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ABSTRACT 

Transparent electrodes represent a critical component in a wide range of optoelectronic 

devices such as high-speed photodetectors and solar cells. Fundamentally, the presence of any 

conductive structures in the optical path leads to dissipation and reflection, which adversely affects 

device performance. Many different approaches have been attempted to minimize such shadowing 

losses, including the use of transparent conductive oxides (TCOs), metallic nanowire mesh grids, 

graphene-based contacts, and high-aspect ratio metallic wire arrays.  

In this dissertation I discuss a conceptually different approach to achieve transparent 

electrodes, which involves recapturing photons initially reflected by highly conductive electrode 

lines. To achieve this, light-redirecting metallic wires are embedded in a thin dielectric layer. 

Incident light is intentionally reflected toward large internal angles, which enables trapping of 

reflected photons through total internal reflection (TIR). Light trapping transparent electrodes 

could potentially reach the holy grail of transparent electrodes: the simultaneous achievement of 

high conductivity and near-complete optical transparency. We numerically and experimentally 

investigate several light trapping electrode structures. First, we study the spectral and angular 

optical transmission of embedded interdigitated metallic electrodes with inclined wire surfaces and 

demonstrate efficient broadband angle-insensitive polarization-independent light trapping. Proof-

of-principle experiments are carried out, demonstrating several of the features observed in our 

numerical studies. Second, a novel type of grating-based light trapping transparent electrode is 

discussed. In this approach, diffraction from metal wires covered with nanoscale silicon gratings 

is used to achieve total internal reflection. We show that careful grating optimization achieves 
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strong suppression of specular reflection, enabling a more than fivefold reduction of shadowing 

losses. The realization of a high light-trapping efficiency in a coplanar structure makes the design 

a promising candidate for integration in real-world optoelectronic devices. Finally, the 

transmission of high-index metasurfaces is investigated. Such structures may enable efficient light 

redirection around metallic contacts, if reflection losses by the metasurface can be suppressed. We 

demonstrate that the traditional anti-reflection coating approach fails for such structures, and 

present an improved design approach that reduces reflection losses over a broad range of structural 

parameters. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Transparent electrodes (TEs) are widely used in optoelectronic devices such as solar cells, 

photodiodes, photovoltaic devices, displays and transparent heaters [1-4]. These devices suffer 

from shadowing losses caused by the reflection and absorption of incident light by the electrodes 

[5]. In photovoltaic (PV) cells, electrical contacts are necessary to collect charge carriers, which is 

commonly achieved using metallic wires [6]. However, the metallic nature of the contacts 

inevitably causes shadowing loss, dominated by reflection losses. In order to minimize the 

shadowing loss and maintain high electrical conductivity at the same time, a sparse array of thin 

metallic wires is commonly used.  In organic light emitting diodes (OLEDs) electrical contacts are 

needed to inject charges, while one side of the device needs to be transparent to allow light 

emission. In these devices thin conducting films such as indium-tin-oxide (ITO) are typically used. 

Another application of transparent electrodes involves transparent film heaters (TFHs) [7]. TFHs 

rely on resistive heating to avoid condensation and frosting, and are used for example in vehicles, 

in outdoor panel displays, and specialized cameras [8-10].  

In most devices that use transparent electrodes, there is an intrinsic trade-off between 

transparency and conductivity. In the case of conductive wire electrodes, a minimum areal 

coverage of metal is needed for achieving low sheet resistance. In the case of thin-film conductive 

layers, a minimum thickness is required for achieving small sheet resistance, which is accompanied 

by absorptive loss related to dissipation by the charge carriers. Consequently, for both approaches 
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there is an intrinsic trade-off between transparency and conductivity. The large difference in 

conductivity between metals and typical transparent oxides (Figure 1.1) leads to different design 

decisions [11]. A third possible approach for achieving transparent electrodes that largely avoids 

this trade-off involves routing light around the conductive regions, typically done using refractive 

structures, e.g. lens arrays [12].  

 

Figure 1.1: Electrical conductivities of different materials. 

1.2 Current progress of transparent electrodes 

Conventional transparent electrodes can broadly be divided into three categories: thin film 

electrodes, random mesh grids, and wire arrays, each with their own specific challenges in 

achieving high conductivity and high transparency. Various transparent conductive materials 

(TCMs) are used in TEs. In general, high optical transparency and electrical conductivity are 
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needed for optoelectronic devices. Additionally, mechanical stability, cost, and simplicity of 

fabrication are desirable. Different TEs and their fabrication processes are reviewed in this chapter. 

Transparent conductive oxides (TCOs) are widely used as the electrical anode due to their 

relatively high conductivity and good optical transparency. The electrical conductivity of these 

materials can be controlled by changing the material composition and thermal treatment. Various 

TCOs have been employed as TEs, such as indium tin oxide (ITO), zinc oxide and titanium oxide. 

Among these, ITO is the most commonly used. ITO has relatively high electrical conductivity and 

optical transparency. For a 100 nm thick ITO layer on glass substrate, a sheet resistance of 10 Ω/sq 

with more than 90% transmittance can be achieved [13]. ITO has excellent broadband optical 

transmittance in visible and infrared [14]. However, several disadvantages of ITO limit its overall 

performance. Firstly, the scarcity of indium results in the high price of ITO, which prevents it from 

mass production [15]. Secondly, when deposited on the semiconductor or organic semiconductor 

substrate, the migration of indium into the substrate is the main reason of device degradation [16]. 

Apart from this, low mechanical stability, including mechanical flexibility and high brittleness, 

represents a challenge [17]. Moreover, the low work function (4.7 eV) limits the efficiency of hole 

injection, which is a critical issue in OLED displays [18].  

Graphene is an emerging nanomaterial with exceptional material properties. Graphene 

consists of a 2D hexagonal lattice of carbon atoms [19]. Graphene is a monolayer material and the 

thickness of a single graphene layer is thus atom-scale [20]. Graphene has a high carrier mobility, 

so it has excellent electrical conductivity given its thickness. However, increasing the sheet 

conductivity by using multilayer graphene faces challenges. High quality graphene is also difficult 

to fabricate. 
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Conductive polymers are a group of organic polymers that conduct electricity. The most 

commonly used conductive polymer as transparent conductive material is Poly(3,4-

ethylenedioxythiophene) (PEDOT:PSS), which is a Sulfur-containing conductive polymer [21]. 

Conductive polymers are widely used in optoelectronic devices such as organic light emitting 

diodes (OLEDs) and organic photovoltaics (OPVs) [22]. Conductive polymers have combined 

optical and electrical properties: it was demonstrated that thin PEDOT:PSS films (less than 100 

nm) has a sheet resistance of 240 Ω/sq and 97% optical transmittance under 550 nm illumination 

[23]. However, conductive polymers have relatively large sheet resistance compared to ITO. 

Consequently, conductive polymers cannot replace ITO in devices that require high conductivity. 

Moreover, low long-term chemical stability is another concern for conductive polymers [24]. 

Thin film metallic TEs would be highly reflective unless the thickness is almost negligible. 

To address this issue, the incident light needs to avoid the electrodes to reduce the shadowing loss. 

Therefore, it is necessary for highly conductive regions to only cover a small fraction of the surface 

areas while leaving the most areas open. This is the basis of wire-based electrodes. In general, 

wire-based electrodes can be divided into two categories: random mesh grids and wire arrays. Here 

we review the properties and fabrication process of random mesh grids first. 

Carbon nanotubes (CNTs) are nanomaterials that contain a two-dimensional hexagonal 

lattice of carbon atoms arranged to form an atomically thin cylinder [25]. CNT mesh electrodes 

are used in organic and inorganic photovoltaic solar cells [26]. CNTs have been shown to enable 

good combined optical and electrical performance. It was demonstrated that CNTs could achieve 

a sheet resistance of 60 Ω/sq and 90.9% optical transmittance simultaneously [27]. Owing to the 
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covalent bonds between adjacent carbon atoms, CNT has outstanding mechanical strength and 

stiffness [28].  

Nevertheless, the optoelectronic performance of CNT based transparent electrodes is not 

comparable to that of ITO. Owing to high junction resistance at the connection between different 

CNTs, carbon nanotube networks have relatively high sheet resistance [29]. In addition, the 

existence of semiconductor type CNTs inside the mesh will increase absorption and lead to 

reduced optical transparency [30]. 

Metallic nanowire (MNW) based transparent electrodes exhibit good optical and electrical 

properties. Metallic nanowire based TEs include copper, silver, gold and nickel alloy nanowires 

[31]. Metals have a large free charge density, leading to extremely large conductivity. For metals 

commonly used as TEs such as copper, silver and gold, the plasma frequency occurs in the visible 

or near-UV region of the spectrum, and consequently strong reflection is anticipated.   

Interestingly the conductivity of metal nanowires is not only determined by the wire cross-

section. When the diameter of the nanowires approaches the mean free path of electrons in bulk 

metals, the electrical conductivity decreases drastically [32]. This is due to the scattering of 

electrons on the surface of the wires, which results in extra resistivity. On the other hand, reduced 

wire diameters will reduce optical scattering losses. The electrical conductivity of MNWs is also 

affected by the contact resistance between different wires in the mesh. This can be reduced by 

post-deposition thermal annealing, chemical treatments, laser sintering, light-induced plasmonic 

nano-welding and mechanical pressing [33-35]. Such methods can significantly reduce the sheet 

resistance from 107 to 9.5 Ω/sq [36]. Accordingly, MNWs show higher electrical conductivity over 

other materials [37]. 
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1.3 Light trapping transparent electrodes 

In order to minimize the shadowing losses in metal wire array electrodes, a small metal fill 

fraction is needed. However, the reduced cross-sectional area of the electrode and the large open 

area will lead to low sheet conductivity. To achieve high conductivity and low shadowing losses, 

different approaches are used to minimize light interaction with any metallic surfaces, either 

through light redirection around the wires, or light trapping of reflected light. 

The aspect ratio of an electrode is defined as the ratio between its height and width. High 

aspect ratio electrodes can be used as TEs for their ability to redirect light. Atwater et al. reported 

a computational study of metallic mesoscale light trapping electrode with high aspect ratio in 2018 

[38]. Structures with different sizes were compared. The schematics are shown in Figure 1.2. For 

triangular electrodes with high aspect ratio, incident light is reflected in a large angle to surface 

normal and redirected into the substrate. This angle is the complementary angle of the top angle 

of the cross-sectional triangle. The study showed that small devices (w=50-1000 nm) exhibited 

strong dissipation, while electrodes in mesoscale sizes (w>1 μm) showed better performance. It 

was shown that 99% optical transmittance with a sheet resistance of 0.1 Ω/sq can be achieved with 

20% areal metal coverage, 5 μm width and 15 μm height. Besides, an absorption enhancement of 

up to 15% in 2 μm thick silicon substrate covered by dense electrode arrays was observed.  
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Figure 1.2: Schematics of (a) nanoscale (b) mesoscale and (c) microscale metallic 

nanowires. 

However, high aspect ratio electrodes are difficult to fabricate. Moreover, this kind of 

structure is mechanically instable and could be more susceptible to cracking than low-aspect ratio 

wires when being bent or extended. Limited adhesion to the substrate is another challenge in this 

configuration.        

An advanced approach related to the previous section is the use of cloaked contacts. The 

idea of invisible contacts using metamaterials was presented by Pendry et al in 2006 [39]. Recently 

Martin et al. have developed its applications as transparent electrodes on solar cells [40]. Incident 

light is redirected to avoid interaction with the object (e.g. wire electrode), while maintaining the 

propagation angle after leaving the cloak. This is a key difference with the lens array approach 

discussed above. The refractive index of the material ranges from 1-1.5, which is practical in 

common materials like polymers or silica glass. This layer is designed to be graded-indexed to 

redirect the incident light to avoid the contacts and get absorbed. 
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Other than high-aspect ratio or encapsulation, contacts with engineered reflective 

properties also enable enhanced optical transparency. A light trapping silver electrode was 

proposed by Kik in 2014 [41]. In this work a semi-triangular geometry incorporated with a 

dielectric cover layer was employed to improve the optical performance. The schematic is shown 

in Figure 1.3. A silver electrode with tilted surface is embedded in a dielectric layer. As shown in 

Figure 1.3, normally incident light is reflected at high angle, resulting in total internal reflection 

(TIR) at the surface of the dielectric layer, resulting in back-reflection into the substrate. Based on 

the ray optics analysis, 100% frequency and polarization independent optical transmission can be 

achieved for this structure at 50% metal areal coverage, by entirely eliminating reflection losses. 

 

Figure 1.3: The schematic of the semi-triangular Transparent electrodes. 

Light-trapping cylindrical nanowire TEs are substantially adopted due to facile fabrication 

process. Fan et al. reported a numerical analysis of cylindrical silver nanowire electrodes 

embedded in silicon nitride cover layers [42]. A generalized Fabry-Perot model was developed to 

study the optical characteristics of the device. As a result, a broadband antireflection performance 
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in visible and near infrared range was demonstrated for the electrodes. Absorption becomes 

significant in short wavelength (400-600 nm) for TM polarized waves due to plasmon-assisted 

absorption. It was also proved that the optical performance of the device is angular independent at 

small incident angles.  

1.4 Metasurfaces and flat optics for shadowing loss reduction 

Flat optics is an emerging field of optics that aims at replacing traditional bulky optical 

elements with subwavelength gradient phase arrays, commonly called gradient metasurfaces. By 

imparting specific phase profiles on the optical wavefront through specifically tailored non-

periodic nanostructures arbitrary wavefront control is achieved, allowing the development of thin 

(typically few-wavelength) optical components. Due to the rapidly development of computational 

algorithms and fabrication techniques originated from the semiconductor industry, large-scale 

design and production of complex metasurfaces has become possible in recent years. Metasurfaces 

have a variety of applications, including imaging [43], sensing [44-46], beam-steering [47] and 

holographic displays [48, 49]. Aside from passive devices, active metasurfaces incorporating 

dynamically tunable materials such as Metal-oxide-semiconductors (MOS) [50] and phase change 

materials (PCM) [51, 52] have also attracted attention from both academia and industry. 

Metalenses and beam steering metasurfaces can focus or steer incident light. By placing these 

metasurfaces on the front side of photodetectors or solar cells, the incident light could be redirected 

into the substrate while largely avoiding metallic contacts, substantially reducing the shadowing 
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losses. Therefore, metasurfaces and other flat optics elements could be incorporated in novel 

transparent electrode designs.  

1.5 Summary 

This dissertation is organized as follows: Chapter 2 investigates the size-dependent 

performance of metallic light trapping electrodes with triangular and circular cross-section. 

Chapter 3 addresses the angle-dependent transmission of triangular transparent electrodes. 

Chapter 4 presents an experimental demonstration and optical characterization of triangular light 

trapping electrodes fabricated through multi-photon lithography. Chapter 5 introduces a novel 

design of light trapping transparent electrodes based on high efficiency zero-order suppression by 

a grating defined on top of metallic wires. The concept is demonstrated experimentally. Chapter 6 

investigates the suppression of reflection losses from high-index gradient metasurfaces. This 

represents the first step toward using such metasurfaces as a component of transparent electrodes. 

Chapter 7 provides a brief conclusion and outlook. 
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CHAPTER 2: SIZE DEPENDENT PERFORMANCE OF LIGHT 

TRAPPING TRANSPARENT ELECTRODES 

2.1 Introduction 

1In the previous chapter a light-trapping transparent electrode design was introduced. The 

proposed design had an asymmetrical shape, leading to an asymmetrical angular response. In the 

present chapter we study light trapping transparent electrodes consisting of a periodic array of 

wires with symmetric cross-sections [53]. In order to evaluate the light trapping potential of 

different electrode shapes, two types of light-trapping electrodes are considered: triangular and 

cylindrical wire interdigitated electrodes. Figure 2.1(a) shows a conventional metallic electrode 

design. Light incident on the planar metallic wires is reflected, causing shadowing losses 

proportional to the metal areal coverage f. Figure 2.1(b) shows a light-trapping triangular metal 

wire electrode. In this case a large fraction of light incident on the metal wires is reflected to angles 

greater than the critical angle and transmitted into the substrate after total internal reflection, 

dramatically reducing shadowing losses. Embedded cylindrical electrodes as shown in Figure 

2.1(c) also reflect a substantial portion of the incident light toward large angles and are thus 

expected to offer similar light trapping benefits.  

 

1 This chapter was published as Mengdi Sun and Pieter G. Kik, "Scale dependent performance of 

metallic light-trapping transparent electrodes," Opt. Express 28, 18112-18121 (2020) 
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Figure 2.1: Schematics of (a) a conventional planar metallic wire electrode, (b) a triangular 

light-trapping metal wire electrode and (c) a light-trapping cylindrical metal wire electrode. 

Figure 2.2(a) shows the simulated angular irradiance distribution of light reflected by 

isolated triangular silver wires with a fixed surface angle of 20° for four different widths: 200 nm, 

600 nm, 1.2 m and 2 m. Results are shown for both TE polarization (top panel, electric field 

along the metal wire axis) and TM polarization (bottom panel, electric field normal to the wire 

axis). The results have been scaled to facilitate comparison between wires with different width.  
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Figure 2.2: Angle dependent reflected irradiance of (a) triangular and (b) cylindrical silver 

wires under TE (top panels) and TM (lower panels) illumination at 0=750 nm for different 

widths w. The dashed lines in (b) represent the angular distributions for macroscopic silver 

cylinders. 

Several key trends are observed. For small wire sizes, the angular distribution of the 

reflected light is relatively isotropic, resembling the omnidirectional radiation pattern of a line 

dipole. As the wire dimensions increase, the reflection becomes more directional, with reflection 

occurring predominantly toward angles close to 40° corresponding to the angle of specular 

reflection by the tilted electrode top surface. The observed angular narrowing indicates an 

increased light trapping potential. For example, at the chosen index of n=2 any light reflected at 

angles larger than 30° can be trapped using total internal reflection at a planar top surface, whereas 

the fraction of light reflected toward smaller angles (the gray shaded region in Figure 2.2(a)) would 

largely leak out of the structure. The angular distributions in Figure 2.2(a) thus predict that the 

light trapping performance of triangular electrodes will gradually improve as the wire width 

approaches ~1 m, at which point shadowing losses may be largely mitigated. Note that off-normal 
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illumination would modify the angular distributions, which in turn will affect the light trapping 

performance. A detailed study of such effects is currently underway. Figure 2.2(b) shows the 

corresponding results for cylindrical silver wires. In contrast with the case for triangular wires, for 

TE illumination the angular distribution of the reflected light remains nearly isotropic for all 

electrode widths. For TM polarization, markedly different distributions are observed, with periodic 

angular patterns for all wire sizes, displaying more maxima as the wire diameter increases. These 

maxima result from the excitation of multipolar surface plasmon polariton (SPP) modes on the 

cylindrical wires, resulting in multipolar scattering patterns [54]. Note that for all cylindrical wire 

diameters, a significant fraction of the light is reflected toward small angle, suggesting that 

cylindrical wires are less suitable for optical trapping than triangular wires. At macroscopic scales, 

the angular distribution of reflected light under TE and TM illumination converges to a broad range 

of angles due to the curved nature of the reflecting surface, represented by the dashed lines in 

Figure 2.2(b). 

