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ABSTRACT 

Deep neural networks are quickly advancing and increasingly used in many applications; 

however, these networks are often extremely large and require computing and storage power 

beyond what is available in most embedded and sensor devices. For example, IoT (Internet of 

Things) devices lack powerful processors or graphical processing units (GPUs) that are commonly 

used in deep networks. Given the very large-scale deployment of such low power devices, it is 

desirable to design methods for efficient reduction of computational needs of neural networks. 

This can be done by reducing input data size or network sizes. Expectedly, such reduction comes 

at the cost of degraded performance.  

In this work, we examine how sparsifying the input to a neural network can significantly 

improve the performance of artificial neural networks (ANN) such as time delay neural networks 

(TDNN) and convolutional neural networks (CNNs). We show how TDNNs can be enhanced 

using a sparsifying transform layer that significantly improves learning time and forecasting 

performance for time series. We mathematically prove that the improvement is the result of 

sparsification of the input of a fully connected layer of a TDNN. Experiments with several datasets 

and transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT) and 

PCA (Principal Component Analysis) are used to show the improvement and the reason behind it. 

We also show that this improved performance can be traded off for network size reduction of a 

TDNN. 

Similarly, we show that the performance of reduced size CNNs can be improved for image 

classification when domain transforms are employed in the input. The improvement in CNN 

performance is found to be related to the better preservation of information when sparsifying 

transforms are used. We evaluate the proposed concept with low complexity CNNs and common 

datasets of Fashion MNIST and CIFAR.  We constrain the size of CNNs in our tests to under 200K 

learnable parameters, as opposed to millions in deeper networks. We emphasize that finding 

optimal hyper parameters or network configurations is not the objective of this study; rather, we 
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focus on studying the impact of projecting data to new domains on the performance of reduced 

size inputs and networks. It is shown that input size reduction of up to 75% is possible, without 

loss of classification accuracy in some cases.   
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Problem Statement 

Nowadays, small embedded computing and sensor devices are finding widespread use. 

However, their limited computing and storage capacity limits the possibility of running state of 

the art learning systems, for example methods based on deep neural networks, on these devices. 

Recent advancements in Artificial Neural Networks (ANN) have paved the way for significant 

improvements in prediction and classification applications over traditional methods. In particular, 

deep convolutional neural networks are now considered a major tool for this purpose. However, 

these networks are often large and require computing and storage resources that are not available 

in many smaller computing devices. For example, most IoT (Internet of Things) devices are 

usually designed with minimal computing and storage capacity with the aim of reducing cost. 

Using deep neural networks in large scale deployment of IoTs will require either considerable cost 

increase, or considerable reduction of performance. Moreover, the task of training these networks, 

which is often done offline, is sometimes needed to be done online for retraining of networks. This 

task is generally very computing intensive, compared to the forward operation of an ANN. 

Therefore, it becomes necessary to look for methods of reducing the computational cost of ANNs 

for low power computing devices.  This is more challenging when the task of online or in-device 

learning is at hand. Simpler neural network-based schemes, such as shallower neural networks, are 

considered as feasible solutions in these scenarios. In this work, we investigate how introducing 

an input transform layer that sparsifies the input can considerably accelerate the learning rate or 

accuracy of such neural network-based solutions. We examine this for feed-forward based 

networks, such as time-delay neural networks (TDNN) and convolutional neural networks (CNN). 
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TDNNs are used in prediction and forecasting application with time series; whereas, CNNs are 

one of the primary tools in image classification. We note that the observations here are expected 

to be applicable to general neural networks; however, our investigation and tests have been focused 

on TDNN and CNN networks.  

In this thesis, we first investigate the impact of using domain transforms on TDNNs. We 

consider transforming input data to a domain where it could be represented in a sparse fashion. It 

is shown that this method reduces the training time or equivalently improves the accuracy for a 

fixed training time. While such a hypothesis is not intuitively obvious, it turns out that 

mathematical properties of a neural network and its training algorithm lead to this phenomenon. 

To show this concept and demonstrate its effect, we consider time series data used with a TDNN. 

For sparsifying transforms, we consider transforming data to other domains using DCT (Discrete 

Cosine Transforms), PCA (Principal Component Analysis), and Mixed transform of Haar and 

DCT, as in our earlier work in [1]. It should be noted that the sparsity of the transformed data will 

depend both on the transform and the characteristics of data. As a result, we need to check the 

sparsity of the transformed data and its effect on TDNN learning. In fact, it can be shown that the 

improvement is the result of sparsity, and not the result of a specific transform being used.  We 

also validate the idea by feeding simple synthetic data to the network. We investigate the use of 

domain transform for possible network size reduction, examining the impact of the level of sparsity 

on performance improvement of TDNN.  

Following an analysis on TDNNs, we expand our study and investigate the impact of using 

domain transform with shallow convolutional neural networks (extending to 2-D and images). We 

note that reducing the computational cost of CNNs is done through reducing the number of layers 



3 

 

or the input data (image) size. To put this in perspective, most deep networks that are used for 

classification have millions (or tens of millions) of learnable parameters. Such networks are too 

complex for embedded devices. We limit our choices of networks to those with an order of 

magnitude less parameters (i.e., under 200K learnable parameters and down to 50K). The reduction 

in network and input size, as expected, usually comes at the cost of reduced classification 

performance. In this dissertation, we examine how domain transforms can be used for mitigating 

the negative effect of input and network size reduction.   

We also show that using transforms, such as Discrete Wavelet Transform (DWT) and 

Discrete Cosine Transform (DCT) as an input transform layer, it is possible to efficiently improve 

the performance of size-reduced networks. We note that these transforms project the original 

image data to a domain where data is represented in a sparser form, allowing for selectively 

removing part of the input data and reducing the input image size in a more efficient way than 

simple resizing of an image. We observe that such transforms also have the positive side effect of 

improving the learning rate. Similar benefits were seen in our earlier works on time series and 

shallow networks  [40]. The improved learning rate and network size reduction allows for lower 

computational cost, in particular during the training phase. Training of deep networks is usually 

the most computationally expensive aspect of CNNs; while retraining a network requires less 

computations, it is still considered a heavy load on smaller devices. The reduced cost of training, 

achieved using domain transforms, is an important factor that can enable retraining of CNNs in 

small devices.  

The basic hypothesis that is examined here is that transforming image data to a sparser 

form will allow for more efficient network and input size reduction than simply resizing the input. 
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While in data compression the use of such transforms is common, in classification applications it 

is not intuitive that sparser representation will be useful. In fact, it is seen that the usual application 

of CNNs with convolutional filters in the input layers is not useful when data is represented in 

domains such as DCT. On the other hand, it is seen that more efficient configurations becomes 

possible if DCT is used. Transfer to DWT domain shows different properties, since the spatial 

relationship between initial data pixels are maintained (as opposed to DCT that the spatial 

relationship is not explicitly kept). DWT proves to be very effective when significant size 

reduction is needed (improving the result by up to 5%). To evaluate and examine these hypotheses 

and observations, we use two standard datasets of small images (representing IoT processable 

images), including Fashion MNSIT (FMNSIT) and CIFAR-10. Evaluating our proposed methods, 

it is shown that input size reduction of up to 75% is possible, without loss of classification 

accuracy. We demonstrate that in most cases the improvement can be traced to higher entropy of 

resized input using transforms. 

1.2 Contributions and Dissertation Arrangement 

The main contributions of this thesis can be described as follows: 

1- We introduce the use of sparsifying domain transforms with TDNNs for significant 

reduction of training time or increase in forecasting accuracy of TDNNs 

2- We provide a mathematical analysis on the impact of sparsifying input to a feed forward 

ANN such as TDNN and prove positive effect on learning performance 

3- We present a method for reduction of TDNN network size using transforms such as PCA 

and DCT while maintaining forecasting performance.  
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4- We improve the performance of reduced-size CNN using DCT and DWT transforms.  

The above contributions are described in chapters 2-4. First in Chapter 2 we demonstrate 

the effect of sparse representation of time series data on learning rate of time delay neural network. 

This is done through adding a transform layer at the beginning of a feed forward neural network. 

In chapter 2, we also mathematically prove that applying a sparsifying transform to input layer 

will reduce the training time considerably. In Chapter 3 we investigate the effect of domain 

transform on network size reduction. The core concept of the proposed idea is the possibility of 

reducing network size in TDNNs with the help of sparse input representation. With a given level 

of performance (in this case, prediction error), it is possible to considerably reduce the hidden layer 

size of a network, simply by applying sparsifying transform to the input layer. Furthermore, the 

considerable improved performance allows for additional network size reduction through 

removing some of the coefficients of the sparse representation of the input vector.  

Overall, it is consistently seen that applying sparsifying transforms to the input of a TDNN 

allows for better performance which can be traded off for reducing network size in both the input 

and the hidden layers as discussed in chapter 3.  

In Chapter 4 the same idea from chapter 2 is generalized and applied to image data 

processing using CNN’s. Fashion Mnist and CIFAR-10 (RGB images) datasets are used in this 

study. We consider networks with of up to 200k parameters in this study. This is an order of 

magnitude smaller than larger deep networks that are usually studied in the literature. It is observed 

that reducing input data size can be efficiently achieved using transforms such as DCT or DWT. 

Compared to averaging-based image resizing, methods based on DCT and DWT are shown to 
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always provide improved classification accuracy (generally 1-4%). These findings are validated 

using image datasets of Fashion MNIST and CIFAR-10. In some cases, input size could be reduced 

by 75% while still maintaining the accuracy.  

The thesis is concluded in chapter 5, where we provide some insight into future direction 

and the lessons learned in this research.  
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CHAPTER 2. EFFECT OF SPARSE REPRESENTATION OF TIME 

SERIES DATA ON LEARNING RATE OF TIME DELAY NEURAL 

NETWORKS 

2.1 Introduction 

1In this chapter, we investigate how introducing a sparsifying input transform layer can 

considerably accelerate the learning rate or accuracy of neural network-based solutions. We 

examine this for feed-forward based networks, such as time-delay neural networks (TDNN). We 

note that the observations here are expected to be applicable to general feed forward neural 

networks; however, our investigation and tests have been focused on TDNN and time series. The 

proposed method enables designing many new AI applications for limited capacity devices. In 

addition, the faster learning will facilitate online learning when changes in data trends may require 

frequent retraining inside an IoT device. 

                                                 

1 The work presented in this chapter is based on the following publications: 

[1] Khandani M. K. and Mikhael W. B.: Effect of Sparse Representation of Time Series Data on Learning 
Rate of Time Delay Neural Networks, Circuits, Systems, and Signal Processing, 2021. DOI 
10.1007/s00034-020-01610-8 

[2] Khandani, M. K., Mikhael, Wasfy B.: Using Mixed DCT and Haar Transforms for Efficient 
Compression of Car Trajectory Data. IEEE 61 international Midwest Symp.On Circuits and sys., 2018  

[3] Khandani M. K., Mikhael, Wasfy B.: Efficient Time Series Forecasting Using Time Delay Neural 
Networks with Domain Pre-Transforms. IEEE MWSCAS, Dallas, Texas, August 2019 
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The basic concept investigated here is that transforming input data to a domain where it 

could be represented in a sparse fashion will reduce the training time or equivalently improves the 

accuracy for a fixed training time. While such a hypothesis is not intuitively obvious, it turns out 

that mathematical properties of a neural network and its training algorithm lead to this 

phenomenon. To show this concept and demonstrate its effect, we consider time series data used 

with a TDNN. For sparsifying transforms, we consider transforming data to other domains using 

DCT (Discrete Cosine Transforms) or PCA (principal component analysis), and Mixed transform 

of Haar and DCT [1]. It should be noted that the sparsity of the transformed data will depend both 

on the transform and the characteristics of data. As a result, we need to check the sparsity of the 

transformed data and its effect on TDNN learning. In fact, it can be shown that the improvement 

is the result of sparsity, and not the result of a specific transform being used.  We also validate the 

idea by feeding simple synthetic data to the network. The datasets used in this work are ERSST 

from National Weather Forecast-NOAA [17], vehicle speed time series from two datasets available 

from public sources (NDDS[5] and US101[6]) Figure 2.1, and synthetic data.    

ERSST dataset is a global monthly sea surface temperature (in Celsius) dataset derived 

from the International Comprehensive Ocean–Atmosphere Dataset (ICOADS) and reported by 

NOAA (National Oceanic and Atmospheric Administration). For our tests, we have used data from 

1991 to 2018, and from longitudes 1 to 180 and latitudes 20 to 25. Around 330,000 input samples 

are derived and user to train a TDNN.  
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Figure 2.1: Visualizing sample series from ERSST(left) , US101 (middle), and NDDS (right) 

datasets 

NDDS dataset includes movement data from 100 cars sensed using on board sensors (e.g., 

accelerometer, odometer). The US-101 datasets include vehicle movement that is extracted from 

camera/video frames. The datasets are collected using different methods and at different time 

scales. The NDDS dataset has information for almost 800 near crash scenarios (approx. 30-40 

second trips) in the Washington DC area with approximately 400-time samples each, resulting in 

over 300,000 samples for each attribute such as speed or acceleration. The speed values from 

NDDS are used here. The US-101dataset include data from certain times of day on US-101 

highway in California containing around 2000 vehicle trajectories. Each trajectory contains 

between 400 to 1000 time series datapoints; we use the speed values from this set as well. US-101 

dataset is to some degree different from NDDS dataset (since NDDS is related to near crash 

scenarios). The NDDS dataset contains high resolution (10Hz) acceleration data, and lower 

resolution (3Hz) velocity; as a result, we used the acceleration data to reproduce speed and position 

at 10Hz. The US101 datasets already provide acceleration, speed and position information at 10Hz. 

Data in both datasets are in imperial units’ system; we converted them to the metric system for the 

results reported here. While there are various metrics collected in these datasets, we only focused 

on measurements that were related to our studies such as speed.  
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For the Synthetic datasets we have produced two datasets of 500 time series, each 

containing 400 samples. One dataset contains simple lines in which the time series value increased 

linearly with random slope and with some noise. For the other dataset, we have used a combination 

of three randomized sinusoidal and Gaussian noise, in order to be able to control its sparsity 

properties. 

Some insight from the mathematical analysis shows that faster or better learning may be 

happening due to the reduction in the search space of the learning algorithm (which can be seen as 

an optimization problem); equivalently, it could be seen as a dimension reduction of the search 

space, which allows faster optimization. From an input data perspective, the sparse representation 

means that most of the variation in data is concentrated in a smaller number of dimensions, as it 

can be seen in Figure 2.3 and Figure 2.5 for some sample datasets and transformations. As a result, 

the neural network needs to learn a smaller number of patterns. With non-sparse data, a larger 

region of patterns needs to be learnt.  

