they used the structure of a hidden Markov model (HMM) [79] learned from the real smart

home data.

Privacy for human behavior modeling and prediction. In this era of information, the privacy of

users is the utmost important aspect. The protection of user privacy is one of the most worrying

issues in IoT. Nowadays, devices are off-loading tasks to the cloud and transfer personal informa-

tion as habits, media, or preferences [42]. Birchley et al. study the very important topic of ethics

in smart environments [9]. They raise concerns about privacy, consent, social isolation, and equity

of access. Most importantly, they are concerned about privacy. Even though significant endeav-

ors had made to reduce the probability of unapproved data sharing, still privacy and data breaches

happen all the time. Studies show that in the context of smart homes, privacy is the crucial obstacle

to the adoption of technologies such as healthcare, activity automation, energy conservation, and

remote access services [72]. There are many diverse methods to violate the privacy of the users.

For example, Jiang et al. show that we can mine sensory data from motion sensors to infer the

daily habits and health information of a related user [43].

Federated learning had initially been proposed as a technique to improve communication efficiency

in distributed learning [50]. However, it had been pointed out that the technique also allows the

11

learning system to ensure differential privacy [31]. One of the early, high profile applications

was Google’s Gboard [37] which used federated averaging (FedAvg) [60] to improve next word

prediction. In recent years, several research projects improved the performance and privacy char-

acteristics of federated learning. Zhao et al. [108] suggested a data-sharing approach to improve

the performance of the FedAvg algorithm in case the training data is non-IID. Wang et al. [90]

aim to optimize learning of a gradient-descent based federated learning algorithm at the edge. In

federated learning algorithms, local training happens at the edge and global aggregation is per-

formed in a central place. They proposed a control algorithm that determines the best frequency

of global aggregation with which computation and communication resources at the edge can be

used efficiently in federated learning. Zhang et al. [107] proposed building trustworthy federated

learning systems using trusted execution environments (TEEs). Their main focus was to assure

that the local training on the clients’ side is being done correctly.

Human cultural behavior and applications in pandemic prediction. During a pandemic, com-

plete and accurate data is required to predict the changes in human behavior after applying different

intervention plans and building mathematical models for simulating different scenarios. However,

in case of epidemics, there is a scarcity of such data. The epidemic modeling community is much

less mature than other modelling communities. Moran et al. studied the difference between epi-

demic forecasting and weather forecasting [65]. They suggested that in order to accurately predict

a pandemic, it is important to model human behavior and the potential changes during a course of

the pandemic, while these factors are generally not considered in short- and medium-range weather

forecasts. Flaxman et al. [28] studied the effects of major non pharmaceutical interventions (NPIs)

across 11 European countries and introduced a Bayesian model to estimate the epidemic. Their

model calculates backwards from observed deaths to estimate transmission that occurred several

weeks previously, allowing for the time lag between infection and death. More specifically, they

fit their model to the observed deaths from the data. Also, the number of infections is estimated as

12

the product of Rt (reproduction rate) with a discrete convolution of the previous infections. Rt is

a function of both initial R0 (Rt before applying any NPI) and the effect from NPIs. Dehning et

al. [22] focused on short-term infection forecasting based on NPIs and studied how the interven-

tions affect the epidemiological parameters. They combined a SIR model with Bayesian parameter

inference to analyse the time-dependent spreading rate. They detected the change points in the

spreading rate that have correlations with the times of announced interventions. They specifically

focused on Covid-19 spread in Germany. They showed that changes in the spreading rate affect the

confirmed cases with a delay of about two weeks, with a median reporting delay of 11.4 days plus a

median change-point duration of 3 days. Arık et al. [4] proposed an approach for modeling Covid-

19 forecasts by integrating covariate encoding to compartmental models. They used the standard

SEIR model but modeled more compartments such as: Undocumented infected and recovered

compartments, Hospitalized, ICU and ventilator compartments, and Partial immunity (we do not

what fraction of recovered population are immuned to future infection). Then, they incorporated a

time-varying encoding of the covariates and trained an end-to-end model. Finally, they used multi-

ple learning approaches to improve the generalization of their model such as: masked supervision

from partial observations, partial teacher-forcing to minimize error propagation, regularization and

cross-location information-sharing. Jin et al. [45] focused on a direct data-driven prediction model

for predicting Covid-19 without using compartmental models.They developed a neural forecasting

model called Attention Crossing Time Series (ACTS) that predicts cases by comparing patterns of

time series from different regions. They addressed the scarcity of time series historical data for

each region by investigating other regions’ time series in the dataset with similar long term or short

term patterns. Specifically, they considered certain time periods with similar dynamics rather than

the entire time series. Therefore, the task here is to find small segments in reference time series

that show similarity with the target time series. They suggested attention models to find these seg-

ments by adding trend filtering to model long-term trends that are difficult for the attention model

to capture. Xiao et al. [95] proposed C-Watcher which is a data-driven framework to screen all

13

the neighborhoods in a city and detect the neighborhoods with the highest risk of Covid-19 spread

before they contaminate other neighborhoods. They used long-term human mobility data from

Baidu Maps and characterized each neighborhood by using urban mobility patterns. Their model

is based on cross-city transfer learning with four components: 1. neural network for learning a

representation of a neighborhood based on POI Radius, Demographic, and Transportation-Related

features, 2. a discriminator component to identify whether the output of the encoder belongs to the

target city or not, 3. the reconstruction component consists of two decoders for the epicenter city

and the target city, and 4. a classifier. Liao et al. [55] proposed a time-window based SIR prediction

model and used a machine learning method to predict the basic reproduction number and the expo-

nential growth rate of the epidemic. For their time-window based sir model, they specifically split

historical data into a time window segment in order to capture the real-time changes in R0 and the

exponential growth rate. They used Covid-19 historical data in China, South Korea, Italy, Spain,

Brazil, Germany and France. Mehta et al. [61] focused on country level prediction of Covid-19

for the near future a combination of health statistics, demographics, and geographical features of

counties. They used US Census data to obtain county-level population statistics for age, gender,

and density. Their predictive model has three different outcomes: 1. the probability that a county

has at least one confirmed case of Covid-19, which is defined as a positive instance, 2. the number

of confirmed Covid-19 cases within a county which is defined as occurrences, 3. vulnerability of

the country. They used a XGBoost classifier to classify each county either as a positive or negative

instance. To predict the number of occurrences, they used a XGBoost regression model. Finally,

they combined results from the first two stages and calculated the expected occurrences for coun-

ties as a measure of county vulnerability. Watson et al. [92] proposed a Bayesian time series model

that fits a location-specific curve to the velocity (first derivative) of the log transformed cumulative

case count. Then they use a random forest algorithm that learns the relationship between Covid-19

cases and population characteristics to predict deaths. Finally, they embed these models to a com-

partmental model which can provide projections for active cases and confirmed recoveries. They

14

obtained the data from Covid-19 Tracking Project which is a combination of information from

state health departments and other sources. Zou et al. [109] introduced the SuEIR model, a variant

of the SEIR model, to predict confirmed and fatality cases, the peak date of active cases, and es-

timate the basic reproduction number (R0) in the United States. Their model considers additional

information such as the untested/unreported cases of Covid-19 and is trained by machine learning

based algorithms by using historical data. They fit an ordinary differential equation (ODE) based

model on the data. Their model could provide accurate short-term (daily ahead) projections for

both confirmed cases and fatality cases at national and state levels. In the long term, they showed

that the numbers of confirmed cases and deaths will keep increasing rapidly within one month.

Qian and Alaa [76] focused on developing a model to learn the policies that affect the fatality rate

of the Covid-19 in a global context. They used a Bayesian model with a two-layer Gaussian pro-

cess (GP) prior. The lower layer models the Covid-19 fatality curve over time within each country

with a compartmental SEIR (Susceptible, Exposed, Infectious, Recovered) model. The upper layer

is shared with all countries and it is another GP model that learns the R0 as a function of country

features and policy indicators. They used data that contains all economic, social, demographic,

environmental and public health features. Sharma, Mindermann, Brauner et al. [81] investigated

the robustness of the estimated effects of NPIs against Covid-19. In particular, they studied if NPI

effectiveness estimates generalize to unseen countries without access to the ground truth NPI ef-

fectiveness estimates. They also studied numerous assumptions and limitations for the data-driven

estimate models and suggested that the policy-makers should make decisions based on diverse

sources of evidence, including other historical studies, experimental methods, and clinical experi-

ence. Mastakouri and Schölkopf [59] studied a causal time series analysis of the Covid-19 spread

in Germany to understand the causal role of the applied non pharmaceutical interventions (NPIs)

in containing the spread among German regions. They used a causal feature selection method for

time series with latent confounders called SyPI to analyse and detect the restriction policies that

15

have a causal impact on the daily number of Covid-19 cases. They performed the analysis on a

state and on a district level. Yeung et al. [99] combined NPIs and Hofstede cultural dimensions

in predicting the infection rate for 114 countries. Particularly, they predict confirmed infection

growth (CIG), which is defined as the 14-day growth in the cumulative number of reported infec-

tion cases. They used OxCGRT data of the NPIs and trained different non-time series models such

as ridge regression, decision tree, random forest, ada boost, and support vector regression using

mean squared error (MSE), and performed a grid search on the combination of these models. Their

results showed that random forest regression and AdaBoost regression were the best performing

predictors out of the five evaluated machine learning models. Johndrow et al. [46] built a model

for Covid-19 transmission only by using the number of daily deaths, timing of containment mea-

sures, and information on the clinical progression of the disease. The authors suggested that using

less precise information such as the number of confirmed cases will result in unreliable analysis.

Their modeling approach is a SIR model of disease spread via a likelihood that accounts for the

lag in time from infection to death and the infection fatality rate. They specifically fit a Markov

Chain Monte Carlo (MCMC) algorithm to their data. Bengio et al. [8] proposed a proactive con-

tact tracing method. They embedded two neural networks namely Deep Sets and Set Transformers

and evaluated the resulting models via the COVIsim testbed. Their methods are able to leverage

weak signals and patterns in noisy, heterogeneous data to better estimate infectiousness compared

to binary contact tracing and rule-based methods. Their method provides a good trade-off between

restrictions on mobility and reducing the spread of disease. Davis et al. [21] designed a stochas-

tic age-structured transmission model to study different intervention scenarios and their impacts

on the transmission of Covid-19 cases in the UK. They specifically explored four base interven-

tions scenarios of school closures, physical distancing, shielding of people aged 70 years or older,

self-isolation of symptomatic cases, and modelled the combination of these interventions.

16

CHAPTER 3: HUMAN BEHAVIOR PREDICTION FOR CONTENT

CACHING

In a possible future, high-quality and visually-compelling contents such as pervasive augmented

and/or virtual reality or 3D immersive experiences might become the primary type of information

to deliver to the users. Max reality, for example, is a product of the weather company, an IBM

business aiming to deliver personalized and more interactive visualization of weather or traffic

reports to the users to better understand travel conditions and plan for their commute. Their studies

showed that max reality appealed to 62% of participants, and 64% will stay tuned in longer if

max reality is coming up in the next segment. To achieve a high level of user satisfaction, such

a system must answer user requests with the best quality and with minimal lag. As bandwidth

and latency limitations will still apply, the system must perform predictive caching of the content.

In this paper, we investigate several strategies for predicting the information needs of a user in a

smart home. The paucity of datasets is a major challenge in such studies. We are starting from

the hypothesis that the user’s patterns of daily life guide the content consumption regardless of the

delivery medium. This allows us to synthetically generate realistic content requests starting from

real-world databases of user activities in smart homes.Using these datasets, we develop techniques

for demand prediction and content caching that aim to optimize the quality of user satisfaction

while minimizing the cost of caching.We propose three algorithms: one based on probabilistic

modeling, one based on long short term memory (LSTM) networks, and one based on majority

voting. Through a set of experimental studies, we show that our techniques outperform baseline

caching techniques both in terms of user satisfaction and caching cost.

17

User modeling

Problem statement

In this paper, we consider a set of household scenarios in which residents request experiences such

as (a) summary of the news, (b) weather report, (c) parking availability report, (d) traffic report, and

(e) food recipe. Statistically, a given type of experience is more likely to be accessed at a specific

time of the day. For instance, a user might more likely need a recipe during dinner preparation

time, or a weather forecast can be most helpful before leaving home. The users go through a

series of interactions split into experience units, a particular short interaction with the system. In

our scenarios, we consider experiences that each “unit of experience” is approximately 15 to 20

seconds long and can be delivered at different “level of quality” from high such as 4K videos or

3D animation to low such as 3GP low-resolution QCIF. For instance, a weather forecast can be

delivered as a short text message, a dynamic 3D image on a big screen, or a dual-4K immersive

visualization. Providing a high-quality experience requires both networking and computing power.

Therefore, it is limited by the (1) capabilities of the devices through which it is delivered and by

the (2) signal limitations such as network delay and bandwidth. Table 3.1 shows the quality levels

we consider in this paper and the size of the data chunk necessary to deliver the experience unit.

Considering a particular experience e, we define the delay by dividing the size of content in MB

by external bandwidth:

delaye =
size(e)

external bandwidth
. (3.1)

One customary approach to rate the user satisfaction would be by evaluating objective metrics

such as video definition (video quality), fluency (interruptions), response speed (initial delay) [47].

18

Table 3.1: Relative quality and caching cost levels of experience units and data chunk size for a 15 to 20
second experience unit. To compute the relative cost, we consider the worst case for each type of format.

