
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2020- 

2021 

Efficient Data Structures for Text Processing Applications Efficient Data Structures for Text Processing Applications 

Paniz Abedin 
University of Central Florida 

 Part of the Databases and Information Systems Commons 

Find similar works at: https://stars.library.ucf.edu/etd2020 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Abedin, Paniz, "Efficient Data Structures for Text Processing Applications" (2021). Electronic Theses and 
Dissertations, 2020-. 821. 
https://stars.library.ucf.edu/etd2020/821 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/145?utm_source=stars.library.ucf.edu%2Fetd2020%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/821?utm_source=stars.library.ucf.edu%2Fetd2020%2F821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


EFFICIENT DATA STRUCTURES FOR TEXT PROCESSING APPLICATIONS

by

PANIZ ABEDIN
M.Sc University of Central Florida, 2020

B.Sc Sharif University of Technology, 2015

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2021

Major Professor: Sharma Thankachan



© 2021 Paniz Abedin

ii



ABSTRACT

This thesis is devoted to designing and analyzing efficient text indexing data structures and asso-

ciated algorithms for processing text data. The general problem is to preprocess a given text or a

collection of texts into a space-efficient index to quickly answer various queries on this data. Basic

queries such as counting/reporting a given pattern’s occurrences as substrings of the original text

are useful in modeling critical bioinformatics applications. This line of research has witnessed

many breakthroughs, such as the suffix trees, suffix arrays, FM-index, etc. In this work, we revisit

the following problems:

1. The Heaviest Induced Ancestors problem

2. Range Longest Common Prefix problem

3. Range Shortest Unique Substrings problem

4. Non-Overlapping Indexing problem

For the first problem, we present two new space-time trade-offs that improve the space, query

time, or both of the existing solutions by roughly a logarithmic factor. For the second problem,

our solution takes linear space, which improves the previous result by a logarithmic factor. The

techniques developed are then extended to obtain an efficient solution for our third problem, which

is newly formulated. Finally, we present a new framework that yields efficient solutions for the

last problem in both cache-aware and cache-oblivious models.

iii



ACKNOWLEDGMENTS

I would like to gratefully thank my advisor, Dr. Sharma Thankachan, for all his help and sup-

port throughout this journey. I would have hardly imagined writing this dissertation without his

encouragement, invaluable guidance, and kindness. He, without a doubt, made my stay at UCF

a memorable experience. I also wish to thank the esteemed members of my dissertation commit-

tee Dr. Shibu Yooseph, Dr. Wei Zhang, Dr. Varadraj Gurupur, and Dr. Samiul Hasan for their

insightful comments and help.

I would also like to thank my family Ramak, Hamid, and Sina for their unrelenting support and

encouragement. This would not have been possible without your emotional support. Thanks for

sticking with me all the way to the end.

iv



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Longest Common Substring Queries . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Longest Common Prefix Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Shortest Unique Substrings Queries . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Non-overlapping Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 The Heaviest Induced Ancestors Problem . . . . . . . . . . . . . . . . . . 7

1.5.1.1 Longest Common Substring of LZ77 Compressed Strings . . . . 9

1.5.1.2 All-Pairs Longest Common Substring Problem . . . . . . . . . . 10

1.5.1.3 Dynamic Longest Common Substring Problem . . . . . . . . . . 10

1.5.2 The Range-LCP Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5.3 The Range-SUS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.4 I/O-Efficient Data Structures for Non-Overlapping Indexing . . . . . . . . 13

1.5.4.1 The Models of Computations . . . . . . . . . . . . . . . . . . . 15

v



CHAPTER 2: PRELIMINARIES AND TERMINOLOGIES . . . . . . . . . . . . . . . . 17

2.1 Suffix Trees and Suffix Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Predecessor/Successor Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Fully-Functional Succinct Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Range Maximum Query (RMQ) and Path Maximum Query (PMQ) . . . . . . . . . 19

2.5 2D-Range Maximum Query (2D-RMQ) . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Orthogonal Range Queries in 2-Dimension . . . . . . . . . . . . . . . . . . . . . 20

2.7 Heavy Path and Heavy Path Decomposition . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 3: THE HEAVIEST INDUCED ANCESTORS PROBLEM . . . . . . . . . . 22

3.1 Our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Basic Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Our Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Our O(n logn) Space Data Structure . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Our Linear Space Data Structure . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Applications to String Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 All-Pairs Longest Common Substring Problem . . . . . . . . . . . . . . . 33

vi



3.3.1.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1.2 Query Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Dynamic Longest Common Substring Problem . . . . . . . . . . . . . . . 35

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 4: THE RANGE LONGEST COMMON PREFIX PROBLEM . . . . . . . . . 38

4.1 Amir et al.’s Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Our Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 An Overview of Our Data Structure . . . . . . . . . . . . . . . . . . . . . 41

4.3 Details of the Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 The Structure for Estimating Range-LCP . . . . . . . . . . . . . . . . . . 44

4.3.2 The Structure for Handling Q(α,β ,h) Queries . . . . . . . . . . . . . . . 46

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

CHAPTER 5: THE RANGE SHORTEST UNIQUE SUBSTRING PROBLEM . . . . . . 49

5.1 An O(n logn)-Word Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 An O(n)-Word Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



CHAPTER 6: INDEXING CACHE-OBLIVIOUSLY . . . . . . . . . . . . . . . . . . . . 59

6.1 Sorted Range Reporting on Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Non-Overlapping Indexing - Cache Obliviously . . . . . . . . . . . . . . . . . . . 60

6.2.1 Handling aperiodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2.2 Handling periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.3 Range Non-Overlapping Indexing in Cache-Aware Model . . . . . . . . . . . . . . 65

6.3.1 The Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.2 Handling aperiodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3.3 Handling periodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



LIST OF FIGURES

Figure 3.1: We refer to Section 3.1.2 for the description of this figure. . . . . . . . . . . . 26

Figure 5.1: Illustration of the problem reduction: (k,h) is the output of the rSUS prob-

lem with query range [α,β ], where h = λ (α,β ,k) ∈ Ck. Rk,h is the lowest

weighted rectangle inR containing the point (α,β ). . . . . . . . . . . . . . 51

Figure 5.2: Let h ∈ C′k and i = Prev(k,h). By contradiction, assume that there exists

j ∈ (i,k) such that j = Prev(k, lcp(i,k)). Since h ≤ lcp(i,k), T[ j, j + h−

1] = T[k,k+ h− 1]. This is a contradiction with i = Prev(k,h). Thus, i =

Prev(k, lcp(i,k)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 6.1: Here P = catcatca, x is the cluster-head and y = x+ 21 is the cluster-tail.

Then, the largest set of non-overlapping occurrences with the first occurrence

included, and the first occurrence excluded are {x,x+ 9,x+ 18} and {x+

3,x+12,x+21}, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 6.2: Highlighted are the regions corresponding to cluster tails. . . . . . . . . . . . 64

ix



CHAPTER 1: INTRODUCTION

Texts are fundamental data types in Bioinformatics, Data compression and Search engines. An

abundance of challenges while using this type of data motivates theoretical and experimental re-

search on algorithms and data structures for text processing. Pattern matching is the main problem

in this field of research in which we are given a text and the task is to maintain a data structure,

so that, whenever a pattern comes as a query, all of its occurrences can be returned or identified

efficiently [98]. A full-text index is a data structure storing a text (a string or a set of strings) and

supporting string matching queries. Suffix tree is a classical full-text index which was introduced

by Weiner [120] for solving pattern matching queries in a time proportional to the length of the

query pattern. Let T[1,n] be a text of length n and T[i,n] be the suffix starting at position i. The

suffix tree of a text T[1,n] is a compact trie storing all of its suffixes (T[i,n],∀i ∈ {1 · · ·n} ) and

it can be constructed in O(n) time. Given a text T[1,n], we can preprocess T using its suffix tree

in O(n) time so that later we can find out whether an unknown pattern P of length m has an oc-

currence in T or not in O(m) time. The linear running time for the pattern matching problem is

exceptionally important due to the huge size of input texts in modern applications [42]. Although a

suffix tree takes linear space for its construction, the overhead is relatively large. Thus, more space-

efficient indexes such as suffix arrays [91] and other compact data structures have been developed

[99]. In this thesis, we study various string matching queries for which we provide efficient data

structures and algorithms. All results throughout Chapters 3, 4 and 5 assume the standard unit-cost

word RAM model, in which any standard arithmetic or boolean bitwise operation on word-sized

operands takes constant time. the space is measured in words of logn bits unless specified other-

wise.

1



Map

In Sections 1.1, 1.2, 1.3 and 1.4 we briefly explain the main queries that are focused in this thesis.

In Section 1.5, the problems for which we provide improved data structures, as well as our results

for each of them, have been described. In Chapter 2, we bring the preliminaries including the

definitions and data structures that are used in our approaches. Chapters 3, 4, 5 and 6 are our

framework for the heaviest induced ancestors, Range Longest Common prefix, Range Shortest

Unique Substrings and Non-Overlapping Indexing problems respectively.

1.1 Longest Common Substring Queries

Given two strings T1 and T2 , each of length at most n, the longest common substring(LCS) prob-

lem is finding a longest substring which occurs in both T1 and T2. Using suffix tree data structure

explained in Section 1, the LCS problem can be solved in O(n) time, which is optimal [120]. The

LCS problem is a classic problem in String algorithms. Different types of LCS problem have been

studied [25, 85, 94]. In problems that the input data is large, the suffix tree solution for the LCS

problem would be impractical. Thus, compressed and succinct data structures for solving these

types of queries have been developed [100]. In 2013, Gagie et al. introduced the Heaviest induced

Ancestors problem (HIA) which can be applied to build an LZ-compressed index [48, 84] to an-

swer LCS problem [57]. The Heaviest Induced Ancestors problem is a useful primitive in several

generalizations of LCS queries such as Dynamic Longest Common Substring, Longest Common

Substring of LZ77 Compressed Strings, and All-Pairs Longest Common Substring Problems. In

Chapter 3 we present our framework for solving the HIA problem.

2



1.2 Longest Common Prefix Queries

Let T[1,n] be a text of length n and T[i,n] be the suffix starting at position i. The Longest Com-

mon Extension problem takes a string T as an input and for each pair (i, j) computes the longest

substring of T which starts at both positions i and j. We can generalize this definition for any

two input strings. For any two strings X and Y , let LCP(X ,Y ) denote their longest common prefix

which is an important primitive employed in various string matching algorithms. By preprocessing

a text T[1,n] (over an alphabet set Σ) into a suffix tree data structure, we can compute the longest

common prefix of any two suffixes of T, say T[i,n] and T[ j,n], denoted by LCP(T[i,n],T[ j,n]), in

constant time. By the LCP notation, we can formulate the LCE queries as follows:

Definition 1 (LCE queries). The LCE of a text T[1,n] w.r.t a query (i, j), where i, j ∈ [1,n] is

LCE(i, j) = LCP(T[i,n],T[ j,n])

From now onward, we use the shorthand notation lcp(i, j) for the length of LCP(T[i,n],T[ j,n]).

Given its wide range of applicability, various generalizations of LCP has also been studied [20, 21,

16, 103, 58]. The notation and concept of LCP have been applied in fundamental string matching

problems. A suffix tree data structure along with the Lowest Common Ancestor queries in trees can

be used to solve LCP queries in constant time [68, 67, 30, 28]. In most cases, LCP information

are computed along with the construction of suffix arrays. Augmenting the suffix arrays with

the LCP information allows to simulate the bottom-up traversal of suffix trees without explicitly

storing the suffix tree data structures [80]. LCP queries are essential tools for computing maximal

repeats, palindromes, unique substrings, matching with wild cards, dictionary matching, document

retrieval, approximate pattern matching and other fundamental string problems [67]. In 1988,

Landau and Vishkin introduced a 2-D array called MAX-LENGTH for a text which stores the

3



LCE values for each (i, j) pairs. Then, they present an algorithm for finding all occurrences of

a query pattern of length m in an input text of length n allowing k >= 0 mismatches, where k

is an input integer [87]. In 1993, Udi Manber and Gene Myers introduced the LCP array as a

data structure to improve the running time of their string search algorithm. Their algorithm takes

O(n logn) time to compute the LCP array along with the suffix array construction [92]. Later on,

several linear time algorithms have been published for the LCP array construction [80, 51, 93].

The computation of LCP is important in compression as well. For instance, in order to compute

the Ziv-Lempel compression the LCP computation is required [124]. In this thesis, we focus on

the “range” versions of this problem. This is a natural generalization of the LCP problem. The

line of research was initiated by Cormode and Muthukrishnan. They studied the Interval Longest

Common Prefix (Interval-LCP) problem in the context of data compression [41, 82, 88].

Definition 2 (Interval-LCP). The Interval-LCP of a text T[1,n] w.r.t a query (p,α,β ), where

p,α,β ∈ [1,n] and α < β is

ilcp(p,α,β ) = max{lcp(p, i) | i ∈ [α,β ]}

As observed by Keller et al. [82], any Interval-LCP query on T can be reduced to two orthogo-

nal range successor/predecessor queries over n points in two dimensions (2D). Therefore, using

the best known data structures for orthogonal range successor/predecessor queries [101], we can

answer any Interval-LCP query on T in O(logε n) time using an O(n) space data structure, where

ε > 0 is an arbitrarily small positive constant. Moreover, queries with p ∈ [α,β ] can be answered

in faster O(logε
δ ) time, where δ = β −α +1 is the length of the input range [103].

We study on another variation of LCP, studied by Amir et al. [20, 21], is the following.

Definition 3 (Range-LCP). The Range-LCP of a text T[1,n] w.r.t a range [α,β ], where 1 ≤ α <

4



β ≤ n is

rlcp(α,β ) = max{lcp(i, j) | i 6= j and i, j ∈ [α,β ]}

Chapter 4 presents our techniques for solving rlcp(., .) queries.

1.3 Shortest Unique Substrings Queries

Finding regularities in strings is one of the main topics of combinatorial pattern matching and its

applications [89]. Among the most well-studied types of string regularities is the notion of repeat.

Let T[1,n] be a string of length n. A substring T[i, j] of T is called a repeat if it occurs more than

once in T. The notion of unique substring is dual: it is a substring T[i, j] of T that does not occur

more than once in T. Computing repeats and unique substrings has applications in computational

biology [110, 70] and in information retrieval [105, 83].

In this thesis, we are interested in the notion of shortest unique substring. All shortest unique

substrings of string T can be computed in O(n) time using the suffix tree data structure [67, 121].

Many different problems based on this notion have already been studied. Pei et al. [105] considered

the following problem on the so-called position (or point) queries. Given a position i of T, return

a shortest unique substring of T covering i. The authors gave an O(n2)-time and O(n)-space

algorithm, which finds the shortest unique substring covering every position of T. Since then,

the problem has been revisited and optimal O(n)-time algorithms have been presented by Ileri et

al. [75] and by Tsuruta et al. [116]. Several other variants of this problem have been investigated [1,

9, 63, 62, 77, 71, 97, 111, 96, 119].

We introduce a natural generalization of the shortest unique substring problem. Specifically, our

focus is on the range version of the problem, which we call the Range Shortest Unique Substring

5



(rSUS) problem. The task is to construct a data structure over T to be able to answer the following

type of online queries efficiently. Given a range [α,β ], return a shortest substring T[k,k+ h− 1]

of T with exactly one occurrence (starting position) in [α,β ]; i.e., k ∈ [α,β ], there is no k′ ∈ [α,β ]

(k′ 6= k) such that T[k,k + h− 1] = T[k′,k′+ h− 1], and h is minimal. Note that this substring,

T[k,k + h− 1], may end at a position k + h− 1 > β . Further note that there may be multiple

shortest unique substrings.

Range queries are a classic data structure topic [125, 31, 29]. A range query q = f (A, i, j) on an

array of n elements over some set S, denoted by A[1,n], takes two indices 1≤ i≤ j ≤ n, a function

f defined over arrays of elements of S, and outputs f (A[i, j]) = f (A[i], . . . ,A[ j]). Range query

data structures have also been considered specifically for strings [22, 17, 2, 61]. For instance, in

bioinformatics applications we are often interested in finding regularities in certain regions of a

DNA sequence [106, 10, 26, 76, 11]. In the Range-LCP problem, defined by Amir et al. [22], the

task is to construct a data structure over T to be able to answer the following type of online queries

efficiently. Given a range [α,β ], return i, j ∈ [α,β ] such that the length of the longest common

prefix of T[i,n] and T[ j,n] is maximal among all pairs of suffixes within this range. The state of the

art is an O(n)-word data structure supporting O(logO(1) n)-time (polylogarithmic-time) queries [2]

(see also [95, 61]).

1.4 Non-overlapping Indexing

Text indexing is fundamental to many areas in Computer Science such as Information Retrieval,

Bioinformatics, etc. The primary goal here is to pre-process a long text T[1,n] (given in advance),

such that whenever a shorter pattern P[1,m] comes as query, all occ occurrences (or simply, starting

positions) of P in T can be reported efficiently. Such queries can be answered in optimal O(m+

occ) time using the classic Suffix tree data structure [117, 122]. It takes O(n) words of space. In

6



this thesis, we focus on a variation of the text indexing problem, known as the non-overlapping

indexing, which is central to data compression [24, 40].

The non-overlapping indexing problem is defined as follows: pre-process a given text T[1,n] of

length n into a data structure such that whenever a pattern P[1,m] comes as an input, we can

efficiently report the largest set of non-overlapping occurrences of P in T. The best-known solution

is by Cohen and Porat [ISAAC 2009]. The size of their structure is O(n) words and the query time

is optimal O(m+ nocc), where nocc is the output size. Later, Ganguly et al. [CPM 2015 and

Algorithmica 2020] proposed a compressed space solution. We study this problem in the cache-

oblivious model and present a new data structure of size O(n logn) words. It can answer queries in

optimal O(m
B + logB n+ nocc

B ) I/O operations, where B is the block size. The space can be improved

to O(n logM/B n) in the cache-aware model, where M is the size of main memory. Additionally, we

study a generalization of this problem with an additional range [s,e] constraint. Here the task is

to report the largest set of non-overlapping occurrences of P in T, that are within the range [s,e].

We present an O(n log2 n) space data structure in the cache-aware model that can answer queries

in optimal O(m
B + logB n+

nocc[s,e]
B ) I/O operations, where nocc[s,e] is the output size.

1.5 Our Contributions

1.5.1 The Heaviest Induced Ancestors Problem

The heaviest induced ancestors (HIA) problem is defined as follows: Let T1 and T2 be two

weighted trees, having n1 and n2 nodes respectively, and let n = n1+n2. The weight of a node u in

either of the trees is given by W(u) and W(u)>W(parent(u)), where parent(u) is the parent node

of u. For convenience, the pre-order rank of a node u is also denoted by u. Each tree has exactly

m ≤ min{n1,n2} leaves. Leaves in both trees are labeled and the labeling of the leaves in T2 is

7



a permutation of the labeling of the leaves in T1. A pair of nodes, one each from T1 and T2, are

induced if the leaves in the respective subtrees have at least one common label. For any two nodes

u and v in a tree, the node v is an ancestor of u iff v is on the path from u to the root of the tree.

Moreover, v is a proper ancestor u only if u 6= v. We revisit the problem, introduced by Gagie et

al. [57]. In this section, we present an overview to our framework and in Chapter 3, we provide the

details of our results. This work previously appeared as Abedin, Paniz, et al. "The heaviest induced

ancestors problem revisited." Annual Symposium on Combinatorial Pattern Matching (CPM 2018)

[6]. An extension of this work is currently under the review in Algorithmica journal.

Problem 1 (Heaviest Induced Ancestors (HIA) Problem [57]). Given a node u1 ∈ T1 and a node

u2 ∈ T2, find HIA(u1,u2), which is defined as the pair of induced nodes (u∗1,u
∗
2) with the highest

combined weight W(u∗1)+W(u∗2), such that u∗1 (resp., u∗2) is an ancestor of u1 (resp., u2).

Gagie et al. [57] achieved the following space-time trade-offs in the standard word RAM model of

computation with word size Ω(logn) bits. Here and henceforth, ε is an arbitrarily small positive

constant.

• an O(n log2 n)-word and O(logn log logn) query time

• an O(n logn)-word and O(log2 n) query time

• an O(n)-word data and O(log3+ε n) query time.

We present two new data structures, with improved bounds to answer the heaviest induced ances-

tors query over two trees of n nodes in total as follows:

Theorem 1. A heaviest induced ancestors query over two trees of n nodes in total can be answered

• in O(logn log logn) time using an O(n logn)-word data structure, or

8



• in O
( log2 n

log logn

)
time using an O(n)-word data structure.

Applications to String Matching

Let LCS(X ,Y ) denote the longest common substring (LCS) of two strings X and Y .

1.5.1.1 Longest Common Substring of LZ77 Compressed Strings

Problem 2. Build a data structure for a string S of length N, whose LZ77 parsing contains n

phrases, that supports the following query: given a pattern P, report LCS(S,P).