2.2 Size dependent light-trapping by metal nanowire arrays 

To evaluate the performance of interdigitated light-trapping electrodes, periodic wire 

arrays were simulated. A large metal areal coverage of f=0.25 was chosen for all structures, and 

the substrate and cover layer refractive index are assumed to be n=2. A 133 nm thick anti-reflective 

coating (ARC) with an index n=1.41 is present on the cover layer, which minimizes surface 

reflection for the chosen reference wavelength of 750 nm.  
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Figure 2.3: Size-dependent absorption, reflection, transmission, light-trapping efficiency 

LT, and sheet resistance of (a) triangular and (b) cylindrical wire arrays at 25% areal metal 

coverage under normal-incidence unpolarized illumination at 750 nm light (top panels) and 

the corresponding degree of polarization of the transmitted light (lower panels). The white 

dashed line represents the predicted transmission based on single-wire radiation patterns. 

Figure 2.3(a) shows the simulated transmitted (T), reflected (R), and absorbed (A) power 

fraction of a triangular wire interdigitated light trapping electrode as a function of wire width, 

averaged over TE and TM polarization. For all electrode widths the transmitted fraction 

significantly exceeds the 75% ray optics transmission limit (horizontal black dashed line) of 

traditional flat electrode arrays at the simulated 25% metal coverage. Absorption loss by the 

metallic wires account for <1.5 percent of the incident power for all electrode sizes studied.  
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The corresponding degree of polarization (DOP) of the transmitted light, defined here as 

(TTE-TTM)/ (TTE+TTM) with TTE and TTM the transmitted TE and TM power fractions respectively, 

is shown in the lower panel. All structures exhibit a DOP magnitude below 10%, with the DOP 

decreasing as the electrode width increases. The corresponding effective sheet resistance for all 

widths is shown on the top axis. For large triangular electrodes (width w=2 m), high optical 

transmittance (>97%) and extremely low sheet resistance (<0.35 Ω/sq) are achieved 

simultaneously. In the limit of larger (λ>>0) electrodes, the optical performance will be affected 

solely by the reflection loss on the metal surfaces. Using the same literature values for the Ag 

dielectric response, we arrive at a transmission of T=99.88% for unpolarized incident light at 

λ0=750 nm. 

To quantify the light-trapping performance of the interdigitated electrode designs, we 

define the light trapping efficiency LT as the transmitted power fraction in excess of the flat 

electrode transmission limit, divided by the power fraction directly incident on the metal electrode 

lines, leading to the expression LT=1-(1-T)/f. This quantity is shown on the right axes in Figure 

2.3, where the top of the transmission curve represents the quantity LT. The light trapping 

efficiency is seen to increase gradually from 35% to 80% as the electrode width increases from 

200 nm to 2 m. The overall trend in the transmission and light trapping efficiency can be 

understood by considering the angular distributions from Figure 2.2(a). For small electrode widths, 

a large fraction of the reflected light appears at angles smaller than the critical angle, resulting in 

incomplete light trapping. As the electrode width increases, the reflection becomes more 

directional and appears predominantly at angles beyond the critical angle (30), resulting in 
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increased light trapping. To verify this assertion quantitatively, the white dashed line in Figure 

2.3(a) shows the predicted size-dependent transmission based on the isolated-wire angular 

distributions in Figure 2, neglecting multiple internal reflections. The resulting curve follows the 

overall transmission trend remarkably well, suggesting that at this moderate metal coverage (25%) 

effects related to multiple reflections do not dominate the optical performance.  

Figure 2.3(b) shows the corresponding results for cylindrical wire interdigitated light 

trapping electrode. In contrast to the results in Figure 2.3(a), cylindrical wires do not produce a 

gradual increase in transmittance as the wire diameter is increased, and sharp transmission 

reductions are observed for specific wire sizes. The lack of a rising trend in transmission is 

attributed to the relatively isotropic reflection distributions shown in Figure 2.2(b), causing an 

approximately constant reflection loss for all sizes. This is supported by the relatively constant 

predicted transmission (white dashed line) based on single-wire angular reflection distributions 

like those shown in Figure 2.2(b). The isolated wire predictions do not reproduce the observed 

sharp transmission minima, suggesting that these are instead related to effects involving multiple 

adjacent wires, e.g. grating resonances. The fact that such effects are relatively prominent in the 

case of cylindrical wires is also attributed to the more isotropic reflection patterns of cylindrical 

wires, which result in more power being radiated in the direction of adjacent wires. Note that 

absorption losses exceed those observed for triangular electrodes, attributed in large part to the 

grating-enhanced interaction of light with the lossy metallic wires. The corresponding DOP values 

in Figure 2.3(b) show clear peaks and dips, indicating the polarization-dependent nature of the 

observed grating resonances. 
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To further clarify the origin of the features observed in Figure 2.3, representative 

electromagnetic field distributions for periodic wire arrays with different electrode widths are 

shown in Figure 2.4. Figure 2.4(a) shows the electric field magnitude distribution for a triangular 

wire array with the largest simulated width of 2 m under TE illumination at 750 nm corresponding 

to TTE=96.8%, with red regions indicating large field magnitude. Fringes are observed due to the 

interference of the incident wave with the reflected light from the electrode, both before and after 

internal reflection at the cover layer surface. The narrow fringes parallel to the inclined electrode 

surface result from upward reflection by the metal surface. The fringes above the dielectric cover 

layer indicate a small degree of reflection loss. The wider fringes to the side of the metallic 

electrode are indicative of interference of the directly transmitted incident wave and the downward 

propagating recovered light that has interacted with the metallic wire. Figure 2.4(b) shows the 

results for triangular wires with a four times smaller width of 500 nm, shown on the same size 

scale, with TTE=89.6%. The larger contrast in the fringes above the structure is the result of the 

larger reflection losses caused by the less-directional reflection from the small wires. Figure 2.4(c) 

shows a special case of TM-polarized light incident on a 370 nm wide triangular wire array, 

corresponding to the deepest transmission dip in Figure 2.3(a) with TTM=74%. This electrode width 

is close to the silver SPP wavelength at the chosen 750 nm free-space wavelength. The 

transmission dip is attributed to the excitation of a standing SPP wave by the edges of the silver 

wire, resulting in resonantly enhanced dissipation and radiation losses. The resulting enhanced 

shadowing is clearly visible as the green-yellow region beneath the wires.   
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Figure 2.4(d) shows the field magnitude results for TM illumination of a cylindrical wire 

based light trapping electrode with wire width w=680 nm with TTM=88%. The curved standing 

waves in the cover layer are indicative of a relatively isotropic reflection distribution that results 

in incomplete light trapping. In addition, a relatively large field intensity is observed along the 

metal wire circumference due to the excitation of a multipolar SPP mode. Figure 2.4(e) shows the 

results for a four times smaller diameter of w=170 nm under TE illumination, coincidentally 

corresponding to a large transmission of TTE=97.2%. Note that at this size the electrode spacing is 

less than the free-space wavelength, preventing any high angle reflection losses under normal 

incidence illumination. Finally, a very sharp TTM dip is observed at w=187.2 nm. To investigate 

the origin of this feature, panels 4(f)-(h) show the corresponding |E|, |Ex| and |Ez| distributions. 

Notably, the spatial period of this structure is just 0.3% below the free-space wavelength, allowing 

for standing waves that are weakly confined near the surface region. Inspection of the field 

distributions reveals a quadrupolar SPP mode on the cylindrical wires, coupled to a standing wave 

along the surface, similar to the process leading to Wood’s anomalies. Such sharp grating 

resonances are suppressed in triangular wire arrays due to the more directional reflection from 

triangular wires.  
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Figure 2.4: Average electromagnetic field magnitude distribution of triangular wire arrays 

with (a) w=2 m and (b) w=500 nm under TE illumination, (c) w=370 nm under TM 

illumination, and cylindrical wire arrays with (d) w=680 nm under TM illumination, (e) 

w=170 nm under TE illumination, and (f)-(h) w=187.2 nm under TM illumination (Ex, Ez , 

and |E| contributions). 

2.3 Spectral performance 

The results shown thus far were achieved under fixed wavelength excitation. For 

optoelectronic devices such as solar cells and photodetectors, the spectral response is of critical 

importance. Figure 5 shows the spectral response of 2 m wide triangular electrodes and 0.68 m 

wide cylindrical electrodes both at f=0.25 for normally incident unpolarized light in the range 

0.4 - 1.1 m. The triangular wire array exhibits high transmittance (T>86%) across the entire 

spectrum, with T>93% from 550-900 nm. At all wavelengths, the predominant contribution to 
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transmission loss is reflection, with absorption losses making up only a small fraction of the total 

losses. A gradual spectral variation of the transmission is observed, which is attributed to the 

presence of the AR coating, which was optimized for 750 nm light. This is confirmed by the similar 

spectral shape of the transmission of the AR coating in the absence of metal wires (white dashed 

line). Figure 2.5(b) shows the corresponding results for the cylindrical wire light-trapping 

electrode. In this case, a large number of sharp transmission dips is seen, attributed to grating 

effects. As argued above, the prevalence of grating resonances is due to the more isotropic 

radiation patterns from cylindrical wires, which increases the possibility of multiple reflections on 

adjacent wires. Note that similar grating effects were also observed in work on mesoscale wire 

arrays investigated by Saive et al [38]. In addition to the grating-enhanced reflection losses, 

increased absorption due to SPP resonances is also observed at small wavelengths. As a result, the 

overall light-trapping performance of triangular electrodes typically exceeds that of cylindrical 

electrodes, providing higher transmission, reduced polarization dependence, and lower spectral 

variation. 
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Figure 2.5: Spectral dependence of the absorption, reflection, transmission, and light-

trapping efficiency LT of (a) triangular and (b) cylindrical wire arrays at 25% areal metal 

coverage under normal-incidence unpolarized illumination. The white dashed line 

represents the transmission spectrum of the AR coating in the absence of metal wires. 

2.4 Figure of merit 

The light trapping designs discussed above call for a new Figure of Merit (FOM) in order 

to compare different electrode geometries, as argued below. The performance of transparent 

electrodes is commonly evaluated in terms of a figure of merit (FOM) expressed as the ratio of the 

electrical sheet conductivity s to any introduced optical loss processes [37, 55-58]. For transparent 

conductive films where absorption is the main source of optical loss, the FOM typically takes the 

form =s/α. In systems where shadowing contributes significantly to the optical losses, a 

convenient form is =s/(1-T) where the denominator now includes all optical losses including 

those from shadowing, and where the sheet conductivity is an effective value that takes into 

account the spatial distribution of the metal. However, since the effective sheet conductivity of the 
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light trapping systems discussed above can be increased almost arbitrarily by placing more metal 

directly under the wires (“in the shadow”), we propose the following light-trapping FOM to 

compare the performance potential of different wire shapes:  


𝐿𝑇

=
𝑓

1−𝑇
     (2-1) 

This FOM captures the fact that transmission loss (factor 1-T in the denominator) is a 

disadvantage, whereas large metal areal coverage (f) is an advantage, allowing tall conductive 

structures to be placed on the substrate. Note that this FOM does not include statements about the 

exact total electrode height, but only considers the opportunity of placing tall electrodes in a 

fraction f of the surface. The appropriateness of this choice will be demonstrated below.  

Figure 2.6 shows the introduced light-trapping figure of merit of different electrode 

geometries at an incident wavelength of 750 nm. The light-trapping FOM of cylindrical electrodes 

(blue line) is seen to be relatively unchanged as the size is increased, because of the aforementioned 

broad angular distribution of the reflected light from cylindrical electrodes for all electrode sizes. 

In contrast, the light-trapping FOM of triangular electrodes gradually improves for increasing size 

due to the increase in directionality of the reflected light, enabling increasingly improved 

transmission. For comparison, the red curve represents the predicted light-trapping FOM based on 

the radiation pattern of isolated triangular electrodes, taking into account analytical expressions 

for the angle-dependent reflection at the top surface of the structure. This simplified model 

reproduces the overall trend and absolute value of the LT. Finally, to demonstrate that the chosen 

form of FOM fairly evaluates the suitability of the electrode geometry for light trapping 
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independent of the height of the wires, we calculated LT for an array of 2 m wide triangular 

electrodes with a 1.4 m tall rectangular base and 2 m wide hemicylindrical electrodes with a 1.4 

m tall rectangular base using the same numerical approach as above. The corresponding result 

are indicated by the square symbols in Figure 2.6. Despite the fact that this structure has an 8.6 

times larger sheet conductivity, the obtained LT values are indeed very close to those of the 

triangular and cylindrical wires of the same width. This confirms that our choice of light-trapping 

FOM is a good measure of the light trapping efficiency of a particular electrode surface shape, 

while largely removing the dependence of wire height or aspect ratio.  
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Figure 2.6: Light-trapping Figure of merit LT of triangular (black curve) and cylindrical 

(blue curve) wire arrays. The black dashed line represents a model prediction based on 

isolated triangular wire angular reflection distributions. 

2.5 Summary 

In summary, we have studied the size-dependent optical and electrical performance of 

triangular and cylindrical metallic wire grid light-trapping transparent electrodes. A gradual 

increase in optical performance of triangular wire electrodes was observed as the wire width 

increased. This trend was successfully explained in terms of the size-dependent angular 

distribution of the reflection from individual wires. Cylindrical nanowires showed no such size 

dependent trend, matching model predictions based on individual wire reflection distributions. The 

spectral response of triangular wire arrays was found to be broadband and relatively smooth, 
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whereas cylindrical nanowire arrays support multiple grating resonances leading to large spectral 

variation in transmission and a large degree of polarization of the transmitted light. All 

observations indicate that micron-sized triangular wire light trapping transparent electrodes 

substantially outperform cylindrical nanowire light trapping electrodes in terms of absolute 

transmission, spectral dependence, and polarization insensitivity. Triangular electrodes with a 

width of 2 m and a metal coverage of 25% were found to recover as much as 88% of the 

unpolarized light incident on the metal portion of the wire array, resulting in 97% optical 

transparency and 0.35 Ω/sq. sheet resistance at a wavelength of 750 nm, with a broadband optical 

transmittance exceeding 86% in the wavelength range 400 nm-1.1 m. A new figure of merit was 

introduced that evaluates the overall light trapping potential of transparent electrodes based on 

embedded shaped metallic wire arrays. 
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CHAPTER 3: ANGULAR DEPENDENT PERFORMANCE OF 

TRIANGULAR LIGHT TRAPPING ELECTRODES 

3.1 Introduction 

2In the previous chapter we studied the size dependent optical response of triangular light 

trapping electrodes and compared with cylindrical electrodes. The spectral response was also 

studied, showing high broadband transmission over the visible and near infrared spectrum. This 

result is vital for photovoltaic applications that involves direct sunlight illumination. An as yet 

unexplored aspect is the optical performance under off-normal illumination, which is also of great 

interest in solar cells. Based on previous discussions, it is clear that varying the external angle of 

incidence will affect the ray path, which could impact the efficiency of the light trapping process. 

In the present chapter we investigated the angular dependent optical response of triangular light 

trapping electrodes [59]. 

Figure 3.1 shows the principle of operation of the triangular light trapping electrode under 

off-normal illumination. Light entering the cover layer refracts toward the surface normal and 

either transmits through the electrode gap (cyan arrow) or is reflected upward by the metal line at 

a modified internal angle (blue arrows). If the upward angle is larger than the critical angle c of 

the cover layer, the rays subsequently undergo lossless total internal reflection (TIR), redirecting 

the light into the substrate.  

 

2 This chapter was published as Mengdi Sun and Pieter G. Kik, "Light trapping transparent 

electrodes with a wide-angle response," Opt. Express 29, 24989-24999 (2021) 
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Figure 3.1: Cross section of single grid line including three example ray paths for off-normal 

illumination.  

To study the applicability of this light trapping geometry for use over a wide angular range, 

the angular response of the electrode transmission will be studied as a function of three electrode 

parameters: the cover layer thickness, the cover layer index, and the electrode surface tilt angle. 

The transmission and internal field distributions are investigated using CST Studio [60] and 

rigorous coupled wave analysis (RCWA) [61], and the results are interpreted using a ray optics 

model.  

3.2 Influence of cover layer thickness 

We first investigate the angle-dependent transmission of an interdigitated light trapping 

electrode as a function of the cover layer thickness D for a metal coverage of f=25%, with a cover 

layer index of nc=2.5, an electrode surface tilt angle of s=20, and a metal grid line width of 

W=2 m. The incident wavelength is initially chosen to be 600 nm to represent a typical visible 

wavelength, and the chosen ARC thickness of dARC=95 nm and index nARC=1.58 represent the 

optimal normal-incidence values for this wavelength. The substrate is initially assumed to be 
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index-matched to the cover layer to facilitate analysis. A similar analysis with a non-index matched 

substrate and broadband illumination is presented in the final section. 

 

Figure 3.2: (a) Transmittance at 0=600 nm of light trapping electrodes with 25% metal 

coverage, W=2 m, s=20, nc=2.5 three cover layer thickness values D=1.6 m (blue), 2.2 

m (red) and 4.4 m (green). (b) Corresponding light trapping efficiencies from numerical 

calculations (solid lines) and ray optics (dashed lines). 

Figure 3.2(a) shows the transmission of unpolarized 600 nm light determined using RCWA 

as a function of external angle of incidence  for cover layer thickness values D of 1.6 m, 2.2 

m, and 4.4 m, where D is the distance from the base of the grid line to the bottom of the ARC 

layer. Note that two of the curves show transmission values as high as 98% for near-normal 

incidence illumination, despite the fact that the sample has only 75% open area. This demonstrates 

near complete recovery of shadowing losses through light trapping.  