In the rest of this chapter, we first review some related literature and establish how 

evaluation of the proposed method should be done. Then the system architecture and the proposed 

input transform operation for a TDNN are explained. Mathematical reasoning for the improvement 

due to sparsifying transforms are then explained, followed by experiments results with the 

abovementioned datasets and transforms.  

2.2 Related Works 

There are numerous methods and tools applied for time series prediction in different 

applications. Neural networks (or Artificial Neural Networks, ANN) have shown great ability in 



11 

 

modeling and forecasting nonlinear and nonstationary time series [25]. TDNN is one of the main 

neural network based tools for this purpose that has recently received attention [8] [12] [14] [15] 

[16] [30] [31][13] [32]. In general, TDNNs have the ability to catch diverse characteristics of the 

data [33]. While models based on deep recurring neural networks (such as Long-Short Term 

Memory or LSTM [38]) have shown great promise in learning patterns in time series, simpler 

TDNNs are also very effective and much simpler at the same time. In this work, we focus on feed 

forward and shallow neural networks such as TDNNs, given our target applications in small 

devices with limited computing capabilities.  

One of the recent works, Girish et al. [8], compared the performance of TDNN based 

methods with linear models such as Auto Regressive Integrated Moving Average -ARIMA for 

forecasting commodity pricing, concluding TDNNs outperform linear fitted models, one main 

reason the ANN methods outperforms the methods such as ARMA and ARIMA is that the data 

should be at least weakly stationary for these linear methods. ANNs are also widely used in sea 

surface temperature (SST) prediction studies and they are shown to outperform the traditional 

linear methods, one main reason could be the non-linearity that is inherent in neural networks. It 

has been shown that ANN is an alternative to complex physics-based coupled models that 

additionally require a large amount of tuning effort [30] [28][29].  

The use of transforms and neural networks has also received some attention. Although none 

of these works apply domain transform directly as a sparsifying input layer for accelerating 

learning, the general concept of using transforms in some form with neural networks has been 

around. Generally, the transforms are applied to reduce data size, or the size of input or filtering 

out certain parts of data. For example, wavelets have been used with shallow ANNs and TDNNs 
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in several works. preprocessing using Fourier transform and then frequency selection is reported 

in [16] used for classification and steps taken are specifically for that data set. Aggarwal et al. [34] 

have applied a hybrid approach using wavelet transform on time series fed into TDNN for forecast 

day-ahead electricity prices in the New England market for 2014. Authors of [10] utilize a dynamic 

time-delay Wavelet Neural Network -WNN model with a recurrent feedback topology for 

forecasting traffic flow. The model is a combination of a WNN and a conventional neural network 

with a sigmoid activation function and they have their own nonlinear estimator in the WNN part. 

Nonetheless, they method is customized for traffic flow data only not for general use and had 

access to limited traffic flow data.  Nonetheless, they do not consider the individual time series 

vehicle movement and had access to limited traffic flow data. Alex et al. at [9], consider parallel 

DRNNs (Dynamic Recurrent Neural Network), each treating a part of the output of a Wavelet 

transform; like LSTM, the recurrent methods are complex. However, the existing works do not 

study the impact on learning time or prediction.  

The abovementioned methods are generally tailored for specific applications and data 

types. While they do provide improvements, they are fundamentally different from how we apply 

a domain transform as a layer to the neural network with the aim of sparsifying input and 

accelerating learning. The concept we propose and study here, based on sparsifying the input, is 

generic and can be applied to general ANNs. Moreover, domain transforms for sparsifying, such 

as PCA, DCT or mixed transforms are also not considered for time series data. Mathematical 

reasoning on the effect of these transforms are also not presented. Additionally, these works have 

not considered training efficiency, which can become critical if online training is needed. 
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The use of transforms such as DCT with 2-D data (images) has also been reported. While 

this is not directly related to our work since the same concept cannot be used in TDNNs, it is worth 

mentioning works such as that by Pan et al [24] which has shown that reducing image information 

redundancy using DCT with Convolutional Neural Network (CNN) can be beneficial. They have 

demonstrated that when DCT coefficients are fed into a backpropagation neural network for 

classification, a good recognition rate can be achieved by using a very small proportion of 

transform coefficients. This makes DCT-based face recognition faster than other approaches. 

Additionally, recent research [35][39] have highlighted that most of weights are useless in CNNs 

and can be set to zero without obvious deterioration in performance.  

In this work, we study the impact of adding a sparsifying layer to a TDNN. The layer will 

transform the input vector to a domain where it is represented in a sparser form. We show that it 

is the sparser form that leads to better learning. Without the added layer, the TDNN should still be 

able to learn the model and be used for forecasting. It is the learning accuracy or speed that is 

improved. Given that the existing methods are designed for specific applications and data types, it 

is not possible to directly compare the impact of adding a sparsifying layer with existing methods 

that use transforms. Therefore, in this work we take a TDNN with no transform as the baseline and 

study the impact on this structure.  

2.3 Method and System Description 

The concept considered here is to add an input transform layer immediately following the 

first layer of a feed-forward neural network (FFNN). Considering a TDNN as a FFNN, the first 

layer is the layer that converts the serial input to a parallel vector of length D (see Figure 2.2 for 
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TDNN seen as a FFNN with an input buffer). D is basically the network delay size. The network 

with the additional transform layer is shown in Figure 2.2. In time series forecasting application, 

the size of the network output is determined by the number of future samples of the series that the 

network will forecast. This is called prediction length in this work and is denoted as P. A number 

of hidden layers are also used with different sizes (denoted as H). Since our study is focused on 

the effect of the transform layer, and not particularly what the best configuration and network 

structure is for each data type, we use a single hidden layer in this work. It turns out that this 

configuration is capable enough for the several datasets that we experimented with.  

The first layer of the TDNN parallelizes the past D samples and feeds them to the feed 

forward neural network. If a general FFNN is considered here, and not a time series in particular, 

the first level is basically the input layer of size D. For the augmented network in Figure 2.2, this 

input layer is followed by a transform layer which will project the D samples to a new domain 

(based on what the transform is). The transformed data is then the new input to the rest of the 

FFNN. The specific transforms that we have studied here include PCA, DCT and a mixed-

transform of DCT and Haar.  
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Figure 2.2: Architecture of the TDNN seen as a buffer and multi input FFNN of size DxHxP 

(Top figure). H is the size of hidden layer, D is the history length and P the length of 

prediction. As shown in the bottom a Transform layer can be inserted between the buffer 

and the FFNN.  

 

2.3.1 Options for input transforms 

There are several options for sparsifying data. Generally, each type of data may require a 

different transform for the sparser representation. Transforms based on DCT and PCA generally 

show the best results for the datasets that we have experimented with. In the following sections we 

briefly describe these transforms and how our data is represented in each domain. This list is by 

no means exhaustive and there may exist other options. However, for the purpose of this study on 
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the effect of sparseness on learning rate, we have selected several transforms that produce results 

with different levels of sparsity. This allows a better understanding and validation of the hypothesis 

considered in this work. As an illustration, the result of applying these transforms to sample 

datasets of sea surface temperature (noted as ERSST) and car movement (noted as US101) are 

shown in Figure 2.3 and Figure 2.5.  

 

2.3.1.1 Principal component analysis  

The main idea of principal component analysis (PCA) is to project multi-dimensional data 

to a new coordinate system, with the same or different number of dimensions, with the aim of 

concentrating data along a fewer dimensions than the original data. This is usually achieved by 

deriving the bases from the data itself (as principal components). The aim of reducing 

dimensionality is achieved by first finding a dimension vector (component or base) along which 

the variance of data is maximized. The next dimensions, each orthogonal to all previously found 

dimensions, are then iteratively derived to maximize the variation of the residual of data orthogonal 

to the first dimensions. For time series data, as we consider TDNNs, each sample of the dataset is 

a vector of length p=D. This means that we can consider our data as p dimensional. By applying 

PCA, we can convert these vectors to vectors of a different (or same) length in a different domain. 

Given the nature of PCA, the new representation will have the largest variations in the first 

components, while the last components will have less energy. This will naturally form a sparse 

representation of data.  
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The PCA transformation can be written as T = X.Q, where transform Q maps data X (a 

matrix of all data vectors) from an original space of p variables to a new space of p variables which 

are uncorrelated over the dataset. Q will be a pxp matrix. With PCA, it is not needed to keep all 

the principal components in Q (since the representation, T, is usually sparse). In this work, 

however, we use all components to ensure a fair analysis and produce transformed data size equal 

to the original data.  

PCA can be done through eigenvalue decomposition of a data covariance (or correlation) 

matrix or singular value decomposition (SVD) of a data matrix [18][19]. The principal components 

are the eigenvectors of a covariance matrix of the original data. These vectors are an uncorrelated 

orthogonal basis set, each being a linear combination of the variables and containing n 

observations.  

To use SVD to calculate the score matrix (or the weights resulting from transformation), 

consider that the nxp data matrix of X can be written as X =UΣQT,  

where Σ is a nxp matrix of scalars that are the singular values of X and U is a nxn matrix of 

n left singular vectors of X (columns of U are the orthogonal unit vectors of length n called the left 

singular vectors of X). Q is a pxp matrix. Columns of Q are orthogonal unit vectors of length p, 

also known as principle components (PCs) are our eigen vectors (bases), which are the right 

singular vectors of X. Using the SVD based method the transform result, called score matrix T, can 

be written as: T= XQ = UΣQTQ = UΣ.  

Therefore, each of the columns of T, which are the transforms of each data samples, is 

given by one of the left singular vectors of X multiplied by the corresponding singular value.  
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In our process, PCA is applied to the dataset (the training portion of the whole dataset) to 

derive the principal components in Q. The resulting transform, Q, is then used as an input transform 

layer. Q contains the bases; each time it is multiplied to our data (buffer-delay data with size 16x1 

here) and takes the data into the new domain with the same size as the original.  

Figure 2.3 and Figure 2.5 show the raw data and the data after passing through the 

transform. As it is observed, the scores (transform results) from PCA are very sparse, with the first 

component containing most of the energy. A more general way of finding bases that allow sparse 

representation of a signal is through dictionary learning (DL) [7]. There are several different 

dictionary learning algorithms which are essentially optimization schemes that try to find bases 

that sparsify data to a specified level. Dimensionality reduction could also be achieved and is one 

of the main objectives of most DL algorithms. However, in this work we are interested in keeping 

the dimension. It was observed that the available DL algorithms could not achieve higher sparsity 

than DCT for the datasets used here, and under the condition of maintaining the same 

dimensionality. Therefore, we did not include the results from DL here. 

2.3.1.2 Discrete Cosine Transforms  

Discrete cosine transforms (DCTs) is one of the sinusoidal transforms. Similar to other 

transforms in this family, it is an invertible linear transform. Sinusoidal transforms use kernels that 

are defined by a set of complete, orthogonal discrete cosine and/or sine basis functions. 

Generalized Discrete Fourier transform (DFT) and various types of the DCT and DST (Discrete 

Sine Transform) are members of this class of unitary transforms. The complete set of DCTs and 

DSTs consists of eight versions of DCT and corresponding eight versions of DST. Being a discrete 
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transform, DCT is a finite sequence of data points, as a sum of cosine functions at different 

frequencies. DCT has been used for lossy compression (for example for images) due to its strong 

property in compacting energy. For example, with DCT-II transform, the coefficients (transform 

results) for a signal x of length N are calculated as follows: 

 
𝑋𝑋𝑐𝑐(k) = � 𝑥𝑥[𝑛𝑛]. cos[

𝜋𝜋𝜋𝜋
𝑁𝑁

(𝑛𝑛 + 1/2)]
𝑁𝑁−1

𝑛𝑛=0
 

( 2.1) 

Where k=0,1, 2, …, N-1. For the datasets studied here, DCT has proven to be a very strong 

sparsifying transform. We can further multiply the X0 term by 1 √2⁄   and multiply the resulting 

matrix by an overall scale factor of �2/𝑁𝑁 which makes the DCT matrix orthogonal. Note that the 

DCT basis are independent of dataset used. We have used DCT-II from MATLAB. The DCT 

matrix coefficients will look like as in (2.2). 

 

         

 

 

(2.2) 
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Figure 2.3: Visualizing effect of sparsifying transforms; showing original data of ERSST 

dataset arranged in a matrix of input vectors (top left) and its transformations: DCT (top 

right), mixed-transform (bottom left), and PCA (bottom right).  

 

2.3.1.3 HAAR Transform 

The Haar Transform, or the Haar Wavelet Transform (HWT) is one member of a group of 

transforms known as the Discrete Wavelet Transforms (DWT). Haar uses non-sinusoidal basic 
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wave functions, providing a simple and computationally efficient approach for analyzing the local 

aspects of a signal [36][37]. The Haar Wavelet Transform (HWT) is from Discrete Wavelet 

Transforms (DWT) and is not symmetric. Wavelets are especially useful for compressing image 

data. Fourier analysis breaks up a signal into sine waves of various frequencies. Similarly, wavelet 

analysis is the breaking up of a signal into shifted and scaled versions of the original (or mother) 

wavelet, equation (2.3). 

 

         

                   

(2.3) 

 DWT has a key advantage over Fourier transforms, it captures both location (time) and 

frequency information and also capture discontinuity in the signal. The Haar transform matrix is 

real and orthogonal. Before normalization the Haar matrix for N=8 will look like as in (2.4). 

 

        

                   

                 

(2.4) 
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Figure 2.4: Illustrating Haar basis functions for N=8, source: fourier.eng.hmc.edu /e161 

/lectures /Haar/index.html 

 

2.3.1.4 Mixed Transform 

Mixed transform is a method of applying multiple domain transforms to data to provide a 

better representation. Usually multiple sparse representations are applied; however, depending on 

data characteristics, the final mixed transform result may or may not be sparser than either of the 

single transforms (it may generally have similar sparsity levels). Nevertheless, mixed transforms 

are shown to be more efficient in achieving higher compression levels [1]. In this work, we use 

mixed transform of DCT and Haar as an alternative to DCT. An overview of how mixed transform 

works is given here. 

