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ABSTRACT 

A multitude of externalities affects transport efficiency and numbers of trips. Population expansion, 

urban development, political issues, fiscal trends, and growth in the field of connected, automated, shared, 

and electric (CASE) vehicles have all played prominent roles. While the market is keenly aware of the 

upcoming shift to the CASE vehicles, the transformation itself is reliant upon the development of 

technologies, customer outlook, and guidelines. The purpose of this research is to establish an overview of 

the possible network design problems, as well as potential consequences to vehicle automation systems by 

employing machine learning and system dynamics analysis. Finally, the cost of the required highway 

expansion for the critical links in the traffic network will be predicted. First, model was created for 

calculating traffic flow activity and necessitated highways to consider the impact of CASE vehicles between 

2021 and 2050. Second, an economic evaluation outline was created to calculate optimum time and roadway 

improvement scenarios by a cost-prediction model using machine learning. Florida’s interstate highways 

were employed as the subjects for the case study. The research showed that non-linear models had a better 

ability in the estimation of traffic flow, while linear models were better predictors of highway construction 

cost. These results also showed new technologies would add to traffic flow and capacity, with the increase 

in flow outpacing the increase in capacity. The consequences of this would be the level of service (LOS) of 

the current infrastructure decreasing. This study’s results can assist discussion at the national and local level 

between government, networkers, automotive companies, tech-providers, logistics companies, and 

stakeholders for whom the practicality provided by the transportation infrastructure is crucial. This allows 

executives to create effective guidelines for subsequent transportation networks, ultimately accelerating the 

CASE vehicle network rollout to increase our current road network’s level of service.  
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CHAPTER ONE: INTRODUCTION 

Overview 

Automation and increased connectivity of personal vehicles could exacerbate current transportation 

problems driven by financial incongruities. Particularly the number of trips has increased due a plethora of 

disruptive forces, such as the emergence of connected automated vehicles (CAVs), urbanization and 

globalization, social and demographic changes, economic workforce changes, environment, and energy 

trends, and political and fiscal trends. Figure 1 shows the upcoming disruptive forces on the future 

transportation networks.  

 

Figure 1: Upcoming disruptive forces on future transportation networks 

Increased vehicle miles traveled for connected, automated, shared, and electric (CASE) vehicles 

emergence is due to consumer convenience, ease of use, higher safety levels, and consumers such as 

children, disabled individuals, and seniors who benefit from these factors. These changes happen quickly, 

and even though the evolution to a new mobility system may seem distant, market forces bring it closer by 

the day.  

Considering both external and internal factors influencing the transportation network, the need for 

a solution to the United States' traffic gridlock is apparent. One must be inherently cautious when appraising 
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the risks factors of the various forces involved with the efficiency of the transportation network. Traffic 

congestion has undesirable externalities on the quality of the life of the people it affects, decreasing human 

productivity, reducing driver health through increases in stress and fatigue. The issue compounds when you 

take into account that Americans drive nearly 3 trillion miles per year, which means a good deal of your 

life is behind a wheel of a vehicle. This is potentially dangerous, as increased time in a vehicle is 

accompanied by increased probability of crashes and increases air pollution. Automobile accidents lead to  

34,080 fatalities in the US in 2012 alone.  (USDOT 2015). Of those accidents, 90% were at least somewhat 

associated with driver error (McKinsey 2016). In 2012, the U.S. petroleum consumption for road 

transportation was ~11 million barrels per day: accounting for ~60% of the total U.S. petroleum 

consumption (Davis, Diegel, and Boundy 2014). The average commuter reported being delayed by on 

average 38 hours per year due to traffic congestion (Schrank, Eisele, and Lomax 2012).  

To counter these megatrends that threaten traffic network numerous solutions are proposed: smart 

transportation, fleet conversion, shared mobility, and highway expansion. These Smart cities will be at the 

epicenter of IoT utilization employing CASEs, including smart transportation. Initially the use of CASE 

will be insulated and sector-specific (vertical). However, a diffusion of the technology will occur over time 

as a larger number of industries employee IoT to compete. Cities will compensate by creating horizontal 

IoT platforms, employing individual use cases that maximize performance, interconnectivity, and 

productivity across multiple sectors. As mobility is the key to competition in modern cities: Intelligent 

mobility is a system whose primary function is to connect people, places, and goods across all transport 

vectors. (McKinsey & Company 2016). As for  fleet conversion, commercial and government vehicles 

make up a significant portion of the vehicles found on city streets, composing more than 25% of traffic. 

USDOT (2015) reports the vehicles in use as follows – government: 3,150,000, business: 3,025,000, police: 

212,000, unassigned: 2,709,000, utilities: 815,000, and rental: 2,738,000. It is of particular interest that a 

low market penetration rate of CAVs will not lead to the expected benefits (a traffic capacity increase due 

to CAVs). A suitable entry point for growing market share would be through Taxis, commercial, and 
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government vehicles. This would work to familiarizing the populace with ACES vehicles’ technologies, 

allowing trust in the safety aspects of CAVs, and inspire the values of shared mobility transport. The process 

of switching or retrofitting these vehicles will occur on different timelines.  

To achieve the goal of a shared mobility culture and ACEs vehicle it is important to diminish the 

desirability of CAV travel while simultaneously marketing the allure of public transit, dampening urban 

sprawl, and limiting the amount of driving that people can do, or a combination of the above. Just because 

a new technology hypothetically appears beneficial does not guarantee that consumers will adopt it. Many 

of the advantages of CAV can be achieved by using lower cost per mile shared mobility. Years of 

Automotive marketing has led most citizens to consider owning (and driving) their own vehicle as a status 

symbol, and a rite of passage. These same individuals fail to see the American dream as an eroding ideal. 

Taking these factors into consideration, one may find easier market saturation in countries with a less old-

fashioned automobile ethos.  

One would be hard pressed to find challenges against smart transportation, CAV fleet adaptation, 

and improvement of the culture around shared mobility to increase the efficiency of roadways. However, 

to integrate more frugal methods temporarily would make society highly dependent on existing physical 

infrastructure systems. As physical infrastructure is crucial to all walks of life: health care, public safety, 

trade, industry, and economic productivity, any disruption of existing transportation infrastructure services 

could have severe economic consequences on the well-being and the of the areas that they serve. Freeway 

infrastructures’ expenditure is a tantamount responsibility of directors that lead state highway agencies. 

Highway developments involve elevated risks due to the complexities of these undeveloped environments. 

These unknowns can massively escalate the amount of work and cost (Zhang 2017). A multitude of 

elements may impact cost overrun in highway developments, including (but not limited too) project 

difficulty, duration, contractor experience, weather, site accessibility, economic situations, and local 

political and societal conditions. Budget discrepancies are challenging for highway contractors because  
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they can result in bid or profit loss (Shahandashti and Ashuri 2016). They are also difficult for state 

Departments of Transportation as they can result in budgetary exigences, delays, cancellations, and an 

overall unreliability in scheduling.  These problems can be mitigated if highway costs can be more 

accurately predicted (Shahandashti and Ashuri, 2016). Artificial neural networks (ANNs )(Wilmot & Mei 

2005) and regression models (Wilmot and Cheng 2003) are the two most widely used methods for accurate  

highway construction cost prediction. Several studies have declared that ANNs outperform regression 

models.  

When considering all architectural substructures, the cost of roadways in the United States was 

predicted to be approximated $2.6 trillion (based on US. BEA data). The requisite of infrastructure 

financing in the U.S. is an ongoing issue for officials as they continually are tasked with demand for 

infrastructure enhancements.  Consequently, political parties across the aisle are focused on the issue of 

infrastructure costs at the local and federal level (PWC 2016). The Federal government encounters two 

major hindrances in improving the road system: one being the disparity between investments and the need 

for highway construction, and one being the cost of existing projects that already exceeds original estimates.  

In 2017, these funding issues were already anticipated by the ASCE, who gave U.S. highways a 

grade of D+ based on transportation infrastructure. These speculated gaps are anticipated to cause 

significant losses in the U.S. economy. By 2025, the loss to the GDP is predicted to be roughly $4 trillion. 

By 2040, the loss is expected to reach over $18 trillion. While local government is attempting to solve these 

problems, there remains a lack of investment capital to follow through. It is predicted only 16% of U.S. 

cities would be able to pay for the needed projects through self-funding sources (Automated and 

Autonomous Spatial Mobility, 2018.  

Reviewing the previous research 

To date many of the articles published on the impact of CASE vehicles on the traffic network only 

speak to at most a few issues in relative seclusion. Research on the mid and long-term influences of ACES 
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vehicles can be divided into two principal categories. First, there are specific analyses centered on relatively 

small datasets that result in strongly supported results and are bounded to marginal issues. Second, there 

are more contemplative arguments that include a thorough set of issues and hardly build on existing 

structures of the transportation system. Many safety studies have explored the effects of ACES vehicles, 

such as: the effectiveness of traffic flow (Spieser et al., 2014, Arvin. Et al. 2019, Mahdavian et al. 2019a, 

Lovejoy 2013, Fagnant and Kockelman 2013, Kok, et al. 2017, and McKinsey 2016) or the reduction in 

time needed for travel (Cyganski et al. 2015, Gucwa 2014, Childress et al. 2015, Wadud et al. 2016 and 

Litman 2017, Sonia Baee et al. 2019), and last but not least, new categories of users such as Children, 

Seniors, and Impaired People (Rodier 2018, Harper et al. 2016, Trommer, et al. 2016, Wadud et al. 2016, 

Fagnaut and Kockelman 2015, Sivak and Schoettle 2015, Childress et al. 2015, Brown et al. 2014, Kidando 

et al. (2018) and Fagnaut and Kockelman 2014). 

Gap and the Questions 

Some of the counter considerations have been paid to consequences such as social variations, 

influences on outlooks about changes to land-use, public transit, and the influence on local planning (Chin, 

2014, Coughlin and Yoquinto, 2015, Nazari et al. 2019, Lee et al. 2018). Articles that give a more holistic 

approach to the impact of the emerging technologies of traffic may present valuable insights, they are 

unfortunately non-quantifiable and therefore difficult to incorporate into calculations:  

1) How would CASE vehicles impact the number of trips of passenger vehicles in the mid- and 

long-term? 

2) How would the CASE vehicles influence the number of trips of trucks in the mid- and long-

term? 

3) What is the worst and the best LOS scenario of this new technologies in the mid- and short-

term on the traffic network?    

4) What is the cost to expand a network link that is experiencing a low LOS in the mid- and long-

term? 
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5) How much should the alternative solutions to highway expansion cost to meet the investment 

gap in construction and transportation projects?  

Goal and Objectives 

This research strives to recognize some of the consequences of CASE vehicles at the system level, 

by first developing a traffic flow prediction model considering the impact of CASE vehicles, and second, 

generating a highway expansion cost-prediction model to enhance traffic capacity. Overall, the study goals 

are:  

Step 1. Create a highly accurate forecasting model for passenger vehicles traffic volumes using 

different types of nonlinear/linear algorithms that incorporate machine learning  

Step 2. Generating a highly accurate prediction model for trucks traffic volumes employing the 

aforementioned algorithms  

Step 3. Establishing a comprehensive range of possible CASE vehicles scenarios of their impact 

on the traffic network employing an extensive literature.  

Step 4. Developing a highly accurate prediction model to forecast the highway construction cost 

items using the stated algorithms  

Using the aforementioned steps, the model could accurately predict the cost of the network link 

expansion that would be affected by CASE vehicles, allowing for a cost benefit analysis.  

Principal findings 

This research employed FDOT historical traffic records as a case study to assess the projected 

standards. The study’s findings confirm CASE vehicles will increase traffic flow along with highway 

capacity with the increase in flow being higher than the increase in capacity- shared ownership of passenger 

vehicles have been found to mitigate these impacts to some degree. The growth in projected demand for 

CASE is not accompanied by increased capacity resulting in even more significant congestion. Expediency 
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is key when planning infrastructure for the adoption of CASE vehicles, thereby avoiding projected traffic 

flow and highway capacity congestion. This study provides valuable metrics, showing the value of CASE 

vehicles, and can be employed as a tool to increase engagement with traffic network stakeholders (including 

the government and private sector). This will allow those stakeholders the time to prepare critical 

regulations and policies in preparation for CASE vehicles.  

Dissertation Structure 

This dissertation will be composed of 7 total chapters. Chapter One offers a synopsis of the existing 

traffic network in the U.S., and the subsequent questions that this research seeks answers for. Chapter 2 

affords a comprehensive examination of preceding research in traffic volume prediction, CASE vehicles, 

and roadway construction cost prediction models. Chapter 3 shows the methodology including gaps, 

contribution, scope of study, objectives, aim, data structure, and research general design are conducted. The 

data gathered is employed in chapter 4 to develop modeling strategies. The pipeline of the study consisting 

of data preprocessing, feature selection, model creation (including various linear and non-linear 

algorithms), parameter optimization, and evaluation of the model are represented in the modeling 

development section. Chapter 5 highlights the utilization of the modeling method to carry out a traffic and 

cost analysis on various highway in Florida and tallying the results. Chapter 6 offers a thorough examination 

of the 4-step model and the developed framework of the study. Finally, chapter 7 gives us a conclusion of 

the study, potential research broadenings, and presents suggestions that will be useful for policy‐ and 

decision‐makers in public and private sector.  
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CHAPTER TWO: LITERATURE REVIEW 

Overview 

Research on the mid and long-term impacts of ACES vehicles can be divided into two fundamental 

categories. First, there are precise analyses based on small sets of data that result in strongly supported 

results, which are bounded to minimal issues. Second, there are thoughtful arguments on a more 

comprehensive set of issues that hardly build on existing structures of the transportation system. Many 

studies have explored the effects of ACES vehicles on safety, shared mobility, efficiency of traffic flow, 

value of travel time savings, and new categories of users. Studies investigated several factors that ACES 

vehicles would affect including safety and car-sharing (Spieser et al., 2014, Arvin. Et al. 2019, Mahdavian 

et al. 2019a, Lovejoy 2013, Fagnant and Kockelman 2013, Kok, et al. 2017, and McKinsey 2016) or on the 

efficiency of traffic flow (Fagnant and Kockelman, 2013, Arvin et al. 2019), or on the reduced travel time 

(Cyganski et al. 2015, Gucwa 2014, Childress et al. 2015, Wadud et al. 2016 and Litman 2017, Sonia Baee 

et al. 2019), and last but not least, new categories of users such as Children, Seniors, and Impaired People 

(Rodier 2018, Harper et al. 2016, Trommer, et al. 2016, Wadud et al. 2016, Fagnaut and Kockelman 2015, 

Sivak and Schoettle 2015, Childress et al. 2015, Brown et al. 2014, Kidando et al. (2018) and Fagnaut and 

Kockelman 2014).  

To a lesser extent there has been some consideration paid to less-quantifiable consequences, such 

as behavioral fluctuations, impacts on attitudes about changes to land-use, public transit, and bearing on 

regional planning (Chin, 2014, Coughlin and Yoquinto, 2015, Nazari et al. 2019, Lee et al. 2018). Studies 

that provide a larger overview of the impacts on the traffic network are limited. Fagnant and Kockelman 

(2014), Spieser et al. (2014) and Lovejoy (2013) showed in their case studies that shared-vehicle mobility 

can provide for the mobility demand of a city with a much fewer number of vehicles. Burns et al. (2013) 

and Mahdavian et al. (2019b) applied analytical and simulation models to investigate a “new mobility 

system” based on shared, automated vehicles finding significant economic, environmental, and consumer 
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benefits in such a system. Townsend (2014), Milakis et al. (2015), and Gruel, Stanford (2016), and 

Mahdavian et al. (2019b) devised multiple scenarios to observe the consequences that ACES vehicles had 

on the traffic network. Their scenarios are built along the dimensions of ownership models, the behavior of 

the users, technological development, and regulations and policies. Sterman (2000) developed a 

transportation model reflecting the attractiveness of making trips as a primary role. In his model, the 

attractiveness of making trips with cars is a function of travel time, public transit fares, desired travel time, 

and adequacy of public transit. 

This research strives to recognize some of the consequences of CASE vehicles at the system level 

by first developing a predictive traffic flow model that considers the impact of CASE vehicles, and second, 

generating a highway expansion cost-prediction model to enhance traffic capacity. So that, to cover the 

literature, this section includes 4 subsections, namely, passenger vehicles traffic prediction models, trucks 

traffic prediction models, CASE vehicles and the traffic network, and lastly, highway construction cost 

prediction models.  

Step 1: Traffic prediction model – Passenger vehicles 

(Regarding this section, the Author employed the studies reviewed in the article published by 

author: Mahdavian, A., Shojaei, A., Salem, M., Laman, H., Yuan, J.S. and Oloufa, A., 2021c. Automated 

Machine Learning Pipeline for Traffic Count Prediction. Modelling, 2(4), pp.482-513.) 

Traffic flow prediction is a crucial tool for transport authorities and drivers to create a more efficient 

traffic management and minimize traffic congestion and to improve the efficiency of the traffic network. 

The field of traffic predictions is often categorized into 3 subsets; those that are short-term or long term, 

and those that are medium-length predictions. Short-term predictions include anything in the range for 5-

30 minutes in the future. After 30 minutes, predictions for up to several hours into the future can be 

considered medium-term predictions. Finally, long term predictions include periods of more than a day into 

the future. In order to achieve these long-term predictions, different models are often employed. These 



 

10 

 

include using NN’s, models based on demand for travel, and econometric regression-based models (Kelly 

et al. 2017). 

A. Short- and mid-term prediction models: Since the 1980s, scholars focused more on short or 

medium-term predictions and their associate with currently ongoing traffic (Okutani 1984). Algorithms 

with NNs are commonly incorporated into traffic predictions due to their success in considering non-linear 

datasets and appropriately modeling the behavior of traffic flow. (Zheng et al. 2006) used a combination of 

methods in the forecasting of traffic flow; including both neural networks, and Bayesian modeling. Outside 

of the neural networks, other feature-based approaches that have been widely utilized include Kalman filter 

(Mahdavian et al. 2021b), time series modeling, support vector regression (SVR) (Wang 2013), k-nearest 

neighbor (Wu 2015),  hybrid modeling (Guo et al. 2014 and Kumar et al. 2015) and lastly gradient boosting 

tree regression (Sun et al. 2003).  

B. Traffic volume prediction models: Regarding Econometric regressions, Marshment et al. 

researched econometric practices in traffic forecasting in a 1-to-5-year period for the Oklahoma Turnpike 

Authority employing an autoregressive integrated moving average (ARIMA) and regression modeling 

approaches in an effort to predict changes in traffic volumes. Bian et al. They employed an unobserved 

component model (UCM) as an econometric model to predict monthly traffic volume with several temporal 

aspects.  

Travel-demand modelling (TDM) is commonly employed in long-term forecasting. This method 

utilizes ravel characteristics and operation of transport services, based on land-use types as well as social 

and economic elements. Travel demand modeling is most performed by a four-step process: trip generation, 

trip distribution, mode choice, and lastly, trip assignment. Using this an annual average daily traffic 

(AADT) can be produced. An advanced type of TDM is activity-based models (ABM) in which the focus 

is individual’s plan and schedule to replicate actual traveler decisions. ABM on average allows for more 

accurate forecasts, particularly when one wishes to diversify to a broader range of strategies and policies. 
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While both TDM methods demonstrate accurate AADT inference, they are time-consuming to produce, 

and necessitate an inordinate amounts of data collection, resources, and modeling skills. Therefore, TDM 

results are useful in transportation planning decisions, as it is a continual challenge to derive more detailed 

information to advance traffic management. 

Khatib et al. (2001) revealed that the types of centroids employed for traffic zone censuses could 

have a significant impact on the quality of TDM results. Mustafa et al. (2010) indicated that a higher 

specificity model (one using smaller units) can provide a more accurate estimation of AADT. Zhong and 

Hanson (2018) created a method considering geographic information systems (GIS) to forecast traffic 

counts. Yang et al. (2013) investigated the uncertainty of variables used in combined TDM dealings and 

the classic four-step model in traffic forecasting to determine the level of confidence on the model outputs 

along with identifying and treating uncertainties from inputs and parameters separately to enhance the 

accuracy of the models. Wang et al. (2013) presented a tool to estimate highway AADT using a TDM. By 

applying the TDM, their study included land-use data at the parcel level- allowing them estimate trips 

produced from or to each parcel. The trip assignment was carried utilizing free-flow travel times. The trips 

were then entered into a trip distribution gravity model at the parcel-level. Results showed the proposed 

model generated 52% MAPE,  159% lower than MAPE from regression models developed for the same 

area as the benchmark Wang et al. (2013).  

Nonparametric Regression (NPR) regression is based on data-driven models emphasizing 

fundamental structures while not necessitating elucidation of the relations between inputs and outputs. The 

primary purpose of these methods is to identify data clusters with characteristics like the current state for a 

specific interval of prediction and then to define the same prediction from these. In this way, it is not 

required to consider a forecasting equation expressed mathematically by a set of parameters, as it happens 

to the parametric approach. The term “non-parametric” is misleading, as these models still have parameters. 

It is just the parameters are not set. Instead, they are scalable to fit the purpose of the study. Usually, more 
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data is required to use a non-parametric model. However, ultimately, they may be more appropriate for 

predicating a dynamic process such as traffic flow.  

Neural Networks (NNs): The neural network algorithm is the most used model in traffic prediction 

due to its excellent capability of appropriating non-linear datasets of data that undergoes real-time changes. 

The NN model considers connections between the data that may not be apparent at first glance, allow it to 

generalize an accurate prediction due to its non-parametric and nonlinear features. Neural networks were 

viewed as a black box and not straightforward to fully interpret since they have multiple complex neuronal 

structures and non-linear functions. Due to the amount of data, and quick variations within traffic patterns, 

they are inherently difficult to be modeled by linear algorithms. However, NN models allow an 

approximation of any degree of complexity without prior knowledge of problem-solving, and due to such 

has grown in popularity for traffic flow forecasting models Mustafa et al. (2010), and Yang et al. (2013). 

Yin et al. (2002) generated a fuzzy-neural model (FNM) to forecast traffic flow in an urban network, 

showing that the FNM more accurately predicted results than the Back-Propagation Neural Networks 

(BPNN) model. Vlahogianni et al. (2025), successfully predicted traffic flow patterns employing a genetic 

algorithm (GA) based multilayered structural optimization strategy to determine suitable NN structure.  

Ratrouta and Gazdera (2014) employed two types of ANNs, comparing them with traditional 

parametric method of linear regression analysis. ANNs showed increased accuracy VS. linear regression 

method in daily traffic prediction. Fu and Kelly (2017) employed NN, logging-linear, and Ordinary Least 

Squares (OLS) to predict traffic volume. The comparison of results shows that the NN method with a MAPE 

of 28.58% outperforms logging-linear model with a 52.49% MAPE, and OLS with a MAPE of 66.6%. 

Duraku and Ramadani (2019) developed two combined models, principal component analysis - multiple 

linear regression (PCA-MLR) and principal component analysis - radial basis function (PCA-RBF), for 

projecting traffic volumes. Analysis of the results of these models shows that the PCA-RBF model giving 

more accurate results. ANN-based forecasting can approximate any function -including nonlinear 
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functions- it has limitations, including difficulties interpreting operations of the model, and determining 

suitable network structure. 

 The KNN, or K-Nearest Neighbor, is one of the more commonly applied NPR approaches used.  

Forecasting is done using the k events of the historical database most like the current traffic situation, and 

then a weighted average is used to generate the results, giving more weight to events that are closer to the 

situation being studied. Based on research by Smith et al. (1997), the KNN technique has been found to be 

not only fast, but it performs better than some more simplistic methods of traffic volume prediction. Davis 

and Nihan’s (1989) proposed KNN approach gave an alternative method for parametric regression 

approaches in short-term motorway traffic forecasting. They examined KNN results with the results of 

simple univariate linear time series forecasts to deal with the advantage of the NPR. Smith and Demetsky 

(1997) showed the advantage of the KNN approach (for forecasting the traffic volume) dealing with a 

variety data types and sizes and examining the distinctions between NN and ARIMA models. Pompigna 

and Rupi (2018) compared the precision of three parametric and non-parametric prediction models (K-NN 

regression model, Gaussian maximum likelihood model, and double seasonality Holt-Winter’s exponential 

smoothing model), using data obtained from Italian highways. The parametric double seasonality Holt-

Winters (DSHW) model and the KNN provided the best results. 

The algorithms: Random Forest (RF), Decision Tree (DT), and Support Vector Regressor (SVR); 

are excellent for NPR models utilized traffic volume prediction. Decision tree (DT) allows for a highly 

interpretable traffic data model on the traffic data, which can be used to show traffic patterns (Alajali et al. 

(2018). Liu and Wu (2017) advocated the use of the random forest algorithm to forecast traffic due to its 

favorable generalization capabilities. Support Vector Regressor (SVR) has also been leveraged for 

modeling traffic volume and has proven superior performance when compared to linear models (Deshpande 

et al. 2016).  
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C. Leading independent variables (predictors): A variety of studies show linear regression models 

that use roadway characteristics and socioeconomic factors can estimate AADT with acceptable results 

(Wang et al. 2013, Doustmohammadi et al. 2017, Lowry et al. 2014, Zhao 2014). Other research has 

attempted using a variety of independent variables (predictors) including socioeconomic variables 

(population, employment, personal income, vehicle registrations), road characteristics (the total number of 

lanes and location type) to predict the traffic volume for high volume urban highways (Doustmohammadi 

et al. 2016, Doustmohammadi et al. 2017, Lowry et al. 2014, Zhao et al. 2001). Tennant (1975) created a 

model of traffic volume evaluation  for use in more rural areas which also took into account these socio-

economic variables as well as land data, and principles of traffic generation in Kenia employing Multiple 

Regression Analysis (MLR). Neveu (1982) developed several models that employed elastic parameters in 

MLR to predict traffic volumes as AADT for a variety of road types. The Variables included in model are 

population, number of households, vehicle ownership, and employment (Neveu 1982). 

Duddu and Pulugurtha’s (2013) generated a model employed statistical methodology as well as 

ANN in predicting AADT, which was based on land-use in the city of Charlotte (NC). Fu and Kelly (2017) 

used road type, residential and working density, speed limit, distance to motorways, region types, vehicle 

ownership ratio, and overall population in  the creation of their NNs for traffic counts. Raja et al. (2021) 

developed a model using linear regression using known AADTs and the collection of socioeconomic and 

spatial variables to predict the AADT. This model relied on five independent variables: population, number 

of households, employment, employment rates, and major highway access (Raja et al. 2021). 

Step 2: Traffic prediction model – Trucks 

(Regarding this section the author employed his published study: Mahdavian, A., Shojaei, A., Salem, M., 

Laman, H., Eluru, N. and Oloufa, A.A., 2021d. A Universal Automated Data-Driven Modeling 

Framework for Truck Traffic Volume Prediction. IEEE Access, 9, pp.105341-105356.) 

Traffic volume prediction has become of particular interest with the recent advancements in 

incorporating ITS, or intelligent transport systems, in traffic forecasting. As traffic sensor technology 
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advances to incorporate more variables, a greater volume of data is now collected, resulting in a new digital 

data age of automobiles. Consequently, transportation management is undergoing a paradigm shift, 

employing more data-driven methods. In contrast current estimation and freight modeling tools have 

become increasingly antiquated, failing to meet of today’s demands. Because of the sheer amount of data 

and its complexity, it is essential to reassess traffic volume forecasting with the use of deep-structured non-

linear models, that take full advantage of the volume of data of data available. Thus far, the forecasting of 

freight traffic uses methods that fall into either approaches that are vehicle based or commodity based. 

As before, freight travel predictions are also can be classed as either short, medium, or long-term 

forecasting. Short-term forecasting is predicting five to thirty minutes out, medium-term forecasting goes 

up to several hours in the future, and finally those predictions that start to extend out beyond a day are long-

term. Traffic volume falls under the category of long-term prediction and is performed using multiple 

approaches not limited to, modeling based on travel demand, NN models, and econometric regression 

(Okutani, 1984). 

From the 1980s onwards academics have investigated short and mid-term traffic flow for traffic 

prediction (Mahdavian et al. 2019b). Neural networks have received considerable attention in traffic 

forecasting due to their modeling of more dynamic processes. They can also handle more uncertain 

variables. To give an example, Zheng et al. (2006) tried an approach that successfully used neural networks 

and Bayesian methods and provided accurate predictions. Other models are available that have been heavily 

studied in this field. Those include those that utilize Kalman filter (Guo et al. (2014)), models that are based 

on time series (Kumar et al. 2015, Sun et al. 2003), SVR models (Wang et al. 2013), k-nearest neighbor (as 

discussed) Wu et al. (2015). As stated, more detail is provided on these models in Vlahogianni et al. (2005) 

and Lippi et al. (2013).  

Multiple states have developed models for use in freight movement forecasting, most of these are 

commodity-based. In Indiana, the state collected data on the flow of goods to create a massive directory 
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based on data from a 1997 survey of commodity transport. This directory was then used in predictions for 

freight traffic for the whole of Indiana.  

On the regional level of freight transport, prediction models are generally either dependent on the 

commodity or the vehicle type. Models that consider the vehicle type classify vehicles with a conducting 

mode split. They also consider trip generation. Models that are based on the commodity being transported, 

consider the average payload estimation based on both the number of trucks and the worth of the goods 

being transported. Use of the models is intended to predict truck travel based on mode or level of travel.  

On average vehicle-based methods can offer predictions from a dataset that include historical land-

use and socioeconomic data (Boile, 2000). These models can be further categorized into subgroups on the 

object of their use, namely: GIS-based, traffic count, those that offer gravity based self-calibration, partial 

matrix techniques (Mustafa & Zhong, 2011), heuristic models (Janssens et al., 2005), facility forecasting 

techniques (Cervero, 2007), etc. One of the more popular is the traditional four-step model, accomplished 

using a combination of the above techniques (as needed by the respective agency). This is the current model 

employed to forecast travel in a given area- according to a variety of factors such as type, time of day, route 

take, and others.  

A. MATHEMATICAL VEHICLE-BASED TRUCK TRAFFIC PREDICTION MODELS: 

Algorithms are commonly used for the prediction of traffic networks (Meyer et al. 2001). They tend to be 

both expansive and highly complex; and use predetermined hypotheses. As a result, they could be readily 

improved through the incorporation of programming methods that reduce the number of calculations needed 

on the part of the user (Friesz 2000). More recently, forecasting has involved the use of models that 

emphasize traffic efficiency. Real-time traffic data have been employed by using the latest technology 

through ITS based detection systems. Traffic flow prediction using vehicle counts as well as variables that 

incorporate both roadway capacity and the impact of traffic on the environment allow for either short or 

mid-term forecasts (Do et al., 2019; Duan et al., 2018; Kim & Hong, 2015). For long-term predictions, the 
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results are sorted based on the average daily traffic  (ADT), the monthly ADT (MADT), as well as average 

ADT (AADT). These forecasts are made for subsets of vehicles as well, considering historical data for 

exploration (Bagheri et al., 2015; Roh et al., 2015; Tsapakis et al., 2013). Based on the parameters used, 

the methods utilized may be categorized differently. Categories include those that are parametric vs non-

parametric, and naïve methods (Mahdavian et al. 2021d).  

A1. Parametric Models (Mahdavian et al. 2021d): The structure of a parametric model is 

predetermined, and the parameters of the model must be determined by utilizing data. The intrinsic 

knowledge of traffic processes within traffic simulation models can be captured in these structures. Overall, 

a lower quantity of data is required compared to non-parametric models. Traffic simulation models utilize 

the OD traffic matrix by considering the theory of network equilibrium. Traffic simulation models consist 

of macroscopic, microscopic, and mesoscopic modeling. In macroscopic modeling the global variables of 

a roadway network are analyzed, including mean speeds, densities, and traffic flows. Macroscopic models 

are also known as kinematic wave models, and trip generation rates and multiple linear regression models 

are commonly used methodologies. This approach was termed the LWR model and introduced by Lighthill 

& Whitham, 1955. Meanwhile, in microscopic modeling the interactions between private vehicles are 

simulated based on the longitudinal (car-following) and lateral (lane-changing) behavior of vehicles in a 

network system. Kometani and Sasaki 1959 introduced the first car-following model, derived from 

Newton’s equations. Lastly, mesoscopic modeling includes a blend of macroscopic and microscopic 

modeling (Burghout et al., 2005).  