If one were to forego the compression requirement, the problem can be easily solved by maintain-

ing a suffix tree [120] of S in O(N) words yielding O(|P|) query time. On the other hand, we can

also answer LCS(S,P) queries using compressed/succinct data structures, such as the FM Index

or Compressed Suffix Array [50, 66, 108], with a slight slow down in the query time. However,

for strings having a repetitive structure, LZ77-based compression techniques [127] offer better

space-efficiency than that obtained using FM-Index or Compressed Suffix Array.

Gagie et al. [57] showed that Problem 2 can be solved using an O(n logN + n log2 n)-word index

with a very high probability in O(|P| logn log logn) query time. Alternatively, they also presented

an O(n logN)-word index with query time O(|P| log2 n). Using Theorem 1 and the techniques

in [57], we present an improved result for Problem 2 (see Theorem 2). We omit the details as they

are immediate from the discussions in [57].

Theorem 2. Given a string S of length N, we can build an O(n logN)-word structure that re-

ports LCS(S,P) in O(|P| logn log logn) time with a very high probability, where n is the number of

phrases in an LZ77 parsing of S.

9



1.5.1.2 All-Pairs Longest Common Substring Problem

Here we are given a collection T1,T2, . . . ,Td of d strings, each of length roughly n, and the task is

to compute LCS(Ti,Tj) for all (i, j) pairs. This is a useful primitive in several bioinformatics appli-

cations [12, 39]. However, a conditional lower bound based on the boolean matrix multiplication

suggests that significant improvements over the naive O(d2n) time algorithm is unlikely [114] in

the general case. However, we present an improved solution for the cases where many strings are

highly similar (a.k.a highly repetitive). Specifically, we present a data structure of space and pre-

processing time Õ(nd), that computes LCS(Ti,Tj) for any i, j in time Õ
(

min{|Ti|,|Tj|}
|LCS(Ti,Tj)|

)
. We defer

details to Section 3.3.1.

1.5.1.3 Dynamic Longest Common Substring Problem

In [18], Amir et al. introduced the following problem: build a data structure over two strings T1 and

T2 of total n characters over an alphabet set Σ, such that given a query (p,α), where p∈ [p, |T1|] and

α ∈ Σ, report LCS(T ∗1 ,T2), where T ∗1 is a new string obtained by changing the pth character of T1

by α . They presented an O(n log3 n) space data structure with O(log3 n) query time. We not only

improve, but also propose a solution to solve a more general case, where the query consists of a set

S of (position,character) pairs, and the task is to compute LCS(T ∗1 ,T2), where T ∗1 is obtained from

T1 by making the changes (substitutions) as specified by S. We achieve the same space-time trade-

offs as that of Theorem 1, where time is the per substitution. Details are deferred to Section 3.3.2.

See [14, 15, 23, 56, 55, 118] for other related work.

The problem is even more complicated when the changes allowed in both strings. Amir et al. [19]

proposed an Õ(n) space solution with query time Õ(n2/3). A new result improving this query time

to Õ(1) has been announced recently [102].

10



1.5.2 The Range-LCP Problem

We revisit the range variation of the LCP queries, studied by Amir et al. [20, 21] which is defined

as 3. In Chapter 4, we provide the details of our results. This work previously appeared as Abe-

din, Paniz, et al. "A linear-space data structure for range-LCP queries in poly-logarithmic time."

Theoretical Computer Science 822 (2020), and Computing and Combinatorics (COCOON 2018)

[3, 2].

Problem 3. The Range-LCP of a text T[1,n] w.r.t a range [α,β ], where 1≤ α < β ≤ n is

rlcp(α,β ) = max{lcp(i, j) | i 6= j and i, j ∈ [α,β ]}

In order to efficiently solve the data structure version of this problem, Amir et al. [20, 21] intro-

duced the concept of “bridges” and “optimal bridges” and showed that any Range-LCP query on

T[1,n] can be reduced to an equivalent 2D range maximum query over a set of O(n logn) weighted

points in 2D. Therefore, an O(n log1+ε n) space data structure with O(log logn) query time is im-

mediate from the best known result for 2D range maximum problem [36]. The construction time

is O(n log2 n). By choosing an alternative structure for 2D (2-sided) range maximum query 1, the

space can be improved to O(n logn) with a slowdown in query time to O(logn). This sets an

interesting question, whether it is possible to reduce the space further without sacrificing the poly-

logarithmic query time. Unfortunately, the query times of the existing linear space solutions (listed

below) are dependent on the parameter δ , which is Θ(n) in the worst case.

• O(n) space and O(δ log logn) query time [20, 21].

• O(n) space and O(
√

δ logε
δ ) query time [103] (also see [61])

1See Theorem 9 in [104] on sorted dominance reporting in 3D.

11



To this end, we present our main contribution below. Our model of computation is the word RAM

with word size Θ(logn).

Theorem 3. A text T[1,n] can be preprocessed into an O(n) space data structure in O(n logn)

time, such that any Range-LCP query on T can be answered in O(log1+ε n) time.

1.5.3 The Range-SUS Problem

An alphabet Σ is a finite nonempty set of elements called letters. We fix a string T[1,n] =

T[1] · · ·T[n] over Σ. The length of T is denoted by |T|= n. By T[i, j] = T[i] · · ·T[ j], we denote the

substring of T starting at position i and ending at position j of T. We say that another string P has

an occurrence in T or, more simply, that P occurs in T if P= T[i, i+ |P|−1], for some i. Thus, we

characterize an occurrence of P by its starting position i in T. A prefix of T is a substring of T of

the form T[1, i] and a suffix of T is a substring of T of the form T[i,n].

We next formally define the next main problem considered in this thesis. In Chapter 5, we pro-

vide the details of our results. This work previously appeared as Abedin, Paniz, et al. "Range

shortest unique substring queries." International Symposium on String Processing and Information

Retrieval. Springer, Cham, 2019 and "Efficient data structures for range shortest unique substring

queries." Algorithms 13.11 (2020) [5, 4]

Problem 4. rSUS

Preprocess: String T[1,n].

Query: Range [α,β ], where 1≤ α ≤ β ≤ n.

Output: (p, `) such that T[p, p+ `−1] is a shortest string with exactly one occurrence in [α,β ].

12



If α = β the answer (α,1) is trivial. So, in the rest we assume that α < β .

Example 1. Given T= c

1

a

2

a

3

b

4

c

5

a

6

d

7

d

8

a

9

a

10

c

11

a

12

d

13

d

14

a

15

a

16

a

17

a

18

b

19

a

20

c

21

and a query [α,β ] = [5,16], we need to find

a shortest substring of T with exactly one occurrence in [5,16]. The output here is (p, `) = (10,2),

because T[10,11] = ac is the shortest substring of T with exactly one occurrence in [5,16].

Our main results are summarized below. We consider the standard word-RAM model of computa-

tions with w-bit machine words, where w = Ω(logn), for stating our results.

Theorem 4. We can construct an O(n logn)-word data structure which can answer any rSUS query

on T [1,n] in O(logw n) time.

Theorem 5. We can construct an O(n)-word data structure which can answer any rSUS query on

T [1,n] in O(
√

n logε n) time, where ε > 0 is an arbitrarily small constant.

1.5.4 I/O-Efficient Data Structures for Non-Overlapping Indexing

In Chapter 6, we focus on a variation of the text indexing problem, known as the non-overlapping

indexing, which is central to data compression [24, 40]. This work previously appeared as Hoosh-

mand, Sahar, et al. "Non-Overlapping Indexing-Cache Obliviously." Annual Symposium on Com-

binatorial Pattern Matching (CPM 2018) and "I/O-efficient data structures for non-overlapping

indexing." Theoretical Computer Science 857 (2021) [73, 74].

Problem 5 (Non-overlapping Indexing). Preprocess a text T[1,n] into a data structure that sup-

ports the following query: given a pattern P[1,m], report the largest set of occurrences of P in T

(denote its size by nocc), such that any two (distinct) text positions in the output are separated by

at least m characters.

13



The range non-overlapping indexing is a generalization of the above problem.

Problem 6 (Range Non-overlapping Indexing). Preprocess a text T[1,n] into a data structure that

supports the following query: given a pattern P[1,m] and a range [s,e], report the largest set of

occurrences of P in T, that are within the range [s,e] (denote its size by nocc[s,e]), such that any

two (distinct) text positions in the output are separated by at least m characters.

Both these problems are well studied in the internal memory (RAM) model of computation.

The initial solutions were obtained via a reduction to the orthogonal range next value prob-

lem. Although efficient, they were not optimal in terms of query time [44, 81, 101]. The first

non-trivial solutions were by Cohen and Porat [40]: they presented an O(n) space and opti-

mal O(m+ nocc) query time solution for Problem 5 and an O(n logε n) space and near-optimal

O(m+ log logn+nocc[s,e]) query time solution for Problem 6, where ε > 0 is an arbitrarily small

constant. To achieve these results, they exploited the periodicity of both pattern and (substrings of)

text. Subsequently, Ganguly et al. [59, 60] presented the first succinct space solution for Problem 5

and an optimal query time solution for Problem 6. We revisit Problems 5 and 6 in the secondary

memory model and present the following results.

Theorem 6. There exists a data structure that is initialized with a text T[1,n], takes O(n logn)

words of space and supports the following query in the cache-oblivious model. Given a string

P[1,m], the data structure reports the largest set of non-overlapping occurrences of P[1,m] in T in

their sorted order in optimal O(m
B + logB n+ nocc

B ) I/O operations, where nocc is the output size.

The space complexity can be improved in the cache-aware model.

Theorem 7. There exists a data structure that is initialized with a text T[1,n], takes O(n logM/B n)

words of space and supports the following query in the cache-aware model. Given a string P[1,m],

the data structure reports the largest set of non-overlapping occurrences of P[1,m] in T in their

sorted order in optimal O(m
B + logB n+ nocc

B ) I/O operations, where nocc is the output size.

14



Theorem 8. There exists an O(n log2 n) space data structure for the range non-overlapping index-

ing problem in the cache-aware model, where n is the length of the input text T. The data structure

supports reporting the largest set of non-overlapping occurrences of an input pattern P[1,m] within

a given range [s,e] in their sorted order in optimal O(m
B + logB n+

nocc[s,e]
B ) I/O operations, where

nocc[s,e] is the output size.

We now present a brief description of our models of computations.

1.5.4.1 The Models of Computations

The data structures presented in Chapters 3, 4 and 5 are in the Word-RAM model. In the Word-

RAM model, we assume that the memory is partitioned into continuous blocks (or words). At

any point of time, we can load data into a block or access data within a block in constant time.

We always assume the size of a block is Θ(logn) bits, where n denotes the size of the problem

in hand. For Non-overlapping indexing problem, we present our data structures in the secondary

memory model in the context of very large input data. Here we assume that the data (and the

data structure) is too big to fit within the main memory, therefore deployed in a (much larger, but

slower) secondary memory. Popular models of computation are (i) the cache-aware model and (ii)

the cache-oblivious model.. In the cache-aware model (a.k.a. external memory model, I/O model,

and disk access model), introduced by Aggarwal and Vitter [8] the CPU is connected directly to

an internal memory (of size M words), which is then connected to a very large external memory

(disk). The disk is partitioned into blocks/pages and the size of each block is B words. The CPU

can only work on data inside the internal memory. Therefore, to work on some data in the external

memory, the corresponding blocks have to be transferred to internal memory. The transfer of a

block from external memory to internal memory (or vice versa) is referred to as an I/O operation.

The operations inside the internal memory are orders of magnitude faster than the time for an I/O

15



operation. Therefore, they are considered free, and the efficiency of an algorithm is measured in

terms of the number of I/O operations. The cache-oblivious model is essentially the same as above,

except the following key twist: M and B are unknown at the time of the design of algorithms and

data structures [54, 53]. This means, if a cache-oblivious algorithm performs optimally between

two levels of the memory hierarchy, then it is optimal at any level of the memory hierarchy. Lastly,

cache-oblivious algorithms are usually more intricate than cache-aware algorithms. Generally, we

assume M > B2+Θ(1), known as the tall cache assumption.

16



CHAPTER 2: PRELIMINARIES AND TERMINOLOGIES

In this section, we bring various definitions, notations and known data structures that are utilized

in our newly introduced data structures and algorithms.

2.1 Suffix Trees and Suffix Arrays

Let T [1,n] be a text over an alphabet set Σ and let $ /∈ Σ be a special symbol. The suffix tree STT

(resp., prefix tree PTT ) of T is a compact trie over all strings in the set S = {T [i,n]◦$ | i ∈ [1,n]}

(resp., SR = {
←−−−
T [1, i]◦$ | i∈ [1,n]}). Here ◦ denotes concatenation and

←−−−
T [1, i] denotes the reverse of

T [1, i]. The suffix array SAT and the inverse suffix array ISAT (resp., the prefix array PAT and the

inverse prefix array IPAT ) of T are arrays of length n, such that SAT [i] = j and ISAT [ j] = i (resp.,

PAT [i] = j and IPAT [ j] = i) iff T [ j,n]◦$ (resp.,
←−−−
T [1, j]◦$) is the ith smallest string in S (resp., SR)

in the lexicographic order.

Both STT and PTT has exactly n leaves, and the edges are labeled. For any node u in either of the

tree, we use path(u) to denote the concatenation of edge labels on the path from the root to u. The

path(·) of ith leftmost leaf in STT (resp., PTT ) is the same as the ith smallest string in S (resp., SR)

in the lexicographic order. Therefore, for any two nodes u and v within the same tree with w being

their lowest common ancestor (LCA), the longest common prefix (LCP) of path(u) and path(v) is

the same as path(LCA(u,v)). Note that the prefix tree (resp., prefix array) of a text is equivalent to

the suffix tree (resp., suffix array) of the reverse of the text.

In addition, size(u) denote the number of leaves under u. The locus of a string S in ST, denoted

by locus(S) is the node closest to root, such that S is a prefix of the node’s path. The array SA

is called the suffix array of T. The suffix range of a string S, denoted by [sp(S),ep(S)] is the

17



range of (contiguous) leaves in the subtree of locus(S). Therefore, the set of occurrences of S is

{SA[i] | sp(S)≤ i≤ ep(S)}. The suffix range of S can be computed in O(|S|) time. Space is O(n)

words for both suffix array and suffix tree.

The suffix tree over a collection of strings T1,T2, . . . ,Td over an alphabet set Σ is called a generalized

suffix tree (GST), which is a compact trie over all strings in∪d
j=1{Tj[i, |Tj|]◦$ j | i∈ [1, |Tj|]}, where

$1,$2, . . . ,$d are distinct symbols that do not appear in Σ. The corresponding (generalized) suffix

array, prefix tree, and prefix array can be defined similarly.

All the above data structures can be constructed in linear space and time (assuming integer al-

phabet) [120, 46]. After that, we can find LCA(·, ·) in O(1) time [29]. Therefore, the length of

the longest common prefix (or suffix) of any two strings (or their substrings) in the collection can

be computed in constant time. A weighted level ancestor query (u, l) asks to report the highest

ancestor w of u, such that |path(w)| ≥ l. By preprocessing the suffix tree into a linear space data

structure, the level answer queries on suffix trees can be answered in constant time [65, 47]. We

refer to [67] for further reading.

There also exist linear-space suffix tree representations in both secondary memory models. The

solution in the cache-aware model is by Ferragina [49] and is called the String-B tree. The cache-

oblivious solution is by Brodal and Fagerberg [34], which is based on an intricate concept of

decomposing the tree into what they call Giraffe trees. In both cases, the locus, as well as the

suffix range of any string S can be computed in optimal O(|S|/B+ logB n) I/O operations.

2.2 Predecessor/Successor Queries

Let S be a subset of U = {0,1,2,3, . . . ,U −1} of size n. A predecessor search query p on S asks

to return p if p ∈ S, else return max{q < p | q ∈ S}. Similarly, a successor query p on S asks to

18



return p if p ∈ S , else return min{q > p | q ∈ S}. By preprocessing S into a y-fast trie of size O(n)

words, we can answer such queries in O(log logU) time [123].

2.3 Fully-Functional Succinct Tree

Let T be a tree having n nodes, such that nodes are numbered from 1 to n in the ascending order

of their pre-order rank. Also, let `i denote the ith leftmost leaf. Then by maintaining an index of

size 2n+o(n) bits, we can answer the following queries on T in constant time [109]:

• parentT(u) = parent of node u.

• sizeT(u) = number of leaves in the subtree of u.

• nodeDepthT(u) = number of nodes on the path from u to the root of T.

• levelAncestorT(u,D) = ancestor w of u such that nodeDepth(w) = D.

• lMostT(u) = i, where `i is the leftmost leaf in the subtree of u.

• rMostT(u) = j, where ` j is the rightmost leaf in the subtree of u.

• lcaT(u,v) = lowest common ancestor (LCA) of two nodes u and v.

We omit the subscript “T” if the context is clear.

2.4 Range Maximum Query (RMQ) and Path Maximum Query (PMQ)

Let A[1,n] be an array of n elements. A range maximum query RMQA(a,b) asks to return k ∈ [a,b],

such that A[k] =max{A[i] | i∈ [a,b]}. Path maximum query (PMQ) (or bottleneck edge query [45])

19



is a generalization of RMQ from arrays to trees. Let T be a tree having n nodes, such that each node

u is associated with a score. A path maximum query PMQT(a,b) returns the node k in T, where k

is a node with the highest score among all nodes on the path from node a to node b. Cartesian tree

based solutions exist for both problems. The space and query time are 2n+ o(n) bits and O(1),

respectively [45, 52].

2.5 2D-Range Maximum Query (2D-RMQ)

Let S be a set of m weighted points in a [1,n]× [1,n] grid. A 2D-RMQ with input (a,b,a′,b′) asks to

return the highest weighted point in S within the orthogonal region corresponding to [a,b]× [a′,b′].

Data structures with the following space-time trade-offs are known for this problem.

• O(m) space, O(m logm) preprocessing time and O(log1+ε m) query time [38].

• O(m logε n) space, O(m logm) preprocessing time and O(log logn) query time [36].

2.6 Orthogonal Range Queries in 2-Dimension

Let P be a set of n points in an [1,n]× [1,n] grid. Then,

• An orthogonal range counting query (a,b,c,d) on P returns the cardinality of {(x,y) ∈ P |

x ∈ [a,b],y ∈ [c,d]}

• An orthogonal range emptiness query (a,b,c,d) on P returns “EMPTY” if the cardinality of

the set {(x,y) ∈ P | x ∈ [a,b],y ∈ [c,d]} is zero. Otherwise, it returns “NOT-EMPTY”.

• An orthogonal range predecessor query (a,b,c) on P returns the point in {(x,y) ∈ P | x ∈

[a,b],y≤ c} with the highest y-coordinate value, if one exists.

20



• An orthogonal range successor query (a,b,c) on P returns the point in {(x,y) ∈ P | x ∈

[a,b],y≥ c} with the lowest y-coordinate value, if one exists.

• An orthogonal range selection query (a,b,k) on P returns the point in {(x,y)∈P | x∈ [a,b]}

with the kth lowest y-coordinate value.

By maintaining an O(n) word structure, we can answer orthogonal range counting queries in

O(log/ log logn) time [78], orthogonal range emptiness queries in O(logε n) time [36], orthogonal

range predecessor/successor queries in O(logε n) time [101] and orthogonal range selection queries

in O(logn/ log logn) time [35]. Alternatively, by maintaining an O(n log logn) space structure, we

can answer orthogonal range emptiness and orthogonal range predecessor/successor queries in

O(log logn) time [36, 126].

2.7 Heavy Path and Heavy Path Decomposition

We now define the heavy path decomposition [69, 112] of a tree T having n nodes. First, the

nodes in T are categorized into light and heavy. The root node is light and exactly one child

of every internal node is heavy. Specifically, the child having the largest number of nodes in its

subtree (ties are broken arbitrarily). The first heavy path of T is the path starting at T’s root, and

traversing through every heavy node to a leaf. Each off-path subtree of the first heavy path is

further decomposed recursively. Clearly, a tree with m leaves has m heavy paths. Let u be a node

on a heavy path H, then hp_root(u) is the highest node on H and hp_leaf(u) is the lowest node on

H. Note that hp_root(·) is always light.

Lemma 1. For a tree having n nodes, the path from the root to any leaf traverses at most dlogne

light nodes. Consequently, the sum of the subtree sizes of all light nodes (i.e., the starting node of

a heavy path) put together is at most ndlogne[112].