Type Size of exp. unit Relative quality Relative cost
4K video 32.7 MB 1.00 205.66

HD video (1080p) 10.6 MB 0.90 66.67
low-res video MKV 483 KB 0.81 3.04
3GP low-res QCIF 159 KB 0.73 1.00

sound-only - 0.66 -
text-only - 0.59 -

3D animation 2 MB - 20 MB 1.00 125.79

According to this, we estimate the “user satisfaction” by the score as follows:

scoree = d
delaye
d · df (e) ·max score (3.2)

in which dd is the discount factor for delay, df (.) is the discount factor of quality of each experience

shown in Table 3.1 (column of relative quality), and max score is the value for the maximum

quality. Notice that the value of dd and df (e) are between 0 and 1. In other words, greater delay or

lower quality both result in smaller score value.

Other than user satisfaction, we have to consider the cost of caching. We calculate the cost of

caching as cost = nc · rc, where nc is the number of cached items and rc is the relative cost of

each type of content which are available in Table 3.1 (column of relative cost). Since the size of

sound-only and text-only formats are very small, we do not consider cache cost for these types of

content. We obtain relative cost by size
min size

in which size is the content size for a 15 to 20 second

experience unit based on type, and min size is the minimum content size which is for 3GP low-res

QCIF type and is equal to 159KB. Eventually, the final score is computed as

final score = α · score − β · cost (3.3)

19

where α and β are coefficients for score and cost value, respectively.

Modeling the users’ interaction with devices

As we discussed earlier, our objective is to maximize the quality of the experiences for the user, by

predicting the time when specific experiences will be requested and by using this information for

efficient predictive caching. The prediction of the requests is ultimately rooted in the regularities

of everyday life. For instance, a user typically asks for a weather report in the morning before

leaving the house. However, we need to be aware that such predictions are inevitably probabilistic.

In a given day, the same user might ask for the weather report in the evening, or not ask for it for

several days. As user preferences are highly specific to the given user and household, we propose

techniques through which they can be learned from actual user data, as opposed to engineering a

user model from first principles.

One of the challenges of such an approach is the lack of existing datasets for this kind of requests.

To the best of our knowledge, no extensive data of such requests is yet available. However, the

design of the system would need exactly such data to learn the user model. To solve this chicken-

and-egg problem, we propose to generate training data starting from daily user behavior datasets

already acquired in smart homes and augmenting/extending these datasets with logical assumptions

about when the user’s would have requested experiences, should they have been available.

Real world and simulated datasets of user activities in homes

The emergence of sensor-augmented smart homes made it possible to acquire datasets that track

certain aspects of the inhabitants’ behavior in the last several years. In general, tracking the per-

sonal life of users opens serious privacy issues. However, several projects captured and made

20

0 5 10 15 20
time

Wash dishes

Take shower

Brush teeth

Prepare dinner

Shave

Leaving the house

Prepare brunch

Get a drink

0 5 10 15 20
time

Night wandering

Bed to toilet

R1 wake

R2 wake

R2 take medicine

Breakfast

Leave home

Lunch

Dinner

R2 sleep

R1 sleep

R1 work in office

Laundry

0 5 10 15 20
time

Sleep

Personal

Eat

Other

Leisure

Work

0 5 10 15 20
time

Sleep

Personal

Eat

Other

Leisure

Work

Figure 3.1: The action distributions for each day. The x-axis shows time in hours during a day

of Real-world Dataset 1 (top-left), Real-world Dataset 2 (top-right), Simulation Dataset 1
(bottom-left), Simulation Dataset 2 (bottom-right).

publicly anonymized datasets of human behavior in the home, tracking project-specific collection

of actions. In addition to real-world dataset of daily activities in a smart home, in order to facilitate

the dataset building, simulation environments are designed as a smart home by which the users can

simulate their daily activities and collect these actions. While these actions (in both real or simu-

lated environments) might not directly map to experience requests, they can anchor the generation

of training data.

21

Real-world Datasets

In this paper, we started from two publicly available real-world datasets of Activities of Daily

Livings (ADLs) in two different homes:

Dataset 1: WSNs One of the most promising technologies in this domain are wireless sensor

networks (WSNs), due to their low cost, flexibility, ability to supply constant supervision, and

inherent non-intrusive characteristics (as compared to video-based supervision). However, WSNs

cannot gather as much information about user contexts as other sensing systems, such as video

cameras. Obtaining a good body of labeled data is difficult. Users are reluctant to write down

their activities because it is time-consuming and can compromise their privacy. The dataset [48]

describes the activities of a 26-year-old man in a smart home with 14 state-change sensors installed

at doors, cupboards, the refrigerator, and the toilet flush. Sensors were left unattended, collecting

data for 823 data points of 28 days activities in the apartment. Eight annotated ADLs included

shave, brush teeth, get a drink, get dressed, prepare for leaving, prepare brunch, and prepare dinner.

We can see the list of performed actions and their distribution during the day in Figure 3.1 (top-

left). The x-axis describes time intervals from hour 0 to 24 during a day. We also show the names

of the eight tasks on the y-axis.

Dataset 2: CASAS This dataset [18], collected by CASAS (Center for Advanced Studies in Adap-

tive) research group, describes the activities of two residents in an apartment for 1199 data points

of 57 days activities. This dataset contains sensor data that was collected in the home of a volun-

teer adult couple. Residents R1 and R2 can do different tasks in the house. Annotated actions in

this dataset include night wandering, bed to toilet, R1 wake, R2 wake, R2 take medicine, break-

fast, leave home, lunch, dinner, R1 sleep, R2 sleep, R1 work in office, and laundry. Figure 3.1

(top-right) visualizes dataset 2 by showing each task’s frequency in specific time slots. The x-axis

describes time intervals from hour 0 to 24 during a day and the y-axis shows the names of the 13

22

tasks (R1 and R2 are the residents).

Simulated Dataset: Open Smart-Home simulated (OpenSHS)

Since the number of data points in real-world daily activity datasets is limited, we also used simu-

lated datasets of everyday activities collected from the OpenSHS environment (Open Smart Home

Simulator) [2]. OpneSHS is an open-source, cross-platform 3D smart home simulator for dataset

generation. Data collection in this simulation environment requires two entities: the researcher

and the participants. The researcher designs the environment, import the devices and sensors and

assigns activities’ labels. The researcher is also responsible for designing contexts such as morn-

ing, evening, weekday or weekends. Participants performed the Activities of their Daily Livings

(ADLs) for different contexts in a week, e.g., weekdays, weekends, and in a day e.g., mornings and

evenings in this simulation environment [3]. The actions include work, eat, sleep, leisure, personal,

and other. We chose two out of seven simulated datasets for our experiments.

Dataset 1 Two months of activities simulated and collected in this dataset with time-margin equal

to 0. This dataset contains 77 328 data points. See Figure 3.1 (bottom-left).

Dataset 2 Similar to dataset 1, dataset 2 contains two months of activities simulated and collected

in this dataset with time-margin equal to 0. This dataset contains 100 544 data points. See Fig-

ure 3.1 (bottom-right).

Creating synthetic datasets using common-sense association

We create realistic synthetic datasets of the user’s requests from the system using datasets of the

users’ daily activities in their home. We generate our synthetic scenarios by matching the sta-

tistical properties of the real-world and simulated datasets. We probabilistically associate certain

23

Table 3.2: Mapping approach from daily task to daily request of the users for real-world dataset 1 (top),
real-world dataset 2 (middle), and simulated dataset 1 and 2 (bottom)

task (Real-world Dataset 1) corresponding request
Shave, Brush teeth, Get a drink Summary of news
Get dressed, Prepare for leaving (30% of the times) Weather report
Prepare for leaving (50% of the times) Traffic report
Prepare for leaving (20% of the times) Parking status
Prepare brunch, Prepare dinner Recipe

task (Real-world Dataset 2) corresponding request
R1 wake, R2 wake Summary of news
Breakfast (70% of the times), Leave home (30% of the
times)

Weather report

Leave home (50% of the times) Traffic report
Leave home (20% of the times) Parking status
Breakfast (30% of the times), Lunch, Dinner Recipe

task (Simulated Datasets 1 and 2) corresponding request
Other (50% of the times), Leisure(60% of the times) Summary of news
Other (15% of the times), Work (30% of the times) Weather report
Other (10% of the times), Work (50% of the times) Traffic report
Other (5% of the times), Work (20% of the times) Parking status
Other (20% of the times), Leisure(40% of the times),
Eat

Recipe

experiences with activities that are present in the dataset using common-sense associations. Cre-

ating synthetic datasets using common-sense has been applied to different problems in machine

learning, such as Question-Answering challenges [86] and visual reasoning [106].

The mappings that we used to create the synthetic data are shown in Table 3.2. In these mappings,

we assumed that, for example, the user is likely to request a recipe while preparing food. Also, it

is more probable to check the weather news, traffic report, or parking status before leaving home

or while the user is getting dressed. We assign a probability of occurrence for each mapping from

activity or task in the real and simulated datasets to the corresponding request. These probabilities

are also set based on common-sense. For example, people usually leave their homes to work in the

24

morning. So, it is more likely that they want to see the weather report while eating or preparing

breakfast rather than watching a breakfast recipe.

Methods

In this section, we describe our design for a predictive controller, which, knowing the preferences

and habits of the user, makes intelligent decisions about what to cache. Also, we describe three

caching algorithms as the baselines caching methods.

Predictive Caching Algorithms

Implemented caching strategies for the proposed controller are as follows1:

Probability-based caching

We define 24 intervals with the length of 1-hour for each day in the datasets. The proposed al-

gorithm is based on calculating the probability of a specific request in a specific time interval by

counting the data occurrences in the training set. Accordingly, requests with a probability higher

than a threshold are cached for each interval in each day. We validate this approach on the different

threshold for the number of request occurrence in a specific time interval, then the best result on

the validation dataset is applied to the test dataset.

1The code is available here: https://github.com/sharare90/AR-VR-Research

25

LSTM-based caching

We propose the LSTM-based caching algorithm, based on training a Long Short Term Memory

(LSTM) [39] recurrent neural network on the training dataset. We tried two different approaches

for implementing the LSTM model: (i) many-to-one and (ii)many-to-many. The LSTM models

are shown in Figure 3.2 and 3.3.

Input data is a sequence of requests. We divide a day to 24 intervals, each with a fixed list of

requests shown with 0s and 1s. We have N different type of requests: {r1, r2, ..., rN}. The data for

each interval is a vector x of length N , and N is five in our experiments since we assumed that we

have five types of requests (summary of news, weather report, parking status, traffic report, food

recipe). The value of element xi(i ∈ {1, 2, ..., N}) is 1 if the request ri has occurred in the interval,

otherwise its value is 0. Furthermore, the number of classes equals the number of valid requests.

Many-to-one LSTM based prediction: In this LSTM based prediction, the input is T = 24 hours

history of request actions, and the output is the request of the next interval (Figure 3.2). For

example, if we need to predict the action of the user during the time interval of 3:00 PM - 4:00

PM, the sequence of input intervals will include 3:00 PM - 4:00 PM yesterday, 4:00 PM - 5:00 PM

yesterday, and so on until 2:00 PM - 3:00 PM today. The LSTM takes these intervals sequentially as

input and updates its hidden state based on this sequence. When all the intervals are processed, the

LSTM layer outputs a vector, and that vector goes into the following fully connected and dropout

layers. The dropout layers, in turn, help with generalization and are only active during training.

In other words, they mask a part of input such that the network learns to predict the output from

a partial input. As a result, the network remains impartial to just one particular element in the

output vector of the LSTM. During testing, dropout layers are disabled. In other words, they act

like identity function and pass their input without masking any element to the next layer. Finally,

the classification layer with as many neurons as the number of activities predicts the probability of

26

. . .
number of features (t = 0)

. . .

. . .

. . .

 LSTM

 Size of timestep = T

number of features (t = 1) number of features (t = T - 1)

. . .

 Dense layer (Activation: ReLu)

 Dense layer (Activation: Sigmoid)

Dropout = 0.5

Dropout = 0.5

. . .

number of features (t = T)

 LSTM LSTM

 Dense layer (Activation: ReLu)

Figure 3.2: The many-to-one neural network used in the LSTM-based caching algorithm.

. . .

number of features (t = 0)

 LSTM

. . .

 LSTM . . .

. . .

 LSTM

 Size of timestep = T

number of features (t = 1) number of features (t = T - 1)

. . .

.

number of features (t = 1) number of features (t = 2) number of features (t = T)

 Dense layer (Activation: ReLu)

 Dense layer (Activation: Sigmoid)

Dropout = 0.5

Dropout = 0.5

 Dense layer (Activation: ReLu)

 Dense layer (Activation: ReLu)

 Dense layer (Activation: Sigmoid)

Dropout = 0.5

Dropout = 0.5

 Dense layer (Activation: ReLu)

 Dense layer (Activation: ReLu)

 Dense layer (Activation: Sigmoid)

Dropout = 0.5

Dropout = 0.5

 Dense layer (Activation: ReLu)

Figure 3.3: The many-to-many neural network used in the LSTM-based caching algorithm.

each activity by a number between 0 and 1.

Many-to-many LSTM based prediction: In this LSTM based prediction, network processes

each interval vector one at a time and outputs the occurrence probabilities of requests for the next

27

Table 3.3: Selected values for hyperparameters of majority vote-based prediction.