B. LEADING PREDICTORS FOR TRUCK VOLUME PREDICTION (Mahdavian et al. 2021d): 

Al-Deek et al. (2000) reported the primary factors affecting truck volume to be the amount and direction of 

cargo vessel freight and the weekday of operation. Furthermore, Tsapakis et al. (2013) developed 12 models 

based on regression and Bayesian analysis using data taken from 67 continuous data recorders to predict 

the AADT for heavy-duty trucks. Roadway functional class, population density, and spatial location had 
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the highest importance factors in the created daily truck traffic prediction models. Golias et al. (2005) 

presented a statistical approach using a stepwise linear regression to create predictive models for estimating 

truck volumes. The number of employees estimated sales volume, while the number of establishments 

based on the standard industrial classification for the region were considered to be good predictors of truck 

volumes. Lu et al. (2009) also developed a truck volume prediction model, with results revealing that both 

linear and compound growth models fit truck traffic growth trends well. However, growth rates estimated 

from less than six years of data may exhibit considerable variation, which can lead to significant errors in 

pavement response prediction. In addition, roadway characteristics and socioeconomic factors cannot be 

used to directly predict truck traffic growth rates with high accuracy. However, some factors are strongly 

associated with traffic growth, and can assist pavement designers in selecting appropriate defaults for traffic 

growth rates. These factors include population density, population density growth rate, land use, and 

highway functional classification (Lu et al. 2009). 

Step 3: Traffic CAVs CLDs – Scenario development 

Regarding this section the author employed his published publications: Mahdavian, A. Shojaei, A., 

Oloufa, A. 2019a. Service Level Evaluation of Florida's Highways Considering the Impact of Autonomous 

Vehicles. Proceedings of the International Symposium on Automation and Robotics in Construction 

(ISARC). And: Mahdavian, A., A. Shojaei, and A. Oloufa. 2019b. Assessing the long-and mid-term effects 

of connected and automated vehicles on highways’ traffic flow and capacity. International Conference on 

Sustainable Infrastructure 2019: Leading Resilient Communities through the 21st Century. Reston, VA: 

American Society of Civil Engineers. And also: Mahdavian, A., Shojaei, A., Mccormick, S., Papandreou, 

T., Eluru, N. and Oloufa, A.A., 2021a. Drivers and Barriers to Implementation of Connected, Automated, 

Shared, and Electric Vehicles: An Agenda for Future Research. IEEE Access, 9, pp.22195-22213.) 

The benefits and opportunities presented by CASE vehicles more than compensate for challenges 

against them, as their adoption that will ultimately lead to new behaviors in the traffic network. This section 
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reviews studies conducted by academia and the private sector on the implementation of the network, 

barriers to market entry, and drivers of CASE vehicles, mainly in the U.S.. The speed and nature of 

transitioning to a well-penetrated market of CASE vehicles is not well understood (Fagnant et al. 2014). 

The transition depends largely on the markets technological maturity and sociological makeup of the 

consumers (i.e., acceptance rate), as well government policies.  

A. TECHNOLOGICAL MATURITY: Technological development is the initial and main step in 

implementation of a CASE vehicle market. With access to the technology and the proper existing network, 

other steps and regulations can lay the groundwork for the transition preparing it for presentation to 

consumers. McKinsey and Company (2017) assert that the automobile sector is undergoing a digital 

revolution with waves of new business models. Atkins (2017) reported the emergence of CAVs as one of 

the most compelling developments ever to affect cities. Accordingly, CAVs and electric vehicles (EVs) are 

a quickly growing sector that merits further study.  

A1. Electric Vehicle Technology: One of the few advantages that petroleum burning vehicles hold 

over electric vehicles is recharge vs refuel time. Notable efforts have been made to address pollution 

problems as well as fuel shortages. Transportation agencies in several countries under the auspices of the 

green movement have looked to different energy sources: electric, hybrid technologies, biodiesel, and 

hydrogen. (Mehar 2015). Some of the most promise shown under this new wave is the fact that vehicles 

entirely or partially powered by electricity are on the rise and hold great potential value. In 2019, 41% of 

U.S. citizens were interested in alternative powertrain technology, as opposed to only 29% wanted 

something other than gas or diesel (Deloitte 2020). The change in demand is partially a result of the lower 

operational costs and emissions of electric vehicles. One of the main concerns for fleet electrification 

include the high cost of battery technology, battery life, the number of charging stations, and charging wait 

times. 
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Bloomberg New Energy Finance and McKinsey (2016) show that the cost of lithium-ion batteries 

decreased approximately 65% in five years from 2010 to 2015- and that it is expected to fall to a low-range 

cost of $50 per kilowatt-hour by 2040. This would expunge the price/performance gap of CASE vs. internal 

combustion model engines. Moreover, researchers forecast that by 2040, one out of every three new cars 

sold worldwide will be completely electric. A trend of more affordable battery technology has also been 

seen in the market, costs decreasing to $273/ (kWh) from $599/ (kWh) in 2013 (2016). Trends show costs 

dropping even further, possibly reaching as little as $100/ (kWh) by 2026, presenting a highly viable choice 

for consumers. By 2030, a second transition will occur as the cost of electric vehicle batteries (BEVs) will 

decline rapidly with market saturation (Bloomberg Philanthropies, 2017).  

The drivers behind CASE vehicle market penetration are shown in Figure 2. 

Figure 2: CASE vehicle drivers (by Mahdavian et al. 2021a) 

A2. Automated Vehicle Technology (Mahdavian et al. 2021a): Automated vehicle (AV) 

technologies are electronic systems that control the longitudinal and lateral movement of a vehicle, as well 

as acceleration, geolocation, braking, and sensing via cameras, sensors, radar and lidar, demanding a high 

degree of precision. Due to the large variability encountered while driving, these systems are extremely 

complex, requiring an integrated relationship between hardware and software. In these technologies’ 

vehicle software plays as crucial of role, if not a more important one than vehicle hardware. Moreover, AVs 

cannot require connected vehicle technology as the scope of their travel is not constrained to network 

covered locations.  
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The current criterion for vehicle automation is established by the Society of Automotive Engineers 

(SAE). The National Highway Transportation Safety Administration (NHTSA) also published AV policy 

guidelines. A broadly accepted policy for AV classification, authorized by the NHTSA first in 2013 and 

then updated in 2018, is comprised of five levels, ranging from no automation to full automation. In 2014, 

the SAE created a separate classification for AVs with the J3016 standard (Mahdavian et al. 2021a). SAE 

International (2018) also offers a viewpoint on AVs and the industries six levels of classification. The levels 

are established by the  role of the AV system versus the role of the driver, consisting of fallback 

responsibility for the driving task, monitoring of the vehicles immediate surroundings, steering, 

acceleration, and driving mode. The automation levels include: no automation (Level 0); driver assistance 

(Level 1); partial automation (Level 2); conditional automation (Level 3); high driving automation (Level 

4); and full automation (Level 5) SAE International (2018).  

A3. Connected Vehicle Technology (Mahdavian et al. 2021a): Connected vehicle (CV) technology 

is a data depository system that allows highway infrastructures and vehicles to communicate information 

to reduce collisions, optimize traffic flow, and provide more general information. A CV system allows for 

the wireless transfer of digital data within a car and its outside environment. This technology combines a 

diverse set of hardware and software allowing bidirectional communication using established protocols, 

giving access to any device inside and outside the vehicle. This permanent connectivity allows for smart 

information management which is the key to zero emissions and zero collisions goals Medagliani (2020).  

Forms of unidirectional communication includes satellite radio, global positioning systems (GPS), 

near field communication (NFC), and AM/FM/HD Radio. In contrast to this bidirectional communication 

includes cellular technology for communications, Wi-Fi for information, DSRC for safety, NFC for 

authentication, and Bluetooth for entertainment. Bidirectional technologies of this sort have various uses 

such as safety, infotainment, and mobility; all of which have a multitude of variables to manage (speed, 

security, distance, and bandwidth) Medagliani (2020). The most common connectivity consumer offerings 
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include infotainment and convenience, navigation, safety, security, and maintenance. Moreover, driving 

style recognition (DSR) while EV-related features are just beginning to be incorporated. Some aspects, such 

as insurance and urban mobility-related features, still require additional research to better understand. 

Established protocols include Bluetooth, Wi-Fi, satellite, DSRC, and cellular-5G. Bluetooth is  

relatively short range, limited to a 10-meter range, and in comparison, has limited functionality, as well as 

and requiring pairing. Wi-Fi due to its omnipresence has commonly known exploitative security issues. 

Satellites remain expensive and due to their nature tend to communicate unidirectionally. Dedicated short-

range communication (DSRC) is a wireless transmission that allows for two-way communication of data 

within a 1,000-meter range. DSRC is extremely fast and secure and has no usage cost. This high reliability, 

safety, and security supporting the vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) are among 

the DSRC benefits. The technologies involved include: 

• Sensors such as radar, lasers, high-powered cameras, sonar, and light detection and ranging (Lidar) 

technology. 

• Sophisticated software that analyzes the data. 

• GPS assist, routing, and navigation within the CV environment. 

One must also consider the growth of 5G, (the fifth generation of the wireless broadband 

technology based on the IEEE 802.11ac standards) (Mahdavian et al. 2021a). 5G offers speeds 100 times 

quicker than 4G/LTE as well as boasting a better coverage zone with a 5GHz signal of up to 10Gb/s. This 

is a huge leap as 5G improves network potential by hundreds of connections (CVTA 2020). The expansion 

of 5G technology and DSRC promises to deliver intelligent transportation and looks to connect CASE 

vehicle data to the cloud, and transport infrastructure data centers. The U.S. Department of Transport 

(USDOT) has funded placements of CV equipment, transferring digital code over the licensed 

radiofrequency of 5.850 - 5.925 GHz, in an example of DSRC utilizing a language certified by SAE 

International 2018. One should note that due to the new nature of this field, SAE standard compliance is 

not mandatory as no government has begun regulations upon the technology.  
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Pioneering expertise and tech within driver assistance systems (ADAS) have been devised to 

increase highway safety in addition to increasing overall traffic capacity (Blythe 2004). This level of ADAS 

is appropriate for situations such as forward-collision alert, lane-keep support, and blind-spot monitoring. 

A recent analysis by the AAA Foundation for Traffic Safety (AAA 2018) showed that ADAS decreases 

accidents, injuries, and fatalities in passenger vehicles. The implementation of ADAS could result in the 

elimination of up to 37% of injuries, and 29% of deaths. There are four categories within these intelligent-

vehicle systems: AV, CAV, cooperative adaptive cruise control (CACC), and adaptive cruise control 

(ACC). Established ADAS equipment can distinguish some objects and their proximity to the vehicle, 

alerting the driver of dangerous highway situations and slowing down or even stopping the car (Shladover 

2018).  

B. USER ACCEPTANCE RATE (Mahdavian et al. 2021a): If CAV is to gain high market 

penetration users are expected to accept this technology as a replacement for their daily means of 

transportation. Deloitte (2018) states that crucial boundaries that potential buyers of CAV technologies will 

be: cost, brand, trust, and safety. There are several hurdles to be overcome in the full adoption of CAV 

technologies. Market outlook: Consumers need to see the technology as safe, secure, and reliable.  

Individuals see enough appeal in CAV technologies to motivate their willingness to pay (WTP). Other 

variables that may correlate with the acceptance of CAV should be taken into account when formulating a 

market plan, including gender, income, and “tech-savviness” (Deloitte 2018, Menon 2019, Barbour 2019).  

B1. Safety and Trust (Mahdavian et al. 2021a): Zmud et al. (2017) reported the primary reason for 

an individual to not use  a technology is a lack of trust in that technology. Bansal et al. (2016) report that 

an established safety history increases the likelihood of U.S. consumers purchasing a CAV by 71%. This 

figure is up from the previous 68% reported in 2015.  

B2. Cost and WTP (Mahdavian et al. 2021a): Drivers and passengers tend to have different values 

concerning travel time and are likely to display different WTP with the addition of CAV technologies to 
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their vehicles. Cost is a common factor in choosing travel options. There are two types of costs to consider: 

upfront cost, and cost per mile. HERE (2017) reports that the current high cost of CAVs is a critical issue 

for consumers, one that must be overcome before high adoption rates and mass production of CAVs can 

increase Fagnant et al. 2014. The cost of automated and EV technologies is currently higher than those of 

traditional internal-combustion-engine passenger vehicles. However, the cost of AVs is projected to decline 

rapidly from 2020 onwards, owing to advancements in sensor and battery technology (Bloomberg 2017). 

Cost and WTP issues can be divided into categories of cost to buy and cost to access.    

Cost to buy (Mahdavian et al. 2021a): The idea that customers will purchase AVs in the future is 

assumptive, as they are yet to be supported by changing demographics and ownership preferences. 

However, we can follow the well documented trend price changes of various elements of AVs. Upfront AV 

price reduction, Waymo 2020 showed  that LIDAR cost approximately $75,000 earlier in the decade but 

dropped to $7,500 in 2017. The U.S. Environmental Protection Agency (EPA) NHTSA 2016 reported that 

automated manual transmission, which facilitates truck shifting  dropped from $5,100 in 2013 to $3,750 in 

2018. The DOT (2014) reported a price drop in adaptive cruise control (ACC) from nearly $3,000 in 2006 

to $2,000 in 2014. The Texas A&M Transportation Institute (2017) approximates that by 2030 new 

technologies and advancing in manufacturing could reduce the cost of full autonomy to be less than $1,000 

per vehicle.  

Cost to access (Mahdavian et al. 2021a): Considering CAV cost per mile: widespread adoption of 

CAVs could lead to a decreased individual vehicle ownership, as more individuals opt to employ shared 

mobility because of the price saving per-mile cost to operate CAV vehicles, which is projected to be 

substantially lower for highly autonomous and EV vehicles VS. traditional internal-combustion-engine non 

autonomous vehicles. ARK Investment Management LLC (Kyriakidis 2015) studies showed the 

comparative cost of various modes of transportation, the price per mile is $3.50 for taxis, $0.70 for personal 



 

25 

 

vehicles, and $0.35 for autonomous taxis. It is worth noting that the research and development costs of 

CAVs should be added to the above-mentioned operational costs. 

B3. Age factor (Mahdavian et al. 2021a): Research seems to indicate younger drivers, regardless 

of nationality are more interested in owning CASE vehicles (Zmud et al. 2016). A survey done by Bansal 

et al. (2016) showed that 70% of Generation Y/Z  individuals in the United States would be inclined to 

purchase a CASE vehicle produced by brand they trusted, opposed to a traditional vehicle from a less trusted 

brand. Individuals from Generation X showed a slightly lower acceptance rate of 62%. 

B4. Gender factor (Mahdavian et al. 2021a):  A multitude of studies show that men are more likely 

than women to acquire a CASE vehicle (Kyriakidis et al. 2015). This gender-specific preference can in part 

be due to men’s tendency to acquire vehicles earlier, willingness to pay more for new technologies, and 

their stronger belief in the safety associated with AVs Casley et al. (2013).  

B5. Familiarity with technology (Mahdavian et al. 2021a): On average tech-savvy individuals show 

a higher likelihood of purchasing a CASE vehicle Bansal (2016)). Regarding passengers, lone drivers 

demonstrate the greatest interest in the new technologies and show the greatest WTP, and their decision 

seems to show little dependence on others’ adoption rates. Concerning accident experience, accident 

survivors have an increased interest in WTP with little dependence on others’ adoption rates (Bansal 

(2016)).  

Considering issues of urban sprawl, Gurumurthy and Kockelman (2020) report that long commute 

drivers tend to prefer owning their own automated vehicles. Regarding shared automated vehicles (SAVs), 

moreover, middle-income households prefer renting SAVs for long-distance trips. SAVs are also preferred 

by customers for long-distance business trips of less than 500 miles. Moreover, the absence of a driver's 

license profoundly improves the willingness to share rides with strangers. The authors state higher incomes 

individuals as well as those that are younger in age are more likely to share rides in SAVs. The author noted 
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their belief that people on average prefer private mobility, either private ownership or private access to 

shared fleets (Mahdavian et al. 2021a). 

C. REGULATIONS AND POLICIES (Mahdavian et al. 2021a): Policy and regulation is a factor 

that can play a role in the purchase of a CAV. As a result, a framework to utilize these technologies more 

efficiently is needed for legislators to effectively create policies for the employment of CAVs. This set of 

legal, social, and ethical concerns need to be assessed along with their influences for CAVs to offer a 

substantial value for consumers. 

C1. Privacy (Mahdavian et al. 2021a): CAVs employee a highly sophisticated advanced onboard 

system capable of transferring vast amount of data about their users and their location. There it goes without 

saying that electronic security is going to be a concern for automobile producers and consumers alike. The 

CAV network could stand to be vulnerable to dissatisfied employees or hackers who use exploits to induce 

crashes that cause traffic congestion and turmoil. This central control of vehicles has divided users on 

whether the benefits of increased connectivity are worth the risks. Currently solutions to CASE vehicle data 

collection, ownership, and accessibility are speculative. When American consumers ranked their choices 

for stakeholders, they would trust to maintain CASE vehicle information the results were: (Original 

equipment manufacturer) OEM 26%; no-one 26%; dealer 9%; government 5%, and other 34% (Deloitte, 

2020). These figures show a mistrust of government with data handling, and more perhaps importantly that 

data security is a challenging issue for institution of CAVs. 

C2. Licensing (Mahdavian et al. 2021a): As there is little legislation overall on CAVs, there is still 

no need for additional certification or classes to operate CASE vehicles. However, if individual drivers 

were obliged to receive a additional licensing for CAVs, this could represent an additional barrier to entry 

for market penetration, especially if an extra cost is associated. USDOT AV4.0. (USDOT, 2020) evaluates 

the premise of certifying users on the level of automation they display proficiency with. For example, the 

authors believe that today’s elderly may be a level 0, but a child would be in Level 4 and above. 
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C3. Insurance and liability (Mahdavian et al. 2021a): CASE vehicle collisions represent a 

particularly complicated issue in the case of  accident liability. Current tort law fully elaborates on CAVs. 

USDOT AV4.0. USDOT (2020) states that with regard to the individual piloting, the vehicle is liable; but 

if the car is autonomous, the builder of the car is liable. However, this is a relatively new topic in courts 

and will be established in courts as precedent cases start to appear.  

D. IMPACT OF CASE VEHICLES ON THE TRAFFIC NETWORK:  

D1. Traffic Flow (Mahdavian et al. 2019b): Most likely, a fully CAV fleet of vehicles could 

possibly change saturation flow rates. CAV will increase traffic flow and capacity like the effect that 

urbanization, population growth and increase in the size of the economy has on traffic flow and capacity. 

This technology will allow enable improvements in vehicle energy efficiency including electrification, 

weight reduction, and size optimization, faster travel and full cycle smoothing. Moreover, they have the 

potential to provide efficient routing, efficient driving, platooning, higher occupancy, increased parking 

efficiency (as well as real-estate previously allocated to parking becoming free to other use),  and ultimately 

result in increased travel especially in the case of underserved people. 

D1.1. New category of users (Mahdavian et al. 2019b): The leap from partial to fully automated 

vehicles will open doors to vastly increased mobility for the majority of people. Speculation by various 

authors point out the fact AVs will add trips to the network by increasing the mobility of currently 

underserved populations. Three long-underserved groups that would benefit in this case would be: disabled 

people, children, and elderly people (seniors). Several studies used U.S. NHTS data to assess the limits of 

vehicle miles traveled (VMT) within these groups and how they will be affected with automated vehicles 

emergence.  

Some studies looked at the impact of full AV adaption on these new categories of users. Regarding 

non-drivers (adult and children), CMU (2016) estimated approximately 196 billion new VMT annually (age 

19 and over) to be added to the traffic. Corey et al. (2016) also estimated a 9% growth in VMT from this 
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category of users. Moreover, while Corey et al. (2016) projected 2.2% expansion in VMT by using 

automated technologies in senior category, CMU (2016) predicted about 46 billion additional annual VMT 

(Senior Citizens person aged 65 and older). Ultimately, Corey et al. (2016) estimated 2.5% increase in 

VMT, and CMU (2016) foresaw more than 55 billion VMT annually involving disabled People (People 

with travel restrictive medical conditions).  

D1.2. Ownership and shared mobility (Mahdavian et al. 2019b): There is an established body of 

research on the travel behavior effects caused by the ownership or availability of vehicles. Automobile 

ownership is seen as a critical variable in determining public transportation usage. Currently vehicle 

ownership is correlated with vehicle availability (Texas A&M Transportation Institute 2017). CAVs 

technology and shared mobility services are evolving today in parallel and stands to change future travel 

behaviors and change vehicle ownership concepts. Indeed, projections involving CAVs indicated a shift 

away from personal vehicle ownership toward a shared mobility marketplace. Many cities the world over 

have restricting construction and commuting patterns that have intensified urban sprawl significantly. Car 

ownership is all but necessity in these cities (McKinsey & Company 2016). The Preference and 

customization of represents their tastes, lifestyle, and beliefs. Here (2017) estimated that although by 

Emergence of CAV drive technology there is a high probability that people change their mobility, (as this 

technology is already proved to be viable, safe, convenient, and economical) that private ownership will 

continue to prevail. Many drivers that still choose owning their vehicles but want driverless functionality 

for its safety and convenience. It should be noted that consumer mobility behavior is being influenced by 

shared mobility as the incidence of private car ownership is declining, while shared mobility is increasing. 

Although not entirely clear, the speed of the change shows a fundamental shift away from personally owned 

driver-driven vehicles is occurring, possibly in the direction of a future mobility system that uses driverless 

vehicles and shared mobility (McKinsey & Company 2016). Existing data shows that CAVs’ effects will 

depend on the extent that households move from vehicle owning to vehicle sharing. The changes brought 

about by shared mobility led to a decrease in overall vehicle travel, while it is not known whether CAVs 
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increase or reduce total vehicle travel. Because of these continuing trends up to one out of ten new cars sold 

in 2030 is expected to be a shared vehicle. This could affect private-use vehicle sales which at least in part 

be offset by a faster replacement rate for shared vehicles (McKinsey & Company 2016). It would follow 

that more than 30% of miles driven in new cars sold could be shared mobility miles. Lovejoy (2013) 

estimates that Households tend to significantly reduce their overall vehicle travel, by 25% to 75%, when 

they shift from owning a vehicle to sharing. Kok et al. (2017) predicted that, by 2030, within ten years of 

regulatory approval of fully automated vehicles, 95% of all U.S. passenger miles will be served by 

transport-as-a-service (TaaS) providers.   

D1.3. Empty vehicle travel (zero occupant vehicles) (Mahdavian et al. 2019b): Zero occupant 

vehicles will be used for goods delivery. It is argued that empty relocation travel will contribute 

significantly to VMT effects of automated vehicles. Some zero occupant cars will be employed as a part of 

the future traffic flow while dropping off or picking up travelers, or while waiting service assignment. It is 

thought that it is more reasonable for a car to continually move about rather than to pay parking charges 

(Texas A&M Transportation Institute 2017).  

D1.4. Safety (Mahdavian et al. 2019b): Car travel is unsafe, costly, and burdensome (McKinsey & 

Company 2018). Safety continues to be the primary concern for the U.S. Department of Transportation 

(USDOT) as well as the prime focus of the National Highway Traffic Safety Administration (NHTSA), 

whose data shows 9 out of 10 severe roadway crashes happen due to human behavior. This loss of life from 

traffic deaths is a serious issue, and costs America at least $77 billion per year in forgone economic 

contributions. This amount is equal to the entire GDP of New Hampshire. More than 30 thousand persons 

die annually in the U.S. in automotive collisions (NHTSA 2012), with 2.2 million crashes ending in injury 

(NHTSA 2013). Considering the aviation industry, over time, the emergence of autopilot technology has 

reduced pilot-attributable crash rates by 90%. System improvements and increases in cockpit efficiency 

from the 1960s through the 1980s dramatically improved flight safety. If automated vehicles offer a similar 
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advancement in safety, the introduction of the automated car could be one of the significant public health 

advances in history.  

The scope of potential advantages is substantial. If automated vehicles can remove human error 

from the transportation system, it can be concluded that the number of accidents, injuries, and lives lost 

would also be significantly reduced (Mahdavian et al. 2019b). Texas A&M Transportation Institute (2017) 

stated that the most considerable impact of safety enhancements as a result of AV/CVs may come from the 

avoidance of non-recurrent delays on congested facilities created by vehicle crashes. Vehicle crashes that 

occur during peak periods on heavily used facilities can cause blockages in the traffic. FHWA (2015) 

estimated fewer crashes (which today cause 25 percent of traffic congestion) because of the emergence of 

AV. There is a consistency in the literature arguing that by removing humans and human error from the 

driving task, automated vehicles have the potential to lessen congestion and traffic accidents dramatically 

(Fagnant and Kockelman 2014). Kok, et al. (2017) claimed that, because human error contributes to 90% 

of crashes, automated vehicles will diminish crash rates and insurance costs by 90%. NHTSA (2008) also 

stated that over 90% of the primary factors behind crashes are due to human errors which could be reduced 

by the adoption of AVs. NHTSA (2011) stated that 40% of fatal accidents include driver alcohol or drug 

use and driver fatigue or other distractions. Morgan Stanley estimated that a 90% reduction in crashes would 

save nearly 30,000 lives and prevent 2.12 million injuries annually. Hayes (2011) suggested that motor-

vehicle fatality rates could eventually approach those seen in aviation and rail, about 1% of current rates; 

KPMG and CAR (2012) advocated a goal of creating crash-less cars, while noting that connected vehicle 

solutions could decrease up to 80% of unimpaired accidents (Mahdavian et al. 2019b).  

D1.5. Value of travel time savings (VTTS): Of the benefits of CAV use, travel is expected to 

become more comfortable and relaxing, allowing for more free time in the car during trips. This is expected 

to lead to lower VTTS, or higher acceptable travel times. How this VTTS reduction will relate to AV 

technology has been extensively research. Based on Cyganski et al. (2015), a 25% decrease in trips longer 
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than 10 minutes is expected. While Gucwa (2014) estimated VTTS would be reduced by 25% of AVs. 

Research by Childress et al. (2015) reported even higher levels, expected a 35% decrease in AV travel 

times. Some reports are more variable, like Wadud et al. (2016) that speculate a VTTS reduction anyway 

from 5-80%, depending on the level of automation employed. Finally, Litman (2017) expected a 30% 

relative difference between the VTTS between car drivers and car passengers. 

When looking out how VTTS will impact VMTs, this same study also predicted higher vehicle 

milage, and reduced fuel and insurance costs based on an elasticity analysis. Increases anywhere from 4-

60% are anticipated based on automation, with a VTTS decrease of up to 80% needed for the highest values. 

Some research by Kröger et al. (2018) has suggested that this VMT increase will be higher than the total 

trip increase. Trip length can then increase, based on the expectations that AVs will more likely be used for 

longer trips. 

D2. Traffic Capacity: Until now, may researchers have investigated the influence of AVs on traffic 

flow predictors such as traffic capacity (Hartman et al. 2017). Despite this, their focus has been vehicle 

automation on a longitudinal level, where following distances for vehicles depend on human vision and 

human response times. AVs are expected improve driving in part, through increases in vehicle to vehicle 

and vehicle to infrastructure connectivity. As discussed by Makridis et al (2018), connected vehicles will 

have quicker response times than human drivers, with much shorter headways through use of 

communication tools. These tools will both send and receive data via wireless transmission, including 

dedicated short-range communications, or DSRC. DSRC sends information both to the drive, and to other 

vehicles with V2V. It also can send information to roadside units (RSU), the cloud, and to infrastructures 

with V2I (Hartmann et al. 2017). By enabling this communication, traffic management data such as signal 

phasing can be sent in real time. V2V technology in particular will be the easiest to utilize because the 

changes include additions to transport operators or to the vehicles. V2I however, is going to need additional 

government assistance in the form of maintenance, operation, and upgrades to infrastructure. Ultimately, 
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this information communicated that informs the vehicle could be anything relating to the shape, size, speed 

limit zone, or surroundings of the vehicle needed in order to help with vehicle control (Hartmann et al. 

2017). When AVs use both V2I and V2V, the traveling distance between vehicles can ultimately decrease. 

These shorter headway distances mean higher lane capacity and is expected to provide the greatest benefits 

for CAV use. On application of this technology that is quickly becoming more popular is cooperative 

adaptive cruise control (CACC) (Charalampopoulos et al. 2016). As discussed by Bang and Ahn (2017), 

CACC allows for greater autonomy by letting vehicles communicate traffic information, speed, vehicle 

position, and relative acceleration, in order to engage in more advanced driving techniques. Research by 

Shladover et al. (2012) looked at the impact ACC/CACC could have on freeway capacity based on 

simulated changes in market penetration. They concluded that CACC had the potential to double freeway 

lane capacity if CACC market penetration was high. While the potential to ease congestion with CACC 

was high, the results of ACC uncoordinated was not as promising. These findings consistently estimated a 

> 10% increase in capacity with 40% CACC market penetration. Looking at work by Van Arem et al. 

(2006), MIXIC technology could be used to mimic a highway lane-drop from 4 to 3 lanes. They saw higher 

flow and capacity increases because or CACC. Finally, it was estimated by Shladover et al. (2013) that 

V2V in combination with ACC would increase capacity from 21-50% for relevant vehicles, or at max 80% 

with 100% vehicle fleet coordination.  

D2.1. Capacity and speed: In a study by Maurer (2016), fully automating highway traffic with a 

mean speed v = 80 km/h, car length = 7.5 m, the impact of speed on the traffic capacity could be considered.  

His results indicated that with speeds of 200 km/h, capacity increased by 2-fold. With just 100 km/h, speed 

increased by 1.85 x the capacity; while with 38 km/h, the fold increase was 1.5. 

D2.2. Capacity in relation to the market penetration: In the aforementioned study, it was determined 

that more AV market penetration results in more highway capacity. Based on his estimates, 20% of fleet 

vehicles would be able to increase capacity by 6%. If 50% of these vehicles employed this technology, 
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there would be a 26% increase in capacity. While a 100% coordinated vehicle fleet would be needed for a 

75% capacity increase. In order to compared different market penetration rates, Sadat Lavasani (2016) 

compared various market scenarios. With 61% market penetration, fleet vehicle capacity would be 

expanded 33-70% if a 74% coordinated vehicle fleet was used. However, Van Arem et al. (2006) found 

that rates > 40% had no impact of capacity. It was also found by Hartmann et al. (2017), that obvious 

benefits are unlikely to be seen until higher AV use into the traffic grid is applied.  

D2.3. Capacity and the share of trucks: As found by Maurer (2016) the proportion of trucks is also 

likely to impact lane capacity. Based on his results, when truck shares reached 10%, capacity would 

decrease by almost 7%. With 30% truck shares, there was a 19% reduction in capacity. Correspondingly, 

with a 60% truck share increase a 30% reduction, and with 100%, a 42% reduction.   

D2.4. Capacity and VMT: CAV technology and their VMT level impact was also analyzed. 

According to Pinijari et al. (2013), AVs are superior to human drivers when it comes to detecting their 

surroundings, making narrower lanes a possibility. With AV freights entering the equation, Chapin et al. 

(2016) predicted that highway truck capacity will go up. Based on estimated by Childress et al. (2015), 

network capacity could increase 2-4-fold depending on the size of the CAV fleet. The smaller headways 

specifically, have been reported by Rodier (2018) to allow for double or even triple roadway capacity. 

Rodier also stated VMT elasticity based on capacity could increase from 0.3-0.6 in the short term, and 0.6-

1.0 in the longer time. Finally, Tientrakool et al.(2011) predicted a 43% increase in capacity on the highway 

by using vehicle sensors. With V2V communication system use, this value went up to 273%.     

E. Predictions for CAV market penetrations: Because of the cost of current vehicles, and the long 

use period afforded by them, it is unlikely for customers to consider new vehicles based on progressing 

technology. As a result, it can take decades for new technology to become widespread in the vehicle market. 

Often these types of advances follow a pattern known as an ‘S-curve’, or ‘Gal’s Insight’. AVs also are 

predicted to follow these patterns. Taking this into account, the predictions for cost and sale of AVs for 
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2025-2060 based on the reviewed literature was considered. These results can be seen in Table 1, organized 

in 5-year intervals. Based on this, a majority of researchers show that over time the AV market share will 

increase. Following 2040, AVs are likely to make up most of the cars currently on the road. 