21



CHAPTER 3: THE HEAVIEST INDUCED ANCESTORS PROBLEM

In this chapter, we describe our framework for solving the heaviest induced ancestors problem

which is defined as follows: let T1 and T2 be two weighted trees, where the weight W(u) of a

node u in either of the two trees is more than the weight of u’s parent. Additionally, the leaves in

both trees are labeled and the labeling of the leaves in T2 is a permutation of those in T1. A node

x ∈ T1 and a node y ∈ T2 are induced, iff their subtrees have at least one common leaf label. A

heaviest induced ancestor query HIA(u1,u2) is: given a node u1 ∈ T1 and a node u2 ∈ T2, output

the pair (u∗1,u
∗
2) of induced nodes with the highest combined weight W(u∗1)+W(u∗2), such that u∗1

is an ancestor of u1 and u∗2 is an ancestor of u2.

We present two data structures for solving problem 1 with improved space-time trade-offs as fol-

lows:

• in O(logn log logn) time using an O(n logn)-word data structure, or

• in O
( log2 n

log logn

)
time using an O(n)-word data structure.

3.1 Our Framework

We assume that both trees T1 and T2 are compacted, i.e., any internal node has at least two children.

This ensures that the number of internal nodes is strictly less than the number of leaves (m). Thus,

n ≤ 4m− 2. We remark that this assumption can be easily removed without affecting the query

time. We maintain the tree topology of T1 and T2 succinctly in O(n) bits with constant time

navigational support (refer to Section 2.3). Define two arrays, Labelk[1,m] for k = 1 and 2, such

that Labelk[ j] is the label associated with the jth leaf node in Tk. The following is a set of m

22



two-dimensional points based on tree labels.

P = {(i, j) | i, j ∈ [1,m] and Label1[i] = Label2[ j]}

We pre-process P into a data structure, to support various range queries described in Section 2.6.

For range counting and selection, we maintain data structures with O(n) space and O(logn/ log logn)

time. For range successor/predecessor and emptiness queries, we have two options: and O(n log logn)

space structure with O(log logn) time, and an O(n) space structure with O(logε n) time. We employ

the first result in our O(n logn) space solution and the second result in our O(n) space solution.

3.1.1 Basic Queries

Lemma 2 (Induced-Check). Given two nodes x,y, where x ∈ T1 and y ∈ T2, we can check if they

are induced or not

• in O(log logn) time using an O(n log logn) space structure, or

• in O(logε n) time using an O(n) space structure.

Proof. The task can be reduced to a range emptiness query, because x and y are induced iff the set

{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [lMost(y), rMost(y)]} is not empty.

Definition 4 (Partner). The partner of a node x ∈ T1 w.r.t a node y ∈ T2, denoted by partner(x/y)

is the lowest ancestor y′ of y, such that x and y′ are induced. Likewise, partner(y/x) is the lowest

ancestor x′ of x, such that x′ and y are induced.

Lemma 3 (Find Partner). Given two nodes x,y, where x ∈T1 and y∈T2, we can find partner(x/y)

as well as partner(y/x)

23



• in O(log logn) time using an O(n log logn) space structure, or

• in O(logε n) time using an O(n) space structure.

Proof. To find partner(x/y), first check if x and y are induced. If yes, then partner(x/y) = y.

Otherwise, find the last leaf node `a ∈ T2 before y in pre-order, such that x and `a are induced (`a

denotes a-th leftmost leaf). Also, find the first leaf node `b ∈ T2 after y in pre-order, such that x

and `b are induced. Both tasks can be reduced to orthogonal range predecessor/successor queries.

(·,a) = argmax
j
{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [1, lMost(y)]}

(·,b) = argmin
j
{(i, j) ∈ P | (i, j) ∈ [lMost(x), rMost(x)]× [rMost(y),m]}

Clearly, an ancestor of y and x are induced iff either `a or `b is in its subtree. Therefore, we report

the lowest node among ua = lca(`a,y) and ub = lca(`a,y) as partner(x/y). The computation of

partner(y/x) is analogous.

3.1.2 Overview

For any two nodes u and v in the same tree T, define Path(u,v,T) as the set of nodes on the path

from u to v. Let root1 be the root of T1 and root2 be the root of T2. Throughout this chapter, (u1,u2)

denotes the input and HIA(u1,u2) = (u∗1,u
∗
2) denotes the output. Clearly, u∗2 = partner(u∗1/u2) and

u∗1 = partner(u∗2/u1). Therefore,

(u∗1,u
∗
2) = argmax

(x,y)
{W (x)+W (y) | y ∈ Path(root2,u2,T2) and x = partner(y/u1)}

24



To evaluate the above equation efficiently, we explore the heavy path decomposition of T2.

Definition 5 (Special Nodes). For each light node w ∈ T2, we identify a set Special(w) of nodes

in T1 (which we call special nodes) as follows: a leaf node `i ∈ T1 is special iff `i and w are

induced. An internal node in T1 is special iff it is the lowest common ancestor of two special

leaves. Additionally, for each node x ∈ Special(w), define its score w.r.t. w as the sum of weights

of x and the node partner(x/hp_leaf(w)) ∈ T2. Formally,

scorew(x) =W (x)+W (partner(x/hp_leaf(w))

Moreover, |Special(w)| ≤ 2size(w)−1 and ∑w is a light node |Special(w)|= O(n logn).

To answer an HIA query (u1,u2), we first identify some nodes in T1 and T2 as follows. Nodes w1 =

root2,w2, . . . ,wk are the light nodes in Path(root2,u2,T2) (in the ascending order of their pre-order

ranks). Nodes t1, t2, . . . , tk are also in Path(root2,u2,T2), such that tk = u2 and th = parent(wh+1)

for h< k. Therefore, Path(root2,u2,T2)=∪k
h=1Path(wh, th,T2). Next, α1,α2, . . . ,αk and β1,β2, . . . ,βk

are nodes in Path(root1,u1,T1), such that for h= 1,2, . . . ,k, αh = partner(th/u1) and βh = partner(wh/u1).

Clearly, there exists an f ∈ [1,k] such that u∗2 ∈ Path(w f , t f ,T2). See Figure 1 for an illustration.

We now present several lemmas, which form the basis of our solution.

Lemma 4. The node u∗1 ∈ Path(α f ,β f ,T1).

Proof. We prove this via proof by contradiction arguments.

• Suppose u∗1 is a proper ancestor of α f . Then, α f are t f induced and W (α f ) +W (t f ) >

W (u∗1)+W (u∗2), a contradiction. Therefore, u∗1 is in the subtree of α f .

• Suppose u∗1 is in the proper subtree of β f . Then, u∗1 and w f are also induced. Therefore,

25



Figure 3.1: We refer to Section 3.1.2 for the description of this figure.

partner(w f /u1) is u∗1 or a node in the subtree of u∗1. This implies, β f = partner(w f /u1) is in

the proper subtree of β f , a contradiction. Therefore, u∗1 is an ancestor of β f .

This completes the proof.

Lemma 5. The node u∗1 ∈ Special(w f )∪{β f }.

Proof. Let z (if exists) be the first node in Special(w f ) on the path from u∗1 to β f . Then,

• if z exists, then u∗1 /∈ Special(w f ) gives a contradiction as follows. The intersection of the

26



following two sets is empty: (i) set of labels of the leaves in the subtree of u∗1, but not in the

subtree of z and (ii) set of labels associated with the leaves in the subtree of w f . This implies,

z and u∗2 are induced (because u∗1 and u∗2 are induced) and W (z)+W (u∗2)>W (u∗1)+W (u∗2),

a contradiction.

• otherwise, if z does not exist, then it is possible that u∗1 /∈ Special(w). However, in this case,

u∗1 = β f (proof follows from similar arguments as above).

In summary, u∗1 ∈ Special(w f )∪{β f }.

Lemma 6. For any x ∈ Path(α f ,β f ,T1)\{α f },

partner(x/u2) = partner(x/hp_leaf(w f )).

Proof. We claim that for any x ∈ Path(α f ,β f ,T1)\{α f }, partner(x/u2) is a proper ancestor of t f .

The proof follows from contradiction as follows. Suppose, there exists an x∈Path(α f ,β f ,T1)\{α f },

such that partner(x/u2) is in the subtree of t f . Then, x and t f are induced. This means, α f =

partner(t f /u1) is a node in the subtree of x, a contradiction.

Since, partner(x/u2) is a proper ancestor of t f , partner(x/u2) = partner(x/r) for any node r in the

subtree of t f . Therefore, by choosing r = hp_leaf(w f ), we obtain Lemma 6.

Corollary 1. For any x ∈
(
Path(α f ,β f ,T1)\{α f }

)
,

W (x)+W (partner(x/u2)) =W (x)+W (partner(x/hp_leaf(w f ))) = scorew f (x)

27



Lemma 7. The node u∗1 ∈ {α f ,β f ,γ f }, where

γ f = argmax
x
{scorew f (x) | x ∈ Special(w f )∩

(
Path(α f ,β f ,T1)\{α f ,β f }

)

Proof. Follows from Lemma 4, Lemma 5, Lemma 6 and Corollary 1.

Lemma 8. Let C = ∪k
h=1{αh,βh,γh}, where

γh = argmax
x
{scorewh(x) | x ∈ Special(wh)∩

(
Path(αh,βh,T1)\{αh,βh}

)

Then,

(u∗1,u
∗
2) = argmax

(x,y)
{W (x)+W (y) | x ∈ C and y = partner(x/u2)}

Proof. Since f is unknown, we invoke Lemma 6 for f = 1,2,3, . . . ,k ≤ logn.

Next, we show how to transform the result in Lemma 8 into an efficient data structure.

3.2 Our Data Structures

We start by defining a crucial component of our solution.

Definition 6 (Induced Subtree). The induced subtree T1(w) of T1 w.r.t. a light node w ∈ T2 is a

tree having exactly |Special(w)| number of nodes, such that

• for each node x ∈ T1(w), there exists a node Mapw(x) ∈ Special(w) and

• for each x′ ∈ Special(w), there exists a node invMapw(x′) ∈ T1(w), such that

28



lcaT1(Mapw(x),Mapw(y)) =Mapw(lcaT1(w)(x,y))

Note that a node x is a leaf in T1(w) iff Mapw(x) is a leaf in T1(w). In the following lemmas, we

present two space-time trade-offs on induced subtrees.

Lemma 9. By maintaining an O(n logn) space structure, we can compute Mapw(·) and invMapw(·)

for any light node w ∈ T2 in time O(1) and O(log logn), respectively.

Proof. Let Lw[1, |Special(w)|] be an array, such that Lw[x] = Mapw(x). For each w, maintain Lw

and a y-fast trie [123] over it. The total space is O(n logn). Now, any Mapw(·) query can be

answered in constant time. Also, for any x′ ∈ Special(w), invMapw(x′) is the number of elements

in Lw that are≤ x′. Therefore, an invMapw(·) can be reduced to a predecessor search and answered

in O(log logn) time.

Lemma 10. By maintaining an O(n) space structure, we can compute Mapw(·) and invMapw(·)

for any light node w ∈ T2 in time O(logn/ log logn).

Proof. Let node p be the rth leaf in T1(w) and q = Mapw(p) be the sth leaf in T1. Then, s

is the x-coordinate of the rth point in {(i, j) ∈ P | (i, j) ∈ [1,m]× [lMost(w), rMost(w)]} in the

ascending order of x-coordinates. Also, r is the number of points in {(i, j) ∈ P | (i, j) ∈ [1,s]×

[lMost(w), rMost(w)]}. Therefore, given p, we can compute r, then s and q in O(logn/ log logn)

time via a range selection query on P . Similarly, given q, we can compute s and then r and p in

O(logn/ log logn) time via a range counting query on P .

Now, if p is an internal node in T1(w), then Mapw(p) is the same as lcaT1(Mapw(`L),Mapw(`R)),

where `L and `R are the first and last leaves in the subtree of p. Similarly, if q is an internal node

29



in T1, then invMapw(q) = lcaT1(w)(invMapw(`A), invMapw(`B)) as follows:

(A, ·) = argmin
i
{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)]× [lMost(w), rMost(w)]}

(B, ·) = argmax
i
{(i, j) ∈ P | (i, j) ∈ [lMost(q), rMost(q)]× [lMost(w), rMost(w)]}

Here, A and B can be computed via range successor/predecessor queries in O(logε n) time. There-

fore, the total time is logε n+ logn/ log logn = O(logn/ log logn) time.

Lemma 11. Given an input (a,b,w), where w is a light node in T2 and, a and b are nodes in

T1(w), we can report the node with the highest scorew(Mapw(·)) over all nodes on the path from a

to b in T1(w) in O(1) time using an O(n) space structure.

Proof. For each T1(w), maintain the Cartesian tree for path maximum query (refer to Section 2.4).

Space for a particular w is |Special(w)|(2+ o(1)) bits and space over all light nodes w in T2 is

O(n logn) bits (from Lemma 1), equivalently O(n) words. For an input (a,b,w), the answer is

PMQT1(w)(a,b).

3.2.1 Our O(n logn) Space Data Structure

We maintain T1 and T2 explicitly, so that the weight of any node in either of the trees can be

accessed in constant time. Moreover, we maintain fully-functional succinct representation of their

topologies (refer to Section 2.3) for supporting various operations in O(1) time. Additionally,

we maintain the structures for answering Induced-Check and Find-Partner queries in O(log logn)

time, data structures for range predecessor/successor queries on P in O(log logn) time (refer to

Section 2.6) and the structures described in Lemma 9 and Lemma 11. Thus, the total space is

30



O(n logn) words.

We now present the algorithm for computing the output (u∗1,u
∗
2) for a given input (u1,u2). The

following are the key steps.

1. Find wh and th for h = 1,2, . . . ,k ≤ logn.

2. Find αh and βh for h = 1,2, . . . ,k ≤ logn.

3. Let α ′h be the first and β ′h be the last special node (w.r.t. wh) on the path from αh (excluding

αh) to βh (excluding βh). Also, let

γh =Mapwh

(
PMQT1(wh)

(
invMapwh

(α ′h), invMapwh
(β ′h)

))

Compute γh for h = 1,2, . . . ,k ≤ logn.

4. Obtain C = ∪k
h=1{αh,βh,γh} and report

(u∗1,u
∗
2) = argmax

(x,y)
{W (x)+W (y) | x ∈ C and y = partner(x/u2)}

The correctness follows immediately from Lemma 8. We now bound the time complexity. Step 1

takes O(k) time and step 2 takes O(k) number of Find-Partner queries with O(log logn) time per

query. The procedure for computing α ′h and β ′h is the following.

Find the child α ′′h of αh on the path from αh to βh. Then α ′h = lcaT1(`ah, `bh), where `ah (resp. `bh)

is the first (resp. last) special leaf in the subtree of α ′′h (w.r.t wh). To compute ah and bh, we rely on

range predecessor/successor queries on P:

(ah, ·) = argmin
i
{(i, j) ∈ P | (i, j) ∈ [lMost(α ′′h ), rMost(α ′′h )]× [lMost(wh), rMost(wh)]}

31



(bh, ·) = argmax
i
{(i, j) ∈ P | (i, j) ∈ [lMost(α ′′h ), rMost(α ′′h )]× [lMost(wh), rMost(wh)]}

Find the rightmost special (w.r.t. wh) leaf `dh before βh and the leftmost special (w.r.t. wh) leaf `gh

after the last leaf in the subtree of βh. For this, we rely on range predecessor/successor queries on

P:

(dh, ·) = argmax
i
{(i, j) ∈ P | (i, j) ∈ [1, lMost(α ′′h )−1]× [lMost(wh), rMost(wh)]}

(gh, ·) = argmin
i
{(i, j) ∈ P | (i, j) ∈ [rMost(α ′′h )+1,m]× [lMost(wh), rMost(wh)]}

Then, β ′h = lcaT1(`dh, `gh) if βh and wh are not induced (i.e., there does not exist a special node

(w.r.t. wh) under βh). Otherwise, β ′h is the lowest node among lcaT1(`dh,βh) and lcaT1(βh, `gh).

The time for a range predecessor/successor query on P is O(log logn). Therefore, computation

of α ′h and β ′h takes O(log logn) time, and an additional O(log logn) for evaluating γh. Therefore,

the total time for step 3 is O(k log logn). Finally, step 4 also takes O(k log logn) time. By putting

everything together, the total time complexity is k log logn = O(logn log logn).

3.2.2 Our Linear Space Data Structure

We obtain our linear space data structure by replacing all super-linear space components in the pre-

vious solution by their space efficient counterparts. Specifically, we use linear space structures for

Induced-Check, Find-Partner, and range predecessor/successor with query time O(logε n). Also,

we use the structure in Lemma 10 instead of the structure in Lemma 9. Thus, the total space is

O(n) words.

The query algorithm remains the same. The time complexity is: O(k) for step 1, O(k logε n) for step

2, O(k logn/ log logn) for step 3 and O(k logε n) for step 4. Thus, total time is k logn/ log logn =

O(log2 n/ log logn).

32



A Note on Construction

We remark that our data structures can be constructed in O(n logO(1) n) time.

3.3 Applications to String Processing

3.3.1 All-Pairs Longest Common Substring Problem

The formal problem definition along with our result are as below:

Definition 7. Given a collection T1,T2, . . . ,Td of d strings, compute LCS(Ti,Tj) for all (i, j) pairs.

Theorem 9. A collection T1,T2, . . . ,Td of d strings of total length N can be preprocessed into

a data structure in Õ(N) space and time, that supports an LCS(Ti,Tj) query for any i, j pair in

Õ
(

min{|Ti|,|Tj|}
|LCS(Ti,Tj)|

)
time.

3.3.1.1 Data Structure

We maintain a generalized suffix tree GST and a generalized prefix tree GPT over the collection.

Additionally, for each i ∈ [1,d], we maintain our HIA data structure over the pair of trees STTi

and PTTi , such that the weight of nodes being their stringDepth. We say that a node u1 in STTi

and a node u2 in PTTi are induced iff there exists a k, such that the leaf (say `a) corresponding

to the suffix Ti[k, |Ti|] is under u1 and the leaf (say `b) corresponding to the (reverse of the) prefix

Ti[1,k−1] is under u2. To align this with the original definition of HIA problem, we assign label k

to both `a and `b. The total space, as well as the preprocessing time, is bounded by Õ(N).

33



3.3.1.2 Query Algorithm

Without loss of generality, we assume |Ti| ≤ |Tj|. First, we present an efficient procedure for

accomplishing the following task: compute λ (Ti,k,Tj), the length of the longest substring of Ti,

which covers a position in {k− 1,k} and also has an occurrence in Tj. We say that a substring

Tj[x,y] covers k iff k ∈ [x,y].

• Find the largest f and the largest r, such that Ti[k,k+ f −1] and Ti[k− r,k−1] occurs in Tj.

Then, find the lowest node u1 in STTj and the lowest node u2 in PTTj , such that Ti[k,k+

f − 1] is a prefix of path(u1) and
←−−−−−−−−−
Ti[k− r,k−1] is a prefix of path(u2). This step can be

implemented in O(logn) time using standard techniques.

• If W (u1) = f and W (u2) = r, simply find (u∗1,u
∗
2) = HIA(u1,u2) and report W (u∗1)+W (u∗2).

Otherwise, find (u′1,u
′
2) = HIA(parent(u1),parent(u2)), the lowest ancestor u′′2 of u2 (resp.,

u′′1 of u1), such that u1 and u′′2 (resp., u′′1 and u2) are induced. Then, report max{ f +

W (u′′2),W (u′′1)+ r,W (u′1)+W (u′2)}.

The time complexity is Õ(1) and the correctness can be easily verified. We can use the above

procedure to check whether |LCS(Ti,Tj)| ≥ τ for any given τ as follows: repeat the above procedure

for all values of k ∈ {τ,2τ,3τ, . . .}. Then report YES if at least one among the answers is greater

than or equal to τ , and NO otherwise. Therefore, via a simple binary search on τ , we can compute

|LCS(Ti,Tj)|. Note that the values of τ chosen are always greater than |LCS(Ti,Tj)|/2. This yields

the desired query time.

34



3.3.2 Dynamic Longest Common Substring Problem

Problem 7 (LCS after k changes). Given two strings T1 and T2 of total length n over an alphabet set

Σ, build a data structure that supports the following query: given a set S of k (position,character)

pairs, where

S = {(pi,αi) | pi ∈ [1, |T1|], i ∈ [1,k] and αi ∈ Σ}

report (the length of) LCS(T ∗1 ,T2), where T ∗1 is the string obtained from T1 by replacing its pi-th

character by αi for each i ∈ [1,k].

We achieve the following result.

Theorem 10. There exist data structures with the following space-time trade-offs for the LCS after

k changes problem on two strings of total length n:

1. O(n logn) word and O(k · logn log logn) query time, and

2. O(n) word and O
(

k ·
log2 n

log logn

)
query time.

Let p1 < p2 < · · · < pk and φ = ∪k
i=1{pi− 1, pi}. Our approach is to find the longest common

substring of T ∗1 and T2 (i) that does not cover any position in φ and (ii) covers a position in φ ,

and then report the longest among them as LCS(T ∗1 ,T2). We handle these cases separately, and the

following convention will be used: any subarray or substring over a range [a,b] is empty if a > b.