For mixed transform the reason to use DCT and Wavelet (Haar) is that DCT is known to 

be very efficient in representing narrowband signals. On the other hand, Haar and Walsh 

transforms are considered appropriate for wideband signals with sudden changes.  In general, 

combining DCT and Haar in a mixed-transform setting is expected to be a more efficient way of 

representing a signal [1]. The mixed-transform method uses subsets of basis functions of two or 
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more mutually non-orthogonal transforms to represent data. Our earlier work in [1] finds the 

optimal balance of bases from DCT and Haar for data representation by minimizing an energy 

function; however, here we take a simpler approach here to avoid complexity in applying the mixed 

transform.  

For example, consider a signal X. If we denote the DCT transform bases as K, and Haar 

as H, we first derive coefficients from DCT transform as C1=KX. Then, the larger coefficients in 

C1 (e.g., first half) are kept and the rest set to zero to get C2. We then apply the Inverse DCT to 

C2. i.e., X2 = K’C2 and find the error E = X-X2. The error is then fed to the second transform to 

find its representation in the Haar domain V1 = HE. The largest coefficients from V1 are then 

kept and truncated in a final result vector that contains the largest coefficients of C1 and V1. More 

details about mixed transform can be found in [3][1]. Depending on how many coefficients from 

each transform is kept, the size of the resulting vector may be smaller or larger than original data. 

In this work, and for a fair comparison with the original (non-transformed) data, the mixed-

transform is configured to produce results with the same size of original data, therefore keeping 

the size of the TDNN unchanged.    
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Figure 2.5: Visualizing effect of sparsifying transforms; showing original data of US101 

dataset arranged in a matrix of input vectors of size 16 (top left) and its transformations: 

DCT(top right), mixed-transform (bottom left), and PCA (bottom right). 

 

We note that it is also possible to use a smaller set of transform coefficients (e.g., similar 

to compression using DCT); however, we do not consider such a case as we observed that it 

reduces the accuracy of the system (as some data is lost during compression).  
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The results of applying a DCT-Haar mixed transform that keeps 50% of the largest 

coefficients of each transform is shown in Figure 2.3 and Figure 2.5.  

2.4 Mathematical Analysis 

In this section we analyze the mathematical properties of TDNN learning algorithms that 

are affected by sparsity of data. We show that if input data is made sparser, the learning process is 

accelerated. Here we examine how the gradient descent-based backpropagation methods are 

impacted. It is seen that the sparseness of data leads to a fewer number of weights in the network 

to be reactive to the backpropagation process. This will result in an optimization process (another 

way to see the learning process) that has a smaller search space. The gradient descent-based 

methods are used in several algorithms, including the commonly used Levenberg-Marquardt 

algorithm, which is used in out tests.  

Consider a feedforward neural network, such as a TDNN, as in Figure 2.6. As shown 

later in this section, we know that each weight in the gradient descent is updated by the 

derivative of a loss function (error) J with respect to that weight [69]. Here, Wij
t is the value of 

weight from neuron i to j at time step t: 

 𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡+1 = 𝑊𝑊𝑖𝑖𝑖𝑖

𝑡𝑡 −
𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

 (2.5) 

Error J can be calculated as the difference of network output value and the desired target 

value (T). If output is a vector, then this could be the Mean Squared Error (MSE) of the values. It 

is possible to show (elaborated below) that the derivative of loss function with respect to each 
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weight is proportional to the input to that weight; i.e., 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑤𝑤𝑖𝑖𝑖𝑖

∝ 𝑥𝑥𝑖𝑖  . Here, xi is the ith input. Therefore, 

when data is sparse and some xis are close to zero, their corresponding weights do not receive 

much updates and the weight update will be concentrated on non-zero inputs. With sparse data, 

the non-zero inputs are few. This means that the optimization that happens during training is done 

over a smaller number of parameters (weights). This is the reason for faster training, as the search 

space for the optimization is much smaller. 

 

Figure 2.6: The input layer and the first layer of a feedforward network 

Now, to see why the relationship of  𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

∝ 𝑥𝑥𝑖𝑖 holds, consider the example network in 

Figure 2.6. This is the first layer of a FFNN. Suppose W ∈ Rnxm represents all the weights. The 

training algorithm computes the gradient of loss function J with respect to a matrix W ∈ Rnxm. We 

can think of J as a function of W taking nxm inputs (the entries of W) to a single output (J). This 

means the Jacobian ∂J/∂W can be represented as: 
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𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊

=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕 𝐽𝐽

𝜕𝜕 𝑊𝑊11
⋯

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊1𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕 𝐽𝐽

𝜕𝜕 𝑊𝑊𝑛𝑛1
⋯

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊𝑛𝑛𝑚𝑚⎦

⎥
⎥
⎥
⎤

  (2.6) 

Since this matrix has the same shape as W, in a gradient descent method we can simply 

subtract it (times the learning rate) from W: 

 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 −
𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊

 (2.7) 

Where t is the iteration number. For individual weights we can write:  

 𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡+1 = 𝑊𝑊𝑖𝑖𝑖𝑖

𝑡𝑡 −
𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

 (2.8) 

Now, if we assume that the network functions are simple weighted sums (we look at more 

complex case later in the work), we have the output zk as:  

 𝑧𝑧𝑘𝑘 = �𝑊𝑊𝑙𝑙𝑘𝑘𝑥𝑥𝑙𝑙

𝑛𝑛

𝑙𝑙=1

 (2.9) 

Consequently, we have 

 
𝜕𝜕 𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= ∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1

𝜕𝜕 𝑊𝑊𝑙𝑙𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

       (2.10) 
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Note that for i=l and j=k, we have ∂Wlk /∂Wij = 1; otherwise, ∂Wlk /∂Wij = 0. So, if l ≠i all 

the related terms in the sum are zero. The only non-zero element of the sum is when i=l and if k = 

j, so we just get xi as the gradient value.  Thus, we find ∂zk /∂Wij= xi if k = j and 0 if otherwise.  

 𝜕𝜕 𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= �𝑥𝑥𝑖𝑖        𝜋𝜋 = 𝑗𝑗
0          𝑜𝑜.𝑤𝑤.

        for k=1…m         (2.11) 

Another way of writing this for vector z (all outputs k) 

 𝝏𝝏 𝒛𝒛
𝝏𝝏 𝑾𝑾𝒊𝒊𝒊𝒊

=

⎣
⎢
⎢
⎢
⎢
⎡

0
⋮
0
𝑥𝑥𝑖𝑖
0
⋮
0 ⎦
⎥
⎥
⎥
⎥
⎤

  ← j’th element          (2.12) 

Therefore, we can compute ∂J/∂Wij as 

 

 
𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑧𝑧
⋅ 𝜕𝜕 𝑧𝑧
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= δ ⋅ 𝜕𝜕𝑧𝑧
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

= ∑ δ𝑙𝑙
𝜕𝜕𝑧𝑧𝑙𝑙
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑙𝑙=1 = δ𝑖𝑖𝑥𝑥𝑖𝑖        (2.13) 

 For some vector δ. As it is seen in equation (2.13), the gradient for each weight is 

dependent on the corresponding input. In cases where the data is sparse, some of the inputs are 

close to 0, leading to small values of gradient and very slow updates. This allows the larger inputs 

to dominate the training and as a result a smaller search space forms, leading to faster learning.   
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Now, if we consider a more general neural network with non-linear activation functions, 

each output in Figure 2.6 network can be basically seen as a function f of the weighted sum of 

inputs and bias (f being the activation function such as sigmoid or tanh):  

 𝑧𝑧𝑘𝑘 = 𝑓𝑓( �𝑥𝑥𝑙𝑙

𝑛𝑛

𝑙𝑙=0

𝑊𝑊𝑙𝑙𝑘𝑘 +  𝑏𝑏𝑘𝑘)   (2.14) 

The gradient descent-based update algorithm tries to minimize the loss J through updating 

the weights as in equation (2.7). Here, with the activation function being considered, we can 

rewrite (2.13) as, denoting zk of equation (2.14) as f(.) for brevity:  

 
𝜕𝜕 𝐽𝐽
∂𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑧𝑧 ⋅

𝜕𝜕 𝑧𝑧
𝜕𝜕 𝑊𝑊𝑖𝑖𝑗𝑗

= δ ⋅ 𝜕𝜕 𝑧𝑧
∂ 𝑊𝑊𝑖𝑖𝑗𝑗

=∑ δ𝑘𝑘
𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑘𝑘=1 = ∑ δ𝑘𝑘

𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑘𝑘=1              (2.15) 

Where δ  is a vector describing how J changes with respect to changes in each output of 

this layer (in output vector z).  To find 
𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

, or 
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

, we note that the output of each neuron is 

basically the activation function applied to the weighted sum of inputs and the bias. If we consider 

the weighted sum as another function h, we have: 

 𝑧𝑧𝑘𝑘= 𝑓𝑓 ( ∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=0 𝑊𝑊𝑙𝑙𝑘𝑘+ 𝑏𝑏𝑘𝑘) = 𝑓𝑓(ℎ𝑘𝑘(. ))      (2.16) 

To simplify the notations and since we are only interested in the derivative of zk with 

respect to Wij, we will denote ℎ𝑘𝑘(. ) as hk (Wij).  Therefore, we can rewrite this as zk= f (hk (Wij)). 

Using the chain rule, we can then derive the derivative as follows:  
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𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕𝑓𝑓�ℎ𝑘𝑘(𝑊𝑊𝑖𝑖𝑖𝑖)�
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝑓𝑓
𝜕𝜕ℎ𝑘𝑘

. 𝜕𝜕ℎ𝑘𝑘(𝑊𝑊𝑖𝑖𝑖𝑖)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

       (2.17) 

Where the derivative of f with regard to hk is the slope of f at some value of u= ∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1 𝑊𝑊𝑙𝑙𝑘𝑘+ 

𝑏𝑏𝑘𝑘. Given the shape of f (for example a sigmoid), this is a bounded scaler ck:  

 
𝜕𝜕 𝑓𝑓
𝜕𝜕 ℎ𝑘𝑘

|𝑢𝑢 = {𝑠𝑠𝑠𝑠𝑜𝑜𝑠𝑠𝑠𝑠 𝑜𝑜𝑓𝑓 𝑓𝑓(ℎ𝑘𝑘) 𝑎𝑎𝑎𝑎 ℎ𝑘𝑘 = 𝑢𝑢}    = 𝑐𝑐𝑘𝑘             (2.18) 

On the other hand, we had shown that for the weighted sum as in equations (2.9) to (2.12), 

the only non-zero value for the derivative with respect to Wij was found when k=j. That is, we 

found ∂h(k) /∂Wij= xi if k = j and 0 otherwise (note that ℎ𝑘𝑘 is in fact zk of equation (2.10)); therefore, 

equation (2.17) can be rewritten as: 

𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= �
𝜕𝜕𝑓𝑓(. )
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

=
𝜕𝜕 𝑓𝑓
𝜕𝜕 ℎ𝑘𝑘

.
𝜕𝜕 ℎ𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖     𝜋𝜋 = 𝑗𝑗 

0                                                     𝜋𝜋 ≠ 𝑗𝑗     
 (2.19) 

Now, by substituting (2.19) in (2.15), and noting that 
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= cjxi only for k=j, and zero 

otherwise, we find: 

 
𝜕𝜕 𝐽𝐽
∂𝑊𝑊𝑖𝑖𝑖𝑖

= � δ𝜋𝜋
𝜕𝜕𝑓𝑓(. )
𝜕𝜕 𝑊𝑊𝑖𝑖𝑗𝑗

= δ𝑗𝑗𝑐𝑐𝑗𝑗𝑥𝑥𝑖𝑖
𝑚𝑚

𝜋𝜋=1
 (2.20) 

As it can be seen, only one finite term (𝑐𝑐𝑖𝑖) has been added to equation (2.13). With sparse 

input, many xi’s have a very small value close to zero. Therefore, given the finite values for δ𝑖𝑖 and 

cj, for those j’s the derivative ∂J/∂Wij becomes close to zero, meaning that the update to weights 
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will be very small and insignificant. On the other hand, for the large xi’s, the derivative may not be 

small and weight changes do happen; as a result, the optimization and gradient descent will be 

more concentrated around the weights that correspond to large values of xi, which are few for 

sparse data. The optimization steps are therefore taken in a smaller space. That is, instead of 

reaching the global minimum equally with small steps from everywhere, the minimum can be 

reached within fewer steps and epochs through only optimizing a few weights. It turns out that the 

results are also equal or better when data is sparsified, which points to the fact that the same 

minimum for the loss function is found in both sparsified or original data case.  

This finding can be observed from the evolution of weights in the training process. We 

have plotted the Hinton weight bias plot of the network weights and biases in Figure 2.7. The 

Hinton plot shows the value of all parameters (weights and biases) of a specific network at any 

time that the parameters are sampled for observation. We have logged the values of these 

parameters after training epochs 3, 7 and 14. Each dot (small square) in the plot corresponds to a 

specific weight or bias. The size of the squares shows the magnitude of the parameter and the color 

shows positive (green) or negative (red) values. It is seen that with the baseline (original nonsparse) 

data, most weights change value during the training process. Whereas, with the sparsified input 

(Figure 2.8), only a small number of weights have significant updates during the process and 

quickly converge as seen in Figure 2.8. In particular, the weights connecting input to layer 1 for 

inputs number 1 to 6 show more changes, compared to other weights.  

For more insight into how the weight values evolve when a sparsifying layer is introduced 

to a TDNN, we also plotted some sample weights in Figure 2.9. Here, we see that for a fixed 

number of epochs, the weights for TDNN with DCT transform quickly converge to their desired 
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values, whereas for a TDNN with no input transform, some weights do not converge even at epoch 

20. The later convergence means that at fixed number of epochs, the TDNN with no transform will 

produce higher forecasting errors than the one with DCT input transform layer. It is also observed 

that for the TDNN with DCT, the weights associated with close to zero values in DCT domain 

(e.g., from input 10 and 16, see Figure 2.5) tend to stop changing after first few iterations, leaving 

the training to weights for larger inputs (e.g., inputs 1 and 5).  The next section studies the impact 

that several different transform options may have on learning rate or accuracy. 

 

 

Figure 2.7: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with no 

input transform layer 
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Figure 2.8: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with DCT 

input transform layer 
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Figure 2.9: Comparing how weights evolve in time in the first 20 epochs for TDNN with DCT 

input transform (right) and TDNN with no transform (left). Only some sample weight values 

are shown due to space limitation.  