Table 1: Sales and cost forecasts 

Year Study Forecast 

2025 

Citi GPS 2014 $40B market for level 4 AVs  

McKinsey 2016 33% of new trucks sold have level 4 or better 

Litman 2014 17% U.S. vehicle sales in AVs  

Lavasani 2018 2-5% of vehicle sales in AVs 

2030 

Litman 2014  23% of U.S. vehicle sales in AVs  

Lux Research 2014 $21B revenues for U.S. of selling level 2 & level 3 AVs  

Goldman Sachs 2019 42% new U.S. AVs Level 3, and 17% level 4 or 5 

Morgan Stanley 2013 $6000 per vehicle to add level 3 automation  

Lux Research 2014 250,000 vehicle sales annually for level 5 AVs  

2035 

ABI Research 2013 50% of all new vehicle sales in level AVs 

Mosquet et al. 2015 10% of U.S. new light-vehicle sales level 4 AVs  

HIS Automotive analyst 50% of U.S. and Canadian vehicle sales in AVs 

Litman 2014 35% of U.S. vehicle sales in AVs  

Lavasani 2018 20-40% of vehicle sales in AVs 

2040 Litman 2015 50% of U.S. vehicle sales in level 4 AVs 

2045 

Morgan Stanley 2013 $10000 per vehicle to add level 4 automation  

Lavasani 2018 40-60% of vehicle sales in AVs  

Litman 2014 65% of U.S. vehicle sales in AVs  

2050 
Deloitte 2018 80% of sales for shared vehicles  

Litman 2015 75%-90% of U.S. vehicle sales in AVs 

2055 
Lavasani 2018 80-100% of vehicle sales in AVs  

Litman 2014 95% of U.S. vehicle sales in AVs  

2060 Litman 2014 88-97% of U.S. vehicle sales in AVs  

 

The results forecasting VMT use can also be compared from the literature for 2025-2060. As 

before, these results are split into 5-year increments, as seen in Table 2. Not including one study by Hars 

(2014),  researchers agreed in the direction of VMTs and CAV use. Also, a more conservative prediction 

by Lavasani 2018 suggested lower levels of VMT market rates and use than Litman 2014. 
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Table 2: VMT and use forecasts 

Year Study Forecast 

2025 
Lavasani 2018 1-4% of vehicle travel in AVs 

Litman 2014 16% of U.S. vehicle travel in AVs  

2030 
Hars (2014) 90% of person-trips in U.S. in level 4 AVs  

Litman 2014 20% of U.S. vehicle travel in AVs   

2035 

Lavasani 2018 10-30% of vehicle travel in AVs 

Litman 2014 

Trommer  

30% of U.S. vehicle travel in AVs  

Fleet share of AVs can be up to 42% in Germany in 2035 

2040 Litman 2015 40% of U.S. vehicle travel in level 4 AVs  

2045 Litman 2014 50% of U.S. vehicle travel in AVs  

2050 Litman 2015 65% of U.S. vehicle travel in level 4 AVs  

2055 
Lavasani 2018 50-80% of vehicle travels in AVs 

Litman 2014 65-75% of U.S. vehicle travel in AVs  

2060 Litman 2014 75-90% of U.S. vehicle travel in AVs  

A similar analysis of 2025-2060 vehicle fleet forecasts is illustrated in Table 3. Researchers 

generally agreed upon the market penetration rates. However, overall, fleet increase rates were not as high 

as user, sales, and ownership estimates. 

Table 3: Vehicle fleet forecasts 

Year Study Forecast 

2025 
Lavasani 2018 1-2% of vehicle fleet in AVs 

Litman 2014 9% of U.S. vehicle fleet in AVs 

2030 Litman 2014 15% of U.S. vehicle fleet in AVs 

2035 

Lavasani 2018 10-20% of vehicle fleet in AVs 

Fehr and Peers 2014 25% of U.S. vehicle fleet in AVs 

Litman 2014 31% of U.S. vehicle fleet in AVs 

2040 
Litman 2016 

Bansal 2016 

30% of U.S. vehicle fleet in level 4  

43% of U.S. vehicle fleet in AVs 

2045 
Lavasani 2014 

Bansal 2016 

20-40% of vehicle fleet in AVs 

Fleet of light-duty vehicles in the U.S. will not be near homogenous 

by 2045  

2050 

Litman 2014 

Talebian 2020 

  

50% of U.S. vehicle fleet in AVs 

Automobile fleet will be near homogenous in about 2050 only if CAV 

prices decrease at an annual rate of 15% or 20% 

2055 
Lavasani 2018 40-60% of vehicle fleet in AVs 

Litman 2014 60-65% of U.S. vehicle fleet in AVs 

2060 Litman 2014 70-85% of U.S. vehicle fleet in AVs 

 

Table 4 represents the vehicle-ownership predictions from the reviewed literature for 2025 to 2060. 

It is evident ownership and access predictions are higher than fleet use/sale rates. Research generally accept 
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that most people will own or have access to CAVs by the year 2030. A 5-year difference was identified 

from when level 4 automation would happen based on the results by Rowe (2015) and Stanley (2014). 

Table 4: Ownership and access forecasts 

Year Study Forecast 

2030 
Lux Research 2014 92% of vehicles, level 2 automation, and 8%, level 3  

Morgan Stanley 2013 100% of U.S. light-duty vehicles in level 3  

2035 Harrop and Das 2015  8.5 million vehicles in AVs 

2040 IEEE 2006 75% vehicles in AVs  

2055 Morgan Stanley 2013 100% of U.S. light-duty vehicles in level 4  

2060 
Rowe 2015 100% of U.S. vehicles in level 4  

Fehr and Peers 2014 75% of U.S. highway traffic in AVs 

One thing to consider, is that each year only 6.7% of fleets get replaced on a national level. Based 

on this, it will be nearly 14 years before a 90% market penetration rate for all OEM makes and models can 

occur. 

Step 4: Highway construction cost prediction model 

(Regarding this section the study published by the author were employed: Mahdavian, A., Shojaei, A., 

Salem, M., Yuan, J.S. and Oloufa, A.A., 2021b. Data-Driven Predictive Modeling of Highway 

Construction Cost Items. Journal of Construction Engineering and Management, 147(3), p.04020180.) 

In order to develop any industry, a firm grasp of the expected revenue and cost is required in order 

to make decisions (Victoria Transport Policy Institute 2018). Based on methods discussed by Turochy et 

al. (2001), the US DOT methods used to predict roadway costs and assign a budget could initially be 

categorized into two stages. For the first stage, several DOTs consider the cost-per-unit, making use of 

engineering knowledge and expertise in order to implement cost items. For the second stage certain DOTs 

compare approximate predictions for the number of payments based on historical precedent from similar 

cases. On a statewide level, there is not a consistently applied method for cost estimation. Among some of 

these DOTs, different methods or techniques are used that depend completely on engineering practices 

(Zhang 2017).  



 

37 

 

Two of the most widely applicable methods of construction cost prediction include regression 

models (Wilmont & Cheng 2003), and artificial neural networks (ANN), better outlined in work by both 

Wilmot and Mei 2005,and  Shojaei and Mahdavian, 2019. On study by Emsley et al (2002) used both ANN 

and linear regression for cost prediction, and found there was a substantial benefit to using the NN method, 

based on its capacity to model non-linear data. When model accuracy was examined in a report by Membah 

et. al.  (2015), it was shown that using an approach based on unit cost was unreliable for predictions, could 

lead the a much lower predicted budget than needed, and did not consider project risks. Companies could 

then benefit also from a detailed risk analysis with predictions, prior to bid submission. With the unit cost 

method, the user is also limited in the volume of data they can analyzed. A parametric model was designed 

by Swei et al. (2017) to make construction cost projects by using a maximum likelihood estimator and a 

least angle regression for dimensionality.  They utilized this model and 15 total bid items in order to 

transform datasets. Minchin et al. (2004) showed that using values provided by the DOT, they were able to 

generate an accurate regression model. The most important variable affecting lowest bid price vs. 

engineering prediction was the number of bidders. Mahamid (2011)  used a polynomial regression model 

in estimating startup roadway construction. The model utilized bid quantity as an independent factor 

accomplished greater outcomes when compared to models using road dimensions.  

A body of research has observed construction cost vs construction market using independent 

macroeconomic predictors. Chief parameters show high a correlation of overhead to resource price. This is 

to be expected as the economy is a common indicator of the price needed for the entirety of the construction 

project (Anderson et al. 2007, Williams 2003). The reasoning for this is that these costs include the use of 

both machine and human resources, and building materials which are a litmus of the economy (Zhang 

2017). Williams (1994) foresaw  Engineering News-Record changes in construction cost using housing 

trends (start price) and the average lending rate. In this instance, these variables were incorporated along 

with the month for back-propagation network modeling.  
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In another report, Wong & Ng (2010) determined that macroeconomic market factors common in 

construction were critical for calculating the TPI. In a separate study, Shahandashti and Ashuri (2016) used 

sixteen variables (a higher amount then likewise studies) and concluded that the factors “hourly gains” and 

“price of crude oil” were the key elements impacting highway construction costs. To distinguish appropriate 

attributes in modeling the price of building projects, previous research (Lowe et al. 2006, Ji et al. 2010, 

Kim and Hong 2012) has utilized step-by-step multiple linear regression (MLR) for their forecasts. Finally, 

a study by Shahandashti and Ashuri (2016) also utilized VEC modeling in order to project the leading 

variables that effect the cost of highway construction projects. 

Assessing gaps, and delineation of contributions of dissertation 

Most articles published on the impact of CASE vehicles on the traffic network to date, only address 

one or at most a few issues in relative isolation. To a minor degree, there has been some consideration paid 

to less-quantifiable consequences, such as behavioral changes, impacts on attitudes about changes to land-

use, public transit,  and the impact on regional planning. Articles that give a more holistic approach to the 

impact of the emerging technologies on the traffic network are limited.  

This research strives to recognize some of the consequences of CASE vehicles at the system level, 

by first developing a traffic flow prediction model considering the impact of CASE vehicles, and second, 

generating a highway expansion cost-prediction model to enhance traffic capacity. To reach the goal of this 

study, four steps mentioned above were used. The assessment of the gaps in the literature and the delineation 

of contributions of dissertation research considering gaps are as follows:  

Numerous well- organized traffic volumes prediction models that predict short-term periods 

accurately, even if their traffic models perform inadequate for mid- to long-term estimates. Successful 

enactment of this investigation type is delayed due to a lack of adequate traffic modeling methods, models, 

and data that properly represents the involvedness of the transportation network. Traffic count estimations 

must take these multipart traffic patterns into account, making it compulsory to employ deep structure 
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models that are able to incorporate more IVs than past models. Because of the very nature of the 

unpredictability in traffic analysis due in no small part to the plethora of relevant factors mid- and long-

term predictions tend to be unreliable for practical use. However, if one was able to take make use of the 

multitude of affecting factors, they very well could obtain level of accuracy that makes long and mid term 

predictions viable.  

Current literature shows a need for a universal framework of this sort, as seeming discrepancy in 

earlier efficacious methods in terms of algorithms used selection method in addition to elements of the 

traffic prediction forecasting pipeline. In other words, of the investigated case characteristics in each 

previous study each had their own differing algorithms, and it reasons they would have different final 

parameters to be the optimal choice. It follows that in perfecting and adjusting a model for an individual 

cast study, a workflow needs to be designed as to establish the framework for standardization that would 

be needed for maximum market penetration, and in addition allows optional customizations based on 

specific applications. 

This research represents a comprehensive attempt in developing, and comparing, an array of non-

linear and linear models able to estimate traffic volumes of highways accurately, adding to the current body 

of research. A pipeline encompassing feature choice is constructed and enhanced to help train the models. 

We tested the models against the Florida Department of Transportation's (DOT's) average daily highway 

traffic for cars between 2001 and 2017. We chose this specific data because of Florida’s population growth, 

status as an immigrant destination, over all state logistics, tourist population, and hurricane frequency. The 

resulting model could provide valuable data to transportation planners and policymakers in the most 

efficient paths to expanding existing infrastructure, both to alleviate current congestion and to futureproof 

for possible issues. 

Current paradigms and lacks a standardized workflow to process and forecast the volume of truck 

traffic. In this study, an expansive volume of diverse datasets from Florida highways, and 59 IVs. It also 
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incorporates both linear and nonlinear algorithms, including five linear and four non-linear, and is robustly 

cross-validated. The steps outlined in this study are modeled based on a gride search for feature selction, 

followed by MAPE error reduction via model optimization. This study’s scope is model generation that 

compensates for the variety of shortcomings in current modeling, allowing enhanced truck count estimation. 

Study results illustrate the high accuracy of the developed system, which could be easily employed by other 

users more generally. Using the methodology elaborated on in this research and collecting local data related 

to predictors and projects, users can optimize this truck volume prediction model accordingly. It should be 

carefully noted that the model illustrated in this study and its leading factors are customed tuned to Florida, 

and that factors are expected to vary from those shown in this study in other applications.  

As there has been little effort to create a widely accepted workflow for forecasting highway 

construction costs, there has been little research about it. One existing study incorporates nonlinear (4) and 

linear (5) modeling of data from 2001-2017, with 69 IVs and multifactorial cross-validation. This studies 

workflow employed hyperparameter optimization framework in establishing which factors had the most 

impact on decreasing MAPE error. Without a universal standard, inconsistency arises during the feature 

selection stage, as well as other forecasting steps. Essential, the algorithms deemed optimal for a particular 

case in these past studies varied widely. An argument can then be made to forego optimizing on a case by 

case basis, and instead focus on the creation of a standard workflow that can be generalized.  

A major goal of this dissertation study is to create a model that addresses these shortcomings, so 

that project planners will have access to more accurate cost predictions. Based on the results highlighted, 

this framework has the potential to be highly accurate, and readily employed. If the step-wise process 

outlined in this dissertation is followed, planners can optimize the forecast provided based on predictors 

relevant to their project. The factors that will then be identified as key to cost prediction are likely to vary 

from the exact ones selected for in this study of a Florida highway dataset.    
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CHAPTER THREE: METHODOLOGY 

Overview 

The study attempts a macro-overview of the transportation network design obstacles and attempts to 

delineate the results of vehicle automation at the systemic level, leveraging machine learning and system 

dynamics analysis. The study will accomplish this by:   

• Step 1: Development of an accurate prediction model for passenger vehicles traffic volumes using 

nonlinear and linear machine learning  

• Step 2: Create an accurate model to estimate truck traffic volumes utilizing nonlinear and linear 

machine learning 

• Step 3: Forming a range of possible CASE vehicles scenarios of their impact on the traffic network 

employing an extensive literature.  

• Step 4: Creation of an accurate prediction model to forecast highway construction cost using 

nonlinear and linear machine learning. 

Using the previous steps, the hypothetical model could predict expansion cost of the network link 

considering CASE vehicles implementation and then compare that cost to the other market solutions to take 

the best course of action. The flowchart of the dissertation is shown in Figure 3.  
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Figure 3: The flowchart methodology of the dissertation 

Steps 1 and 2: Traffic prediction model – for Passenger Vehicles and Trucks 

(Regarding this section, the Author employed the studies reviewed in the article published by author: 

Mahdavian, A., Shojaei, A., Salem, M., Laman, H., Yuan, J.S. and Oloufa, A., 2021c. Automated Machine Learning 

Pipeline for Traffic Count Prediction. Modelling, 2(4), pp.482-513. And the study: Mahdavian, A., Shojaei, A., 

Salem, M., Laman, H., Eluru, N. and Oloufa, A.A., 2021d. A Universal Automated Data-Driven Modeling 

Framework for Truck Traffic Volume Prediction. IEEE Access, 9, pp.105341-105356.) 

Improved forecasting of passenger vehicle traffic volumes and truck traffic volumes through the 

generation of a highly accurate forecasting model was the prime reason for this step. To achieve this aim  

we employed a machine learning approach to examine a broad dataset of historical traffic volumes to 

develop a wide-ranging set of applicable independent variables. The key objectives of this step are as 

follows: 
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• Complete a comparative analysis of a variety of machine learning algorithms for traffic volume 

forecasting with consideration shown to linear and non-linear relationships among variables. 

• Examine influences of a variety financial markets and the U.S. economy on traffic patterns.  

• Consider how road characteristics may contribute to changes in traffic volumes. 

• Determine the significance of spatio-temporal predictors in altering the traffic volumes. 

This studies model pipeline identifies best option for bother variable selection and which model to use, 

in order to reduce the MAPE. It does so by leveraging hyperparameter optimization in generating a 

universal automated framework, which is a distinct then previous optimization techniques that employed 

in one off studies. 

Dependent Variables 

The Florida Department of Transportation (FDOT) database of historic vehicle traffic provided data 

that is used in this study. The data covers traffic volumes, MADT, and reporting from Florida highways 

linked to 259 different locations.    

One study constraint was the authors had to scale traffic data to monthly level in order to match the 

the independent and dependent variables (predictors and traffic volumes). Preferably more specific 

timepoints at the hourly, daily, or weekly level be used for higher resolution. However the monthly 

predictors for 6 Florida interstate highways we studied for a total of 52,836 data points or an average of 

every 5.75 miles of road. Summarization of  basic information seen this dataset can be found in Table 5.   

Table 5: Highway sites included for analysis  

Interstate ID Interstate type 
Length 

(mi) 

Number of cosites / 

interstate highway 

Length of road per cosite 

(miles) 

I95 Primary interstate 382.0 82 4.6 

I10 Primary interstate 362.2 52 6.9 

I75 Primary interstate 470.6 68 6.9 

I4 Primary interstate 132.2 47 2.8 

I275 Auxiliary interstate 60.6 9 6.7 

I 110 Auxiliary interstate 6.3 1 6.3 

  Total = 

1414.3 
Total = 259 Mean = 5.7 
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This research employed PTMS (portable traffic monitoring sites) to record the traffic counts from 211 

locations. TTMSs (Telemetered traffic monitoring sites) were employed in collecting data from the 

remaining 48 locations. PTMSs capture data through loop and axel sensors on the road that connects directly 

to a nearby weatherproofed cabinet. TTMSs in contrast employee wireless internet or landlines in order to 

send information to a TRANSTAT office offsite, thus reducing its accuracy. Figure 4 illustrates the majority 

coverage of Florida interstates by the 259 different co-sites.  

 
Figure 4: 259 cosites of the study on the Florida interstates map 
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Statistical Analysis 

Table 6 presents the results of analysis of of truck monthly traffic volumes.  

Table 6: Monthly truck traffic results: 

Item N/E Trucks S/W Trucks Total Trucks 

Mean 1,134,867 1,344,004 2,478,871 

Std 97,695 102,439 199,560 

Minimum value 943,280 1,157,397 2,100,677 

First quartile 1,061,814 1,263,920 2,324,526 

Median value 1,105,466 1,316,157 2,419,644 

Third quartile 1,215,878 1,433,383 2,651,906 

Maximum value 1,359,654 1,567,772 2,926,388 

 

Also, Table 7 summarizes the passenger vehicle (PV) directional monthly traffic volumes used in this 

study. Determination of the data range by statistical analysis is also shown.  

Table 7: Monthly cars traffic counts data statistical description 

Item N/E Cars S/W Cars Total Cars 

Mean 10146551 11847260 21993811 

Std 665397 762102 1413177 

Minimum value 8378788 9802174 18180962 

First quartile 9755700 11364921 21101325 

Median value 10208572 11851693 21960358 

Third quartile 10578486 12325489 22828754 

Maximum value 11775017 13722702 25497719 

 

The project compared global as well as local socioeconomic factors in Florida, like income and the 

labor force numbers. It considered the US economy, considering that the GDP can be a reasonable indicator 

of average national income. The consumer price index (CPI) is commonly as a measure of the rate of 

national inflation. Other factors such as national interest also good indicators of macroeconomic changes. 

Additionally, both the prime loan rate and rate of federal funds used are two commonly used metrics 

showing general interest rates. Finally, the stock market is a successful indicator to predict the cost ofa 

construction project, and they are widely available to the public for use.  

As for construction spending, this can be applied as a metric to planned construction costs at residential 

or non-residential locations. Employment can also be considered to factor in the state of the labor force in 
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the U.S. construction industry. Despite this, to take into account trends in building projects, you also must 

include data on private housing unit construction. A neglected variable thus far in traffic forecasting has 

been energy prices.  Other values have be used instead, including the price of gas or crude oil.  In this study, 

we also take into account the variables ‘max speed’, ‘lane number’, and ‘toll road’ as additional factors that 

impact the volume and pattern of truck traffic on the higway.  

Figure 5 compares the general trends seen among the most likely indicators of traffic volume. A 

distinct trend was identified in each potential indicator related to U.S. macroeconomic, socioeconomic, 

construction, and energy markets.   

 
Figure 5: Samples trends of the potential leading indicators of car traffic counts 
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Step 3 Traffic CASE vehicles CLDs – Scenario development 

This section elaborates the procedure and steps including literature research method, CASE Vehicles 

System Dynamic Causal Loop Diagram (CLD) development,  that was followed by this study to develop 

the CASE vehicles scenarios for the framework in modeling development chapter (chapter 4).  

A. Research method: To begin, a critical review of the available literature was performed. This was 

accomplished be researching trends with keyboards CAV implementation in transport studies, using Google 

Scholar. After this, different peer-reviewed databases were explored with additional keyword use. The 

keywords included, connected vehicles, automated vehicles, electric vehicles, CASE vehicle technology 

and implementation barriers, shared automatic vehicles, smart mobility implementation, and CASE vehicle 

regulations and user acceptance. At this stage, leading databases for transportation research were utilized 

including Sustainable  Cities and Society (Elsevier), Transportation Research Parts A-F (Elsevier), Journal 

Transportation and Health (Elsevier), Journal of cleaner production (Elsevier), Transportation Research 

Institutes, Transport Policy (Elsevier), Journal of Technological Forecasting and Social Change, Transport 

Reviews Journal (Taylor and Francis), and Transportation Research Record. In order to obtain research 

regarding the system dynamics employed, authors also looked at reports by the National Highway Traffic 

Safety Administration (NHTSA), the Federal Highway Administration (FHWA), or transport consulting 

companies.  

As this topic is evolving rapidly to properly convey current academia on the subject authors included 

the NHTSA’s Automated Driving Systems (ADSs – SAE International Automation Levels 3-5) Voluntary 

Safety Self-Assessment (VSSA) Disclosure Index in the review process. This study reviewed National 

Science Foundation (NSF) requests for proposals (RFPs) to identify current gaps in this field. While the 

majority is on articles, projects, research, and reports published in the U.S.; there are several European 

countries as well as China have been included in the review process. Inclusion and exclusion range were 

set evaluating the significance of each study to the topic, and if applicable, only then was it applied. First, 

authors recognized and excluded manuscripts that were not specific to CASE vehicle implementation. 
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Second, the authors isolated the remaining periodicals to ones that addressed topics related to barriers in 

implementing CASE vehicles. The authors critically reviewed 131 articles (56 journal papers, 16 

conference papers, 19 transportation research institutes, 16 federal reports, and 24 industry reports) to 

explore the various stakeholders’ viewpoints regarding the subject of research from among the 367 articles 

initially identified. 

B. CLD development: The CASE vehicles System Dynamic Causal Loop Diagram (CLD): Results of 

the assessment were used in developing a CLD offering a comprehensive model showing the consequences 

of CASE vehicles and CATs on traffic network. CLDs and system dynamics have been used to analyze 

complex, dynamic systems to investigate effects of vehicle automation on a systems level. This is because 

of the focus on the relationships between variables and the overall structure of the system, with our specific 

work being limited to the use of causal loop diagrams (CLDs). For the purpose of this study we improved 

upon the current CLD traffic and congestion model developed by Gruel and Stanford (2016). They in turn 

built their model based upon the work of John Sterman’s (2000) baseline model.  

The core purpose of this model is management and relief of roadway congestion. As is common in 

transport modeling the CLD considers factors such as: road capacity, trip generation, land use, mode choice, 

and public transit. This model provides an apt framework for our discussion as a basis for the scenarios of 

the study. Figure 6 shows the developed CLDs for the CASE vehicles impact on the traffic network.  
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Figure 6: CASE Vehicles System Dynamic Causal Loop Diagram (CLD) 

According to the CASE Vehicles CLD in Figure 6, the following Reinforcing loops (which generate 

growth and collapse) and the balancing loops (which generate stability) were identified:  

REINFORCING LOOPS. Regarding the reinforcing loops, the increased attractiveness of travelling 

by CASE vehicles, would lead to more trips and lower LOS of the traffic network:  

• [Reinforcing Loop-1]: Attractiveness of Travelling by CASE vehicles / Trips per Day per Car / 

Traffic Volume/ Congestion / Travel Time / Attractiveness of Travelling by vehicles  

• [Reinforcing Loop-2]: Attractiveness of Travelling by vehicles / Average Trip Length / Traffic 

Volume / Congestion / Travel Time / Attractiveness of Travelling by vehicles and  

BALANCING LOOPS. About the balancing loops, for the first four loops, the higher level of 

congestion would lead to more resources allocated to the traffic management. By employing various 

solutions (such as Highway Construction, In-Vehicle Transit Enablers, Mobility Management,  and 
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Infrastructure enablers) the level of service of the highway will get higher (lower traffic congestion). Also, 

vehicle-sharing leads to increased Price Transparency as its per-trip-payment exposes many of the hidden 

costs of driving that most people usually do not consider. This transparency has the potential to reduce the 

Attractiveness of Travelling by Car. 

• [Balancing Loop-1]: Congestion / Travel Time / Pressure to decrease congestion / Highway 

Construction / Highway Capacity / Congestion  

• [Balancing Loop-2]: Congestion / Travel Time / Pressure to decrease congestion / In-Vehicle 

Transit Enablers / Congestion 

• [Balancing Loop-3]: Congestion / Travel Time / Pressure to decrease congestion / Mobility 

Management / Congestion 

• [Balancing Loop-4]: Congestion / Travel Time / Pressure to decrease congestion / Infrastructure 

enablers / Congestion 

• [Balancing Loop-5]: Shared Mobility Ridership / Shared Mobility Revenue / Shared Mobility 

Deficit / Shared Mobility Network / Adequacy of Shared Mobility / Attractiveness of travelling by 

car / Shared Mobility Ridership 

• [Balancing Loop-6]: Shared Mobility Ridership / Shared Mobility Revenue / Shared Mobility 

Deficit / Shared Mobility Fare / Adequacy of Shared Mobility / Attractiveness of travelling by car 

/ Shared Mobility Ridership 

• [Balancing Loop-7]: Travel Time / Size of Region within Acceptable Travel Time / Urban Sprawl 

/ Average Trip Length / Traffic Volume / Congestion / Travel Time 

 

Step 4 Highway construction cost prediction model 

(Regarding this section the study published by the author were employed: Mahdavian, A., Shojaei, A., 

Salem, M., Yuan, J.S. and Oloufa, A.A., 2021b. Data-Driven Predictive Modeling of Highway 

Construction Cost Items. Journal of Construction Engineering and Management, 147(3), p.04020180.) 

This step of the study aims to predict future highway construction costs accurately using internal and 

external variables. Particularly, this study strives to address the following objectives:  

1. Evaluating the prediction accuracy of multiple machine learning algorithms considering multiple 

linear and non-linear relationships between variables to forecast the cost items 
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2. Evaluating the influence of temporal predictors on the prediction model on road construction cost 

items 

3. Investigating the impact of the socio-economic, energy market, U.S. economy, and construction 

market on highway construction cost item  

In order to accomplish these objectives, the steps of training, testing, and feature selection, a new 

model was designed to automatic workflow. This model was then tested on a dataset from the FDOT that 

contained itemized construction costs from 2001-2017 classified as ‘critical highway costs’. This data 

included 60 individual item costs for both 4 and 6 lane rural or urban interstate highway 

construction/widening projects. Florida highways in particular were used due to multiple factors including, 

logistics, frequency of hurricanes, and population growth and demographics.  

Figure 8 shows sixty cost items and their associated cost margin in each type of project.  From the 

sixty cost items (dependent variables) covering 100% of the total cost of six highway expansion types 

(constructing and widening), ten cost items’ monthly historical data were not available (about 7.4% of the 

total cost), so the remaining fifty cost items were considered to be fed to the pipeline of the study. These 

cost items covered about 92.6% of the average total cost of highway construction (both new construction 

and widening construction projects). In total, this included roughly 17,121 small, medium, or large sized 

projects and 1,027,260 individual data points. The data from these projects was then sorted for a feature 

analysis on a monthly level from 2001-2017 (17 years total, or 204 months). Analysis on a month to month 

basis was then maintained for the entire period covered by the dataset. The full list of dependent variables 

is shown in Figure 7, and with the 10 cost items not included in training highlighted in yellow. Construction 

types that did not include the remaining 50 cost items in factoring the total per-mile project costs were listed 

as x.  
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Figure 7: The cost items utilized in the study
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For the predictor variables, 69 different independent/candidate variables were chosen, including 

14,076 total data points from the 17 year period studied. Five different categories for the predictor variables 

as highlighted in Appendix B, Table B1. These categories included socioeconomic, economy, construction 

market, energy market, and temporal candidate variables. For the first category, socioeconomic candidate 

variables, 9 different variables were used; including but not limited to, household size, household income, 

the labor force used, and the length of paved road studied.  The economy candidate variables specifically 

looked at factors of the U.S. economy, and included 28 different variables. Both gross domestic product 

(GDP) and the consumer price index (CPI) were utilized in this category. While the national U.S. income 

can be examined with GDP, CPI is important to consider federal inflation levels. The most widely 

referenced stock market indexes among the U.S. were also used, including the Dow Jones, S&P 500, and 

NASDAQ index. The category of construction market candidate variables also included 28 individual 

variables, not limited to construction spending and building/housing permits. Another critical variable 

included was the national highway construction cost index (NHCCI) in order to consider construction bids 

in the previous years. In addition, FDOT historical data on revenue and disbursement was used. Four total 

variables for the energy market candidate variables category were selected; and these include the price of 

crude oil, diesel, electricity, and natural gas.  Finally, the category of temporal candidate variables included 

the number of months, the individual month, and the year.  

Step 5: ARIMA Model 

In order to predict the assigned values of future independent variables, this study utilized different 

univariate modeling techniques. For the temporal candidate variables, the univariate models used included 

smoothing, and the autoregressive moving average (ARMA); the latter of which is one of the most widely 

used prediction models for a time series involving one variable. For the purpose of this study, ARMA (p, 

q) is used to refer to this model type, with p and q being the AR and MA order, respectively. This order 

was selected using both an partial autocorrelation correlogram function (PACF) and a autocorrelation 

correlogram function (ACF). In contrast, the smoothing method consisted of Holt-Winters or exponential 
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methods. The Holt-Winters methods included linear, multiplicative or seasonal additive; and the 

exponential methods included simple, and single or double exponential smoothing.  

These methods, in addition to the categories previously listed (with the exception of licensed drivers, 

line miles, centerline miles, and population), were used together for future variable prediction. For the 

variables not included, the results from previously published studies were used. Results from Rayer et al. 

2020 were used for the socioeconomic variables of licensed drivers and population; while the line miles 

and centerline miles that relate to the length of paved Florida highway roads in the future were considered 

to be constant. Both spatial variables, and variables relating to road characteristics were also left as constant 

for the prediction time span. 
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CHAPTER FOUR: MODEL DEVELOPMENT 

Steps 1 and 2: Traffic prediction for Passenger Vehicles and Trucks 

(Regarding this section, the Author employed the studies reviewed in the article published by author: 

Mahdavian, A., Shojaei, A., Salem, M., Laman, H., Yuan, J.S. and Oloufa, A., 2021c. Automated Machine Learning 

Pipeline for Traffic Count Prediction. Modelling, 2(4), pp.482-513. And the study: Mahdavian, A., Shojaei, A., 

Salem, M., Laman, H., Eluru, N. and Oloufa, A.A., 2021d. A Universal Automated Data-Driven Modeling 

Framework for Truck Traffic Volume Prediction. IEEE Access, 9, pp.105341-105356.) 