All three curves show a gradual drop in transmission as the external angle of incidence is 

increased. For comparison, the black dotted line shows the analytically calculated transmission of 
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unpolarized light through the same structure in the absence of metallic lines. This curve, which we 

will call Tmax() sets an upper limit to the transmission, accounting for reduced transmission at 

high angle due to increased top surface reflection loss. The gray dotted line shows the related 

quantity Tmin()=(1-f)Tmax(), which represents the expected transmission in the absence of any 

light trapping. For cover layer thickness values of 1.6 m and 2.2 m the low-angle transmission 

lies remarkably close to the upper limit of the transmission, indicating very efficient light trapping. 

As the incident angle is increased, the transmission curves deviate from the calculated upper limit, 

but stay well above the expected transmission in the absence of light trapping.  

To analyze the optical performance of the transparent electrode we introduce the light 

trapping efficiency LT, defined as LT=(T-Tmin)/(Tmax-Tmin). The denominator which is equal to 

fTmax represents the fraction of light incident on metal that may be recovered via light trapping, 

while the numerator represents the actual fraction of light that was recovered. Defined this way, 

LT is equivalent to the reduction in shadowing losses. The corresponding light trapping 

efficiencies for the three geometries from Figure 3.2(a) are shown in Figure 3.2(b) (solid lines). 

For electrodes with D=1.6 m and 2.2 m, the light trapping efficiency is close to 100% at small 

angles, indicating that a large fraction of light incident on the metal is reflected upward at angles 

larger than the critical angle followed by total internal reflection and transmission into the 

substrate. As the external angle of incidence is increased, the light trapping efficiency drops 

gradually, reaching a value of ~25% at glancing angle illumination (=90). In contrast, the 

electrode with D=4.4 m shows a relatively low light trapping efficiency of ~50% at normal 

incidence that briefly rises to ~75% followed by a gradual drop towards higher angles.  
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To understand the trends observed in Figure 3.2(b) a simplified ray optics model was 

developed where any ray that encounters a metal surface twice is considered lost. Reflection losses 

at the metal surfaces and partial internal reflection at the top surface are taken into account. The 

corresponding predicted transmission results are included in Figure 3.2(b) as dashed lines. For all 

three cases the ray optics model predicts a relatively sudden drop in the light trapping efficiency 

at  = 44. This can be understood by considering the critical angle of the cover layer. As the 

external angle of incidence is increased to positive angles (to the right side of the surface normal), 

the internal refracted angle increases correspondingly according to Snell’s law. This in turn 

increases the angle of the upward ray generated by the left half of the grid line (light blue ray 

Figure 3.1) while decreasing the angle of the upward ray generated by the right half of the line 

(dark blue ray in Figure 3.1). As the incident angle reaches  = 44 the angle of the latter ray drops 

below the critical angle of the cover layer, causing a loss of TIR and precluding efficient light 

trapping. A very subtle additional efficiency drop is seen to start at  = 72, which corresponds to 

the angle at which the left ray impinges on a neighboring grid line, a loss process which we will 

call secondary shadowing. At a larger cover layer thickness (D=2.2 m) the same internally 

reflected ray travels further before reaching the substrate, and consequently secondary shadowing 

occurs at a smaller angle of incidence of 38. At D=4.4 m, secondary shadowing is already 

present under normal incidence illumination, leading to the relatively low light trapping at small 

angles.  

Comparing the numerical results with the ray optics results in Figure 3.2(b) it is evident 

that the numerically predicted loss of light trapping occurs over a broader angular range than 
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expected from ray optics. This is attributed to diffractive effects: the upward reflected light is 

generated by a relatively narrow grid line, which introduces significant angular spread in the 

reflected beam [53]. A second key difference is the near-absence of any evidence of secondary 

shadowing in the numerical data, which is also attributed to diffractive effects. The angular spread 

of the reflected beams results in a distance dependent width of the reflected beam that increasingly 

exceeds the adjacent wire width at larger propagation distance. Consequently, only a small fraction 

of the internally reflected light interacts with an adjacent wire at any given angle of incidence. 

        

Figure 3.3: TE field distributions of 2 m wide light trapping electrodes in nc=2.5 at 25% 

metal coverage with surface tilt s=20 for (a) =0 and D=1.6 m, (b) =60 and D=1.6 m 

and (c) =60 and D=2.2 m.  

Figure 3.3 shows numerically simulated TE (s-polarized) field distributions around silver 

light trapping electrodes under 600 nm illumination, corresponding to key scenarios discussed 
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above. The wave propagation direction is indicated by the arrows. Figure 3.3(a) shows the case of 

near-complete light trapping under normal incidence illumination. Note that while a shadow is 

present under the wire as evidenced by a lack of wavefronts, there is very little loss of transmission 

due to the fact that this missing light is recovered by TIR. Figure 3.3(b) demonstrates that at large 

external angle of incidence, part of the light incident on the metal grid line is reflected upward at 

relatively small internal angle. This is indirectly visible as the standing wave pattern above the 

right half of the grid lines. The reflected light travels upward at an angle below the critical angle, 

resulting in large transmission back into air, reducing the overall transmission (dark blue arrows). 

Figure 3.3(c) shows the field distribution for the same angle of incidence as in Figure 3.3(b) but 

with a larger cover layer thickness of D=2.2 m, which can introduce secondary shadowing due 

to an additional radiative loss pathway (light blue arrows).  

3.3 Influence of cover layer index 

The preceding section demonstrated that the light trapping efficiency drops significantly 

when light is reflected at upward angles below the critical angle, causing a loss of TIR. Since the 

internal angle is affected by the refractive index of the cover layer, the angular performance of 

light trapping electrodes is expected to depend critically on the refractive index of the cover layer. 

To evaluate this aspect, we investigate the angular response of the electrodes for three values of 

the cover layer index: nc=1.5 representative of glass (c=41.8), nc=2.2 representative of e.g. 

aluminum nitride (c=27) and nc=4 representative of e.g. silicon (c=14.5). The geometry is kept 
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fixed with f=0.25, s=15, W=2 m, and D=1 m as shown in the inset of Figure 3.4(a). The small 

cover layer thickness was chosen to minimize the risk of secondary shadowing.  

 

Figure 3.4: (a) Transmittance of light trapping electrodes with f=0.25, W=2 m, D=1 m, 

s=15 for three different cover index values nc=1.5 (blue), 2.2 (red) and 4 (black). The dotted 

lines represent transmission in the absence of metal. (b) Corresponding light trapping 

efficiencies from numerical calculations (solid lines) and ray optics (dashed lines). 

Figure 3.4(a) shows the calculated angle-dependent transmission for the three choices of 

cover layer index. Similar to the observations in Figure 3.2, all transmission curves drop steeply 

at high angle of incidence which is predominantly due to top surface reflection losses. This is 

confirmed by the Tmax() curves, representing the same structures without metal (dotted lines). 

Note that all curves show a small-angle transmission larger than 75% with f=0.25, indicating that 

some degree of light trapping is achieved in all three cases. For incident angles below 45 the 

higher index cover layers are seen to yield larger optical transmission.  
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Figure 3.4(b) shows the corresponding light trapping efficiency curves (solid lines) from 

numerical calculations and based on the previously discussed ray optics model (dashed lines). For 

a cover layer index of nc=1.5 (blue line) the numerically determined light trapping efficiency at 

normal incidence is low (~12.8%), and near-zero according to the ray optics model. This is due to 

the fact that TIR is not achieved for these parameter choices. Under normal incidence illumination, 

the upward rays appear at an angle of 30 (twice the surface tilt, independent of refractive index) 

which is below the critical angle of 42 at this index, resulting in transmission of the reflected rays 

back into air. This case is illustrated for TE illumination in Figure 3.5(a). Note the significant 

lateral variation of the electric field strength outside the electrode structure, indicative of 

interference of the incident plane wave and high-angle light exiting the structure. As the angle of 

incidence is increased, the angle of the left upward ray increases, leading to the onset of light 

recovery through TIR at an incident angle of 18. TIR is not achieved for the right ray at any 

positive external angle. An example field distribution for this scenario is shown in Figure 3.5(b) 

for =30. The lack of TIR for light incident on the right side of the grid line results in the observed 

upper limit of 50% light trapping efficiency in the top panel of Figure 3.4(b).  

For intermediate cover layer index (nc=2.2) the normal incidence light trapping efficiency 

starts at ~65.5% and drops gradually to ~50% as the incident angle is increased. The ray optics 

model clarifies these observations: at normal incidence, the reflected rays again appear at 30 

which in this case is above the critical angle of c=27 for this refractive index. While this in 

principle this would allow for efficient light trapping, the angular spread of the reflected beam due 

to the previously discussed diffractive effects leads to significant radiative losses. As the incident 
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angle is increased beyond =12, TIR is lost for the right upward ray, resulting in a lower light 

trapping efficiency of ~50%.  

Remarkably, when using a large cover layer index (nc=4) the simulated light trapping 

efficiency exceeds 73% for all incident angles and is above 85% over a 120 angular range. This 

large suppression of shadowing loss over such a wide angular range is the result of two related 

effects. First, the high index causes strong refraction as the light enters the cover layer, and 

consequently the light is incident on the grid line at near-normal incidence even for large external 

angles. Second, due to the small critical angle of c=14.5, light trapping is achieved even at small 

internal angles. Figure 3.5(c) shows the corresponding TE field distribution for normal incidence 

illumination. Note the absence of lateral variation of the external wavefronts, indicative of efficient 

light trapping. Figure 3.5(d) shows the same structure for 30 angle of incidence. Note that even 

though the incident angle increased significantly, the changes in the internal ray paths compared 

to Figure 3.5(c) are relatively small due to the strong refraction, and thus trapping remains efficient. 

The external wavefronts remain approximately planar even at this large angle of incidence, 

indicative of small surface reflection and efficient light trapping.  
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Figure 3.5: TE field distributions of light trapping electrodes with f=0.25, W=2 m, s=15, 

D=1 m for a cover layer index of nc=1.5 at (a) normal incidence and at (b) 30 angle of 

incidence, and for a cover layer index of nc=4 at (c) normal incidence and (d) 30 angle of 

incidence.  

3.4 Influence of surface tilt angle 

In the preceding section, it was observed that normal incidence illumination for nc=1.5 and 

s=15 TIR was not achieved, resulting in low light-trapping efficiency. This problem can be 

mitigated by using larger surface tilt. In the following we evaluate the light trapping performance 

for three surface tilt angles: s=0, 15, and 30. The remaining parameters are held fixed at f=0.25, 

nc=1.5, W=2 m, and D=1 m.  
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Figure 3.6: (a) Transmittance of light trapping electrodes with f=0.25, W=2 m, nc=1.5, and 

D=1 m for surface tilt angles s=0 (blue), 15 (red) and 30 (green). (b) Corresponding 

light trapping efficiencies from numerical calculations (solid lines) and ray optics (dashed 

lines). 

Figure 3.6(a) shows the simulated angle-dependent transmittance for all three choices of 

surface angle. As before, the loss of transmission at high angle is largely due to top-surface 

reflection, and all curves lie almost entirely between the estimated maximum (perfect light 

trapping, black dotted line) and minimum transmittance (zero light trapping, gray dotted line) 

curves. Figure 3.6(b) shows the corresponding light trapping efficiency curves, as well as the 

predicted light trapping efficiency based on ray tracing. The top panel shows the results for flat 

embedded electrodes, similar to standard flat top electrodes on silicon solar cells. As expected, flat 

electrodes exhibit near zero trapping efficiency at small angles. A distribution of the TE field 

magnitude for an incident angle of =30 is shown in Figure 3.7(a), along with the propagation 

direction indicated schematically by the white arrows. Note the bright standing wave pattern above 
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the grid line and outside the structure, showing that light trapping is largely absent. To highlight 

the importance of light trapping we compare the performance of triangular wires with a flat-wire 

electrode. Note that a commonly used dome-shaped wire would outperform a flat electrode due to 

some degree of forward scattering by the inclined wire sides [53, 62, 63]. The case of intermediate 

surface angle (middle panel in Figure 3.6(b)) is identical to a previously shown result (top panel 

in Figure 3.4(b)), revealing the previously discussed onset of partial light trapping for an incident 

angle of 18. The lower panel shows the light trapping efficiency for a large electrode surface tilt 

angle of s=30. In this case the near-normal incidence results show ~85% light trapping efficiency 

even with this low cover layer index. This value is lower than the prediction from the ray optics 

model (nearly 100%) because of diffractive effects, causing some of the reflected light to propagate 

at an angle below the critical angle. At an external angle of 18 the ray optics model predicts the 

onset of secondary shadowing, followed by loss of TIR at 28 and recovery of secondary 

shadowing as some of the reflected light passes over the next grid line. These effects cannot be 

clearly distinguished in the simulated data due to diffractive effects. The TE field magnitude 

distribution for normal incidence illumination is shown in Figure 3.7(b). Note that zero reflection 

loss would produce a homogeneous field magnitude above the cover layer. The fact that a faint 

standing wave pattern is visible indicates the presence of some reflection loss due to a combination 

of diffractive effects and interactions with adjacent grid lines. Despite this small reflection loss, a 

total normal incidence transmission of 96% is achieved at 25% metal areal coverage.  
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Figure 3.7: TE field magnitude distributions for 0=600 nm, f=0.25, W=2 m, D=1 m and 

nc=1.5 for surface tilt angles of (a) s=0 at 30 angle of incidence and (b) a surface tilt of 

s=30 at normal incidence.  

3.5 Device performance using real material properties 

Figure 3.8 summarizes the main identified contributions to non-ideal optical transmission 

in interdigitated light trapping electrodes. First, any light incident at high angle will experience 

some top surface reflection loss (dashed cyan ray) even in the presence of an anti-reflective coating 

(ARC). This type of loss is also incurred in e.g. commercial encapsulated silicon solar cells. 

Second, for off-normal illumination, internally reflected light may propagate at an angle below the 

critical angle, resulting in a loss of TIR (dark blue ray). Finally, at large incident angle and small 
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wire spacing, internally reflected light may impinge on an adjacent electrode, potentially leading 

to dissipation or escape from the light trapping structure (light blue ray). These effects can be 

mitigated by using a large cover layer index, a large surface tilt, a large wire spacing, and small 

cover layer thickness.  

 

Figure 3.8: Key optical loss mechanisms total transmission and light trapping efficiency. 

Dashed lines indicate relatively weak contributions. The cover layer and substrate are 

assumed to be index matched in this schematic.  

Given the challenges discussed above, it is of interest to evaluate the complete spectrally 

dependent performance of a system that more closely resembles a real-world device, for example 

an encapsulated silicon solar cell. Unlike the assumptions in the preceding discussions, here we 

consider a realistic index mismatch between the cover layer and the substrate. To represent a 

typical Si solar cell, we assume a glass cover layer [64, 65] which has an index similar to typical 

encapsulation materials. The substate is represented by lossless but dispersive silicon [66]. An 

ARC consisting of MgF2 [67] with a thickness of 109 nm is used at the top surface, and an AlN 

[68] ARC is placed at the glass-silicon interface (62.5 nm thickness, n=2.2). The cover layer 

thickness is set to D=1.1 m, the metal coverage is set to f=0.1 with an electrode width W=2 m 

and a surface angle of s=30.  



42 

 

Figure 3.9(a) shows a schematic of a single grid line in the simulated structure. Figure 

3.9(b) shows the angle dependent reflection spectrum for this structure at f=0.1. The large 

reflection losses at short wavelength are largely due to top surface reflection, due to the non-ideal 

AR response of the thin MgF2 layer at short wavelengths. Figure 3.9(c) shows the corresponding 

light trapping efficiency spectra. Note that at angles up to 30 shadowing losses are reduced by 

more than a factor two for all wavelengths (colors yellow through green). The spectrally averaged 

shadowing reduction over a wide angular range (-60 to 60) under AM1.5 solar irradiation [69] 

is 56.1%. The simulated structure shows a nearly polarization-independent spectrally averaged 

optical transmission of T=90.2% (TTE=89.8% and TTM=90.7%). These results demonstrate that 

even in a challenging real-world situation with large index mismatch between substrate and cover 

layer, shadowing losses can be reduced by more than a factor two over a wide angular and spectral 

range using compact light trapping electrodes. The effective sheet resistance of this structure is 

Rsh=0.22 /sq, far below typical industrial requirements (Rsh<100 /sq) [70, 71], demonstrating 

the unique possibility of simultaneously achieving low shadowing losses and high electrical 

conductivity.  
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Figure 3.9: (a) Schematic of a light trapping transparent silver electrode on an encapsulated 

silicon solar cell. (b) Reflectance and (c) light trapping efficiency of an encapsulated Si solar 

cell with f=0.1, W=2 m, D=1.1 m and s=30.  

3.6 Summary 

In summary, the angle dependent optical response of triangular light trapping electrodes 

was investigated numerically and analytically. A ray optics model was developed to predict the 

transmission of light trapping electrodes. Three effects that adversely affect light trapping were 

identified: partial loss of TIR at large angle of incidence and the absorptive and radiative loss due 

interaction with the neighboring electrodes (secondary shadowing). Additionally, the light 

trapping performance was evaluated in terms of the light trapping efficiency that represents the 

reduction of shadowing losses. The influences of surface tilt angle, cover layer thickness and cover 

layer index on the light trapping efficiency were investigated. Electrodes with higher cover layer 

index, larger tilt angle and smaller cover layer thickness were found to enable high light trapping 

efficiency. Using realistic material properties it was found that shadowing losses in a silicon solar 
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cell with 10% metal coverage and an effective sheet resistance of 0.22 /sq can be reduced by 

56% averaged over a 120 angular range and spectrally averaged over the AM1.5 solar spectrum.
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CHAPTER 4: EXPERIMENTAL DEMONSTRATION OF LIGHT-

TRAPPING TRANSPARENT ELECTRODES 

4.1 Introduction 

In previous chapters we numerically investigated the size and angular dependent optical 

response of triangular light-trapping electrodes and discussed their potential use in optoelectronic 

devices such as photovoltaic devices and high-speed photodetectors. The simulations indicated 

that shadowing by metallic contacts could be drastically reduced for specific wire geometries. In 

the present chapter we experimentally investigate prototype light-trapping transparent electrodes 

fabricated by multi-photon lithography and selective chemical deposition. The electrodes consist 

of nanowires with tilted metallic surfaces embedded in a dielectric cover layer. Light incident on 

the metallic contacts is recovered by total internal reflection to eliminate the shadowing losses. 

The light trapping efficiency is studied as a function of surface inclination. Dark-field microscopy 

studies indicate that significant light trapping is achieved for electrodes with surface tilt angles 

equal to or larger than 25°, and laser scanning is used to corroborate these findings. It is 

demonstrated that at 30° surface tilt, near 60% light trapping efficiency is achieved. 