Handling Case 1

Let ψ = {[1, p1− 2], [p1 + 1, p2− 2], [p2 + 1, p3− 2], . . . , [pk + 1,n]}. Clearly, the answer we are

looking for is max{|LCS(T ∗1 [i, j],T2)| | [i, j]∈ψ}. Since LCS(T ∗1 [i, j],T2) = LCS(T1[i, j],T2) for all

35



[i, j] ∈ ψ , we can solve this case in O(k logn) time using the structure below.

Lemma 12. The strings T1 and T2 can be preprocessed into an O(n) structure, where |T1|+ |T2|=

n, that supports the following query in O(logn) time: given a range [x,y], report (the length of)

LCS(T1[x,y],T2).

Proof. Maintain an array L, where L[i] = |LCP(T1[i, |T1|],T2)| and range maximum query (RMQ)

data structure over it. To answer a query [x,y], first find the rightmost position z, such that z+

L[z]− 1 < y. This is possible in O(logn) time via a binary search since i+L[i]− 1 is monotonic.

Then, compute |LCS(T1[x,z]),T2)|= RMQL(x,z) and |LCS(T1[z+1,y]),T2)|= y− (z+1)+1, and

report the largest among them.

Handling Case 2

We maintain a generalized suffix tree and a generalized prefix tree of T1 and T2. Also, maintain

our HIA data structure over the pair of trees STT2 and PTT2 as in Section 3.3.1.1. Moreover, we

can compute (ui
1,u

i
2, fi,ri) for i = 1,2, . . . ,k by processing the input set (of k changes) in O(k logn)

time using standard techniques, where

1. fi is the length of the longest substring of T ∗1 that starts at position pi

2. ri is the length of the longest substring of T ∗1 that ends at pi−1.

3. ui
1 is the lowest node in STT2 , s.t. T1[pi, pi + fi−1] is a prefix of path(ui

1).

4. ui
2 is the lowest node in PTT2 , s.t.

←−−−−−−−−−−−
T1[pi− ri, pi−1] is a prefix of path(ui

2).

36



Finally, for each pi, we compute the (length of the) longest common substring of T ∗1 and T2 cov-

ering a position in {pi− 1, pi} using an HIA query as in Section 3.3.1.2, and report the largest

among.

In summary, the total space is dominated by the space of our HIA structure and the complexity

of query time per change is O(logn) plus the time for an HIA query. This completes the proof of

Theorem 10.

3.4 Conclusion

In this chapter, we revisited the heaviest induced ancestors problem which is initially introduced by

Gagie et al. [57]. We presented two new space-time trade-offs that improve the space, query time,

or both of the existing solutions by roughly a logarithmic factor. We also showed that our solution

can be deployed further to solve multiple string matching problems such as All-Pairs Longest

Common Substring and Dynamic Longest Common Substring Problems. In addition, our data

structure for the heaviest induced ancestors problem can be used to compute the Longest Common

Substring of LZ77 Compressed Strings and matching statistics on repetitive texts [64].

37



CHAPTER 4: THE RANGE LONGEST COMMON PREFIX PROBLEM

We briefly sketch the framework by Amir et al. [20] in Section 4.1. Section 4.2 and Section 4.3 are

dedicated for the details of our solution.

4.1 Amir et al.’s Framework

We start with some definitions.

Definition 8 (Bridges). Let i and j be two distinct positions in the text T with i < j, and let

h = lcp(i, j) and h > 0. Then, we call the tuple (i, j,h) a bridge. Moreover, we call h its height, i

its left leg and j its right leg, and LCP(T[i,n],T[ j,n]) its label.

Let Ball be the set of all such bridges. Then clearly,

rlcp(α,β ) = max({h | (i, j,h) ∈ Ball and i, j ∈ [α,β ]}∪{0})

Therefore, by mapping each bridge (i, j,h) ∈ Ball to a 2D point (i, j) with weight h, the problem

can be reduced to a 2D-RMQ problem (refer to Section 2.5). This yields an O(|Ball| logε n) space

data structure with query time O(log logn). Unfortunately, this is not a space efficient approach

as the size of Ball is Θ(n2) in the worst case. To circumvent this, Amir et al. [20] introduced the

concept of optimal bridges.

Definition 9 (Optimal Bridges). A bridge (i, j,h) ∈ Ball is optimal if there exists no other bridge

(i′, j′,h′), such that i′, j′ ∈ [i, j] and h′ ≥ h.

38



Let Bopt be the set of all optimal bridges. Then, it is easy to observe that

rlcp(α,β ) = max{h | (i, j,h) ∈ Bopt and i, j ∈ [α,β ]}.

Thus, to answer an rlcp query, it is sufficient to examine the bridges in Bopt , instead of all the

bridges in Ball . The crux of Amir et al.’s [20] data structure is the following lemma.

Lemma 13 ([20]). The size of Bopt is O(n logn).

Therefore, by applying the above reduction (from Range-LCP to 2D-RMQ) on the bridges in Bopt ,

they got an O(|Bopt | logε n) = O(n log1+ε n) space data structure with query time O(log logn).

Additionally, they showed that there exist cases where the the size of Bopt is Ω(n logn). For

example, when T is a Fibonacci word (see Section 4 in [20] for its definition). This means that the

bound on the number of optimal bridges is tight.

4.2 Our Framework

We first construct a data structure for solving the special case of queries: rlcp(α,β ) = 0. This

means all symbols in T[α,β ] are distinct. To solve queries for such ranges, we construct an integer

array P[1,n] so that P[i] = max({ j | j < i and T [ j] = T [i]}∪{−∞}). That is, P[i] is the position

of the predecessor of T [i]. Then it holds

rlcp(α,β ) = 0 ⇐⇒ max{P[i]|i ∈ [α,β ]}< α.

Therefore we can solve the query in constant time using a linear space data structure for range

maximum query on P. Below we focus on solving queries for the case rlcp(α,β )> 0.

We present a replacement for optimal bridges, called special bridges. Special bridges are defined

39



from the standpoint of Heavy Path Decomposition.

Definition 10 (Special Bridges). Let ui,u j in ST be the children of lca(`ISA[i], `ISA[ j]) on the path

to `ISA[i], `ISA[ j], respectively. A bridge (i, j,h) ∈ Ball is special if it satisfies at least one of two

following conditions.

1. ui is a light node and j = min{x | (i,x,h) ∈ Ball}

2. u j is a light node and i = max{x | (x, j,h) ∈ Ball}

Let Bspe be the set of all special bridges. If a bridge (i, j,h) is optimal, i = max{x | (x, j,h) ∈

Ball} and j = min{x | (i,x,h) ∈ Ball}. Moreover, ui 6= u j because h = |LCP(T[i,n],T[ j,n])| =

|path(lca(`ISA[i], `ISA[ j]))|. Because at least one of ui,u j is a light node, (i, j,h) is a special bridge.

Thus, Bopt ⊆ Bspe, therefore it holds

rlcp(α,β ) = max{h | (i, j,h) ∈ Bspe and i, j ∈ [α,β ]}.

From Lemma 14, |Bspe| = Θ(|Bopt |), the same space-time trade-off as in Amir et al. [20] can be

obtained by employing special bridges instead of optimal bridges. However, the main advantage

over optimal bridges is that special bridges can be encoded efficiently, in O(1)-bits per bridge.

Lemma 14. The size of Bspe is O(n logn).

Proof. From Lemma 1, the number of light ancestors for any leaf is at most log2 n. Moreover,

for each pair consisting of a leaf and its light ancestor, there exist at most two special bridges.

Therefore, the number of special bridges is bounded by O(n logn).

40



We now present an overview of our solution.

4.2.1 An Overview of Our Data Structure

We start by defining two queries, which are weaker than Range-LCP.

Definition 11. For a parameter ∆ = Θ(logn), a query E∆(α,β ) asks to return an estimate τ of

rlcp(α,β )> 0, such that

τ ≤ rlcp(α,β )< τ +∆

Definition 12. A query Q(α,β ,h) asks to return YES if there exists special bridge (i, j,h), such

that i, j ∈ [α,β ] and h > 0. Otherwise, Q(α,β ,h) returns NO.

Definition 13. A query Q(α,β ,h) asks to return YES if there exists special bridge (i, j,h), such

that i, j ∈ [α,β ] and h > 0. Otherwise, Q(α,β ,h) returns NO.

The following two are the main components of our data structure.

1. A linear space structure for E∆(·, ·) queries in O(log1+ε n) time.

2. A linear space structure for Q(·, ·, ·) queries in O(logε n) time.

Our algorithm for computing rlcp(α,β ) is straightforward. First we check if rlcp(α,β ) = 0

by using the range maximum data structure for P. If it is, we are done. Otherwise we obtain

τ = E∆(α,β ). Then, for h = τ,τ +1,τ +2, ...,τ +∆−1, compute Q(α,β ,h). Then report

rlcp(α,β ) = max{h | h ∈ [τ,τ +∆−1] and Q(α,β ,h) = YES }

The time complexity is O(log1+ε n+∆ · logε n) = O(log1+ε n) and the space complexity is O(n),

as claimed. In what follows, we present the details of these two components of our data structure.

41



4.3 Details of the Components

We maintain the suffix tree ST of T and the linear space data structure for various 2D range

successor/predecessor queries (in O(logε n) time [101]) over the following set of n points.

P = {(i,SA[i]) | i ∈ [1,n]}

We rely on this structure for computing interval-LCP and left-leg/right-leg queries (to be defined

next).

Lemma 15. We can answer an interval-LCP query ilcp(p,α,β ) in time O(logε n).

Proof. Find the leaf `ISA[p] first. Then find the rightmost leaf `x before `ISA[p] and the leftmost leaf

`y after `ISA[p], such that SA[x],SA[y] ∈ [α,β ]. We can rely on the following queries for this:

x = ORQ([−∞, p−1], [α,β ]) and y = ORQ([p+1,+∞], [α,β ])

Clearly, ilcp(p,α,β ) is given by max{lcp(p,x), lcp(p,y)}. This completes the proof.

Definition 14. For i, j ∈ Z, i, j ≥ 0 and h ∈ Z,h > 0, if there exists a special bridge (i, ·,h) ∈ Bspe,

we define

rightLeg(i,h) = min{x | (i,x,h) ∈ Bspe},

otherwise

rightLeg(i,h) = +∞.

42



Similarly, if there exists a special bridge (·, j,h) ∈ Bspe,

leftLeg( j,h) = max{x | (x, j,h) ∈ Bspe},

otherwise

leftLeg( j,h) =−∞.

Note that special bridges (i, ·,h) ∈ Bspe and (·, j,h) ∈ Bspe may not be unique and leftLeg, rightLeg

represent the closest left leg and the closest right leg, respectively.

Lemma 16. By maintaining a linear space data structure, we can answer rightLeg(k,h) and leftLeg(k,h)

queries in O(logε n) time.

Proof. Find the ancestor u (if it exists) of `ISA[k], such that |path(u)| = h via a weighted level

ancestor query (see Section 2.1). If u does not exist, then rightLeg(k,h) = +∞ and leftLeg(k,h) =

−∞. Otherwise, let u′ be the child of u, such that `ISA[k] is under u′. Also, let [x,y] and [x′,y′] be

the range of leaves under u and u′, respectively. Then compute

p = min(ORQ([x,y]\[x′,y′], [k+1,+∞]),+∞),

q = max(ORQ([x,y]\[x′,y′], [−∞,k−1]),−∞).

If p =+∞, rightLeg(k,h) = +∞. Otherwise, let [xp,yp] be the range of leaves under the child of u

that is over `ISA[p]. If u′ is a heavy node and ORQ([x,y]\[xp,yp], [−∞, p−1]) 6= k, rightLeg(k,h) =

+∞. Otherwise, rightLeg(k,h) = p. Similarly, If q = −∞, leftLeg(k,h) = −∞. Otherwise, let

[xq,yq] be the range of leaves under the child of u that is over `ISA[q]. If u′ is a heavy node and

ORQ([x,y]\[xq,yq], [q+1,+∞]) 6= k, leftLeg(k,h) =−∞. Otherwise, leftLeg(k,h) = q. This com-

pletes the proof.

43



The structures described in Lemma 15 and Lemma 16 are the building blocks of our main compo-

nents, to be described next. The following observation is exploited in both.

Lemma 17. Suppose that (i, j,h) ∈ Bspe. Then, ∀k ∈ [1,h− 1], there exists at least one of (i+

k, ·,h−k)∈ Bspe such that rightLeg(i+k,h−k)∈ (i+k, j+k] and (·, j+k,h−k)∈ Bspe such that

leftLeg( j+ k,h− k) ∈ [i+ k, j+ k).

Proof. Given lcp(i, j) = h, we have lcp(i+ k, j+ k) = (h− k). Let u′i+k,u
′
j+k be the child of u =

lca(`ISA[i+k], `ISA[ j+k]), such that `ISA[i+k], `ISA[i+k] is under u′i+k,u
′
j+k, respectively. Then, at least

one of u′i+k and u′j+k is a light node. From the definition of a special bridge, there exists at least one

of (i+ k, ·,h− k) ∈ Bspe and (·, j+ k,h− k) ∈ Bspe. From lcp(i+ k, j+ k) = (h− k), if there exists

(i+k, ·,h−k)∈Bspe, rightLeg(i+k,h−k)≤ j+k. Similarly, if there exists (·, j+k,h−k)∈Bspe,

leftLeg( j+ k,h− k)≥ i+ k. This completes the proof.

4.3.1 The Structure for Estimating Range-LCP

Let Bt denotes the set of all special bridges with height t. Also, for f = 0,1,2, . . . ,(∆−1), where

∆ = Θ(logn), define C f to be the set of all special bridges with its height divided by ∆ leaving

remainder f . Specifically,

C f =

⌊
n− f

∆

⌋⋃
k=0

B( f+k∆)

Let Cπ : π ∈ [0,∆−1] be the smallest set among all C f ’s. Its size can be bounded by O((n logn)/∆)

(by pigeonhole principle), which is O(n). Also |B1| can be bounded by O(n). We map each special

44



bridge (i, j,h) ∈ Cπ ∪B1 into a 2D point (i, j) with weight h and maintain the linear-space data

structure over them for answering 2D-RMQ. We use the linear-space structure by Chazelle [38].

The space is |Cπ ∪B1|= O(n) words and the query time is O(log1+ε n).

Our Algorithm

Let (α∗,β ∗,h∗) be the tallest special bridge, such that both α∗,β ∗ ∈ [α,β ].

Two possible scenarios are

1. β ∗ ∈ (α,β −∆]: We query on the 2D-RMQ structure over Cπ ∪B1 and find the tallest bridge

(i′, j′,h′) ∈ Cπ ∪B1, such that i′, j′ ∈ [α,β ] and h′ > 0. We claim that h∗ ∈ [h′,h′+∆). Proof

follows from Lemma 17.

2. β ∗ ∈ (β −∆,β ]: We can rely on Interval-LCP queries. Specifically, h∗ = max{ilcp(p,α,β ) |

p ∈ (β −∆,β ]}.

Because we do not know which case occurs, we try both. Then we have

E∆(α,β ) = max
(
{ilcp(p,α,β ) | p ∈ (β −∆,β ]}∪{h′}

)
.

Note that if h∗ > 0, E∆(α,β ) always returns a positive value.

The time complexity is proportional to that of one 2D-RMQ and at most ∆ number of Interval-LCP

queries. That is, O(log1+ε n+∆ · logε n) = O(log1+ε n) time.

45



4.3.2 The Structure for Handling Q(α,β ,h) Queries

Recall that Bt is the set of all special bridges with height t. Let L1
t represent the sorted list of

left-legs of all bridges in Bt in the form of a y-fast trie for fast predecessor/successor search. Also,

let R1
t be another array, such that R1

t [k] = rightLeg(L1
t [k], t). Let R2

t represent the sorted list of

right-legs of all bridges in Bt in the form of a y-fast trie for fast predecessor search. Also, let L2
t be

another array, such that L2
t [k] = leftLeg(R2

t [k], t).

Also, let

Sπ = {1,π,π +∆,π +2∆,π +3∆, ...,(π + b(n−π)/∆c∆)}.

For each t ∈ [1,n], we maintain a separate structure that can answer queries of the type Q(·, ·, t).

Based on whether h in the query Q(α,β ,h) is in Sπ or not, we have two cases.

Case 1: h ∈ Sπ

To handle this case, we maintain L1
t and the succinct data structure for range minimum query

(RMQ) on R1
t for all t ∈ Sπ . The total space is |Cπ ∪B1| = O(n) words. Therefore, any query

Q(α,β ,h) with h ∈ Sπ can be answered using the following steps.

1. Find the smallest k, such that L1
h[k]≥ α via a successor query.

2. Then, find the index k′ corresponding to the smallest element in R1
h[k, |R1

h|] using a range

minimum query. Note that R1
h is not stored.

3. Then, report “YES" if rightLeg(L1
h[k
′],h)≤ β , and report “NO" otherwise.

The time complexity is (log logn+ logε n) = O(logε n). The correctness can be easily verified.

46



Case 2: h /∈ Sπ

We first show how to design a structure for a predefined h. Let q= pred(h,Sπ)= π+∆ ·b(h−π)/∆c

if h ≥ π , otherwise q = 1. Also, let z = (h− q). Note that for each special bridge (i, j,h), there

exists at least one of special bridges (i+ z, ·,h− z) = (i+ z, ·,q) and (·, j+ z,h− z) = (·, j+ z,q).

Now, define arrays R1′
h and L2′

h of length |Bq|, such that for any k∈ [1, |Bq|], R1′
h [k] = rightLeg((L1

q[k]−

z),h) and L2′
h [k] = leftLeg((R2

q[k]− z),h). Our data structures are a succinct range minimum query

(RMQ) structure over R1′
h and a succinct range maximum query structure over L2′

h . We now show

how to answer a Q(α,β ,h) query using R1′
h ,L

2′
h , L1

q and R2
q. The steps are as follows.

1. Find the smallest k, such that (L1
q[k]− z)≥ α . We perform a successor query on L1

q for this.

2. Then, find the index k′ corresponding to the smallest element in R1′
h [k, |R1

q|] using a range

minimum query.

3. Then, report “YES" if rightLeg(L1
q[k
′]− z,h)≤ β , otherwise continue to the next step.

4. Then, find the largest l, such that (R2
q[l]− z)≤ β . We perform a predecessor query on R2

q for

this.

5. Then, find the index l′ corresponding to the largest element in L2′
h [1, l] using a range maxi-

mum query.

6. Then, report “YES" if leftLeg(R2
q[l
′]− z,h)≥ α , and report “NO" otherwise.

The time complexity is (log logn+ logε n) = O(logε n). The space complexity for a fixed h is

|Bq|(4 + o(1)) bits. Therefore, by maintaining the above structure for all values of h, we can

47



answer Q(α,β ,h) for any α,β and h in O(logε n) time. Total space (in bits) is:

(4+o(1))
n

∑
h=1
|Bπ+∆·b(h−π)/∆c|= (4+o(1))∆ ∑

q∈Sπ

|Bq|= O(n logn).

4.4 Conclusion

In this chapter, we revisited the Range Longest Common Prefix Problem which is initially in-

troduced by Amir et al. [20]. They proposed an O(n log1+ε n) space structure with query time

O(log logn), and a linear space (i.e., O(n) words) structure with query time O(δ log logn), where

δ = β −α +1 is the length of the input range and ε > 0 is an arbitrarily small constant. Our data

structure can answer the Range LCP queries in poly-logarithmic time using a linear space data.

We showed, any Range-LCP query on the text T[1,n] can be answered in O(log1+ε n) time using

a linear space data structure. We remark that our data structure can be constructed in O(n logn)

time.

48



CHAPTER 5: THE RANGE SHORTEST UNIQUE SUBSTRING

PROBLEM

Given string T as input, the Shortest Unique Substring problem is to find a shortest substring of T

that does not occur elsewhere in T. In this chapter, we introduce the range variant of this problem,

which we call the Range Shortest Unique Substring problem. The task is to construct a data struc-

ture over T answering the following type of online queries efficiently. Given a range [α,β ], return

a shortest substring T[i, j] of T with exactly one occurrence in [α,β ]. In this chapter, we present

our framework for solving the Range Shortest Unique Substring Problem. In Section 5.1, we pro-

pose our O(n logn)-word data structure with O(logw n) query time, where w = Ω(logn) is the

word size. Additionally, in Section 5.2, we present anO(n)-word data structure withO(
√

n logε n)

query time, where ε > 0 is an arbitrarily small constant.

5.1 An O(n logn)-Word Data Structure

Our construction is based on ingredients such as the suffix tree [121], heavy-light decomposi-

tion [112], and a geometric data structure for rectangle stabbing [37]. Let us start with some

definitions.