To generate a model for trucks and passenger vehicles traffic volume prediction, a workflow was 

designed that consists of (1) data preprocessing, (2) feature selection, (3) model training, (4) hyperparameter 

optimization, and (5) machine learning based in Python (2020) that incorporates the Scikit-learn library 

(2011). The standardized data obtained during the preprocessing steps was further separated into the 

datasets training, test, and validation. Finally, key predictors of traffic volume were identified using a 

feature selection model based on the training and validation datasets. A summary of this workflow can be 

seen in Figure 8.  
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Figure 8: The Pipeline of the study 

A. Data Preprocessing and Partitioning: At the data preprocessing stage, all independent variables 

(predictors) were transformed into a number. Then, the numeric data were standardized to normal 

distributions with an average of 0 and a standard deviation of 1 to support the regularization of the models. 

Following standardization, the prepared data were divided into training, test, and validation datasets. As 

time series data are used in this research, exploring the integrity and temporal continuity of the data was 

essential. Accordingly, randomly splitting the dataset into different parts for validation would not be 

appropriate. As shown in Figure 9, the evaluation method employed in this study relied on the nested cross-

validation expanding window method. In this method, the training dataset has a training subset and a 

validation set in the inner loop (yellow dashed box) starting with three years of serial data for each dataset. 

The training set was increased by three years in each split. The testing dataset then consisted of the next 
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three successive years of the dataset after those of the validation dataset. For the inner loop, each split went 

through the research pipeline presented in Figure 8. Then, concerning the outer loop, after employing the 

outcomes of each split, the error was averaged. This method ensures that the final model is robust and is 

not overfitted or randomly accurate.  

 
Figure 9: Nested cross validation (expanding window approach) 

Performance measurement scales: To measure the reliability of the models used and the feature 

selection methods chosen, four measures of error were used. These included, the mean absolute percent 

error (MAPE), the mean absolute error (MAE), R-squared, and the root mean squared error (RMSE). The 

aforementioned error measurements were analyzed in order to best consider potential forecast errors, based 

on the dataset utilized (highway construction cost); with the goal of producing the most reliable forecast 

possible. To that end, MAPE and RMSE were identified as the superior methods of error measurement for 

accuracy, and also provided the most insight into potential forecast errors. By using RMSE and MAPE, this 

study was also able to consider both scale-dependent and -independent measurements, allowing significant 

error to be more easily interpreted in the results. Of the two, the RMSE however, can be easily impacted 

by significant error outliers. As a result, MAPE was chosen as the most appropriate method for determining 

mean and error in this study and was to evaluate the training results of the models used.   

B. Feature Selection: Taking into account the model structure utilized, feature selection was used to 

increase model accuracy. During the feature selection process, superfluous variables are removed from the 

Split 1 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Split 2 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Split 3 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Split 4 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Training Dataset Validation Dataset Testing Dataset Dropped Dataset
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independent variables considered, and only the most appropriate variables are used. This is done by 

measuring the impact each variable has on model precision, and then removing an low-scoring variables 

that are deemed unnecessary.  If these variables are not removed, they can negatively impact a models 

performance, precision, and predictive abilities. By using the nested cross-validation previously discussed, 

model testing, training, and validation for each of the remaining parameters was performed. The determine 

which features were critical to model development, three different steps were utilized. These steps included: 

1. Bayesian Ridge Regression (BR), Ridge Regression (Ridge), Decision Tree (DT), and Random 

Forest Regression (RF) were utilized for implicit feature selection (SelectFromModel function 

from Scikit-learn (2011)). At this step, values tested for the importance threshold alternated 

between 0.25, 0.5, 0.75, 1, 1.25, 1.5, and 1.75 to consider the selection parameter.   

2. To gradually pinpoint and remove superfluous features, Recursive Feature Elimination (RFE in 

Scikit Learn (2011)) was employed until only features of high import remained. This step utilized 

the previous models (FRE-RF, RFE-Ridge, RFE-BR, and REF-DT), and the resulting number of  

selected features chosen included 1, 3, 5, 10, 20, 30, 40, 50, and 60.   

3. Finally, the K most appropriate dataset features are identified via a scoring function (SelectKBest 

in Scikit Learn (2011)). For the purpose of this study, Mutual Information (MFCLASSIF) and 

ANOVA F-value (FCLASSIF) were used. At this stage, the final number of selected features varied 

as before from 1, 3, 5, 10, 20, 30, 40, 50, and 60.  

Each method was used within a grid search after which, the principle set of parameters chosen were 

compared.  

C. Modeling Approaches: For the purpose of passenger vehicle traffic volume forecast, this study took 

advantage of multiple different machine learning (ML) algorithms. Neural Network (NN), Random Forest 

(RF), Decision Tree (DT), and K-Nearest Neighbors (KNN) were chosen as the non-linear regression 

models for this study (SelectFromModel function from Scikit-learn (2011)). For the linear  models, Ridge 

Regression (Ridge), Stochiastic Gradient Descent Regression (SGD), Passive-Aggressive Regression (PA), 
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Linear Regression (Linear), and Bayesian Ridge Regression (BR) were selected (SelectionFromModel 

function from Scikit-learn (2011)).  

 The regression models chosen allowed for the manipulation of parametric models, while also ensuring 

methods with varying levels of non-linearity or linearity could be compared. As mentioned prior, data was 

previously split to train, validate, and test the model using a nested cross-validation approach. After this 

approach was performed, the aforementioned ML methods were applied. For training, an expanding data 

window was utilized. The following 3 years after dataset training were then used for validation. Finally, 

this process was tested on data from 3 additional years in sequence. The model parameter (MP) −or the 

highest value of the binary tree depth− ranged from 5, 20, 50, 75, 100, and 200 for all RF and DT algorithms 

used. The MP used for the K-Nearest Neighbors algorithm varied from 1, 3, 5, 7, 10, and 16. In the case of 

the Neural Network models, the MP alternated between 1, 2, and 4, and corresponds to the hidden layer 

size or number of neurons. MP selection for the linear algorithm was also performed. With BR Regression, 

the MP was used to illustrate the prior gamma distribution (alpha_1 and alpha_2) inverse scale parameters 

and shape. For the Ridge Regression, the MP is indicative of the regularization strength (alpha); and for the 

PA regression model, the MP is the maximum step size (regularization C). For all three of these algorithm’s, 

the MP varied from 0.1, 1, 10, 100, 10,000, and 1e6.  Finally, MP values fluctuated from 0, 0.15, 0.3, 0.5, 

0.75, and 1 for the SGD regression, and can be attributed to the L1 ratios (L1 and L2 regularization) elastic 

net mixing parameter. As established in these last two sections, the hyperparameter optimization grid 

developed incorporates an extensive range of reasonably low to high parameter values, allowing it to be 

applied to multiple datasets containing distinctive features.   

Step 3: CASE vehicles scenario development 

(Regarding this section the author employed his published publications: Mahdavian, A. Shojaei, A.,Oloufa, A. 

2019a. Service Level Evaluation of Florida's Highways Considering the Impact of Autonomous Vehicles. 

Proceedings of the International Symposium on Automation and Robotics in Construction (ISARC). And: 

Mahdavian, A., A. Shojaei, and A. Oloufa. 2019b. Assessing the long-and mid-term effects of connected and 
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automated vehicles on highways’ traffic flow and capacity. International Conference on Sustainable Infrastructure 

2019: Leading Resilient Communities through the 21st Century. Reston, VA: American Society of Civil Engineers. 

And also: Mahdavian, A., Shojaei, A., Mccormick, S., Papandreou, T., Eluru, N. and Oloufa, A.A., 2021a. Drivers 

and Barriers to Implementation of Connected, Automated, Shared, and Electric Vehicles: An Agenda for Future 

Research. IEEE Access, 9, pp.22195-22213.) 

The scenario development process in this study included five sequential steps, namely the 

identification of the critical factors and driving forces of the development of solutions, assessment of the 

impact and uncertainty of the driving forces, construction of the scenario matrix, estimation of the 

penetration rates and potential implications of CAVs in each scenario, and finally review of the scenario 

and assessment of the overall impact of each of the 22 scenarios. To build the following scenarios, four 

important factors were considered including CASE vehicles impact on traffic flow (4 scenarios: No impact, 

Low impact, Medium impact, and High impact), impact of trucks automation on cars’ trips (2 scenarios: 

Has an impact or does not have an impact), shared and ownership mobility (3 scenarios: All private 

ownership, half shared mobility, and All shared mobility), and shared mobility usage policies (3 scenarios: 

optimistic, most likely, and pessimistic).  

To present the impact of CASE vehicles on the traffic network, this study investigated the Effects in 3 

Main Scenarios:  

1. Scenario A. Technology Changes, But We Don’t 

2. Scenario B. New Technology Drives New Behavior  

3. Scenario C. New Technology Drives New Behavior & New Ownership Models  

Scenario A. Technology Changes, But We Do not 

In scenario A, it is assumed no changes are made to vehicle ownership or behavior. For the purpose of 

modeling, all vehicles are privately owned, and CAVs use is based on the current use of cars in society. In 

this case, no behavioral changes are cause by the expected improvements. In addition, shared automatic 
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vehicle (SAV) policies in this instance refers to policies involving the use of shared AVs by various users. 

Table 8 shows the assumptions for scenario A.  

Table 8: Scenario A 

Scenarios New Behavior New Ownership Models 
Shared Mobility 

Policies 

Scenario A.1. No Change No Shared Mobility Not Required 

 

Scenario B. New Technology Drives New Behavior  

In scenario B, it is assumed no charges are made to vehicle ownership choices (privately owned vs 

shared mobility vehicles), but major changes in behaviors related to vehicle use and travel are seen. In this 

case, new uses for cars are found (both for business use and use by private individuals). In addition, people 

are more willing to engage in longer trips, and at a greater frequency. Table 9 shows the assumptions for 

scenario B.  

Table 9: Scenario B 

Scenarios New Behavior New Ownership Models 
Shared Mobility 

Policies 

Scenario B.1. High Impact No Shared Mobility Not Required 

Scenario B.2. Low Impact No Shared Mobility Not Required 

Scenario B.3. Most Likely Impact No Shared Mobility Not Required 

 

Scenario C. New Technology Drives New Behavior & New Ownership Models  

This scenario builds on behavioral changes of Scenario B, but also assumes complete change in 

ownership: It examines a case where all vehicles in operation are SAVs. Multiple reasons could cause shift 

to shared vehicles, e.g., increased appeal of vehicle sharing as vehicles can drive where they are needed, 

lower prices due to higher vehicle utilization, or enforcement by cities that ban private cars from certain 

areas. Table 10 shows the assumptions for scenario C.  
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Table 10: Scenario C 

Scenarios New Behavior New Ownership Models 
Shared Mobility 

Policies 

Scenario C.1 High Impact Half Shared Mobility Not Required 

Scenario C.2 High Impact Half Shared Mobility Incentives 

Scenario C.3 High Impact Half Shared Mobility Required 

Scenario C.4 Low Impact Half Shared Mobility Not Required 

Scenario C.5. Low Impact Half Shared Mobility Incentives 

Scenario C.6. Low Impact Half Shared Mobility Required 

Scenario C.7. Most Likely Impact Half Shared Mobility Not Required 

Scenario C.8. Most Likely Impact Half Shared Mobility Incentives 

Scenario C.9. Most Likely Impact Half Shared Mobility Required 

Scenario C.10. High Impact All Shared Mobility Not Required 

Scenario C.11. High Impact All Shared Mobility Incentives 

Scenario C.12. High Impact All Shared Mobility Required 

Scenario C.13. Low Impact All Shared Mobility Not Required 

Scenario C.14. Low Impact All Shared Mobility Incentives 

Scenario C.15. Low Impact All Shared Mobility Required 

Scenario C.16. Most Likely Impact All Shared Mobility Not Required 

Scenario C.17. Most Likely Impact All Shared Mobility Incentives 

Scenario C.18. Most Likely Impact All Shared Mobility Required 

 

Passenger Vehicles 

The following figure shows the adjusting factors for various scenarios for analyzing the impact of the 

New behavior of users by emergence of CASE vehicles. Five factors were analyzed to investigate the 

impact of CASE vehicles on the number of trips by passenger vehicles, including, Efficiency of vehicle 

operation, attention needed for driving, mobility for those unable to drive, safety of vehicle operation, and 

empty vehicle mobility. All the five factors include values for pessimistic, optimistic, and most likely 

scenarios. For example, in the Pessimistic Scenario, for the Efficiency of the vehicle operation parameter, 

the Number of trips by Cars will increase by 4% as a result of an expected 10% cost savings. In the 

Optimistic Scenario, the number of trips in the future predicted in the 1st Step would be multiplied by 1.98 

to calculate the impact of CAVs New Behavior on the traffic network. Table 11 shows the assumptions for 

the New Behavior parameter Passenger Vehicles. 
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Table 11: Assumptions for the New Behavior parameter for Passenger Vehicles 

Scenarios Pessimistic Scenario Most Likely Impact Optimistic Scenario 

Efficiency of Vehicle 

Operation 

Assume 10% Cost 

Savings: 

Assume 30% Cost 

Savings: 

Assume 50% Cost 

Savings: 

0.04 0.1 0.16 

Attention Needed for 

Driving 

Assume 20% reduction in 

VTTS: 

Assume 50% reduction in 

VTTS: 

Assume 80% reduction 

in VTTS: 

0.05 0.15 0.25 

Mobility for those Unable 

to Drive - for Cars 

When there is No 

legislated law; Low 

CAVs' acceptance rate by 

people; CAVs in a high 

Price: 

When there is incomplete 

legislated regulation: 

Medium CAVs' acceptance 

rate by people; CAVs in 

average price: 

When we have complete 

legislated regulations; 

High acceptance rate by 

people and CAVs in low 

price: 

0.05 0.15 0.25 

Safety of Vehicle 

Operation for Trucks  
0.04 0.08 0.12 

Empty Vehicle Mobility 

for Trucks 

When only some of the 

stores will provide 

driverless delivery 

vehicles; People often 

utilize this type of 

delivery; No law: 

When approximately half 

of stores provide driverless 

delivery vehicles; People 

sometimes utilize this type 

of delivery; Required laws 

associated with safety, 

security, & liability of 

driverless cars are 

incomplete:  

When most of stores 

provide driverless 

delivery vehicles; People 

always utilize this type 

of delivery; Required 

laws associated with 

safety, security, & 

liability of driverless 

cars are provided: 

0.04 0.12 0.2 

Passenger Vehicles' Count 

Adjusting Factors 
1.22 1.6 1.98 

 

Trucks 

The following figure shows the adjusting factors for various scenarios for analyzing the impact of the 

New behavior of truck users by emergence of CASE vehicles. Five factors were analyzed to investigate the 

impact of CASE vehicles on the number of trips by trucks, including, Efficiency of vehicle operation, 

attention needed for driving, truck parking, safety of vehicle operation, and trucks e-commerce. All the five 

factors include values for pessimistic, optimistic, and most likely scenarios. Table 12 shows the assumptions 

for the New Behavior parameter Passenger Vehicles. For example, for the Pessimistic Scenario, for Efficiency 

of vehicle operation parameter, the Number of trips by Trucks will increase by 6%. In the Optimistic Scenario the 
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number of trips by Trucks in the future predicted in the 1st Step would be multiplied by 1.72 to calculate 

the impact of CAVs New Behavior on the traffic network.  

Table 12: Assumptions for the New Behavior parameter for Trucks 

Scenarios Pessimistic Scenario Most Likely Impact Optimistic Scenario 

Efficiency of Vehicle 

Operation 

When a minority of the 

Motor Carriers utilize 

CAV Trucks to advance 

their business: 

When approximately half 

of the Motor Carriers 

utilize CAV Trucks to 

advance their business:  

When a majority of the 

motor carriers utilize 

CAV Trucks to advance 

their businesses: 

0.06 0.15 0.24 

Attention Needed for 

Driving 

Assume 20% reduction in 

VTTS: 

Assume 50% reduction in 

VTTS: 

Assume 80% reduction 

in VTTS: 

0.05 0.1 0.15 

Truck Parking  0.05 0.1 0.15 

Safety of Vehicle 

Operation for Trucks 
0.04 0.06 0.08 

Trucks E-Commerce/ 

Empty Personal Vehicle 

Trips to Avoid Parking 

0 0.05 0.1 

Trucks' Counts Adjusting 

Factors 
1.2 1.46 1.72 

 

Adjusting Factors for New Ownership models (cars) and Shared Mobility Policies 

Besides, New Behavior analysis, New Ownership models and Shared Mobility Policies are the two 

remaining main factors for development of the 22 scenarios of the study. The following figure shows the 

impact of various combination of the New Ownership models (cars) and Shared Mobility Policies 

adjustment factors in this study. Table 13 shows the assumptions for the New Policies and Regulations 

parameter. For example, in the High Shared Mobility-Required Policies Scenario, the number of trips for 

Passenger Vehicles for any time in the future  predicted in the 1st Step Using Machine Learning would be 

multiplied by 0.2 to present the impact of New Ownership Models on traffic network.  
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Table 13: Assumptions for the New Policies and Regulations 

New Policies & Regulations 

New Ownership Models 

Policies & Regulations 

Not Required Incentives Required 

Pessimistic Scenario 

(Assume No Requirement 

or Incentives): 

Most Likely Scenario 

(When there are incentives 

by the government not to 

use private ownership): 

Optimistic Scenario 

(When it is required by 

law to use shared 

mobility, Potential 

Penalty for those not 

following the laws): 

No or Low Rate of 

Shared Mobility 
1 1 1 

Medium Rate of Shared 

Mobility 
0.9 0.75 0.6 

High Rate of Shared 

Mobility 
0.8 0.5 0.2 

 

Mixed Adjusting Factors for All Scenarios 

The following figure shows all the scenarios developed in the study with their associated adjusting 

factors for trucks trips and passenger vehicles trips. Figure 10 shows the mixed adjusting factors for all 

scenarios. For the scenario 3.11, the number of trips for Passenger Vehicles in the future predicted in the 

1st Step would be multiplied by 0.99 to present the impact of New Behavior (number of Trips caused by 

CAVs) on traffic network and New Ownership Models (Private/ Shared). Also, for the trucks the adjusting 

factor would be multiplied by 1.72.  
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Figure 10: Mixed Adjusting Factors for All Scenarios 

The full scope and significance of the changes that are to come, what they necessitate, or how they 

will develop are not known. These forthcoming forces have the potential to change the current traffic 

network. We may be on the threshold of change as high as any the industry has ever seen. Scenario analysis 

is a must to process the evaluation of possible future events through the consideration of alternative 

plausible, though, not equally likely, states of the world. In this section scenarios series for 2021 to 2050 

were built to outline the plausible futures compared. So, they could assist in mid- and long-term planning 

to broaden perspectives and identify the leading factors affecting the traffic network at the system level 

(accompanied by a sensitivity analysis). To generate the scenario series of this research, and to cover the 

possible threshold of the future scenarios, three cases namely supportive (a good scenario), most likely, and 

disruptive scenario were developed. To develop each of the scenario series, CAVs market penetration rate 

and CAVs travel projection rates, developed scenarios for various New behavior and New ownership 
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models of ACES and CATs era were employed. Regarding the New behavior and New ownership models, 

the developed scenarios in the previous section were utilized.  

About the travel projections of CAVs that plays a crucial role in the development of the scenario-series 

between 2020 and 2050, this study employed the CAV travel projection rates developed by the study by 

Litman (2018). The Autonomous Vehicles Travel Projections by Litman is shown in Appendix E. New 

behavior and new ownership (including the policies’ impact) were considered for the development of three 

main scenario series.  

General Scenarios – Productive Scenario 

In the productive scenario, both new behavior of customers (about the attractiveness of making trips 

by CAVs) and new ownership models were considered in a way that is optimistically aligned with higher 

level of service and less prone to congestion. In the productive scenario users will not change number of 

trips customers make due to genesis of CAVs drastically. Surely, people will be affected by the automation 

and connectivity, however, their behavior, and tendency to travel more will not be affected significantly. 

On the other hand, users will get further from owning the vehicles to sharing the vehicles earlier which is 

aligned with decreasing the number of trips by vehicles and higher level of service of the traffic network. 

Additionally, there will be some policies that incentivizes or require customers using shared mobility mode 

over private ownership of vehicles. In this case, 15 years in the beginning will not have any requirement or 

incentive, then 11 years of policies which encourage people to use shared mode of traveling more, and 

finally, 5 years of required shared mobility mode. Figure 11 shows the annual adjusting factors for 

Productive Scenario. 
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Figure 11: Annual adjusting factors for Productive Scenario 

General Scenarios – Most Likely Scenario 

In the most likely scenario, both new behavior of customers (about the attractiveness of making trips 

by CAVs) and new ownership models were considered in a way that is moderately aligned with higher level 

of service. In the productive scenario users will not either change number of trips customers make due to 

genesis of CAVs drastically or keeping their same behaviors as before. There will only get affected 

moderately. Moreover, users will get further from owning the vehicles to sharing the vehicles earlier which 

is aligned with decreasing the number of trips by vehicles and higher level of service of the traffic network. 

Additionally, there will be some policies that incentivizes or require customers using shared mobility mode 

over private ownership of vehicles. In this case, 15 years in the beginning will not have any requirement or 

incentive, then 11 years of policies which encourage people to use shared mode of traveling more, and 

finally, 5 years of required shared mobility mode. Figure 12 shows the annual adjusting factors for Most 

Likely Scenario. 

Year

Travel Market 

Penetration 

Cars

Traditional Cars
Travel Market 

Penetration Trucks

Traditional 

Trucks

New Behavior 

(ACE Vehicles)

New 

Behavior 

Cars

New 

Behavior 

Trucks

New Ownership Models Cars
Shared Mobility 

Policy Cars

Shared 

Mobility 

Adjust. 

Factor

Adj. Factor 

Cars

Adj. Factor 

Trucks

2020 1% 99.00% 6.00% 94.00% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2021 3% 96.98% 8.02% 91.98% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2022 5% 95.05% 9.95% 90.05% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2023 7% 93.12% 11.88% 88.12% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2024 9% 91.20% 13.80% 86.20% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.03 1.03

2025 11% 89.00% 16.00% 84.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.03

2026 13% 87.37% 17.63% 82.37% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2027 15% 85.46% 19.54% 80.46% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2028 16% 83.55% 21.45% 78.55% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.04

2029 18% 81.64% 23.36% 76.64% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.05

2030 20% 80.00% 25.00% 75.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.05

2031 22% 77.82% 27.18% 72.82% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.05

2032 24% 75.90% 29.10% 70.90% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.06

2033 26% 73.99% 31.01% 68.99% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.07 1.06

2034 28% 72.06% 32.94% 67.06% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.07 1.07

2035 30% 70.00% 35.00% 65.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.08 1.07

2036 32% 68.19% 36.81% 63.19% Low Impact 1.22 1.2 Medium Shared Mobility Not required 0.9 0.97 1.07

2037 34% 66.24% 38.76% 61.24% Low Impact 1.22 1.2 Medium Shared Mobility Not required 0.9 0.98 1.08

2038 36% 64.28% 40.72% 59.28% Low Impact 1.22 1.2 Medium Shared Mobility Not required 0.9 0.98 1.08

2039 38% 62.31% 42.69% 57.31% Low Impact 1.22 1.2 Medium Shared Mobility Not required 0.9 0.98 1.09

2040 40% 60.00% 45.00% 55.00% Low Impact 1.22 1.2 Medium Shared Mobility Not required 0.9 0.99 1.09

2041 42% 58.33% 46.67% 53.33% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.15 1.21

2042 44% 56.32% 48.68% 51.32% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.16 1.22

2043 46% 54.29% 50.71% 49.29% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 0.98 1.23

2044 48% 52.25% 52.75% 47.25% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 0.99 1.24

2045 50% 50.00% 55.00% 45.00% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 1.00 1.25

2046 52% 48.09% 56.91% 43.09% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 1.01 1.26

2047 54% 45.99% 59.01% 40.99% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 1.02 1.27

2048 56% 43.86% 61.14% 38.86% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 1.03 1.28

2049 58% 41.71% 63.29% 36.71% Most Likely Impact 1.6 1.46 Medium Shared Mobility Incentives 0.75 1.03 1.29
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Figure 12: Annual adjusting factors for Most Likely Scenario 

General Scenarios – Disruptive Scenario 

In the disruptive scenario, both new behavior of customers and new ownership models were considered 

in a way that is more prone to experiencing traffic congestion in the traffic network. In the disruptive 

scenario, users will change the number of trips they make due to genesis of CAVs significantly; their 

behavior, and tendency to travel more will be affected drastically. Moreover, customers will keep with the 

private mode over sharing their trips with other customers and will not change their ownership patterns. 

Additionally, there will not be any policies that incentivizes or require customers using shared mobility 

mode over private ownership of vehicles. Figure 13 shows the annual adjusting factors for Disruptive 

Scenario. 

 

Year

Travel Market 

Penetration 

Cars

Traditional Cars
Travel Market 

Penetration Trucks

Traditional 

Trucks

New Behavior 

(ACE Vehicles)

New 

Behavior 

Cars

New 

Behavior 

Trucks

New Ownership Models Cars
Shared Mobility 

Policy Cars

Shared 

Mobility 

Adjust. 

Factor

Adj. Factor 

Cars

Adj. Factor 

Trucks

2020 1% 99.00% 6.00% 94.00% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2021 3% 96.98% 8.02% 91.98% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2022 5% 95.05% 9.95% 90.05% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2023 7% 93.12% 11.88% 88.12% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2024 9% 91.20% 13.80% 86.20% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.03 1.03

2025 11% 89.00% 16.00% 84.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.03

2026 13% 87.37% 17.63% 82.37% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2027 15% 85.46% 19.54% 80.46% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2028 16% 83.55% 21.45% 78.55% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.04

2029 18% 81.64% 23.36% 76.64% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.05

2030 20% 80.00% 25.00% 75.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.05

2031 22% 77.82% 27.18% 72.82% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.05

2032 24% 75.90% 29.10% 70.90% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.06

2033 26% 73.99% 31.01% 68.99% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.07 1.06

2034 28% 72.06% 32.94% 67.06% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.07 1.07

2035 30% 70.00% 35.00% 65.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.08 1.07

2036 32% 68.19% 36.81% 63.19% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.22 1.17

2037 34% 66.24% 38.76% 61.24% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.23 1.18

2038 36% 64.28% 40.72% 59.28% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.24 1.19

2039 38% 62.31% 42.69% 57.31% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.26 1.20

2040 40% 60.00% 45.00% 55.00% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.27 1.21

2041 42% 58.33% 46.67% 53.33% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.15 1.21

2042 44% 56.32% 48.68% 51.32% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.16 1.22

2043 46% 54.29% 50.71% 49.29% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.17 1.23

2044 48% 52.25% 52.75% 47.25% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.18 1.24

2045 50% 50.00% 55.00% 45.00% Most Likely Impact 1.6 1.46 Medium Shared Mobility Not required 0.9 1.20 1.25

2046 52% 48.09% 56.91% 43.09% High Impact 1.98 1.72 Medium Shared Mobility Incentives 0.75 1.17 1.41

2047 54% 45.99% 59.01% 40.99% High Impact 1.98 1.72 Medium Shared Mobility Incentives 0.75 1.18 1.42

2048 56% 43.86% 61.14% 38.86% High Impact 1.98 1.72 Medium Shared Mobility Incentives 0.75 1.20 1.44

2049 58% 41.71% 63.29% 36.71% High Impact 1.98 1.72 Medium Shared Mobility Incentives 0.75 1.22 1.46

2050 61% 39.00% 66.00% 34.00% High Impact 1.98 1.72 Medium Shared Mobility Incentives 0.75 1.24 1.48
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Figure 13: Annual adjusting factors for Disruptive Scenario 

Level of service adjustments by CASE vehicles scenarios 

After identifying the adjustment factors for trucks and passenger vehicles on the 22 above-

mentioned scenarios, the traffic capacity and level of service calculation should be adjusted. The following 

steps describe the procedure followed by the study to revise the LOS calculation for each cosite of the study.  

1. First, the Neural Network models predicted directional traffic for MADT and MADTT have 

been used for 2021 to 2045.  

2. For any cosite on the interstate highway a 10-mile length of the road and the characteristics had 

been studied: K factor, Max Speed FFS, and the Number Lanes and Max Service Flow Rate  

(pc/hr/lane).  

3. The study employed the Travel Market Penetration prediction of the CAVs presented by 

Litman 2018.  

4. Based on the traffic prediction data for MADT and MADTT, and the adjustment parameters 

for the CASE vehicle scenarios, the adjusted traffic flow for directional traffic for passenger 

Year

Travel Market 

Penetration 

Cars

Traditional Cars
Travel Market 

Penetration Trucks

Traditional 

Trucks

New Behavior 

(ACE Vehicles)

New 

Behavior 

Cars

New 

Behavior 

Trucks

New Ownership Models Cars
Shared Mobility 

Policy Cars

Shared 

Mobility 

Adjust. 

Factor

Adj. Factor 

Cars

Adj. Factor 

Trucks

2020 1% 99.00% 6.00% 94.00% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2021 3% 96.98% 8.02% 91.98% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2022 5% 95.05% 9.95% 90.05% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2023 7% 93.12% 11.88% 88.12% No Change 1 1 No or Low Shared Mobility Not required 1 1.00 1.00

2024 9% 91.20% 13.80% 86.20% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.03 1.03

2025 11% 89.00% 16.00% 84.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.03

2026 13% 87.37% 17.63% 82.37% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2027 15% 85.46% 19.54% 80.46% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.04 1.04

2028 16% 83.55% 21.45% 78.55% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.04

2029 18% 81.64% 23.36% 76.64% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.05 1.05

2030 20% 80.00% 25.00% 75.00% Low Impact 1.22 1.2 No or Low Shared Mobility Not required 1 1.06 1.05

2031 22% 77.82% 27.18% 72.82% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.16 1.13

2032 24% 75.90% 29.10% 70.90% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.17 1.13

2033 26% 73.99% 31.01% 68.99% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.19 1.14

2034 28% 72.06% 32.94% 67.06% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.20 1.15

2035 30% 70.00% 35.00% 65.00% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.21 1.16

2036 32% 68.19% 36.81% 63.19% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.22 1.17

2037 34% 66.24% 38.76% 61.24% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.23 1.18

2038 36% 64.28% 40.72% 59.28% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.24 1.19

2039 38% 62.31% 42.69% 57.31% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.26 1.20

2040 40% 60.00% 45.00% 55.00% Most Likely Impact 1.6 1.46 No or Low Shared Mobility Not required 1 1.27 1.21

2041 42% 58.33% 46.67% 53.33% High Impact 1.98 1.72 No or Low Shared Mobility Not required 1 1.46 1.34

2042 44% 56.32% 48.68% 51.32% High Impact 1.98 1.72 No or Low Shared Mobility Not required 1 1.48 1.35

2043 46% 54.29% 50.71% 49.29% High Impact 1.98 1.72 No or Low Shared Mobility Not required 1 1.50 1.37

2044 48% 52.25% 52.75% 47.25% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.37 1.38

2045 50% 50.00% 55.00% 45.00% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.39 1.40

2046 52% 48.09% 56.91% 43.09% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.40 1.41

2047 54% 45.99% 59.01% 40.99% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.42 1.42

2048 56% 43.86% 61.14% 38.86% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.44 1.44

2049 58% 41.71% 63.29% 36.71% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.46 1.46

2050 61% 39.00% 66.00% 34.00% High Impact 1.98 1.72 Medium Shared Mobility Not required 0.9 1.48 1.48
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vehicles and trucks were calculated. For any directional adjusted traffic flow, the study 

considered 3 scenarios, productive, most likely, and disruptive scenarios.  

5. By employing the predicted passenger vehicle traffic flow, and the predicted truck traffic flow, 

the adjusted truck percentage were calculated. Then, based on the truck percentage, the traffic 

capacity of the road was reduced. Finally, by employing the study by Maurer 2016, the traffic 

capacity was revised by the impact of Connected and Automated vehicles to increase the 

capacity. Appendix F shows the Highway Capacity Manual (HCM) values employed in this 

step.  

6. To calculate the passenger vehicle equivalent of trucks vehicles, the number of trucks were 

multiplied by 1.5. Then, the passenger vehicle Equivalent of all the vehicles for each direction 

were calculated by MADT unit.  

7. To calculate the adjusted LOS, the MADT unit was converted to pc/h/lane by using the K, and 

FFS of each cosite.  

8. Finally, based on the LOS ratio, the LOS of each cosite for any scenario were calculated.  

Step 4: Highway construction cost 

(Regarding this step the author employed his published study: Mahdavian, A., Shojaei, A., Salem, M., 

Yuan, J.S. and Oloufa, A.A., 2021b. Data-Driven Predictive Modeling of Highway Construction Cost 

Items. Journal of Construction Engineering and Management, 147(3), p.04020180.) 