4.2 Prototype fabrication 

The prototype electrodes were fabricated on a glass substrate using multi-photon 

lithography. In brief, the output of a femto-second mode-locked Ti-Sapphire laser was focused 

through a high-NA objective lens into a commercial acrylic resin, IP-DIP, to induce multi-photon 

polymerization. Using a three-axis nano-positioner, the focal volume was controllably positioned 
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with respect to the substrate to define the 3D pattern. The exposed 3D volume determines the shape 

of the eventual prototype electrode. To reduce the fabrication time, a contour-writing method [72] 

was used for defining the electrodes. The unpolymerized IP-DIP resin was washed thrice with 

propylene glycol monomethyl ether acetate (30 minutes each) and once with IPA (15 mins) to 

develop the microstructure. The sample was immersed in isopropanol and UV-flooded (Loctite 

Zeta 7411-S) for 10 minutes to polymerize the exposed volume, which will form the core of the 

metallized wire, and subsequently rinsed with isopropanol and dried in air. 

The fabricated structures were metallized through selective deposition using a modified 

literature procedure [73-75]. The polymeric microstructures where washed with N,N-

dimethylformamide and immersed in an ethanoic solution of ethylene diamine (20 vol.-%) for two 

hours. Amines react selectively with the unreacted acrylic groups of the polymer through Michael 

addition, leaving behind pendant amine groups on the surface. The sample was washed thoroughly 

with ethanol and DI water. The substrate was then immersed in chloroauric acid (0.53 mM in 

water) for two hours to immobilize Au3+
 ions by coordination to the aminated surface, then washed 

with DI water and immersed in a solution of sodium borohydride (0.1 M in water) to form surface-

bound gold nanoparticles (AuNPs) [76]. Importantly, the substrate was then rinsed with dilute 

HNO3 (1 wt.-% in water) to wash away any unbound AuNPs. AuNPs-primed surface was used for 

electroless copper enhancement [74] to create reflective electrode surfaces. The substrate was 

immersed in a bath of Cu2+
 (copper sulfate 1.5 wt.-%, sodium hydroxide 2 wt.-%, and sodium 

potassium tartrate 7 wt.-% in DI water) for 25 mins, washed with copious DI water, and dried in 

air. The final structure is representative of surface shaped metallic wires, with the shape of the 

wire determined by the polymer core, and the metal wire surface represented by the thin Cu layer. 
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4.3 Device characterization by scanning electron microscopy 

Figure 4.1(a) schematically shows the design for the fabrication, including wires with a 

length of 50 m, a width of 14 m, and peak thickness of 6 m, and a surface tilt angle that is 

varied linearly from 0-30° with an increment of 5°. The wires are spaced closely together to 

simplify optical analysis. Figure 4.1(b) shows a scanning electron microscopy (SEM) image the 

as-fabricated dielectric wires on a glass substrate. Note that the design geometry is well-replicated 

in the developed polymer.  Subsequently the exposed wire surfaces were selectively metallized by 

electroless copper deposition. The conformal chemical deposition used in this work enables 

arbitrary spacing between the electrodes, in contrast to oblique angle deposition methods which 

are based on shadowing [77, 78]. Figure 4.1(c) shows an SEM image of the metallized electrodes. 

Note that the metallization process does not affect the wire geometry (size, shape and tilt angle). 

A magnified perspective view of a single model electrode is shown in Figure 4.1(d), demonstrating 

the selectivity of deposition. The surface of the electrode appears rough due to the morphology of 

deposited copper nanoparticles [74] whereas the glass surface remains smooth after metallization. 

Energy dispersive X-ray spectroscopy (EDS) measurements confirmed the selective deposition of 

copper on the electrodes (Figure C.1 in Appendix C). 
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Figure 4.1: Prototype light-trapping electrodes with surface angles ranging from 0-30°. (a) 

Model design, (b) SEM image of the fabricated sample before and (c) after metallization. (d) 

High-magnification view of a single electrode a 30 surface tilt. All scale bars correspond to 

10 µm. 

4.4 Device characterization by optical microscopy 

Metallized prototype light trapping electrodes were investigated using optical microscopy. 

Figure 4.2(a) shows a bright-field reflection microscopy image of an as-fabricated array of 

metallized wires with a length of 50 µm, a width of 12 µm, and a height of 6 µm in the absence of 

a cover layer, as well as a schematic of the measurement geometry. The leftmost and rightmost 

wires have zero surface tilt, while the surface tilt angle of the remaining six wires varies from 10 

to 35 in steps of 5 from left to right. An objective lens with 50 magnification and a numerical 

aperture of NA=0.8 was used, corresponding to a maximum collection angle of 53°. The 

illumination was carried out with a small aperture stop, ensuring near-normal illumination 
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spanning a small angular range from -15° to 15°. It is shown that metallized wires with surface 

angles in the angle from 0 - 20 appear bright in reflection mode and those with tilt angles ≥25 

gradually become dark. This observation is not the result of light trapping, but rather due to 

redirection of the incident light to angles beyond the collection N.A. of the objective. For example, 

normal incidence illumination of a wire with a surface tilt angle of 25 results in a 50° reflected 

angle, close to the maximum collection angle of the objective. The reduced collection efficiency 

of the reflected light results in a dark appearance of wires with large surface inclination. Note that 

the surrounding area appears relatively dark due to the low reflectance of the glass substrate. 

Relatively high surface roughness is observed for the wires, which matches the morphology shown 

in Figure 4.1(d). 

 

Figure 4.2: Reflection microscopy image and measurement schematic of (a) uncovered 

metallized and (b) covered metallized light-trapping electrodes. 

To mimic the light-trapping geometry a drop of index-matching liquid (n=1.518) is placed 

on the sample, and a microscope cover slip is placed on top. The cover slip and index-matching 
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liquid together take the role of the cover layer, resulting in a critical angle of θc=41.2°. Under 

normal incidence illumination, light trapping is therefore expected for electrodes with a surface 

tilt in excess of 20.6° corresponding to the two rightmost tilted wires in Figure 4.2.  Figure 4.2(b) 

shows the brightfield reflection image and a measurement schematic of the sample in the light 

trapping configuration. In the light-trapping measurement geometry the leftmost and rightmost 

wires with 0 tilt still appear bright due to a lack of light trapping, corresponding to a significant 

portion of the shadowing losses from these wires. The brightness of the wire images decreases 

significantly for electrodes with high surface tilt. The third (15 tilt) and fourth (20 tilt) wires 

already show reduced brightness despite the fact that the internal reflected angles at normal 

incidence illumination of 30 and 40 respectively are smaller than the critical angle (θc=41.2°). 

This observation is attributed to the fact that the upward reflected light strongly refracts at the 

sample surface, leading to angles that are close to or larger than the maximum collection angle of 

the microscope objective. Assuming perfect normal incidence illumination, the surface angles of 

15 and 20 would produce external angles of 49 and 75, compared to a maximum collection 

angle of 53. Taking into account the nonzero beam spread (approximately 30 angular spread 

about the normal), a significant fraction of refracted light is not collected, even for the wire with 

15 surface tilt, resulting in a dark appearance. The fifth (25 tilt), sixth (30 tilt) and seventh (35 

tilt) wires appear largely dark, which is attributed to successful trapping of reflected light. The 

edges of the structure remain visible in the image, which is attributed to the fact that sharp edges 

scatter light into a wide range of angles, some of which will appear below the critical angle, 

contributing to the image formation. Furthermore, the surface roughness of the wires appears 
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reduced for the covered sample, which is attributed to a reduction in image quality due to the 

additional refraction introduced at the cover slip surface. 

4.5 Device characterization by linear laser scanning 

While the microscopy analysis in Figure 4.2 strongly suggests light trapping due to the 

reduction in the amount of reflected light collected from the sample in brightfield reflection 

microscopy, the trapped light itself was not detected. This could lead to an overestimation of the 

light trapping performance, since any light exiting the structure at angles beyond the maximum 

collection angle of the objective would not be visualized, but would still constitute shadowing 

losses. To eliminate this source of uncertainty, we investigate light trapping of the transparent 

electrode design by measuring the on-axis and off-axis transmitted optical power under normal-

incidence illumination of isolated metallized wires. A sample containing well-separated wires with 

a length of 100 m, a width of 20 m, a height of 5.77 m, and a surface tilt of 30 with index 

matching oil and cover slip applied was placed on top of a dove prism. In order to detect the trapped 

light, index matching oil was applied between the sample and the prism, allowing trapped light to 

transmit into the prism, and allowing the subsequent escape through the inclined sides of the dove 

prism. A moderately focused (spot size ~20 m) 532 nm wavelength TM-polarized laser beam 

was directed toward the sample at normal incidence, and the position of the entire assembly was 

scanned such that the wire crossed the laser beam focus. Optical power detectors were placed both 

on-axis (angle ~0) and off axis at an angle close to 60.  
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Figure 4.3: Measured transmitted and recovered power obtained from a single light-

trapping electrode line as a function of position under focused illumination, as well as the 

predicted transmitted and recovered powers (dashed line). The measurement schematic 

shows the location of the three power detectors. 

Figure 4.3 shows the position-dependent collected power for the on-axis detector and the 

two off-axis detectors, as well as a measurement schematic. As the laser spot is moving across the 

electrode the on-axis transmitted power (green line) gradually decreases, reaching a minimum 

transmitted power fraction of 24%, and then gradually recovers. As the on-axis transmission 

reduces, the off-axis collected power on the left side (red line) and right side (blue line) both rise, 

clearly indicating that part of the reduction in on-axis transmission is accompanied by the trapping 

and subsequent recovery of reflected light. The full width at half maximum (FWHM) of all three 

curves is close to 20 μm, similar to the width of the electrode and the laser spot. The maximum 

collected power for the off-axis detectors occurs at slightly different sample positions, which is 

due to the fact that the off-axis detectors receive signal from the left and right wire segments 



53 

 

respectively, with center positions that are separated by 10 m. The two off-axis detectors report 

slightly different maximum signal strengths, which might be due to a difference in surface quality 

of the electrode sides. Similar measurements on a flat reference electrode (not shown) did not 

reveal any detectable power on the off-axis detectors. Theoretical predictions of both on-axis 

(dashed green line) and off-axis collected signal in the left and right detectors (dashed red and blue 

lines respectively) are included. The calculations assume an incident Gaussian beam with a 

FWHM of 20 m. Any light incident on the 20 m wide electrode is assumed to be removed from 

the center detector signal. Of the light incident on the individual 10 m wide sides of the electrode, 

54.9% is assumed to be absorbed by the Cu surface based on literature values [79] for the Cu 

dielectric function taking into account the incident angle and the incident polarization. The 

remaining light is assumed to be trapped and collected with 100% efficiency. Note that the 

calculated curves closely match the width and position of the experimental curves, while the 

experimental curves for the off-axis detectors are lower than the calculated curves. This difference 

between the experimental and theoretical collected signal fractions is attributed to a combination 

of surface imperfections contributing to scattering losses and diffraction, resulting in non-ideal 

collection by the off-axis optical power meters.  

Based on the position dependent power curves in Figure 4.3, the light trapping efficiency 

ηLT was estimated, defined here as the fraction of off-axis collected power relative to the on-axis 

shadowing losses. Based on both the measurements (solid lines) and the calculated results (dashed 

lines), an average light trapping efficiency of ~26.5% is found, i.e. 26.5% of light that would 

normally be lost to reflection is recovered through total internal reflection. Taking into account the 
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previously mentioned Cu reflection losses, it is estimated that on average 59% of light initially 

reflected by the electrodes is recovered. As stated previously this value may underestimate the 

actual trapping efficiency as it does not take into account signal losses due to diffractive effects. 

This efficiency can be further improved by replacing Cu with more reflective metal such as silver 

[79], which has low reflection loss (~2.7%) on the surface at TM polarization, leading to potential 

high light trapping efficiency of 57.23%. 

4.6 Summary 

In summary, we have experimentally demonstrated a novel light-trapping transparent 

electrode design. Embedded metallized wires with inclined surfaces were used to direct incident 

light to reflected angles larger than the critical angle of the embedding medium, resulting in total 

internal reflection, which in turn allows for recovery of the reflected light. Prototype samples were 

fabricated using multi-photon lithography and selective chemical deposition. The light trapping 

process was demonstrated experimentally using optical microscopy and spatially resolved 

transmission measurements. The measurements indicate that at least 59% of light reflected by Cu 

electrodes with a surface tilt of 30 is recovered through total internal reflection. The demonstrated 

design and related structures could significantly improve the efficiency of a wide range of 

optoelectronic devices. 
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CHAPTER 5: EFFICIENT GRATING-BASED LIGHT TRAPPING 

ELECTRODES USING SELECTIVE ZERO ORDER SUPPRESSION 

5.1 Introduction 

As discussed in Chapters 2-4, light trapping electrodes with inclined surfaces can 

drastically reduce shadowing losses in optoelectronic devices. While the high performance of such 

structures is attractive, the fabrication of structures with non-coplanar surfaces poses significant 

fabrication challenges. It is therefore of interest to investigate alternate approaches that enable 

large-angle light direction and light trapping in structures that can be defined using standard 

lithographic methods.  

Here we explore the possibility of achieving efficient light trapping based on binary 

dielectric diffraction gratings defined on metallic wires, as shown in Figure 5.1. Light incident on 

the metallic wire is diffracted to different angles by the binary grating. The wire and the grating 

are embedded in a cover layer with a refractive index substantially higher than that or air. With a 

proper choice of grating spacing, the first order diffracted light appears at an angle beyond the 

critical angle of the cover layer, leading to light trapping through TIR. This could produce high 

light trapping efficiency, provided that specular reflection, i.e. diffraction into the zeroth order, is 

small. In this study, we demonstrate that near-complete light trapping can be achieved with the 

proper choice of grating spacing, thickness, and duty cycle. The findings are explained in terms of 

a model that considers destructive interference between fields reflected from the top of the grating 

and fields reflected by the grating-electrode interface. Based on the obtained optimized structural 

parameters, light trapping diffractive electrodes were fabricated by e-beam lithography and dry 
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etching, and their performance was analyzed. Efficient light trapping (>30%) is observed for 

unpolarized light across a 36 angular range and a 200 nm spectral range at visible wavelengths. 

The spectral and angular responses of the electrode are experimentally investigated. A maximum 

light trapping efficiency of 41.4% and near perfect zero order suppression have been 

experimentally demonstrated for unpolarized illumination, which can be further improved by using 

low loss dielectric materials. The coplanar nature and the polarization-independent optical 

response of the presented light-trapping structure enables integration in real-world photodetectors 

and solar cells. 
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Figure 5.1: Diffractive light trapping electrode design with an example electric field 

magnitude distribution (top) and a schematic cross section showing the basic principle of 

operation (bottom). 

5.2 Grating design 

To assess the feasibility of diffractive light-trapping electrodes we first consider an 

infinitely extended binary silicon grating on a silver substrate embedded in a homogeneous silica 

background. Three structural parameters are considered: the grating period L, the lateral Si fill 

fraction f corresponding to the duty cycle of the grating, and the grating thickness D. The period L 

is chosen to be sufficiently large to enable first order diffraction, and sufficiently small to ensure 

that the first diffracted order appears above the critical angle. To satisfy these requirements, the 



58 

 

grating period should lie between the internal and external wavelength, corresponding to the 

condition  0/n<L<0. We initially select a wavelength of 0=600 nm and a grating spacing of 

L=550 nm. 

 

Figure 5.2: Normal-incidence zero-order reflection as a function of Si fill fraction and grating 

thickness as determined by RCWA. Lines represent predicted locations or reflection minima 

based on a modal analysis, with minima related to the first three excited grating modes 

shown as solid, dashed and dotted lines. 

The effect of the fill fraction f and the grating thickness D on the normal incidence 

reflection were studied using rigorous coupled wave analysis (RCWA) [61] with the dielectric 

functions for Si, Ag, and SiO2 taken from literature [65, 66, 79]. Figure 5.2 shows the calculated 

power fraction reflected into the 0th diffraction order (R0) under TE illumination at 0=600 nm. A 

complex pattern of reflection maxima and minima is observed. To understand these features, a 
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model was developed that considers the pathways through which light can contribute to the zero 

order reflection. The structure is divided into three regions: a homogeneous SiO2 region 

representing the cover layer, the patterned Si/SiO2 grating region, and the metal substrate, see 

Figure 5.3(c). The incident wave is partly reflected into the zero order at the top of the grating 

region, corresponding to the primary path for generating a reflected wave, partly diffracted into 

the SiO2 region (gray arrows), and partly transmitted into the grating region. The light entering the 

grating is diffracted into several distinct grating modes that match the periodicity of the grating, 

schematically indicated by numbered downward arrows in Figure 5.3(c). Under normal incidence 

illumination, symmetry prevents the excitation of anti-symmetric grating modes. Any excited 

modes are reflected at the grating-metal interface and partially transmitted back into the zero order 

(blue upward arrows) constituting a secondary contribution to the zero order reflection, or into the 

first diffracted order (gray upward arrows), potentially leading to light trapping when using a finite 

thickness SiO2 cover layer. The secondary contributions experience a round-trip propagation phase 

delay of 2Dkzi for grating mode 𝑖 with surface-normal wavevector kzi. We expect reduced reflection 

when the primary reflected wave destructively interferes with the secondary reflected wave, which 

occurs for the condition D=(p+½)πkzi
-1 where p is an integer, assuming a  phase shift upon 

reflection at the top and bottom of the grating.  

Figure 5.3(a) shows the three TE modes that match the periodicity of the grating for f=10%, 

obtained using the method described in Ref. [80]. The light gray shading indicates the location of 

the Si region. The lowest order mode (E0, symmetric) resembles a waveguide mode in the Si region 

resulting a relatively large propagation constant. The predicted location of reflection minima of 
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this type of mode is indicated by the solid lines in Figure 5.2. Note that these curves followed the 

simulated reflection minima closely. The second mode (E1, symmetric) has a lower propagation 

constant, requiring larger values of D to generate reflection minima using this type of mode, see 

the dashed lines in Figure 5.2.  The third mode (E2) is anti-symmetric and thus cannot be excited 

at normal incidence. At higher Si fill fractions, more modes appear. Figure 3(b) shows five allowed 

TE modes for f=50% that match the grating periodicity, including one additional symmetric mode 

(E4). The predicted locations of reflection minima from this type of mode are shown as the dotted 

lines in Figure 5.2.  