Definition 15. For a position k ∈ [1,n] and h≥ 1, we define Prev(k,h) and Next(k,h) as follows:

Prev(k,h) = max
j
{{ j < k | T[k,k+h−1] = T[ j, j+h−1]}∪{−∞}}

Next(k,h) = min
j
{{ j > k | T[k,k+h−1] = T[ j, j+h−1]}∪{+∞}}.

Intuitively, let x and y be the occurrences of T[k,k+h−1] right before and right after the position k,

49



respectively. Then, Prev(k,h)= x and Next(k,h)= y. If x (resp., y) does not exist, then Prev(k,h)=

−∞ (resp., Next(k,h) = +∞).

Definition 16. Let k ∈ [a,b]. We define λ (a,b,k) as follows:

λ (a,b,k) = min{h | Prev(k,h)< a and Next(k,h)> b}.

Intuitively, λ (a,b,k) denotes the length of the shortest substring that starts at position k with exactly

one occurrence in [a,b].

Definition 17. For a position k ∈ [1,n], we define Ck as follows:

Ck = {h > 1 | (Next(k,h),Prev(k,h)) 6= (Next(k,h−1),Prev(k,h−1))}∪{1}

Example 2. (Running Example for Definition 17) Let T = c

1

a

2

a

3

b

4

c

5

a

6

d

7

d

8

a

9

a

10

c

11

a

12

d

13

d

14

a

15

a

16

a

17

a

18

b

19

a

20

c

21

and k =

10. We have that (Next(10,1),Prev(10,1)) = (12,9), (Next(10,2),Prev(10,2)) = (20,−∞), and

(Next(10,3),Prev(10,3)) = (+∞,−∞). Thus, C10 = {2,3}∪{1}= {1,2,3}.

Intuitively, Ck stores the set of candidate lengths for shortest unique substrings starting at position

k. We make the following observation.

Observation 1. λ (a,b,k) ∈Ck, for any 1≤ a≤ b≤ n.

Example 3. (Running Example for Observation 1) Let T= c

1

a

2

a

3

b

4

c

5

a

6

d

7

d

8

a

9

a

10

c

11

a

12

d

13

d

14

a

15

a

16

a

17

a

18

b

19

a

20

c

21

and k =

10. We have that C10 = {1,2,3}. For a = 5 and b = 16, λ (5,16,10) = 2, denoting substring ac.

For a = 5 and b = 20, λ (5,20,10) = 3, denoting substring aca.

The following combinatorial lemma is crucial for efficiency.

50



T :
1

Problem Reduction

Figure 5.1: Illustration of the problem reduction: (k,h) is the output of the rSUS problem with
query range [α,β ], where h = λ (α,β ,k) ∈Ck. Rk,h is the lowest weighted rectangle inR contain-
ing the point (α,β ).

Lemma 18. ∑k |Ck|=O(n logn).

Proof. The proof of Lemma 18 is deferred to Section 5.1.

We are now ready to present our construction. By Observation 1, for a given query range [α,β ],

the answer (p, `) we are looking for is the pair (k,h) with the minimum h under the following

conditions: k ∈ [α,β ], h ∈Ck, Prev(k,h) < α and Next(k,h) > β . Equivalently, (p, `) is the pair

(k,h) with the minimum h, such that h ∈Ck, α ∈ (Prev(k,h),k], and β ∈ [k,Next(k,h)). We map

51



each h ∈Ck into a weighted rectangle Rk,h with weight h which is defined as follows:

Rk,h = [Prev(k,h)+1,k]× [k,Next(k,h)−1].

Let R be the set of all such rectangles, then the lowest weighted rectangle in R stabbed by the

point (α,β ) is Rp,`. In short, an rSUS query on T[1,n] with an input range [α,β ] can be reduced

to an equivalent top-1 rectangle stabbing query on a set R of rectangles with input point (α,β ).

In the 2-d Top-1 Rectangle Stabbing problem, we preprocess a set of weighted rectangles in 2-d so

that given a query point q the task is to report the largest (or lowest) weighted rectangles containing

q [37]. Similarly, here, the task is to report the lowest weighted rectangle inR containing the point

(α,β ) (see Figure 5.1 for an illustration). By Lemma 18, we have that |R|=O(n logn). Therefore,

by employing the optimal data structure for top-1 rectangle stabbing presented by Chan et al. [37],

which takes O(|R|)-word space supporting O(logw |R|)-time queries, we arrive at the space-time

trade-off of Theorem 4. This completes our construction.

Proof of Lemma 18

Let lcp(i, j) denote the length of the longest common prefix of the suffixes of T starting at positions

i and j in T. Also, let S denote the set of all (x,y) pairs, such that 1 ≤ x < y ≤ n and lcp(x,y) >

lcp(x,z), for all z ∈ [x+1,y−1]. The proof can be broken down into Lemma 19 and Lemma 20.

Lemma 19. ∑k |Ck|=O(|S|).

Proof. Let us fix a position k. Let

C′k = {h > 1 | Prev(k,h) 6= Prev(k,h−1)}

C′′k = {h > 1 | Next(k,h) 6= Next(k,h−1)}.

52



Clearly we have that Ck =C′k∪C′′k ∪{1}.

The following statements can be deduced by a simple contradiction argument:

1. Let i = Prev(k,h) 6=−∞, where h ∈C′k, then i = Prev(k, lcp(i,k))

2. Let j = Next(k,h) 6= ∞, where h ∈C′′k , then j = Next(k, lcp(k, j)).

Figure 5.2 illustrates the proof for the first statement. The second one can be proved in a similar

fashion.

1
T :

Figure 5.2: Let h ∈ C′k and i = Prev(k,h). By contradiction, assume that there exists j ∈ (i,k)
such that j = Prev(k, lcp(i,k)). Since h ≤ lcp(i,k), T[ j, j + h− 1] = T[k,k + h− 1]. This is a
contradiction with i = Prev(k,h). Thus, i = Prev(k, lcp(i,k)).

Clearly, |C′k| is proportional to the number of (i,k) pairs such that lcp(i,k) 6= 0 and i=Prev(k, lcp(i,k)).

Similarly, |C′′k | is proportional to the number of (k, j) pairs such that lcp(k, j) 6= 0 and j =Next(k, lcp(k, j)).

Therefore, ∑k |Ck| is proportional to the number of (x,y) pairs, such that lcp(x,y) 6= 0 and lcp(x,y)>

lcp(x,z), for all z ∈ [x+1,y−1]. This completes the proof of Lemma 19.

Lemma 20. |S|=O(n logn).

Proof. Consider the suffix tree data structure of string T[1,n], which is a compact trie of the n

suffixes of T appended with a letter $ /∈ Σ [121]. This suffix tree consists of n+1 leaves (one for

each suffix of T) and at most n internal nodes. The edges are labeled with substrings of T. Let u be

the lowest common ancestor of the leaves corresponding to the strings T[x,n]$ and T[y,n]$. Then,

53



the concatenation of the edge labels on the path from the root to u is exactly the longest common

prefix of T[x,n]$ and T[y,n]$. For any node u, we denote by size(u) the total number of leaf nodes

of the subtree rooted at u.

We decompose the nodes in the suffix tree into light and heavy nodes. The root node is light and

for any internal node, exactly one child is heavy. Specifically, the heavy child is the one having

the largest number of leaves in its subtree (ties are broken arbitrarily). All other children are light.

This tree decomposition is known as heavy-light decomposition. We have the following critical

observation. Any path from the root to a leaf node contains many nodes, however, the number of

light nodes is at most logn [112, 69]. Also, corresponding to the n+ 1 leaves of the suffix tree,

there are n+1 paths from the root to the leaves. Therefore, the sum of subtree sizes over all light

nodes is O(n logn).

We are now ready to complete the proof. Let Su ⊆ S denote the set of pairs (x,y), such that the

lowest common ancestor of the leaves corresponding to suffixes T[x,n]$ and T[y,n]$ is u. Clearly,

the paths from the root to the leaves corresponding to suffixes T[x,n]$ and T[y,n]$ pass from two

distinct children of node u and then at least one of the two must be a light node. There are two

cases. In the first case, both leaves are under the light children. In the second case, one leaf is under

a light child and the other is under the heavy child. In both cases, we have at least one leaf under

a light node. If we fix the leaf which is under the light node, we can enumerate the total number

of pairs based on the subtree size of the light nodes. Therefore, |Su| is at most twice the sum of

size(·) over all light children of u. Since |S|= ∑u |Su|, we can bound |S| by the sum of size(·) over

all light nodes in the suffix tree, which is O(n logn). This completes the proof of Lemma 20.

54



5.2 An O(n)-Word Data Structure

This section is dedicated to proving Theorem 5. For simplicity, we focus only on the computation

of the length ` of the output (p, `).

Let SA be the suffix array of string T of length n , which is a permutation of {1, · · · ,n}, such

that SA[i] = j if T[ j,n] is the ith lexicographically smallest suffix of T [92]. Further let SA−1 be

the inverse suffix array of string T of length n, which is a permutation of {1, · · · ,n}, such that

SA−1[SA[i]] = i. Moreover, SA of T can be constructed in linear time and space [46, 79].

We observe that an O(β −α + 1)-time solution is straightforward with the aid of the suffix tree

of T as follows. First, identify those leaves corresponding to the suffixes starting within [α,β ]

using the inverse suffix array of T and mark them. Then, for each marked leaf, identify its lowest

ancestor node (and double mark it), such that a marked neighbor is also under it. This can be done

via at most twoO(1)-time Lowest Common Ancestor (LCA) queries over the suffix tree of T using

O(n) additional space [29]. Then, find the minimum over the string-depth of all double-marked

nodes, add 1 to it, and report it as the length `. The correctness is readily verified.

We employ the above procedure when β −α + 1 < 3∆, where ∆ is a parameter to be set later.

We now consider the case when β −α + 1 ≥ 3∆. Note that ` is the smallest element in S∗ =

{λ (α,β ,k) | k ∈ [α,β ]}. Let α ′ be the smallest number after α and β ′ be the largest number

before β such that α ′ and β ′ are multiples of ∆. Then, S∗ can be written as the union of S′ =

{λ (α,β ,k) | k ∈ [α,α ′−1]∪ [β ′+1,β ]} and S′′ = {λ (α,β ,k) | k ∈ [α ′,β ′]}. Furthermore, S′′ can

be written as S′′1 ∪S′′2 ∪S′′3 , where

• S′′1 = {h = λ (α,β ,k) | k ∈ [α ′,β ′],Prev(k,h) ∈ [α ′−∆,α−1]}

• S′′2 = {h = λ (α,β ,k) | k ∈ [α ′,β ′],Next(k,h) ∈ [β +1,β ′+∆]}

55



• S′′3 = {h = λ (α,β ,k) | k ∈ [α ′,β ′],Prev(k,h) ∈ (−∞,α ′ − ∆− 1],Next(k,h) ∈ [β ′ + ∆ +

1,∞)}.

Our algorithm is based on a solution to the Orthogonal Range Predecessor/Successor in 2-d prob-

lem. A set P of n points in an [1,n]× [1,n] grid can be preprocessed into a linear-space data

structure, such that the following queries can be answered in O(logε n) time per query [101]:

• ORQ([x′,x′′], [−∞,y′′]) = argmax j{(i, j) ∈ P ∩ [x′,x′′]× [−∞,y′′]}

• ORQ([−∞,x′′], [y′,y′′]) = argmaxi{(i, j) ∈ P ∩ [−∞,x′′]× [y′,y′′]}

• ORQ([x′,x′′], [y′,+∞]) = argmin j{(i, j) ∈ P ∩ [x′,x′′]× [y′,+∞]}

• ORQ([x′,+∞], [y′,y′′]) = argmini{(i, j) ∈ P ∩ [x′,+∞]× [y′,y′′]}.

We next show how to maintain additional structures, so that the smallest element in each of the

above sets can be efficiently computed and thus the smallest among them can be reported as `.

• Computing the Smallest Element in S′: For each k ∈ [α,α ′−1]∪ [β ′+1,β ], we compute

λ (α,β ,k) and report the smallest among them. We handle each λ (α,β ,k) query in time

O(logε n) as follows: first find the leaf corresponding to the string position k in the suffix

tree of T, then the last (resp., first) leaf on its left (resp., right) side, such that the string

position x (resp., y) corresponding to it is in [α,β ], and report 1+max{lcp(k,x), lcp(k,y)}.

To enable the computation of x (resp., y) efficiently, we preprocess the suffix array into an

O(n)-word data structure that can answer orthogonal range predecessor (resp., successor)

queries in O(logε n) time [101].

• Computing the Smallest Element in S′′1: For each r ∈ [α ′−∆,α − 1], we compute the

smallest element in {h = λ (α,β ,k) | k ∈ [α ′,β ′],Prev(k,h) = r} and report the smallest

56



among them. The procedure is the following: find the leaf corresponding to the string po-

sition r in the suffix tree of T and the last (resp., first) leaf on its left (resp., right) side,

such that its corresponding string position x (resp., y) is in [α ′,β ′] (via orthogonal range

successor/predecessor queries as earlier). Then, t = max{lcp(r,x), lcp(r,y)} is the length of

the longest prefix of T[r,n] with an occurrence d in [α ′,β ′]. However, we need to verify if

occurrence d is unique and its Prev(d, t) = r. For this, find the two leftmost occurrences

of T[r,r + t − 1] after r, denoted by x′ and y′ (x′ < y′), via two orthogonal range succes-

sor queries. If y′ does not exist, set y′ = +∞. Then report λ (α,β ,d) if α ′ ≤ x′ ≤ β ′ < y′.

Otherwise, report +∞.

• Computing the Smallest Element in S′′2: For each r ∈ [β + 1,β ′+ ∆], we compute the

smallest element in {h = λ (α,β ,k) | k ∈ [α ′,β ′],Next(k,h) = r} and report the smallest

among them. The procedure is analogous to that of S′′1 ; i.e., find the length t of the longest

prefix of T[r,n] with an occurrence d in [α ′,β ′]. Then, find the two rightmost occurrences

of T[r,r+ t−1] before r, denoted by x′ and y′ (x′ < y′), via two orthogonal range successor

queries. If x′ does not exist, set x′ = +∞. Then report λ (α,β ,d) if x′ < α ′ ≤ y′ ≤ β ′.

Otherwise, report +∞.

• Computing the Smallest Element in S′′3: The set S′′3 can be written as {λ (α ′−∆,β ′+∆,k) |

k ∈ [α ′,β ′]}, which is now dependent only on α ′,β ′ and ∆. Therefore, our idea is to pre-

compute and explicitly store the minimum element in {λ (a−∆,b+∆,k) | k ∈ [a,b]} for all

(a,b) pairs, where both a and b are multiples of ∆, and for that the desired answer can be

retrieved in constant time. The additional space needed is O((n/∆)2).

We set ∆ = b
√

nc. The total space is then O(n) and the total time is O(∆ logε n) =O(
√

n logε n).

We therefore arrive at Theorem 5.

57



5.3 Final Remarks

We introduced the Range Shortest Unique Substring (rSUS) problem, the range variant of the

Shortest Unique Substring problem. We presented anO(n logn)-word data structure withO(logw n)

query time, where w=Ω(logn) is the word size, for this problem. We also presented anO(n)-word

data structure with O(
√

n logε n) query time, where ε > 0 is an arbitrarily small constant.

We leave the following related questions unanswered:

1. Can we design an O(n)-word data structure for the rSUS problem with polylogarithmic

query time?

2. Can we design an efficient solution for the k mismatches/edits variation of the rSUS problem,

perhaps using the framework of [115, 113, 13]?

3. Can our reduction from Section 5.1 be extended to other types of string regularities, such as

shortest absent words [27]?

58



CHAPTER 6: INDEXING CACHE-OBLIVIOUSLY

In this chapter, we focus on a variation of the text indexing problem, known as the non-overlapping

indexing, which is central to data compression [24, 40]. Specifically, we study two problems 5 and

6 which are defined in Section 1.4.

6.1 Sorted Range Reporting on Arrays

Definition 18. Let A[1,n] be an array of n integers. A sorted range reporting query [s,e] on A asks

to report the elements in the subarray A[s,e] in their ascending order.

We now present two useful results.

Lemma 21. There exists an O(n logn) space cache-oblivious data structure that can answer sorted

range reporting queries on arrays in optimal O((e− s+1)/B) I/O operations.

Proof. Let L(t, l) be the list of all (i,A[i]) pairs with i ∈ [t, t + l−1] in the ascending order of A[i].

Maintain L(1, l),L(1+ l,2l),L(1+2l,3l), . . . ,L(1+ lbn/lc,n) for l = 2,4,8, · · · ,2blognc. The total

space is O(n logn).

To answer a query [s,e], compute l = 2blog(e−s+1)c and k = lbe/lc. Then, simply merge the two

sorted lists L(k− l +1,k) and L(k+1,k+ l) and discard those elements that are not in A[s,e]. The

correctness follows from the fact that k− l + 1 ≤ s ≤ e ≤ k + l. The number of I/O operations

required is 2l/B = O((e− s+1)/B).

59



Lemma 22. There exists an O(n logM/B n) space cache-aware data structure that can answer

sorted range reporting queries on arrays in optimal O((e− s+1)/B) I/O operations.

Proof. Since M and B are known in advance, maintain L(1, l),L(1+ l,2l),L(1+2l,3l), . . . ,L(1+

lbn/lc,n) with l = (M/B) j/2 for j = 0,1,2, . . . ,blogM/B nc. The total space is O(n logM/B n).

Given a query [s,e], first compute l and j, such that t = (M/B) j/2 ≤ e− s+1 ≤ (M/B)( j+1)/2. If

t is small enough, say below (M/B)1/2, then the entire subarray A[s,e] can be taken to the internal

memory and sorted. Otherwise, the query can be answered by merging O((M/B)1/2 logM/B n)

sorted lists of total length Θ(e− s+1). This can be implemented in optimal O((e− s+1)/B) I/O

operations.

6.2 Non-Overlapping Indexing - Cache Obliviously

Our data structure consists of a (cache-oblivious) suffix tree ST, and a sorted range reporting

structure as in Lemma 21 over the suffix array SA. Additional structures will be introduced along

the way. We start with a definition.

Definition 19 (Shortest Period). Let Q be the shortest prefix of P such that P can be written as the

concatenation of α ≥ 1 copies of Q and a (possibly empty) prefix R of Q. i.e., P = QαR. Then, we

denote the length of Q by period(P).

We say that an input pattern P is periodic if period(P) ≤ |P|/2 (equivalently α ≥ 2), else (i.e.,

α = 1), we say P is aperiodic. The first step of our query algorithm is to check if P is periodic or

not, and we rely on the result in Lemma 23.

60



Lemma 23. Given a pattern P[1,m] which appears at least once in T, there exists an algorithm

that finds if P is periodic or not in O(m/B+ logB n) I/O operations using an O(n logn) space

structure. Also, the algorithm returns period(P) if P is periodic.

Proof. We start with some terminologies. A substring T[i, i+ l−1] is right-maximally-periodic iff

T[i, i+ l−1] is periodic and T[i, i+ l] is aperiodic. Let l1, l2, ..., lk be the lengths of all substrings

starting at i in their ascending order that are right-maximally-periodic and let q1,q2, ...,qk be their

respective period(·)’s. From the definition of periodic and aperiodic, l j−1 ≤ q j and 2 · q j ≤ l j,

therefore 2 · l j−1 ≤ l j for all j ∈ [2,k]. Also, 2k−1l1 ≤ lk ≤ n− i+ 1 and the number k of right-

maximally-periodic prefixes of T[i,n] can be bounded by 1+ log(lk/l1) = O(logn). Moreover, any

substring T[i, i+m−1] of length m is periodic (with period q j) iff 2 ·q j ≤ m≤ l j for some j.

The proof of Lemma 23 is straightforward from the discussion above. For each T[i,n], we maintain

the lengths and periods of all its right-maximally-periodic prefixes. The space required is O(n logn)

words. When a pattern P[1,m] comes, the algorithm first finds an occurrence i of P in T in O(m/B+

logB n) I/O operations. Then from the lengths of all right-maximally-periodic prefixes (and their

periods) of T[i,n], it decides if P is periodic or not in (logn)/B = O(logB n) I/O operations. The

algorithm also retrieves period(P), if P is periodic.

6.2.1 Handling aperiodic case

When P is aperiodic, occ = Θ(nocc). Therefore, obtain all occurrences of P in their ascending

order and do the following: report the first occurrence and report any other occurrence iff it is

not overlapping with the last reported occurrence. This step can be implemented in occ/B =

Θ(nocc/B) I/O operations. Thus, the total number of I/O operations in this case is O(m/B +

61



logB n+nocc/B).

6.2.2 Handling periodic case

We start with the following simple observation by Ganguly et al. [60].

Observation 2. If we list all the occurrences of P = QαR in T in the ascending order, we can see

clusters of occurrences holding the following property: two consecutive occurrences (i) within a

cluster, are exactly period(P) distance apart and (ii) not within a cluster cannot have an overlap

of length period(P) or more.