The main goal of this step of the study was to forecast the total cost of each type of roadway 

construction expansion (either 4 or 6 lane-construction or adding lanes to urban or rural roads) for the 

highway links that experienced overcapacity. Figure 18 represents the pipeline of this step. During 

preprocessing, data was standardized and divided into training, testing, and validation datasets. Then, the 

validation and training datasets were fed to a feature selection module that selects the essential features 

within the data and removes other independent variables. This study examined multiple approaches for both 

feature selection and linear and non-linear modeling. Through this process, the most appropriate model (for 

each cost item) was found.  
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To develop the model, run # 1 was performed and MAPE was used to measure error among the 

different cost items. Those that had >15% error were deemed failed, and isolated. Independent variables 

that passed with low MAPE were then moved into the predictor group. This process was subsequently 

repeated and the application was re-run. This method allows for a larger selection of accurate predictor 

variables for cost forecasting. The pipeline of this section is presented in Figure 14. 

 

Figure 14: The pipeline of highway construction cost prediction model 

A. Data Preprocessing and Partitioning: As before, the preprocessing stage begins with assigning a 

numerical value to each independent variable. This data was then normalized based on a standard 

distribution. A standard deviation of 1 and a mean of 0 was selected for regularization. Data was then 

divided into the groups of test, training, and validation.  

Again, as time series data was included, it was important to consider the data continuity. As a result, 

random data distribution could not be used to maintain the temporal integrity of the data. Instead, a cross-

validation expanding window method was used for data assessment, as show in Figure 15.  The data used 

consisted of documented cost item values from 17,121 projects, and was organized based on the year 

assigned to each split of the training, test, and validation datasets. The first 3 years of data values are used 

for the training dataset; after which, the following 3 years of data values are used for test validation. Because 
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an expanding window was selected to compare the entire dataset, every phase the training dataset was 

increased by 3 years. Finally, the testing dataset contained the following 3 years of historical data that 

accompanied the validation dataset. The mean error was then calculated using the error results for each 

individual split. The data points used were unique for every fold of validation, training, testing, and cross-

validation.  To illustrate, in split 4, data from the years 2001-2012 was selected for the training dataset. For 

that split’s testing dataset, information from years 2013-2015 was selected. And finally, data from 2016-

2017 was used in the validation dataset. This results in a model that was tested with cost values from real 

projects performed from 2016-2017. Because separate data points were used for training and testing, the 

model accuracy reported reflects real construction project cost information. This process was necessary to 

establish a more robust model, and to avoid creating a randomly accurate, or overfit model. 

 

Figure 15: Nested cross-validation; expanding window 

All the models used in this study used the validation dataset for evaluation, and the training dataset for 

training. In addition, a grid search with the validation dataset was performed during parameter optimization, 

with the purpose of identifying the most optimal model, parameters, and feature selection tool.  

B. Feature Selection: Feature selection is the method of selecting the most appropriate predictors and 

eliminating unnecessary variables from the pool of potential predictors. Depending on the model’s 

structure, feature selection can improve a model’s accuracy. This method was carried out by finding the 
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contribution of each variable to the models’ precision and then eliminating unnecessary and repetitive 

variables, while also maintaining the most beneficial ones. Standardization is necessary before feature 

selection since the independent variables have different magnitudes of order and using them as-is might 

result in the ones with small magnitudes being overlooked (Mahdavian et al. 2021b). For each parameter 

set, the cross-validation method discussed earlier served to train, validate, and test the model. In this work, 

three methods were employed to decide the main features. First, valuable features were chosen via a model 

(SelectFromModel function from Scikit-learn (2011)). Various modeling techniques capable of implicit 

feature selection, including Random Forest (RF) Regression, Ridge Regression (Ridge), Bayesian Ridge 

(BR) Regression, and Decision Tree (DT), were employed in this section (Mahdavian et al. 2021d). The 

importance threshold considered for the selection parameter of this step changes between 0.25, 0.5, 0.75, 

1, 1.25, 1.5, and 1.75. Second, the Recursive Feature Elimination (RFE in Scikit Learn (2011)) was 

conducted. In this process, the least essential features are eliminated recursively until the most appropriate 

features are found. The models used to determine the importance of features are the same as the previous 

step (RFE-RF, RFE-Ridge, RFE-BR, and RFE-DT). In the RFE step, the number of ultimately selected 

features varies between 1, 3, 5, 10, 20, 30, 40, 50, and 60. Third, a scoring function was used to find the 

"K" best features in the dataset (SelectKBest in Scikit Learn (2011)). The scoring functions used in this 

work were ANOVA F-value (FCLASSIF) and Mutual Information (MFCLASSIF). The number of 

ultimately selected features of this step also fluctuates between 1, 3, 5, 10, 20, 30, 40, 50, and 60. These 

feature selection approaches were implemented inside a grid search and finally compared to find the best 

set of parameters (Mahdavian et al. 2021d). 

C. Modeling Approaches: Multiple machine learning algorithms were employed in this study, 

particularly those based on non-linear relationships between variables to forecast the cost items. The models 

(SelectFromModel function from Scikit-learn (2011)), that were used in this study included Decision Tree 

(DT), Random Forest (RF), K-Nearest Neighbors (KNN), and Neural Network (NN). Moreover, linear 

regression models, including Linear Regression (Linear), Ridge Regression (Ridge), Bayesian Ridge (BR), 
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Stochastic Gradient Descent (SGD) Regression, and Passive-Aggressive (PA) Regression were evaluated 

to find the level of improvement of using non-linear models (Mahdavian et al. 2021b). This selection of 

models allows the user to compare models with different levels of linearity or non-linearity, as well as 

having control over parametric models.  

For the RF and DT algorithms in this research, the model parameter (MP), which is the maximum 

depth of the trees, varies between 5, 20, 50, 75, 100, and 200. Regarding the K-Nearest Neighbors algorithm 

employed, the model parameter (Number of neighbors (K)) changes between 1, 3, 5, 7, 10, and 16. 

Concerning the Neural Network models, the MP, which represents the hidden layer size (number of 

neurons), varies between 1, 2, and 4 (Mahdavian et al. 2021b). On the other hand, in the linear algorithms, 

for the Ridge Regression, the MP represents the regularization strength (alpha) and varies between 0.1, 1, 

10, 100, 10000 and 1e6; for Bayesian Ridge Regression, the model parameter shows the shape and inverse 

scale parameters of the prior gamma distribution (alpha_1 and alpha_2) and varies between 0.1, 1, 10, 100, 

10000 and1e6. About the Stochastic Gradient Descent Regression, the MP represents the elastic net mixing 

parameter of L1 and L2 regularization (L1 ratio) and fluctuates between 0, 0.15, 0.3, 0.5, 0.75 and 1. 

Ultimately, regarding Passive Aggressive Regression, MP shows the maximum step size (regularization C) 

and changes between 0.1, 1, 10, 100, 10000, and 1e6 (Mahdavian et al. 2021d).  

As demonstrated in the feature selection and the modeling approach sections, the developed hyper-

parameter optimization includes a wide range of values for the parameters from reasonably low values to 

reasonably high values, so that it could be applied to various datasets with differing 

characteristics(Mahdavian et al. 2021d).   
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CHAPTER FIVE: RESULTS 

Step 1: Traffic prediction model – Passenger Vehicles 

(Regarding this section, the Author employed the studies reviewed in the article published by author: 

Mahdavian, A., Shojaei, A., Salem, M., Laman, H., Yuan, J.S. and Oloufa, A., 2021c. Automated Machine Learning 

Pipeline for Traffic Count Prediction. Modelling, 2(4), pp.482-513.) 

Figure 16 shows the comparison of the accuracy of different models for the total PVs (total traffic 

volumes of both directions of the road) on the validation dataset utilizing the grid search of this study. RF, 

KNN, DT, and NN generated the best performance when they were trained on the training dataset and were 

tested on the validation dataset. The non-linear models showed better results than linear models.  

 

Figure 16: Comparison of different models’ best performance on the validation dataset for total cars for 

the average error of cross validation over four splits 

The comparison of the accuracy of different models on the test dataset using the grid search is 

displayed in Figure 17. It is evident that non-linear models outperformed the linear models. Among non-

linear models, RF, KNN, and DT models performed better than NN model. The MAPE error on the test 

dataset offers a reliable value of 17.46% (Mahdavian et al. 2021c).  
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Figure 17: Comparison of different models’ best performance on the test dataset for total PVs for the 

average error of cross validation over four splits 

Selected Model of this study for current term (without spatial variables): The RF, KNN, and DT models 

were the observed to be the highest performing, as highlighted in Figures 19 and 20. Of these models, the 

KKN model finds the K nearest instances in relation to a reference instance. The model then provides a 

forecasted output by taking the average of these instances, allowing for interpretation. However, the KNN 

model is limited by its dependence on the input datasets for predictions, which can produce bias. Another 

disadvantage is that the KNN model has to search the data each time it makes a prediction and cannot learn; 

although this does simplify the updating process. In the case of the DT model, dividing features are used to 

construct a decision tree with the leaves being the regression output (Mahdavian et al. 2021c). The DT 

model can be used to interpret the results and decision-making process, but because sparse data at the leaves 

is handled during decision making, the model has the potential to overfit if too many features are used. The 

RF model is capable of employing an extensive number of decisions trees (~500) on the data used in this 

study by selecting data groups at random for training. This feature maintains the edges of decisions trees 

and reduces the possibility of overfitting, making it an appropriate model to use in this study for the purpose 
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of near-term and current prediction. In Figure 18, the outcome of applying the top 10 feature selection 

approaches to the validation dataset is shown. The grid search process was able to successfully select a set 

of sufficient training paraments for every feature selection method, and the data can be appropriately 

modeled with each feature selection method. Of note, the MAPE from the validation dataset for FCLASSIF 

was 16.98%, the lowest of the feature selection methods tested (Mahdavian et al. 2021c).  

 

Figure 18: Comparison of feature selection on RF models on validation dataset for total PVs 

The comparison of the accuracy of the RF model on the four splits of the performed cross-validation 

on validation dataset is exhibited in Figure 19. It is apparent that split 4 - covering all the dataset - has a 

lower MAPE error with 16.35% on the validation dataset (Mahdavian et al. 2021c). 



 

79 

 

 

Figure 19: RF model’s performance on validation dataset for total PVs 

Furthermore, the comparison of the accuracy of the RF model on the four splits of the cross-validation 

on test dataset is displayed in Figure 20. It is apparent that split 4, has a lower MAPE error with 19.01% on 

the test dataset. 

 

Figure 20: RF model’s performance on test dataset for total PVs 
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Ground truth and the final model’s predictions in the validation dataset are presented in Figure 21.   

 

Figure 21: Ground truth prediction of values within the validation dataset employing RF algorithm 

Figure 22 also shows the comparison of ground truth and prediction via plotting them against each 

other. The prediction approximately mirrors the ground truth, and the points are placed around the 45-

degree line. 

 

Figure 22: Ground truth prediction of values within the validation dataset employing RF algorithm 
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Figure 23 depicts the model optimization of the total cars on the split 4 on the validation dataset. The 

optimum feature selection and modeling approach for this case were found to be FCLASSIF and RF, 

respectively. For finding the best selection parameter, the number of features that are ultimately selected is 

changed between 10 to 40. The same approach is taken for optimizing the RF model by alternating the 

maximum depth of the trees from 5 to 200. The RF model, with the depth of 75 trained on 40 selected 

features, has the lowest MAPE of 17.23% on the validation dataset (Mahdavian et al. 2021d). 

 

Figure 23: Model optimization for the RF model for total PVs 

Figure 24 demonstrates the relative importance of the leading categories of features that were selected 

as the final set of independent variables from the variable pool. Road characteristics variables, with 67.09% 

feature importance, ranked first among seven categories of this research. Socioeconomic variables with 

30.33% feature importance were ranked second in this research (Mahdavian et al. 2021c).  
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Figure 24: Feature importance categorical of best performing models for PV’s RF model (4th split) 

Figure 25 shows the top six important features that were contributing to the model’s output more than 

other parameters for total cars. ‘Number of Lanes’, which represents the capacity of roadway, has the 

highest impact on the car's prediction model with 61.11% importance. Concerning socioeconomic features, 

‘length paved roads lane miles’ with a 14.24% importance and  number of ‘Licensed Drivers’ with 10.51% 

are the next important features for the passenger vehicles (PV) prediction model (Mahdavian et al. 2021c).                                                                                                                                                                                                                                                                                                                                                                                        

 

Figure 25: Top six important features of the best performing models for total PVs 
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Selected Model for long-term PV traffic projections (without spatial variables): One limitation of the 

RF model is that it is only an estimation based on the given dataset values. A NN algorithm, however, has 

distinct neuronal layers that are individually capable of non-linear activation function. As a result, this 

means the BF algorithm is appropriate for near-term and current modeling, but a NN algorithm may be 

more reliably generalized to long-term projections. Using a NN algorithm, the long-term MADT can be 

projected because of the model’s ability to extrapolate and generate prediction values. During the course of 

model training, scholastic gradient descent is used to determine ANNs bias and weights. Cross-validation 

of the implementation of the NN algorithm on the validation dataset from four splits is illustrated in Figure 

26. The lowest MAPE error seen was a prediction accuracy of 81% in split 4. This value improved when 

considered with the accuracy from the additional splits (Mahdavian et al. 2021c).   

 

Figure 26: Best model for long-term planning: NN (on validation dataset) 

NN models have various parameters that need to be optimized. For finding the best selection 

parameter, the number of features that are ultimately selected is changed between the importance threshold 

of 0.25 and 1.75 using a grid search. The same approach is taken for optimizing the NN model by alternating 
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the maximum number of neurons in the hidden layer from 16 to 256. The model optimization of the total 

PVs on the 4th split on the validation dataset for the neural networks models that are illustrated in Figure 

27 showed that the DT feature selection approach with importance threshold of 0.25  and the NN model 

algorithm with 256 neurons in the hidden layer has the lowest MAPE of 18.29% on the validation dataset. 

Moreover, the developed NN model has a MAPE of 19.49% on the test dataset on the fourth split 

(Mahdavian et al. 2021c).  

 

Figure 27: Model optimization for the NN model for total PVs 

Spatial Variables: It is vital to examine the influence of spatial variables related to the location of the 

input data of each cosite (or “site”) on the car traffic prediction model. To test the importance of the spatial 

variables in the car traffic prediction model, this research, added four spatial variables (in table 4) into the 

prediction model’s predictors. Table 14 represents the spatial variables studied in this study among the prior 

candidate variables used in the developed model in the previous section (Mahdavian et al. 2021c). 
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Table 14: Spatial candidate variables 

Spatial variables                                                                       Resource 

County Name 

 Florida Department of Transportation (FDOT)  
Interstate ID 

Cosite ID 

Euclidean Geometry 

 

Comparison of the different models’ best performance on the test set showed that non-linear models 

outperform linear models. However, the MAPE error of the model with spatial candidate variables (added 

to the previous dataset) showed a better performance compared to the model without spatial variables. The 

comparison of the models, shown in Table 15, confirms a 4.31% improvement in the accuracy of the MADT 

by adding the spatial variables (Mahdavian et al. 2021c). 

Table 15: RF model performance with and without spatial variables  

Models 
Label 

Name 
Fold 

Selection 

Approach 
Model R-squared MAPE Test 

Primary 

model 
Total PVs 4 FCLASSIF RF 0.90 16.35% 

Model with spatial 

variables included 
Total PVs 4 RFERF RF 0.95 12.01% 

 

The comparison of the accuracy of the RF model with spatial variables on the four splits of the cross-

validation is shown in Figure 28. It is apparent that split 4, outperforms the other splits of the data. Split 4 

has a MAPE error of 12.01% on the test dataset. 
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Figure 28: RF model’s (with Spatial variables) performance on test dataset for total PV 

Figure 29 depicts the optimum feature selection and modeling approach for this case to be the REFRF 

and RF, respectively. For finding the best selection parameter, the number of features that are ultimately 

selected is changed between 10 to 40. The same approach is taken for optimizing the RF model by 

alternating the maximum depth of the trees from 5 to 200. The RF model, with the depth of 75 trained on 

40 selected features, has the lowest MAPE of 12.06% on the validation dataset (Mahdavian et al. 2021d). 
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Figure 29: RF Model optimization for total PV (with spatial variables) 

Figure 30 shows the categorical feature importance obtained from the best performing models for total 

PVs (with spatial variables). Road characteristics’ category has the most significant impact on the PV traffic 

prediction model - the same as the previously developed model (without spatial variables) - with a value of 

54.78%. Then, the Socioeconomic category, with a value of 22.12%, has the second rank. Ultimately, the 

Spatial category, with 21.62%, has the third rank. 
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Figure 30: Categorical feature importance derived from best performing models for PVs (model with 

spatial variables) 

Figure 31 shows the top six important features that were contributing to the model’s output more than 

other parameters for total PVs of the model with spatial variables. The “number of lanes” which shows the 

capacity of the road of the studied location – with 51.95% - had the most important influence on the PV 

prediction model. Moreover, the “Euclidean geometry”, related to the spatial variables. with 14.93% were 

the second important feature (Mahdavian et al. 2021c).  

 

Figure 31: Feature importance derived from best performing models for total PVs (model with spatial 

variables) 
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Furthermore, this study developed separate models for each direction (North/Eastbound and 

South/Westbound) of the traffic flow. The model optimization of the North/Eastbound of the traffic of PVs 

(with spatial variables) on the 4th split on the validation dataset for the RF models showed that the RFERF 

feature selection approach with 30 selected features and the RF model algorithm with 75 trees has the lowest 

MAPE of 12.26% on the validation dataset (Mahdavian et al. 2021c). On the other hand, the model 

optimization of the South/Westbound of the traffic of PVs (with spatial variables) on the 4th split on the 

validation dataset for the RF models showed that the RFERF feature selection approach with 20 selected 

features and the RF model algorithm with 50 trees has the lowest MAPE of 11.61% on the validation 

dataset. 

Selected Model for long-term PV traffic projections (with spatial variables): The comparison of the 

developed NN models, shown in Table 16, confirms a 2% improvement in the accuracy of the MADT by 

adding the spatial variables (Mahdavian et al. 2021c). 

Table 16: NN models performance with and without spatial variables  

Models 
Label 

Name 
Fold 

Selection 

Approach 
Model R-squared MAPE Test 

Model without 

spatial variables 
Total PVs 4 DT NN 0.92 19.49% 

Model with spatial 

variables included 
Total PVs 4 RF NN 0.93 17.48% 

 

The comparison of the accuracy of the NN model with spatial variables on the four splits of the cross-

validation is shown in Figure 32. It is apparent that split 4, outperforms the other splits of the data. Split 4 

has a MAPE error of 17.48% on the test dataset (Mahdavian et al. 2021d). 
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Figure 32: Results from the NN model that incorporates spatial variable on the total PV based on the test 

dataset 

The model optimization of the total PVs (with spatial variables) on the 4th split on the validation 

dataset for the NN models showed that the RF feature selection approach with importance threshold of 0.25  

and the NN model algorithm with 256 neurons in the hidden layer has the lowest MAPE of 16.79% on the 

validation dataset (Mahdavian et al. 2021c). Figure 33 illustrates the model optimization of the developed 

NN model with spatial variables.  
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Figure 33: NN Model optimization for total PV (with spatial variables) 

The 4th split performed on the validation dataset for model optimization for North/Eastbound for PV 

traffic was compared for each feature selection approach used for the NN models.  The lowest MAPE score 

of 17.71% was identified in the MFCLASSIF approach that utilized ten selected features and a NN 

algorithm containing 64 neurons in the hidden layer. In comparison, the lowest MAPE score for NN model 

optimization on the 4th split of the validation dataset was 16.19% when looking at optimization of the 

South/Westbound of the traffic of PVs. This value belongs to the RF feature selection approach that utilized 

an algorithm with 256 neurons in the hidden layer and a value of 0.25 as the importance threshold. 

Case Study: To test the validity of the directional NN models developed in this research (spatial 

variables included), the framework was utilized to forecast directional traffic volumes from 2018-2050. To 

illustrate the results of the 2018-2050 projection using the direction NN model outlined with the projected 

independent variables, two different co-sites were chosen from interstate highways I4 and I10 (Mahdavian 

et al. 2021c).  

Case study #1: I4, Orange County, Cosite ID: 750668: Figure 34 shows the total historical and 

projected PV traffic employing the directional NN model (with spatial variables) developed by the 
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framework of this study. The historical traffic data covers 2001 (beginning month 1) to 2017 (ending month 

204) monthly average daily traffic (MADT) of Passenger vehicles. The projected values are for the MADT 

between 2018 (beginning month 205) to 2050 (ending month 600).  

 

Figure 34: The PV traffic projections of case study #1 

Case study #2: I10, Duval County, Cosite ID: 720832: Figure 35 also illustrates the total historical and 

projected PV traffic employing the directional NN model (with spatial variables) of the case study #2. 
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Figure 35: The PV traffic projections of case study #2 

Step 2: Traffic prediction model – Trucks 

(Regarding the author employed the results of the study: Mahdavian, A., Shojaei, A., Salem, M., Laman, H., Eluru, 

N. and Oloufa, A.A., 2021d. A Universal Automated Data-Driven Modeling Framework for Truck Traffic Volume 

Prediction. IEEE Access, 9, pp.105341-105356.) 

MODEL WITHOUT SPATIAL VARIABLES: Figure 36 illustrates a comparison of the accuracy of 

various models on the validation dataset using the grid search. RF, KNN, DT, and NN yielded the best 

performance when they were trained on the training dataset and were tested on the validation dataset. In 

general, the non-linear models including RF, KNN, DT, and NN, performed better than linear models, 

including Linear Regression, Ridge Regression, BR, SGD, and PA.  

 

Figure 36: Comparison of different models’ best performance on the validation dataset for mixed trucks 

the average error of cross validation over four splits 

A comparison of the accuracy of various models on the test dataset using the grid search is presented 

in Figure 37. It is evident that non-linear models outperform the linear models overall, and among non-

linear models, RF, KNN, and DT model perform better than NN model. The MAPE error (the performance 

measure used in this study) on test dataset presents a reliable value of about 22.27%.  
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Figure 37: Comparison of different models’ best performance on the test dataset for mixed trucks and the 

average error of cross validation over four splits 

The selected model of this study for the current term: As shown in above figures, empirically, RF, 

KNN, and DT show the best results among the non-linear models. However, theoretically, the KNN model 

is only capable of predicting the data from the training dataset, which results in biased results. The KNN 

model finds the K nearest instances to the instance in question and predicts the output by averaging the 

output of those instances. Through these instances, the model can be interpreted. However, the essential 

features are not highlighted. Moreover, the model does not learn from data and has to search the data for 

each prediction. This disadvantage has a silver lining as it makes updating the data and model easier. 

Concerning DT, this model creates a decision tree based on splitting features. At its leaves is the regression 

output. The decision-making process and the results are interpretable. However, it can overfit if many 

features are present since the decision-making handles sparse data at the leaves. However, RF implements 

many decision trees (500 trees) on the data. It does so by randomly choosing groups of data to train on. 

Since RF implements many decision trees, it becomes less prone to overfitting while keeping the advantages 

of decision trees. Thus, the RF model presents an appropriate model, both empirically and theoretically, 

and was selected for current term prediction in this study (Mahdavian et al. 2021d).  
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Figure 38 illustrates the result of the four best feature selection approaches utilized in this study on the 

validation data set. It was found that all four feature selection approaches can provide appropriate modeling 

of the data, demonstrating the success of the grid search process in finding suitable training parameters for 

each feature selection method. However, RFE Ridge has the lowest MAPE on the validation dataset among 

various feature selection approaches (Mahdavian et al. 2021d). 

 

Figure 38: Comparison of the feature selection of RF models on validation dataset for mixed trucks 

A comparison of the accuracy of the RF model (selected model for the current and short-term 

prediction) on the four splits of the dataset is presented in Figure 39. It shows that split 4 (mentioned in Fig. 

3), covering all the datasets, would have a lower MAPE error of 18.45% on the validation dataset compared 

to other splits.  
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Figure 39: RF model’s performance on the validation dataset for mixed trucks 

A comparison of the accuracy of the RF algorithm on the four splits of the data is presented in Figure 

40. It illustrates that split 4, the split that covers all the dataset has a lower MAPE error (18.24%) on the 

test dataset, compared to other splits. The MAPE error of split 4 of the RF models on the validation dataset 

and the test dataset does not differ considerably, which shows that the developed model is robust 

(Mahdavian et al. 2021d).  

 

Figure 40: RF model’s performance on test dataset for mixed trucks 

Ground truth and the final model’s predictions in the validation dataset are presented in Figure 41.   
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Figure 41: Ground truth prediction of values within the validation dataset using RF algorithm 

Figure 42 also shows the comparison of ground truth and prediction via plotting them against each 

other. The prediction approximately mirrors the ground truth, and the points are placed around the 45-

degree line. 

 

Figure 42: Ground truth prediction of values within the validation dataset using RF algorithm 
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Figure 43 depicts the model optimization of the mixed trucks on the 4th split on the validation dataset. 

The optimum feature selection and modeling approach for this case was found to be RFE Ridge and RF, 

respectively. For finding the best selection parameter, the number of features that are ultimately selected is 

changed between 10 to 40. The same approach is taken for optimizing the RF model by alternating the 

maximum depth of the trees from 5 to 200. The RF model, with the depth of 75 trained on 30 selected 

features, has the lowest MAPE of 18.44% on the validation dataset (Mahdavian et al. 2021d). 

 

Figure 43: Model optimization for mixed trucks 

Figure 44 illustrates the feature categories importance for N/E directional trucks traffic, S/W 

directional trucks traffic, and mixed trucks. Socioeconomic variables, with 49% feature importance, ranked 

first among the seven categories of this study. Road characteristics (43% feature importance) and U.S. 

economy related variables (6% feature importance) were ranked second and third in this study (Mahdavian 

et al. 2021d).  
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Figure 44: Feature importance for mixed trucks organized by category  

Figure 45 illustrates top six important features that were performing better than other parameters for 

mixed trucks. ‘Number of Lanes’, which depicts the capacity of roadway, has the most important influence 

on the truck prediction model with a 31% importance. Moreover, ‘length of paved roads centerline miles’ 

ranked second with a 27% importance. Concerning socioeconomic variables, features such as number of 

‘licensed drivers’ and ‘population’ are essential variables for truck prediction model (Mahdavian et al. 

2021d).                                                                                                                                                                                                                                                                                                                                                                                        

 

Figure 45: Top six important features of the best performing models for mixed trucks 
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Selected model for long-term predictions: It is important to note that, the RF model is only capable of 

interpolating and using the dataset values, which makes the algorithm a suitable option for current and 

current- term, short-term and mid-term modeling. Concerning the better generalization capabilities of NN, 

they give an edge to NN models to be used for future projections (long-term studies). The NN algorithm is 

capable of extrapolating and generating prediction values by changing the hidden layer size to predict the 

mid- and long-term MADTT. This model is trained by finding the bias and weights of artificial neural 

network through stochastic gradient descent. It possesses layers of neurons, each of which has a non-linear 

activation function. Figure 46 shows the four splits’ results of cross validation utilized in this study for the 

NN algorithm; demonstrates that split 3 has a lower MAPE error (with 80% prediction accuracy) and 

performs better compared with other splits (Mahdavian et al. 2021d).  

 

Figure 46: Best Model for mid- and long-term planning: NN 

The model optimization of mixed trucks on the 3rd split on the validation dataset for the NN models 

show that the DT feature selection approach with importance threshold of 0.75. The NN model algorithm 

with 256 neurons with a hidden layer has the lowest MAPE of 20.41% on the validation dataset. Moreover, 

the MAPE error on the test dataset is 24.06% which is reasonable (Mahdavian et al. 2021d). 
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MODEL WITH SPATIAL VARIABLES: Spatial variables: It is essential to consider the impact of 

spatial variables related to the location of the input data of each site. To test the importance of the spatial 

variables on the developed truck traffic prediction model, this study added four spatial variables into the 

prediction model’s predictors pool including county name, interstate ID, Site ID, and Location Euclidean 

Geometry (Mahdavian et al. 2021d).  

By comparing the different models’ best performance on the test set and the average error of the four 

splits, non-linear models outperform linear models. However, the MAPE error of the model with spatial 

candidate variables (added to the previous dataset: all 59 predictors) shows a better performance compared 

to the model of section 1 (without spatial variables; 55 predictors). The comparison of these models 

confirms a 4% improvement in the accuracy of the MADTT by adding the spatial variables shown in Table 

17 (Mahdavian et al. 2021d). 

Table 17: Comparison of the developed RF models on test dataset 

Models Label Name Fold Selection Approach Model R-squared 
MAPE 

Test 

Primary model Total Trucks 4 RFE Ridge RF 0.7188 18.23% 

Model with spatial 

variables included 
Total Trucks 4 Bayesian Ridge RF 0.7986 14.53% 

 

Figure 47 illustrates the optimum feature selection and modeling approach for this case were found to 

be Bayesian Ridge and RF, respectively. For finding the best selection parameter, the number of features 

that are ultimately selected was changed between the importance threshold of 0.25 and 1.75. The same 

approach was taken for optimizing the RF model by alternating the maximum depth of the trees from 5 to 

200. The RF model, with a depth of 100 trained on selected features with an importance score higher than 

1.5, had the lowest MAPE of 12.06% on the validation dataset (Mahdavian et al. 2021d). 
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Figure 47: Model optimization for mixed trucks (with spatial variables) 

Figure 48 depicts the categorical feature importance derived from the best performing models for 

mixed trucks. Spatial variables’ category had the most significant impact on the truck traffic model with a 

value of 48%. Road characteristics, with the value of 26%, had the second rank (Mahdavian et al. 2021d).  

 

Figure 48: Categorical feature importance derived from best performing models for trucks (model with 

spatial variables) 
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Figure 49 depicts the top six important features that are performing better than other parameters for 

the mixed trucks of the model with spatial variables. The “site” or “co-site”, which depicts the ID of the 

studied location, had the most important influence on the truck prediction model. Moreover, the “number 

of lanes” shows the second important feature with a 26% importance (Mahdavian et al. 2021d).  

 

Figure 49: Feature importance derived from best performing models for mixed trucks (model with spatial 

variables) 

Additionally, this study developed separate models for each direction (North/Eastbound and 

South/Westbound) of the truck traffic flow. The model optimization of the North/Eastbound of truck traffic 

on the 4th split on the validation dataset for the RF models depicted that the ‘RFERF’ feature selection 

approach, with 30 chosen features and the RF model algorithm with 75 trees, has the lowest MAPE of 

12.50% on the validation dataset. On the other hand, the model optimization of the South/Westbound of 

the truck traffic on the 4th split on the validation dataset for the RF models showed that the ‘RFE Bayesian 

Ridge’ feature selection approach, with 20 selected features and the RF model algorithm with 50 trees, had 

the lowest MAPE of 11.96% on the validation dataset (Mahdavian et al. 2021d). 

Selected model for long-term truck traffic projections: A comparison of the generated NN models for 

the framework of this study, shown in Table 18, confirms a 4% improvement in the accuracy of the MADTT 

by adding the spatial variables. 
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Table 18: Comparison of the developed NN models on test dataset 

Models Label Name Fold 
Selection 

Approach 
Model R-squared MAPE Test 

Primary model Total Trucks 4 DT NN 0.60 24.06% 

Model with spatial 

variables included 
Total Trucks 4 RF NN 0.72 20.03% 

 

A comparison of the accuracy of the NN model with spatial variables on the four splits of the cross-

validation is shown in Figure 50. It is apparent that split 4 outperforms the other splits of the data. Split 4 

has a MAPE error of 20.03% on the test dataset (Mahdavian et al. 2021d). 

 

 

Figure 50: NN model’s (with spatial variables) performance on test dataset for total trucks 

The model optimization of the North/Eastbound of the truck traffic of (with spatial variables) on the 

4th split on the validation dataset for the NN models showed that the RFERF feature selection approach, 

with 10 selected features and the NN model algorithm with 64 neurons in the hidden layer, has the lowest 

MAPE of 17.77% on the validation dataset. On the other hand, the model optimization of the 

South/Westbound of the truck traffic (with spatial variables) on the 4th split on the validation dataset for 

the NN models showed that the RF feature selection approach with importance threshold of 0. 5. The NN 
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model algorithm with 256 neurons in the hidden layer had the lowest MAPE of 17.46% on the validation 

dataset (Mahdavian et al. 2021d). 