The good correspondence between the locations of the reflection minima calculated using 

RCWA (green regions) and the model predictions indicate that the observed zero order suppression 

can indeed be understood in terms of destructive interference by two reflection contributions, one 

with a mode-dependent phase delay. Note that the lowest order mode (black solid lines) produces 

a reflection minimum for a small grating thickness D that is only very weakly dependent on the Si 

fill fraction. This is attributed to the fact that even at a small fill fraction of f=10% the lowest order 

mode remains predominantly confined in the Si region, resulting in consistently high propagation 

constant. As a result, a Si-based diffractive light-trapping electrodes are expected to be tolerant to 

patterning imperfections. 
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Figure 5.3: (a) Grating modes for f=10% and (b) for f=50% matching the grating periodicity, 

shown over a single grating period. (c) Schematic representation of possible light paths, with 

blue arrows representing the zero order mode. 

Next, we use the results from Figure 5.2 to design a diffractive light-trapping interdigitated 

electrode with suppressed zero order reflection. We focus on a structure with L=0.55 m, D=30 

nm, and f=54% corresponding to a smallest Si feature size of 0.3 m. According to the RCWA 

calculations this design allows for a polarization-averaged zero order reflection as low as 1.1% 

and an absorption of 6.3%, indicating that potentially 92.6% of the light incident on the patterned 

metal area could be trapped. The periodically placed metal electrode lines have a width of 

W=3.85 m corresponding to seven grating periods as shown in Figure 5.1(a). The metal area 

coverage is 25%, corresponding to an electrode gap of 11.55 m. An anti-reflective coating (ARC) 

optimized for 0=600 nm is placed on the silica cover layer, and the distance between the grating 
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and the ARC layer is 2.28 m. The metal thickness was set to 400 nm, resulting in an effective 

sheet resistance of 0.16 /sq. 

5.3 Grating performance 

The response of the diffractive trapping electrode design was evaluated using finite element 

based simulation. Figure 5.4(a) shows the time-averaged TE field magnitude under normal 

incidence plane wave illumination at 0=600 nm. The calculated transmission into the substrate 

for this geometry is 95.6% despite an only 75% open area, demonstrating efficient light trapping 

and strong suppression of the zero order reflection. The field pattern in Figure 5.4(a) clearly shows 

the presence of the +1 and the -1 diffracted orders at an angle of 48.4 relative to the normal (solid 

arrows), while the zero order diffraction is too weak to produce substantial surface-parallel 

standing waves. 
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Figure 5.4: Average TE field magnitude for a diffractive light trapping electrode excited at 

(a) 0=600 nm and inc=0, (b) 0=600 nm and inc=30, (c) 0=500 nm and inc=0. 

Figure 5.5(a) shows the angle dependent transmission of the structure in Figure 5.4(a) for 

TE and TM illumination as well as for unpolarized light (Tave). For reference the response without 

the grating (dotted line) and without the metal or grating (dashed line) are included. The latter 

curve, which we call Tmax() represents the transmission under perfect light trapping. Figure 5.5(a) 

also includes the light-trapping efficiency LT defined as LT=(T-Tmin)/(Tmax-Tmin) where Tmin=(1-

f)Tmax represents the ray-optics prediction of the transmission in the absence of the grating. 
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Defined this way, LT is equivalent to the reduction in shadowing losses, with LT=1 corresponding 

to complete elimination of shadowing effects.  

A light trapping efficiency of 82.3% is achieved at normal incidence, representing a more 

than five-fold reduction in shadowing. Note that this result is quite close to the best-case prediction 

of 92.6% based on RCWA calculations for an infinitely extended grating. As the angle of incidence 

increases, the light trapping efficiency drops, reaching values below 30% at angles beyond ~18. 

The observed trends can be understood in part by considering the generated internal diffracted 

angles. Figure 5.5(c) shows the analytically calculated internal angles (i.e. inside the cover layer) 

of the -1, 0, and +1 diffracted orders as a function of the external angle of incidence. At normal 

incidence, nearly all reflected power is redirected into the +1 and -1 diffracted orders, both of 

which appear at angles above the critical angle (horizontal dashed lines) leading to efficient light 

trapping.  At inc >6 the angle of the -1 order drops below the critical angle, causing a loss of TIR 

and accounting for part of the drop in light trapping efficiency. At inc=21.5 the +1 order ceases 

to exist, closing one of the channels for light trapping. Figure 5.4(b) shows the TE field distribution 

corresponding to the case of inc=30 with near-zero light trapping efficiency, where the -1 order 

is absent, and the +1 order (white solid arrow) appears below the critical angle. Meanwhile, the 

zero order suppression is seen to break down, as evidenced by the strong standing wave in the air 

region above the metal wire. This is attributed to angle-dependent changes to the reflection phase 

shifts at the top and bottom of the grating. Despite these effects, a transmission of T>82% is 

achieved with LT>30% over a 36 angular range about the surface normal. The transmission is 
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found to be relatively polarization independent, with similar values for TE (light gray line) and 

TM (dark gray line) polarized light. 

 

Figure 5.5: The (a) angular and (b) wavelength dependent transmission of a diffractive light-

trapping electrode with a metal area coverage of 25%, and (c) the diffraction angle of order 

m as a function of angle of incidence and (d) wavelength. 

Next, we investigate the spectral response of the diffractive light trapping electrode. Figure 

5.5(b) shows the same quantities as in Figure 5.5(a) as a function of incident wavelength under 

normal incidence illumination. Maximum transmission occurs at 600 nm corresponding to the 

previously observed polarization-averaged transmission of T=95.6% with a light trapping 
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efficiency of LT=82.3%. A light trapping efficiency in excess of 30% is observed in the 

wavelength range 540 nm - 740 nm, with a spectrally-averaged transmission of T=91% and an 

average light-trapping efficiency of LT=62 % for unpolarized light. A relatively rapid drop in the 

light trapping efficiency is observed for short and long wavelengths, predominantly due to the 

wavelength-dependent diffraction angles as illustrated in Figure 5.5(d). At wavelengths larger than 

750 nm, the diffracted light appears at sufficiently large angles to reach the neighboring electrode 

line. This results in some of the diffracted light being redirected out of the structure, an effect that 

we have previously called secondary shadowing [59]. At 0>800 nm, no diffracted orders can be 

generated in the cover layer, preventing any diffraction-mediated light trapping. At wavelengths 

shorter than 550 nm, the diffracted angles fall below the critical angle, resulting in a loss of TIR 

and a low light trapping efficiency. An example of such a scenario is shown in Figure 5.4(c) for 

an incident wavelength of 0=500 nm. The first order diffracted light is clearly visible in the region 

above the silica layer, illustrating the breakdown of light trapping for short illuminations 

wavelengths. 

5.4 Experimental demonstration 

To experimentally demonstrate the aforementioned performance of the light trapping 

electrode, a proof-of-concept sample were fabricated using e-beam lithography, Si deposition and 

dry etching. Here we used Au instead of Ag for the sake of fabrication feasibility, which does not 

significantly affect the ability of light trapping of the electrodes since Au also has high reflectivity 

in the visible range. The detailed fabrication workflow is shown in Figure 5.6. In brief, the negative 
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lithography was done by using MJB3 mask aligner and NR7-1000PY negative photoresist to open 

windows for 480 μm gold strip deposition. Then 5nm of Titanium and 300nm of gold were 

deposited using Edwards’s thermal evaporation machine. Then 32 nm of Si was deposited on top 

of the gold layer. The Si deposition was done by using temescal FC-2000 E-beam evaporator at 

4x10-7 torr.  

The zero order suppression grating was fabricated on the gold strip using the following 

procedures: 300 nm of E-beam lithography (EBL) mask layer was created on top of Si layer by 

spinning coating 495 A6 PMMA solution at 3500 rpm for 60 s and pre-baked at 180 C for 1 min. 

Then EBL was conducted at 10 nA current and 200 μC/cm2 dose using Leica 5000+ e-beam 

lithography instrument. The exposed area was washed away in IPA: deionized water 7:3 solution 

for 2min to develop the nanostructure. Then CF4:SF6 (50:70) reactive ion etching (RIE) was used 

to transfer the grating patterns to the Si layer. The sample was immersed in acetone for 12 hours 

to lift-off the sample and remove the PMMA. 

 

Figure 5.6: Process flow of the fabrication of grating-based light-trapping electrodes. 
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Figure 5.7: (a) Schematic sample layout showing three light-trapping grating regions with 

silicon fill fractions f=30%, 54% and 80%. (b) Bright-field reflection microscopy images of 

the grating based light trapping structures. 

Figure 5.7(a) shows the sketch of the sample. A 480 µm wide Au metal stripe is deposited 

on top of the ITO coated glass. Shallow Si gratings with different fill fractions are deposited on 

top of the metal stripe. Among them the gratings with f=54% are our target sample while those 

with f=30% and 80% are the references. All gratings share the same length of 600 µm and width 

of 480 µm, covering the entire metal stripe. 

Reflection microscopy images of the fabricated structures without cover layer are shown 

in Figure 5.7(b). Gratings with f=30%, 54% and 80% are shown from top to bottom, following the 
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sequence in Figure 5.7(a). The objective lens has 5 magnification and a numerical aperture of 

NA=0.15, corresponding to a small maximum collection angle of 8.63°. At this magnification the 

individual grating lines cannot be resolved. The different gratings are seen to produce distinct color 

difference, with the f=30% region exhibiting a predominantly orange color, the f=54% region a 

red color, and the f=80% region a blue-green color. This may seem surprising since the grating 

period is identical for all three regions, and therefore one would expect the same colors to be 

diffracted outside the numerical aperture of the objective. The distinct colors of the different 

regions is therefore attributed to a different diffraction efficiency. Note that these structures were 

designed to be used as embedded gratings, and therefore the optimum performance requires the 

presence of a cover layer.   

In order to evaluate the zero-order suppression and light trapping efficiency for the 

fabricated structures, the sample was covered by a 200 µm thick glass cover slip and a drop of 

index-matching liquid (n=1.518) was placed between the sample and the cover slip. The cover 

glass and index matching oil together form a near-uniform dielectric cover layer. The covered 

sample was imaged in bright-field reflection microscopy. A sketch of the measurement setup is 

shown in Figure 5.8(a). A small aperture stop was used in the illumination path to provide near-

normal incidence. First-order diffracted light appears at angles beyond the critical angle, resulting 

in light trapping. For efficient light trapping, we thus expect that the grating region looks dark, and 

for broadband light trapping it is expected that the grating region does not have a pronounced 

color. Figure 5.8(b) shows the region with a Si fill fraction of f=30%, taken near the left edge of 

the grating region using a 50 objective (N.A.=0.8). Note that the grating-covered gold wire has a 
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similar brightness as the cover slip region (left side of image), suggesting relatively low reflection 

from the metallic region. The grating region has a reddish hue, suggesting short wavelength light 

is either trapped or absorbed by the grating region. Figure 5.8(c) shows the region with a Si fill 

fraction of 54%. Note that the metallic region appears darker than the surrounding glass region, 

indicating stronger zero-order suppression and potentially larger light trapping efficiency than the 

f=30% region. Finally Figure 5.8(d) shows the region with a Si fill fraction of 80%. Note that this 

region appears significantly brighter than the grating regions in Figure 5.8(b) and (c), indicating a 

significantly reduced zero-order suppression. The results in Figure 5.8 confirm that the Si fill 

fraction is an important parameter in achieving minimum specular reflection, which in turn enables 

large light trapping efficiency.  
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Figure 5.8: (a) Schematic of the glass-covered light trapping electrodes and the reflection 

microscopy images of the gratings with (b) f=30% (brown), (c) f=54% (dark green) and (d) 

f=80% (white). 

While the microscopy images strongly suggest that the optimized grating-based light-

trapping structure enables strong shadowing reduction, quantitative measurements are needed. To 

assess the spectral dependence of the light trapping efficiency, we measured the reflection 

spectrum (R) of the electrodes at different polarizations using a microscope-coupled spectrometer. 

A small aperture stop was used to ensure near-normal illumination. We used an objective lens with 

5 magnification (N.A.=0.15). The measured reflection spectra are shown in Figure 5.9(a). The 

spectra were intensity normalized using a clean single-crystal Si wafer as a reference. The 

reflectance of TE and TM polarized light are shown in blue and red lines respectively. Low 

reflectance (<8%) is observed from 500 nm - 700 nm for both polarizations. At longer wavelengths 
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(700-800 nm), R0 increases to ~15% at λ=800 nm for TE polarization and to ~26.5% for TM 

polarization. While this measurement cannot distinguish light trapping from absorption in the a-Si 

grating regions, it does suggest that the zero-order suppression is effective across a wide spectral 

range, similar to the predictions made in Figure 5.5(b). 

Next we investigate the zero order suppression efficiency, which we define as ηzs=1-

(Rgrating-Rglass)/(Rmetal-Rglass), in which Rgrating, Rmetal and Rglass are the measured reflectance values 

measured when the light is incident on the grating, a glass covered bare Au stripe, and an isolated 

glass cover slip. The value of Rglass was divided by two to remove the backside reflection 

contribution. This definition removes the constant top-surface reflection loss, which intrinsically 

cannot be suppressed by the grating structure. In real devices, the cover layer itself would be coated 

with an anti-reflective coating to further improve the overall transmission. The thus obtained zero 

order suppression efficiencies for different polarizations are shown in Figure 5.9(b), using by the 

same colors as in Figure 5.9(a). Note that the y-axis (ηzs) is shown in the range 75% - 100%. For 

TE polarization, a strong zero order suppression of ηzs92.9% is observed at λ=500 nm, followed 

by a gradual increase at longer wavelengths. A near perfect zero order suppression range is 

observed from 600 nm – 740 nm, following the simulation results in Figure 5.5(b). For TM 

polarized illumination, near 100% zero-order suppression is observed from 500 nm – 650 nm, 

followed by a gradual decrease to 76% at 800 nm.  
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Figure 5.9: (a) The reflection spectra of a Si-grating covered Au light trapping electrode 

under TE and TM polarized illumination, and (b) the corresponding zero-order suppression 

efficiency spectra. 

The large observed zero-order suppression efficiencies observed in Figure 5.9 are expected 

to be due to a combination of light trapping and absorption by the a-Si grating regions. To 

distinguish the relative contributions of these two factors, in the following we directly measure the 

fraction of trapped light under normal incidence illumination of the light trapping electrode with 

f=54%. The optical setup we used to measure the light trapping efficiency is shown in Figure 

5.10(a). The glass-covered light trapping electrodes are placed on top of a dove prism to allow 

measurement of off-axis recovered (trapped) light. Index matching oil is added between the sample 

and the Dove prism to allow transmission of trapped light into the prism, A He-Ne laser with 633 

nm wavelength was used as the light source. The laser spot size had a FWHM of ~300 µm. The 

position of the entire assembly was scanned such that the wire crossed the laser beam. Identical 

optical power meters were placed both on-axis and off-axis at an angle close to 50. Based on the 

collected power the light trapping efficiency was determined, defined as ηLT=(PR + PL)/(PT0 - PT1), 
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in which PR  is the off-axis power collected on the right side, corresponding to the trapped -1 

diffracted order, while PL  is its counterpart on the left side corresponding to the trapped +1 

diffracted order. PT1 represents the on-axis transmitted power when the laser is incident on the 

grating region, while PT0 represents the on-axis transmitted power when the laser passes through 

a transparent area near the light trapping electrode. Using this definition the light trapping 

efficiency represents an estimate of the shadowing reduction, i.e. the recovered power relative to 

the power blocked by the patterned electrode region. 
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Figure 5.10: (a) Schematic of the optical setup that measures the light trapping efficiency of 

the sample. Measured on-axis (green line) and off-axis (red and blue) transmissions obtained 

from the grating-based light trapping electrode as a function of the position in x-axis under 

focused illumination at (b) TE and (c) TM polarization. The inferred light trapping efficiency 

are included (grey dashed line). 

Figure 5.10(b) and (c) show the measured on-axis transmitted power (PC) and the off-axis 

recovered power (PL: left detector and PR, right detector) as a function of the position. All measured 

powers are normalized by the maximum transmitted power when the light is incident on an 

unmetallized region. In Figure 5.10(b), as the laser spot moves across the ~400 m wide light 

trapping electrode, the on-axis signal (green line) reaches near-zero transmission (<1%), indicative 

of strong shadowing by the grating covered metallic wire. Small fluctuations of PC are seen 



76 

 

observed at x<-340 μm. This is attributed to signal loss due to the presence of a small air bubble 

that was observed near the grating edge in prior reflection microscopy measurements (not shown). 

As the on-axis signal drops, the off-axis recovered power by the left and right detectors (blue and 

red lines) gradually increases from zero to ~19% when the laser spot is close to the center of the 

electrode, resulting in a maximum light trapping efficiency (grey dashed line) of ~38%. This means 

38% of the light incident on the electrode is recovered by the grating. For TM polarization similar 

observations are made, showing a slightly higher light-trapping efficiency of ~44.3%. The 

observed efficiencies represent a lower bound, given the non-zero angular spread of the diffracted 

beams and the finite size of the power meters. Comparing the observed minimum trapping 

efficiency of 38% with the observed zero order suppression efficiency of ~100% at 633nm (Figure 

5.9(b)), it appears that as much as 62% of the incident light may be absorbed by the light trapping 

grating. Such large absorption losses may be due to the large absorption of the deposited 

amorphous silicon gratings. To investigate this possibility, RCWA calculations were carried out 

taking into account literature values for the dielectric functions of amorphous silicon [81] and gold 

[79] for a grating fill factor of the f=54%. The calculated absorption loss at λ=633 nm is 55% for 

TE polarization and 42% for TM polarization. Based on these results it appears that the light 

trapping itself is quite efficient, with a large fraction of lost power attributed to absorption in the 

grating region. 
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5.5 Summary 

In summary, a transparent light trapping electrode consisting of a binary embedded 

dielectric grating placed on metallic wires was theoretically investigated and experimentally 

demonstrated. Shadowing losses in an example electrode with a 25% metal coverage were 

numerically shown to be reduced by more than a factor five under normal incidence illumination 

at 600 nm, and a light trapping efficiency in excess of 30% was obtained over a 36 angular range 

about the surface normal. The spectral performance was investigated, and the simulated light 

trapping efficiency was found to exceed 30% for wavelengths in the range 540 nm - 740 nm, with 

a spectrally-averaged light trapping efficiency of 62 % for unpolarized light. The light trapping 

process was found to be relatively insensitive to polarization. In experiments on a prototype 

diffractive light trapping electrode a light trapping efficiency of 41% was observed for unpolarized 

illumination at normal incidence. The trapping efficiency may be increased by using a lower loss 

dielectric in the grating region.     
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CHAPTER 6: SUPPRESSION OF REFLECTION LOSS IN GRADIENT 

METASURFACE OPTICAL ELEMENTS 

6.1 Introduction 

Previous chapters discussed reflective light-trapping electrodes that utilized redirection of 

incident light toward angles beyond the critical angle, resulting in light recovery via total internal 

reflection. An alternate approach to reducing shadowing loss involves redirecting the incident light 

to avoid interaction with metallic electrodes entirely, e.g. using indentations in a dielectric cover 

layer as shown in Figure 6.1(a) or using micro lens arrays above interdigitated electrodes. While 

such approaches can provide strong shadowing reduction, the involve non-coplanar outer surfaces. 