Lemma 24. Let π be the number of clusters. Then π = O(nocc).

Proof. Two occurrences i, j not within the same cluster overlap only if i is the last occurrence

in a cluster and j is the first occurrence within the next cluster (follows from Observation 2(ii)).

However, only one of them can be a part of the final output. Therefore, nocc≥ π/2.

Definition 20. An occurrence is a cluster-head (resp., cluster-tail) iff it is the first (resp., last)

occurrence within a cluster. Also, let L′ (resp., L′′) be the list of all cluster heads (resp., tails) in

their ascending order.

Observe that the distance between two consecutive non-overlapping occurrences within the same

cluster, denoted by λ is period(P) · dm/period(P)e. See Fig 6.1.

Let Ci be the ith leftmost cluster and Si (resp., S∗i ) be the largest set of non-overlapping occurrences

in Ci including (resp., excluding) the first occurrence L′[i] in Ci. Specifically,

Si = {L′[i]+ kλ | for k = 0,1,2,3, .. as long as L′[i]+ kλ ≤ L′′[i]}

62



S∗i = {period(P)+L′[i]+ kλ | for k = 0,1,2,3, .. as long as period(P)+L′[i]+ kλ ≤ L′′[i]}

Therefore, the final output can be generated by just examining L′ and L′′ using the procedure in Algorithm 1.

This step takes only O(nocc/B) I/O operations. The correctness follows from Observation 2.

What remains to show is, how to compute L′ and L′′ efficiently.

Algorithm 1 Reports the largest set of non-overlapping occurrences of P in T.
1: report S1
2: for (i = 2 to π) do
3: if (the last reported occurrence and L′[i] are non-overlapping) then report Si
4: else report S∗i
5: end for

Computing L′′: The List of Cluster Tails

We use the following observation by Ganguly et al. [60]: a text position y is the rightmost occurrence of P

within a cluster (i.e., cluster-tail) iff T[y,n] is prefixed by P = QαR, but not by QP = Q1+αR. This means,

L′′ is the sorted list of all elements in the set {SA[i] | i ∈ [sp(P),ep(P)]∧ i /∈ [sp(QP),ep(QP)]} of size π

(see Fig 6.2).

The first step is to compute locus(P) and locus(QP), which takes |P|/B+ |QP|/B+ logB n = O(m/B+

Figure 6.1: Here P = catcatca, x is the cluster-head and y = x + 21 is the cluster-tail. Then,
the largest set of non-overlapping occurrences with the first occurrence included, and the first
occurrence excluded are {x,x+9,x+18} and {x+3,x+12,x+21}, respectively.

63



Figure 6.2: Highlighted are the regions corresponding to cluster tails.

logB n) I/O operations. Then L′′ can be obtained via two sorted range reporting queries on SA, in O(π/B)

I/O operations.

Computing L′: The List of Cluster Heads

Clearly, for each cluster of P in T, there is a corresponding cluster of
←−
P in

←−
T . Here

←−
T (resp.,

←−
P ) is the

reverse of T (resp., P). Then, we have the following observation.

Observation 3. Let z be the last occurrence of
←−
P within a cluster of

←−
P in

←−
T , then (n+ 2−m− z) is the

first occurrence of P within the corresponding cluster of P in T.

Therefore, we simply construct and maintain our previous data structure for computing L′′, but on
←−
T . When

P comes as input to the original problem, we find L′′ corresponding to
←−
P in

←−
T . Then, simply report

(n+ 2−m− L′′[i])’s in the descending order of i. Note that we need to maintain the suffix tree (and its

cache-oblivious version) of
←−
T as well. Additional space required is O(n logn).

In summary, both L′ and L′′ can be computed in O(m/B+ logB n+π/B) I/O operations using an O(n logn)

space structure. The final output can be generated in additional O(nocc/B) I/O operations. Also, π =

O(nocc) from Lemma 24. Therefore, by combining everything, we have the following result.

64



Theorem 11. There exists a data structure that is initialized with a text T[1,n], takes O(n logn) words

of space and supports the following query in the cache-oblivious model. Given a string P[1,m], the data

structure reports the largest set of non-overlapping occurrences of P[1,m] in T in their sorted order in

optimal O(m
B + logB n+ nocc

B ) I/O operations, where nocc is the output size.

The space complexity can be improved in the cache-aware model.

Theorem 12. There exists a data structure that is initialized with a text T[1,n], takes O(n logM/B n) words

of space and supports the following query in the cache-aware model. Given a string P[1,m], the data

structure reports the largest set of non-overlapping occurrences of P[1,m] in T in their sorted order in

optimal O(m
B + logB n+ nocc

B ) I/O operations, where nocc is the output size.

Proof. We modify our data structure for Theorem 11 as follows. Replace the sorted range reporting structure

of Lemma 21 by Lemma 22. Also, discard the structure of Lemma 23, because in the cache-aware model,

period(P) can be computed in O(m/B) I/O operations [107].

6.3 Range Non-Overlapping Indexing in Cache-Aware Model

The range non-overlapping problem is to preprocess a text T[1,n] into a data structure that supports the

following query: given a pattern P[1,m] and a range [s,e], report the largest set of occurrences of P in T,

that are within the range [s,e] (denote its size by nocc[s,e]), such that any two (distinct) text positions in the

output are separated by at least m characters. The problem is a combination of the non-overlapping indexing

problem and the position restricted pattern matching problem [32, 33, 43, 72, 86, 90].

When s = 1 or e = n, we call this the one-sided range non-overlapping indexing problem. We now proceed

to present our solutions in the cache-aware model.

65



6.3.1 The Data Structure

In [7], Afshani et al. showed that an array A[1,n] can be preprocessed into an O(n logn) space structure,

such that given a query ([i, j],k), we can report the top-k elements in A[i, j] in their sorted order in optimal

O(logB n+ k/B) I/O operations. Using standard techniques, this result can be extended as follows: an array

A[1,n] can be preprocessed into an O(n log2 n) space structure, such that given a query ([i, j], [s,e],k), we can

report the top-k elements in {A[t] | t ∈ [i, j],A[t]∈ [s,e]} in sorted order in optimal number of I/O operations.

The main component of data structure for range non-overlapping indexing is essentially this structure with

A being the suffix array of T. As before, we handle the aperiodic and periodic cases separately.

6.3.2 Handling aperiodic case

Find the suffix range of P and then report all those occurrences of P that are within [s,e] in their sorted

order. This step can be performed in optimal I/O operations using the structure described above. Then,

scan them in the ascending order and do the following: report the first occurrence and report any other

occurrence iff it is not overlapping with the last reported occurrence. Total number of I/O operations required

is O(m/B+ logB n+nocc[s,e]/B).

6.3.3 Handling periodic case

First, we find all cluster-heads that are within the range [s,e] in their sorted order. Additionally, we find

the first occurrence of P in T[s,e] and add to the beginning of this list and call it L′. Similarly, find all

cluster-tails that are within the range [s,e] in their sorted order. Additionally, we find the last occurrence of

P in T[s,e] and add it to the end of this list and call it L′′. In order to perform these steps in optimal I/O

operations, we rely on our O(n log2 n) space structure. To obtain our final answer, we simply run Algorithm

1 described in Section 6.2.2. The correctness and the I/O complexity can be easily verified.

Theorem 13. There exists an O(n log2 n) space data structure for the range non-overlapping indexing prob-

66



lem in the cache-aware model, where n is the length of the input text T. The data structure supports reporting

the largest set of non-overlapping occurrences of an input pattern P[1,m] within a given range [s,e] in their

sorted order in optimal O(m
B + logB n+

nocc[s,e]
B ) I/O operations, where nocc[s,e] is the output size.

Remark

In the case of one-sided range non-overlapping indexing, the space complexity of the result in Theorem 13

can be improved to O(n logn).

6.4 Conclusion

Reporting or counting the occurrences of a query pattern p in an input text T is a well-studied problem

which can be solved efficiently using the traditional suffix tree data structure inO(|p|+occ) [67]. However,

reporting the non-overlapping occurrences of p in T in optimal time is more complicated. In this chapter,

we studied the non-overlapping indexing problem in the cache-oblivious model. We presented a new data

structure of size O(n logn) words that can answer queries in optimal O(m
B + logB n+ nocc

B ) I/O operations,

where B is the block size. The space can be improved to O(n logM/B n) in the cache-aware model, where

M is the size of main memory. Additionally, we studied a generalization of this problem with an additional

range [s,e] constraint. Here the task is to report the largest set of non-overlapping occurrences of P in T,

that are within the range [s,e]. We presented an O(n log2 n) space data structure in the cache-aware model

that can answer queries in optimal O(m
B + logB n+

nocc[s,e]
B ) I/O operations, where nocc[s,e] is the output size.

67



LIST OF REFERENCES

[1] Paniz Abedin, M Oğuzhan Külekci, and Sharma V Thankachan. “A Survey on Shortest

Unique Substring Queries”. In: Algorithms 13.9 (2020), p. 224.

[2] Paniz Abedin et al. “A Linear-Space Data Structure for Range-LCP Queries in Poly-

Logarithmic Time”. In: Computing and Combinatorics - 24th International Conference,

COCOON 2018, Qing Dao, China, July 2-4, 2018, Proceedings. 2018, pp. 615–625. DOI:

10.1007/978-3-319-94776-1\_51. URL: https://doi.org/10.1007/978-3-319-

94776-1%5C_51.

[3] Paniz Abedin et al. “A linear-space data structure for range-LCP queries in poly-logarithmic

time”. In: Theoretical Computer Science 822 (2020), pp. 15–22.

[4] Paniz Abedin et al. “Efficient Data Structures for Range Shortest Unique Substring Queries”.

In: Algorithms 13.11 (2020), p. 276. DOI: 10.3390/a13110276. URL: https://doi.

org/10.3390/a13110276.

[5] Paniz Abedin et al. “Range Shortest Unique Substring Queries”. In: String Processing and

Information Retrieval - 26th International Symposium, SPIRE 2019, Segovia, Spain, Octo-

ber 7-9, 2019, Proceedings. Ed. by Nieves R. Brisaboa and Simon J. Puglisi. Vol. 11811.

Lecture Notes in Computer Science. Springer, 2019, pp. 258–266. DOI: 10.1007/978-3-

030-32686-9\_18. URL: https://doi.org/10.1007/978-3-030-32686-9%5C_18.

[6] Paniz Abedin et al. “The heaviest induced ancestors problem revisited”. In: Annual Sympo-

sium on Combinatorial Pattern Matching (CPM 2018). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik. 2018.

[7] Peyman Afshani, Gerth Stølting Brodal, and Norbert Zeh. “Ordered and Unordered Top-K

Range Reporting in Large Data Sets”. In: Proceedings of the Twenty-Second Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,

68

https://doi.org/10.1007/978-3-319-94776-1\_51
https://doi.org/10.1007/978-3-319-94776-1%5C_51
https://doi.org/10.1007/978-3-319-94776-1%5C_51
https://doi.org/10.3390/a13110276
https://doi.org/10.3390/a13110276
https://doi.org/10.3390/a13110276
https://doi.org/10.1007/978-3-030-32686-9\_18
https://doi.org/10.1007/978-3-030-32686-9\_18
https://doi.org/10.1007/978-3-030-32686-9%5C_18


January 23-25, 2011. 2011, pp. 390–400. DOI: 10.1137/1.9781611973082.31. URL:

https://doi.org/10.1137/1.9781611973082.31.

[8] Alok Aggarwal and Jeffrey Scott Vitter. “The Input/Output Complexity of Sorting and Re-

lated Problems”. In: Commun. ACM 31.9 (1988), pp. 1116–1127. DOI: 10.1145/48529.

48535. URL: http://doi.acm.org/10.1145/48529.48535.

[9] Daniel R. Allen, Sharma V. Thankachan, and Bojian Xu. “A Practical and Efficient Algo-

rithm for the k-mismatch Shortest Unique Substring Finding Problem”. In: Proceedings of

the 2018 ACM International Conference on Bioinformatics, Computational Biology, and

Health Informatics, BCB 2018, Washington, DC, USA, August 29 - September 01, 2018.

2018, pp. 428–437. DOI: 10.1145/3233547.3233564. URL: https://doi.org/10.

1145/3233547.3233564.

[10] Yannis Almirantis et al. “On avoided words, absent words, and their application to biolog-

ical sequence analysis”. In: Algorithms Mol. Biol. 12.1 (2017), 5:1–5:12. DOI: 10.1186/

s13015-017-0094-z. URL: https://doi.org/10.1186/s13015-017-0094-z.

[11] Yannis Almirantis et al. “On overabundant words and their application to biological se-

quence analysis”. In: Theor. Comput. Sci. 792 (2019), pp. 85–95. DOI: 10.1016/j.tcs.

2018.09.011. URL: https://doi.org/10.1016/j.tcs.2018.09.011.

[12] Srinivas Aluru. Handbook of computational molecular biology. CRC Press, 2005.

[13] Srinivas Aluru, Alberto Apostolico, and Sharma V. Thankachan. “Efficient Alignment Free

Sequence Comparison with Bounded Mismatches”. In: Research in Computational Molec-

ular Biology - 19th Annual International Conference, RECOMB 2015, Warsaw, Poland,

April 12-15, 2015, Proceedings. Ed. by Teresa M. Przytycka. Vol. 9029. Lecture Notes in

Computer Science. Springer, 2015, pp. 1–12. DOI: 10.1007/978-3-319-16706-0\_1.

URL: https://doi.org/10.1007/978-3-319-16706-0%5C_1.

69

https://doi.org/10.1137/1.9781611973082.31
https://doi.org/10.1137/1.9781611973082.31
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
http://doi.acm.org/10.1145/48529.48535
https://doi.org/10.1145/3233547.3233564
https://doi.org/10.1145/3233547.3233564
https://doi.org/10.1145/3233547.3233564
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1186/s13015-017-0094-z
https://doi.org/10.1016/j.tcs.2018.09.011
https://doi.org/10.1016/j.tcs.2018.09.011
https://doi.org/10.1016/j.tcs.2018.09.011
https://doi.org/10.1007/978-3-319-16706-0\_1
https://doi.org/10.1007/978-3-319-16706-0%5C_1


[14] Amihood Amir and Itai Boneh. “Locally Maximal Common Factors as a Tool for Efficient

Dynamic String Algorithms”. In: Annual Symposium on Combinatorial Pattern Matching,

CPM 2018, July 2-4, 2018 - Qingdao, China. Ed. by Gonzalo Navarro, David Sankoff, and

Binhai Zhu. Vol. 105. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018,

11:1–11:13. DOI: 10.4230/LIPIcs.CPM.2018.11. URL: https://doi.org/10.4230/

LIPIcs.CPM.2018.11.

[15] Amihood Amir and Eitan Kondratovsky. “Searching for a Modified Pattern in a Changing

Text”. In: String Processing and Information Retrieval - 25th International Symposium,

SPIRE 2018, Lima, Peru, October 9-11, 2018, Proceedings. Ed. by Travis Gagie et al.

Vol. 11147. Lecture Notes in Computer Science. Springer, 2018, pp. 241–253. DOI: 10.

1007/978-3-030-00479-8\_20. URL: https://doi.org/10.1007/978-3-030-

00479-8%5C_20.

[16] Amihood Amir, Moshe Lewenstein, and Sharma V. Thankachan. “Range LCP Queries Re-

visited”. In: String Processing and Information Retrieval - 22nd International Symposium,

SPIRE 2015, London, UK, September 1-4, 2015, Proceedings. 2015, pp. 350–361. DOI:

10.1007/978-3-319-23826-5\_33. URL: https://doi.org/10.1007/978-3-319-

23826-5%5C_33.

[17] Amihood Amir, Moshe Lewenstein, and Sharma V. Thankachan. “Range LCP Queries Re-

visited”. In: String Processing and Information Retrieval - 22nd International Symposium,

SPIRE 2015, London, UK, September 1-4, 2015, Proceedings. 2015, pp. 350–361. DOI:

10.1007/978-3-319-23826-5\_33. URL: https://doi.org/10.1007/978-3-319-

23826-5%5C_33.

[18] Amihood Amir et al. “Longest Common Factor After One Edit Operation”. In: String Pro-

cessing and Information Retrieval - 24th International Symposium, SPIRE 2017, Palermo,

Italy, September 26-29, 2017, Proceedings. Ed. by Gabriele Fici, Marinella Sciortino,

70

https://doi.org/10.4230/LIPIcs.CPM.2018.11
https://doi.org/10.4230/LIPIcs.CPM.2018.11
https://doi.org/10.4230/LIPIcs.CPM.2018.11
https://doi.org/10.1007/978-3-030-00479-8\_20
https://doi.org/10.1007/978-3-030-00479-8\_20
https://doi.org/10.1007/978-3-030-00479-8%5C_20
https://doi.org/10.1007/978-3-030-00479-8%5C_20
https://doi.org/10.1007/978-3-319-23826-5\_33
https://doi.org/10.1007/978-3-319-23826-5%5C_33
https://doi.org/10.1007/978-3-319-23826-5%5C_33
https://doi.org/10.1007/978-3-319-23826-5\_33
https://doi.org/10.1007/978-3-319-23826-5%5C_33
https://doi.org/10.1007/978-3-319-23826-5%5C_33


and Rossano Venturini. Vol. 10508. Lecture Notes in Computer Science. Springer, 2017,

pp. 14–26. DOI: 10.1007/978-3-319-67428-5\_2. URL: https://doi.org/10.

1007/978-3-319-67428-5%5C_2.

[19] Amihood Amir et al. “Longest Common Substring Made Fully Dynamic”. In: 27th Annual

European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,

Germany. Ed. by Michael A. Bender, Ola Svensson, and Grzegorz Herman. Vol. 144.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 6:1–6:17. DOI: 10 .

4230/LIPIcs.ESA.2019.6. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.6.

[20] Amihood Amir et al. “Range LCP”. In: ISAAC. 2011, pp. 683–692.

[21] Amihood Amir et al. “Range LCP”. In: J. Comput. Syst. Sci. 80.7 (2014), pp. 1245–1253.

DOI: 10.1016/j.jcss.2014.02.010. URL: https://doi.org/10.1016/j.jcss.

2014.02.010.

[22] Amihood Amir et al. “Range LCP”. In: J. Comput. Syst. Sci. 80.7 (2014), pp. 1245–1253.

DOI: 10.1016/j.jcss.2014.02.010. URL: https://doi.org/10.1016/j.jcss.

2014.02.010.

[23] Amihood Amir et al. “Repetition Detection in a Dynamic String”. In: 27th Annual Eu-

ropean Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,

Germany. Ed. by Michael A. Bender, Ola Svensson, and Grzegorz Herman. Vol. 144.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 5:1–5:18. DOI: 10 .

4230/LIPIcs.ESA.2019.5. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.5.

[24] Alberto Apostolico and Franco P Preparata. “Data structures and algorithms for the string

statistics problem”. In: Algorithmica 15.5 (1996), pp. 481–494.

[25] Michael Arnold and Enno Ohlebusch. “Linear time algorithms for generalizations of the

longest common substring problem”. In: Algorithmica 60.4 (2011), pp. 806–818.

71

https://doi.org/10.1007/978-3-319-67428-5\_2
https://doi.org/10.1007/978-3-319-67428-5%5C_2
https://doi.org/10.1007/978-3-319-67428-5%5C_2
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.1016/j.jcss.2014.02.010
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.ESA.2019.5


[26] Lorraine A. K. Ayad, Solon P. Pissis, and Dimitris Polychronopoulos. “CNEFinder: finding

conserved non-coding elements in genomes”. In: Bioinformatics 34.17 (2018), pp. i743–

i747. DOI: 10.1093/bioinformatics/bty601. URL: https://doi.org/10.1093/

bioinformatics/bty601.

[27] Carl Barton et al. “Linear-time computation of minimal absent words using suffix array”.

In: BMC Bioinform. 15 (2014), p. 388. DOI: 10.1186/s12859- 014- 0388- 9. URL:

https://doi.org/10.1186/s12859-014-0388-9.

[28] Michael A Bender and Martin Farach-Colton. “The LCA problem revisited”. In: Latin

American Symposium on Theoretical Informatics. Springer. 2000, pp. 88–94.

[29] Michael A. Bender and Martin Farach-Colton. “The LCA Problem Revisited”. In: LATIN

2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay,

April 10-14, 2000, Proceedings. Ed. by Gaston H. Gonnet, Daniel Panario, and Alfredo

Viola. Vol. 1776. Lecture Notes in Computer Science. Springer, 2000, pp. 88–94. DOI:

10.1007/10719839\_9. URL: https://doi.org/10.1007/10719839%5C_9.

[30] Michael A. Bender et al. “Lowest common ancestors in trees and directed acyclic graphs”.

In: J. Algorithms 57.2 (2005), pp. 75–94. DOI: 10.1016/j.jalgor.2005.08.001. URL:

https://doi.org/10.1016/j.jalgor.2005.08.001.