 

2.5 Evaluation with different transforms  

In this section, we use several datasets to show how different transforms, or in other words, 

different levels of sparsity, affect the learning rate or performance (accuracy of forecasting). We 

look at two metrics of prediction error and learning time. For prediction error we look at the error 
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of forecasting; time series data is passed through the network and the error of prediction at different 

future times are measured. For each sample at time t in the dataset, there will be a forecast and an 

error instant for each future time (e.g., t+1 or t+10). For a given future prediction, we then take the 

95-percentile of the error instances and report that as the error metric (e.g., 95-percentile of 

prediction at time t+10). Results for other percentiles or future times are observed to be similar, so 

we do not repeat those results here. We use the 95-percentile (e.g., instead of median) as it is 

commonly used for some of the datasets that we use [21].  The trends are similar for median, mean 

or 95%. 

The second metric that we consider is the training time (number of epochs or iterations of 

training). This metric is an indicator of how fast the training algorithm works. While there are 

several options, we work with the most popular algorithm, which is the Levenberg-Marquardt 

backpropagation [22]. It has been shown [23] that this algorithm provides the fastest convergence 

for moderately sized feedforward neural networks. We note that training time and accuracy (or 

error) of results are related.  Training parameters could be set such that error becomes lower, at the 

cost of longer learning time, and vice versa.  

To clearly see the effect of sparsifying data, we experiment with two approaches of fixing 

learning parameters and then measuring time, or fixing the learning time (number of epochs) and 

then measuring error. For the first approach, we have observed that due to several parameters 

affecting training time (like learning performance/error threshold or threshold of failed learning 

steps) the final error is not the same for different methods. This results in both different learning 

time and error for each choice of domain transform. This was reported in our earlier work in [2]. 

Additionally, it is observed that methods that are faster in learning, are also somewhat better in 
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prediction (have slightly lower error). This point is further validated when we fix the number of 

epochs (learning time) and then compare the errors (approach 2). The two approaches consistently 

point to the faster learning for sparser data. 

The experiment settings and parameters are explained in this section. We used the default 

setting of initial µ=0.001, µ decrease factor=0.1, applied after 10 epochs. We also used the 

MATLAB implementation of the backpropagation and the neural network toolbox.  

For the purpose of comparison with the existing state of the art methods, we note that each 

dataset has a different state-of-the art for time series forecasting (since methods are highly 

customized to data). For the NDDS and US101 datasets, the state of the art in industry is the 

prediction method based on constant velocity cruising prediction (CVP) [66] which we also 

compared to conventional neural network baseline in our earlier work [2] . Figure 2.10 shows how 

the CVP compares to neural network-based methods. One of the ANN-based methods is the 

conventional TDNN that we have optimized for these data sets and can be considered as the state 

of the art in ANN-based methods and used as a baseline. Comparison is done on prediction 

accuracy for all methods (Figure 2.10) and on training time for ANN-based methods (Figure 2.11).  

For the ERSST dataset, the state of the art in methods that are not based on neural networks 

is the seasonal ARIMA (SARIMA)[67]. While we considered this method, we have also optimized 

a conventional neural network for temperature prediction and use that as a baseline of ANN-based 

methods for comparison as well. The results are shown in Figure 2.10 for prediction accuracy of 

all methods, and in Figure 2.11 for training time and accuracy of neural network specific methods. 

The superiority of ANN based methods can be seen in Figure 2.10. 
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Figure 2.10: Comparing forecasting error for n samples ahead (n=10) using different 

estimators and for different datasets. The US101 and NDDS data set have been compared 

with CVP[66]; all TDNN based methods outperform CVP, with methods using DCT and 

PCA input transforms showing best results. For ERSST data set, seasonal ARIMA method 

is compared to TDNN based methods with different input transforms or none. All results for 

TDNNs are very similar and overlap and show considerable improvement over seasonal 

ARIMA (SARIMA)[67]. 

For NN based methods, we fix the network configuration for all cases to avoid unfairness 

in comparison. It is important to note that our concern is not finding the best forecasting method, 

instead our concern is to study the possible improvements to neural network training and 

performance using input transforms and TDNNs in general. Therefore, the baseline method may 

not include all possible improvements that one might possibly find for a given dataset. For 
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example, one might create a very large neural network that produces better results, but with 

significant computational cost. Such cases will not satisfy the requirements for small computing 

devices which are the target platform of this work. Our goal, here, is to show the difference 

between sparsifying and not sparsifying data in FFNN or TDNN. For each dataset, we have 

experimented with many different network configurations and are reporting results from the 

network setups that produce the best results under baseline.   

In all these datasets, we use 70% of samples for training and the remaining 30% for testing.  

The best network size for the TDNN for ERSST data was found to be 16x20x10 (for an 

IxHxO network, where I is the input size, H is the hidden layer size and O is the output layer size). 

For the synthetic data, the network size of 16x15x10 and 16x20x10 were the best option 

respectively for synthetic line and synthetic curve. The TDNN size used for US101 and NDDS 

datasets in this section was 16x20x10. We have found these network sizes to produce the best 

prediction results after many trial and error investigations. However, the network configuration is 

not the primary concern here as we are interested in relative performance and the effect of input 

transforms and sparsity. In an earlier work reported in [2], it was shown that the trend reported on 

the improvement due to transforms remains similar at different network sizes. For the sparsifying 

transforms, we have selected three options of DCT, mixed-DCT/Haar, and PCA. We have run the 

algorithms ten times and reported the average for the metrics described earlier.  

In the first set of comparisons the system parameters are fixed and we measure the learning 

time and prediction error. Here the stopping criteria of ML algorithm is unchanged and it is left to 

the algorithm to stop training. The maximum allowed number of epochs was set to 1000. Results 
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for this experiment are reported in Table 2.1 and summarized in Figure 2.11. The result indicates 

the time series prediction error for future sample time of t+10. The time that it took the MATLAB 

implementation to complete the training is also reported. A core i-9 3.5GHz CPU was used for 

these tests. It is observed that in all datasets, the methods employing the sparsifying transform 

produce lower error, while taking considerably shorter amount of time to end the training. For 

example, the training time for baseline method produces around 3.3% higher error and takes over 

20 times (2000%) longer to complete for NDDS dataset, compared to results from DCT 

transformed inputs. This is a significant improvement in learning time and can be observed at 

different levels in Table 2.1.  

Table 2.1: Training time and accuracy for different transforms (max number of epochs set to 

1000).  Error is for prediction error at time t+10; prediction error improvement compared 

to baseline is shown in parenthesis under error. 

Dataset 
 

NDDS-100 US101 ERSST Syn. line Syn. curve 

method Error  time Error time Error time Error time Error time 
Baseline 0.52 4945 1.140 4009 1.062 

 
5723 0.60 2748 0.038 2550 

DCT  0.49 
(%3.4) 

263 1.129 
(0.1%) 

1927 1.062 
  

1425 0.60 97 0.019 
(50%)  

2463 

Mixed-T 0.49 
(3.3%) 

237 1.099 
(3.5%) 

1763 1.066 
 

1702 0.60    108 0.017  
(55%) 

2495 

PCA 0.50 
(3%) 

464 0.987 
(13.5%) 

1059 
 

1.062 
   

1753 0.605 316 0.017 
(%55)   

2322 

 

For some datasets, such as US101, we see from Table 1 that the PCA method produces 

results that have 13.5% lower error than baseline. For the same scenario, DCT produces 3.5% 

improvement. The better performance of PCA corresponds to the sparser input that it produces, as 
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is observable in Figure 2.5. In this figure, we see that PCA transformed input vectors have around 

5 non-zero values (out of 16 data points in each input). This number is around 9 for DCT; thus, 

the sparser data out of PCA seems to produce better results than the slightly less sparse output of 

DCT.  

Note that the much longer training time is observed to be due to the learning algorithm 

operating in a relatively flat area of the error surface. We suspect that even with the baseline, i.e., 

original non-sparse data, the performance would probably reach an acceptable level after a short 

while. Nonetheless, it is expected that sparse methods still perform better even at small number of 

epochs. To investigate this point, in the second experiment approach, we fix the training time to a 

small number of epochs and observe how different methods perform.  
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 Figure 2.11: Training time in seconds (left) and prediction error for different transforms 

and datasets. The maximum epoch was set to 1000. Note that the values in Table 2.1 for 

synthetic curve have been multiplied by 10 so that they can be visible in this figure. 

Table 2.2, Table 2.3 and Figure 2.12 report the results for 25 and 10 epochs respectively. It 

is observed that the prediction error for sparse methods show improvement in most cases. Also, 

the amount of improvement seems to be directly related to how sparse the result of input transform 

is. For example, PCA in Table 2.3 produces the sparsest results for NDDS and US-101, and 

consequently the improvement in prediction error is higher (up to 7.5%). DCT and mixed-
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transform also produce very sparse results and therefore better accuracy at epoch 25. Synthetic 

curve data shows the difference in a more marked way, as expected. The synthetic curve data was 

designed to have 2 large sinusoids, which are easily found by DCT, mixed transform, and PCA. 

As a result, there is a 7.5% improvement.  

It must be noted although PCA provides better results in several cases, PCA bases are data 

dependent. PCA requires analysis of the dataset prior to learning to derive the appropriate 

transform (bases). on the other hand, DCT does not require preprocessing and is not data 

dependent. As a result, the DCT maybe the preferred method. 

ERSST dataset does not show a marked improvement at 25 epochs, mainly due to the fact 

that data had a very obvious periodic pattern (annual pattern of temperature) that could be learnt 

by all methods quickly; nevertheless, from Table 2.1 it is seen that if training was let to continue, 

it would take almost 40% less time to achieve an accuracy that is also 1% better. The improvements 

in more randomized data, such as trajectories in NDDS and US101, are more obvious.  

 

 

 

 

 

 

 



43 

 

Table 2.2: Forecasting Error and improvement for 10 timesteps ahead (number of 

epochs set to 10) 

Transform \ 
Data set 

NDDS-100 
(m) 

US-101 
(m) 

ERSST 
(degrees Celsius) 

Synth 
 

Synth Curve 
 

Baseline 0.53  1.18  1.079   0.61  0.072 

DCT  0.50 (5.6%) 1.14 (3.4%) 1.096 0.60 0.037(49%) 

Mixed-T  0.50 (5.6%) 1.15 (2.5%) 1.099  0.60 0.037(49%) 

PCA 0.50 (5.6%) 1.13 (4.2%) 1.087  0.60 0.042 (41%) 

 

Table 2.3: Forecasting Error and improvement for 10 timesteps ahead (number of epochs 

set to 25)  

Transform 
\   Data set 

NDDS-100 
 (m) 

US-101 
 (m) 

ERSST  
(degrees Celsius) 

Synth line  Synth Curve 
 

Baseline 0.53   1.18 1.133   0.61  0.040 

DCT  0.50 (5.6%) 1.13 (4.2%) 1.12 (1.1%)  0.60(1%) 0.036 (10%) 

Mixed-T  0.50 (5.6%) 1.12 (5%) 1.14  0.60(1%) 0.037(7.5%) 

PCA 0.49 (7.5%) 1.13 (4.2%) 1.12 (1.1%) 0.60(1%) 0.037 (7.5%) 
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Figure 2.12: Normalized prediction error at epoch 10 (left) and epoch 25 (right) for different 

datasets and transforms. Prediction errors are normalized to baseline error in each scenario. 

Note that for synthetic curve scenario in the left plot the values of error for DCT, Mixed-T 

and PCA are below the range shown and are not visible here. 

 

As discussed in the mathematical analysis section, the improvement in accuracy or training 

time for sparsified data can be attributed to the reduction in size of the search space for the training 
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algorithm. From another perspective, when DCT is used as the input transform, each input of the 

TDNN is mapped to a specific frequency. Therefore, the TDNN will be learning the frequency 

components, rather than time domain values. With the input transform layer, the weights 

corresponding to each frequency component will have to adapt to a smaller range of values 

compared to the time domain TDNN, in which all possible values in time may be observed by each 

weight. The concentration of changes in the near DC frequencies, and smaller range of values for 

most other components leads to a smaller search space, as was also mathematically shown in 

section 2.4.  

A different perspective on the very long training time of the baseline method is that the 

optimization error function inside Neural network will be stuck on a flat area. The error function 

surface for sparsified data is perhaps steeper, as error performance quickly converges and the ML 

algorithm ends when it oscillates around a minimum.  

2.6 Summary and Concluding Remarks 

In this work, the impact of sparsifying input data of a TDNN has been studied. A 

sparsifying input transform layer is applied to the input of the network, transforming data using to 

domains such as DCT, PCA or a mixed-transform domain. Through mathematical analysis of the 

backpropagation and gradient descent-based methods, it is shown that with sparse data, most of 

the weight updates are concentrated on components that are associated with non-zero or large input 

values. Seeing the training algorithm as a kind of optimization, it can be deduced that the 

optimization process has a much smaller search space, when the input is sparsified. As a result, 

the training process happens much faster (much lower number of iterations), at the cost of a single 
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extra multiplication to the neural network. Given that the transforms are lossless, we expect no 

loss in accuracy.  

Through training and testing with three realistic datasets and two synthetic datasets, we 

observe that training time can be reduced significantly, while also improving the accuracy. The 

improvement in both training time and accuracy suggests that TDNNs for time series forecasting 

can greatly benefit from inclusion of an input transform layer. We have observed that for datasets 

such as NDDS, the training time can be reduced up to 20 times, while improving accuracy up to 

3.3%. At a fixed and very short training time of 25 epochs, the use of sparsifying transforms offer 

up to 7.5% improvement in accuracy. For datasets with more predictable patterns, such as US101 

or ERRST, the accuracy improvements were smaller; nevertheless, the training time was reduced 

to 40% and 25% of baseline for ERRST and US101 datasets respectively (equivalent to 2- and 4-

times improvement in training time).  

It is also observed that the amount of improvement is correlated with the level of sparsity; 

i.e., sparser input results in faster and better learning. It is therefore reasonable to assume that 

methods that achieve further sparsity, perhaps with non-orthogonal bases, could also be beneficial. 

This is a direction of or future studies.  

From an implementation perspective, the addition of an input transform layer adds a single 

matrix multiplication operation (outside the training loop); in return and in addition to improved 

accuracy, the number of iterations in the training process (backpropagation) can be greatly 

reduced. This reduction leads to significantly lower overall training time (thus computational cost), 

compared to networks without the sparsifying input layer, as also seen through mathematical 
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analysis in [40] section 2.4. The improved accuracy can also be traded off for reduction of network 

size (thus computational cost). We will investigate the possibility of reducing network size in 

TDNNs with the help of sparse input representation in the next chapter (chapter 3). The improved 

performance for some sparsified-input-TDNN networks can be traded off for a smaller network 

size that achieves the same performance as the original TDNN. In general, smaller networks are 

expected to perform worse; by applying the sparsifying layer, we expect to improve the 

performance back to the original network size level.  
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CHAPTER 3. NETWORK SIZE REDUCTION FOR TDNN USING 

DOMAIN TRANSFORM  

3.1 Introduction 

2 In the previous chapter we have shown how sparsifying input data of TDNN, by adding 

an input transform layer to a TDNN, can result in performance improvement. In this chapter, we 

show the improved performance can be traded off for network size reduction. Therefore, we can 

make the network smaller while maintaining the same performance levels. We used the same set 

of datasets as in the chapter 2. ERSST, or the Extended Reconstructed Sea Surface Temperature, 

NDDS or naturalistic driving data set, and US101. The focus of here is on the impact of network 

size reduction using sparse input representation by applying input transforms to a TDNN (and in 

general to a FFNN).  