An alternate approach that could produce similar light redirection involves the use of gradient 

metasurfaces. Applying a thin high-index region with gradually varying refractive index, it is 

possible to achieve functionality similar to that of a Fresnel lens, enabling redirection of light using 

coplanar structures, as schematically shown in Figure 6.1(b). While metasurface-based light 

redirection appears to be a promising approach for mitigation of contact shadowing losses, one 

challenge involves the incurred reflection losses.  

Metasurface optical elements that rely on propagation phase typically make use of varying 

fill fractions of high refractive index materials such as TiO2 (n~2.4-2.8) or a-Si (n~3.5-5), resulting 

in regions with significantly different effective refractive index across the surface. This index 

gradient makes it a non-trivial task to eliminate reflection losses across the entire optical element. 

Minimizing such surface reflections from metasurface optical elements remains a relatively 

unexplored area. Here we investigate the optical performance of high-index gradient metasurfaces. 
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We demonstrate that a drastic reduction of surface reflections is possible through the application 

of an anti-reflective layer with a thickness and refractive index that are substantially different from 

the traditional bulk optics values. It has been demonstrated that the optimized anti-reflective 

coating outperforms the standard approach by a factor of 5 for metasurfaces with <73% areal fill 

fraction. 

 

Figure 6.1: Schematics of (a) surface micro lens array and (b) metalens array. Both elements 

are used to redirect the incident light into the substrate to reduce the reflection losses. 

The advent of metasurface optics has led to a wide range of applications of flat optical 

devices, including active wavefront control [51, 82, 83], sensing [44-46], imaging [84-86] and 3D 

display [48, 49]. Metasurface optical elements have been found to approach or exceed the 

performance of traditional optical elements in certain scenarios. They offer unprecedented 

flexibility in optical functionality using compact structures that can be fabricated through standard 

2D lithographic techniques. Despite the many appealing aspects of metasurface optical elements, 

their unique design introduces new challenges in optical systems. One interesting challenge is the 

issue of reflection losses from metalenses and related structures. In imaging systems, even a small 

amount of reflection from optical elements can lead to notable image artifacts in high-contrast 
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images. In traditional optics these issues are mitigated by the application of anti-reflective coatings 

(ARC) using well-known design rules. However, as we will show here, for gradient metasurfaces 

based on propagation phase the traditional design rules are not practical, causing significant 

spatially varying reflection losses.  
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Figure 6.2: (a) SEM image of a Si-based metasurface lens, taken from Ref. 83 [87]. (b) 

Calculated reflectance values for Si metasurfaces without ARC (black line), with nARC=1.87 

(red line), nARC=1.67 (blue line), and nARC=1.87 (green line). (c) Predicted effective index of 

pillars made of a material with n=4 (orange line), the traditional refractive index choice for 

the ARC coating (black line), the resulting effective index of the ARC region (solid blue line), 

the desired effective index of the ARC region (dashed blue line), and the desired index of the 

ARC material to achieve the desired effective index (green line) for (c) TE and (d) TM 

polarizations respectively. 
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6.2 Theory 

A traditional thin-film ARC eliminates back-reflection from a high-index optical element 

by introducing two reflecting interfaces, each producing a reflected field of equal amplitude, where 

one of the reflected fields incurs a phase delay of  radians. For the correct choice of ARC index 

and thickness, the reflected fields destructively interfere, resulting in zero reflection and perfect 

transmission. For a bulk optic with known index nsub surrounded by air, the traditional ARC index 

nARC and thickness dARC are given by nARC=nsub and dARC=0/4nARC respectively. However, as we 

demonstrate in the following, this traditional choice of ARC design cannot easily be transferred to 

metasurface optical elements. Gradient metasurface optical elements typically make use of lateral 

patterning of a high-refractive index layer to achieve effective index gradients, allowing spatially 

varying propagation phase delays. As an example, Figure 6.2(a) shows a region of an amorphous 

silicon-based metasurface lens (image from Ref. [83]) revealing strong local variation of the 

silicon fill fraction across the lens surface. It is the resulting spatial variation of the effective index 

that poses a challenge: in order to achieve the lowest possible reflection, each region of the 

metasurface would require a specific ARC thickness and index, neither of which can be easily 

ensured using standard fabrication steps. In this study we first demonstrate this challenge in detail, 

followed by a proposed mitigation strategy that produces significantly reduced reflection losses 

across a wide range of fill fractions that is compatible with traditional device processing steps.  

To illustrate the challenge and its impact, Figure 6.2(b) shows the reflectance at 

0=1550 nm of a silicon-based metasurface for a range of fill fractions, calculated using Rigorous 

Coupled Wave Analysis (RCWA) [61]. The structure consists of an infinitely extended 
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metasurface containing square silicon pillars (n=3.5) in air,  with a width W placed on a regular 

square lattice with period L=200 nm. The horizontal axis represents the Si areal fill fraction 

f=(W/L)2. Without any ARC applied (black curve) regions with large fill fraction suffer from a 

surface reflection loss as high as 30.9%. As the fill fraction is reduced, the effective index drops, 

which results in a drop of the reflection loss. To further reduce the reflection loss, a seemingly 

reasonable approach is to apply an ARC on the Si layer before patterning, using the traditional 

index choice and thickness. After patterning the metasurface, this produces the structure shown in 

the inset. This results in a large drop in reflection for high fill fractions (green curve), but the 

reflection rapidly increases as the fill fraction is reduced. This failure of the standard approach is 

intrinsic to AR-coated gradient metasurfaces but can be significantly mitigated, as will be shown 

below. 

To illustrate the fundamental reason for the breakdown of the standard ARC approach on 

metasurfaces, we first consider an effective medium description for two different 1D situations. 

Figure 6.2(c) shows the calculated effective index of a deeply subwavelength grating for a material 

with index n=4 as a function of fill fraction (orange line) under TE excitation. As the fill fraction 

of the high-index rods is reduced, the effective index neff,rods drops gradually. At each fill fraction, 

the optimum AR coating index would be given by nopt=neff,rods as shown by the dashed blue line. 

However, in practice when the high index layer is coated with a layer that has the traditional 

nARC=n before patterning, after patterning this produces a non-ideal neff,ARC indicated by the blue 

solid line. For all fill fractions 0<f<1 the obtained effective index of the ARC region neff,ARC is less 

than the ideal value, based on analytical effective medium theory. To compensate for this effect, 
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the 1D metasurface would have to be coated with a material that has a different index for each 

separate fill-fraction, with an index that is higher for lower fill fractions (green line). In addition, 

for each region there would be a unique optimum thickness (not shown) given by 0/4neff,opt. For 

TM polarization (Figure 6.2(d)) the fill-fraction dependence is quite different, but as in the TE 

case, the optimal ARC material index would be different for each fill fraction used. These 

examples highlight that even in idealized 1D metasurfaces, applying a traditional ARC before 

patterning intrinsically leads to deviations of the ARC index from the optimum value for all fill 

fractions 0<f<1. 

As demonstrated above, no single ARC material choice produces perfect AR behavior 

across all metasurface fill fractions. Next, we investigate improved choices for both the refractive 

index of the ARC material and the thickness of the patterned ARC layer to be applied on an 

isotropic Si metasurface. We consider a metasurface intended for use at a wavelength of 1550 nm 

(nSi=3.5) with a unit cell size of L=200 nm. Figure 6.3(a) shows a contour graph of the reflectance 

as a function of Si fill fraction and ARC layer thickness calculated using RCWA, where the ARC 

index is set to the traditional value of nARC=nSi. The reflectance is shown on a log scale from 

0.01% to 10%, with green regions indicating a reflectance below 0.1%. For low Si fill fractions, 

the reflectance is always low, independent of the AR layer thickness, since in this region the 

metasurface has a refractive index close to that of air. For a Si fill fraction of 1, we see that 

minimum reflection of ~0.01% is achieved close to dARC=207 nm, corresponding to the 

traditionally expected optimum thickness of dARC=0/4nARC as indicated by the black dot on the 
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contour graph. However, for intermediate Si fill fractions the reflectance at this thickness 

(d=207nm) exceeds 1% at many fill fractions, as shown in Figure 6.2(b) (red line).  

 

Figure 6.3: Contour graphs of the reflectance at 0=1550 nm of a Si metasurface with unit 

cell size of L=200 nm as a function of Si areal fill fraction and ARC thickness for (a) an ARC 

refractive index of 1.87 and (b) an ARC refractive index of 1.58. 

In order to reduce the reflection for intermediate Si fill fractions (i.e. for values of f that are 

more commonly used in metasurface lenses) we look for modified ARC index and thickness values 

that provide better performance across a wide fill factor range. As a starting point we use a 2D 

effective index model [88] to estimate the effective index of a medium consisting of square pillars 

with dielectric function r in air. This approach predicts an effective relative permittivity given by   

𝜀𝑒𝑓𝑓 = (1 − √𝑓) +
√𝑓

(1−√𝑓)+√𝑓/𝜀𝑟
      (6-1)         

This formula is most accurate for high-fill-fraction subwavelength square gratings, but 

nevertheless provides a useful guideline in choosing an appropriate ARC material index and layer 
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thickness. Based on the effective medium model we can estimate the effective index of the 

patterned Si region neff,Si for any fill fraction. We then use the same effective medium model to 

find the ARC material index needed to achieve the corresponding optimum neff,ARC=neff,Si. 

Finally, we determine the optimized ARC thickness given by dARC=0/4neff,ARC. The black dashed 

line in Figure 6.3(a) shows the resulting predicted optimum ARC layer thickness for each f based 

on the effective medium model approach. 

We achieve reduced reflection across a wide range of fill fractions by optimizing our ARC 

material and thickness for a Si fill fraction of f=0.5. At this fill fraction the effective medium model 

predicts nSi,eff =1.53, which requires an neff,ARC of 1.24 for minimum reflection. To achieve this 

effective ARC index, the effective medium model predicts that we require a material with 

nARC=1.58, with a corresponding optimum dARC=314 nm. Figure 6.3(b) shows the reflectance 

contour graph obtained using RCWA for this optimized fixed ARC material index. The optimized 

thickness is indicated by the black dot. Note that low reflection is indeed achieved near the 

calculated thickness at a fill fraction of f=0.5, showing good correspondence with the effective 

medium-based prediction. The resulting reflectance as a function of fill fraction for this fixed 

choice of nARC and dARC is included in Figure 6.2(b) (green line) as well as the corresponding curve 

optimized for f =0.75 (blue line). Note that in the latter case, R<0.5% can be achieved for a wide 

range of fill fractions spanning from 0% to 88%, whereas the traditional ARC parameter choices 

would lead to significantly larger reflectance across this same region. This range of fill fractions 

includes the most common fill fractions used in gradient metasurfaces, since fill fractions close to 

zero and close to one are typically avoided due to the need for impractically small features sizes. 
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6.3 Field distribution 

 

Figure 6.4: Average electric field magnitude above four metasurfaces containing square Si 

pillars placed on a 200 nm square lattice under illumination at 0=1550 nm, with the electric 

field polarized in the plane of the figure. (a) f =50%, traditional ARC approach (b) f =50%, 

ARC optimized for f =50%, (c) f =75%, traditional ARC approach and (d) f =75%, ARC 

optimized for f =75%. 

To demonstrate the difference between the traditional approach (i.e. applying a standard 

AR coating followed by patterning) and the optimized approach, Figure 6.4(a)-(d) show a cross-

sectional view of the time-averaged E-field magnitude above 2D Si-based metasurfaces when 

illuminated with λ0=1550 nm for a meta-atom size of L=200 nm. The 2D cut is through the center 

of the Si pillars, and the electric field is polarized along the x-direction. Figure 6.4(a) and (b) show 

the traditional and optimized ARC for a Si fill fraction of f=0.5. Note the significant larger layer 

thickness required to achieve optimum performance at f=0.5. The standard approach is seen to 
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produce a significant standing wave pattern above the surface, which is almost entirely eliminated 

when using the optimized approach. Figure 6.4(c) and (d) show the equivalent graphs for f=0.75. 

The thickness difference between the two approaches is not as distinct in this case, however again, 

a substantial standing wave pattern is observed when using the traditional ARC approach (Figure 

6.4(c)), which is again almost entirely eliminated when using the optimized ARC structure (Figure 

6.4(d)).  

6.4 Summary 

In summary, we have studied the suppression of first-surface reflection in silicon-based 

gradient metasurface structures using optimized anti-reflection coatings. Theoretical predictions 

of the optimum ARC material index and thickness were made, and the predictions were shown to 

be in good agreement with calculations based on the RCWA method. It has been demonstrated 

that anti-reflective coatings optimized for f=0.5 outperform the standard approach by a factor of 5 

for metasurfaces below 73% areal fill fraction, and reflectance values below 0.5% are obtained for 

areal fill fractions below 88% using an ARC optimized for f=0.75. This work shows a path toward 

low-reflection metasurface optics, with an approach that is compatible with standard 2D 

fabrication methods involving a single patterning step. 
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CHAPTER 7: CONCLUSION 

Transparent electrodes are important components in many optoelectronic devices such as 

photovoltaics and high-speed photodetectors. However, there is an intrinsic tradeoff between 

optical transparency and electrical conductivity for transparent electrodes, especially in metallic 

nanowire arrays. To address this issue, light trapping transparent electrodes are widely employed. 

In this dissertation, we have contributed several optical designs and characterized different aspects 

of their performance, demonstrating their potential for next generation transparent electrodes and 

other optoelectronic devices. 

First, we numerically investigated the optical performance of triangular light trapping 

electrodes, including their size dependent, angle-dependent, and wavelength-dependent optical 

response. It was found that for silver electrodes on silicon embedded in a glass cover layer, with 

2 μm width, 30° surface tilt and 10% areal metal coverage, a nearly polarization-independent 

spectrally averaged optical transmission of 90% is achieved across the visible spectrum. Owing to 

high conductivity of silver, the sheet resistance is as small as 0.22 Ω/sq, which satisfies typical 

industrial requirements. 

A prototype transparent electrode structure was fabricated by multiphoton lithography and 

selective chemical deposition. Light trapping was demonstrated using optical microscopy, and 

significant shadowing reduction was demonstrated through spatial mapping of the light trapping 

efficiency. The results show that structures with surface tilt angles larger than half of the critical 

angle of the cover layer indeed achieve efficient light recovery, demonstrating the concept of light 

trapping via total internal reflection.  
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Though the triangular metallic nanowires exhibit broadband transmission enhancement by 

light trapping, the fabrication remains challenging. In Chapter 5 we proposed a novel type of light 

trapping electrode that uses a combination of grating-based light redirection and zero-order 

suppression. By judiciously engineering the geometry of the dielectric nanowires that form the 

grating, the zero order reflection is virtually eliminated through destructive interference, so that 

the incident light is only reflected at higher angles, enabling light trapping via total internal 

reflection. A spectrally averaged optical transmission of ~90% with near 55% shadowing reduction 

has been demonstrated. This proposed design was fabricated and prototype structures were 

characterized by optical microscopy, reflection spectroscopy, and linear laser scanning, revealing 

significant light trapping and near-zero reflection losses. The proposed design is compatible with 

standard fabrication methods, making the approach a promising candidate for real-world 

implementation. 

Finally, transmissive light-redirecting devices were studied in this Dissertation. 

Metasurfaces enable the development of flat optical components that can replace traditional bulky 

optical elements. Subwavelength structures placed on a surface can impart arbitrary phase ptofiles 

to the wavefront, enabling the formation of ultrathin lenses, sensors, and beam steering elements. 

To improve the performance of metasurface-based optical elements, dedicated antireflective 

coatings must be developed that are compatible with common metasurface fabrication approaches. 

It was found through effective medium analysis that for metasurfaces with non-uniform index 

distributions, the traditional antireflective coating (ARC) design fails. An alternate approach was 

proposed that makes use of a lower index and larger thickness for the ARC. The optimized 

approach was shown to enable near-unity optical transmission across a wide range of metasurface 



91 

 

geometries. This work could help improve the performance of metasurface elements by 

minimizing reflection losses, and reducing the visibility of imaging artifacts that result from 

reflections inside optical systems.  

Based on the presented work we expect the proposed light trapping approaches will help 

improve the performance of next-generation photonic devices through the inclusion of novel light 

trapping transparent electrodes, with applications including photovoltaics, optical sensors, and 

gradient metasurface based optical systems. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

APPENDIX A: THIN-FILM TRANSMISSION AND CONDUCTIVITY 
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Drude model 

To illustrate the intrinsic trade-off between conductivity and transparency discussed in 

Chapter 1, here we investigate the optical response of thin films. We will consider a generic 

conducting material described as a dielectric host doped with free charges. The free charge 

response is described by the Drude model [89, 90]. The relative permittivity of the film is given 

by: 

𝜀𝑟(𝜔) = 𝜀ℎ −
𝜔𝑝

2

𝜔2+𝑖𝛤𝜔
     (A-1) 

where 𝛤 is the damping rate of the metal and 𝜔 is the angular frequency of the incident light, 𝜀ℎ is 

the permittivity of the host dielectric material and 𝜔𝑝 is the plasma frequency: 

𝜔𝑝 = √
𝑁𝑒2

𝜀0𝑚
      (A-2) 

where 𝑁 is the density of free electrons, 𝑒 is the charge carried by a single electron, 𝜀0 is the 

vacuum permittivity and 𝑚 is the electron mass. The real and imaginary part of the refractive index 

of this material follows from: 
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𝑛(𝜔) = √
1

2
(|𝜀𝑟| + 𝜀𝑟

′ )    (A-3) 

𝑘(𝜔) = √
1

2
(|𝜀𝑟| − 𝜀𝑟

′ )    (A-4) 

The properties of the thin films 

The absorption coefficient of the material is given by: 

𝛼(𝜔) = 2
𝜔

𝑐
𝑘(𝜔)     (A-5) 

where 𝑐  is the speed of light. When a thin film of this material is placed on a substrate, the 

reflectance and transmittance is given by: 

𝑅 = |𝑟012|2 = |
𝑟01+𝑟12𝑒−2𝑖𝑘𝑧1𝑑

1+𝑟01𝑟12𝑒−2𝑖𝑘𝑧1𝑑|
2

   (A-6) 

𝑇 = |𝑡012|2 = |
𝑡01𝑡12𝑒−𝑖𝑘𝑧1𝑑

1+𝑟01𝑟12𝑒−2𝑖𝑘𝑧1𝑑|
2

   (A-7) 

where 𝑟𝑖𝑗 and 𝑡𝑖𝑗 is the Fresnel amplitude of reflection and transmission coefficient between the 

corresponding interfaces. 𝑘𝑧1 is the propagating wave vector inside the film, and d is the film 

thickness, as shown in Figure A.1. The corresponding absorbance are hence obtained: 

𝐴 = 1 − 𝑇 − 𝑅     (A-8) 
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Figure A.1: Schematic of thin film reflection and transmission processes. 