[31] Omer Berkman and Uzi Vishkin. “Recursive Star-Tree Parallel Data Structure”. In: SIAM

J. Comput. 22.2 (1993), pp. 221–242. DOI: 10.1137/0222017. URL: https://doi.org/

10.1137/0222017.

[32] Philip Bille and Inge Li Gørtz. “Substring Range Reporting”. In: Algorithmica 69.2 (2014),

pp. 384–396. DOI: 10.1007/s00453-012-9733-4. URL: https://doi.org/10.1007/

s00453-012-9733-4.

72

https://doi.org/10.1093/bioinformatics/bty601
https://doi.org/10.1093/bioinformatics/bty601
https://doi.org/10.1093/bioinformatics/bty601
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1186/s12859-014-0388-9
https://doi.org/10.1007/10719839\_9
https://doi.org/10.1007/10719839%5C_9
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1016/j.jalgor.2005.08.001
https://doi.org/10.1137/0222017
https://doi.org/10.1137/0222017
https://doi.org/10.1137/0222017
https://doi.org/10.1007/s00453-012-9733-4
https://doi.org/10.1007/s00453-012-9733-4
https://doi.org/10.1007/s00453-012-9733-4


[33] Sudip Biswas et al. “Position-restricted substring searching over small alphabets”. In: J.

Discrete Algorithms 46-47 (2017), pp. 36–39. DOI: 10.1016/j.jda.2017.10.001. URL:

https://doi.org/10.1016/j.jda.2017.10.001.

[34] Gerth Stølting Brodal and Rolf Fagerberg. “Cache-oblivious string dictionaries”. In: Pro-

ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2006, Miami, Florida, USA, January 22-26, 2006. 2006, pp. 581–590. URL: http://dl.

acm.org/citation.cfm?id=1109557.1109621.

[35] Gerth Stølting Brodal and Allan Grønlund Jørgensen. “Data Structures for Range Median

Queries”. In: Algorithms and Computation, 20th International Symposium, ISAAC 2009,

Honolulu, Hawaii, USA, December 16-18, 2009. Proceedings. Ed. by Yingfei Dong, Ding-

Zhu Du, and Oscar H. Ibarra. Vol. 5878. Lecture Notes in Computer Science. Springer,

2009, pp. 822–831. DOI: 10.1007/978-3-642-10631-6\_83. URL: https://doi.

org/10.1007/978-3-642-10631-6%5C_83.

[36] Timothy M. Chan, Kasper Green Larsen, and Mihai Patrascu. “Orthogonal range searching

on the RAM, revisited”. In: Proceedings of the 27th ACM Symposium on Computational

Geometry, Paris, France, June 13-15, 2011. 2011, pp. 1–10. DOI: 10.1145/1998196.

1998198. URL: http://doi.acm.org/10.1145/1998196.1998198.

[37] Timothy M. Chan et al. “Orthogonal Point Location and Rectangle Stabbing Queries in 3-

d”. In: 45th International Colloquium on Automata, Languages, and Programming, ICALP

2018, July 9-13, 2018, Prague, Czech Republic. 2018, 31:1–31:14. DOI: 10.4230/LIPIcs.

ICALP.2018.31. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.31.

[38] Bernard Chazelle. “A Functional Approach to Data Structures and Its Use in Multidi-

mensional Searching”. In: SIAM J. Comput. 17.3 (1988), pp. 427–462. DOI: 10.1137/

0217026. URL: https://doi.org/10.1137/0217026.

73

https://doi.org/10.1016/j.jda.2017.10.001
https://doi.org/10.1016/j.jda.2017.10.001
http://dl.acm.org/citation.cfm?id=1109557.1109621
http://dl.acm.org/citation.cfm?id=1109557.1109621
https://doi.org/10.1007/978-3-642-10631-6\_83
https://doi.org/10.1007/978-3-642-10631-6%5C_83
https://doi.org/10.1007/978-3-642-10631-6%5C_83
https://doi.org/10.1145/1998196.1998198
https://doi.org/10.1145/1998196.1998198
http://doi.acm.org/10.1145/1998196.1998198
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.4230/LIPIcs.ICALP.2018.31
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026
https://doi.org/10.1137/0217026


[39] Sriram P. Chockalingam, Sharma V. Thankachan, and Srinivas Aluru. “A parallel algorithm

for finding all pairs k-mismatch maximal common substrings”. In: Proceedings of the Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

SC 2016, Salt Lake City, UT, USA, November 13-18, 2016. Ed. by John West and Cherri M.

Pancake. IEEE Computer Society, 2016, pp. 784–794. DOI: 10.1109/SC.2016.66. URL:

https://doi.org/10.1109/SC.2016.66.

[40] Hagai Cohen and Ely Porat. “Range Non-overlapping Indexing”. In: Algorithms and Com-

putation, 20th International Symposium, ISAAC 2009, Honolulu, Hawaii, USA, December

16-18, 2009. Proceedings. 2009, pp. 1044–1053. DOI: 10.1007/978-3-642-10631-

6_105. URL: http://dx.doi.org/10.1007/978-3-642-10631-6_105.

[41] Graham Cormode and S. Muthukrishnan. “Substring compression problems”. In: Proceed-

ings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005,

Vancouver, British Columbia, Canada, January 23-25, 2005. 2005, pp. 321–330. URL:

http://dl.acm.org/citation.cfm?id=1070432.1070478.

[42] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.

Cambridge University Press, 2007.

[43] Maxime Crochemore et al. “Improved Algorithms for the Range Next Value Problem and

Applications”. In: STACS 2008, 25th Annual Symposium on Theoretical Aspects of Com-

puter Science, Bordeaux, France, February 21-23, 2008, Proceedings. 2008, pp. 205–216.

DOI: 10.4230/LIPIcs.STACS.2008.1359. URL: http://dx.doi.org/10.4230/

LIPIcs.STACS.2008.1359.

[44] Maxime Crochemore et al. “Improved algorithms for the range next value problem and

applications”. In: Theor. Comput. Sci. 434 (2012), pp. 23–34.

74

https://doi.org/10.1109/SC.2016.66
https://doi.org/10.1109/SC.2016.66
https://doi.org/10.1007/978-3-642-10631-6_105
https://doi.org/10.1007/978-3-642-10631-6_105
http://dx.doi.org/10.1007/978-3-642-10631-6_105
http://dl.acm.org/citation.cfm?id=1070432.1070478
https://doi.org/10.4230/LIPIcs.STACS.2008.1359
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1359
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1359


[45] Erik D. Demaine, Gad M. Landau, and Oren Weimann. “On Cartesian Trees and Range

Minimum Queries”. In: Algorithmica 68.3 (2014), pp. 610–625. DOI: 10.1007/s00453-

012-9683-x. URL: https://doi.org/10.1007/s00453-012-9683-x.

[46] Martin Farach. “Optimal Suffix Tree Construction with Large Alphabets”. In: 38th Annual

Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,

October 19-22, 1997. IEEE Computer Society, 1997, pp. 137–143. DOI: 10.1109/SFCS.

1997.646102. URL: https://doi.org/10.1109/SFCS.1997.646102.

[47] Martin Farach and S. Muthukrishnan. “Perfect Hashing for Strings: Formalization and

Algorithms”. In: Combinatorial Pattern Matching, 7th Annual Symposium, CPM 96, La-

guna Beach, California, USA, June 10-12, 1996, Proceedings. 1996, pp. 130–140. DOI:

10.1007/3-540-61258-0\_11. URL: https://doi.org/10.1007/3-540-61258-

0%5C_11.

[48] Martin Farach and Mikkel Thorup. “String matching in lempel—ziv compressed strings”.

In: Algorithmica 20.4 (1998), pp. 388–404.

[49] Paolo Ferragina and Roberto Grossi. “The String B-tree: A New Data Structure for String

Search in External Memory and Its Applications”. In: J. ACM 46.2 (1999), pp. 236–280.

DOI: 10.1145/301970.301973. URL: https://doi.org/10.1145/301970.301973.

[50] Paolo Ferragina and Giovanni Manzini. “Indexing compressed text”. In: J. ACM 52.4

(2005), pp. 552–581. DOI: 10 . 1145 / 1082036 . 1082039. URL: http : / / doi . acm .

org/10.1145/1082036.1082039.

[51] Johannes Fischer. “Inducing the LCP-array”. In: Workshop on Algorithms and Data Struc-

tures. Springer. 2011, pp. 374–385.

75

https://doi.org/10.1007/s00453-012-9683-x
https://doi.org/10.1007/s00453-012-9683-x
https://doi.org/10.1007/s00453-012-9683-x
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0\_11
https://doi.org/10.1007/3-540-61258-0%5C_11
https://doi.org/10.1007/3-540-61258-0%5C_11
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/301970.301973
https://doi.org/10.1145/1082036.1082039
http://doi.acm.org/10.1145/1082036.1082039
http://doi.acm.org/10.1145/1082036.1082039


[52] Johannes Fischer and Volker Heun. “Space-Efficient Preprocessing Schemes for Range

Minimum Queries on Static Arrays”. In: SIAM J. Comput. 40.2 (2011), pp. 465–492. DOI:

10.1137/090779759. URL: https://doi.org/10.1137/090779759.

[53] Matteo Frigo et al. “Cache-Oblivious Algorithms”. In: 40th Annual Symposium on Foun-

dations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. 1999,

pp. 285–298. DOI: 10.1109/SFFCS.1999.814600. URL: https://doi.org/10.1109/

SFFCS.1999.814600.

[54] Matteo Frigo et al. “Cache-Oblivious Algorithms”. In: ACM Trans. Algorithms 8.1 (2012),

4:1–4:22. DOI: 10.1145/2071379.2071383. URL: http://doi.acm.org/10.1145/

2071379.2071383.

[55] Mitsuru Funakoshi et al. “Faster Queries for Longest Substring Palindrome After Block

Edit”. In: 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June

18-20, 2019, Pisa, Italy. Ed. by Nadia Pisanti and Solon P. Pissis. Vol. 128. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 27:1–27:13. DOI: 10.4230/LIPIcs.

CPM.2019.27. URL: https://doi.org/10.4230/LIPIcs.CPM.2019.27.

[56] Mitsuru Funakoshi et al. “Longest substring palindrome after edit”. In: Annual Symposium

on Combinatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao, China. Ed. by

Gonzalo Navarro, David Sankoff, and Binhai Zhu. Vol. 105. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2018, 12:1–12:14. DOI: 10.4230/LIPIcs.CPM.2018.

12. URL: https://doi.org/10.4230/LIPIcs.CPM.2018.12.

[57] Travis Gagie, Pawel Gawrychowski, and Yakov Nekrich. “Heaviest Induced Ancestors

and Longest Common Substrings”. In: Proceedings of the 25th Canadian Conference on

Computational Geometry, CCCG 2013, Waterloo, Ontario, Canada, August 8-10, 2013.

Carleton University, Ottawa, Canada, 2013. URL: http://cccg.ca/proceedings/

2013/papers/paper%5C_29.pdf.

76

https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/2071379.2071383
http://doi.acm.org/10.1145/2071379.2071383
http://doi.acm.org/10.1145/2071379.2071383
https://doi.org/10.4230/LIPIcs.CPM.2019.27
https://doi.org/10.4230/LIPIcs.CPM.2019.27
https://doi.org/10.4230/LIPIcs.CPM.2019.27
https://doi.org/10.4230/LIPIcs.CPM.2018.12
https://doi.org/10.4230/LIPIcs.CPM.2018.12
https://doi.org/10.4230/LIPIcs.CPM.2018.12
http://cccg.ca/proceedings/2013/papers/paper%5C_29.pdf
http://cccg.ca/proceedings/2013/papers/paper%5C_29.pdf


[58] Travis Gagie et al. “Document Listing on Repetitive Collections”. In: Combinatorial Pat-

tern Matching, 24th Annual Symposium, CPM 2013, Bad Herrenalb, Germany, June 17-19,

2013. Proceedings. 2013, pp. 107–119. DOI: 10.1007/978-3-642-38905-4\_12. URL:

https://doi.org/10.1007/978-3-642-38905-4%5C_12.

[59] Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. “Succinct non-overlapping in-

dexing”. In: Annual Symposium on Combinatorial Pattern Matching. Springer. 2015, pp. 185–

195.

[60] Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. “Succinct Non-overlapping In-

dexing”. In: Algorithmica 82.1 (2020), pp. 107–117. DOI: 10.1007/s00453-019-00605-

5. URL: https://doi.org/10.1007/s00453-019-00605-5.

[61] Arnab Ganguly et al. “A Linear Space Data Structure for Range LCP Queries”. In: Fun-

dam. Inform. 163.3 (2018), pp. 245–251. DOI: 10.3233/FI-2018-1741. URL: https:

//doi.org/10.3233/FI-2018-1741.

[62] Arnab Ganguly et al. “Space-time trade-offs for finding shortest unique substrings and

maximal unique matches”. In: Theor. Comput. Sci. 700 (2017), pp. 75–88. DOI: 10.1016/

j.tcs.2017.08.002. URL: https://doi.org/10.1016/j.tcs.2017.08.002.

[63] Arnab Ganguly et al. “Space-Time Trade-Offs for the Shortest Unique Substring Problem”.

In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, Decem-

ber 12-14, 2016, Sydney, Australia. 2016, 34:1–34:13. DOI: 10.4230/LIPIcs.ISAAC.

2016.34. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2016.34.

[64] Younan Gao. “Computing Matching Statistics on Repetitive Texts”. In: arXiv preprint

arXiv:2111.00376 (2021).

[65] Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. “Weighted Ancestors

in Suffix Trees”. In: Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,

77

https://doi.org/10.1007/978-3-642-38905-4\_12
https://doi.org/10.1007/978-3-642-38905-4%5C_12
https://doi.org/10.1007/s00453-019-00605-5
https://doi.org/10.1007/s00453-019-00605-5
https://doi.org/10.1007/s00453-019-00605-5
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.3233/FI-2018-1741
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.1016/j.tcs.2017.08.002
https://doi.org/10.4230/LIPIcs.ISAAC.2016.34
https://doi.org/10.4230/LIPIcs.ISAAC.2016.34
https://doi.org/10.4230/LIPIcs.ISAAC.2016.34


Poland, September 8-10, 2014. Proceedings. 2014, pp. 455–466. DOI: 10.1007/978-3-

662-44777-2\_38. URL: https://doi.org/10.1007/978-3-662-44777-2%5C_38.

[66] Roberto Grossi and Jeffrey Scott Vitter. “Compressed Suffix Arrays and Suffix Trees with

Applications to Text Indexing and String Matching”. In: SIAM J. Comput. 35.2 (2005),

pp. 378–407. DOI: 10.1137/S0097539702402354. URL: https://doi.org/10.1137/

S0097539702402354.

[67] Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Com-

putational Biology. Cambridge University Press, 1997. ISBN: 0-521-58519-8. DOI: 10.

1017/cbo9780511574931. URL: https://doi.org/10.1017/cbo9780511574931.

[68] Dov Harel and Robert Endre Tarjan. “Fast Algorithms for Finding Nearest Common An-

cestors”. In: SIAM J. Comput. 13.2 (1984), pp. 338–355. DOI: 10.1137/0213024. URL:

https://doi.org/10.1137/0213024.

[69] Dov Harel and Robert Endre Tarjan. “Fast Algorithms for Finding Nearest Common An-

cestors”. In: SIAM J. Comput. 13.2 (1984), pp. 338–355. DOI: 10.1137/0213024. URL:

https://doi.org/10.1137/0213024.

[70] Bernhard Haubold et al. “Genome comparison without alignment using shortest unique

substrings”. In: BMC Bioinformatics 6 (2005), p. 123. DOI: 10.1186/1471-2105-6-123.

URL: https://doi.org/10.1186/1471-2105-6-123.

[71] Wing-Kai Hon, Sharma V. Thankachan, and Bojian Xu. “In-place algorithms for exact

and approximate shortest unique substring problems”. In: Theor. Comput. Sci. 690 (2017),

pp. 12–25. DOI: 10.1016/j.tcs.2017.05.032. URL: https://doi.org/10.1016/j.

tcs.2017.05.032.

78

https://doi.org/10.1007/978-3-662-44777-2\_38
https://doi.org/10.1007/978-3-662-44777-2\_38
https://doi.org/10.1007/978-3-662-44777-2%5C_38
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0213024
https://doi.org/10.1137/0213024
https://doi.org/10.1186/1471-2105-6-123
https://doi.org/10.1186/1471-2105-6-123
https://doi.org/10.1016/j.tcs.2017.05.032
https://doi.org/10.1016/j.tcs.2017.05.032
https://doi.org/10.1016/j.tcs.2017.05.032


[72] Wing-Kai Hon et al. “On position restricted substring searching in succinct space”. In: J.

Discrete Algorithms 17 (2012), pp. 109–114. DOI: 10.1016/j.jda.2012.09.002. URL:

http://dx.doi.org/10.1016/j.jda.2012.09.002.

[73] Sahar Hooshmand et al. “I/O-efficient data structures for non-overlapping indexing”. In:

Theoretical Computer Science 857 (2021), pp. 1–7.

[74] Sahar Hooshmand et al. “Non-Overlapping Indexing-Cache Obliviously”. In: Annual Sym-

posium on Combinatorial Pattern Matching (CPM 2018). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik. 2018.

[75] Atalay Mert Ileri, M. Oguzhan Külekci, and Bojian Xu. “Shortest Unique Substring Query

Revisited”. In: Combinatorial Pattern Matching - 25th Annual Symposium, CPM 2014,

Moscow, Russia, June 16-18, 2014. Proceedings. 2014, pp. 172–181. DOI: 10.1007/978-

3- 319- 07566- 2\_18. URL: https://doi.org/10.1007/978- 3- 319- 07566-

2%5C_18.

[76] Costas S. Iliopoulos et al. “Maximal Motif Discovery in a Sliding Window”. In: String

Processing and Information Retrieval - 25th International Symposium, SPIRE 2018, Lima,

Peru, October 9-11, 2018, Proceedings. 2018, pp. 191–205. DOI: 10.1007/978-3-030-

00479-8\_16. URL: https://doi.org/10.1007/978-3-030-00479-8%5C_16.

[77] Hiroe Inoue et al. “Algorithms and combinatorial properties on shortest unique palindromic

substrings”. In: J. Discrete Algorithms 52 (2018), pp. 122–132. DOI: 10.1016/j.jda.

2018.11.009. URL: https://doi.org/10.1016/j.jda.2018.11.009.

[78] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. “Space-Efficient and Fast Al-

gorithms for Multidimensional Dominance Reporting and Counting”. In: Algorithms and

Computation, 15th International Symposium, ISAAC 2004, Hong Kong, China, December

20-22, 2004, Proceedings. Ed. by Rudolf Fleischer and Gerhard Trippen. Vol. 3341. Lec-

79

https://doi.org/10.1016/j.jda.2012.09.002
http://dx.doi.org/10.1016/j.jda.2012.09.002
https://doi.org/10.1007/978-3-319-07566-2\_18
https://doi.org/10.1007/978-3-319-07566-2\_18
https://doi.org/10.1007/978-3-319-07566-2%5C_18
https://doi.org/10.1007/978-3-319-07566-2%5C_18
https://doi.org/10.1007/978-3-030-00479-8\_16
https://doi.org/10.1007/978-3-030-00479-8\_16
https://doi.org/10.1007/978-3-030-00479-8%5C_16
https://doi.org/10.1016/j.jda.2018.11.009
https://doi.org/10.1016/j.jda.2018.11.009
https://doi.org/10.1016/j.jda.2018.11.009


ture Notes in Computer Science. Springer, 2004, pp. 558–568. DOI: 10.1007/978-3-

540-30551-4\_49. URL: https://doi.org/10.1007/978-3-540-30551-4%5C_49.

[79] Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. “Linear work suffix array con-

struction”. In: J. ACM 53.6 (2006), pp. 918–936. DOI: 10.1145/1217856.1217858. URL:

https://doi.org/10.1145/1217856.1217858.

[80] Toru Kasai et al. “Linear-time longest-common-prefix computation in suffix arrays and its

applications”. In: Annual Symposium on Combinatorial Pattern Matching. Springer. 2001,

pp. 181–192.

[81] Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. “Range Non-overlapping Index-

ing and Successive List Indexing”. In: Algorithms and Data Structures, 10th Interna-

tional Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceedings. 2007,

pp. 625–636. DOI: 10.1007/978-3-540-73951-7_54. URL: http://dx.doi.org/10.

1007/978-3-540-73951-7_54.

[82] Orgad Keller et al. “Generalized substring compression”. In: Theor. Comput. Sci. 525

(2014), pp. 42–54. DOI: 10.1016/j.tcs.2013.10.010. URL: https://doi.org/

10.1016/j.tcs.2013.10.010.