Hyperparameters Values
learning rate 0.001, 0.01

number of epochs 225, 300, 500, 1000
number of dense layers 2, 3
regularization method dropout (0.0, 0.2, 0.5, 0.8), l1 and l2

interval (Figure 3.3). In the first interval of the day, all the input values are 0. We then concatenate

this zeros vector with the lists of requests for interval 1 to 23, so we have 24 lists of requests for T =

24 intervals of the day as the input of the network. The difference with the many-to-one approach

is that instead of processing all the intervals first and then output a vector, the LSTM layer outputs

a vector as soon as it receives the first interval and outputs another vector once it receives the

second input interval, and so on. These vectors then go into dense and dropout layers, and for each

of them, we predict the activity of the next interval. For example, at the time interval of 12:00

AM - 1:00 AM, the LSTM predicts the action in time interval 1:00 - 2:00 AM and also updates its

internal hidden states. After receiving the ground truth activities of what actually happened in time

interval 1:00 - 2:00 AM and based on its updated hidden states, it predicts the activities in the next

time interval, which is 2:00 AM - 3:00 AM, and so on.

Majority vote-based caching

Majority voting is one of the basic prediction/classification methods in which multiple classifiers

are used to predict the label based on the majority vote of the classifiers [23, 34]. We create

N different LSTM models by altering hyperparameters such as learning rate, number of epochs,

number of layers, or changing regularization method (dropout or l1 or l2 regularization), initial

weights, and so on. See Table 3.3 for majority voting hyperparameters. Subsequently, we predict

the label value: ŷ = mode{ŷ1, ŷ2, ..., ŷN}.

28

Baseline Caching Algorithms

In this section, we explain the three baseline predictive caching algorithms.

Oracle

This baseline method is a caching algorithm where we assume that the algorithm can predict the

requests with 100% accuracy. The final score that we can achieve with this algorithm is the highest

score that we can have in each experiment.

Cache everything

This baseline algorithm suggests to cache every possible experience, ensuring that every experience

can be delivered with a delay = 0. However, caching everything has a high redundancy, and since

we have cost = 1 for each cached request, the caching cost increases.

Random caching

In this basic strategy, we assume that we do not have any prior knowledge about the request, and

thus we cache a randomly chosen request from the pool of possible requests.

Experimental Approach

In this section, we describe a series of experiments that we have done on real and simulated datasets

to predict the user’s next request from audio-visual devices. We compared the three predictive

29

caching algorithms that we propose to three baseline algorithms in this series of experiments.

Thus in the remainder of this section, we refer to the following six caching algorithms:

• Probability-based caching.

• LSTM-based caching.

• Majority vote-based caching.

• Oracle.

• Cache everything.

• Random caching.

Furthermore, we are interested in two performance metrics:

• Prediction accuracy as measured by the F1-score for the training phase on different datasets.

• The final score, that combines the cost and user’s satisfaction (Equation 3.3). The less la-

tency that the agent has, the more satisfied the user would be. Also, the more optimized

caching translates to the less costly predictive model. There is a cost for caching whether

the user has a request or not, but caching before the user’s request, will give the user more

satisfaction, which should avoid the extra cost for missing requests.

Prediction accuracy

We described in Section 3 how the input matrix to LSTM is constructed. It is important to notice

that the data is unbalanced, which means the number of 0s is much more than the number of 1s

30

in constructed matrices. Therefore, accuracy is not a good metric for evaluation since it could be

very high even if the network predicts only 0s. Thus, we report our results by F1-score alongside

with precision and recall to handle datasets unbalances in terms of requests. Precision shows how

many predicted requests are relevant to the user’s real requests in a specific time interval. On the

other hand, recall demonstrates that our predictor could predict how many users’ real requests are

in a specific time interval.

Long-short term memory network

The experimental results for trained many-to-one LSTM based predictive agent are shown in Ta-

ble 3.4 for real-world and simulated datasets 1 and 2.

As expected, there is a gap between test and train accuracy in real data. We see that the gap is

minimal for simulated data, and sometimes test accuracy is even better. The reason is that usually

in simulated datasets, the distribution of test data is very close to the distribution of data during

training, and that is because simulated datasets are not as complicated as real datasets in nature.

Nevertheless, our method is effective in both scenarios. We show that this is due to data scarcity and

having bigger real datasets can help decrease the gap between train and test accuracy. Figure 3.4

shows that by increasing the number of days of data collection in a real situation, the F1-score on

validation is approaching the train F1-score. Therefore, the current gap between train F1-score and

validation F1-score is a variance error which can decrease by training over a bigger dataset.

Figure 3.5 shows how train and validation F1-score grows by increasing the number of epochs

on real-world datasets 1 (top) and 2 (bottom) for many-to-one architecture. Figure 3.6 shows the

many-to-one LSTM F1-score on the training and validation data for simulated dataset 1 (top), and

simulated dataset 2 (bottom) based on history of activities with size of 24 hours using patience

70 and time interval length = 1 hour. The graphs of the evolution of the F1-score correspond to

31

0 10 20 30 40
Size of train data

0.4

0.6

0.8

1.0

F1
-s

co
re

Train F1-score
Validation F1-score

Figure 3.4: Train and validation F1-score by increasing the size of data.

the prediction accuracy based on LSTM method. In training an LSTM network, the precision,

recall, and F1-score on train and validation data are calculated after each epoch. By plotting these

figures, we can figure out the best time to stop training. For example, if the accuracy of validation

is not changing more than a threshold after 70 epochs (patience=70), we can stop training to avoid

overfitting.

We also monitor the evaluation metrics during the training and report them for trained many-to-

many LSTM based predictive agent. Table 3.5 shows the results for real-world datasets 1 and 2 and

simulated datasets 1 and 2 for many-to-many architecture. As expected, the gap between validation

and training is more significant within real-world datasets than simulated ones.

Figure 3.7 shows the many-to-many LSTM F1-score on the training and validation data for real-

world 1 (top), real-world 2 (bottom), and Figure 3.8 shows the many-to-many LSTM F1-score on

the training and validation data for simulated dataset 2 (top), and simulated dataset 2 (bottom) after

225 epochs and time interval length = 1 hour.

We see that validation accuracy has plateaued, indicating the need to stop training to avoid overfit-

ting.

32

0 50 100 150 200 250 300
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Train
Validation

0 20 40 60 80 100 120
Number of epochs

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

Train
Validation

Figure 3.5: The F1-score of the prediction, using many-to-one LSTM model for the train (blue)
and validation (orange) of real-world 1 (top) and real-world 2 (bottom) based on history of 24
hours by using patience 70 and 1 hour time interval.

33

0 25 50 75 100 125 150 175
Number of epochs

0.0

0.2

0.4

0.6

0.8

F1
-s

co
re

Train
Validation

0 20 40 60 80
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
-s

co
re

Train
Validation

Figure 3.6: The F1-score of the prediction, using many-to-one LSTM model for the train (blue)
and validation (orange) of simulated dataset 1 and (top), and simulated dataset 2 (bottom) based
on history of 24 hours by using patience 70 and 1 hour time interval.

34

0 25 50 75 100 125 150 175 200 225
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Train
Validation

0 25 50 75 100 125 150 175 200 225
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Train
Validation

Figure 3.7: The F1-score of the prediction, using the proposed many-to-many LSTM model for
the train (blue) and validation (orange) of real-world dataset 1 (top), real-world dataset 2 (bottom)
after 225 epochs and time interval length = 1 hour.

35

0 25 50 75 100 125 150 175 200 225
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0
F1

-s
co

re
Train
Validation

0 25 50 75 100 125 150 175 200 225
Number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Train
Validation

Figure 3.8: The F1-score of the prediction, using the proposed many-to-many LSTM model for the
train (blue) and validation (orange) of simulated dataset 1 (top), and simulated dataset 2 (bottom)
after 225 epochs and time interval length = 1 hour.

36

Table 3.4: F1-score of the prediction, using the many-to-one LSTM model on real-world dataset 1, real-
world dataset 2, simulated dataset 1, and simulated dataset 2 based on history of activities with size of 24
hours by using early stopping with patience 70.

Results for real-world dataset 1 Train Validation Test
Precision 1.00 0.33 0.13

Recall 1.00 0.50 0.12
F1-Score 1.00 0.40 0.13

Results for real-world dataset 2 Train Validation Test
Precision 0.93 0.36 0.61

Recall 0.92 0.40 0.43
F1-Score 0.92 0.36 0.47

Results for simulated dataset 1 Train Validation Test
Precision 0.70 0.82 0.81

Recall 0.80 0.85 0.98
F1-Score 0.73 0.81 0.88

Results for simulated dataset 2 Train Validation Test
Precision 0.71 0.87 0.73

Recall 0.65 0.39 0.62
F1-Score 0.65 0.47 0.65

Experimental results of the overall predictive caching agent

It is common to rate the user satisfaction by objective metrics such as video definition (video qual-

ity), fluency (interruptions), response speed (initial delay) [47]. If the user sends a request and we

have the requested content cached in the system, we increment the score by using Equation 3.2 and

the d(e) = 0 since there is no delay in this case. However, if a user requests non-cached content,

we need to load it with a delay that depends on the size of the content and external bandwidth. We

consider external bandwidth = 100Mbps for the experiments in this paper. We also normalize

the results with a max-min normalization.

We decided to use many-to-many LSTM prediction for the LSTM-based caching experiments since

37

Table 3.5: F1-score of the prediction, using the many-to-many LSTM model on real-world 1, real-world 2,
simulated dataset 1, and simulated dataset 2 after 225 epochs

Results for real-world dataset 1 Train Validation Test
Precision 0.69 0.62 0.52

Recall 0.54 0.52 0.31
F1-Score 0.61 0.54 0.39

Results for real-world dataset 2 Train Validation Test
Precision 0.72 0.54 0.54

Recall 0.55 0.43 0.46
F1-Score 0.62 0.47 0.50

Results for simulated dataset 1 Train Validation Test
Precision 0.84 0.87 0.90

Recall 0.81 0.72 0.82
F1-Score 0.82 0.79 0.83

Results for simulated dataset 2 Train Validation Test
Precision 0.79 0.77 0.89

Recall 0.80 0.93 0.88
F1-Score 0.79 0.84 0.86

the prediction results are more promising for this architecture.

Figures 3.9 and 3.10 show the scaled final score for each caching algorithm which are calculated

based on Eq 3.3 on real and simulated datasets, respectively. The final score for the majority voting

and LSTM-based approach is almost better than other approaches. However, for the lowest quality

of delivery, such as low-res video MKV, we do not see that much difference between approaches.

The final results for 3GP low-res QCIF are mostly near 0 since both user satisfaction and caching

costs are around 0. Furthermore, the prediction accuracy is higher when we have a bigger dataset

with more data points (see Figure 3.10).

38

Oracle Cache everything Random Probability based LSTM based Majority Voting0.0

0.2

0.4

0.6

0.8

Sc
al

ed
 F

in
al

 S
co

re

4K video
HD video(1080p)

low - res video MKV
3GP low - res QCIF

3D animation

Oracle Cache everything Random Probability based LSTM based Majority Voting0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 F

in
al

 S
co

re

4K video
HD video(1080p)

low - res video MKV
3GP low - res QCIF

3D animation

Figure 3.9: Caching approaches scaled final score (Eq 3.3) results on real-world dataset 1 (top)
and real-world dataset 2(bottom) for each delivery format.

39

Oracle Cache everything Random Probability based LSTM based Majority Voting0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 F

in
al

 S
co

re

4K video
HD video(1080p)

low - res video MKV
3GP low - res QCIF

3D animation

Oracle Cache everything Random Probability based LSTM based Majority Voting0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 F

in
al

 S
co

re

4K video
HD video(1080p)

low - res video MKV
3GP low - res QCIF

3D animation

Figure 3.10: Caching approaches scaled final score (Eq 3.3) results on simulated dataset 1 (top)
and simulated dataset 2 (bottom) for each delivery format.

40

CHAPTER 4: PRIVACY-PRESERVING LEARNING OF HUMAN

BEHAVIOR PREDICTORS

The daily activities performed by a disabled or elderly person can be monitored by a smart en-

vironment, and the acquired data can be used to learn a predictive model of user behavior. To

speed up the learning, several researchers designed collaborative learning systems that use data

from multiple users. However, disclosing the daily activities of an elderly or disabled user raises

privacy concerns.

In this chapter, we use state-of-the-art deep neural network-based techniques to learn predictive

human activity models in the local, centralized, and federated learning settings. A novel aspect of

our work is that we carefully track the temporal evolution of the data available to the learner and

the data shared by the user. In contrast to previous work where users shared all their data with the

centralized learner, we consider users that aim to preserve their privacy. Thus, they choose between

approaches in order to achieve their goals of predictive accuracy while minimizing the shared data.

To help users make decisions before disclosing any data, we use machine learning to predict the

degree to which a user would benefit from collaborative learning. We validate our approaches on

real-world data.

Training Data for Collaborative Learning in Smart Environments

The performance of machine learning models depends on the data used for training. Everything

else being equal, more data is better, and highly expressive models, such as deep neural networks,

require more training data to avoid overfitting. Many recent achievements of deep learning took

place in a ”big data” regime; Google, Facebook and Amazon rely on a steady stream of data from

41

the users interacting with their services. For instance, a success story in federated learning is

predicting the next word on a mobile device’s keyboard [37], relying on a very large number of

users receiving the collaborative learning client simultaneously.