The scattering time of free electrons are defined by the damping rate that 𝜏 =
1

𝛤
. This affects 

both the optical response and the electrical conductivity. The low-frequency electrical conductivity 

is given by: 

𝜎 =
𝑁𝑒2𝜏

𝑚

1

1−𝑖𝜔𝜏
      (A-9) 

for a continuous film of thickness d on an insulating substrate, the sheet conductivity of the film 

is given by: 

𝜎𝑠ℎ = 𝜎𝑑      (A-10) 

Next, we evaluate the electrical performance and the normal-incidence optical transmission 

of red light (=632 nm) of a 1 μm thick film of this material deposited on a substrate with index 
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n=1.5. The results are shown in Figure A.2 as a function of free carrier density. When the carrier 

density increases, the optical transmittance is seen to decreases, while the sheet conductivity 

increases. For low carrier densities, the transmission loss is dominated by absorption losses. For 

high carrier densities, reflection loss dominates. This illustrates the need for different approaches 

for achieving transparent electrodes, depending on the type of conductor used.  

 

Figure A.2: Optical and electrical performance of a thin conducting film as a function of 

free carrier density. 

In order to achieve high sheet conductivity, one could use a very thin film of highly 

conductive material, or a thick film of less conductive material. For typical conductive oxides, a 

continuous film with a thickness of hundreds of nanometers is typically used. However, to achieve 

acceptable transmission with a metallic film, a thickness of a few nm would be required, which is 
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challenging in practice. As shown in Figure A.3, a film thickness of 1 nm is required to achieve 

88.6% transmittance when using a thin gold film as the conducting layer using =400 nm.  

 

Figure A.3: Thickness dependent transmittance of thin gold film on a glass substrate 

(n=1.5). 

Because of the trade-off between conductivity and transmission, a typical ITO layer cannot 

achieve high transmittance (T>90%) and low sheet resistance (R<10 /sq.) at the same time [91].  

Therefore, alternative approaches to thin film transparent electrodes that can achieve good optical 

and electrical performance simultaneously are necessary. It is natural to consider condensing the 

conductive materials in a small area while leaving large uncovered areas on the interface to 

enhance optical transmission. Following this logic, random mesh electrodes and wire array 

electrodes are presented. The schematics of both structures are shown in the right panel of Figure 

A.4. To evaluate the optical performance of such wire electrodes, the transmission formula for thin 
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film electrodes given above is no longer appropriate. Instead, the optical transmission will be 

affected by the fraction of surface area covered by the electrodes, defined as the areal coverage 𝑓. 

Considering light incident on metallic contacts, most of the light is reflected, and a small fraction 

is dissipated. Assuming all the light incident on the contact surface will be either reflected or 

absorbed, the optical transmission into the underlying substrate will approximately simply be: 

𝑇 = 1 − 𝑓      (A-11) 

If the average thickness of the metallic wires is 𝑑 , then the effective sheet resistance 

associated with a regular wire grid will be given by: 

𝑅𝑠ℎ =
𝜌

𝑑𝑓
      (A-12) 

where 𝜌 is the resistivity of the material Combining Equation (A-11) and (A-12) we can easily 

obtain the relationship between transmittance and sheet resistance: 

𝑇 = 1 −
𝜌

𝑅𝑠ℎ𝑑
      (A-13) 

From Equation (A-13) we see that once the wire composition and thickness are set, there 

is still a balance between the optical transmittance and the sheet resistance. In general, this balance 

is affected by the size and shape of the individual wires and the areal coverage. The type of the 

material is another factor that significantly affects the optical and electrical performance. As shown 

in the left panel of Figure A.4, metallic nanowires (MNWs) can outperform thin-film electrodes 

made of transparent conductive oxides such as ITO.   



99 

 

APPENDIX B: RAY OPTICS MODEL OF TRIANGULAR 

ELECTRODES 
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The ray optics modal mentioned in Chapter 3 is developed by ray tracing. Detailed 

procedures are derived here. 

Under oblique incidence, the internal incident angle inside the cover layer is given by 

Snell’s Law: 

𝜑 = 𝑎𝑟𝑐sin (
𝑛0

𝑛2
sin(𝜙))    (B-1) 

When the light is incident from air in an oblique angle 𝜙, it undergoes specular reflection 

on both left and right sides of the electrodes, resulting in rays travelling upward to the cover layer 

surface at different angles. If this angle is larger than the critical angle of the interface between the 

cover layer and air, TIR occurs and the light may be recovered. For angles below the critical angle 

the light trapping will be significantly reduced, which is expected to lead to significant shadowing 

losses. Therefore, the overall transmittance of the electrode array is derived: 

𝑇(𝜙) = 𝑇0(𝜙) [1 − 𝑓 +
𝑓

2
(𝑅0(2𝜃 + 𝜑)𝑅(𝜃 + 𝜑) + 𝑅0(|2𝜃 − 𝜑|)𝑅(|𝜃 − 𝜑|))] (B-2) 

Interaction with the neighboring electrodes is another deleterious effect on the optical 

performance. When the electrodes are close enough, the recovered light can hit the neighboring 

electrodes and produce multiple reflections, resulting in additional optical losses. This effect can 

also be mitigated by ray optics model. To achieve interaction-free light recovery, light incident on 

both left and right side of the electrode should be redirected into the spacing between the 

electrodes. This requires that light reflected by an electrode neither hits the edge of this electrode 
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nor hits the neighboring electrodes. Hence the geometry of the electrode array should follow the 

following principle: 

{
𝐷tan(2𝜃 + 𝜑) + (𝐷 + ℎ)tan(2𝜃 + 𝜑) ≥ 𝑊

(𝐷 + ℎ)tan(2𝜃 + 𝜑) ≤
𝑊

𝑓
− 𝑊

   (B-3) 

         

 

Figure B.1: Sketch of the geometry of the light-trapping electrodes. 

As shown in Figure B.1, these inequalities formulate the geometrical requirements on the 

left side of the electrodes. Assume that: 

𝐷1(𝜑) = 𝑤/2 [𝑐𝑜𝑡(2𝜃 + 𝜑) − tan(𝜃)]    (B-4) 

𝐷2(𝜑) =  𝑤 [(
1

𝑓
− 1) 𝑐𝑜𝑡(2𝜃 + 𝜑) − tan(𝜃)]   (B-5) 

As D1(φ) corresponds to the situation of hitting the electrode edge, D2(φ) is related to 

hitting the neighboring electrodes. Equation (B-4) and (B-5) mark the range of D that allows for 

interaction-free light recovery. Then Equation (B-3) is then converted to 
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  𝐷1(𝜑) < 𝐷 < 𝐷2(𝜑)𝐷2(𝜑)  ≥ 0       (B-6) 

Similarly, the reflection angle becomes |2θ-φ| instead of 2θ+φ on the right side of the 

electrodes, thus we have: 

  𝐷1(−𝜑) < 𝐷 < 𝐷2(−𝜑) ∩ 𝐷2(−𝜑)  ≥ 0       (B-7) 

Next, we need to compare the value of D1 and D2 under different incident angles to 

determine the available range of D. When the reflected light reaches the top boundary, |2θ-φ| and 

2θ+φ are both within the angular range from 0 to 90°, then (B-4) and (B-5) are monotonically 

decreasing:   

𝐷1(−𝜑) > 𝐷1(0) > 𝐷1(𝜑)    (B-8) 

𝐷2(−𝜑) > 𝐷2(0) < 𝐷2(𝜑)    (B-9) 

Equation (B-8) and (B-9) indicate that the incident light is more squeezed on the right side 

than on the left side such that larger D is required to avoid contact with the electrode edge. It also 

means that the incident light can travel longer distance before hitting the neighboring electrodes 

on the right side. The maximum internal angle φmax, also known as the critical angle, is obtained 

at 90° incidence, then the range of D is determined from (B-6)-(B-9): 
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𝐷1(−𝜑𝑚𝑎𝑥) < 𝐷 < 𝐷2(𝜑𝑚𝑎𝑥)   (B-10) 

Due to the monotonicity of function (B-4) and (B-5), the range from any incident angle 

smaller than φmax is contained in (B-10). Then the geometrical requirement of achieving 

interaction-free light recovery is obtained: 

𝐷1(−𝜑𝑚𝑎𝑥) < 𝐷2(𝜑𝑚𝑎𝑥) ∩ 𝐷2(𝜑𝑚𝑎𝑥) > 0    (B-11) 

It is found that f, θ and n2 are contained in (B-4) and (B-5). Therefore, with (B-11) we can 

further optimize the design of the light trapping electrodes. Accordingly, the detailed expression 

of η is shown as: 

𝜂 =
𝑅0(2𝜃+𝜑)𝑅(𝜃+𝜑)+𝑅0(|2𝜃−𝜑|)𝑅(|𝜃−𝜑|)

2
    (B-12) 

From Equation (B-12), it is found that this definition excludes the influence of the top 

interface, which results in little transmission at large incident angles. 
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APPENDIX C: SEM IMAGES AND COMPOSITION ANALYSIS OF 

TRIANGULAR LIGHT-TRAPPING ELECTRODES 
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As discussed in Chapter 4, energy dispersive X-ray spectroscopy (EDS) was used to 

confirm selective deposition of copper on the electrodes. Kα lines of Cu and Si were used to 

generate elemental maps shown in Figure C.1(b) and (c), respectively. Figure C.1(b) shows that 

copper is selectively deposited on the electrodes. Figure C.1(c) shows intensity of Si (from the 

borosilicate glass substrate). 

 

Figure C.1: (a) SEM, (b) Cu Kα EDS, and (c) Si Kα EDS map of the angle array. Cu and Si 

are both shown in red versus white background. 
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APPENDIX D: RIGOROUS MODAL ANALYSIS OF DIELECTRIC 

GRATINGS 
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The grating mode profiles in Chapter 5 are obtained by rigorous modal analysis. The 

detailed procedures are discussed here. 

First, we consider a 1-D dielectric grating with periodic index distribution along the x-axis, 

as shown in Figure D.1. 

 

Figure D.1: The refractive index distribution of a 1-D dielectric grating. 

In the grating, each unit cell is comprised of two regions. For example, in a unit cell 

extending from x=-b to x=a, region I (x=0 to x=a) is the spacing between the dielectric blocks that 

has lower refractive index n1, while region II (x=-b to x=0) is the block with higher index n2.  The 

field distribution inside the grating is expressed in 1-D Helmholtz equation: 

𝑑2

𝑑𝑥2 𝐸(𝑥) + 𝑘𝑥
2𝐸(𝑥) = 0    (D-1) 

The wavevector k has two components kx and kz. kz remains invariant since there is no 

index variation along z-axis. Then Equation (D-1) can be rewritten as: 
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{

𝑑2

𝑑𝑥2
𝐸(𝑥) + (𝑘0

2𝑛1
2 − 𝑘𝑧

2)𝐸(𝑥) = 0, 0 < 𝑥 < 𝑎 

𝑑2

𝑑𝑥2 𝐸(𝑥) + (𝑘0
2𝑛2

2 − 𝑘𝑧
2)𝐸(𝑥) = 0, −𝑏 < 𝑥 < 0

   (D-2) 

At normal incidence, there is no additional kx component from the incident light, so the 

solution to Equation (D-2) is given by: 

{
𝑢1(𝑥) = 𝐴𝑒𝑗𝛼𝑥 + 𝐵𝑒−𝑗𝛼𝑥, 0 < 𝑥 < 𝑎 

𝑢2(𝑥) = 𝐶𝑒𝑗𝛽𝑥 + 𝐷𝑒−𝑗𝛽𝑥, −𝑏 < 𝑥 < 0
    (D-3) 

𝑢1(𝑥) and 𝑢2(𝑥) are the field distributions in region I and II respectively. Where 𝛼 =

√𝑘0
2𝑛1

2 − 𝑘𝑧
2  and 𝛽 = √𝑘0

2𝑛2
2 − 𝑘𝑧

2 . It is evident that the E-field is consist of both forward-

propagating and counter-propagating modes with identical propagation constant in each region, so 

the net value of kx is zero. 

Considering the continuity of the field amplitude and the slope. We have the following 

relations: 𝑢1(0) = 𝑢2(0), 𝑢1
′ (0) = 𝑢2

′ (0), 𝑢1(𝑎) = 𝑢2(−𝑏), 𝑢1
′ (𝑎) = 𝑢2

′ (−𝑏).  Substitute these 

relations into Equation (D-3) we have: 

{

𝐴 + 𝐵 − 𝐶 − 𝐷 = 0
𝛼𝐴 − 𝛼𝐵 − 𝛽𝐶 + 𝛽𝐷 = 0

𝐴𝑒𝑗𝛼𝑎 + 𝐵𝑒−𝑗𝛼𝑎 − 𝐶𝑒−𝑗𝛽𝑏 − 𝐷𝑒𝑗𝛽𝑏 = 0
𝛼𝐴𝑒𝑗𝛼𝑎 − 𝛼𝐵𝑒−𝑗𝛼𝑎 − 𝛽𝐶𝑒−𝑗𝛽𝑏 + 𝛽𝐷𝑒𝑗𝛽𝑏 = 0

   (D-4) 

The solutions of Equation (D-4) are given if the determinant of the equation is zero: 
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|

1 1
𝛼 −𝛼

−1 −1
−𝛽 𝛽

𝑒𝑗𝛼𝑎 𝑒−𝑗𝛼𝑎

𝛼𝑒𝑗𝛼𝑎 −𝛼𝑒−𝑗𝛼𝑎

−𝑒−𝑗𝛽𝑏 −𝑒𝑗𝛽𝑏

−𝛽𝑒−𝑗𝛽𝑏 𝛽𝑒𝑗𝛽𝑏

| = 0   (D-5) 

Working through the determinant and grouping the exponentials, Equation (D-5) is 

rewritten as: 

−(𝛼2+𝛽2)

2𝛼𝛽
sin(𝛼𝑎) sin(𝛽𝑏) + cos(𝛼𝑎) cos(𝛽𝑏) − 1 = 0  (D-6) 

All grating modes are solutions to Equation (D-6). Since kz is contained in α and β, for 

each mode kz can be numerically solved. Then the corresponding propagation phase shift inside 

the gratings can be calculated. 

The field distribution along the gratings can also be derived. Recall Equation (D-3), the 

normalized field distribution is expressed in terms of the ratio between coefficients A, B, C and D: 

{
𝑢1(𝑥) =

𝐴

𝐵
𝑒𝑗𝛼𝑥 + 𝑒−𝑗𝛼𝑥, 0 < 𝑥 < 𝑎 

𝑢2(𝑥) =
𝐶

𝐷
𝑒𝑗𝛽𝑥 + 𝑒−𝑗𝛽𝑥, −𝑏 < 𝑥 < 0

    (D-7) 

where 
𝐴

𝐵
 and 

𝐶

𝐷
 are obtained from Equation (D-4): 
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{

𝐴

𝐵
=

−2𝛽𝑒−𝑗𝛼𝑎−(𝛼−𝛽)𝑒−𝑗𝛽𝑏+(𝛼+𝛽)𝑒𝑗𝛽𝑏

2𝛽𝑒−𝑗𝛼𝑎−(𝛼+𝛽)𝑒−𝑗𝛽𝑏+(𝛼−𝛽)𝑒𝑗𝛽𝑏

𝐶

𝐷
=

2𝛼𝑒𝑗𝛽𝑏−(𝛼−𝛽)𝑒𝑗𝛼𝑎−(𝛼+𝛽)𝑒−𝑗𝛼𝑎

−2𝛼𝑒−𝑗𝛽𝑏+(𝛼+𝛽)𝑒𝑗𝛼𝑎+(𝛼−𝛽)𝑒𝑗𝛽𝑏

     (D-8) 

Similarly, kz and the field distribution can also be obtained at TM polarization by replacing 

α with α/n1
2 and β with β/n1

2 in Equation (D-6) and (D-8), except for the exponential and sinusoidal 

terms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

 

APPENDIX E: LIST OF PUBLICATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



112 

 

1) M. Sun and P. G. Kik, "Scale dependent performance of metallic light-trapping transparent 

electrodes" Optics Express 28, 18112-18121 (2020) 

2) M. Sun and P. G. Kik, "Light trapping transparent electrodes with a wide-angle response" 

Optics Express 29, 24989-24999 (2021) 

3)  M. J. Hossain, M. Sun, G. Doerk, P. G. Kik and K. O. Davis, “Self-Assembled 

Multifunctional Nanostructures for Surface Passivation and Photon Management in 

Silicon Photovoltaics” Nanophotonics, vol. 10, no. 18, 2021, pp. 4611-4621. 

https://doi.org/10.1515/nanoph-2021-0472 

4) M. Sun, P. Golvari, S. M. Kuebler, and P. G. Kik, "Experimental demonstration of light 

trapping transparent electrodes", to be submitted. 

5) M. Sun, D. Huang, P. Golvari, S. M. Kuebler, P. J. Delfyett, and P. G. Kik, "Efficient 

grating-based light trapping electrodes using selective zero order suppression", to be 

submitted. 

6) M. Sun and P. G. Kik, "Suppression of reflection loss in gradient metasurface optical 

elements", to be submitted. 

7) M. J. Hossain, M. Sun, P. G. Kik and K. O. Davis, "Photon Management in Silicon 

Photovoltaic Cells", to be submitted. 

 

  

https://doi.org/10.1515/nanoph-2021-0472


113 

 

APPENDIX F: COPYRIGHT PERMISSION LETTERS 

  



114 

 

 

 

  



115 

 

REFERENCES 

1. Liu, Z., et al., Flexible electronics based on inorganic nanowires. Chem Soc Rev, 2015. 

44(1): p. 161-92. 

2. Kou, P., et al., Improved Flexible Transparent Conductive Electrodes based on Silver 

Nanowire Networks by a Simple Sunlight Illumination Approach. Sci Rep, 2017. 7: p. 