Forecast of directional truck traffic volume - case studies (2018 to 2050): In this section, the developed 

directional NN models (with spatial variables) were deployed to forecast the directional truck volumes for 

2018 to 2050. The pool of 59 independent variables in this study contained seven categories including the 

energy market variables, construction market variables, U.S. economy variables, and socioeconomics 

variables (excluding population, licensed drivers, length paved road line miles, and centerline miles), where 

NN was used to predict the future values (Mahdavian et al. 2021d).  

A variety of univariate modeling techniques were used to predict the future values of the independent 

variables to feed the model as an input. Two general types of univariate modeling were used to predict the 

time-series predictors of this study, namely Auto Regressive Moving Average (ARMA) and Smoothing. 

The ARMA is the most common classification of models used in forecasting univariate time series. This 

type of model is represented as an ARMA (p,q), where p is the AR order, and q is the MA order. The order 

of the AR and MA was chosen via an autocorrelation correlogram function (ACF) and a partial 

autocorrelation correlogram function (PACF). On the other hand, the Smoothing method includes simple, 

exponential, double exponential smoothing methods, and Holt-Winters (Linear, Seasonal additive, 

multiplicative additive). A pool of x independent variables of this study contained seven categories. 

Including the energy market variables, construction market variables, U.S. economy variables, and seven 

variables of socioeconomics variables (excluding population, licensed drivers, length paved road line miles 

and centerline miles) which ARMA and Smoothing methods were employed to predict the future values 

(Mahdavian et al. 2021d). Regarding two other socioeconomic variables, (population and licensed drivers) 

the results of the Rayer et al. (2020) were utilized. Furthermore, about the last two socioeconomic variables, 

the length of paved roads of Florida Highways (length of the paved roads lane miles and length of the paved 

roads centerline miles) were considered to be fixed during the future years. Ultimately, the road 

characteristics variables and spatial variables were considered fixed throughout the projection period. 
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Finally, 2 sites from interstate highways I75 and I4, were selected to show the results for the projection 

period 2018 to 2050 using the truck directional NN model (with spatial variables) and projected predictors 

(Mahdavian et al. 2021d). 

Case study #1: I4, Orange County, Site ID: 753051: Figure 51 depicts the total, North/Eastbound and 

South/Westbound historical, and projected truck traffic employing the directional NN model (with spatial 

variables) developed by this research. The historical traffic data covers 2001 (beginning month 1) to 2017 

(ending month 204) monthly average daily truck traffic (MADTT) of passenger vehicles. The projected 

values are MADTT between 2018 (beginning month 205) to 2050 (ending month 600) (Mahdavian et al. 

2021d).  
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Figure 51: The truck traffic projections of case study #1 

Case study #1: I75, Marion County, Site ID: 360437: Figure 52 also shows the total, North/Eastbound 

and South/Westbound historical and projected truck traffic of site 360437 in Marion County employing the 

directional NN model (with spatial variables) of the case study #2. 
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Figure 52: The Truck traffic projections of case study #2 

Step 4: Highway construction cost prediction model 

(Regarding this section the study published by the author were employed: Mahdavian, A., Shojaei, A., 

Salem, M., Yuan, J.S. and Oloufa, A.A., 2021b. Data-Driven Predictive Modeling of Highway 

Construction Cost Items. Journal of Construction Engineering and Management, 147(3), p.04020180.) 

To test the feasibility of this approach, the FDOT highway construction cost data between 2001 and 

2017 were utilized. These cost items covered about 92.6% of the average total cost of highway construction. 

Among the fifty cost items (dependent variables) in this study that we collected from the historical data 

from FDOT, 32 cost items were predicted in stage 1 of the analysis, and 15 cost items were predicted in the 

second stage, and finally, 3 were not predicted with high accuracy (MAPE below 15%). Figure 53 shows 

the stage each cost item was predicted. Moreover, the three cost items that were not predicted accurately 

are depicted (Mahdavian et al. 2021b).  
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Figure 53: Forecasting of cost items 

Figure 54 represents the results of the first stage of running the inputs through the study pipeline on 

both validation and test dataset. Moreover, the optimized feature selection approach and modeling approach 

with their selection parameter (SP) and modeling parameter (MP) are depicted in Figure 58. In general, the 

linear models performed better than the non-linear models. At this stage, we could successfully forecast 32 

cost items with more than 85% accuracy. The highlighted cost items in Figure 59 are the ones with higher 

than 15% forecast error and were chosen to move to the second stage. In the second stage, the cost items 

that were successfully predicted in the first stage were employed as supplemental inputs (predictors) for the 

second stage (Mahdavian et al. 2021b). 



 

110 

 

 

              Figure 54: Stage 1 results 

Figure 55 illustrates the results of the second stage of the modeling process. With the increased pool 

of dependent variables, we could forecast 15 out of the 18 cost items that initially had higher than the 

threshold error (15% MAPE on the test dataset). Overall, this processing system resulted in forecasting 47 

out of 50 cost items under the study with more than 92% on average accuracy on various highway 

construction types (Mahdavian et al. 2021b).  
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Figure 55: Stage 2 results 

The summary of the result of the developed model is presented in Table 19. It is evident that linear 

models outperform the non-linear algorithms within the scope of this study. Among 47 predicted cost items 

in this study, 45 cost items (about 89.6% coverage of the total highway construction cost) were predicted 

by linear models. Only two cost items were predicted by non-linear algorithms covering about 2.92% of 

total cost of the highway construction. Within the various linear models examined in this study, Bayesian 

Ridge performed better for 21 cost items (out of 45 items predicted by linear models) covering about 

43.78% of the total cost. Moreover, concerning non-linear models, the NN algorithm was able to predict 
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“REGULAR EXCAVATION”, and “INLETS, DT BOT, TYPE E, <10'” with higher accuracy compared 

to the linear models (Mahdavian et al. 2021b).  

Table 19: Analysis of results based on different modeling algorithms 

Models 
# 

Predicted 

cost items 

Constructing 

New Urban 

6L  

Constructing 

New Urban 

4L 

Constructing 

New Rural 

6L  

Constructing 

New Rural 

4L  

Widening 

6L to 8L 

Widening 

4L to 6L  
Average 

Linear 

Models 
45 92.16% 90.97% 94.01% 93.25% 84.72% 82.93% 89.67% 

Linear  8 18.67% 20.28% 14.10% 13.27% 12.74% 13.23% 15.38% 

Ridge  5 14.50% 13.34% 16.46% 13.65% 13.96% 14.68% 14.43% 

Bayesian 

Ridge  
21 48.42% 41.85% 43.78% 42.80% 44.30% 41.50% 43.78% 

Stochastic 

Gradient 

Descent  
1 1.92% 1.41% 0.00% 0.08% 6.92% 5.86% 2.70% 

Passive 

Aggressive  10 8.65% 14.09% 19.67% 23.45% 6.80% 7.66% 13.39% 

Non-

linear 

Models 
2 1.81% 1.96% 4.26% 5.00% 2.12% 2.39% 2.92% 

Neural 

Network 
2 1.81% 1.96% 4.26% 5.00% 2.12% 2.39% 2.92% 

The categorical feature importance of various construction types is depicted in Table 20. On average, 

the construction market category, with 80.32%, had the most significant impact on the highway construction 

cost prediction model, while the socioeconomic category with 6.4% was second. Additionally, the U.S. 

Economy had 5.19%, Energy Market had 2.3%, and temporal predictors had 5.85% importance. The 

Categorical feature importance of all 47 predicted cost items in this study is shown in Appendix B 

(Mahdavian et al. 2021b).  
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Table 20: Results of the model on feature importance variables  

Categorical Feature 

Importance 

Construction 

Market 
Socioeconomic Temporal 

U.S. 

Economy 

Energy 

Market 

Constructing New Urban 6L  81.26% 7.88% 4.95% 4.20% 1.70% 

Constructing New Urban 4L  79.95% 8.51% 5.50% 4.38% 1.66% 

Constructing New Rural 6L  79.05% 5.34% 6.84% 5.98% 2.79% 

Constructing New Rural 4L  78.68% 5.47% 6.97% 5.76% 3.11% 

Widening 6L to 8L  81.74% 5.43% 5.30% 5.26% 2.26% 

Widening 4L to 6L 81.23% 5.41% 5.53% 5.53% 2.29% 

Average All Construction 

Types 
80.32% 6.34% 5.85% 5.19% 2.30% 

Three critical cost items that had high average percentage impact on the various construction types 

studied as shown in Table 21 and were selected as a sample for further in-depth analysis. In the previous 

sections, the reported MAPE on the validation and test datasets were obtained from the average MAPE over 

all the folds for each cost item. To observe the effect of model parameters on its performance, the results 

on the fourth split of the data are analyzed. This split (fourth split, consisting of twelve years of training, 

three years of validation and two years of testing dataset) of the nested cross-validation covers all the 

datasets and outperformed the other three folds for each cost item (Mahdavian et al. 2021b).  

Table 21: Key variables identified from the results of split 4 on model cost items 

Cost Item 

Average 

Percentage 

Impact in 

All six 

Methods 

Feature 

Selection 

Approach 

Modeling 

Approach 

Selection 

Parameter 

(SP) 

Model 

Parameter 

(MP) 

MAPE 

(validation 

dataset, 

4th Split)  

MAPE 

(test 

dataset, 

4th 

Split)  

SHLDR CONC 

BARRIER, 

RIGID-SHLDR 

17.54% Ridge 
Bayesian 

Ridge 
1.75 1 0.59% 

12.42

% 

SUPERPAVE 

ASPH CONC, 
10.39% MFCLASSIF 

Bayesian 

Ridge 
20 1 0.25% 2.98% 
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TRAF C, PG76-

22 

MAINTENANC

E OF TRAFFIC 
6.88% RF Ridge 1 0.1 1.36% 7.97% 

Figure 56 depicts the model optimization of the shoulder concrete barrier, “SHLDR CON BARRIER” 

on the 4th split of the dataset. The feature selection approach of Ridge with a selection parameter of 1.75 

and the Bayesian Ridge model algorithm with a model parameter of 1 has the lowest MAPE of 0.59% on 

the validation dataset. 

 

Figure 56: “SHLDR CONC BARRIER” validation vs model optimization results for split 4 

Figure 57 shows the categorical and individual feature importance of the “SHLDR CONC BARRIER.” 

The construction market category had the highest impact with 89.6% importance on this highway 

construction cost item’s prediction model. Socioeconomic variables with 10% importance had the second 

rank for this cost item. Moreover, the NHCCI predictor played a significant role in predicting this cost item 

(Mahdavian et al. 2021b).  
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Figure 57: “SHLDR CONC BARRIER” separated based on feature importance category 

The following equation shows all the forecasting formula for the “SHLDR CONC BARRIER” cost 

item:  

Cost of “SHLDR CONC BARRIER, RIGID-SHLDR” = 0.824025525 ˟ “NHCCI Global” + 0.629230173 

˟ “Other Roads PRODUCT AREAS” + 0.570224754 ˟  “Right of Way” + 0.568821925 ˟  “Local 

Government Grants” + 0.374852392 ˟ “State Motor Vehicle Tax” + 0.240822376 ˟ “Bond Retirement” + 

0.200928502 ˟ “HHEUS” + 0.191619513 ˟ “Other State Funding” + 0.178818362 ˟ “AHEPNECUS” + 
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0.100279817 ˟ “State Motor Fuel Tax” + 0.046363366 ˟ “NPHUABPFL” + 0.018570434 ˟ “DJI” + 

0.014885667 ˟ “URUS”  

Figure 58 depicts the model optimization of the “ASPH CONC, TRAF C” on the fourth split of the 

dataset for this cost item. The feature selection approach of MFCLASSIF with a selection parameter of 20 

and the Bayesian Ridge model algorithm with a model parameter of 1 has the lowest MAPE of 1.36% on 

the validation dataset. 

 

Figure 58: Results for Superpave ASPH CONC, TRAF C. Optimization vs validation, indicated in split 4 

Figure 59 depicts the categorical and individual feature importance of the superpave asphalt concrete 

“Superpave ASPH CONC, TRAF C.” The construction market had the highest impact, with 89.6% 

importance on this highway construction cost item’s prediction model. Temporal variables with 10.9% 

importance had the second rank for this cost item. Socioeconomic variables had the third rank of importance 

with 5% importance level. Lastly, the NHCCI predictor played a key role in predicting this cost item 

(Mahdavian et al. 2021b). 
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Figure 59: Results for “SUPERPAVE ASPH CONC TRAF C” based on category  

The following equation shows all the important predictors and their coefficients on the standardized 

dataset for the “SUPERPAVE ASPH CONC, TRAF C”:  

Cost “SUPERPAVE ASPH CONC, TRAF C, PG76-22, PMA” = 0.748396041 ˟ “NHCCI Global” + 

0.267033067 ˟ “Local Government Grants” + 0.23817534 ˟ “Bond Retirement” + 0.142771839 ˟ “Number 

of Months from Beginning” + 0.105815124 ˟ “Administration” + 0.092030559 ˟ “YEAR” + 0.066819567 ˟ 

“Interest” + 0.064595363 ˟ “State Motor Vehicle Tax” + 0.062800303 ˟ “Length Paved Roads Lane Miles” 

+ 0.06138327 ˟ “Total Florida State Revenue Sources” + 0.05549031 ˟ “Legislative Budget Request 

Amounts” + 0.05273566 ˟ “Capital Expenditures” + 0.051153537 ˟ “Total State Highway System (SHS) 

PRODUCT AREAS” + 0.044435848 ˟ “CLFFL” + 0.031637778 ˟ “Federal Funding” + 0.023584501 ˟ 
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“Tolls” + 0.015849805 ˟ “Total Florida State DOT Disbursements” + 0.01339556 ˟ “Other State Funding” 

+ 0.010618173 ˟ “GDP” + 0.005356619 ˟ “M2” 

Figure 60 depicts the model optimization of the “MAINTENANCE OF TRAFFIC” on the 4th split of 

the dataset for this cost item. The feature selection approach of RF with a selection parameter of 1 and the 

Ridge model algorithm with a model parameter of 0.1 had the lowest MAPE of 0.25% on the validation 

dataset (Mahdavian et al. 2021b). 

 

Figure 60: MAINTENANCE OF TRAFFIC results for split 4, validation vs optimization  

Figure 61 shows the categorical and individual feature importance of the “MAINTENANCE OF 

TRAFFIC.” The construction market category of the variables had the highest impact with 89.59% 

importance on this highway construction cost item’s prediction model. Temporal variables with 8.89% 

importance had the second rank for this cost item. Additionally, the right of way revenue stream of FDOT 

predictor played a key role in predicting this cost item (Mahdavian et al. 2021b).  
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Figure 61: “MAINTENANCE OF TRAFFIC” results presented by category 

The following equation shows the all the important predictors and their coefficients on the standardized 

dataset for the “MAINTENACE OF TRAFFIC”:  

Cost “MAINTENANCE OF TRAFFIC” = 1.138962322 ˟  “Right of Way” + 0.847093766 ˟  “Maintenance” 

+ 0.705406042 ˟ “State Motor Fuel Tax” + 0.593492872 “NHCCI Global” + 0.406601977 ˟ 

“Number of Months from Beginning” + 0.303016613 ˟ “Interest” + 0.254637769 ˟ “Total State Highway 

System (SHS) PRODUCT AREAS” + 0.160810353 ˟  “CEFL” + 0.115055866 ˟  “Total Florida State Revenue 

Sources” + 0.044699378 ˟ “BPLRUS” + 0.028827425 ˟ “CANUSER” + 0.012286083 ˟ “AECHCEUS” 

Table 22 summarizes the coverage and accuracy of the results. All of the studied highway construction 

cost types had more than 90.95% accuracy with a minimum of 85.32% cost coverage and a maximum of 

98.27%. As a result, we can argue that the results of the FDOT case study show the viability of this 

approach. The model was not capable of forecasting the cost item “BORROW EXCAVATION, TRUCK 
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MEASURE” with an accuracy higher than 85%. This item has a 10.76% weight factor of the total cost of 

“widening 6 to 8 cost per-mile” and 12.10% of “widening of 4 to 6 cost per-mile”, so the coverage of the 

cost per mile of the models for these two construction types was less than other types (Mahdavian et al. 

2021b).  

Table 22: Percentage of mile cost covered by the model and the corresponding accuracy  

Construction type 
Coverage of the total cost per mile of 

the model 

Prediction 

accuracy 

Constructing New Urban 6L  93.97% 90.95% 

Constructing New Urban 4L  92.93% 90.99% 

Constructing New Rural 6L  98.27% 93.62% 

Constructing New Rural 4L  98.25% 93.44% 

Widening 6L to 8L  86.84% 93.00% 

Widening 4L to 6L 85.32% 93.05% 

Average All Construction Types 92.60% 92.51% 

 

Case Studies – Application of the developed framework  

To demonstrate the application of the developed framework this study tested 3 cosites historical 

information in three different counties in Florida, namely, Marion County, Orange County, and  Duval 

County.  

Case study #1: I75, Marion County, Site ID: 360437 

The first case study is from the Marion County, interstate highway I75. Table 23 shows the information 

of the first case study. 

Table 23: Case study #1 

Interstate County Cosite K FFS Number Lanes 

I75 Marion 360437 9.6 70 3 
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For the case study #1, this research assumed that the number of lanes, k, FFS, and Max Service level 

Rate would be constant. Table 24 shows the predicted traffic flow for the N/E direction and S/W direction 

for both passenger vehicles and trucks.  

Table 24: Cosite Road Characteristics and the Predicted traffic flow for Case study #1 

Year K FFS Number 

Lanes 

Max Service Flow Rate 

(pc/hr/lane) 

PC N/E 

direction 

PC S/W 

direction 

Trucks 

N/E 

direction 

Trucks 

S/W 

direction 

Baseline 

V/C 

2022 9.6 70 3 2300 30782 32450 7290 8841 1.22 

2023 9.6 70 3 2300 31072 32315 7419 8767 1.22 

2024 9.6 70 3 2300 31248 32186 7548 8539 1.22 

2025 9.6 70 3 2300 31402 32063 7666 8308 1.22 

2026 9.6 70 3 2300 31549 31946 7786 8069 1.21 

2027 9.6 70 3 2300 31688 31835 7892 7901 1.21 

2028 9.6 70 3 2300 31822 31720 7997 7905 1.22 

2029 9.6 70 3 2300 31948 31605 8115 7984 1.22 

2030 9.6 70 3 2300 32069 31496 8249 8071 1.22 

2031 9.6 70 3 2300 32185 31392 8411 8173 1.23 

2032 9.6 70 3 2300 32295 31293 8570 8292 1.24 

2033 9.6 70 3 2300 32400 31199 8734 8417 1.24 

2034 9.6 70 3 2300 32500 31110 8893 8535 1.25 

2035 9.6 70 3 2300 32596 31028 9048 8649 1.25 

2036 9.6 70 3 2300 32688 30950 9194 8738 1.26 

2037 9.6 70 3 2300 32777 30875 9341 8782 1.26 

2038 9.6 70 3 2300 32862 30802 9478 8800 1.27 

2039 9.6 70 3 2300 32944 30734 9594 8822 1.27 

2040 9.6 70 3 2300 33023 30670 9693 8816 1.27 

2041 9.6 70 3 2300 33100 30608 9801 8812 1.27 

2042 9.6 70 3 2300 33175 30548 9923 8843 1.28 

2043 9.6 70 3 2300 33249 30489 10019 8852 1.28 

2044 9.6 70 3 2300 33320 30432 10109 8810 1.28 

2045 9.6 70 3 2300 33391 30377 10194 8745 1.28 

2046 9.6 70 3 2300 33461 30322 10299 8747 1.28 

2047 9.6 70 3 2300 33531 30268 10414 8781 1.29 

2048 9.6 70 3 2300 33601 30214 10498 8762 1.29 

2049 9.6 70 3 2300 33671 30160 10544 8670 1.29 

2050 9.6 70 3 2300 33741 30106 10609 8626 1.29 
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Then, the adjusted annual personal vehicles’ traffic flow were calculated employing the scenarios 

developed in the modeling development chapter (chapter four) shown in Table 25.  

Table 25: Adjusted annual Personal Vehicles Traffic Flow based on Scenarios for Case study #1 

 

Year 

Adjusted Personal Vehicles Traffic Flow based on Scenarios 

PV N/E direction PV S/W direction 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 30782 30782 30782 32450 32450 32450 

2023 31072 31072 31072 32315 32315 32315 

2024 32197 32197 32197 33163 33163 33163 

2025 32507 32507 32507 33192 33192 33192 

2026 32773 32773 32773 33186 33186 33186 

2027 33051 33051 33051 33204 33204 33204 

2028 33323 33323 33323 33217 33217 33217 

2029 33590 33590 33590 33230 33230 33230 

2030 30450 33833 33833 29906 33228 33228 

2031 30698 34109 37434 29942 33269 36512 

2032 30926 34362 37932 29966 33296 36756 

2033 31149 34610 38429 29995 33327 37004 

2034 31370 34855 38923 30028 33365 37259 

2035 31595 35106 39441 30075 33417 37544 

2036 31802 35917 39908 30110 34007 37785 

2037 32014 36359 40399 30156 34249 38054 

2038 32225 36801 40890 30205 34495 38327 

2039 32434 37243 41381 30258 34745 38605 

2040 32663 31455 41939 30336 29213 38951 

2041 38132 31776 48238 35261 29384 44606 

2042 38579 32149 44102 35523 29603 40609 

2043 32523 32523 44794 29824 29824 41076 

2044 32901 32901 45492 30048 30048 41548 

2045 33308 33308 46250 30301 30301 42075 

2046 26932 39091 46910 24405 35424 42509 

2047 27242 39692 47630 24591 35830 42996 

2048 27556 40300 48360 24779 36239 43486 

2049 27874 40917 49100 24968 36651 43981 

2050 28262 41674 50009 25216 37183 44620 
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After that, the adjusted annual truck traffic flow were calculated employing the scenarios developed 

in the modeling development chapter (chapter four) shown in Table 26. 

Table 26: Adjusted Truck Traffic Flow based on Scenarios for Case study #1 

 

Year 

 Adjusted Truck Traffic Flow based on Scenarios 

Trucks N/E direction Trucks S/W direction 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 7290 7290 7290 8841 8841 8841 

2023 7419 7419 7419 8767 8767 8767 

2024 7756 7756 7756 8775 8775 8775 

2025 7912 7912 7912 8573 8573 8573 

2026 8061 8061 8061 8353 8353 8353 

2027 8200 8200 8200 8210 8210 8210 

2028 8340 8340 8340 8244 8244 8244 

2029 8495 8495 8495 8357 8357 8357 

2030 8662 8662 8662 8474 8474 8474 

2031 8869 8869 9463 8617 8617 9195 

2032 9068 9068 9717 8775 8775 9402 

2033 9276 9276 9981 8939 8939 9618 

2034 9479 9479 10241 9098 9098 9829 

2035 9682 9682 10505 9255 9255 10042 

2036 9871 10751 10751 9382 10218 10218 

2037 10065 11006 11006 9463 10348 10348 

2038 10250 11254 11254 9516 10448 10448 

2039 10413 11478 11478 9575 10554 10554 

2040 10566 11700 11700 9609 10640 10640 

2041 11905 11905 13094 10704 10704 11773 

2042 12145 12145 13401 10824 10824 11943 

2043 12357 12357 13678 10917 10917 12084 

2044 12562 12562 13949 10948 10948 12157 

2045 12773 12773 14231 10957 10957 12208 

2046 12994 14518 14518 11036 12330 12330 

2047 13240 14838 14838 11164 12512 12512 

2048 13451 15120 15120 11226 12619 12619 

2049 13614 15349 15349 11195 12622 12622 

2050 13829 15650 15650 11245 12725 12725 
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After that, the adjusted annual truck percentage were calculated shown in Table 27. 

Table 27: Adjusted Truck Percentage based on Scenarios for Case study #1 

 

Year 

Adjusted Truck Percentage based on Scenarios 

N/E direction S/W direction 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 0.19 0.19 0.19 0.21 0.21 0.21 

2023 0.19 0.19 0.19 0.21 0.21 0.21 

2024 0.19 0.19 0.19 0.21 0.21 0.21 

2025 0.20 0.20 0.20 0.21 0.21 0.21 

2026 0.20 0.20 0.20 0.20 0.20 0.20 

2027 0.20 0.20 0.20 0.20 0.20 0.20 

2028 0.20 0.20 0.20 0.20 0.20 0.20 

2029 0.20 0.20 0.20 0.20 0.20 0.20 

2030 0.22 0.20 0.20 0.22 0.20 0.20 

2031 0.22 0.21 0.20 0.22 0.21 0.20 

2032 0.23 0.21 0.20 0.23 0.21 0.20 

2033 0.23 0.21 0.21 0.23 0.21 0.21 

2034 0.23 0.21 0.21 0.23 0.21 0.21 

2035 0.23 0.22 0.21 0.24 0.22 0.21 

2036 0.24 0.23 0.21 0.24 0.23 0.21 

2037 0.24 0.23 0.21 0.24 0.23 0.21 

2038 0.24 0.23 0.22 0.24 0.23 0.21 

2039 0.24 0.24 0.22 0.24 0.23 0.21 

2040 0.24 0.27 0.22 0.24 0.27 0.21 

2041 0.24 0.27 0.21 0.23 0.27 0.21 

2042 0.24 0.27 0.23 0.23 0.27 0.23 

2043 0.28 0.28 0.23 0.27 0.27 0.23 

2044 0.28 0.28 0.23 0.27 0.27 0.23 

2045 0.28 0.28 0.24 0.27 0.27 0.22 

2046 0.33 0.27 0.24 0.31 0.26 0.22 

2047 0.33 0.27 0.24 0.31 0.26 0.23 

2048 0.33 0.27 0.24 0.31 0.26 0.22 

2049 0.33 0.27 0.24 0.31 0.26 0.22 

2050 0.33 0.27 0.24 0.31 0.25 0.22 

 

 

 

 

 



 

125 

 

Then, the adjusted annual capacity (pc/h/lane) was calculated considering the impact of truck share on 

the traffic network shown in Table 28. 

Table 28: Adjusted Traffic Capacity by Truck Share for Case study #1 

 

Year 

Adjusted Traffic Capacity by Truck Share 

  N/E direction (pc/h/lane) S/W direction (pc/h/lane) 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 2139 2139 2139 2089 2089 2089 

2023 2139 2139 2139 2089 2089 2089 

2024 2139 2139 2139 2089 2089 2089 

2025 2139 2139 2139 2089 2089 2089 

2026 2139 2139 2139 2089 2089 2089 

2027 2139 2139 2139 2139 2139 2139 

2028 2089 2089 2089 2139 2139 2139 

2029 2089 2089 2089 2089 2089 2089 

2030 2089 2089 2089 2089 2089 2089 

2031 2089 2089 2089 2089 2089 2089 

2032 2089 2089 2089 2089 2089 2089 

2033 2089 2089 2089 2089 2089 2089 

2034 2089 2089 2089 2089 2089 2089 

2035 2089 2089 2089 2089 2089 2089 

2036 2089 2089 2089 2089 2089 2089 

2037 2089 2089 2089 2089 2089 2089 

2038 2089 2089 2089 2089 2089 2089 

2039 2089 2089 2089 2089 2089 2089 

2040 2089 2045 2089 2089 2045 2089 

2041 2089 2045 2089 2089 2045 2089 

2042 2089 2045 2089 2089 2045 2089 

2043 2045 2045 2089 2045 2045 2089 

2044 2045 2045 2089 2045 2045 2089 

2045 2045 2045 2089 2045 2045 2089 

2046 2000 2045 2089 2000 2045 2089 

2047 2000 2045 2089 2000 2045 2089 

2048 2000 2045 2089 2000 2045 2089 

2049 2000 2045 2089 2000 2045 2089 

2050 2000 2045 2089 2000 2045 2089 
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Then, the adjusted annual capacity (pc/h/lane) was finally revised considering the impact of the CASE 

vehicles on the traffic network presented in Table 29. 

Table 29: Final Adjusted Traffic Capacity for Case study #1 

 

Year 

Final Adjusted Traffic Capacity (Considering both Scenarios and Truck Share Impact) 

N/E direction pc/h/lane S/W direction pc/h/lane 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 2179 2179 2179 2128 2128 2128 

2023 2194 2194 2194 2143 2143 2143 

2024 2209 2209 2209 2158 2158 2158 

2025 2225 2225 2225 2173 2173 2173 

2026 2241 2241 2241 2189 2189 2189 

2027 2258 2258 2258 2258 2258 2258 

2028 2214 2214 2214 2267 2267 2267 

2029 2231 2231 2231 2231 2231 2231 

2030 2249 2249 2249 2249 2249 2249 

2031 2267 2267 2267 2267 2267 2267 

2032 2286 2286 2286 2286 2286 2286 

2033 2305 2305 2305 2305 2305 2305 

2034 2325 2325 2325 2325 2325 2325 

2035 2345 2345 2345 2345 2345 2345 

2036 2366 2366 2366 2366 2366 2366 

2037 2398 2398 2398 2398 2398 2398 

2038 2419 2419 2419 2419 2419 2419 

2039 2431 2431 2431 2431 2431 2431 

2040 2454 2401 2454 2454 2401 2454 

2041 2477 2424 2477 2477 2424 2477 

2042 2501 2447 2501 2501 2447 2501 

2043 2471 2471 2525 2471 2471 2525 

2044 2484 2484 2539 2484 2484 2539 

2045 2520 2520 2575 2520 2520 2575 

2046 2489 2545 2601 2489 2545 2601 

2047 2514 2571 2627 2514 2571 2627 

2048 2540 2597 2654 2540 2597 2654 

2049 2566 2623 2681 2566 2623 2681 

2050 2630 2689 2748 2630 2689 2748 
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Then, the total passenger vehicle (pv) equivalent of the truck trips were calculated in Table 30. 

Table 30: Passenger Vehicle Equivalent of Trucks for Case study #1 

 

Year 

Passenger Vehicle Equivalent of Trucks  

N/E direction MADT S/W direction MADT 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 10935 10935 10935 13261 13261 13261 

2023 11129 11129 11129 13151 13151 13151 

2024 11634 11634 11634 13163 13163 13163 

2025 11868 11868 11868 12860 12860 12860 

2026 12092 12092 12092 12530 12530 12530 

2027 12300 12300 12300 12315 12315 12315 

2028 12510 12510 12510 12367 12367 12367 

2029 12742 12742 12742 12536 12536 12536 

2030 12993 12993 12993 12711 12711 12711 

2031 13303 13303 14195 12926 12926 13792 

2032 13603 13603 14575 13162 13162 14103 

2033 13914 13914 14971 13408 13408 14426 

2034 14219 14219 15361 13646 13646 14743 

2035 14522 14522 15757 13882 13882 15062 

2036 14807 16127 16127 14072 15327 15327 

2037 15097 16509 16509 14194 15522 15522 

2038 15375 16881 16881 14274 15671 15671 

2039 15619 17216 17216 14362 15831 15831 

2040 15848 17550 17550 14413 15961 15961 

2041 17857 17857 19641 16056 16056 17660 

2042 18217 18217 20101 16236 16236 17915 

2043 18535 18535 20516 16375 16375 18126 

2044 18843 18843 20923 16422 16422 18235 

2045 19160 19160 21346 16436 16436 18311 

2046 19492 21777 21777 16555 18496 18496 

2047 19861 22257 22257 16747 18768 18768 

2048 20176 22680 22680 16839 18928 18928 

2049 20421 23023 23023 16792 18932 18932 

2050 20744 23475 23475 16867 19087 19087 
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Then, the total predicted passenger vehicle (pv) trips and the pv equivalent of the truck trips were 

added to each other shown in Table 31. 