In most of the works, transforms (in particular Wavelet) are used for improved 

performance, and the specific impact of sparsifying transforms or the impact on network size is 

not discussed. Transforms such as Discrete Cosine Transform (DCT) or Principal Component 

Analysis (PCA) are generally not considered or studied for their impact on sparsity. 

                                                 

2 The work presented in this chapter is based on the following publications: 

Khandani, M. K., Mikhael W. B. : A Study on Network Size Reduction Using Sparse Input 
Representation in Time Delay Neural Networks. 2020 IEEE 63rd International Midwest Symposium 
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 It must be noted that our concern is not on finding the best forecasting method or neural 

network structure; instead, our concern is to study the possible improvements to neural network 

training and performance using sparsifying input transforms in neural networks with low 

computational needs (such as TDNNs or generally FFNN).  

We show that for some data types it is possible to make the networks smaller using sparse 

representation of input. In the next section we will first describe how the transform layer is 

integrated in a network and in later sections the impact is studied. 

3.2 TDNN with Sparsified Input  

The network under study is a TDNN, as depicted in Figure 2.2. It can be seen as a FFNN 

with an input delay buffer added. The delay buffer accepts the serial input X (time series data) and 

parallelizes it to form a D-element vector of the recent history of the time series at that given time. 

D is the input size to the rest of the network, which looks like a general FFNN. The input vector 

can be transformed to another domain of the same or different size. For example, we could apply 

the DCT transform to the vector. This task can be done by inserting a transform layer between the 

delay buffer and the first input layer of the FFNN [2], as seen in Figure 2.2.  

The FFNN may have one or more hidden layers. In this chapter, we consider the simpler 

case of only one hidden layer (of size H), as it is quite sufficient for the time series prediction for 

the datasets studied here. The output layer is designed to have the same size as the desired number 

of samples in the future that the network will forecast. We call this the prediction length, denoted 

as P. With this configuration, a DxHxP neural network results. The size of this network, as 

considered in this chapter, is evaluated as the number of weights needed to be trained and used in 
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the feedforward path. Considering the bias input to neurons, the total number of weights can simply 

be calculated as DxH + HxP +BH+BP, where BH is the number of biases in hidden layer and Bp is 

the number of biases in the output layer. 

    In this chapter, we investigate how network size could be reduced using sparsifying 

transforms that are applied to the input vector. Two different transforms of Discrete Cosine 

Transform-DCT- and Principle Component Analysis-PCA- are considered. Both transforms can 

be easily applied to the input vector using multiplication with a DxD matrix of bases. DCT bases 

are known and can be simply derived from the two-dimensional DCT formulation. For PCA, the 

bases are derived after analyzing the dataset and deriving the data-dependent principle 

components. This means that for each dataset we have a different set of bases. We will observe 

that this makes PCA more efficient, but less practical than DCT if enough prior data is not available 

for a particular application (though that is not expected for the cases studied here).  

   We also note that the training and backpropagation only apply to the FFNN part of the 

network and the input transform layer is not involved and the transform operation is not repeated 

during training. Therefore, in our study of the network size, we focus on the size of the FFNN 

which is the common part in training and testing. It is the weights of the FFNN part that are 

adjusted in each backpropagation run during the learning process. 
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Figure 3.1: Network size reduction by compressing input: the architecture of the TDNN seen 

as a buffer and multi input FFNN of size DxHxP. D is the input (history) length; here a 

fraction (e.g. 75%) of coefficients are used.   
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Using sparsifying transforms, it is expected that the main energy of the signal will be 

concentrated in fewer elements of the input vector (transfer coefficients), possibly reducing the 

need to pass the whole vector the FFNN part. This is similar to compression using DCT, in which 

small coefficients are set to zero (thus not needed to be passed in our network). This allows the 

use of a smaller network, while possibly maintaining the same performance. Figure 3.1 shows how 

the network can be made smaller by only using a fraction of input coefficients. In this chapter we 

have studied 25% and 40% input size reduction. Additionally, the hidden layer may be made 

smaller with sparser input as well. We examine these hypotheses in the next section, after an 

analysis of the network size impact without any transforms. 

3.3 Baseline Network Size Analysis 

Prior to studying the impact of sparsifying transforms, we analyze the impact of network 

size on the performance of a baseline TDNN, i.e., a TDNN with no input transform. For this 

purpose, we have considered three input sizes of 32, 16 and 8 (history lengths that were meaningful 

for our datasets), as well as four hidden network sizes of 5, 10, 20 and 30. The prediction 

performance was analyzed through measuring the 95 percentile of the prediction (forecasting) 

error at some time samples ahead. For each sample at time t in the dataset, we considered a forecast 

and an error instant for each future time from t+1 to t+5. Since it is usually the longer-term 

prediction values that are critical, we take the t+5 prediction for error measurement. Here we 

considered the 95-percentile of the error instances for prediction at t+5. We note that the network 

was designed to predict 5 points in the future, so the output size was P = 5. We use the 95-

percentile, instead of other statistics as it is commonly used for some of the datasets that we use 

[2].  The trends are similar for median, mean or 95%.  
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    The training for all the scenarios was done for a fixed number of epochs, 15, to remove 

the effects of other parameters such as validation error threshold. We have also used the default 

training setting of initial µ=0.001 and µ decrease factor=0.1, applied after 10 epochs. We also used 

the MATLAB implementation of the backpropagation and the neural network toolbox. We used 

70% of the samples in the dataset for training and 30% for testing. Results from these tests are 

reported in Figure 3.2.  

     It is observed that for all datasets the larger network sizes produce better performance, 

as expected. Another important observation is that hidden network size of 5 produces noticeably 

higher error, while H=10, 20 and 30 are not considerably different. Similarly, larger input sizes 

produce better results. Given the consistency in improvement with input and hidden layer size, we 

will take the middle option of input size 16 for our study of input compression (through sparse 

representation) in the next sections.  

3.4 Evaluation   

To study how sparsifying the input may allow using smaller networks, we vary the hidden 

layer size while keeping the input to be a vector of size 16 (D=16) under different transforms. In 

some instances, when a transform is applied to the input, we can also remove some transformed 

input elements (coefficients of the transform results) as shown in Figure 3.1. This will allow 

reducing the input size as well as the reduction that is possible by adjusting the hidden layer size. 

This is examined in detail in this section. The number of training epochs is kept at 15.  

The transforms that are applied are DCT and PCA; the PCA bases are separately calculated 

for each data set. The results are different for each data set. Starting from the ERSST dataset, the 
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prediction error results in Figure 3.3 show that all options of DCT, PCA and their compressed 

version (where 25% of the smallest coefficients were removed from the input, resulting in vectors 

of length 12) perform better than the baseline. In particular, it is seen that for smaller network sizes 

(smaller hidden layer size, for example 5 and 10), the gain in performance is more notable. The 

gain is also more visible at hidden layer size 30.  

Similarly, for the NDDS dataset, with results shown in Figure 3.4, we observe that the gain 

in performance is more notable for smaller hidden layer size of 5. The performance gap is also 

notable at H=30, similar to the ERSST dataset.  

The results for US101, demonstrated in Figure 3.5, show similar trend but with an across 

the board performance gap for sparsified inputs (through either DCT or PCA). The improvement 

is visible for all hidden layer sizes. Here, we could obviously use this performance gain and remove 

some of the coefficients (25% in this case, yielding input vectors of length 12), while still 

maintaining the performance at the baseline level.  
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Figure 3.2: Forecasting (prediction) error for twelve network size configurations (D=8, 16, 

32, and P = 5, 10, 20, 30) for three datasets of ERSST (top), NDDS (middle), and US101 

(bottom)  

Overall, we observe that applying DCT or PCA and removing 25% of the coefficients will 

always allow performance of at least at the same level as baseline. 

We examined higher levels of compression (removing more than 25% of coefficients from 

input) and it was observed that the prediction results become worse than baseline, except for the 

NDDS dataset. This dataset includes driving maneuvers with sudden movement, which are perhaps 

more suitable to be captured by sparse representations, rather than in time domain. For this dataset, 

we could remove up to 40% of the coefficients from PCA or DCT transform results (yielding input 

vectors of size 10), and still maintain the error below baseline levels. The results are reported in 

Table 1, along with the network sizes and the number of weights that are used in each network.   

From the results in this section, it is seen that the network size choices are first dictated by 

the performance requirements (acceptable error levels). Given a particular performance target, the 
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use of sparse representations, such as DCT or PCA will allow selection of a smaller hidden layer 

size. Furthermore, compression can also be applied to the input layer. For example, for the ERSST 

dataset, if an error of 1.11 degrees Celsius is acceptable, the smallest baseline choice will be H=10. 

However, with the use of PCA or DCT, a considerably smaller layer of H=5 can be used to achieve 

an error of 1.10. Furthermore, with compressing either PCA or DCT coefficients, the network 

could further be made smaller while still maintaining error at 1.11 degrees. 

 

Figure 3.3: Prediction error results for ERSST dataset; different choices of sparsified and 

compressed input compared to baseline. The horizontal axis shows the hidden layer size H  

            

Figure 3.4: Prediction error results for NDDS dataset; different choices of sparsified and 

compressed input are compared to baseline. The horizontal axis shows the hidden layer size.  
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Figure 3.5: Prediction error results for US101 dataset; different choices of sparsified and 

compressed input are compared to baseline. The horizontal axis shows the hidden layer size.  

 

3.5 Summary and Concluding Remarks 

We have studied the possibility of reducing network size in TDNNs with the help of sparse 

input representation. With a given level of performance (in this case, prediction error), it is possible 

to considerably reduce the hidden layer size of a network, simply by applying sparsifying 

transform to the input layer. Furthermore, the considerable improved performance allows for 

additional network size reduction through removing some of the coefficients of the sparse 

representation of the input vector. It is observed that this trend is generally seen for all datasets, 

with a 25% reduction of the input size possible for all of them. However, for some datasets such 

as NDDS, the input can be further compressed with up to 40% reduction in size. 

 Overall, it is consistently seen that applying sparsifying transforms to the input of a TDNN 

allows for better performance which can be traded off for reducing network size in both the input 

and the hidden layers. While we have analyzed the DCT and the PCA based transforms, other 
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types of transforms may exist that could provide further improvements. The concept described 

here could also be employed with larger and deeper networks and is being currently investigated. 

 

 

Table 3.1: NDDS data set: different number of weights (network sizes) for TDNN based 

methods, each row represents the prediction error for each method.  

            #weights       
 
transform 

665 
16x30x5 
 

445 
16x20x5 

225 
16x10x5 

115 
16x5x5 

None 0.520552 0.517456 0.518695 0.569658 

DCT 0.508220 0.498591 0.518596 0.515907 

PCA 0.494928 0.506184 0.510347 0.521136 
 

             #weights 
 
transform 

545 
12x30x5 

365 
12x20x5 

185 
12x10x5 

95  
12x5x5 

DCT-comp 25% 0.509024 0.517149 0.510361 0.521448 

PCA-comp 25% 0.502860 0.512252 0.516338 0.513015 
 

            #weights 
transform 

485 
10x30x5 

325 
10x20x5 

165 
10x10x5 

85  
10x5x5 

DCT-comp 40% 0.518945 0.520815 0.525214 0.562984 

PCA-comp 40% 0.521770 0.527519 0.523211 0.534384 
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CHAPTER 4. ENHANCING CONVOLUTIONAL NEURAL NETWORK 

PERFORMANCE USING DOMAIN TRANSFORMS IN CONSTRAIEND 

NETWORKS 

 

4.1 Introduction 

3The task of image classification has many applications in computer vision. Recent 

advancements in Convolutional Neural Networks (CNN) have paved the way for significant 

improvements in image classification over traditional image processing methods. In particular, 

deep convolutional neural networks are now considered the main tool for this purpose. However, 

these networks are often large and require computing and storage resources that are not available 

in many smaller computing devices. For example, very small IoT (Internet of Things) devices are 

usually designed with minimal computing and storage capacity with the aim of reducing cost. 

Using image classification applications in large scale deployment of IoTs will require either 

considerable cost increase, or considerable reduction of performance. Moreover, the task of 

                                                 

3 The work presented in this chapter is based on the following under-review paper: 

Masoumeh Kalantari Khandani, Wasfy B. Mikhael, “Efficient Size Reduction of 
Convolutional Neural Networks Using Domain Transforms”, Under review  
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training CNNs, which is often done offline, is sometimes needed to be done online for retraining 

of networks. This task is generally very computing intensive, compared to the forward operation 

of CNN. Therefore, it becomes necessary to look for methods of reducing the computational cost 

of CNNs for low power computing devices.  This is generally achieved in some applications by 

reducing the size of input data (images) and the processing neural network. To put this in 

perspective, most deep networks that are used for classification have millions of learnable 

parameters. We limit our choices of networks to those with an order of magnitude less parameters 

(i.e., under 200K learnable parameters and down to 50K). The reduction in network and input size, 

as expected, usually comes at the cost of reduced classification performance. In this chapter, we 

examine how domain transforms can be used for mitigating the negative effect of input and 

network size reduction.   

We show that using transforms, such as Discrete Wavelet Transform (DWT) and Discrete 

Cosine Transform (DCT) as an input transform layer, it is possible to efficiently improve the 

performance of size-reduced networks. We note that these transforms project the original image 

data to a domain where data is represented in a sparser form, allowing for selectively removing 

part of the input data and reducing the input image size in a more efficient way than simple resizing 

of an image. We observe that such transforms also have the positive side effect of improving the 

learning rate. Similar benefits were seen in our earlier works on time series and shallow networks  

[40]. The improved learning rate and network size reduction allows for lower computational cost, 

in particular during the training phase. Training of deep networks is usually the most 

computationally expensive aspect of CNNs; while retraining a network requires less computations, 
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it is still considered a heavy load on smaller devices. The reduced cost of training, achieved using 

domain transforms, is an important factor that can enable retraining of CNNs in small devices. 