42052. 

3. Sannicolo, T., et al., Metallic Nanowire-Based Transparent Electrodes for Next 

Generation Flexible Devices: a Review. Small, 2016. 12(44): p. 6052-6075. 

4. Ellmer, K., Past achievements and future challenges in the development of optically 

transparent electrodes. Nature Photonics, 2012. 6(12): p. 809-817. 

5. Blakers, A.W., Shading losses of solar‐cell metal grids. Journal of Applied Physics, 1992. 

71(10): p. 5237-5241. 

6. Zhang, H.L., et al., Photovoltaics: reviewing the European Feed-in-Tariffs and changing 

PV efficiencies and costs. ScientificWorldJournal, 2014. 2014: p. 404913. 

7. Yoon, Y.H., et al., Transparent Film Heater Using Single-Walled Carbon Nanotubes. 

Advanced Materials, 2007. 19(23): p. 4284-4287. 

8. Sui, D., et al., Flexible and transparent electrothermal film heaters based on graphene 

materials. Small, 2011. 7(22): p. 3186-92. 

9. Li, J., et al., A Flexible and Transparent Thin Film Heater Based on a Silver 

Nanowire/Heat-resistant Polymer Composite. Macromolecular Materials and Engineering, 

2014. 299(11): p. 1403-1409. 



116 

 

10. Fujikawa, Y., et al., Camera built-in type rearview mirror device. 2005, Google Patents. 

11. Hosono, H. and K. Ueda, Transparent Conductive Oxides, in Springer Handbook of 

Electronic and Photonic Materials. 2017. p. 1-1. 

12. Dai, Q., et al., Transparent liquid-crystal-based microlens array using vertically aligned 

carbon nanofiber electrodes on quartz substrates. Nanotechnology, 2011. 22(11): p. 

115201. 

13. Xue, J., et al., Nanowire-based transparent conductors for flexible electronics and 

optoelectronics. Science Bulletin, 2017. 62(2): p. 143-156. 

14. Askari, H., et al., Electrical and optical properties of ITO thin films prepared by DC 

magnetron sputtering for low-emitting coatings. 2014. 

15. Hecht, D.S., L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of 

carbon nanotubes, graphene, and metallic nanostructures. Adv Mater, 2011. 23(13): p. 

1482-513. 

16. Sharma, A., G. Andersson, and D.A. Lewis, Role of humidity on indium and tin migration 

in organic photovoltaic devices. Phys Chem Chem Phys, 2011. 13(10): p. 4381-7. 

17. Zhang, R. and M. Engholm, Recent Progress on the Fabrication and Properties of Silver 

Nanowire-Based Transparent Electrodes. Nanomaterials (Basel), 2018. 8(8). 

18. Hanson, E.L., et al., Advanced Surface Modification of Indium Tin Oxide for Improved 

Charge Injection in Organic Devices. Journal of the American Chemical Society, 2005. 

127(28): p. 10058-10062. 

19. Roberts, M.W., et al., Continuum Plate Theory and Atomistic Modeling to Find the 

Flexural Rigidity of a Graphene Sheet Interacting with a Substrate. 2010. 2010: p. 1-8. 



117 

 

20. Castro Neto, A.H., et al., The electronic properties of graphene. Reviews of Modern 

Physics, 2009. 81(1): p. 109-162. 

21. Index for Volume 5, in Handbook of Nanostructured Materials and Nanotechnology, H.S. 

Nalwa, Editor. 2000, Academic Press: Burlington. p. 769-778. 

22. Ziadan, K., Conducting Polymers Application. 2012. p. 1-26. 

23. Vosgueritchian, M., D.J. Lipomi, and Z. Bao, Highly Conductive and Transparent 

PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent 

Electrodes. Advanced Functional Materials, 2012. 22(2): p. 421-428. 

24. Le, T.-H., Y. Kim, and H. Yoon, Electrical and Electrochemical Properties of Conducting 

Polymers. Polymers, 2017. 9(4): p. 150. 

25. Eatemadi, A., et al., Carbon nanotubes: properties, synthesis, purification, and medical 

applications. Nanoscale research letters, 2014. 9(1): p. 393-393. 

26. Arici, E. and S. Karazhanov, Carbon nanotubes for organic/inorganic hybrid solar cells. 

Materials Science in Semiconductor Processing, 2016. 41: p. 137-149. 

27. Zhou, Y. and R. Azumi, Carbon nanotube based transparent conductive films: progress, 

challenges, and perspectives. Science and technology of advanced materials, 2016. 17(1): 

p. 493-516. 

28. Jensen, B.D., et al., Simulating the effects of carbon nanotube continuity and interfacial 

bonding on composite strength and stiffness. Composites science and technology, 2018. 

166: p. 10-19. 

29. Jiang, S., et al., Ultrahigh-performance transparent conductive films of carbon-welded 

isolated single-wall carbon nanotubes. Science Advances, 2018. 4(5): p. eaap9264. 



118 

 

30. Hosseini, S.V., H. Arabi, and A. Kompany, Comparison of hydrogen absorption in metallic 

and semiconductor single-walled Ge- and GeO2-doped carbon nanotubes. International 

Journal of Hydrogen Energy, 2017. 42(2): p. 969-977. 

31. Lah, N.A.C. and S. Trigueros, Synthesis and modelling of the mechanical properties of Ag, 

Au and Cu nanowires. Sci Technol Adv Mater, 2019. 20(1): p. 225-261. 

32. Ye, S., et al., Metal nanowire networks: the next generation of transparent conductors. 

Adv Mater, 2014. 26(39): p. 6670-87. 

33. Tokuno, T., et al., Hybrid transparent electrodes of silver nanowires and carbon 

nanotubes: a low-temperature solution process. Nanoscale research letters, 2012. 7(1): p. 

281-281. 

34. Garnett, E.C., et al., Self-limited plasmonic welding of silver nanowire junctions. Nat 

Mater, 2012. 11(3): p. 241-9. 

35. Hu, L., et al., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire 

Electrodes. ACS Nano, 2010. 4(5): p. 2955-2963. 

36. Langley, D.P., et al., Metallic nanowire networks: effects of thermal annealing on 

electrical resistance. Nanoscale, 2014. 6(22): p. 13535-43. 

37. De, S., et al., Size effects and the problem with percolation in nanostructured transparent 

conductors. ACS Nano, 2010. 4(12): p. 7064-72. 

38. Saive, R. and H.A. Atwater, Mesoscale trumps nanoscale: metallic mesoscale contact 

morphology for improved light trapping, optical absorption and grid conductance in 

silicon solar cells. Opt Express, 2018. 26(6): p. A275-A282. 



119 

 

39. Pendry, J.B., D. Schurig, and D.R. Smith, Controlling Electromagnetic Fields. Science, 

2006. 312(5781): p. 1780. 

40. Schumann, M.F., et al., Cloaked contact grids on solar cells by coordinate 

transformations: designs and prototypes. Optica, 2015. 2(10). 

41. Kik, P.G., Catoptric electrodes: transparent metal electrodes using shaped surfaces. Opt 

Lett, 2014. 39(17): p. 5114-7. 

42. Zhao, Z., K.X. Wang, and S. Fan, Analysis of an anti-reflecting nanowire transparent 

electrode for solar cells. Journal of Applied Physics, 2017. 121(11). 

43. Khorasaninejad, M., et al., Metalenses at visible wavelengths: Diffraction-limited focusing 

and subwavelength resolution imaging. Science, 2016. 352(6290): p. 1190-1194. 

44. Pahlevaninezhad, H., et al., Nano-optic endoscope for high-resolution optical coherence 

tomography in vivo. Nature Photonics, 2018. 12(9): p. 540-547. 

45. Guo, Q., et al., Compact single-shot metalens depth sensors inspired by eyes of jumping 

spiders. Proceedings of the National Academy of Sciences, 2019. 116(46): p. 22959-

22965. 

46. Holsteen, A.L., et al., A Light-Field Metasurface for High-Resolution Single-Particle 

Tracking. Nano Letters, 2019. 19(4): p. 2267-2271. 

47. Wei, Z., et al., Highly efficient beam steering with a transparent metasurface. Optics 

Express, 2013. 21(9): p. 10739-10745. 

48. Kamali, S.M., et al., Angle-Multiplexed Metasurfaces: Encoding Independent Wavefronts 

in a Single Metasurface under Different Illumination Angles. Physical Review X, 2017. 

7(4): p. 041056. 



120 

 

49. Lee, G.-Y., et al., Metasurface eyepiece for augmented reality. Nature Communications, 

2018. 9(1): p. 4562. 

50. Huang, Y.-W., et al., Gate-Tunable Conducting Oxide Metasurfaces. Nano Letters, 2016. 

16(9): p. 5319-5325. 

51. Wang, Y., et al., Electrical tuning of phase-change antennas and metasurfaces. Nature 

Nanotechnology, 2021. 16(6): p. 667-672. 

52. Zhang, Y., et al., Electrically reconfigurable non-volatile metasurface using low-loss 

optical phase-change material. Nature Nanotechnology, 2021. 16(6): p. 661-666. 

53. Sun, M. and P.G. Kik, Scale dependent performance of metallic light-trapping transparent 

electrodes. Optics Express, 2020. 28(12): p. 18112-18121. 

54. Martin, O.J.F., Plasmon Resonances in Nanowires with a Non—regular Cross-Section, in 

Optical Nanotechnologies: The Manipulation of Surface and Local Plasmons, J. Tominaga 

and D.P. Tsai, Editors. 2003, Springer Berlin Heidelberg. p. 183-210. 

55. Gordon, R.G., Criteria for Choosing Transparent Conductors. MRS Bulletin, 2011. 

25(08): p. 52-57. 

56. Haacke, G., New figure of merit for transparent conductors. Journal of Applied Physics, 

1976. 47(9): p. 4086-4089. 

57. Shim, B.S., et al., Transparent conductors from layer-by-layer assembled SWNT films: 

importance of mechanical properties and a new figure of merit. ACS Nano, 2010. 4(7): p. 

3725-34. 



121 

 

58. Ghosh, D.S., T.L. Chen, and V. Pruneri, High figure-of-merit ultrathin metal transparent 

electrodes incorporating a conductive grid. Applied Physics Letters, 2010. 96(4): p. 

041109. 

59. Sun, M. and P.G. Kik, Light trapping transparent electrodes with a wide-angle response. 

Optics Express, 2021. 29(16): p. 24989-24999. 

60. CST Studio Suite, Dassault Systèmes Simulia, Providence, Rhode Island, 2017. 

61. Moharam, M.G. and T.K. Gaylord, Rigorous coupled-wave analysis of planar-grating 

diffraction. Journal of the Optical Society of America, 1981. 71(7): p. 811-818. 

62. Li, D., et al., A Simple Strategy towards Highly Conductive Silver-Nanowire Inks for 

Screen-Printed Flexible Transparent Conductive Films and Wearable Energy-Storage 

Devices. Advanced Materials Technologies, 2019. 4(8): p. 1900196. 

63. Xu, X., et al., Screen printed silver nanowire and graphene oxide hybrid transparent 

electrodes for long-term electrocardiography monitoring. Journal of Physics D: Applied 

Physics, 2019. 52(45): p. 455401. 

64. Malitson, I.H., Interspecimen Comparison of the Refractive Index of Fused Silica*,†. 

Journal of the Optical Society of America, 1965. 55(10): p. 1205-1209. 

65. Malitson, I.H., Interspecimen Comparison of the Refractive Index of Fused Silica. Journal 

of the Optical Society of America, 1965. 55(10): p. 1205-1209. 

66. Aspnes, D.E. and A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, 

GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Physical Review B, 1983. 27(2): p. 

985-1009. 



122 

 

67. Dodge, M.J., Refractive properties of magnesium fluoride. Applied Optics, 1984. 23(12): 

p. 1980-1985. 

68. Pastrňák, J. and L. Roskovcová, Refraction Index Measurements on AlN Single Crystals. 

physica status solidi (b), 1966. 14(1): p. K5-K8. 

69. ASTM Standard G173, Standard Tables for Reference Solar Spectral Irradiances: Direct 

Normal and Hemispherical on 37° Tilted Surface, American Society for Testing and 

Materials, West Conshocken, PA, USA. 

70. Chu, H.-C., et al., Spray-Deposited Large-Area Copper Nanowire Transparent Conductive 

Electrodes and Their Uses for Touch Screen Applications. ACS Applied Materials & 

Interfaces, 2016. 8(20): p. 13009-13017. 

71. Zhang, R. and M. Engholm, Recent Progress on the Fabrication and Properties of Silver 

Nanowire-Based Transparent Electrodes. Nanomaterials, 2018. 8(8): p. 628. 

72. Park, S.-h., D.Y. Yang, and K.-s. Lee, Tw• photon stereolithography for realizing 

ultraprecise thre… dimensional nano/microdevices. Laser & Photonics Reviews, 2009. 3: 

p. 1-11. 

73. Farrer, R.A., et al., Selective functionalization of 3-D polymer microstructures. Journal of 

the American Chemical Society, 2006. 128(6): p. 1796-1797. 

74. Tal, A., et al., Fabrication and characterization of three-dimensional copper 

metallodielectric photonic crystals. Optics Express, 2007. 15(26): p. 18283-18293. 

75. Golvari, P. and S.M. Kuebler, Fabrication of Functional Microdevices in SU-8 by Multi-

Photon Lithography. Micromachines, 2021. 12(5): p. 472. 



123 

 

76. Clukay, C.J., et al., Controlling formation of gold nanoparticles generated in situ at a 

polymeric surface. Applied Surface Science, 2014. 292: p. 128-136. 

77. Barranco, A., et al., Perspectives on oblique angle deposition of thin films: From 

fundamentals to devices. Progress in Materials Science, 2016. 76: p. 59-153. 

78. Ordouie, E., H. Alisafaee, and A. Siahmakoun, Ultracompact polarizing beam splitter 

based on single-material birefringent photonic crystal. Optics letters, 2018. 43(17): p. 

4288-4291. 

79. Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review 

B, 1972. 6(12): p. 4370-4379. 

80. Botten, I.C., et al., The Dielectric Lamellar Diffraction Grating. Optica Acta: International 

Journal of Optics, 1981. 28(3): p. 413-428. 

81. Pierce, D.T. and W.E. Spicer, Electronic Structure of Amorphous Si from Photoemission 

and Optical Studies. Physical Review B, 1972. 5(8): p. 3017-3029. 

82. Wu, P.C., et al., Near-Infrared Active Metasurface for Dynamic Polarization Conversion. 

Advanced Optical Materials, 2021. 9(16): p. 2100230. 

83. Kamali, S.M., et al., Highly tunable elastic dielectric metasurface lenses. Laser & 

Photonics Reviews, 2016. 10(6): p. 1002-1008. 

84. Schlickriede, C., et al., Imaging through Nonlinear Metalens Using Second Harmonic 

Generation. Advanced Materials, 2018. 30(8): p. 1703843. 

85. Schonbrun, E., K. Seo, and K.B. Crozier, Reconfigurable Imaging Systems Using Elliptical 

Nanowires. Nano Letters, 2011. 11(10): p. 4299-4303. 



124 

 

86. Zuo, H., et al., High-Efficiency All-Dielectric Metalenses for Mid-Infrared Imaging. 

Advanced Optical Materials, 2017. 5(23): p. 1700585. 

87. Kamali, S.M., Arbabi, E., Arbabi, A., Horie, Y. and Faraon, A. (2016), Highly tunable 

elastic dielectric metasurface lenses. Laser & Photonics Reviews, 10: 1002-1008. 

Copyright Wiley-VCH GmbH. Reproduced with permission. 

88. Kikuta, H., et al., Effective medium theory of two-dimensional subwavelength gratings in 

the non-quasi-static limit. Journal of the Optical Society of America A, 1998. 15(6): p. 

1577-1585. 

89. Drude, P., Zur Elektronentheorie der Metalle. Annalen der Physik, 1900. 306(3): p. 566-

613. 

90. Drude, P., Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und 

thermomagnetische Effecte. Annalen der Physik, 1900. 308(11): p. 369-402. 

91. Lee, J.-Y., et al., Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano 

Letters, 2008. 8(2): p. 689-692. 

 


	Light Trapping Transparent Electrodes
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Current progress of transparent electrodes
	1.3 Light trapping transparent electrodes
	1.4 Metasurfaces and flat optics for shadowing loss reduction
	1.5 Summary

	CHAPTER 2: SIZE DEPENDENT PERFORMANCE OF LIGHT TRAPPING TRANSPARENT ELECTRODES
	2.1 Introduction
	2.2 Size dependent light-trapping by metal nanowire arrays
	2.3 Spectral performance
	2.4 Figure of merit
	2.5 Summary

	CHAPTER 3: ANGULAR DEPENDENT PERFORMANCE OF TRIANGULAR LIGHT TRAPPING ELECTRODES
	3.1 Introduction
	3.2 Influence of cover layer thickness
	3.3 Influence of cover layer index
	3.4 Influence of surface tilt angle
	3.5 Device performance using real material properties
	3.6 Summary

	CHAPTER 4: EXPERIMENTAL DEMONSTRATION OF LIGHT-TRAPPING TRANSPARENT ELECTRODES
	4.1 Introduction
	4.2 Prototype fabrication
	4.3 Device characterization by scanning electron microscopy
	4.4 Device characterization by optical microscopy
	4.5 Device characterization by linear laser scanning
	4.6 Summary

	CHAPTER 5: EFFICIENT GRATING-BASED LIGHT TRAPPING ELECTRODES USING SELECTIVE ZERO ORDER SUPPRESSION
	5.1 Introduction
	5.2 Grating design
	5.3 Grating performance
	5.4 Experimental demonstration
	5.5 Summary

	CHAPTER 6: SUPPRESSION OF REFLECTION LOSS IN GRADIENT METASURFACE OPTICAL ELEMENTS
	6.1 Introduction
	6.2 Theory
	6.3 Field distribution
	6.4 Summary

	CHAPTER 7: CONCLUSION
	APPENDIX A: THIN-FILM TRANSMISSION AND CONDUCTIVITY
	Drude model
	The properties of the thin films

	APPENDIX B: RAY OPTICS MODEL OF TRIANGULAR ELECTRODES
	APPENDIX C: SEM IMAGES AND COMPOSITION ANALYSIS OF TRIANGULAR LIGHT-TRAPPING ELECTRODES
	APPENDIX D: RIGOROUS MODAL ANALYSIS OF DIELECTRIC GRATINGS
	APPENDIX E: LIST OF PUBLICATIONS
	APPENDIX F: COPYRIGHT PERMISSION LETTERS
	REFERENCES