However, in the case of a smart environment participating in a collaborative learning scheme, this

model cannot be taken for granted. A privacy conscious user (or the environment acting on her

behalf) would not share any data unless there is a strong likelihood that it would benefit from the

transaction. At the same time, the user will stop sharing when no further benefit is likely. As we

have seen in the introduction, this data minimization behavior approach had been recommended

by government directives in the US, UK and EU. As the problem of privacy is particularly acute

for the vulnerable elderly and disabled population, the regulatory pressure is likely to increase.

We need to emphasize that the data minimization principle does not preclude the use of collabo-

rative learning and other cloud based techniques. It means however, that some of the simplifying

assumptions are not applicable: we need a better understanding of the temporal aspect of data

sharing: what training data is available, to whom and when.

The first simplifying assumption we need to discard is the synchronized start of data collection.

The deployment of a smart environment for the disabled or elderly is not instantaneous. It re-

quires physical installation of hardware, software configuration, user training and possibly legal

and medical approval. Thus, the smart environment will be deployed for some users earlier than

for others. As the deployment times are random but independent from each other, they follow a

Poisson arrival process. Furthermore, the number of smart environments contributing to a single

collaborative domain is significantly smaller than the countrywide domains used by web services.

Under these conditions, modeling the deployment time is necessary, because it affects the amount

of training data available to the predictor.

42

Let us discuss the problem of the data available for learning in a group of smart environments.

We will consider a set of smart homes H1 . . . HM that started to operate at times tstart
i distributed

according to a Poisson process with an arrival rate λ. We take the perspective of the target smart

home Htg that had started to operate on day tstart
tg . Figure 4.1 illustrates an example with M = 30,

λ = 0.5, starting time January 1st, and we are considering Htg = H14 with tstart
tg = January 6.

Local learning involves the training of a model based on data collected from the same home. This

approach has the highest level of privacy, as no personal information needs to leave the premises.

The weakness of the local training model is the paucity of the data, especially early in the deploy-

ment. On day tstart
tg , the system has no training data whatsoever, on day tstart

tg + 1 it will only have

one day of training data and so on. Thus we expect the accuracy to start from a very low level, but

increase in time as training data accumulates. The red part of Home 14 data in Figure 4.1 shows

the data available to this home on January 16 in the local training regime (ten days of recordings

from January 6 to January 15).

Let us now consider the case of centralized learning. As the smart environment was deployed

at different homes at different times, on the day the target home had started, a number of other

homes are already operating and providing data. If home Hi started at time tstart
tg , the total amount

of training data available at that point will be:

Dcentralized
tg =

⋃
i;tstart

i <tstart
tg

Di[t
start
i : tstart

tg] (4.1)

For our example, the data available for training is the data from all homes where the system was

deployed before January 16 - these are all the parts of bars shown in red in Figure 4.1.

Another simplifying assumption that is not applicable for privacy-aware users is that once a user

joined a collaborative learning setup, it will provide data indefinitely into the future. To do this

43

might be in the interest of the central authority, but it is not compatible with the privacy principle

of data minimization. A rational user will stop providing data to the central system as soon as the

local learning yields better results than the predictive models received from the center. As shown

by the termination of the bars in Figure 4.1, this cross-over point might happen sooner or later in

time and it triggers the end of sharing data tshendi . We note that this time point only shows the end

of data sharing; the smart environment will continue to operate and the local learning will continue

to receive data past this time. Thus the data available for centralized learning will be:

Dcentralized
tg =

⋃
i;tstart

i <tstart
tg

Di[t
start
i : min(tshend

i , tstart
tg)] (4.2)

Federated learning operates on the same amount of data, with the difference that the data is never

put together to a shared database.

Learning the Activity Prediction Model

In this section we describe the architecture and training process of a human activity predictor

for a smart environment that predicts the future activities of the residents based on the history

of activities and current environment. We represent the input as a sequence of tuples (h, d, a)

containing one-hot encoded hour of the day h, day of the week d and activity label a. Our predictor

f takes a sequence of l tuples and outputs the probability of occurrence of next activity:

f((ht, dt, at), ..., (ht+l−1, dt+l−1, at+l−1)) −→ p(at+l) (4.3)

Our goal is to find the “best” predictor. One way to formalize this is by assuming that the function

f is part of a parameterized family of sufficiently expressive functions f(·) = F (·, θ). In our case,

44

this family will be a particular type of deep neural network, and θ will map to the network weights

- but many other choices exist. Thus finding the best function is mapped to finding the optimal

θ = θ∗.

Naturally, we cannot exactly predict every activity due to the inherent randomness of the human

behavior. We will define the accuracy of predictor in the form of a loss function expressed as the

cross-entropy between the predicted probabilities and the actually occurring activity. The optimal

θ∗ will be the value that minimizes this loss over the available training data. In the remainder of this

section, our focus will be on finding the appropriate form for the function F and the optimization

process for finding θ∗.

A Long-Short Term Memory Based Activity Predictor

In recent years, time series predictors based on a specific type of recurrent neural networks, Long-

Short Term Memory (LSTM) [39] had been successfully applied to problems ranging from natural

language processing [91, 32] to robotics, computer vision and taxi demand prediction [12, 51, 96]

and predictive caching [101]. Compared to other machine learning approaches where feature en-

gineering is essential, deep neural networks, trained end-to-end using stochastic gradient descent,

learn their own latent feature encoding. Within the field of deep neural networks, LSTMs have the

advantage of having a learned memory state. This allows a prediction to be conditioned on events

that happened many time steps in the past, while still handling one event at a time.

Fig. 4.2 shows the architecture of a deep neural network designed to learn the prediction function

Eq 4.3. The input layer of shape l×n encodes the l tuples of history. The second layer is an LSTM

of size 256 unrolled l times. The hidden state h and the cell state c (memory) in the previous time

step alongside the input in the current time step is given to the current LSTM cell. This procedure

runs repeatedly until all data in the given sequence is processed. At that point, the output of the

45

LSTM cell o will become the input of the next layer, which is a dense layer with a ReLU activation

function. This layer is followed by a dropout layer [84] with a dropout rate of 0.5 to improve

the generalization of the model. Finally, we have another dense layer with a softmax activation

function that outputs a probability for each activity. For training purposes, we are using a cross-

entropy loss between the output of the softmax and the actual next activity. When deployed and

used as a predictor, the smart environment can take the activity with the highest probability to be

the predicted activity for the next time step.

In the following, we describe three possible scenarios for training activity predictors for the smart

environments: local training and two collaborative training scenarios - centralized and federated.

As we predict activities in real-time since after training, we only need to do a feed forward pass to

compute the predictions. Following the practice of deep learning literature, to make fair compar-

isons for all the training models we are using exactly the same predictor architecture from Fig. 4.2.

Local Training

For the case of local training, the smart environment uses only the data collected from the user

to train a predictor specific for the environment. Overall the number of trained predictors is the

number of deployed environments. The advantage of this model is that the predictor is tailored to

the home. The disadvantage is that the network is training with less data for instance, for the first

day there is only one day of training data. The training process will be repeated overnight using

the full set of data available for the node. The local training process is outlined in Fig 4.3-Top.

The accuracy of the prediction is measured on the home’s own data. In general, we expect the

paucity of the training data to result in an initially weak predictor which, however, will improve in

time as more training data becomes available.

46

Centralized Training

In the case of the centralized training model we assume a cloud-based central authority. The

participating homes upload their daily logs to the central authority as training data. The central

authority runs the learning algorithm daily, creating a single predictor which is transferred to the

homes. The training data available to the centralized learning is described by Eq.4.2. This learning

model is shown in Fig 4.3-Middle.

The accuracy of this predictor is then evaluated on the local home’s test data. Thus, the same

predictor will have different accuracy results in different homes. A positive aspect of the central-

ized predictions is that the learning happens with much more data especially compared to the local

learning for smart environments recently deployed. A weakness of the model is that the central-

ized learner learns a shared model, and will not adapt to the preferences and idiosyncrasies of the

individual users. Users that joined the centralized learning pool will provide more data and they

had more opportunities to shape the predictors to their own routines. We thus expect that for each

node the centralized learning model will start with a better accuracy for a newly joined node, but

it will improve comparatively slower from there.

Federated Training

Federated training is a variant of collaborative learning which does not require the participating

nodes to share their data. Each node implements a learner that has access to the locally generated

data. As in the centralized training approach, there is a cloud based central authority that learns and

distributes a shared model. However, in contrast to the centralized approach, the central authority

does not receive training data from the environments, but parameters from the locally updated

models.

47

There are several techniques through which the federated learner can update the shared model.

The approach we use is the federated averaging model introduced by McMahan et al. [60], due

to its robustness to imbalanced datasets like the ones found in smart environments with different

deployment dates blue (see Fig 4.5), where some homes provide significantly more data as they

started earlier. The updated model is then transmitted to the nodes. Fig 4.3-Bottom shows the

organization of the federated training approach.

There are many similarities between the federated and centralized models. The total amount of

data to which the system as a distributed learner has access is the same, as shown in Eq.4.2.

The difference, however, is that the centralized model has access to this data directly, while the

federated model only through the mediation of the parameters of the local learners.

The same considerations apply to the expected accuracy of the shared model. Everything else

being equal, we expect the centralized approach to show a better accuracy than the federated one,

because it has a better access to the training data. A way to illustrate this is that we can always

emulate federated learning in a centralized fashion, but not the other way around. Naturally, due to

the randomness inherent in human behavior, it is possible that for a given day the federated model

to be better for a particular home than the centralized one.

The expected weaker performance of the federated learning model is compensated by the better

privacy properties. As the federated learning only shares parameters on the local model, it is

expected that less information is disclosed compared to the centralized learning approach.

The choice between federated and centralized learning for a privacy-aware agent boils down to the

performance gap between them. If the performance gap is major, the smart environment is better

off using a centralized approach (and, possibly, cutting off the data sharing when the local model

catched up). If the centralized-federated performance gap is minor, the system is better off using

federated learning.

48

Predicting If Smart Environments Benefit from Federated Training

Let us now summarize the expected accuracy profiles and the three learning approaches we con-

sider:

• Local training: will start with a low accuracy due to lack of training data, the performance

will increase in time, and in principle is limited only by natural variability of activities and

by model capacity. Privacy is guaranteed as no data leaves the premises.

• Centralized training: will start with a higher accuracy due to existing training data from

nodes that were deployed earlier. The accuracy will increase relatively slowly and, in addi-

tion, will be limited by the non-iid distribution of the training data between different envi-

ronments. Significant privacy concerns due to data sharing.

• Federated training: accuracy profile expected to be similar to centralized training. Privacy

concerns lower, but information leakage still possible.

Note that we are expecting that eventually the local training will overtake the collaborative learning

approaches. At this point, a rationally behaving privacy aware smart environment will stop partic-

ipating in the collaborative learning model, stop sharing data and continue improving its activity

predictor using local learning.

One additional insight we must consider is that simply participating in the collaborative learning

and sharing a single day’s activities might be the largest privacy loss, as it might disclose the user’s

age, medical needs and disability condition. Disclosing further day’s data of the same daily routine

will disclose relatively few additional information. Thus, the smart environment must consider

carefully whether it should participate in the collaborative learning even for a short time.

49

We are going to define a number of measurable quantities that would allow the environment to

make these decisions. One such quantity is the crossover point: the day in the future from which

the model acquired through local training will consistently overtake the one received from the

collaborative learning (centralized or federated). Intuitively, the closer the crossover point is, the

less justified is for the user to join the collaborative learning pool.

The second quantity of interest is the area between the local and collaborative learning models

accuracy in time up to the crossover point. Using a term borrowed from the field of reinforcement

learning, we will call this quantity regret - this is the overall accuracy performance lost if the user

does not join the collaborative learning pool. The smaller the regret, the less justified is to join the

collaborative learning pool.

Naturally, both the crossover point and the regret can be measured only after the fact. In this paper,

we propose the hypothesis that while these values are difficult to predict, we can train a classifier

for a good surrogate measure that can be used as a decision aid. We will create a classifier that,

based on the histogram of the first k days of the node and the average over all nodes will predict

whether the crossover point will happen before specific day d or not.

As a note: training such a classifier requires the collaboration of the central authority, and might

result in the node not joining the collaborative learning pool. Thus, it would not be in interest of

the centralized authority to provide this classifier if the authority has a business model that relies

on data sharing. However, it would be in the interest of the authority to help make this decision if

the privacy interests of the central authority and the nodes are aligned.

50

Experimental Study

In the previous section we made certain conjectures about the accuracy profiles of the activity

predictors. Qualitatively, these predictions are supported by objective facts: we know that local

training has less training data than collaborative ones, and we know that centralized training can

emulate federated learning but not the vice-versa. However, any practical application would need

to rely on the quantitative results. For instance, if the crossover point would take years to reach,

collaborative learning would be the only reasonable alternative for a smart environment. If the

difference between the centralized and federated learning results is large, the system will need to

choose centralized learning even if privacy vulnerabilities exist.

These quantitative factors strongly depend on the actual data. We could be right about the overall

patterns, but wrong about the scales at which these patterns happen. Performing experiments

using real world data is the only way in which we can understand the decisions faced by smart

environments.

Datasets and Pre-processing

For our experiments we used the datasets collected by the CASAS project [16] 1. This collection

contains 30 datasets collected in homes with volunteer residents performing their daily routines.

There is a significant diversity in the datasets and the routines: some of the residents were younger

adults, some were healthy older adults, some were older adults with dementia, and some were

having pets.

In order to make the datasets suitable for our experiments, we performed several pre-processing

1https://archive.ics.uci.edu/ml/datasets/
Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data

51

steps.