The basic hypothesis that is examined in this chapter is that transforming image data to a 

sparser form will allow for more efficient network and input size reduction than simply resizing 

the input. We demonstrate that in most cases the improvement can be traced to higher entropy of 

resized input using transforms. While in data compression the use of such transforms is common, 

in classification applications it is not intuitive that sparser representation will be useful. In fact, it 

is seen that the usual application of CNNs with convolutional filters in the input layers is not useful 

when data is represented in domains such as DCT. On the other hand, it is seen that more efficient 

configurations becomes possible if DCT is used. Transfer to DWT domain shows different 

properties, since the spatial relationship between initial data pixels are maintained (as opposed to 

DCT that the spatial relationship is not explicitly kept). To evaluate and examine these hypotheses 

and observations, we use two standard datasets of small images (representing IoT processable 

images), including Fashion MNSIT (FMNSIT) and CIFAR-10. Evaluating our proposed methods, 

it is shown that input size reduction of up to 75% is possible, without loss of classification 

accuracy. While transforms such as DCT allow variable input and network sizes to be utilized, 

DWT proves to be very effective when significant size reduction is needed (improving the result 

by up to 5%). 

In the rest of this chapter, we first review some related literature. Then the system 

architecture and the proposed method for addition of an input transform to a CNN is explained. 

Evaluations and discussion of different configurations and network size reduction options are 

presented last.  
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4.2 Related Work 

The focus of this work is on the effect of domain transforms in improving the performance 

of shallow or small convolutional neural network in image classification. In particular we are 

interested in devices with limited computing capacity or CPUs instead of GPUs. There are many 

methods and tools employed for image classification in different applications with larger 

computing facilities, such as the works on Res-Net, VGG, Alex net[41][42][43]. We do not review 

these works here as they are out of the scope of this chapter. It is worth noting that if large and 

complex deep networks were possible with our target devices, better results for image 

classification could be achieved for the datasets of interest. For example, utilizing the work in[44], 

a classification accuracy of above %91 is achievable; similarly, the methods in [45] achieves 

%96.5 with the help of expanded training with data augmentation. Other recent large networks 

also perform similarly[44]. However, the above methods require orders of magnitude larger 

networks, in terms of number of learnable parameters, than what we are considering in this chapter. 

Our interest in this chapter is to study networks with under 200,000 parameters, while methods in 

[44] and [45], respectively have 1.3 and 50 million parameters in their proposed networks. As a 

result, we do not consider such large designs in this chapter and use smaller generic networks as 

explained later. Our focus in this chapter is on the impact of domain transform on smaller networks, 

and the specific network architectures are not the emphasis of this study.  

The use of transforms and neural networks has received some attention for time series and 

image classification applications, we review the use of domain transforms in image classification 

in this section.  
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Transforms such as DCT and DWT are popular in image processing applications and 

consequently have been considered in some specific image classification designs. For example, 

Pan et al [24] have shown that reducing image information redundancy using DCT can be 

beneficial to face recognition applications. They have demonstrated that when DCT coefficients 

are fed into a backpropagation neural network for classification, a good recognition rate can be 

achieved by using a very small proportion of transform coefficients. This work is specific to face 

recognition and is not directly applicable in our case. Wang et al [35] have introduced a method 

called CNN-pack, in which a convolutional neural network itself is transformed into frequency 

domain and packed by linearly combining the convolutional responses of DCT bases. This method 

is shown to reduce the computational burden since the network becomes sparser. This work is in 

principle different from our work in its method of transforming convolution operations in a CNN. 

In another work, Ghosh et al [46], propose to apply DCT on the feature maps generated by 

the first convolutional layer in the network. They observe that the training phase convergence is 

faster when feature extraction takes place in the DCT domain. Performance remains comparable 

in this case. This is similar to our observation for time series [40]; although our proposed method 

in this chapter primarily achieves improved performance without sacrificing training time.  

A different approach in using domain transforms is taken in [47]. Here, authors propose to 

feed and train a CNN by modifying the input representation of the JPEG compressed data. This 

means that the image does not have to be in the RGB or similar original domain and the proposed 

CNN can be trained with JPEG compressed DCT coefficients. This work utilizes deep and 

complex networks and is shown to produce good accuracy. However, their method is more suitable 

for training on already JPEG compressed images and is not directly applicable in our case. We do 
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not expect images to have gone through JPEG compression prior to becoming available to the 

classification application running on the CPU.  

A completely different approach to using domain transforms and CNNs is proposed in  

[48]. This work proposes Hybrid Cosine Based CNNs which use a cosine basis to represent the 

weights of the convolutional filters. This amount to a different method of applying the filters. 

Authors show that better performances can be obtained than VGG and Res-Net architectures using 

less parameters in the convolutional layers. The complex networks designed in this approach are 

not useable for the small CPUs that we consider our case.  

In this chapter, we study the impact of adding a domain transform layer to the input of a 

small or shallow CNN. The layer will transform the input to a domain where it is represented in a 

sparser form. We show that it is possible to efficiently reduce the input image size using 

transforms, compared to the averaging methods for resizing an input. Our work is different from 

existing works in that we do not utilize transforms in the operation of a CNN (how filtering is 

done), or directly in compression. Rather, our aim is to maintain enough information in the data 

that makes classification work better. We note that since the existing methods are designed for 

specific datasets and use large and deep CNNs, it is not possible to directly compare the impact of 

adding a transform layer to existing methods. Therefore, in this chapter we customize CNNs for 

specific datasets and compare them with the results of the same networks in the visual domain 

(baselines).  
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Figure 4.1: Sample images from Fashion MNIST[64] and Cifar-10[57] datasets. 

4.3 Method and System Description 

The concept studied here is to transfer the input image to a different domain before passing 

it through the CNN either with the same size or at a reduced size. This is achieved by adding a 

transfer and size reduction layer immediately as the first layer of a convolutional neural network. 

In this chapter we consider two examples of domain transform using DCT and DWT (Wavelet) 

transforms, as well as their variations. For size reduction, we consider reducing the width and 

length to either half or a quarter of their originals. Respectively, this will result in images with total 

pixels that are ¼ and 1/16 of the original. For simplicity, in this chapter we refer to the former as 

-half and the latter as -quarter sizes, indicating the size reduction of each dimension of the image. 

Therefore, the outputs of the domain transform and size reduction operations will have at least 9 

options as indicated in Table 4.1. We note that the size reduction using transforms can happen in 

multiple ways. For example, with DWT, halving the width and length can happen by only taking 
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the LL component (or any other wavelet output component, as illustrated in Figure 4.4). For DCT, 

the lower frequency components may be kept. Table 4.1 describes all the choices that are used in 

this study.  

Table 4.1. the outputs of the domain transform and size reduction will have at least 9 options 

Transform and 

Resize 

Utilized 

Transform 

Resize method Description 

Baseline - - Original image 

Baseline-Half - Resize to N/2 x N/2 Resize using averaging 

Baseline-Quarter - Resize to N/4 x N/4 Resize using averaging 

DCT DCT2 - DCT transformed 

DCT -Half DCT2 Resize to N/2 x N/2 Apply DCT, take lower 1/4 of 

coefficients 

DCT -Quarter DCT2 Resize to N/4 x N/4 Apply DCT, take lower 1/16th of 

coefficients 

DWT CDF_9/7 - DWT transformed 

DWT-Half CDF_9/7 Resize to N/2 x N/2 Apply DWT once, take LL band 

DWT-Quarter CDF_9/7 Resize to N/4 x N/4 Apply DWT twice, take LL2 band 



67 

 

The network with the additional transform and resizing layer is shown in Figure 4.4. The 

configuration of the CNN can vary greatly based on different solutions that are found in the 

literature. Nevertheless, there are common components such as convolutional layers, Relu, 

maxpool, batch normalization layer, fully connected layer and soft-max layer that are used in a 

chain 

   

 

Figure 4.2: Architecture of the CNN in general and adding a transform layer. A Transform 

layer can be inserted between the input and the CNN. 
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In this chapter, our objective is not to find the best possible CNN architecture for a given 

input type (or image dataset), instead our focus is to study the impact of domain transform on the 

performance of a general shallow CNN and how network size could be made smaller. Therefore, 

we have used architectures that are used as basic CNNs for image classification with some small 

changes to improve their performance. We also emphasize that the objective of this chapter is to 

devise solutions that require low computational power; therefore, complex and very deep CNNs 

are not acceptable solutions for this purpose. As a result, we use networks with less than 3 

convolutional layers (2 for FMNIST and 3 for CIFAR-10), 32 filter with size of at most 5, and at 

most two fully connected layers (see Table 4.2 and Table 4.3). We note that there are very complex 

deep networks that have been proposed for the datasets used in this chapter. For example [49][50] 

for Fashion MNIST, and [51] [52] for CIFAR-10. These architectures are designed after extensive 

hyper parameter fine tuning and require many layers and large filters, resulting in very lengthy 

training and computational cost [53] . Changes in input form (from transform) and size will render 

those solutions non-optimal; their computational requirements are also well beyond the power of 

the small processor devices that we are considering in this chapter. Therefore, the state of the art 

that we compare our methods against are smaller forms of the networks derived from the [56][57] 

for CIFAR-10 and [54][55] for FMNSIT, which utilize the number of filters and layers acceptable 

in this work. We have fine-tuned these state-of-the-art methods to optimize them for the datasets 

and input sizes used here. These are referred to as the “baseline” solutions in Table 4.2 and Table 

4.3. 
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4.3.1 Data Sets 

We utilize two very well-known datasets of Fashion MNIST (FMNIST) and CIFAR-10 in 

this chapter. We have particularly selected these datasets as they contain small images and are 

good representatives for applications with low computational requirements. The FMNIST dataset 

was introduced in [58]; it includes fashion product images in grayscale. It is intended to be a 

replacement of the original MNIST dataset and provides a more challenging alternative for 

benchmarking machine learning algorithm. The images are of size 28x28 and their small size 

allows fast and computationally inexpensive methods to be used. On the other hand, the small size 

of the images creates a challenging task in classification. In total, FMNIST contains 70,000 

grayscale images of fashion articles in 10 categories. For the machine learning application, the 

training set of FMNSIT contains 60,000 images (6000 from each category) and the test set includes 

10,000 images (1000 from each category). 

While FMNIST images are in grayscale, the CIFAR-10 dataset contains small color (RGB) 

images of size 32x32 in 10 classes. There are in total of 60000 images, with 6000 images per class. 

50000 of the images are training images and 10000 are test images [59][56].  

4.3.2 Network Architecture 

As described above, a different network setup is used for each dataset. The reason is that 

the FMNIST dataset includes grayscale images of 28x28 pixels, whereas the CIFAR dataset 

contains RGB color images of 32 by 32. For the purpose of our study, we have zero-padded the 

FMNIST images to create 32x32 images to allow better applications of transform. We expect no 

degradation of quality due to zero padding as confirmed in [60]. We found the following networks 
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layers to produce the best results under the size constraints set out earlier for small processor 

devices.  

For the FMNSIT dataset the network design is detailed in Table 4.2. Basically, we use only 

two convolution layers. To demonstrate that the network choices were robust and not very sensitive 

to the hyper parameter changes, we have examined few different choices of the number and sizes 

of the filters and present the results. The number of filters used in these layers were from four 

different configurations; we named them network A, B and C. For network A both first and second 

convolution layers have 8 filters with size one. Network B uses 8 filters with size one for the first 

convolution layer and size 5 for the second convolution layer. For network C, we have used 8 

filters for each convolution layer, with filters of size 3 for the first layer and size 5 for the second 

one.  

For the CIFAR dataset we use the network in Table 4.3. We only use one network size with 

three convolutional layers. The number of filters and their sizes are fixed for all situations as shown 

in the table. The combinations of pooling layers and operations are found after extensive study to 

optimize the performance with the constraint of 3 convolutional layers. In all of the studies with 

domain transform, we take the best network choices for each network (the three networks for 

FMNIST and the selected network for CIFAR). These networks are then used for the study of the 

input domain transform and size reductions.  The process of domain transformation and size 

reduction is explained below, for each choice of the transform. 
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Table 4.2: Convolutional Neural Network layers used for Fashion MNIST images (networks 

A, B, C); input images are nxnx1, n=N, N/2, or N/4 

Network A Network B Network C 

*image Input Layer (nxn) 

*convolution2dLayer 

(8 filters of 1x1) 

* Batch-Normalization Layer 

*Relu Layer 

*maxPooling2dLayer 
(size=2, stride=2) 

*convolution2dLayer     
(8 filters of 1x1) 

*Batch Normalization Layer 

*Relu Layer 

*fully Connected Layer (10) 

*softmax Layer 

*classification Layer 

*image Input Layer (nxn) 

*convolution2dLayer  

(8 filters of 1x1) 

*Batch Normalization Layer 

*Relu Layer 

*maxPooling2dLayer 
(size=2, stride=2) 

*convolution 2d Layer 
(8 filters of 5x5) 

*Batch Normalization Layer 

*Relu Layer 

*fully Connected Layer (10) 

*softmax Layer 

*classification Layer 

*image Input Layer (nxn) 

*convolution2dLayer 

 (8 filters of 3x3) 

*Batch Normalization Layer 

*Relu Layer 

*maxPooling2dLayer  
(size=2, stride=2) 

*convolution2dLayer      
 (8 filters of 5x5) 

*Batch Normalization Layer 

*Relu Layer 

*fully Connected Layer (10) 

*softmax Layer 

*classification Layer 

Number of learnable parameters: 

       Input Image size 

network 

NxNx1 N/2xN/2x1 N/4xN/4x1 

Network A 28978 9778 4018 

Network B 19634 5554 2354 

Network C 17378 4578 2018 
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Table 4.3: Convolutional Neural Network layer used for CIFAR-10   

Layers for input image of nxnx3; (3 RGB channels)  

n = N, N/2, or N/4 

*Image Input Layer([nxnx3]) 

*convolution2dLayer (32 filters of size 5) 

*Relu Layer 

*convolution2dLayer (32 filters of size 5) 

*Relu Layer 

*convolution2dLayer (32 filters of size 5) 

*Relu Layer 

*averagePooling2dLayer (size 3, Stride 2) 

*fully Connected Layer (20) 

*Relu Layer; 

*Fully Connected Layer (10) 

*Softmax Layer 

*Classification Layer  
 

 
 
 
 
 

Image sizes Number of learnable 
parameters:    

NxNx3  197926  

N/2xN/2 x3  85286  

N/4xN/4 x3  59686  

 
 

 

4.3.3 Input Domain Transforms and Size Reduction 

There are numerous options for domain transform. We consider two specific transforms 

that have different characteristics: DCT and DWT. The DCT transform projects image data to 

some frequency domain, representing it in a form that is sparse and spatially distributed in a very 

different form from the original data. On the other hand, DWT utilizes wavelets and produces 4 

sub-bands of LL, LH, HL, and HH, representing data in forms that can be visually related to the 

features of the original data. LL is the low frequency sub-band, resembling a low pass filtered 

version of the original image. The other bands, LH and HL, include higher frequency components 
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in the vertical and horizonal dimensions of the image. HH sub-band gives diagonal features. The 

visual similarity points to the fact that the spatial relationships in the original image domain is 

more explicitly maintained with DWT. However, the four bands are disjoint and each only has 

1/4th the size of the original. Therefore, the methods of size reduction or constructing full size 

transformed images will be different for each scheme. These processes are explained in detail 

below. 