Table 31: Passenger Vehicles Equivalent of Trucks and PVs All together Case study #1 

 

Year 

Passenger Vehicles Equivalent of Trucks and PVs All together 

N/E direction MADT S/W direction MADT 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 41718 41718 41718 45711 45711 45711 

2023 42200 42200 42200 45466 45466 45466 

2024 43831 43831 43831 46326 46326 46326 

2025 44375 44375 44375 46052 46052 46052 

2026 44864 44864 44864 45715 45715 45715 

2027 45351 45351 45351 45519 45519 45519 

2028 45833 45833 45833 45584 45584 45584 

2029 46332 46332 46332 45766 45766 45766 

2030 43442 46826 46826 42617 45940 45940 

2031 44001 47412 51628 42868 46195 50304 

2032 44528 47965 52508 43129 46458 50859 

2033 45064 48525 53400 43403 46736 51431 

2034 45588 49074 54284 43675 47011 52002 

2035 46118 49628 55199 43957 47299 52606 

2036 46608 52043 56034 44183 49333 53112 

2037 47112 52868 56908 44351 49771 53576 

2038 47600 53681 57770 44480 50166 53999 

2039 48053 54460 58598 44621 50576 54436 

2040 48512 49004 59489 44749 45174 54912 

2041 55989 49633 67879 51317 45440 62266 

2042 56796 50366 64203 51759 45838 58524 

2043 51058 51058 65310 46199 46199 59202 

2044 51744 51744 66416 46471 46471 59784 

2045 52467 52467 67596 46737 46737 60386 

2046 46423 60869 68687 40960 53920 61005 

2047 47103 61949 69888 41338 54597 61763 

2048 47733 62980 71040 41618 55166 62414 

2049 48295 63940 72123 41760 55583 62913 

2050 49006 65149 73483 42083 56271 63707 
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Then, the total passenger vehicle (pv) trips unit was converted from MADT to pc/h/lane presented in 

Table 32. 

Table 32: Final Traffic Flow (pc/h/lane) for Case study #1 

 

Year 

Final Traffic Flow (pc/h/lane) 

N/E direction (pc/h/lane) S/W direction (pc/h/lane) 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 1335 1335 1335 1463 1463 1463 

2023 1350 1350 1350 1455 1455 1455 

2024 1403 1403 1403 1482 1482 1482 

2025 1420 1420 1420 1474 1474 1474 

2026 1436 1436 1436 1463 1463 1463 

2027 1451 1451 1451 1457 1457 1457 

2028 1467 1467 1467 1459 1459 1459 

2029 1483 1483 1483 1465 1465 1465 

2030 1390 1498 1498 1364 1470 1470 

2031 1408 1517 1652 1372 1478 1610 

2032 1425 1535 1680 1380 1487 1627 

2033 1442 1553 1709 1389 1496 1646 

2034 1459 1570 1737 1398 1504 1664 

2035 1476 1588 1766 1407 1514 1683 

2036 1491 1665 1793 1414 1579 1700 

2037 1508 1692 1821 1419 1593 1714 

2038 1523 1718 1849 1423 1605 1728 

2039 1538 1743 1875 1428 1618 1742 

2040 1552 1568 1904 1432 1446 1757 

2041 1792 1588 2172 1642 1454 1993 

2042 1817 1612 2054 1656 1467 1873 

2043 1634 1634 2090 1478 1478 1894 

2044 1656 1656 2125 1487 1487 1913 

2045 1679 1679 2163 1496 1496 1932 

2046 1486 1948 2198 1311 1725 1952 

2047 1507 1982 2236 1323 1747 1976 

2048 1527 2015 2273 1332 1765 1997 

2049 1545 2046 2308 1336 1779 2013 

2050 1568 2085 2351 1347 1801 2039 
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Then, the final V/C Ratio for case study #1 presented in Table 33. The cells highlighted in green have 

the B or C grade of the level of service (desired by this study) for the traffic network. by considering the 

information presented in table 33, the users could change the number of lanes to find the V/C ratio for each 

scenario for each year. 

Table 33: Final V/C Ratio for Case study #1 

Year 

Final V/C Ratio  

N/E direction V/C Ratio S/W direction V/C Ratio 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 0.61 0.61 0.61 0.69 0.69 0.69 

2023 0.62 0.62 0.62 0.68 0.68 0.68 

2024 0.63 0.63 0.63 0.69 0.69 0.69 

2025 0.64 0.64 0.64 0.68 0.68 0.68 

2026 0.64 0.64 0.64 0.67 0.67 0.67 

2027 0.64 0.64 0.64 0.64 0.64 0.64 

2028 0.66 0.66 0.66 0.64 0.64 0.64 

2029 0.66 0.66 0.66 0.66 0.66 0.66 

2030 0.62 0.67 0.67 0.61 0.65 0.65 

2031 0.62 0.67 0.73 0.61 0.65 0.71 

2032 0.62 0.67 0.74 0.60 0.65 0.71 

2033 0.63 0.67 0.74 0.60 0.65 0.71 

2034 0.63 0.68 0.75 0.60 0.65 0.72 

2035 0.63 0.68 0.75 0.60 0.65 0.72 

2036 0.63 0.70 0.76 0.60 0.67 0.72 

2037 0.63 0.71 0.76 0.59 0.66 0.72 

2038 0.63 0.71 0.76 0.59 0.66 0.71 

2039 0.63 0.72 0.77 0.59 0.67 0.72 

2040 0.63 0.65 0.78 0.58 0.60 0.72 

2041 0.72 0.66 0.88 0.66 0.60 0.80 

2042 0.73 0.66 0.82 0.66 0.60 0.75 

2043 0.66 0.66 0.83 0.60 0.60 0.75 

2044 0.67 0.67 0.84 0.60 0.60 0.75 

2045 0.67 0.67 0.84 0.59 0.59 0.75 

2046 0.60 0.77 0.85 0.53 0.68 0.75 

2047 0.60 0.77 0.85 0.53 0.68 0.75 

2048 0.60 0.78 0.86 0.52 0.68 0.75 

2049 0.60 0.78 0.86 0.52 0.68 0.75 

2050 0.60 0.78 0.86 0.51 0.67 0.74 
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Ultimately, year 2039 traffic flow was selected to be compared with the highway expansion scenario. 

Table 30 shows the widening of the highway in the cosite under the study from 6L to 8L, could enhance 

the level of service from 0.72 in Most Likely scenario for N/E direction to the final V/C Ratio for case study 

#1 presented in Table 29. The cells highlighted in green have the B or C grade of the level of service (desired 

by this study) for the traffic network. by considering the information presented in table 34, the users could 

change the number of lanes to find the V/C ratio for each scenario for each year. 

Table 34: Highway Expansion Impact on V/C Ratio for Case study #1 

Construction 

Type 
Year 

N/E direction V/C Ratio S/W direction V/C Ratio 

Productive 
Most 

Likely 
Disruptive Productive 

Most 

Likely 
Disruptive 

No 

Construction 
2039 0.63 0.72 0.77 0.59 0.67 0.72 

Widening 6L 

to 8L  
2039 0.47 0.54 0.58 0.44 0.50 0.54 

 

By employing the highway construction cost prediction model, the final cost per mile of widening the 

highway from 6L to 8L in 2039 would be $18491113.81. Moreover, this study considers a highway link of 

10 mile for each cosite. Furthermore, the final highway construction cost for the case study 1 would be 

$184’911’138.1. 

Case study #2: I4, Orange County, Cosite ID: 750668 

The second case study is from the Orange County, interstate highway I4. Table 35 shows the 

information of the first case study. 

Table 35: Case study #2 

Interstate County Cosite K FFS Number Lanes 

I4 Orange 750668 8.53 65 3 
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Table 36 shows the predicted traffic flow for the N/E direction and S/W direction for both passenger 

vehicles and trucks for the case study #2.  

Table 36: Cosite Road Characteristics and the Predicted traffic flow for Case study #2 

Year K FFS Number 

Lanes 

Max Service 

Flow Rate  

(pc/hr/lane) 

PV N/E 

direction 

PV S/W 

direction 

Trucks 

N/E 

direction 

Trucks 

S/W 

direction 

Baseline 

V/C 

2022 8.53 65 3 2300 48679 61797 2698 3488 1.48 

2023 8.53 65 3 2300 48105 62749 2792 3432 1.49 

2024 8.53 65 3 2300 47563 63560 2921 3409 1.49 

2025 8.53 65 3 2300 47072 63992 3048 3348 1.49 

2026 8.53 65 3 2300 46724 64350 3199 3336 1.49 

2027 8.53 65 3 2300 46653 64585 3348 3330 1.50 

2028 8.53 65 3 2300 46621 64775 3530 3422 1.51 

2029 8.53 65 3 2300 46591 64967 3710 3527 1.51 

2030 8.53 65 3 2300 46562 65093 3892 3647 1.52 

2031 8.53 65 3 2300 46534 65199 4085 3784 1.53 

2032 8.53 65 3 2300 46508 65308 4274 3909 1.53 

2033 8.53 65 3 2300 46482 65302 4452 4047 1.54 

2034 8.53 65 3 2300 46497 65271 4602 4147 1.54 

2035 8.53 65 3 2300 46728 65241 4764 4284 1.55 

2036 8.53 65 3 2300 47007 65212 4904 4416 1.56 

2037 8.53 65 3 2300 47329 65183 5027 4538 1.57 

2038 8.53 65 3 2300 47649 65155 5164 4648 1.58 

2039 8.53 65 3 2300 47967 65127 5320 4792 1.59 

2040 8.53 65 3 2300 48285 65099 5462 4900 1.59 

2041 8.53 65 3 2300 48591 65072 5616 5026 1.60 

2042 8.53 65 3 2300 48801 65062 5795 5213 1.61 

2043 8.53 65 3 2300 48994 65055 5957 5378 1.62 

2044 8.53 65 3 2300 49193 65048 6107 5496 1.63 

2045 8.53 65 3 2300 49397 65044 6252 5574 1.63 

2046 8.53 65 3 2300 49609 65074 6427 5726 1.64 

2047 8.53 65 3 2300 49848 65095 6614 5919 1.65 

2048 8.53 65 3 2300 50155 65084 6755 6035 1.66 

2049 8.53 65 3 2300 50481 65058 6860 6093 1.67 

2050 8.53 65 3 2300 50824 65064 6998 6211 1.68 
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Then, the adjusted annual personal passenger vehicles equivalent (of Trucks and Passenger Vehicles 

All together) were calculated and is shown in Table 37.  

Table 37: Passenger Vehicles Equivalent for Case study #2 

 

Year 

Passenger Vehicles Equivalent (of Trucks and Passenger Vehicles All together) 

N/E direction MADT S/W direction MADT 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 52726 52726 52726 67029 67029 67029 

2023 52294 52294 52294 67897 67897 67897 

2024 53510 53510 53510 70745 70745 70745 

2025 53448 53448 53448 71427 71427 71427 

2026 53504 53504 53504 72028 72028 72028 

2027 53878 53878 53878 72553 72553 72553 

2028 54343 54343 54343 73185 73185 73185 

2029 54811 54811 54811 73845 73845 73845 

2030 50340 55252 55252 67549 74417 74417 

2031 50846 55778 61017 68173 75083 82218 

2032 51320 56268 61895 68745 75694 83358 

2033 51780 56746 62762 69230 76206 84392 

2034 52238 57224 63636 69632 76632 85334 

2035 52939 57971 64836 70114 77140 86402 

2036 53631 60252 65991 70556 79400 87361 

2037 54353 61386 67220 71001 80327 88361 

2038 55102 62557 68486 71432 81243 89350 

2039 55887 63775 69800 71921 82227 90407 

2040 56689 55880 71210 72401 70878 91547 

2041 66209 56880 82068 84121 71627 104904 

2042 67387 57929 76612 85228 72619 97050 

2043 58945 58945 78204 73584 73584 98657 

2044 59955 59955 79802 74474 74474 100186 

2045 61024 61024 81511 75357 75357 101764 

2046 52093 71547 83138 63213 88131 103336 

2047 53114 73144 84946 64175 89707 105118 

2048 54115 74749 86780 64975 91099 106711 

2049 55077 76324 88593 65659 92363 108175 

2050 56253 78257 90811 66643 94105 110177 
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Then, the total passenger vehicle (pv) trips unit was converted from MADT to pc/h/lane presented in 

Table 38. 

Table 38: Passenger Vehicles Equivalent for Case study #2 

 

 

Year 

Final Traffic Flow 

Passenger Vehicles Equivalent (of Trucks and Passenger Vehicles ALL) pc/h/lane 

N/E direction pc/h/lane S/W direction pc/h/lane 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 1499 1499 1499 1906 1906 1906 

2023 1487 1487 1487 1931 1931 1931 

2024 1521 1521 1521 2012 2012 2012 

2025 1520 1520 1520 2031 2031 2031 

2026 1521 1521 1521 2048 2048 2048 

2027 1532 1532 1532 2063 2063 2063 

2028 1545 1545 1545 2081 2081 2081 

2029 1558 1558 1558 2100 2100 2100 

2030 1431 1571 1571 1921 2116 2116 

2031 1446 1586 1735 1938 2135 2338 

2032 1459 1600 1760 1955 2152 2370 

2033 1472 1613 1785 1968 2167 2400 

2034 1485 1627 1809 1980 2179 2426 

2035 1505 1648 1844 1994 2193 2457 

2036 1525 1713 1876 2006 2258 2484 

2037 1545 1745 1911 2019 2284 2512 

2038 1567 1779 1947 2031 2310 2541 

2039 1589 1813 1985 2045 2338 2571 

2040 1612 1589 2025 2059 2015 2603 

2041 1883 1617 2333 2392 2037 2983 

2042 1916 1647 2178 2423 2065 2759 

2043 1676 1676 2224 2092 2092 2805 

2044 1705 1705 2269 2118 2118 2849 

2045 1735 1735 2318 2143 2143 2893 

2046 1481 2034 2364 1797 2506 2938 

2047 1510 2080 2415 1825 2551 2989 

2048 1539 2125 2467 1847 2590 3034 

2049 1566 2170 2519 1867 2626 3076 

2050 1599 2225 2582 1895 2676 3133 
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Then, the final V/C Ratio for case study #2 presented in Table 39. The cells highlighted in green have 

the B or C grade of the level of service (LOS desired by this study) for the traffic network. By considering 

the information presented in table 38, the users could change the number of lanes to find the V/C ratio for 

each scenario for each year. 

Table 39: Final Adjusted Level of V/C Ratio for Case study #2 

 

Year 

Final Adjusted Level of Service Ratio 

N/E direction V/C Ratio S/W direction V/C Ratio 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 0.66 0.66 0.66 0.83 0.83 0.83 

2023 0.65 0.65 0.65 0.84 0.84 0.84 

2024 0.66 0.66 0.66 0.87 0.87 0.87 

2025 0.65 0.65 0.65 0.85 0.85 0.85 

2026 0.65 0.65 0.65 0.85 0.85 0.85 

2027 0.65 0.65 0.65 0.85 0.85 0.85 

2028 0.65 0.65 0.65 0.85 0.85 0.85 

2029 0.65 0.65 0.65 0.88 0.88 0.88 

2030 0.59 0.65 0.65 0.79 0.88 0.88 

2031 0.59 0.65 0.71 0.80 0.88 0.96 

2032 0.59 0.65 0.72 0.80 0.88 0.97 

2033 0.59 0.65 0.72 0.79 0.87 0.97 

2034 0.59 0.65 0.72 0.79 0.87 0.97 

2035 0.61 0.65 0.73 0.79 0.87 0.98 

2036 0.62 0.67 0.74 0.79 0.89 0.98 

2037 0.62 0.69 0.74 0.78 0.89 0.98 

2038 0.62 0.70 0.75 0.78 0.89 0.98 

2039 0.62 0.71 0.76 0.78 0.90 0.98 

2040 0.63 0.62 0.77 0.78 0.76 0.99 

2041 0.73 0.62 0.88 0.90 0.77 1.12 

2042 0.73 0.63 0.83 0.90 0.77 1.03 

2043 0.63 0.63 0.84 0.77 0.77 1.03 

2044 0.64 0.64 0.85 0.78 0.78 1.04 

2045 0.64 0.64 0.86 0.77 0.77 1.05 

2046 0.56 0.75 0.87 0.66 0.90 1.05 

2047 0.56 0.76 0.88 0.66 0.90 1.06 

2048 0.57 0.76 0.89 0.66 0.93 1.06 

2049 0.57 0.77 0.90 0.66 0.93 1.07 

2050 0.57 0.77 0.90 0.66 0.93 1.06 
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Ultimately, year 2031 traffic flow was selected to be compared with the highway expansion scenario. 

Table 40 shows the widening of the highway in the cosite under the study from 6L to 8L, could enhance 

the level of service from 0.71 to 0.53 in disruptive scenario for N/E direction.  

Table 40: Highway Expansion Impact on V/C Ratio for Case study #2 

Construction Year 
N/E direction V/C Ratio S/W direction V/C Ratio 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

No 

Construction 
2031 0.59 0.65 0.71 0.80 0.88 0.96 

Widening 6L 

to 8L  
2031 0.45 0.49 0.53 0.60 0.66 0.72 

 

By employing the highway construction cost prediction model, the final cost per mile of widening the 

highway from 6L to 8L in 2031 would be $14’726’056.11. Moreover, this study considers a highway link 

of 10 mile for each cosite. Furthermore, the final highway construction cost for the case study 1 would be 

$147’260’561.1. 

 

Case study #3: I10, Duval County, Cosite ID: 720832  

The third case study is from the Duval County, interstate highway I10. Table 41 shows the information 

of the first case study. 

Table 41: Case study #3 

Interstate County Cosite K FFS Number Lanes 

I10 Duval 720832 7.96 50 4 
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Table 42 shows the predicted traffic flow for the N/E direction and S/W direction for both passenger 

vehicles and trucks for the case study #3.  

Table 42: Cosite Road Characteristics and the Predicted traffic flow for Case study #3 

Yea

r 

K FFS Number 

Lanes 

Max Service 

Flow Rate   

(pc/hr/lane) 

PV N/E 

direction 

PV S/W 

direction 

Trucks 

N/E 

direction 

Trucks 

S/W 

direction 

Baseline 

V/C 

2022 7.96 50 4 2300 74250 78654 4019 5601 1.45 

2023 7.96 50 4 2300 74893 79429 4024 5704 1.46 

2024 7.96 50 4 2300 75615 80266 4061 5739 1.48 

2025 7.96 50 4 2300 76642 81165 4159 5749 1.49 

2026 7.96 50 4 2300 77692 82047 4273 5782 1.51 

2027 7.96 50 4 2300 78686 82815 4377 5817 1.53 

2028 7.96 50 4 2300 79627 83415 4523 5872 1.55 

2029 7.96 50 4 2300 80522 83973 4679 5860 1.56 

2030 7.96 50 4 2300 81373 84507 4837 5824 1.57 

2031 7.96 50 4 2300 82185 85017 5010 5790 1.59 

2032 7.96 50 4 2300 82963 85505 5178 5790 1.60 

2033 7.96 50 4 2300 83710 85984 5355 5804 1.61 

2034 7.96 50 4 2300 84431 86462 5542 5798 1.63 

2035 7.96 50 4 2300 85131 86943 5723 5810 1.64 

2036 7.96 50 4 2300 85814 87415 5877 5854 1.65 

2037 7.96 50 4 2300 86483 87861 6033 5908 1.66 

2038 7.96 50 4 2300 87144 88100 6183 5963 1.67 

2039 7.96 50 4 2300 87801 88254 6346 6050 1.68 

2040 7.96 50 4 2300 88234 88408 6496 6125 1.69 

2041 7.96 50 4 2300 88406 88563 6658 6228 1.70 

2042 7.96 50 4 2300 88581 88719 6841 6405 1.71 

2043 7.96 50 4 2300 88759 88879 7010 6560 1.71 

2044 7.96 50 4 2300 88941 89037 7158 6672 1.72 

2045 7.96 50 4 2300 89162 89155 7291 6753 1.73 

2046 7.96 50 4 2300 89460 89269 7455 6914 1.73 

2047 7.96 50 4 2300 89773 89388 7644 7129 1.74 

2048 7.96 50 4 2300 90100 89510 7821 7318 1.75 

2049 7.96 50 4 2300 90442 89622 7975 7472 1.76 

2050 7.96 50 4 2300 90801 89737 8180 7691 1.77 
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Then, the adjusted annual personal passenger vehicles equivalent (of Trucks and Passenger Vehicles 

All together) were calculated and is shown in Table 43.  

Table 43: Passenger Vehicles Equivalent for Case study #3 

 

Year 

Passenger Vehicles Equivalent (of Trucks and Passenger Vehicles ALL) 

N/E direction MADT S/W direction MADT 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 80278 80278 80278 87055 87055 87055 

2023 80929 80929 80929 87985 87985 87985 

2024 84171 84171 84171 91550 91550 91550 

2025 85778 85778 85778 92921 92921 92921 

2026 87341 87341 87341 94208 94208 94208 

2027 88891 88891 88891 95443 95443 95443 

2028 90462 90462 90462 96538 96538 96538 

2029 92007 92007 92007 97489 97489 97489 

2030 84883 93467 93467 89412 98328 98328 

2031 86312 95022 104042 90247 99257 108652 

2032 87665 96492 106252 91071 100169 110279 

2033 89010 97952 108466 91912 101097 111932 

2034 90356 99411 110691 92724 101997 113564 

2035 91703 100871 112975 93599 102963 115319 

2036 92952 104598 115075 94473 106318 116990 

2037 94222 106597 117257 95366 107905 118734 

2038 95485 108602 119445 96065 109280 120242 

2039 96774 110648 121677 96738 110629 121715 

2040 97894 95804 123819 97458 95297 123367 

2041 113974 97000 142180 113373 96369 141548 

2042 115567 98399 131613 114927 97732 130914 

2043 99790 99790 133933 99075 99075 133174 

2044 101163 101163 136247 100352 100352 135372 

2045 102643 102643 138766 101624 101624 137629 

2046 86113 120277 141179 84935 118910 139767 

2047 87514 122605 143859 86218 121048 142210 

2048 88923 124960 146573 87472 123166 144638 

2049 90318 127319 149300 88666 125225 147007 

2050 92051 130250 152679 90203 127853 150020 
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Then, the total passenger vehicle (pv) trips unit was converted from MADT to pc/h/lane presented in 

Table 44. 

Table 44: Final Traffic Flow for Case study #3 

 

Year 

Final Traffic Flow 

Passenger vehicles equivalent (of trucks and passenger vehicles all)  pc/h/lane 

N/E direction pc/h/lane S/W direction pc/h/lane 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 1598 1598 1598 1732 1732 1732 

2023 1610 1610 1610 1751 1751 1751 

2024 1675 1675 1675 1822 1822 1822 

2025 1707 1707 1707 1849 1849 1849 

2026 1738 1738 1738 1875 1875 1875 

2027 1769 1769 1769 1899 1899 1899 

2028 1800 1800 1800 1921 1921 1921 

2029 1831 1831 1831 1940 1940 1940 

2030 1689 1860 1860 1779 1957 1957 

2031 1718 1891 2070 1796 1975 2162 

2032 1745 1920 2114 1812 1993 2195 

2033 1771 1949 2158 1829 2012 2227 

2034 1798 1978 2203 1845 2030 2260 

2035 1825 2007 2248 1863 2049 2295 

2036 1850 2082 2290 1880 2116 2328 

2037 1875 2121 2333 1898 2147 2363 

2038 1900 2161 2377 1912 2175 2393 

2039 1926 2202 2421 1925 2202 2422 

2040 1948 1907 2464 1939 1896 2455 

2041 2268 1930 2829 2256 1918 2817 

2042 2300 1958 2619 2287 1945 2605 

2043 1986 1986 2665 1972 1972 2650 

2044 2013 2013 2711 1997 1997 2694 

2045 2043 2043 2761 2022 2022 2739 

2046 1714 2394 2809 1690 2366 2781 

2047 1742 2440 2863 1716 2409 2830 

2048 1770 2487 2917 1741 2451 2878 

2049 1797 2534 2971 1764 2492 2925 

2050 1832 2592 3038 1795 2544 2985 
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Then, the final V/C Ratio for case study #3 presented in Table 45. As shown in table all the scenarios 

would have D or E level of service.  

Table 45: Final Adjusted V/C Ratio for Case study #3 

Year Final Adjusted V/C Ratio 

N/E direction V/C Ratio S/W direction V/C Ratio 

Productive Most Likely Disruptive Productive Most Likely Disruptive 

2022 0.70 0.70 0.70 0.76 0.76 0.76 

2023 0.70 0.70 0.70 0.76 0.76 0.76 

2024 0.72 0.72 0.72 0.79 0.79 0.79 

2025 0.73 0.73 0.73 0.79 0.79 0.79 

2026 0.74 0.74 0.74 0.80 0.80 0.80 

2027 0.75 0.75 0.75 0.80 0.80 0.80 

2028 0.76 0.76 0.76 0.81 0.81 0.81 

2029 0.76 0.76 0.76 0.81 0.81 0.81 

2030 0.70 0.77 0.77 0.74 0.81 0.81 

2031 0.71 0.78 0.85 0.74 0.81 0.89 

2032 0.71 0.78 0.86 0.74 0.81 0.89 

2033 0.72 0.79 0.87 0.74 0.81 0.90 

2034 0.72 0.79 0.88 0.74 0.81 0.90 

2035 0.72 0.80 0.89 0.74 0.81 0.91 

2036 0.73 0.82 0.90 0.74 0.83 0.92 

2037 0.73 0.82 0.91 0.74 0.83 0.92 

2038 0.73 0.83 0.91 0.74 0.84 0.92 

2039 0.74 0.84 0.93 0.74 0.84 0.93 

2040 0.74 0.72 0.93 0.74 0.72 0.93 

2041 0.85 0.73 1.06 0.85 0.72 1.06 

2042 0.86 0.73 0.97 0.85 0.72 0.97 

2043 0.73 0.73 0.98 0.73 0.73 0.98 

2044 0.74 0.74 0.99 0.73 0.73 0.99 

2045 0.74 0.74 1.00 0.73 0.73 0.99 

2046 0.63 0.86 1.01 0.62 0.85 1.00 

2047 0.63 0.86 1.01 0.62 0.85 1.00 

2048 0.64 0.87 1.02 0.63 0.86 1.01 

2049 0.64 0.88 1.03 0.63 0.87 1.02 

2050 0.64 0.88 1.03 0.62 0.86 1.01 
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Ultimately, year 2026 traffic flow was selected to be compared with the highway expansion 

scenario. Table 30 shows the widening of the highway in the cosite under the study from 8L to 10L, could 

enhance the level of service and the V/C ratio from 0.8 to 0.53 in all scenarios for S/W direction to the final 

V/C Ratio for case study #3 presented in Table 46. 

Table 46: Highway Expansion Impact on V/C Ratio for Case study #3 

Construction Year 

N/E direction V/C Ratio S/W direction V/C Ratio 

Productive 
Most 

Likely 
Disruptive Productive Most Likely Disruptive 

No 

Construction 
2026 0.74 0.74 0.74 0.80 0.80 0.80 

Widening 8L 

to 10L  
2026 0.49 0.49 0.49 0.53 0.53 0.53 

 

By employing the highway construction cost prediction model, the final cost per mile of widening the 

highway from 6L to 8L in 2039 would be $12436945.91. Moreover, this study considers a highway link of 

10 mile for each cosite. Furthermore, the final highway construction cost for the case study 1 would be 

$124’369’459.1. 
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CHAPTER SIX: DISCUSSION 

Chapter 5 presented the results of the four steps of the framework of the study that were tested on 

the Florida department of transportation historical data. This section, discussions, review the findings of 

the various steps of the framework on the test data, discusses the outcomes, and stakes some claims.  

Step 1: Traffic prediction model – Passenger Vehicles 

(Regarding this section the author employed his published study: Mahdavian, A., Shojaei, A., Salem, M., 

Laman, H., Yuan, J.S. and Oloufa, A., 2021c. Automated Machine Learning Pipeline for Traffic Count 

Prediction. Modelling, 2(4), pp.482-513.) 

The Current State of Practice at FDOT (Mahdavian et al. 2021c): Florida Statewide Model 

(FLSWM) is a comprehensive travel demand model that was developed using the traditional four-step 

modeling approach. The purpose of the statewide model is to forecast the demand changes from 2020 to 

2045. In this model, the primary data source is the 2010 (origin-destination) OD Survey in Florida, which 

was collected at the census block level. Traffic counts collected from the onsite detectors from 2001 to 2015 

were employed for validation and calibration purposes of the approach. Gravity models, combined with 

discrete choice models, such as multinomial logistic regression, were utilized in the trip distribution step to 

determine the destination choice of travelers. Similarly, discrete choice methods were used for the modal 

split in two parts: First, long-distance mode choice; second, auto occupancy/short choice mode choice. For 

the first part of the modal split, a nested logit model transferred from the Virginia DOT TDM was used. In 

contrast, for the second part, a hybrid transit abstraction methodology was transferred from the California 

statewide TDM. Freight transportation forecasting was performed via a separate module named 

FreightSIM. Finally, in the highway assignment procedure, seven vehicle classes were assigned in the 

statewide model via a multi-class user equilibrium methodology. Model outputs were also evaluated via 

cost-benefit analysis. The overall accuracies of the model were found to be reasonable. With the recent 

updates to FLSWM made in January 2020, some limitations can be listed as: (1) The model calibration, and 

validation processes rely on annual historical data, thus monthly, or daily changes are not captured, (2) 
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although, many socio-economic parameters were utilized, some of the essential global economic factors 

were not considered, (3) linear or non-linear machine learning algorithms are not considered.  

As demonstrated, the proposed framework shows a high degree of prediction accuracy. It can be 

readily used as a complementary tool in analyzing existing models of traffic volume prediction. Based on 

the results presented in this study, non-linear models showed an advantage over linear models, as evident 

by the apparent difference in performance seen on the traffic dataset used. In contrast to the studies that 

have shown that linear regression models utilizing roadway characteristics and socioeconomic factors can 

predict AADT with a reasonable level of errors, this study has shown that, even by using a broader category 

of predictors, linear models are not capable of predicting the traffic counts with reasonable accuracy in this 

case. On the other hand, this study confirms the results of the study by Liu and Wu that the RF algorithm 

is capable of traffic flow prediction with high accuracy due to its robustness and practicality (though only 

in short term). Additionally, the developed RF and NN models by the framework of this study have shown 

a better accuracy compared with the TDM model developed by Wang et al. with a 52% MAPE. The NN 

model developed in this study with a MAPE of 17.48% has higher accuracy than the developed ANN model 

Fu and Kelly (2017) with a MAPE of 28.58%. Finally, the result of this study is conforming with the results 

of the studies by Ratrouta and Gazdera and Chen et al., that NN models have shown better accuracy than 

the linear regression method for predicting daily traffic (Mahdavian et al. 2021c).  

The results of the research showed that RF algorithm outperformed the other employed non-linear 

algorithms on the test set to predict the current pattern of the passenger vehicle traffic on the highways. The 

generalization capacities of RF give it an edge for current MADT projections. The developed RF model 

(with spatial variables) on the test dataset of the study showed the ability to forecast the MADT with 88% 

accuracy. Road characteristics’ category has the most significant impact on the PV traffic prediction model 

- the same as the previously developed model (without spatial variables) - with a value of 54.78%. Then, 

the Socioeconomic category, with a value of 22.12%, has the second rank. Ultimately, the Spatial category, 

with 21.62%, has the third rank. Regarding the critical features of the RF model (with spatial variables), 
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the “road characteristics” played a key role with 54.78% importance, and second, “socioeconomic 

variables” with 22.12% importance, had a notable role in the PV volume prediction model. Thirdly, Spatial 

category with 21.62% importance level ranked third. The “number of lanes” which shows the capacity of 

the road of the studied location – with 51.95% - had the most important influence on the PV prediction 

model. Moreover, the “Euclidean geometry”, related to the spatial variables. with 14.93% were the second 

important feature. Notably, the “number of lanes” with 51.95%, and the “Euclidean geometry” with 14.93% 

are the leading variables affecting the PV traffic volumes. The results showed that the NN model 

outperforms other linear and non-linear algorithms for the long- term prediction with an 81% prediction 

accuracy. Adding the spatially related variables to the developed model of this study resulted in an increase 

in the accuracy of the model to 83% (Mahdavian et al. 2021c). 

Step 2: Traffic prediction model – Trucks 

(Regarding this section the author employed his published study: Mahdavian, A., Shojaei, A., Salem, M., 

Laman, H., Eluru, N. and Oloufa, A.A., 2021d. A Universal Automated Data-Driven Modeling 

Framework for Truck Traffic Volume Prediction. IEEE Access, 9, pp.105341-105356.) 