Mapping the activity labels into a common ontology. The original activity labels are closely

related, but not fully identical across the various datasets. Labels at various levels of granularity

exist, such as work, work at table, work on computer and work at desk. The use of different

labels would make any form of collaborative learning impossible, and local learning difficult to

compare between datasets. We solved this problem by mapping the activity labels to a higher level,

courser granularity categories, creating 10 new category labels without overlap between them. The

mapping of the original activity labels to the new common ontology is shown in Table 4.1.

Converting to an event-based time series. The CASAS dataset uses a variable sampling rate

from a resolution ranging from several seconds to sometimes hours. When the sampling rate is

fast, it usually results in many repeated entries with the same activity label.

We have several choices to convert these entries into a format that is more suitable to machine

learning. We could, for instance, map the entries into a shared, uniform time grid across all the

datasets. However, this approach would create very large datasets, with redundant information.

Instead, we chose to use an event-based representation of the activity time series, by representing

every contiguous activity with a single entry. One side effect of this is that the dataset for each

day will be significantly shorter, but entries for the individual days might have a varying length.

This, however, is naturally handled by the LSTM-based activity recognition engine. Note that

this approach does not encode the length of an activity through the number of repeated entities.

However, the temporal information is still present by the encoding of the time of the day as one of

the features.

Feature representation We are using a representation where every entry in the time series has

52

Table 4.1: Mapping the dataset activities to a higher level category

Original Activities Category
evening meds, morning meds,
take medicine, exercise, toilet,
groom, dress, r2.dress, bathe,
personal hygiene, r2.personal

hygiene

PERSONAL
HEALTH

AND
HYGIENE

eat, eat breakfast, r2.eat
breakfast, eat lunch, eat dinner

EAT

drink DRINK
cook, r1.cook breakfast, cook
lunch, cook dinner, cook, cook
breakfast, wash dishes, wash
breakfast dishes, wash lunch
dishes, wash dinner dishes,

laundry

CHORES

nap, sleep, r1.sleep, sleep out of
bed, go to sleep / wake up
(interval between them)

REST

relax, watch TV, read RELAX
phone, entertain guests SOCIAL

work, work at table, work on
computer, work at desk

WORK

leave home LEAVE
HOME

enter home ENTER
HOME

other activity, step out, bed
toilet transition

NOT
TRACKED

three data fields: the hour of the day (as an integer 0-23), the day of the week (as an integer 0-

6), and the activity label which is also encoded as an integer in the range 0-9. Each value was

individually encoded with a one-hot representation, and the resulting values were concatenated.

Thus the input data was organized in the form of 24+7+10=41 binary values. Correspondingly, the

output is encoded as an array of 10 values which, being the output of a softmax layer, encode the

probabilities of the next activity.

53

Modeling the deployment times. Our objective is to model the data available for a collaborative

/ local model at various moments in time. As we discussed in Section 4, for the collaborative

learning models, this depends on the deployment schedule. The CASAS datasets were collected

over many years, at time points separated by large intervals, sometimes from successive inhabitants

from the same home. To model our scenario, we changed the starting times of the individual

datasets to represent different smart environments deployed over the course of 2 months, with a

Poisson arrival distribution. This is a realistic model of a small scale deployment by a local health

care provider.

Training the Activity Predictor

Using the preprocessed datasets described in the previous section, we trained the LSTM-based

activity predictor from Fig. 4.2. For the local training case, we trained 30 different predictors on

their local data, for every day of operation. For the centralized predictor, we trained a single shared

predictor on the data available, described by Eq. 4.2. For the local and centralized learning, we

used the Keras library on top of Tensorflow 2.1.0. For the federated learning, we have trained

local predictors with the appropriate local data and updated the shared model using Tensorflow-

Federated 0.13.1.

The training configurations for the different models are shown in Table 4.2. The code is also

available on https://github.com/sharare90/Privacy-Preserving-Learning

Results: Accuracy, Crossover Point and Regret

The approach we took in this paper is to focus on the individual user of the specific smart environ-

ment. The centralized and federated approaches are not a goal in themselves, they are useful only

54

Table 4.2: Local, centralized, and federated training hyperparameters.

Hyperparameters Local Centralized Federated
batch size 64 64 64

number of epochs 500 500 -
lstm use bias true true true

early stopping patience 50 50 -
early stopping minimum delta 0.01 0.01 -

number of rounds - - 20
client learning rate 0.001 - 0.001
server learning rate - 0.001 0.5

client optimizer Adam - Adam
server optimizer - Adam SGD

inasmuch as they help the individual.

Thus, our performance evaluation is based on measuring the accuracy of the learned predictor (one

per home for the local, a shared one for centralized and federated models) on the individual user’s

data. As a note, even when the predictor is shared, it will give different results for the individual

users.

We found that the temporal evolution of the accuracy curves fall into several different patterns.

Fig. 4.4 shows a selection of 12 out of the 30 homes in our dataset, chosen to be representative of

the different patterns. Note that the starting day on the x axis varies reflecting the deployment day

of the various smart environments.

We can make several observations:

Relatively good prediction results. In interpreting Fig. 4.4 we need to keep in mind that the ac-

curacy of random prediction would be 0.1. Fully accurate prediction is not possible, as the users

behavior can vary randomly from day to day. The ability to predict the next action with about 45%

accuracy out of 10 possibilities is helpful for many applications for the smart environments.

55

The gap between the federated and centralized training is minor. As expected, we found that the

centralized training gives better accuracy results than the federated. However, the differences are

small and usually diminish in time. The practical conclusion, for a deployment is that a privacy-

aware smart environment would participate in a federated training based collaborative model, as

the privacy benefits are significant and the accuracy cost minor.

The crossover point is sometimes very early. The next question we need to investigate is the

relationship between the local and the federated training models. Fig. 4.4 shows with a red triangle

the crossover point when the local training overtakes the federated learning (if such a point exist in

the time interval considered), and with a filled with yellow fill the area corresponding the regret -

the accuracy lost if the environment would choose not to participate at all in the federated learning

pool.

We found that the result validate our expectations about the shapes of the accuracy curves: the

local learning starts out lower but eventually overtakes the federated learning in 10 out of 12 cases

in the figure. In Home 3 the local training starts out better and stays as such, so the regret is zero. In

Home 14, where the trends are as expected but the local learning did not yet overtake the accuracy

of the federated at the end of the data collection.

Overall, the location of the crossover point varies. For homes 3, 25, 27 and 29, the crossover

happens so early, and the regret area is so small that the deployment of the collaborative learning

does not appear to be justified. For other homes, such as Home 2, the crossover happens almost a

month after the deployment and the regret is significant.

56

Predicting the Benefits of Federated Training

The different profiles found in Fig 4.4 raise an interesting question: what factors make for certain

homes local learning techniques with very low amount of training data overtake federated learning

despite the much more data available to the latter? The main variable here is the way in which the

shared model applies to the activities of the specific user. That is: it is not that the local learning

is particularly efficient for these users, but that the shared model is not very good for them. The

limiting factor of learning the shared model is that the user’s behavior is not independent and

identically distributed (iid).

Can we predict the future performance of the federated learning for a given node without joining

the pool at all? Our hypothesis is that the proportion of the activities in the home for the first two

days contain sufficient information to predict the performance of the predictor. Fig 4.5 shows the

activity proportions for the same set of users as shown in Fig 4.4. A visual analysis shows that the

users clearly spend different fractions of their time at different activities.

To predict the relative performance of federated and local training, we trained a classifier whose

inputs are the values from Fig 4.5 encoded as floating point values in the [0, 1] range, the deploy-

ment day, and a day d ∈ {1, 2, . . . , 45}, and the output is a single binary value that answers the

question: “is the crossover point happens on day d from the deployment”? We chose the values

of d to be between 1 and 45 since if crossover point happens more than 45 days from deployment,

we assume that the home will benefit from collaborative learning. As the number of training data

points is small, this problem is better suitable for the traditional machine learning approaches. To

find the best model, we trained four different classifiers based on decision trees, support vector

machines, nearest neighbors and random forests.

The F1-score of the results are shown in Table 4.3. All models achieve a good predictive value,

57

Table 4.3: Comparison of classifiers for predicting the benefit of collaborative learning

Classifiers F1-score
mean

Decision Tree 0.70
SVM 0.72

Nearest Neighbors
(k=2)

0.77

Random Forest (#
estimators=10)

0.72

considering the very small amount of training data. The best performing model was the k-nearest

neighbor with k = 2, possibly due to the fact that the best predictor of high federated learning

performance is the similarity in profile to nodes already in the pool.

Overall, the performance of the classifier is sufficient to serve as a decision making aid in helping

the user join the federated learning pool or not. One drawback of the approach is that the training

of the classifier requires information from all nodes, and thus it can only be done by a centralized

authority.

58

Jan16

Arrival interval

Figure 4.1: The data available for collaborative training for a group of users. The deployment
time of the system is modeled through a Poisson arrival starting from January 1st. The users stop
sharing data when further data sharing is not justified by the advantage of collaborative learning.
The red part of the bars illustrates the data available for collaborative training on January 16th.

59

number of features
time step = t + ℓ - 1

number of features
time step = t

number of features
time step = t + 1

 LSTM
(rnn units = 256)

 LSTM
(rnn units = 256)

. . .

time step = t + ℓ
number of activities

 LSTM
(rnn units = 256)

. . .

. . .

 Sequence length = ℓ

 Dense layer
(activation: Softmax)

Dropout = 0.5

 Dense layer
(activation: ReLu, units = 256)

Input layer

.

. . .

𝒉t 𝒉t+1

ot + ℓ - 1 ,ct
,ct+1

Figure 4.2: Architecture of LSTM based prediction model. Each circle in the input layer shows a
single feature. A set of features is considered as the inputs in each time step. Gray circles in the
output of the model correspond to the activities. h is the hidden state and c is the cell state.

60

Local server
Train set

...
...

Train set

Local training

Central
server

Train set

...
...

Train set

Centralized training

...

Train set

Train set

Train set

Local server Training

Training

Training

70%

70%

70%

70%

70%

70%

70%

Server params

Federated training

Central
server

Train set

...
...

Train set

...

Train set

Train set

Train set

Clients params

Clients params

Server params

Training TrainingFedAvg

Training

Training

70%

70%

70%

70%

70%

Training

Figure 4.3: Activity prediction approaches 1. local (in-home) training (top), 2. centralized training
(middle), and 3. federated training (bottom). We used 70% of each home’s data for training and
30% for testing.

61

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 1

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 2

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 3

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 9

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 14

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 17

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 18

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 23

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 25

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 27

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 29

20 40 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Home 30

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Day

C
at

eg
or

ic
al

 A
cc

ur
ac

y

Local
Centralized
Federated
Crossover Point
Regret

Figure 4.4: Accuracy on test data for a selection of 12 out of the 30 homes in our dataset with
local training (magenta) vs centralized training (blue) and federated training (orange). The cross-
point shows the first time that the local accuracy reaches the federated accuracy. Regret is the
area between local accuracy and federated accuracy when local accuracy is lower. than federated
accuracy.

62

26.2%

26.2%9.8%
9.8%

13.1%

Home 1

20.9%

17.4%25.6%

9.3%

Home 2

32.1%

14.3%
10.7%

14.3%

Home 3

22.7%

12.7%
12.7%

14.5%

11.8%

Home 9

25.8%

11.8%
11.8%

16.1%

Home 14

28.6%

15.7%
8.6%

8.6%

11.4%

Home 17

23.4%

13.8%

9.6%9.6%

10.6%

Home 18

25.4%

18.3%

15.5%

Home 23

18.9%

14.4%

8.9%

15.6%

11.1%

Home 25

27.3%

18.2%
12.1%

12.1%

15.2%

Home 27

28.1%

12.4%
25.6%

Home 29

22.5%

18.8%

13.8%
13.8%

16.3%

Home 30

Figure 4.5: Activity proportions for the same set of homes as shown in Fig 4.4.

63

CHAPTER 5: PREDICTING COVID-19 PANDEMIC USING HUMAN’S

CULTURAL BEHAVIOR DIMENSIONS, COMPARTMENTAL MODELS

AND DEEP LEARNING

Throughout the Covid-19 pandemic, a significant amount of effort had been put into developing

techniques that predict the number of infections under various assumptions about the public pol-

icy and non-pharmaceutical interventions. While both the available data and the sophistication of

the AI models and available computing power exceed what was available in previous years, the

overall success of prediction approaches was very limited. In this paper, we start from prediction

algorithms proposed for XPrize Pandemic Response Challenge and consider several directions that

might allow their improvement. Then, we investigate their performance over medium-term pre-

dictions extending over several months. We find that augmenting the algorithms with additional

information about the culture of the modeled region, incorporating traditional compartmental mod-

els and up-to-date deep learning architectures can improve the performance for short term predic-

tions, the accuracy of medium-term predictions is still very low and a significant amount of future

research is needed to make such models a reliable component of a public policy toolbox.