4.3.3.1 Discrete Cosine Transforms  

The first transform that we consider is Discrete Cosine Transform (DCT), which is one of 

the sinusoidal transforms. It was explained in detail in Chapter 2. A common variant of DCT is 

DCT-II and can be applied to signals with multiple dimensions. For example, a 2-dimensional 

DCT transform of an image or 2-D signal x (of size NxM) can be calculated as follows: 

 𝑋𝑋𝑐𝑐𝑐𝑐(k) = 𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐 ∑ ∑ 𝑥𝑥[𝑛𝑛]. cos[ 𝜋𝜋𝑐𝑐
𝑀𝑀

(m + 1/2)] . cos[ 𝜋𝜋𝑐𝑐
𝑁𝑁

(𝑛𝑛 + 1/2)]𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0          (4.1) 

 
𝑎𝑎𝑐𝑐 = �

1
√𝑀𝑀

                      𝑐𝑐 = 0
√2
√𝑀𝑀

     1 ≤ 𝑐𝑐 ≤ 𝑀𝑀 − 1
         ,       𝑎𝑎𝑐𝑐 = �

1
√𝑁𝑁

                       𝑑𝑑 = 0
√2
√𝑁𝑁

     1 ≤ 𝑑𝑑 ≤ 𝑁𝑁 − 1
  

 

Where X is the matrix of coefficients (results) of the transform, and the indexes c and d are 

as: c=0,1, 2, …, N-1, and d=0,1, 2, …, M-1.  

For data, such as natural images, most of the information is usually concentrated near lower 

frequencies. This leads to very sparse coefficients being produced by sinusoidal transforms such 

as DCT. While the sparsity is useful in compression applications, it has the side effect that the 
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range of values for different coefficients is usually much larger than the difference of values for 

original image pixels (intensity levels). We consider reducing such differences in later sections of 

this chapter and show that it has a positive impact on results.   

To visually observe the impact of applying a 2-D DCT on an image, Figure 2.3 shows the 

DCT coefficients of an image from FMNIST dataset. We note the sparsity of coefficients and the 

large range of coefficient values. 

  

  

Figure 4.3: Visualizing effect of DCT. Top: a sample image from FMNIST shown in 2-D and 

3-D (x, y, and intensity) forms; bottom: DCT coefficients of the same image in 2-D and 3-D 

(x, y, and coefficient value) forms. 
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Resizing DCT transformed data 

Resizing images in the DCT domain is straightforward and can be done by selecting a 

fraction of the lowest frequencies of the coefficients. This is in particular useful for natural images 

that usually have most of their energy concentrated in the lower frequencies as seen in Figure 4.3. 

Original image can be approximately reconstructed by setting the value of the removed higher 

frequency coefficients to zero, and performing an inverse DCT transform. The advantage of DCT 

in size reduction is that it allows any number of the coefficients to be removed.  

A disadvantage of DCT is that the spatial relationship between neighboring pixels are not 

directly capturable by the convolutional filters. The convolutional filters are designed such that the 

spatial relationship of neighboring pixels, which is usually visible, is easily captured through the 

convolution operation. DCT coefficients are structured in such a way that the local relationships 

are spread over different frequency coefficients. This means that the design of convolutional filters 

may have a harder time capturing the spatial features in an image.  

4.3.3.2 Discrete Wavelet Transforms  

The second transform considered in this work is the Discrete Wavelet Transforms (DWT). 

DWT produces four sub-bands low-low (LL), low-high (LH), high-low (HL) and high-high (HH). 

By using these four sub-bands we can regenerate original image through inverse DWT. Wavelets 

are especially useful for compressing or denoising two dimensional signals, such as 

images. Wavelet analysis is basically the process of decomposing a signal into shifted and scaled 

versions of an original wavelet function (for more information refer to Chapter 2).  
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To construct 2-D transform, the transform is applied in both directions. In contrast to 

frequency-based transforms such as DCT or DFT, DWT has a key advantage it can capture both 

location (time) and frequency information, in addition to the discontinuity in the signal. The non-

sinusoidal nature of the basic wave functions provide a simple and computationally efficient 

approach for analyzing the local aspects of a signal[36][37].   

The specific version of the DWT used in this chapter is based on Cohen–Daubechies–

Feauveau wavelets. These are a family of biorthogonal wavelets that was made popular by Ingrid 

Daubechies [61][62]. We use the CDF 9/7 wavelet, which is also used in JPEG 2000 standard for 

lossy compression. 

 

  

Figure 4.4 Visualizing the effect of DWT transforms; left: sample image from FMNIST data. 

Right: DWT transformations, the four bands: top left (LL), top right (LH), bottom left (HL) 

and bottom right (HH). 
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An example of the DWT applied to an image is seen in Figure 4.4. Applying DWT to an 

NxN image produces four signals of LL, LH, HL, and HH, which are all of size N/2xN/2. LL 

includes lower band and is visually similar to the original image. Putting the four bands together 

will create a 2-D signal which has the same size as the original image; however, this composition 

may not be directly fed to a CNN, since the transition from boundaries of the four different bands 

in a NxN composition as in Figure 4.4 has no spatial meaning. That is, the bottom edge of LH and 

the top edge of HH are not spatially related, so they cannot be interpreted by the CNN as being 

directly relevant. Therefore, composing the full signal in DWT form has to happen in a different 

way than what is shown in Figure 4.4. One method is to stack the four bands and create a signal 

of size 4xN/2xN/2, which basically has the same size as the original image.  

 

Resizing DWT transformed data 

Reducing input size using DWT is much more limited than when DCT is used. With DWT, 

we can use one or more of the four bands. If one band, e.g., LL, is used, a compressed image of 

size N/2xN/2 is obtained. This will generate a transformed data with the half length and width as 

noted in Table 1. To further reduce the image size, we can apply DWT to the LL band for a second 

time, producing four bands out of the first LL. If the LL band of the second transform (which will 

be the obtained LL of the previous LL band) is kept as the signal, an image of size N/4xN/4 is 

obtained. Of course, there are numerous possibilities for stacking several bands and achieving data 

sizes in between half and quarter dimension images. In this chapter we study the full (stacked), 

half and quarter dimension options of the DWT transformed data.  
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4.4 Entropy Analysis  

This section provides some insight into the reason for improved performance when size 

reduction is accomplished using domain transforms. When a transform like DWT or DCT is 

applied to an image, the resulting coefficients contain the same information as the original image, 

but organized in a different way. These transforms are not lossy. Therefore, theoretically we do 

not expect that the transformed data provide advantages or disadvantages in terms of the amount 

of information for classification. However, it is possible that the new organization of image data 

(coefficients of transformed data) may change the behavior of specific CNN configurations either 

positively or negatively. This is studied in the evaluation section.  

In this section we focus on the case of resized input data, in which some loss of information 

happens. It is generally expected that the loss of information will result in degraded classification 

performance. The more information is lost, the worst the performance would be. While this logic 

may generally hold, the organization of the resized image (how coefficients represent the data) is 

also important in the performance of a CNN. Nevertheless, preserving more information during 

the lossy process of resizing input data is expected to be beneficial. Measuring the amount of 

information in an image is a challenging task. For the purpose of our study, and to qualitatively 

compare different methods, we use the image entropy measure.  

Entropy of a signal was introduced in 1948 by Claude Shannon to study the amount of 

information in a message. A higher value of entropy would mean that there is more information in 

the message and more bits were needed for its transfer. It was used to derive the lowest bound of 

the channel capacity (bandwidth) needed for a message (which would be achieved if an ideal 
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coding was used). The concept of entropy has been used for images (2-D signal) as well [63]. We 

can use entropy of an image to quantify how much information is available in the image, which 

can be used by the CNN for classification. So, a method that preserves more information, is 

expected to produce 2-D signals with higher entropy and possibly higher classification accuracy 

in CNN. However, we also note that the different organization of transformed information may 

also impact the results. Considering these facts, in this section we look at the entropy of resulting 

signals for different methods of input size reduction. 

Entropy calculation is done according to the following formula:  

 
𝐻𝐻(𝑋𝑋) = −�𝑠𝑠(𝑥𝑥𝑖𝑖)𝑠𝑠𝑜𝑜𝑙𝑙𝑠𝑠(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 
(4.2) 

H(X) is the entropy of the random variable X. Here p(xi) is the probability that outcome xi 

happens. In the case of gray image, the probability density p(.) is calculated using the gray level 

histogram, and the sum runs from n=1 to 256. The bins represent possible states. For RGB images, 

we treat each channel separately and then the average of the three channel is used. Here the 

assumption is that each data point (pixel intensity in the image) is represented in a quantized 

discrete form. This poses a difficulty in comparing entropy of different methods, since our data is 

in a real number format (double).  
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Figure 4.5: process that images go through for CNN with: baseline (top), DCT or DWT input 

transform layer (bottom), the entropy is calculated for reconstructed image I’ and I”. 

Resizing by 1/n can be done for n=2 or 4 

 

Quantizing transformed data in different domains is not possible in a fair way since the 

range of values in DCT, DWT and original images are different and quantization with a small 

number of levels (e.g., 256) will hide a lot of details in methods such as DCT due to large range 

of coefficient values. To overcome this issue, we can transform the reduced size data back to the 

original domain original size through a lossless inverse transform of the resized data.  

We note that the transforms and their inverses do not change the amount of data (thus they 

do not change the entropy). So, the end-to-end change in the entropy is due to the resizing (or 
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compression) in the middle.  It is straightforward to apply an entropy calculation method using 

256 quantization levels in the original image domain. This process is shown in Figure 4.5.  

Table 4.4: Cifar-10 normalized mean Entropy value for different transforms. 

method Mean Entropy half Mean Entropy Quarter 

Baseline 1.0000 1.0000    

DCT 1.0144    1.0215      

DWT 1.0081 1.0125 

 

Table 4.5: Fashion Mnist normalized mean Entropy value for different transforms. 

method Mean Entropy half Mean Entropy Quarter 

Baseline 1.000 1.000 

DCT 1.1417 1.5780 

DWT 1.0572 1.5576 

 

We have applied the size reduction methods of using DCT and DWT and then keeping half 

and quarter of the length and width data. The entropy resulting from these operations are measured 

for all images in the datasets of FMNIST and CIFAR. The results are shown in Table 4.4 and Table 

4.5.   

It is observed that reduced size data using DCT and DWT transforms produce higher 

entropies than the averaging based resizing (baseline). In Figure 4.6 we show the CDF (Cumulative 

distribution function) of the entropy values for the entire datasets and the different methods. It is 

observed that DCT produces reduced-size data with highest entropy. The DWT based method is 

also seen to produce results better than baseline (Table 4.4 and Table 4.5). Since higher entropy 

does not directly mean higher classifiable features (more noise also creates higher entropy), we 
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also look at the quality of reconstructed images using the PSNR (peak signal-to-noise ratio) 

measure. Higher PSNR means that the reconstructed image is closer to the original image. We 

measured the PSNR for all of the reconstructed images for the two datasets and plotted their CDF 

in Figure 4.7. Comparing the PSNR values, it is obvious that all percentiles of the PSNR for DCT 

and DWT based resized images are higher than baseline, indicating a better preservation of original 

image quality using DCT and DWT based methods. Therefore, it is expected that the CNN 

performs better in classification of the higher entropy data. These methods are evaluated in the 

next section.  
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Figure 4.6: CDF of the CIFAR-10 and Fashion Mnist datasets image entropies 
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Figure 4.7: PSNR of the CIFAR-10 and Fashion Mnist datasets image entropies 
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4.5 Evaluation with Different Transforms 

In this section, we evaluate the performance of each of the methods described in table 1. 

We quantify how domain transforms can improve the accuracy performance of the classification 

application for FMNIST and CIFAR datasets. The datasets are divided into two parts; 70% of 

images are used for training and 30% for testing. To ensure that a fair comparison is made between 

different methods, training is done for a fixed number of epochs for all methods. We use 15 epochs 

which is enough to reach a plateaued performance for all methods. Moreover, our objective is to 

compare the performance of different domain transform methods under processing constraint for 

small processor devices; therefore, we limit the training time. The metrics that were used here were 

the top-1, top-2, and top-3 accuracy performance measures. However, the comparative results for 

these metrics turned out to be very similar; therefore, we report top-1 for all tests, and top-3 results 

for one set to demonstrate the similarity of results. We used MATLAB implementation of the 

convolutional neural networks. Training was done using SGDM (stochastic gradient descent with 

momentum) method, with max epochs set to 15. Other default parameters were kept.  

We first analyze the results from FMNIST dataset. In addition to evaluating performance 

of different domain transform and size reductions, we also look at different network configurations 

(sizes) to ensure that the results are not sensitive to network parameter choice. We also propose 

some modifications to the transform-based methods. Following confirming the robustness of 

results to network size variation, the larger CIFAR-10 dataset is studied. 
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Figure 4.8: classification accuracy for three different network sizes with fashion MNIST 

dataset. Networks use two convolutional networks with filter size and numbers of A: 

(1,8;1,8), B: (1,8; 5,8), and C:(3,8; 5,8). Three inputs sizes of “Full”, “Half”, and “Quarter” 

were tried, corresponding to 32x32, 16x16 and 8x8 images 

Results for the FMNSIT dataset are shown in Figure 4.8. We use three network 

configurations where the two convolutional layers have the size and number of filters as follows: 
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A: (1,8;1,8), B: (1,8; 5,8), and C:(3,5; 5,8). We have tried with larger number of filters (such as 

256, but the run time was considerably higher without much performance gain). From Figure 4.8, 

we observe that with Full image size (no input size reduction), the method based on DWT produces 

the best results, followed by DCT in Network A and B. In network C, it is a variant of DCT based 

method (mDCT) that produces better results. It is also seen that the highest improvements from 

domain transforms happen when the network A is used. 