THE CURRENT STATE OF PRACTICE AT FLORIDA DEPARTMENT OF TRANSPORT 

(FDOT) (Mahdavian et al. 2021d): With the latest updates made in January 2020, the Florida Statewide 

Model (FLSWM) for travel demand forecasting is a traditional four-step model with a freight demand 

modeling component named FreightSIM. In the four-step model developed using the Citilabs Cube 

Voyager and Avenue software platform, trips are generated from the 2010 origin−destination (OD) survey 

conducted in Florida at the census block level, and traffic counts from 2001 to 2015 are used for validation 

and calibration at the transportation analysis zone (TAZ) level. Trip distribution is performed with the use 

of gravity models combined with multinomial logit models for destination choice. To forecast truck traffic, 

the analysis modules used in the FreightSIM model include sound synthesis, supplier firm selection, 

distribution channels, shipment size and frequency, modes and transfers, and freight trip assignment, that 

is integrated into the overall highway assignment as truck traffic. Additionally, the input/output database 

from the U.S. Bureau of Economics, port tonnage information, employment data from County Business 
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Patterns (CBP), and freight flow from the freight analysis framework version 4 (FAF4) are utilized in the 

calibration and validation of the FreightSIM model. FAF is a national framework developed by the Bureau 

of Statistics and Federal Highway Administration (FHWA) to provide a comprehensive understanding of 

U.S. freight movements and forecast both optimistic and pessimistic growth scenarios from 2020 through 

2045. In the Florida Department of Transportation (FDOT) model, some socioeconomic variables and 

freight-related economic variables, along with the 2010 Florida OD survey, were employed to predict future 

traffic counts. The truck counts prediction model for use on state highways developed in this study may 

assist transportation planners and decision-makers to insert highly accurate traffic counts into their four-

step or activity-based models. In doing so, they can increase the robustness of predictions and quantify 

more accurate truck traffic in order to assist near-, mid-, and long-term planning solutions (Mahdavian et 

al. 2021d).  

This study generated and optimized a framework containing feature selection via a three-step approach 

to assist the training of models with high accuracy. With its high prediction accuracy, the proposed 

methodology presents a promising complementary tool to be utilized in the calibration and validation of 

existing truck volume prediction models. In contrast to Lu et al., which demonstrated that both linear and 

compound growth models fit truck traffic growth trends well, this study has shown that linear models are 

not able to predict the MADTT accurately. Additionally, this study confirms the results of studies by Polson 

et al., Oswald et al., Rilett and Park, and  Liu and Wu, which claimed that the superior capability of 

nonparametric models to capture temporal-spatial relationships and non-linear patterns offer more accurate 

truck traffic forecasting compared to parametric models (Mahdavian et al. 2021d). 

By analyzing the results on the test and validation dataset, it can be concluded that non-linear models 

outperform linear models. This is evident in the notable gap between the performances of linear models on 

the truck dataset versus those of the non-linear models. Overall, four models, namely DT, RF, NN, and 

KNN, were evaluated. The generalization capabilities of RF give it an edge for current and near-term 
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MADTT projections. Meanwhile, the RF algorithm results produced on the test dataset of the study 

demonstrate the models’ ability to predict the MADTT with 82% accuracy. However, by adding spatial-

related variables (county, interstate, site ID, and Euclidean geometry of each site) the accuracy of the model 

improved to 86%, illustrating the importance of considering location-related features for truck traffic 

prediction models. Regarding the important features of the RF model with spatial variables, the “spatial 

variables” category ranked first with 48% importance, followed by “road characteristics,” with 26% 

importance. Both have a significant role in the truck counts prediction model. Furthermore, the developed 

NN model with spatial variables for long-term predictions shows the capability of the model to predict the 

MADTT, with 80% accuracy (Mahdavian et al. 2021d). 

Step 3: CASE vehicles impact on traffic network 

Regarding this section the author employed his published publications: Mahdavian, A. Shojaei, A., 

Oloufa, A. 2019a. Service Level Evaluation of Florida's Highways Considering the Impact of Autonomous 

Vehicles. Proceedings of the International Symposium on Automation and Robotics in Construction 

(ISARC). And: Mahdavian, A., A. Shojaei, and A. Oloufa. 2019b. Assessing the long-and mid-term effects 

of connected and automated vehicles on highways’ traffic flow and capacity. International Conference on 

Sustainable Infrastructure 2019: Leading Resilient Communities through the 21st Century. Reston, VA: 

American Society of Civil Engineers. And also: Mahdavian, A., Shojaei, A., Mccormick, S., Papandreou, 

T., Eluru, N. and Oloufa, A.A., 2021a. Drivers and Barriers to Implementation of Connected, Automated, 

Shared, and Electric Vehicles: An Agenda for Future Research. IEEE Access, 9, pp.22195-22213.) 

In this modern age, the push towards clean energy, smart cities, a sharing economy, and global 

urbanization, all fuel the impetus for new, innovative technological development. While the application of 

CATs, smart roads, and CAVs seemed theoretical a few years ago, they are becoming increasingly common. 

This type of travel-based technology can be used to help improve the everyday life’s of millions, through 

safer roads, improved travel experience, and shorter delivery times. In 2050, more than 66% of the 
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population are expected to live in urban areas around the world. Today, these areas already contain 55% of 

the population. This means these limited areas are expected to grow by 2.5 billion individuals. This massive 

increase in population means the existing cities and infrastructure will be pushed to their maximum 

capacity, necessitating improvements. Technological advances in travel could help facilitate these 

improvements, but changes must first be made. For example, at the moment, the benefits (higher traffic 

capacity) that could be obtained by using CASE vehicles is not expected to come to pass due to low rates 

of market penetration. More precisely, Van Arem et al. suggested that if market penetration is less than 

40%, these enhancements to traffic capacity will not occur. 

The current state of the CASE movement however remains tentative, with much of the automotive 

industry moving away from that direction. This change had been fueled by a better understanding of what 

CASE implementation would look like, and the types of automation that will be offered and the relevant 

timeline. Networking by the automotive industry, including multiple mergers, partnerships, and 

consolidations, have been attempted with the goal of reaching critical market penetration of CASE 

technology. Despite this, the contribution by agencies on a federal level has remained lower, with most 

investments coming from private parties. Unfortunately, this means investors that focus more on specific, 

narrow categories of for-use cases. It is clear level 5 automation or autonomous vehicles is still, very far 

away.  

Of the more recent improvements made to advance autonomous feel operations, some progress has 

been achieved. More and more desire for forms of driverless human transport is growing, including robo-

taxis, robo-delivery, and robo-trucks. This type of autonomy goods transport can be put into 4 categories; 

resource roads, streets, highways, and controlled environments. Some examples of this automated goods 

movement in the case of B2B delivery includes Waymo’s partnership with UPS, Walmart and Loblaws 

partnership with GATIK, Nurus work with both Fry’s Food, CVS, and Kroger, and finally Einrides 

partnership with Coca-Cola, Lidl, and Oatly.  Of the category controlled environments, the market is smaller 

and mostly includes logistic yards and industrial use. Little investment has been made by larger OEMs. For 
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resource roads, which include unpaved roads and remote areas, some companies like FPInnovations use 

truck automation for their timber hauling. Lastly, the highway categories include solo driverless vehicles 

and platooning vehicles. Multiple startups and established companies have entered into both categories. For 

solo driverless vehicles, these include Utobon, Waymo, tusimple, Aurora, Ainride, Ike, Kodiak, embake, 

pony.ai, Navistar Volva, Daimler, plus.ai, Traton, and Tesla. These companies how to use dock-to-dock 

and ramp-to-ramp automated trips. For platooning, these companies include Volvo, Traton Group, and 

Daimler; in addition to the start-ups Locomation, Robotic Research, and Peloton.  

Understandably, there are still many other barriers in place regarding travel automation technology 

including; user attitude, software safety, software Verification and validation (V&V), CAV regulation, and 

others, that have continued to develop in the last 10 years. Some of these must be addressed sooner than 

others if the adoption of CASE vehicles is to occur in a more seamless manner. There are also final 

regulatory based polices that need to be put in place. But ultimately, the user attitude regarding CASE 

vehicles has to change. In order to improve the current transportation network planning process related to 

CASE vehicles, risk assessment of internal impacts (effects the user) and external impacts (others) needs 

to be considered. Negative internal risks can include additional risks like user crashes, reduced privacy or 

security, and higher vehicle costs. Negative external risks meanwhile related to concerns about social 

equity, decreased security, decreased employment, and higher traffic concerns and infrastructure costs. 

There is also an optimism bias about CAV that can impeded the benefits of different types of management 

strategies and transport improvements. 

In the following section, factors related to safety concerns, the emergence of an e-commerce based 

delivery system, and the addition of new traffic categories for people will be discussed in a step by step 

process.  

New categories: Regarding new traffic categories for PV and their effects on traffic flow; CAVs are 

expected to increase the appeal and number of vehicle trips.  
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Safety: CAVs are expected to increase safety, which will impact both traffic flow, and traffic capacity. 

While some safety benefits have been considered, some research suggests the risks of CAV technology has 

not been efficiently explored (Koopman and Wagner 2017). Currently these risks reduce the appeal of CAV 

based travel. The benefits however, are implied to be fewer traffic accidents, reducing congestion and 

nonrecurrent related delays. Some literature reports suggest these types of traffic accidents cause 25% of 

the traffic congestion seen on the road. A CAV can easily navigate a majority of these accident situations, 

but it has been challenging thus far to design a reliable CAV system for every possible outcome (Campbell 

et al. 2010). CAVs themselves may cause more accidents, for the reasons outlined below:  

1. Hardware and software: Vehicle accidents are unavoidable 100%, so AV’s need to appropriately 

recognize and response to objects in their field. False interpretations could be made based on the location 

of objects and the size and conformity. The highly complex electronic systems used by AVs can be effected 

by even small failures like a distorted signal or false sensor, leading to catastrophic consequences. Some 

drivers are expected to cancel automated driving in these situations and take manual control, as suggested 

by Farhadi et al. (2009). This can further complicate matters as human perception is more easily impaired 

on the highway than AV perception.  

2. Increased risk-taking: As discussed by Millard-Ball (2016), an over-reliance on technology can 

lead users to feel safer and thus engage in higher risk behavior. This is known as risk compensation or 

offsetting behavior. Ackerman (2017) stated that in users view CAVs as safe, that may take higher risks 

and show decreased seatbelt use.  

3. Platooning risks: In order to achieve the advantages of automated technology (lower emissions and 

traffic congestion) platooning must be used. This can increase the number of human drivers in the platoon, 

increasing risk and crash severity.  

4. Increased total vehicle travel: As highlighted by Trommer et al. (2016), making CAV’s more 

convenient and comfortable may also lead to more VMT and overall crashes. It is expected AV’s may have 
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trouble with the detection, communication, and accommodation of bicyclists, motorcycles, and pedestrians, 

and this can also increase accidents.  

5. Lower investment in conventional safety strategies: Research by Lawson (2018) has implied that 

AV’s could lead to less resources devoted to improving driver safety. Advocates claim the net safety 

increases of AVs will be 90%, but this is unlikely to occur if the further risks created by AV crashes are not 

considered. A study by Sivak and Schoettle (2015) found that compared to the average driver, AVs were 

no safer per-mile traveled, and the number of crashes can actually increase with self-driven or human-

driven vehicles mix. While some like Groves and Kalra (2017) have stated the benefits of AV use are worth 

it if even a 10% reduction in crash rates occurs; but their study indicates as technology progresses, these 

net safety gains decrease.  

E-Commerce: As the transport system in the U.S. evolves, new forms of transportation and delivery 

systems arise. With E-commerce delivery, CAVs and other technology can be brought into the consumer 

and freight industries. These connected vehicles, along with improved data collection and sharing methods, 

have made it possible to increase delivery efficiency. However, these innovations are limited by the actual 

roadway space on highways, which has not expanded at the same rate.  Using connected zero occupant 

vehicles (ZOVs) can also lower traffic capacity themselves during the time they spend searching for parking 

or finding customers. As such, special consideration should be given to ZOVs in particular when planning 

for the traffic increases related to E-commerce.  

Despite these potential setbacks, most researchers overall agree that CAV use will lead to greater 

roadway capacity. However, this expanded capacity will not occur if planners do not proceed appropriately. 

As mentioned previously for example, if market penetration remains low, the positive effects of CAV use 

cannot happen. Based on a  study by Markridis et al. (2018), this scenario occurs because lower rates of 

CAV market penetration would lead to underutilization of the existing CAVs because there are a limited 

number of network vehicles to communicate with to establish travel patterns. And, as mentioned by Van 

Arem et al. (2012), > 40% market penetration rates are needed to alter roadway capacity. Other researchers 
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have come to the same conclusion. For example, Hartmann et al. (2017) stated that no obvious 

improvements to roadway capacity are expected at low market rates. If these higher rates are to be achieved, 

key factors to consider will be user acceptance, CAV regulations, and the technology required. Only 

through appropriately accounting for these factors will market penetration rates increase in a reliable 

manner.  

In terms of the technology needed for additional AV use, the role of advanced driver assistance systems 

(ADAS) cannot be understated. It has been found that users who are tech-savvy are more likely to embrace 

this type of technology and become SAV users (Bansal et al. 2016). Currently, 88% of existing ADAS users 

are content with its performance (Here et al. 2017). This high positivity rating suggests ADAS could help 

bridge the trust gap for other users by presenting ADAS as an example of automated driving success. By 

building off of these features, the steps towards full vehicle automation can then be taken. Because of this, 

its essential to maintain the current path of successful ADAS technology. As ADAS implementation 

advances, its positive effects are expected to trickle down. 

Step 4: Highway construction cost prediction model 

(Regarding this section the study published by the author were employed: Mahdavian, A., Shojaei, A., 

Salem, M., Yuan, J.S. and Oloufa, A.A., 2021b. Data-Driven Predictive Modeling of Highway 

Construction Cost Items. Journal of Construction Engineering and Management, 147(3), p.04020180.) 

During the course of this study, a workflow was devised that utilizes machine learning for the accurate 

prediction of future highway construction costs. To reiterate, the work performed included data 

preprocessing, feature selection, model reaction, optimization of the relevant parameters, and finally model 

evaluation. These steps were selected in order to automate the prediction process and streamline the 

workflow for users. In contrast to previous studies, this research looked at highway construction cost on a 

monthly level. This monthly, as opposed to yearly approach, increased model accuracy by adding additional 

data points. The model designed was then testing using 5 categories of predictor variables: energy market, 

socioeconomic, construction market, U.S. economy, and temporal variables. In total, 69 independent 

variables were used, and the data was obtained from FDOT historical data from 2001-2017. 
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From the 60 cost items (dependent variables) covering 100% of the total cost of 6 highway expansion 

types (constructing and widening), 10 cost items’ monthly historical data were not available (about 7.4% 

of the total cost). 32 cost items were predicted in stage 1 of the analysis, 15 cost items were predicted in the 

second stage, and finally, 3 were not predicted with high accuracy (MAPE below 15%). The model 

developed in this study covers 92.6% (on average) of the highway total cost per mile; 89.68% of which 

were predicted with linear models, while 2.92% utilized non-linear algorithms. The highway prediction 

accuracy model developed in this study forecasted the FDOT highway cost with 92.51% accuracy (on 

average among different types). The results of the study show that the construction market category of the 

variables with 80.32% had the highest impact on the highway construction cost forecast, while the socio-

economic category with 6.4% was second. Additionally, the U.S. Economy had a 5.19% impact, energy 

market had 2.3%, and ultimately, temporal predictors had 5.85%.  

General framework 

A literature review indicated that to a minor degree, there has been some consideration paid to less-

quantifiable consequences, such as behavioral changes, impacts on attitudes about changes to land-use, 

public transit,  and the impact on regional planning. Articles that give a more holistic approach to the impact 

of the emerging technologies on the traffic network are limited. About the traffic count models, and highway 

construction cost models the majority of modeling studies encompass one or two linear or nonlinear 

algorithms. In these studies, the success of one model over another was inconsistent and varied depending 

on the specific case study being discussed, and the results could not be directly utilized beyond the case 

study under review. These findings suggest that traffic forecasting or highway construction cost forecasting 

is dependent on the interplay between local and global variables, which may be either linear or non-linear 

based on multiple factors such as location, project type, and the level of analysis. This complication can be 

overcome by using a universal framework for traffic volume forecasting that is more generalized, in order 

to optimize the process and the final outcome based on specific input data characteristics.  
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This research strived to recognize some of the consequences of CASE vehicles at the system level, 

by first developing a highly accurate traffic flow prediction model considering the impact of CASE 

vehicles, and second, generating a highly accurate highway expansion cost-prediction model to enhance 

traffic capacity. By employing the above-mentioned steps, the model could predict the cost of the expansion 

of the network link that would be affected by CASE vehicles and compare the cost to the alternative 

solutions cost and take the best measure.  

To that end, the analysis performed in this study was all-inclusive of the reviewed methods 

regarding feature selection and modeling approach. A broad dataset of the discussed variables were utilized 

to confirm that new users could efficiently make use of the generated framework. By following the proposed 

method, regardless of the location, type, or scope of the project involved, users can input their data to 

identify the traffic links that may face overcapacity and to investigate the factors related to the results in a 

more automated way than previously explored. This provides advantages over existing models that utilize 

assumptions and methodologies specific to a certain case study. Moreover, the proposed framework 

increases the number of predictors involved to allow for more accurate forecasting; and automating the 

methodology reduces the time and expertise required to forecast the complexities of the traffic network, 

highway construction cost, and in a broader aspect, the impact of the CASE vehicles on the traffic network 

in a mid- and long-term. 

Application of the framework 

To overcome the above-mentioned issues, several solutions including smart solutions, fleet 

conversion, shared mobility, and highway expansion. 

HIGHWAY CONSTRUCTION: Civil infrastructures are an integration of engineered systems and 

individuals in an ecological context. It is crucial to consider the resilience of these complex systems during 

their design, operation, and maintenance to ensure efficient operation. The disruption of infrastructure 

services can cause notable social and economic losses. Because infrastructure is crucial to public health, 
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human safety, quality of life, trade, industry, and economic productivity, the disruption of infrastructure 

services can have severe economic consequences and destructive influences on health and the operability 

of the areas that they serve. It is essential to plan for traditional roadway expansions and provide the required 

capacity that is expected. Therefore, traditional solutions must be considered as well. 

SMART TRANSPORTATION: In the modern world, physical objects in industrial, mobile, and 

domestic settings are no longer isolated systems; they are increasingly being transformed into networked 

Internet-enabled devices. These devices can communicate with each other and the cloud. This new 

intelligent technology is called the Internet of Things (IoT). Companies are creating new types of innovative 

services and applications in various sectors, including construction (smart transportation and smart homes), 

manufacturing, utilities, and health care by leveraging the benefits of these intelligent connected systems. 

This remarkable innovation has the potential to transform previously standalone systems into integrated 

networks that leverage larger computer capabilities and data analytics to enhance efficiency and 

productivity.  

Smart cities will be the epicenter of IoT utilization and use cases, including smart transportation. 

Initially, the use case will be vertical (sector-specific). As time passes and a larger number of industries use 

the new technology, cities will become horizontal IoT platforms, where individual use cases can be fluidly 

interconnected to maximize efficiency and productivity. In this way, citizens will experience ease of use of 

IoT platforms, which is directly correlated with quality of life. Specialists in both academia and industry 

acknowledge smart cities as the ideal solution for approaching the impending challenges. These challenges 

include population growth, radical urbanization, deterioration of energy sources, and environmental 

pollution. Mobility is the essence of cities and is crucial for urban life.  

Intelligent mobility is a system for considering how to connect places, people, and goods across all 

transport modes (McKinsey & Company 2016). The intelligence of infrastructure is a vital element in 

developing a smart city. If the infrastructure is connected and integrated correctly, a city can optimize 

resources, monitor public security, and provide effective maintenance. Many of the benefits provided by 
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CAVs will be enhanced through connectivity between the vehicles and broader infrastructure (McKinsey 

& Company 2016). Wireless connectivity networks inside urban areas will enable vehicles to communicate 

with traffic management systems in real time. In addition, sharing information such as signal phasing, 

timing, and live traffic conditions are additional benefits of connectivity networks. With this information, 

CAVs will be able to optimize their speed and navigate to minimize journey times and overall congestion. 

Finally, it should be noted that a strong bridge must be built between policies, strategies, and stakeholders’ 

involvement and empowerment to create a strong alignment in the urban system for continuous 

sustainability and the ability of multiple human resources to achieve peak performance. The enablers of 

smart transportation are presented in Figure 7. 

FLEET CONVERSION: It is predicted that a low market penetration rate of CAVs will not lead to the 

expected benefits. A variation of purpose-built CAVs may take over city streets long before private cars 

appear on the market. It has also been noted that commercial fleet turnover will accelerate the CAV 

transition (Transportation Energy Data Book, Oak Ridge National Labs). Taxis and commercial and 

government vehicles are an appropriate starting point for increasing market penetration, familiarizing 

people with CAV technologies, building bridges of trust in safety aspects, and, more importantly, 

encouraging the culture of shared mobility transport. Commercial and government vehicles have a 

significant presence on city streets, composing more than 25% of traffic. USDOT (2015) has reported the 

number of vehicles in use as follows – government: 3,150,000, business: 3,025,000, police: 212,000, 

unassigned: 2,709,000, utilities: 815,000, and rental: 2,738,000. However, it should be noted that the 

process of replacing and upgrading these vehicles occurs on different timelines. Commercial and 

government fleets are automated at different rates. Commercial vehicles in the United States average 

approximately 26,000 miles annually and are replaced every 3 or 4 years. In comparison, the average private 

car in the United States is more than 10 years old. 

SHARED MOBILITY: To reach the desired outcomes discussed, it is essential to develop methods to 

reduce the attractiveness of traveling by CAVs. These methods should increase the attractiveness of public 
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transit, discourage urban sprawl, limit the amount of driving that people are allowed to do, or a combination 

of the above. Simply because a new technology proposes benefits on paper does not imply that consumers 

will ultimately adopt it. Ingo Wolf (Free University of Berlin) surveyed drivers concerning their reluctance 

to forfeit control to an automated system for various tasks. They reported that most respondents were not 

eager to forfeit control to an AV for steering or complete control. It is important to bear in mind that many 

of the benefits of a CAV can be leveraged by using lower cost per mile shared mobility. This is particularly 

true for something as inherent to the United States' individual and collective mindfulness as the automobile. 

Most citizens consider owning and driving a car a rite of passage and a representation of freedom and 

prestige strengthened by decades of advertising. In addition, at least in the United States, consumers may 

dispute the erosion of the American dream. All else being equal, there may be more rapid uptake in countries 

with a less established automobile culture. Moreover, the high dependence on private vehicles in the United 

States has a large impact. This dependence increases private vehicle occupancy rates and also has a negative 

environmental, economic, and social impact on transportation. This finding highlights the importance of 

urban structures to secure the future of public transportation in the United States. It should be kept in mind 

that all the measures proposed up to now are primary insights. Applicants should not assume that ownership 

will become obsolete; individuals will still wish to buy CAVs. 

There is no debate about the importance of smart transportation methods, fleet conversion to CAVs, 

and improving the shared mobility culture to enhance the level of service of the highways. So that, the 

framework developed by this study, has the capability to forecast the construction cost of the expansion of 

the highway affected by the CASE vehicles. Individuals could employ the predicted cost and compare it to 

other potential options, including, smart mobility, shared mobility, and fleet conversion. Furthermore, they 

could invest the limited resources in the best option. 
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CHAPTER SEVEN: CONCLUSION 

Considering the external and internal forces affecting the transportation network, the demand for 

solutions to the United States' traffic gridlock dilemma becomes more severe each year. The risks associated 

with the various forces threatening the efficiency of the transportation network must be meticulously 

examined. Otherwise, congestion can have undesirable effects on the quality of the life of citizens in terms 

of the possibility of decreased human productivity, reduced driver health, quality of life, increase in stress, 

and increased fatigue.  

A literature review indicated that to a minor degree, there has been some consideration paid to less-

quantifiable consequences, such as behavioral changes, impacts on attitudes about changes to land-use, 

public transit,  and the impact on regional planning. Articles that give a more holistic approach to the impact 

of the emerging technologies on the traffic network are limited. About the traffic count models, and highway 

construction cost models the majority of modeling studies encompass one or two linear or nonlinear 

algorithms. In these studies, the success of one model over another was inconsistent and varied depending 

on the specific case study being discussed, and the results could not be directly utilized beyond the case 

study under review. This research strived to recognize some of the consequences of CASE vehicles at the 

system level, by first developing a highly accurate traffic flow prediction model considering the impact of 

CASE vehicles, and second, generating a highly accurate highway expansion cost-prediction model to 

enhance traffic capacity. By employing the above-mentioned steps, the model could predict the cost of the 

expansion of the network link that would be affected by CASE vehicles and compare the cost to the 

alternative solutions cost and take the best measure.  

In this study, a data-driven methodology was employed to identify the top features and modeling 

approach. This enabled the inclusion of all available linear and non-linear models and the independent 

variables and parameters involved in feature selection, in addition to modeling approach selection. The 

resulting framework is more comprehensive and can be utilized by new users. By following this framework, 
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a user may automatically identify the feature selection methods, algorithms, and set of features best suited 

to their unique project and dataset. This is possible because the framework developed in this model not only 

incorporates the approaches previously highlighted in the literature but also contains improvements and 

enhancements to create a more complex model, based on the number of employed features and the feature 

selection methods employed in an automated fashion.  

The framework of this study was validated using historical traffic data and historical highway 

construction cost data.  The historical traffic data was gathered from 259 traffic sites, spanning the course 

of 17 years of the Florida department of transportation. This study also employed 17 years of the historical 

cost data of 17,121 projects of various size in Florida to demonstrate the application of the model and the 

level of accuracy. The selection features and models used were chosen through a data-driven method in 

order to prevent bias, and the results indicate which features may be classified with high importance in the 

process of traffic volume and highway construction cost prediction models based on this dataset. 

Accordingly, the framework developed in this study is not only more comprehensive than a stand-alone 

case study-based approach, but it can be used for more accurate generalization. 

Range of applicability  

The main application of the developed framework of this study is that, for any input data, regardless 

of location, project type and size, it has the capability to forecast the construction cost of the expansion of 

the highway affected by the CASE vehicles. Individuals could employ the predicted cost and compare it to 

other potential options, including, smart mobility, shared mobility, and fleet conversion. Furthermore, they 

could invest the limited resources in the best option. Also, this framework can help planners to obtain the 

state roadways impacted by CASE vehicles, to assist with long-term planning solutions such as roadway 

expansions by calculating the level of service to find the critical links needing investment for expanding 

the road, including adding lanes or constructing new roads or new bridges, developing plans for pavement 

designs, prediction and planning for future trips, environmental impact analysis, and the examination of 
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highway investment policies. Transportation planners would be able to plan for the critical links on the U.S. 

roads suffering overcapacity issues and examine the optimized solutions enhancing the traffic network well 

in advance. The results of this research could also be used to attract private sector partnerships to foster 

economic development and improve safety and mobility. This would be accomplished by developing a 

suitable request for proposals and decent incentives accurately and on time by utilizing the proposed robust 

cost forecasting method. As a result, the quality of life of citizens could be increased by reducing traffic 

congestion, enhancing air quality, and decreasing the number of crashes. 

Limitations  

Small sample size is one of the primary limitations of this research (259 cosites and 17 years of 

historical PV traffic counts), and roadway construction cost data  (50 costs available of 60 and only 17 years 

of historical cost data we had access to) and the data level (using monthly level historical traffic data – it 

could potentially be better to use weekly, daily, or even hourly data).  

Future work and Recommendations  

Generalization could be achieved in the modeling of this study, although more research on the extreme 

multitude of factors in each case should be done to further improve modeling approaches like deep learning 

models. To increase model accuracy the next step would be the inclusion environmental, energy, and 

political trends as available predictors within the given variables. Managed and express lane data would 

also be a inclusion as their effects on traffic congestion have been of some note as of late, and their addition 

adds another possible solution. Other possible solutions include truck platooning and more importantly the 

consequences of managed truck lanes on  truck traffic density along commuter highways. The classification 

of trucks (medium vs heavy duty) and loaded vs unloaded vehicle mass in motion data could be a valuable 

addition. It is important to further examine the results of individual contractor’s management style on cost.  
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APPENDIX A: INDEPENDENT VARIABLES FOR STEP 1 AND 2  
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Figure 62A: INDEPENDENT VARIABLES FOR PASSENGER VEHICLES 
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   Figure 63A: INDEPENDENT VARIABLES FOR PASSENGER VEHICLES 
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APPENDIX B: INDEPENDENT VARIABLES FOR STEP 4  
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Figure 64B: INDEPENDENT VARIABLES FOR HIGHWAY CONSTRUCTION MODEL 
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Figure 65B: INDEPENDENT VARIABLES FOR HIGHWAY CONSTRUCTION MODEL 
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APPENDIX C: CATEGORICAL FEATURE IMPORTANCE FOR STEP 4  
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Figure 66C: CATEGORICAL FEATURE IMPORTANCE RESULTS FOR COST ITEMS 
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APPENDIX D: AUTONOMOUS VEHICLE TRAVEL PROJECTION 
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Figure 67D: AUTONOMOUS VEHICLE TRAVEL PROJECTION BY LITMAN (2018) 
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APPENDIX E: TRAFFIC CAPACITY AND LOS CALCULATIONS  
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Figure 68E: TRAFFIC CAPACITY AND LOS CALCULATIONS (HCM) 

 

Criteria A B C D E

Max Density 10 16 24 32 36.7

Min Speed (mi/h) 75 75 71.6 63 60

Max v/c 0.35 0.55 0.77 0.92 1

Max service flow rate (pc/h/ln) 840 1320 1840 2200 2300

FFS = 120 km/h or 75 mi/h (Rural Freeway)

Criteria A B C D E

Max Density 10 16 24 32 36.7

Min Speed (mi/h) 70 70 68.5 63 60

Max v/c 0.318 0.509 0.747 0.916 1

Max service flow rate (pc/h/ln) 700 1120 1644 2015 2200

FFS = 70 mi/h / 4 lane freeway (2 each) (Urban Freeway)

Criteria A B C D E

Max Density 10 16 24 32 36.7

Min Speed (mi/h) 70 70 68.5 63 60

Max v/c 0.304 0.487 0.715 0.876 1

Max service flow rate (pc/h/ln) 700 1120 1644 2015 2300

FFS = 70 mi/h / 6 or 8 lane freeway (3 or 4 each)

Criteria A B C D E

Max Density 10 16 24 32 39.3

Min Speed (mi/h) 65 65 64.5 61 56

Max v/c 0.295 0.473 0.704 0.887 1

Max service flow rate (pc/h/ln) 650 1040 1548 1952 2200

FFS = 65 mi/h / 4 lane freeway (2 each)

Criteria A B C D E

Max Density 10 16 24 32 43.4

Min Speed (mi/h) 65 65 64.5 61 53

Max v/c 0.283 0.457 0.673 0.849 1

Max service flow rate (pc/h/ln) 650 1040 1548 1952 2300

FFS = 65 mi/h / 6 or 8 lane freeway (3 or 4 each)

Criteria A B C D E

Max Density 10 16 24 32 41.5

Min Speed (mi/h) 60 60 60 57 53

Max v/c 0.272 0.436 0.655 0.829 1

Max service flow rate (pc/h/ln) 600 960 1440 1824 2200

FFS = 60 mi/h / 4 lane freeway (2 each)

Criteria A B C D E

Max Density 10 16 24 32 46

Min Speed (mi/h) 60 60 60 57 50

Max v/c 0.261 0.412 0.626 0.793 1

Max service flow rate (pc/h/ln) 600 960 1440 1824 2300

FFS = 60 mi/h / 6 or 8 lane freeway (3 or 4 each)
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APPENDIX F: FDOT PROJECT DETAILS COMPOSITE REPORT  
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Figure 69F: FDOT PROJECT DETAILS COMPOSITE REPORT  
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Figure 70F: FDOT PROJECT DETAILS COMPOSITE REPORT  
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Figure 71F: FDOT PROJECT DETAILS COMPOSITE REPORT  
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APPENDIX G: PERMISSION FOR INCLUDING PREVIOUSLY 

PUBLISHED WORK  
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Figure 72G: Permission issued by MDPI to include previously published work 
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Figure 73G: Permission issued by IEEE Access to include previously published work 
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Figure 74G: Permission issued by ASCE to include previously published work 
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