Learning-based models for predicting the number of infections

In this section, we describe four alternative learning-based models for predicting the number of

infected people in a given day of the pandemic in a particular area. The models assume that we

have access to two streams of daily data. The context stream provides information about the total

number of infected and dead people. This stream describes the basic context in which the predic-

tion needs to be made - for instance, the total number of people already infected affects the number

64

of people infected in the following days. We will include in this stream also the specific identifiers

or the country and geographical region to which this data refers. The action stream, in contrast, de-

scribes the specific actions, typically non-pharmaceutical interventions that authorities enacted in

a given area. Following the Pandemic Response Challenge setup, we extract the context and action

stream from the Oxford Covid-19 Government Response Tracker (OxCGRT) data [36]. The action

stream data includes 12 Non-pharmaceutical Intervention (NPI) columns: school closing, work-

place closing, cancel public events, restrictions on gatherings, close public transport, stay at home

requirements, restrictions on internal movement, international travel controls, public information

campaigns, testing policy, contact tracing, and facial coverings. We also use context columns for

each region, such as country name, region name, geo ID, date, confirmed cases, confirmed deaths,

and population. We ignored countries or regions for which no number of cases or deaths are avail-

able and filled the empty or missing values on NPI columns in the data with 0 for each region or

country.

Finally, by having access to the country and geographical region, it is possible to extend the context

and action stream with other information that can be looked up from other databases or web ser-

vices. For instance, should we want to investigate the hypothesis that the weather affects the spread

of an infection, this information could be, for example, brought in by correlating the geographical

identifier with an external weather service.

Having access to the stream of information contained in the context and the action stream and

whatever auxiliary data the system might choose to look up, the objective of the predictive model

is to predict the number of infections in the next day, and through extrapolation, for a larger period

into the future.

The notations used in this paper are as follows: for a region r with population P r, we refer to the

values of NPI columns for day t by NPI r
t which is a vector of length 12. Each element i is an

65

integer between 0 and NPI MAX i. We denote the number of Covid-19 cases at day t by nCrt .

Learning based epidemiological models

Traditional epidemiological models, such as the SIR compartmental model aims to predict the evo-

lution of the epidemic based on first principles and a relatively few number of human-understandable

parameters. The input to these models is usually the current state of the pandemic and they are cal-

ibrated by human experts based on the infectiousness of the disease.

In contrast, learning based models use significantly more complex models with a very large num-

ber of parameters, such as deep neural networks. These parameters are not individually human-

interpretable and the only realistic way to acquire them is through the use of learning. Often, these

models look at the pandemic as a function unfolding in time, thus they take an input either a sliding

window of the recent history of the pandemic at every timestep, or maintain internally a memory

of it.

The official examples and the majority of entries to the Pandemic Response Challenge were such

learning-based systems (although it is difficult to know how much human-expert data was indi-

vidually incorporated). In the reminder of this section we will discuss four possible models (a

model presented as the “official´´ one in the competition and three models designed by our team),

presenting their architecture and design rationale in a comparable way (see Figure 5.1).

LSTM-UT-Cogn

The first model we are describing was developed by the organizers of the Pandemic Response

Challenge and provided to the teams that qualified to the finals of the competition [63] to serve as

a metric for prescriptive measures. Although this model did not directly compete in the challenge,

66

it was clearly seen as a state-of-the-art model at that point in the pandemic.

The model, shown in Figure 5.1-bottom-left, is unusual in that it is using two separate branches for

the context and the action data, with the predicted value being the proportion of new people infected

from the population that is currently not infected (naturally, the absolute number of infected people

can be calculated from this value). The input of the first branch is the infection ratio from the

context stream which is processed by an LSTM layer, followed by a dense layer with one node

and soft plus activation. In the second branch, the model takes as inputs the NPIs from the action

stream, which is processed by a LSTM followed by a dense layer with a single node and sigmoid

activation function. The outputs of context branch h and action branch g are combined using a

lambda layer implementing the formula (1−g)×h to produce the output of the model. The model

was trained on sequences of length of 21 days.

The remaining three models were developed by our team, partially as part of our competition entry,

partially through later improvements.

LSTM-Baseline

The simplest, baseline model we are proposing also uses a LSTM network which in recent years

had became the most popular way in the deep learning community to process data from time

series that is presented to the model one at a time. In this, simplest model (Figure 5.1-top-left), we

investigate the hypothesis that the LSTM network can learn how to select the important information

from the combined context and action stream without any further input from the modeler. Before

inputting our data to LSTM, we have to preprocess it such that the values are normalized. To

achieve this, we use the same “Infection Ratio” column that is evaluated as follows: First, we

compute the infected proportion by dividing the number of cases by population in region r and day

67

Prediction
model

Action
datastream a:
NPIs

Context
datastream c:
prediction ratio

Mean Absolute Error

ct at
121

L
training
loss

ct+1

New infections %

Prediction

1

LSTM layer.
64

Dense layer, linear

1 12

Prediction
model

Action
datastream a:
NPIs

Context
datastream c:
prediction ratio,
Sp, Ip, Rp

Cultural dim.

Cultural dim
DB

LSTM layer. 128

Dense layer, linear

SIR calculations

6

Mean Absolute Error

Susceptible pop. %
Infected pop. %
Recovered pop. %

ct at124

128

L
training
loss

ct+1

6

New infections %

Prediction

1111

Prediction
model

Action
datastream a:
NPIs

Context
datastream c:
prediction ratio

LSTM layer.
32

Dense layer,
softplus

Mean Absolute Error

ct at
12

L
training
loss

ct+1

New infections %

Prediction

1

LSTM layer.
32

Dense layer,
sigmoid

Lambda layer: (1-g)⨯h
h g

1

Prediction
model

Action
datastream a:
NPIs

Context
datastream c:
prediction ratio,
Sp, Ip, Rp

Cultural dim.

Cultural dim
DB

Transformer encoder
Multihead attention 64 attn. heads

Dense layer, linear

SIR calculations

6

Mean Absolute Error

Susceptible pop. %
Infected pop. %
Recovered pop. %

21ct

ct-21
at-21

at
21

124

16

L
training
loss

ct+1

6

New infections %

Prediction

1111

Figure 5.1: The architecture of the compared models: LSTM-Baseline (top-left), LSTM-UT-Cogn
(bottom-left), LSTM-CultD-SIR (top-right) TRANSENC-CultD-SIR (bottom-right).

68

t. In other words, we compute ar
t =

nCrt
P r
t

. Then, the smoothed version of ar
t is computed for each

day by getting the average of these values in a 7-day time window. Next, we compute the percent

change by ∇r
t+1 =

art+1−art
art

The model processes streams of data of a width of 13, with the first column being the value for the

infection ratio while the rest of the columns representing the NPIs. This input goes into an LSTM

node with 64 nodes, and they are processed by a Dense layer with just one neuron that outputs

“Infection Ratio” for the next day. We use the L1 loss between the output of the model and the

real value of the “Infection Ratio” to train the network. During the inference, we only have access

to NPI columns on each day in the future and use the prediction of the network as the “Infection

Ratio” input for the following days. We also clip the network’s output between 0 and 2 during

inference to make sure that the outputs do not diverge. This is especially important when we use

the model for longer predictions.

Taking into account culture

It had been an important part of the public narrative of the pandemic that various aspects of the in-

terventions such as mask wearing, refraining from large gatherings, adherence to social distancing

rules and vaccinations are culture-dependent.

Unfortunately, quantifying various aspects of the culture as relates to the pandemic is not easy.

Furthermore, similar cultures can accommodate very different public policies, as illustrated by the

case of Scandinavian countries where culturally similar countries like Sweden and Norway chose

to adapt different policy approaches. Nevertheless, the hypothesis that taking the cultural aspects

into consideration can improve the prediction accuracy is definitely worth considering. A problem

in implementing such a system is that in the social sciences culture is often discussed in qualitative,

narrative form. There are relatively few examples of quantitative models of human interactions.

69

One of the efforts that had attempted to assign numerical values to aspects of the culture of various

nations is that cultural dimensions model [41] which attempted to quantify natural culture along six

numerical dimensions. Public databases are available at a nation-state level. While this model had

received significant criticism over the years, among other things for the choice of a nation as the

resolution of the model. For instance, the model does not differentiate between California and Al-

abama in the United States. However, to our best knowledge this is the only culture quantification

model for which public databases exist for the majority of regions.

We note that we do not make any assumptions about the impact of the cultural dimension values

on our prediction - we add these values to the system and allow it to learn their possible impact.

Adding compartmental models

We propose a method that leverages compartmental models that are mathematical models used

for predicting pandemics. The proposed method not only does allow us to combine data available

with mathematical models, but also generalizes to evolving nature of the pandemic since the trend

is learned through available data. This allows us to better address the impact of decisions such

as school closing. Furthermore, this approach is preferred when there is not much data since

instead of learning the whole pattern in a black box model, we try to estimate the parameters of a

compartmental model which is well studied and can describe why the model believes the trend is

going to change in a particular way. In our implementation, we consider SIR models. SIR model

assumes that the number of people are fixed. We denote the population by P . Everyone is in one

of three states: Susceptible (S), Infected (I), and Recovered (R). We add these columns to the data

for each country using the following equations:

St = St−1 − newCasest (5.1)

70

where S0 = Population

It = It−1 −
1

d
× It−1 + newCasest − newDeathst (5.2)

where 1/d is the daily recovery rate and d is the average number of days required to recovering.

Rt = Population− St − It (5.3)

The transition from these states can be modeled by parameters α and β as described below:

S ′ = −α× S × I (5.4)

I ′ = α× S × I − β × I (5.5)

R′ = β × I, (5.6)

where S ′, I ′, and R′ are the rate of change in value of S, I , and R respectively. We train both

LSTM and Transformer networks to take input from last T days and predict the value of Sp, Ip, Rp

which are susceptible fraction of the population, infected fraction of the population and recovered

fraction of the population for the next day(s). The model looks at NPI and all other data and outputs

Sp, Ip, and Rp.

LSTM based predictor using cultural dimensions and the SIR model

In this model, we use compartmental model to create new columns susceptible fraction of the

population (Sp), infected fraction of the population (Ip), and recovered fraction of the population

(Rp). We initialize Sp with 1, and Ip and Rp with 0. Then, we calculate these values for the next

rows based on equations 1, 2, and 3 over population for each country or region. We use 14 as

71

the average number of days required for recovery to compute recovery rate in equation 2. We use

these columns alongside the infection ratio column as context input. We concatenate the context

input and action input (NPI columns) of 21 previous days and feed it to a LSTM layer. Then, we

concatenate new features such as cultural features of Hofstede dimensions as constant features to

the output of the LSTM layer and feed them to a dense layer with 4 nodes. The model is trained

with Adam optimizer and mean absolute error and outputs the infection ratio, Sp, Ip, and Rp. See

Figure 5.1-top-right.

Transformer encoder based predictor using cultural dimensions and the SIR model

This model is similar to LSTM-CultD-SIR, but we use a transformer encoder layer instead of

the LSTM layer. The difference is that this model can read the whole sequence all at the same

while the LSTM-CultD-SIR model reads that sequence one by one. Transformers were first intro-

duced in [89]. Transformer is a model architecture that instead of using recurrent networks uses

an attention mechanism to learn relations between input and output. The main advantage of the

transformers is their ability to see the sequence of data in parallel and learn very long-term inter-

actions. We propose using the multi-head attention module from the transformer architecture to

train the predictor model. To the best of our knowledge, we are the first to use attention models on

NPI features and combining the attention model’s output with the cultural dimensions and the SIR

model for prediction of new Covid-19 cases.

The transformer layer includes attention and normalization part and a feed forward part. The

attention and normalization part includes a multi head attention layer, dropout and normalization

layer. The feed forward layer is a sequence of two dense layers one with ReLU activation and the

other one with linear activation, a dropout layer and a normalization layer. See Figure 5.1-bottom-

right.

72

Experimental Studies

To evaluate the predictive accuracy of the model, we need a metric that smooths out daily variations

and is comparable across regions with different populations. Thus for a region r with a population

Pr we will use the average number of cases per 100k people over a span of 7 days:

Cumul-7DMA-MAE-per-100K(r) =
∑
d∈D

|ȳ − ¯̂y| × 100000

Pr

, (5.7)

where x̄ is the 7-day moving average on x and denotes the population in region r.

We trained all the models separately by using a few months of data from all the countries and

regions. For every model, we use 1000 epochs for training with early stopping with patience 20

that restores best weights. We split the training data into training and validation with 90% and 10%

rate, respectively, with a batch size of 32. The learning rate is also 0.001.

We run two different experiments, with the training data and test data being chosen from different

calendar months. Experiment E2020 used data from January 2020 to July 2020 for training and

data from August 2020 to end of December 2020 for evaluation. Experiment E2021 used data from

the whole year of 2020 and made predictions for January to April 2021. See Figure 5.2.

Based on our experiments, our TRANSENC-CultD-SIR approach had the lowest cumulative mean

absolute error per 100k over 7 days. See Figure 5.3 for the overall cumulative 7 day moving

average mean absolute error per 100k for both of the experiments. Also, Figure 5.4 shows the

color scaled version of this metric for all the countries and regions around the world for E2020

experiment. The green nodes are showing the regions or countries with the lowest error (0 to 2k)

per 100k, and red nodes are showing 8k or more error per 100k. We find that the TRANSENC-

CultD-SIR approach has the lowest number of red-orange nodes which means that it has the better

73

2020-08-01 2020-09-01 2020-10-01 2020-11-01 2020-12-01
Date

0.0

0.5

1.0

1.5

2.0

2.5
D

ai
ly

 n
ew

 c
as

es
 7

-d
ay

 a
ve

ra
ge

1e6

LSTM-Baseline
LSTM-UT-Cogn
LSTM-CultD-SIR
TRANSENC-CultD-SIR
Ground Truth

2021-01-01 2021-02-01 2021-03-01 2021-04-01
Date

0.0

0.5

1.0

1.5

2.0

2.5

D
ai

ly
 n

ew
 c

as
es

 7
-d

ay
 a

ve
ra

ge

1e6

LSTM-Baseline
LSTM-UT-Cogn
LSTM-CultD-SIR
TRANSENC-CultD-SIR
Ground Truth

Figure 5.2: Average of 7-day predicted daily new cases over all countries using our predictors,
LSTM-CultD-SIR and TRANSENC-CultD-SIR and two baselines LSTM-Baseline and LSTM-
UT-Cogn. Top: E2020, Bottom: E2021.