[83] Dmitry V. Khmelev and William J. Teahan. “A Repetition Based Measure for Verifica-

tion of Text Collections and for Text Categorization”. In: Proceedings of the 26th Annual

International ACM SIGIR Conference on Research and Development in Informaion Re-

trieval. SIGIR ’03. Toronto, Canada: ACM, 2003, pp. 104–110. ISBN: 1-58113-646-3. DOI:

10.1145/860435.860456. URL: http://doi.acm.org/10.1145/860435.860456.

[84] Tomasz Kociumaka. “Efficient data structures for internal queries in texts”. In: (2019).

80

https://doi.org/10.1007/978-3-540-30551-4\_49
https://doi.org/10.1007/978-3-540-30551-4\_49
https://doi.org/10.1007/978-3-540-30551-4%5C_49
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/978-3-540-73951-7_54
http://dx.doi.org/10.1007/978-3-540-73951-7_54
http://dx.doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1016/j.tcs.2013.10.010
https://doi.org/10.1145/860435.860456
http://doi.acm.org/10.1145/860435.860456


[85] Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj. “Sublinear space

algorithms for the longest common substring problem”. In: European Symposium on Algo-

rithms. Springer. 2014, pp. 605–617.

[86] Tsvi Kopelowitz, Moshe Lewenstein, and Ely Porat. “Persistency in Suffix Trees with Ap-

plications to String Interval Problems”. In: String Processing and Information Retrieval,

18th International Symposium, SPIRE 2011, Pisa, Italy, October 17-21, 2011. Proceed-

ings. Ed. by Roberto Grossi, Fabrizio Sebastiani, and Fabrizio Silvestri. Vol. 7024. Lecture

Notes in Computer Science. Springer, 2011, pp. 67–80. DOI: 10.1007/978- 3- 642-

24583-1\_8. URL: https://doi.org/10.1007/978-3-642-24583-1%5C_8.

[87] Gad M Landau and Uzi Vishkin. “Fast string matching with k differences”. In: Journal of

Computer and System Sciences 37.1 (1988), pp. 63–78.

[88] Moshe Lewenstein. “Orthogonal Range Searching for Text Indexing”. In: Space-Efficient

Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occa-

sion of His 66th Birthday. 2013, pp. 267–302. DOI: 10.1007/978-3-642-40273-9\_18.

URL: https://doi.org/10.1007/978-3-642-40273-9%5C_18.

[89] M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005. ISBN:

978-0-521-84802-2. URL: http : / / www . cambridge . org / gb / knowledge / isbn /

item1172552/?site%5C_locale=en%5C_GB.

[90] Veli Mäkinen and Gonzalo Navarro. “Position-Restricted Substring Searching”. In: LATIN

2006: Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March 20-

24, 2006, Proceedings. Ed. by José R. Correa, Alejandro Hevia, and Marcos A. Kiwi.

Vol. 3887. Lecture Notes in Computer Science. Springer, 2006, pp. 703–714. DOI: 10.

1007/11682462\_64. URL: https://doi.org/10.1007/11682462%5C_64.

[91] U Manber and G Myers. “Suffix arrays: a new method for on-line search”. In: SIAM Jour-

nal on Comput ing (2003), p. 22.

81

https://doi.org/10.1007/978-3-642-24583-1\_8
https://doi.org/10.1007/978-3-642-24583-1\_8
https://doi.org/10.1007/978-3-642-24583-1%5C_8
https://doi.org/10.1007/978-3-642-40273-9\_18
https://doi.org/10.1007/978-3-642-40273-9%5C_18
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site%5C_locale=en%5C_GB
http://www.cambridge.org/gb/knowledge/isbn/item1172552/?site%5C_locale=en%5C_GB
https://doi.org/10.1007/11682462\_64
https://doi.org/10.1007/11682462\_64
https://doi.org/10.1007/11682462%5C_64


[92] Udi Manber and Gene Myers. “Suffix arrays: a new method for on-line string searches”.

In: siam Journal on Computing 22.5 (1993), pp. 935–948.

[93] Giovanni Manzini. “Two space saving tricks for linear time LCP array computation”. In:

Scandinavian Workshop on Algorithm Theory. Springer. 2004, pp. 372–383.

[94] Wataru Matsubara et al. “Efficient algorithms to compute compressed longest common

substrings and compressed palindromes”. In: Theoretical Computer Science 410.8-10 (2009),

pp. 900–913.

[95] Kotaro Matsuda et al. “Compressed Orthogonal Search on Suffix Arrays with Applica-

tions to Range LCP”. In: 31st Annual Symposium on Combinatorial Pattern Matching,

CPM 2020, June 17-19, 2020, Copenhagen, Denmark. 2020, 23:1–23:13. DOI: 10.4230/

LIPIcs.CPM.2020.23. URL: https://doi.org/10.4230/LIPIcs.CPM.2020.23.

[96] Takuya Mieno et al. “Compact Data Structures for Shortest Unique Substring Queries”. In:

String Processing and Information Retrieval - 26th International Symposium, SPIRE 2019,

Segovia, Spain, October 7-9, 2019, Proceedings. Vol. 11811. Lecture Notes in Computer

Science. Springer, 2019, pp. 107–123. DOI: 10.1007/978-3-030-32686-9\_8. URL:

https://doi.org/10.1007/978-3-030-32686-9%5C_8.

[97] Takuya Mieno et al. “Shortest Unique Substring Queries on Run-Length Encoded Strings”.

In: 41st International Symposium on Mathematical Foundations of Computer Science,

MFCS 2016, August 22-26, 2016 - Kraków, Poland. 2016, 69:1–69:11. DOI: 10.4230/

LIPIcs.MFCS.2016.69. URL: https://doi.org/10.4230/LIPIcs.MFCS.2016.69.

[98] James Morris Jr and Vaughan Pratt. A linear pattern-matching algorithm. 1970.

[99] Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University

Press, 2016.

82

https://doi.org/10.4230/LIPIcs.CPM.2020.23
https://doi.org/10.4230/LIPIcs.CPM.2020.23
https://doi.org/10.4230/LIPIcs.CPM.2020.23
https://doi.org/10.1007/978-3-030-32686-9\_8
https://doi.org/10.1007/978-3-030-32686-9%5C_8
https://doi.org/10.4230/LIPIcs.MFCS.2016.69
https://doi.org/10.4230/LIPIcs.MFCS.2016.69
https://doi.org/10.4230/LIPIcs.MFCS.2016.69


[100] Gonzalo Navarro and Veli Mäkinen. “Compressed full-text indexes”. In: ACM Computing

Surveys (CSUR) 39.1 (2007), 2–es.

[101] Yakov Nekrich and Gonzalo Navarro. “Sorted Range Reporting”. In: Algorithm Theory -

SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6,

2012. Proceedings. Ed. by Fedor V. Fomin and Petteri Kaski. Vol. 7357. Lecture Notes in

Computer Science. Springer, 2012, pp. 271–282. DOI: 10.1007/978-3-642-31155-

0\_24. URL: https://doi.org/10.1007/978-3-642-31155-0%5C_24.

[102] Paweł Gawrychowski Panagiotis Charalampopoulos and Karol Pokorski. “Dynamic Longest

Common Substring in Polylogarithmic Time”. In: 47th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2020, 2020.

[103] Manish Patil, Rahul Shah, and Sharma V Thankachan. “Faster range LCP queries”. In:

International Symposium on String Processing and Information Retrieval. Springer. 2013,

pp. 263–270.

[104] Manish Patil et al. “Categorical range maxima queries”. In: Proceedings of the 33rd ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14,

Snowbird, UT, USA, June 22-27, 2014. 2014, pp. 266–277. DOI: 10.1145/2594538.

2594557. URL: https://doi.org/10.1145/2594538.2594557.

[105] Jian Pei, Wush Chi-Hsuan Wu, and Mi-Yen Yeh. “On shortest unique substring queries”.

In: 29th IEEE International Conference on Data Engineering, ICDE 2013, Brisbane, Aus-

tralia, April 8-12, 2013. 2013, pp. 937–948. DOI: 10.1109/ICDE.2013.6544887. URL:

https://doi.org/10.1109/ICDE.2013.6544887.

[106] Solon P. Pissis. “MoTeX-II: structured MoTif eXtraction from large-scale datasets”. In:

BMC Bioinform. 15 (2014), p. 235. DOI: 10.1186/1471-2105-15-235. URL: https:

//doi.org/10.1186/1471-2105-15-235.

83

https://doi.org/10.1007/978-3-642-31155-0\_24
https://doi.org/10.1007/978-3-642-31155-0\_24
https://doi.org/10.1007/978-3-642-31155-0%5C_24
https://doi.org/10.1145/2594538.2594557
https://doi.org/10.1145/2594538.2594557
https://doi.org/10.1145/2594538.2594557
https://doi.org/10.1109/ICDE.2013.6544887
https://doi.org/10.1109/ICDE.2013.6544887
https://doi.org/10.1186/1471-2105-15-235
https://doi.org/10.1186/1471-2105-15-235
https://doi.org/10.1186/1471-2105-15-235


[107] Kangho Roh et al. “External Memory Algorithms for String Problems”. In: Fundam. In-

form. 84.1 (2008), pp. 17–32. URL: http : / / content . iospress . com / articles /

fundamenta-informaticae/fi84-1-03.

[108] Kunihiko Sadakane. “Succinct representations of lcp information and improvements in the

compressed suffix arrays”. In: Proceedings of the Thirteenth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA. 2002, pp. 225–

232. URL: http://dl.acm.org/citation.cfm?id=545381.545410.

[109] Kunihiko Sadakane and Gonzalo Navarro. “Fully-Functional Succinct Trees”. In: Proceed-

ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2010, Austin, Texas, USA, January 17-19, 2010. 2010, pp. 134–149. DOI: 10.1137/1.

9781611973075.13. URL: https://doi.org/10.1137/1.9781611973075.13.

[110] Chris Schleiermacher et al. “REPuter: the manifold applications of repeat analysis on a ge-

nomic scale”. In: Nucleic Acids Research 29.22 (Nov. 2001), pp. 4633–4642. ISSN: 0305-

1048. DOI: 10.1093/nar/29.22.4633.

[111] Daniel W. Schultz and Bojian Xu. “On k-Mismatch Shortest Unique Substring Queries

Using GPU”. In: Bioinformatics Research and Applications - 14th International Sympo-

sium, ISBRA 2018, Beijing, China, June 8-11, 2018, Proceedings. 2018, pp. 193–204. DOI:

10.1007/978-3-319-94968-0\_18. URL: https://doi.org/10.1007/978-3-319-

94968-0%5C_18.

[112] Daniel Dominic Sleator and Robert Endre Tarjan. “A Data Structure for Dynamic Trees”.

In: Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May 11-13,

1981, Milwaukee, Wisconsin, USA. 1981, pp. 114–122. DOI: 10.1145/800076.802464.

URL: http://doi.acm.org/10.1145/800076.802464.

[113] Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. “A Provably Efficient

Algorithm for the k-Mismatch Average Common Substring Problem”. In: J. Comput. Biol.

84

http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-03
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-03
http://dl.acm.org/citation.cfm?id=545381.545410
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1137/1.9781611973075.13
https://doi.org/10.1093/nar/29.22.4633
https://doi.org/10.1007/978-3-319-94968-0\_18
https://doi.org/10.1007/978-3-319-94968-0%5C_18
https://doi.org/10.1007/978-3-319-94968-0%5C_18
https://doi.org/10.1145/800076.802464
http://doi.acm.org/10.1145/800076.802464


23.6 (2016), pp. 472–482. DOI: 10.1089/cmb.2015.0235. URL: https://doi.org/10.

1089/cmb.2015.0235.

[114] Sharma V. Thankachan, Sriram P. Chockalingam, and Srinivas Aluru. “An Efficient Algo-

rithm for Finding All Pairs k-Mismatch Maximal Common Substrings”. In: Bioinformatics

Research and Applications - 12th International Symposium, ISBRA 2016, Minsk, Belarus,

June 5-8, 2016, Proceedings. Ed. by Anu G. Bourgeois et al. Vol. 9683. Lecture Notes in

Computer Science. Springer, 2016, pp. 3–14. DOI: 10.1007/978-3-319-38782-6\_1.

URL: https://doi.org/10.1007/978-3-319-38782-6%5C_1.

[115] Sharma V. Thankachan et al. “Algorithmic Framework for Approximate Matching Un-

der Bounded Edits with Applications to Sequence Analysis”. In: Research in Computa-

tional Molecular Biology - 22nd Annual International Conference, RECOMB 2018, Paris,

France, April 21-24, 2018, Proceedings. 2018, pp. 211–224. DOI: 10.1007/978-3-319-

89929-9\_14. URL: https://doi.org/10.1007/978-3-319-89929-9%5C_14.

[116] Kazuya Tsuruta et al. “Shortest Unique Substrings Queries in Optimal Time”. In: SOF-

SEM 2014: Theory and Practice of Computer Science - 40th International Conference on

Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,

January 26-29, 2014, Proceedings. 2014, pp. 503–513. DOI: 10.1007/978- 3- 319-

04298-5\_44. URL: https://doi.org/10.1007/978-3-319-04298-5%5C_44.

[117] Esko Ukkonen. “On-Line Construction of Suffix Trees”. In: Algorithmica 14.3 (1995),

pp. 249–260. DOI: 10.1007/BF01206331. URL: http://dx.doi.org/10.1007/

BF01206331.

[118] Yuki Urabe et al. “Longest Lyndon Substring After Edit”. In: Annual Symposium on Com-

binatorial Pattern Matching, CPM 2018, July 2-4, 2018 - Qingdao, China. Ed. by Gonzalo

Navarro, David Sankoff, and Binhai Zhu. Vol. 105. LIPIcs. Schloss Dagstuhl - Leibniz-

85

https://doi.org/10.1089/cmb.2015.0235
https://doi.org/10.1089/cmb.2015.0235
https://doi.org/10.1089/cmb.2015.0235
https://doi.org/10.1007/978-3-319-38782-6\_1
https://doi.org/10.1007/978-3-319-38782-6%5C_1
https://doi.org/10.1007/978-3-319-89929-9\_14
https://doi.org/10.1007/978-3-319-89929-9\_14
https://doi.org/10.1007/978-3-319-89929-9%5C_14
https://doi.org/10.1007/978-3-319-04298-5\_44
https://doi.org/10.1007/978-3-319-04298-5\_44
https://doi.org/10.1007/978-3-319-04298-5%5C_44
https://doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331


Zentrum für Informatik, 2018, 19:1–19:10. DOI: 10.4230/LIPIcs.CPM.2018.19. URL:

https://doi.org/10.4230/LIPIcs.CPM.2018.19.

[119] Kiichi Watanabe et al. “Shortest Unique Palindromic Substring Queries on Run-Length

Encoded Strings”. In: Combinatorial Algorithms - 30th International Workshop, IWOCA

2019, Pisa, Italy, July 23-25, 2019, Proceedings. 2019, pp. 430–441. DOI: 10.1007/978-

3- 030- 25005- 8\_35. URL: https://doi.org/10.1007/978- 3- 030- 25005-

8%5C_35.

[120] Peter Weiner. “Linear Pattern Matching Algorithms”. In: 14th Annual Symposium on Switch-

ing and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973. 1973, pp. 1–11.

DOI: 10.1109/SWAT.1973.13. URL: https://doi.org/10.1109/SWAT.1973.13.

[121] Peter Weiner. “Linear Pattern Matching Algorithms”. In: Proceedings of the 14th Annual

Symposium on Switching and Automata Theory (Swat 1973). SWAT ’73. Washington, DC,

USA: IEEE Computer Society, 1973, pp. 1–11. DOI: 10.1109/SWAT.1973.13. URL:

https://doi.org/10.1109/SWAT.1973.13.

[122] Peter Weiner. “Linear Pattern Matching Algorithms”. In: 14th Annual Symposium on Switch-

ing and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973. 1973, pp. 1–11.

DOI: 10.1109/SWAT.1973.13. URL: http://dx.doi.org/10.1109/SWAT.1973.13.

[123] Dan E. Willard. “Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N)”.

In: Inf. Process. Lett. 17.2 (1983), pp. 81–84. DOI: 10.1016/0020-0190(83)90075-3.

URL: https://doi.org/10.1016/0020-0190(83)90075-3.

[124] Ross N Williams. “An extremely fast Ziv-Lempel data compression algorithm”. In: 1991

Data Compression Conference. IEEE Computer Society. 1991, pp. 362–363.

[125] Andrew C. Yao. “Space-time Tradeoff for Answering Range Queries (Extended Abstract)”.

In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing.

86

https://doi.org/10.4230/LIPIcs.CPM.2018.19
https://doi.org/10.4230/LIPIcs.CPM.2018.19
https://doi.org/10.1007/978-3-030-25005-8\_35
https://doi.org/10.1007/978-3-030-25005-8\_35
https://doi.org/10.1007/978-3-030-25005-8%5C_35
https://doi.org/10.1007/978-3-030-25005-8%5C_35
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
http://dx.doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.1016/0020-0190(83)90075-3


STOC ’82. San Francisco, California, USA: ACM, 1982, pp. 128–136. ISBN: 0-89791-

070-2. DOI: 10.1145/800070.802185. URL: http://doi.acm.org/10.1145/800070.

802185.

[126] Gelin Zhou. “Two-dimensional range successor in optimal time and almost linear space”.

In: Inf. Process. Lett. 116.2 (2016), pp. 171–174. DOI: 10.1016/j.ipl.2015.09.002.

URL: https://doi.org/10.1016/j.ipl.2015.09.002.

[127] Jacob Ziv and Abraham Lempel. “A universal algorithm for sequential data compression”.

In: IEEE Trans. Information Theory 23.3 (1977), pp. 337–343. DOI: 10.1109/TIT.1977.

1055714. URL: https://doi.org/10.1109/TIT.1977.1055714.

87

https://doi.org/10.1145/800070.802185
http://doi.acm.org/10.1145/800070.802185
http://doi.acm.org/10.1145/800070.802185
https://doi.org/10.1016/j.ipl.2015.09.002
https://doi.org/10.1016/j.ipl.2015.09.002
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

	Efficient Data Structures for Text Processing Applications
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Longest Common Substring Queries
	1.2 Longest Common Prefix Queries
	1.3 Shortest Unique Substrings Queries
	1.4 Non-overlapping Indexing 
	1.5 Our Contributions
	1.5.1 The Heaviest Induced Ancestors Problem
	1.5.1.1 Longest Common Substring of LZ77 Compressed Strings
	1.5.1.2 All-Pairs Longest Common Substring Problem
	1.5.1.3 Dynamic Longest Common Substring Problem

	1.5.2 The Range-LCP Problem
	1.5.3 The Range-SUS Problem
	1.5.4 I/O-Efficient Data Structures for Non-Overlapping Indexing
	1.5.4.1 The Models of Computations



	CHAPTER 2: PRELIMINARIES AND TERMINOLOGIES
	2.1 Suffix Trees and Suffix Arrays
	2.2 Predecessor/Successor Queries
	2.3 Fully-Functional Succinct Tree
	2.4 Range Maximum Query (RMQ) and Path Maximum Query (PMQ)
	2.5 2D-Range Maximum Query (2D-RMQ) 
	2.6 Orthogonal Range Queries in 2-Dimension
	2.7 Heavy Path and Heavy Path Decomposition

	CHAPTER 3: THE HEAVIEST INDUCED ANCESTORS PROBLEM
	3.1 Our Framework
	3.1.1 Basic Queries
	3.1.2 Overview

	3.2 Our Data Structures
	3.2.1 Our O(nlogn) Space Data Structure
	3.2.2 Our Linear Space Data Structure

	3.3 Applications to String Processing
	3.3.1 All-Pairs Longest Common Substring Problem
	3.3.1.1 Data Structure
	3.3.1.2 Query Algorithm

	3.3.2 Dynamic Longest Common Substring Problem

	3.4 Conclusion

	CHAPTER 4: THE RANGE LONGEST COMMON PREFIX PROBLEM
	4.1 Amir et al.'s Framework
	4.2 Our Framework
	4.2.1 An Overview of Our Data Structure

	4.3 Details of the Components
	4.3.1 The Structure for Estimating Range-LCP
	4.3.2 The Structure for Handling Q(,,h) Queries

	4.4 Conclusion

	CHAPTER 5: THE RANGE SHORTEST UNIQUE SUBSTRING PROBLEM
	5.1 An O(nlogn)-Word Data Structure
	5.2 An O(n)-Word Data Structure
	5.3 Final Remarks

	CHAPTER 6: INDEXING CACHE-OBLIVIOUSLY
	6.1 Sorted Range Reporting on Arrays
	6.2 Non-Overlapping Indexing - Cache Obliviously
	6.2.1 Handling aperiodic case
	6.2.2 Handling periodic case

	6.3 Range Non-Overlapping Indexing in Cache-Aware Model
	6.3.1 The Data Structure
	6.3.2 Handling aperiodic case
	6.3.3 Handling periodic case

	6.4 Conclusion

	LIST OF REFERENCES