When Half and Quarter image sizes are considered, we see that in most cases DCT-based 

size reduction produces the best results, up to 2.5% better than the baseline. DWT is also better 

than baseline in all scenarios. Results from these experiments are mostly in line with the entropy 

results from Table 4.5, which show DCT based compressed input has the highest median entropy, 

followed by DWT, for all the images in the dataset. However, it is noteworthy that a direct 

relationship between entropy value and CNN performance cannot be established. The main reason 

for the complexity of this relationship is that convolutional filters put more emphasis on localized 

features in images, which are better preserved in DWT (despite possibly lower entropy of a resized 

image).  

In addition to trying DCT-based compression, we also considered enhancing the DCT 

coefficient, by magnifying some of the higher frequency coefficients. The rationale for this 

approach is that with DCT the range of values for different coefficients is very large and may not 

be well understood by a neural network. While for image compression, the large difference in 

range of coefficient values is useful in removing visually unimportant data, it may be a detriment 

for CNN based classification. For this purpose, we created a new method of representing DCT 

coefficient by multiplying each coefficient with a weight that increases linearly with frequency. 
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For example, if the first coefficient (1,1) is multiplied by 1, the last coefficient (32,32) is multiplied 

by 32; coefficient (i,j) is multiplied by (i+j)/2. This method magnifies the higher frequencies and 

is shown to slightly improve the results for DCT based method. We call this magnified DCT or 

mDCT in  Table 4.6 for all different networks and input size options.   

We also observed that while magnifying the DCT coefficients, each network type 

performed differently. With network C, the improvement for Half data size could be boosted with 

further magnification of higher frequencies (using a weight of ixj for the (i,j) weight). However, 

the linear method explained above was the one that performed well for all networks and is reported 

in Table 4.6.  

Overall, by using DCT or mDCT we could reduce the input size by 75% (using half 

dimensions) and still maintain the same classification accuracy (of baseline) for some cases such 

as network A. For network A, classification accuracy of transformed data in all sizes is 3% better 

than the baseline. For Networks B and C, the half-size mDCT is only 2% below what the full-size 

baseline method produces; also, an improvement of around 2-3% is achieved when mDCT based 

method is compared with the same size baseline. 

In addition to the three methods reported in  Table 4.6 we have also experimented with 

several other methods for composing input using domain transformed data. For example, we 

considered creating a mixed transform data by stacking coefficients from DCT-half and DWT-half 

in two channels. The resulting data improved the classification results by around 0.003, but at the 

cost of increasing the processing time by 20%.  Overall, considering the small improvements, we 

found such higher size data to not offer enough improvement and did not further study them.  
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Table 4.6: Results for Fashion MNIST: classification Accuracy and training time (TT) 

method Accuracy 
Full / TT 

Accuracy Half / 
TT 

Accuracy 
Quarter /TT 

Network A (1,8;1,8) 
Baseline 0.821/22 0.785/13 0.744 /7 

DCT 0.833 0.810 0.751 
DWT 0.852 0.797 0.743  
mDCT 0.844  0.826 0.772 
Network B (1,8;5,8) 
Baseline 0.845/22 0.796/10 0.741/8 
DCT 0.845 0.817   0.761 
DWT 0.852 0.809 0.747  
mDCT 0.847 0.822 0.763 
Network C (3,8;5,8) 
Baseline 0.858 /21 0.830 /15  0.796 /8 
DCT 0.856 0.845 0.806 
DWT 0.857 0.839 0.812 
mDCT 0.864 0.847  0.816 

 

We note that using mixed-transform methods where coefficients from multiple domains 

are combined to produce new representations has been studied in our recent works for compression 

applications [1] and regression using time delay neural networks (TDNN) [40]. Although it was 

shown to be useful for TDNNs, we do not see much improvement when used with CNNs. 

Therefore, we do not report the results here. 
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Figure 4.9: Top-1 and Top-3 classification accuracy for different transforms for Cifar-

10 dataset. The maximum epoch was set to 15 
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Table 4.7: Cifar-10 top-1 and top-3 classification accuracy for different transforms (The 

maximum epoch was set to 15) 

Method Top-1 

Accuracy (Full) 

Top-1 

Accuracy (Half) 

Top-1 

Accuracy (Quarter) 

Baseline 0.712/100 0.668/90 0.550/90 

DCT 0.690 0.660 0.580 

DWT 0.725  0.697 0.597 

mDCT 0.705 0.664 0.593 

 

Method Top-3 

Accuracy (Full) 

Top-3 

Accuracy (Half) 

Top-3 

Accuracy (Quarter) 

Baseline 0.922 0.899 0.849 

DCT 0.915 0.901 0.863 

DWT 0.930 0.917 0.873 

mDCT 0.912 0.905 0.871 

 

Following the study with FMNIST, we conclude that while the network size (e.g., number 

and size of filters) has moderate impact on performance, the trend for using different domain 

transforms is seen for all network configurations. The improvements are more prominent for CNNs 

with smaller and lower number of filters. We emphasize that the goal here is not to optimize the 

network size and configuration, but to study the impact of domain transforms.  
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To further confirm the findings with FMNIST, we also investigated the performance of the 

methods described above, with the CIFAR-10 dataset. For this dataset we have created a 

customized CNN (Table 4.3) for all data sizes (original, half and quarter) and considered different 

transforms and input size reductions using DCT and DWT. The results of experiments with the 

CIFAR-10 dataset, for 15 epoch training. 

It is observed that the performance for the full data degrades when domain transforms are 

used. This is in contrast to the result that we see for the simple domain transform with FMNIST. 

However, the trend reverses and is similar to FMNIST results when input data size reduction is 

applied using DCT and DWT. Most notably, when the quarter length-width is considered, the DCT 

based method shows an improvement of over %4.3, and the DWT-based method outperforms 

baseline by around 5%.  These results are in line with entropy analysis presented in Table 4.4. For 

the halved input length-width data, DWT improves over baseline by around 3%, while DCT based 

methods show no improvement in top-1 (some slight improvement in top-3). The significant 

improvement with quarter inputs could be due to the fact that the amount of information in quarter 

input size is severely limited and the more concentrated representation of DCT and DWT becomes 

more apparent. This means that the use of the domain transforms would be most useful when 

significant size reduction is needed. This trend was also seen in experiments with FMNIST dataset 

as well. 

Another interesting point is the degrading effect of using DCT-based domain transforms for full 

size data in CIFAR-10, which was not seen in FMNIST. For FMNIST we observed that the 

improvements were lower for full-size data and higher for quarter size inputs. This might point to 

the fact that the improvements with using domain transforms are more visible for smaller networks. 
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4.5.1 Discussion on Domain Transform and The Impact of Spatial Correlation  

There are several differences between CNNs and fully connected neural networks like 

TDNN that result in the effect of domain transforms to be different for these two network types. 

In our earlier work [40] we have shown that sparsifying domain transforms such as DCT would 

considerably speed up training of the TDNN, while also moderately improving performance. The 

positive impact was the result of concentration of data in a few inputs (due to sparsifying the input 

using transforms like DCT) and simplifying the learning task by reducing the search space for 

optimal weights. However, this feature is not useful for CNNs, since the convolution operation 

and the use of filters is meant to find features with local correlation. That is, filters in CNNs are 

applied to input image data assuming that features and patterns in smaller regions of the image 

exist and are formed through spatial correlation of data points.  

When transforms such as DCT are applied, data is projected to a domain that the local 

spatial relationships are no longer kept in small regions of the 2-D input, but are spread over 

different coefficients that may not be neighbors in the new 2-D data. This means that the filters 

will have to learn new patterns that can help in classification. This might be the reason why 

application of DCT or DWT does not improve the performance when full size 2-D input is used. 

However, when smaller input sizes are considered, the network is able to learn the new patterns 

more efficiently and utilize the preserved information better than simple average based resizing of 

images.  
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4.6 Summary and Concluding Remarks 

In this paper, we investigated the impact of applying domain transform to 2-D input of 

Convolutional Neural Networks. We considered networks with of up to 200k parameters in this 

study. This is an order of magnitude smaller than larger deep networks that are usually studied in 

literature. It is observed that reducing input data size can be efficiently achieved using transforms 

such as DCT and DWT. Compared to averaging-based image resizing, methods based on DCT 

and DWT are shown to always provide improved classification accuracy (generally 1-5%). These 

findings are validated using image datasets of Fashion MNIST and CIFAR-10. In some cases, 

input size could be reduced by 75% while still maintaining the accuracy.  

The improved performance using the proposed methods can be attributed to the better 

preservation of the amount of information in reduced size images using transforms such as DCT 

and DWT. We have verified this fact through checking the entropy of resulting reduced size and 

transformed inputs. Reduced inputs generated using domain transform had higher entropies, and 

consequently produced better classification results. However, we note that higher entropy does not 

automatically mean better classification, as network configuration and design play also an 

important role.   

Overall, using domain transforms with CNNs should be done carefully, as CNN filters are 

designed to capture localized patterns and features. If domain transforms spread the patterns such 

that they cannot be captured by filters, the performance of CNNs will degrade. However, it must 

be noted that new patterns are usually formed as a result of domain transform which visual 

inspection may not reveal. This is one of the questions that our future research will consider. 
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CHAPTER 5. CONCLUDIG REMARKS AND FUTURE DIRECTIONS  

We introduced the use of sparsifying domain transforms with TDNNs for significant 

reduction of training time or increase in forecasting accuracy of TDNNs, we provided a 

mathematical analysis on the impact of sparsifying input to a feed forward ANN such as TDNN 

and prove positive effect on learning performance. We showed that TDNN network size could be 

reduced using transforms such as DCT and PCA, while maintaining forecasting performance. For 

sparsifying transforms, we consider transforming data to other domains using DCT (Discrete 

Cosine Transforms) or PCA (Principal Component Analysis), and Mixed transform of Haar and 

DCT. We also validated the idea by feeding simple synthetic data to the network. We investigated 

the use of domain transform for possible network size reduction, examining the impact of the level 

of sparsity on performance improvement of TDNN.  

Through training and testing with three realistic datasets and two synthetic datasets, we 

observed that training time can be reduced significantly, while also improving the accuracy. The 

improvement in both training time and accuracy suggests that TDNNs for time series forecasting 

can greatly benefit from inclusion of an input transform layer. We have observed that for datasets 

such as NDDS, the training time can be reduced up to 20 times, while improving accuracy up to 

3.3%. At a fixed and very short training time of 25 epochs, the use of sparsifying transforms offer 

up to 7.5% improvement in accuracy. For datasets with more predictable patterns, such as US101 

or ERRST, the accuracy improvements were smaller; nevertheless, the training time was reduced 

to 40% and 25% of baseline for ERRST and US101 datasets respectively.  
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It is also observed that the amount of improvement is correlated with the level of sparsity; 

i.e., sparser input results in faster and better learning. It is therefore reasonable to assume that 

methods that achieve further sparsity, perhaps with non-orthogonal bases, could also be beneficial. 

This is a direction of or future studies. 

The considerable improved performance made the possibility for additional network size 

reduction through removing some of the coefficients of the sparse representation of the input 

vector. As a result, a smaller and more focused network could deal with the major components of 

a sparse data, avoiding training weights that are not expected to change considerably. 

As observed that this trend was generally seen for all datasets, with a 25% reduction of the 

input size possible for all of them. However, for some datasets such as NDDS, the input can be 

further compressed with up to 40% reduction in size.  

Overall, it was consistently seen that applying sparsifying transforms to the input of a 

TDNN allows for better performance which can be traded off for reducing network size in both 

the input and the hidden layers. While we have analyzed the DCT and the PCA based transforms, 

other types of transforms may exist that could provide further improvements. The concept 

described here could also be employed with larger and deeper networks.  

The above contributions were described in Chapters 2-4. First in Chapter 2 we 

demonstrated the effect of sparse representation of time series data on learning rate of time delay 

neural network. This was done through adding a transform layer at the beginning of a feed forward 

neural network. In Chapter 2, we also mathematically proved that applying a sparsifying transform 

to input layer will reduce the training time considerably. In Chapter 3 we investigated the effect of 
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domain transform on network size reduction. The core concept of the proposed idea is the 

possibility of reducing network size in TDNNs with the help of sparse input representation. With 

a given level of performance (in this case, prediction error), it is possible to considerably reduce 

the hidden layer size of a network, simply by applying sparsifying transform to the input layer. 

Furthermore, the considerable improved performance allows for additional network size reduction 

through removing some of the coefficients of the sparse representation of the input vector.  

Overall, it was consistently seen that applying sparsifying transforms to the input of a 

TDNN allows for better performance which can be traded off for reducing network size in both 

the input and the hidden layers.  

In Chapter 4 the same idea from Chapter 2 was generalized and applied to image data 

processing using CNN’s. Fashion Mnist and CIFAR-10 (RGB images) datasets were used in this 

study. We considered the networks with of up to 200k parameters in this study. This was an 

order of magnitude smaller than larger deep networks that are usually studied in literature. It was 

observed that reducing input data size can be efficiently achieved using transforms such as DCT 

and DWT. Compared to averaging-based image resizing, methods based on DCT and DWT were 

shown to always provide improved classification accuracy (generally 1-4%). These findings 

were validated using image datasets of Fashion MNIST and CIFAR-10. In some cases, input size 

could be reduced by 75% while still maintaining the accuracy.  The improved performance using 

the proposed methods can be attributed to the better preservation of the amount of information in 

reduced size images using transforms such as DCT and DWT. We have verified this fact through 

checking the entropy of resulting reduced size and transformed inputs. Reduced inputs generated 

using domain transform had higher entropies, and consequently produced better classification 
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results. However, we noted that higher entropy does not automatically mean better classification, 

as network configuration and design play an important role too. This can be considered as an 

important factor for further studies.   

Overall, using domain transforms with CNNs should be done carefully, as CNN filters 

are designed to capture localized patterns and features. If domain transforms spread the patterns 

such that they cannot be captured by localized filters, the performance of CNNs will degrade. 

However, it must be noted that new patterns are usually formed as a result of domain transform 

which visual inspection may not reveal and could be captured with larger filters.  

While we have analyzed the DCT, DWT, mixed transform and PCA based transforms, 

other types of transforms may exist that could provide further improvements. For example, 

independent component analysis (ICA) and dictionary learning (DL) methods can be studied. With 

methods such as DL, we may be able to control the level of sparsity and further investigate the 

impact of sparsity on the neural network performance. 
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