74

0 1000 2000 3000 4000
Cumulative 7-day MAE per 100K

TRANSENC-CultD-SIR
LSTM-UT-Cogn

LSTM-CultD-SIR
LSTM-Baseline

0 1000 2000 3000 4000
Cumulative 7-day MAE per 100K

TRANSENC-CultD-SIR
LSTM-UT-Cogn

LSTM-CultD-SIR
LSTM-Baseline

Figure 5.3: Cumulative 7-day mean absolute error per 100k for each prediction approach. Top:
E2020. Bottom: E2021.

performance comparing to other approaches.

75

Figure 5.4: Color scaled cumulative 7-day mean absolute error per 100k per country or region
based on each prediction approach. Green color shows zero to 2k and red color shows 8k or more
cumulative 7-day mean absolute error per 100k.

76

CHAPTER 6: CONCLUSION

In this dissertation, first we presented a user modeling approach to create synthetic data of users’

daily requests. To achieve this goal, we leveraged two real-world and two simulated datasets. Next,

we proposed an LSTM-based and a probability-based approach for local caching of the potential

future request. We then implemented two different LSTM architectures and reported prediction

accuracy on all the datasets for both architectures. We implemented various caching strategies

in the next step in our experiments. We compared our algorithm with three baselines based on

final score and showed that the LSTM-based and majority voting approaches outperform other

approaches. Especially for the higher quality formats, the difference is much more significant.

Also, the results of the LSTM-based and majority voting methods for simulated datasets can almost

attain the oracle performance. We also showed that the prediction accuracy is higher when we have

a bigger dataset with more data points.

However, collecting data from users’ daily activities is impossible due to serious privacy concerns.

As a second step in this dissertation, we considered techniques for learning a human activity predic-

tor for a smart environment in a realistic scenario where the privacy of the users must be weighted

against the advantage offered by cloud based, collaborative learning models. We designed an ac-

tivity predictor using state-of-the-art deep recurrent neural networks and trained it in three separate

training scenarios: local, centralized and federated. A novel aspect of our work is that in contrast

to previous studies we carefully accounted for what training data is available for the environments

at every point in time. Our experiments had shown that there is only a minor difference between

the centralized and federated approach, thus the greater privacy of federated learning would make

it the preferred cloud based model. Furthermore, our experiments had also shown that the local

training model will overtake the accuracy of the federated model for almost all the cases. In fact,

for a significant subset of the environments, this crossover points happens within a couple of days

77

of the deployment. To allow the user to predict this and use it to maximize his privacy, we trained

a classifier that can predict the early crossover based on the first days’ data, with no disclosed

information.

Finally, we studied the humans’ cultural behavior for an applications in a larger environment such

as a region or country and considered an important application of predicting a pandemic and pre-

scribing intervention plans. We described the design of several pandemic prediction models and

compared them with each other. As a comparison point, we used the model that was used as the of-

ficial predictor for the finals of the XPrize Pandemic Response Challenge. The models introduced

in this paper build on and improve our submission to this competition. By testing the models on

data that extends several months after the competition, we can make several observations that can

serve as lessons for modeling approaches in the future. First, models that are finely tuned to pre-

dict over the spans of days and weeks accurately can diverge significantly over the span of months.

Second, sophisticated machine learning models such as transformer-style multi-head attention re-

placing LSTMs can produce an iterative improvement if everything else is equal but are not making

a decisive difference in prediction accuracy. Third, while the canonical models of prediction such

as the SIR compartmental model cannot, by themselves, provide an accurate prediction, they can

serve a useful role in preventing runaway errors in the models. Finally, while cultural factors are

clearly influencing the evolution of the pandemic, we do not yet have a method to incorporate this

information in a rigorous manner.

78

LIST OF REFERENCES

[1] Giovanni Acampora et al. “A survey on ambient intelligence in healthcare”. In: Proceed-

ings of the IEEE 101.12 (2013), pp. 2470–2494.

[2] Nasser Alshammari et al. “Openshs: Open smart home simulator”. In: Sensors 46.7 (2017),

p. 1003.

[3] Talal Alshammari et al. “SIMADL: simulated activities of daily living dataset”. In: Data

3.2 (2018), p. 11.

[4] Sercan O Arik et al. “Interpretable sequence learning for COVID-19 forecasting”. In: Ad-

vances in Neural Information Processing Systems (2020).

[5] Marcelo G Armentano et al. “Special issue on knowledge discovery and user modeling for

smart cities”. In: Personal and Ubiquitous Computing 24.4 (2020), pp. 437–439.

[6] Eugene Bagdasaryan et al. “How to backdoor federated learning”. In: Proc. of Int’l Conf.

on Artificial Intelligence and Statistics. 2020, pp. 2938–2948.

[7] Nikola Banovic et al. “Modeling and understanding human routine behavior”. In: Proc. of

the 2016 CHI Conf. on Human Factors in Computing Systems. 2016, pp. 248–260.

[8] Yoshua Bengio et al. “Predicting Infectiousness for Proactive Contact Tracing”. In: Int’l

Conf. on Learning Representations. 2020.

[9] Giles Birchley et al. “Smart homes, private homes? An empirical study of technology re-

searchers’ perceptions of ethical issues in developing smart-home health technologies”. In:

BMC medical ethics 18.1 (2017), pp. 1–13.

[10] Thomas Burns et al. “Exploring the Predictability of Temperatures in a Scaled Model of a

Smarthome”. In: Sensors 21.18 (2021), p. 6052.

79

[11] Thomas Burns et al. “IoT Augmented Physical Scale Model of a Suburban Home”. In:

2020 IEEE Int’l Conf. on Communications Workshops (ICC Workshops). 2020, pp. 1–5.

[12] Georgia Chalvatzaki et al. “LSTM-based network for human gait stability prediction in an

intelligent robotic rollator”. In: Proc. of Int’l Conf. on Robotics and Automation (ICRA).

2019, pp. 4225–4232.

[13] Zheng Chen et al. “User intention modeling in web applications using data mining”. In:

World Wide Web 5.3 (2002), pp. 181–191.

[14] Sungjoon Choi, Eunwoo Kim, and Songhwai Oh. “Human behavior prediction for smart

homes using deep learning”. In: IEEE Int’l Symposium on Robot and Human Interactive

Communication (RO-MAN). 2013, pp. 173–179.

[15] Consumer data privacy in a networked world: A framework for protecting privacy and

promoting innovation in the global digital economy. Tech. rep. White House, Washington,

DC, 2012, pp. 1–62.

[16] Diane J Cook. “Learning setting-generalized activity models for smart spaces”. In: IEEE

Intelligent Systems 2010.99 (2010), p. 1.

[17] Diane J Cook and Narayanan C Krishnan. Activity learning: discovering, recognizing, and

predicting human behavior from sensor data. John Wiley & Sons, 2015.

[18] Diane J Cook et al. “CASAS: A smart home in a box”. In: Computer (2013), pp. 62–69.

[19] Jessamyn Dahmen and Diane Cook. “SynSys: A synthetic data generation system for

healthcare applications”. In: Sensors 19.5 (2019), p. 1181.

[20] Jessamyn Dahmen et al. “Activity learning as a foundation for security monitoring in smart

homes”. In: Sensors 17.4 (2017), p. 737.

80

[21] Nicholas G Davies et al. “Effects of non-pharmaceutical interventions on COVID-19 cases,

deaths, and demand for hospital services in the UK: a modelling study”. In: The Lancet

Public Health 5.7 (2020), e375–e385.

[22] Jonas Dehning et al. “Inferring COVID-19 spreading rates and potential change points for

case number forecasts”. In: medRxiv (2020).

[23] Thomas G Dietterich. “Ensemble methods in machine learning”. In: Proc. of the Int’l Work-

shop on Multiple Classifier Systems. 2000, pp. 1–15.

[24] Christopher Ifeanyi Eke et al. “A survey of user profiling: State-of-the-art, challenges, and

solutions”. In: IEEE Access 7 (2019), pp. 144907–144924.

[25] Eric Elliott et al. “Peer-to-Peer Energy Trading and Grid Impact Studies in Smart Com-

munities”. In: 2020 Int’l Conf. on Computing, Networking and Communications (ICNC).

2020, pp. 674–678.

[26] Sarah Fallmann et al. “Reality and perception: Activity monitoring and data collection

within a real-world smart home”. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence

& Computing, Advanced & Trusted Computed, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE. 2017, pp. 1–6.

[27] Christopher Feltner et al. “Smart walker for the visually impaired”. In: ICC 2019-2019

IEEE Int’l Conf. on Communications (ICC). IEEE. 2019, pp. 1–6.

[28] Seth Flaxman et al. “Estimating the effects of non-pharmaceutical interventions on COVID-

19 in Europe”. In: Nature 584.7820 (2020), pp. 257–261.

[29] Yannick Francillette et al. “Modeling, learning, and simulating human activities of daily

living with behavior trees”. In: Knowledge and Information Systems 62 (2020), pp. 3881–

3910.

81

[30] Enrique Frias-Martinez, Sherry Y Chen, and Xiaohui Liu. “Survey of data mining ap-

proaches to user modeling for adaptive hypermedia”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews) 36.6 (2006), pp. 734–749.

[31] Robin C Geyer, Tassilo Klein, and Moin Nabi. “Differentially private federated learning:

A client level perspective”. In: arXiv preprint arXiv:1712.07557 (2017).

[32] Shalini Ghosh et al. “Contextual LSTM (CLSTM) models for large scale NLP tasks”. In:

arXiv preprint arXiv:1602.06291 (2016).

[33] Ian J Goodfellow et al. “Generative adversarial networks”. In: arXiv preprint arXiv:1406.2661

(2014).

[34] Yu Guan and Thomas Plötz. “Ensembles of deep LSTM learners for activity recognition

using wearables”. In: Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 1.2 (2017), p. 11.

[35] Ramanathan Guha et al. “User modeling for a personal assistant”. In: Proc. of the Eighth

ACM Int’l Conf. on Web Search and Data Mining. 2015, pp. 275–284.

[36] Thomas Hale et al. “A global panel database of pandemic policies (Oxford COVID-19

Government Response Tracker)”. In: Nature Human Behaviour 5.4 (2021), pp. 529–538.

[37] Andrew Hard et al. “Federated learning for mobile keyboard prediction”. In: arXiv preprint

arXiv:1811.03604 (2018).

[38] Abdelsalam Helal, Andres Mendez-Vazquez, and Shantonu Hossain. “Specification and

synthesis of sensory datasets in pervasive spaces”. In: 2009 IEEE Symposium on Comput-

ers and Communications. IEEE. 2009, pp. 920–925.

[39] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural compu-

tation 9.8 (1997), pp. 1735–1780.

82

[40] Geoffrey M Hodgson. “The ubiquity of habits and rules”. In: Cambridge journal of eco-

nomics 21.6 (1997), pp. 663–684.

[41] Geert Hofstede. “Culture’s consequences: International differences in work-related val-

ues”. In: Journal of Service Research 5 (1984).

[42] Terence KL Hui, R Simon Sherratt, and Daniel Dı́az Sánchez. “Major requirements for

building Smart Homes in Smart Cities based on Internet of Things technologies”. In: Fu-

ture Generation Computer Systems 76 (2017), pp. 358–369.

[43] Ji Chu Jiang et al. “Federated Learning in Smart City Sensing: Challenges and Opportuni-

ties”. In: Sensors 20.21 (2020), p. 6230.

[44] Long Jin et al. “Understanding user behavior in online social networks: A survey”. In:

IEEE Communications Magazine 51.9 (2013), pp. 144–150.

[45] Xiaoyong Jin, Yu-Xiang Wang, and Xifeng Yan. “Inter-Series Attention Model for COVID-

19 Forecasting”. In: Proc. of the 2021 SIAM Int’l Conf. on Data Mining (SDM). 2021,

pp. 495–503.

[46] James Johndrow et al. “Estimating the number of SARS-CoV-2 infections and the impact

of mitigation policies in the United States”. In: Harvard Data Science Review (2020).

[47] Parikshit Juluri, Venkatesh Tamarapalli, and Deep Medhi. “Measurement of quality of ex-

perience of video-on-demand services: A survey”. In: IEEE Communications Surveys &

Tutorials 18.1 (2016), pp. 401–418.

[48] Tim LM van Kasteren, Gwenn Englebienne, and Ben JA Kröse. “Human activity recogni-

tion from wireless sensor network data: Benchmark and software”. In: Activity recognition

in pervasive intelligent environments. 2011, pp. 165–186.

83

[49] Siavash Khodadadeh et al. “Detecting unsafe use of a four-legged walker using IoT and

deep learning”. In: ICC 2019-2019 IEEE Int’l Conf. on Communications (ICC). 2019,

pp. 1–6.

[50] Jakub Konečný et al. “Federated learning: Strategies for improving communication effi-

ciency”. In: arXiv preprint arXiv:1610.05492 (2016).

[51] Yu Kong et al. “Action Prediction From Videos via Memorizing Hard-to-Predict Samples”.

In: Proc. of AAAI Conf. on Artificial Intelligence (AAAI-2018). 2018.

[52] Hugo Larochelle and Yoshua Bengio. “Classification using discriminative restricted Boltz-

mann machines”. In: Proc. of Int’l Conf. on Machine Learning (ICML-2008). 2008, pp. 536–

543.

[53] Nicolas Le Roux and Yoshua Bengio. “Deep belief networks are compact universal ap-

proximators”. In: Neural Computation 22.8 (2010), pp. 2192–2207.

[54] Sheng Li and Handong Zhao. “A Survey on Representation Learning for User Modeling”.

In: Proc. of the Twenty-Ninth Int’l Joint Conf. on Artificial Intelligence. 2020, pp. 4997–

5003.

[55] Zhifang Liao et al. “TW-SIR: time-window based SIR for COVID-19 forecasts”. In: Sci-

entific reports 10.1 (2020), pp. 1–15.

[56] Daniele Liciotti et al. “A sequential deep learning application for recognising human ac-

tivities in smart homes”. In: Neurocomputing 396 (2020), pp. 501–513.

[57] Jason Ling et al. “Predicting the temperature dynamics of scaled model and real-world

iot-enabled smart homes”. In: 2019 IEEE Global Communications Conf. (GLOBECOM).

2019, pp. 1–6.

84

[58] Magnus S Magnusson. “Discovering hidden time patterns in behavior: T-patterns and their

detection”. In: Behavior research methods, instruments, & computers 32.1 (2000), pp. 93–

110.

[59] Atalanti A Mastakouri and Bernhard Schölkopf. “Causal analysis of Covid-19 spread in

Germany”. In: Advances in Neural Information Processing Systems (2020).

[60] Brendan McMahan et al. “Communication-efficient learning of deep networks from de-

centralized data”. In: Artificial Intelligence and Statistics. 2017, pp. 1273–1282.

[61] Mihir Mehta et al. “Early stage machine learning–based prediction of US county vulner-

ability to the COVID-19 pandemic: machine learning approach”. In: JMIR public health

and surveillance 6.3 (2020), e19446.

[62] Matteo Mendula et al. “Interaction and Behaviour Evaluation for Smart Homes: Data Col-

lection and Analytics in the ScaledHome Project”. In: Proc. of the 23rd Int’l ACM Conf. on

Modeling, Analysis and Simulation of Wireless and Mobile Systems. 2020, pp. 225–233.

[63] Risto Miikkulainen et al. “From Prediction to Prescription: Evolutionary Optimization of

Nonpharmaceutical Interventions in the COVID-19 Pandemic”. In: IEEE Transactions on

Evolutionary Computation 25.2 (2021), pp. 386–401.

[64] Bryan Minor, Janardhan Rao Doppa, and Diane J Cook. “Data-driven activity prediction:

Algorithms, evaluation methodology, and applications”. In: Proc. of ACM SIGKDD Int’l

Conf. on Knowledge Discovery and Data Mining. 2015, pp. 805–814.

[65] Kelly R Moran et al. “Epidemic forecasting is messier than weather forecasting: the role

of human behavior and internet data streams in epidemic forecast”. In: The Journal of

infectious diseases 214.suppl 4 (2016), S404–S408.

[66] Nafisa Mostofa et al. “A Smart Walker for People with Both Visual and Mobility Impair-

ment”. In: Sensors 21.10 (2021), p. 3488.

85

[67] Nafisa Mostofa et al. “IoT-Enabled Smart Mobility Devices for Aging and Rehabilitation”.

In: ICC 2020-2020 IEEE Int’l Conf. on Communications (ICC). 2020, pp. 1–6.

[68] Haider Mshali, Tayeb Lemlouma, and Damien Magoni. “Adaptive monitoring system for

e-health smart homes”. In: Pervasive and Mobile Computing 43 (2018), pp. 1–19.

[69] Haider Mshali et al. “A survey on health monitoring systems for health smart homes”. In:

International Journal of Industrial Ergonomics 66 (2018), pp. 26–56.

[70] United Nations. “World Population Ageing 2019 (ST/ESA/SER.A/)”. In: Department of

Economic and Social Affairs, Population Division (2020).

[71] Maja Pantic et al. “Human computing and machine understanding of human behavior: A

survey”. In: Artifical intelligence for human computing. 2007, pp. 47–71.

[72] Homin Park et al. “Energy-efficient privacy protection for smart home environments using

behavioral semantics”. In: Sensors 14.9 (2014), pp. 16235–16257.

[73] Roger Parker. “Human behavior modeling: The necessity of narrative”. In: Computer Ar-

chitecture in Industrial, Biomechanical and Biomedical Engineering. 2019.

[74] Alex Pentland and Andrew Liu. “Modeling and prediction of human behavior”. In: Neural

computation 11.1 (1999), pp. 229–242.

[75] Ori Plonsky et al. “Psychological forest: Predicting human behavior”. In: Proc. of the AAAI

Conf. on Artificial Intelligence. Vol. 31. 1. 2017.

[76] Zhaozhi Qian, Ahmed M Alaa, and Mihaela van der Schaar. “When and How to Lift

the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Com-

partmental Gaussian Processes”. In: Advances in Neural Information Processing Systems

(2020).

[77] Parisa Rashidi and Alex Mihailidis. “A survey on ambient-assisted living tools for older

adults”. In: IEEE Journal of Biomedical and Health Informatics 17.3 (2012), pp. 579–590.

86

[78] Doug Riecken. “Introduction: personalized views of personalization”. In: Communications

of the ACM 43.8 (2000), pp. 26–28.

[79] Kristie Seymore, Andrew McCallum, Roni Rosenfeld, et al. “Learning hidden Markov

model structure for information extraction”. In: AAAI-99 workshop on machine learning

for information extraction. 1999, pp. 37–42.

[80] Kinza Shafique et al. “Internet of things (IoT) for next-generation smart systems: A review

of current challenges, future trends and prospects for emerging 5G-IoT scenarios”. In: Ieee

Access 8 (2020), pp. 23022–23040.

[81] Mrinank Sharma et al. “How Robust are the Estimated Effects of Nonpharmaceutical In-

terventions against COVID-19?” In: Advances in Neural Information Processing Systems

(2020).

[82] Ben Shneiderman. “Human-centered artificial intelligence: Three fresh ideas”. In: AIS

Transactions on Human-Computer Interaction 12.3 (2020), pp. 109–124.

[83] Burrhus Frederic Skinner. Science and human behavior. 92904. 1965.

[84] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from overfit-

ting”. In: Journal of Machine Learning Research 15.1 (2014), pp. 1929–1958.

[85] VS Subrahmanian and Srijan Kumar. “Predicting human behavior: The next frontiers”. In:

Science 355.6324 (2017), pp. 489–489.

[86] Alon Talmor et al. “CommonsenseQA: A Question Answering Challenge Targeting Com-

monsense Knowledge”. In: Proc. of the Conf. of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers). 2019, pp. 4149–4158.

87

[87] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. “Activity recognition in the

home using simple and ubiquitous sensors”. In: Proc. of Int’l Conf. on Pervasive Comput-

ing. 2004, pp. 158–175.

[88] Niall Twomey et al. “Unsupervised learning of sensor topologies for improving activity

recognition in smart environments”. In: Neurocomputing 234 (2017), pp. 93–106.

[89] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information

processing systems. 2017, pp. 5998–6008.

[90] Shiqiang Wang et al. “Adaptive federated learning in resource constrained edge computing

systems”. In: IEEE Journal on Selected Areas in Communications 37.6 (2019), pp. 1205–

1221.

[91] Shuohang Wang and Jing Jiang. “Learning Natural Language Inference with LSTM”. In:

Proc. of Conf. of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies. 2016, pp. 1442–1451.

[92] Gregory L Watson et al. “Pandemic velocity: Forecasting COVID-19 in the US with a

machine learning & Bayesian time series compartmental model”. In: PLoS computational

biology 17.3 (2021), e1008837.

[93] Krist Wongsuphasawat et al. “LifeFlow: visualizing an overview of event sequences”. In:

Proc. of the SIGCHI Conf. on human factors in computing systems. 2011, pp. 1747–1756.

[94] Shaoen Wu et al. “Survey on prediction algorithms in smart homes”. In: IEEE Internet of

Things Journal 4.3 (2017), pp. 636–644.

[95] Congxi Xiao et al. “C-Watcher: A Framework for Early Detection of High-Risk Neighbor-

hoods Ahead of COVID-19 Outbreak”. In: arXiv preprint arXiv:2012.12169 (2020).

[96] Jun Xu et al. “Real-time prediction of taxi demand using recurrent neural networks”. In:

IEEE Transactions on Intelligent Transportation Systems 19.8 (2017), pp. 2572–2581.

88

[97] Data minimization - UK Information Commisioner’s office. https://ico.org.uk/about-the-

ico/news-and-events/ai-blog-data-minimisation-and-privacy-preserving-techniques-in-ai-systems/.

[98] European Union’s General Data Protection Regulation. https://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=CELEX:32016R0679.

[99] Arnold YS Yeung et al. “Machine Learning–Based Prediction of Growth in Confirmed

COVID-19 Infection Cases in 114 Countries Using Metrics of Nonpharmaceutical Inter-

ventions and Cultural Dimensions: Model Development and Validation”. In: Journal of

Medical Internet Research 23.4 (2021), e26628.

[100] AA Zaidan and BB Zaidan. “A review on intelligent process for smart home applications

based on IoT: coherent taxonomy, motivation, open challenges, and recommendations”. In:

Artificial Intelligence Review 53.1 (2020), pp. 141–165.

[101] Sharare Zehtabian et al. “Modeling an intelligent controller for predictive caching in AR/VR-

enabled home scenarios”. In: Pervasive and Mobile Computing (PMC) (2021).

[102] Sharare Zehtabian et al. “Predicting infections in the Covid-19 pandemic - lessons learned”.

In: arXiv preprint arXiv:submit/4057182 (2021).

[103] Sharare Zehtabian et al. “Predictive Caching for AR/VR Experiences in a Household Sce-

nario”. In: Proc. of Int’l Conf. on Computing, Networking and Communications (ICNC-

2020). 2020, pp. 591–595.

[104] Sharare Zehtabian et al. “Privacy-Preserving Learning of Human Activity Predictors in

Smart Environments”. In: Proc. of IEEE Int’l Conf. on Computer Communications (INFOCOM-

21). 2021.

[105] Sharare Zehtabian et al. “Supporting rehabilitation prescription compliance with an IoT-

augmented four-legged walker”. In: 2nd Workshop on AI for Aging, Rehabilitation and

Independent Assisted Living (ARIAL’18). 2018.

89

h
h

[106] Rowan Zellers et al. “From Recognition to Cognition: Visual Commonsense Reasoning”.

In: The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). June 2019.

[107] Xiaoli Zhang et al. “Enabling Execution Assurance of Federated Learning at Untrusted

Participants”. In: Proc. of IEEE Int’l Conf. on Computer Communications (InfoCom-2020).

2020.

[108] Yue Zhao et al. “Federated learning with non-iid data”. In: arXiv preprint arXiv:1806.00582

(2018).

[109] Difan Zou et al. “Epidemic model guided machine learning for COVID-19 forecasts in the

United States”. In: medRxiv (2020).

[110] Ingrid Zukerman and David W. Albrecht. “Predictive statistical models for user modeling”.

In: User Modeling and User-Adapted Interaction 11.1-2 (2001), pp. 5–18.

90

	Human Behavior in Domestic Environments: Prediction and Applications
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: RELATED WORK
	CHAPTER 3: HUMAN BEHAVIOR PREDICTION FOR CONTENT CACHING
	User modeling
	Problem statement
	Modeling the users' interaction with devices
	Real world and simulated datasets of user activities in homes
	Real-world Datasets
	Simulated Dataset: Open Smart-Home simulated (OpenSHS)

	Creating synthetic datasets using common-sense association

	Methods
	Predictive Caching Algorithms
	Probability-based caching
	LSTM-based caching
	Majority vote-based caching

	Baseline Caching Algorithms
	Oracle
	Cache everything
	Random caching

	Experimental Approach
	Prediction accuracy
	Long-short term memory network
	Experimental results of the overall predictive caching agent

	CHAPTER 4: PRIVACY-PRESERVING LEARNING OF HUMAN BEHAVIOR PREDICTORS
	Training Data for Collaborative Learning in Smart Environments
	Learning the Activity Prediction Model
	A Long-Short Term Memory Based Activity Predictor
	Local Training
	Centralized Training
	Federated Training
	Predicting If Smart Environments Benefit from Federated Training

	Experimental Study
	Datasets and Pre-processing
	Training the Activity Predictor
	Results: Accuracy, Crossover Point and Regret
	Predicting the Benefits of Federated Training

	CHAPTER 5: PREDICTING COVID-19 PANDEMIC USING HUMAN'S CULTURAL BEHAVIOR DIMENSIONS, COMPARTMENTAL MODELS AND DEEP LEARNING
	Learning-based models for predicting the number of infections
	Learning based epidemiological models
	LSTM-UT-Cogn
	LSTM-Baseline
	Taking into account culture
	Adding compartmental models
	LSTM based predictor using cultural dimensions and the SIR model
	Transformer encoder based predictor using cultural dimensions and the SIR model

	Experimental Studies

	CHAPTER 6: CONCLUSION
	LIST OF REFERENCES

