
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2021

Performance Enhancement of Time Delay and Convolutional Performance Enhancement of Time Delay and Convolutional

Neural Networks Employing Sparse Representation in the Neural Networks Employing Sparse Representation in the

Transform Domains Transform Domains

Masoumeh Kalantari Khandani
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Kalantari Khandani, Masoumeh, "Performance Enhancement of Time Delay and Convolutional Neural
Networks Employing Sparse Representation in the Transform Domains" (2021). Electronic Theses and
Dissertations, 2020-. 957.
https://stars.library.ucf.edu/etd2020/957

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd2020%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/957?utm_source=stars.library.ucf.edu%2Fetd2020%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

PERFORMANCE ENHANCEMENT OF TIME DELAY AND

CONVOLUTIONAL NEURAL NETWORKS EMPLOYING SPARSE

REPRESENTATION IN THE TRANSFORM DOMAINS

By

MASOUMEH KALANTARI KHANDANI

M.Sc. Simon Fraser University, BC, Canada 2011

A dissertation submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2021

Major Professor: Wasfy B. Mikhael

ii

©2021 Masoumeh Kalantari Khandani

iii

ABSTRACT

Deep neural networks are quickly advancing and increasingly used in many applications;

however, these networks are often extremely large and require computing and storage power

beyond what is available in most embedded and sensor devices. For example, IoT (Internet of

Things) devices lack powerful processors or graphical processing units (GPUs) that are commonly

used in deep networks. Given the very large-scale deployment of such low power devices, it is

desirable to design methods for efficient reduction of computational needs of neural networks.

This can be done by reducing input data size or network sizes. Expectedly, such reduction comes

at the cost of degraded performance.

In this work, we examine how sparsifying the input to a neural network can significantly

improve the performance of artificial neural networks (ANN) such as time delay neural networks

(TDNN) and convolutional neural networks (CNNs). We show how TDNNs can be enhanced

using a sparsifying transform layer that significantly improves learning time and forecasting

performance for time series. We mathematically prove that the improvement is the result of

sparsification of the input of a fully connected layer of a TDNN. Experiments with several datasets

and transforms such as discrete cosine transform (DCT), discrete wavelet transform (DWT) and

PCA (Principal Component Analysis) are used to show the improvement and the reason behind it.

We also show that this improved performance can be traded off for network size reduction of a

TDNN.

Similarly, we show that the performance of reduced size CNNs can be improved for image

classification when domain transforms are employed in the input. The improvement in CNN

performance is found to be related to the better preservation of information when sparsifying

transforms are used. We evaluate the proposed concept with low complexity CNNs and common

datasets of Fashion MNIST and CIFAR. We constrain the size of CNNs in our tests to under 200K

learnable parameters, as opposed to millions in deeper networks. We emphasize that finding

optimal hyper parameters or network configurations is not the objective of this study; rather, we

iv

focus on studying the impact of projecting data to new domains on the performance of reduced

size inputs and networks. It is shown that input size reduction of up to 75% is possible, without

loss of classification accuracy in some cases.

v

This dissertation is dedicated to my parents, my husband and my children for all their support

and sacrifice. I would also like to dedicate this work to all who sacrificed their lives while

serving others during the 2020-2021 pandemic, especially my brother-in-law (Dr. Seyyed Reza

Shojaosadati)

vi

ACKNOWLEDGMENTS

I am sincerely grateful to my Ph.D. advisor, Dr. Wasfy Mikhael; this research would not

have been possible without his great insights, guidance, encouragements, and support.

vii

TABLE OF CONTENT

LIST OF ABBREVIATIONS ... xv

LIST OF FIGURES .. x

LIST OF TABLES ... xiv

CHAPTER 1. INTRODUCTION ... 1

1.1 Motivation and Problem Statement ... 1

1.2 Contributions and Dissertation Arrangement .. 4

CHAPTER 2. EFFECT OF SPARSE REPRESENTATION OF TIME SERIES DATA ON

LEARNING RATE OF TIME DELAY NEURAL NETWORKS 7

2.1 Introduction ... 7

2.2 Related Works ... 10

2.3 Method and System Description ... 13

2.3.1 Options for input transforms... 15

2.4 Mathematical Analysis .. 25

2.5 Evaluation with different transforms... 34

2.6 Summary and Concluding Remarks .. 45

viii

CHAPTER 3. NETWORK SIZE REDUCTION FOR TDNN USING DOMAIN

TRANSFORM ... 48

3.1 Introduction ... 48

3.2 TDNN with Sparsified Input ... 49

3.3 Baseline Network Size Analysis ... 52

3.4 Evaluation.. 53

3.5 Summary and Concluding Remarks .. 57

CHAPTER 4. ENHANCING CONVOLUTIONAL NEURAL NETWORK

PERFORMANCE USING DOMAIN TRANSFORMS IN CONSTRAIEND

NETWORKS ... 59

4.1 Introduction ... 59

4.2 Related Work... 62

4.3 Method and System Description ... 65

4.3.1 Data Sets ... 69

4.3.2 Network Architecture ... 69

4.3.3 Input Domain Transforms and Size Reduction .. 72

4.4 Entropy Analysis ... 78

4.5 Evaluation with Different Transforms .. 85

ix

4.5.1 Discussion on Domain Transform and The Impact of Spatial Correlation 93

4.6 Summary and Concluding Remarks .. 94

CHAPTER 5. CONCLUDIG REMARKS AND FUTURE DIRECTIONS 95

REFERENCES ... 99

x

LIST OF FIGURES

Figure 2.1: Visualizing sample series from ERSST(left) , US101 (middle), and NDDS (right)

datasets .. 9

Figure 2.2: Architecture of the TDNN seen as a buffer and multi input FFNN of size DxHxP

(Top figure). H is the size of hidden layer, D is the history length and P the length of prediction.

As shown in the bottom a Transform layer can be inserted between the buffer and the FFNN. .. 15

Figure 2.3: Visualizing effect of sparsifying transforms; showing original data of ERSST dataset

arranged in a matrix of input vectors (top left) and its transformations: DCT(top right), mixed-

transform (bottom left), and PCA (bottom right). ... 20

Figure 2.4: Illustrating Haar basis functions for N=8, source: fourier.eng.hmc.edu /e161 /lectures

/Haar/index.html ... 22

Figure 2.5: Visualizing effect of sparsifying transforms; showing original data of US101 dataset

arranged in a matrix of input vectors of size 16 (top left) and its transformations: DCT(top right),

mixed-transform (bottom left), and PCA (bottom right). ... 24

Figure 2.6: The input layer and the first layer of a feedforward network 26

Figure 2.7: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with no input

transform layer .. 32

Figure 2.8: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with DCT

input transform layer ... 33

xi

Figure 2.9: Comparing how weights evolve in time in the first 20 epochs for TDNN with DCT

input transform (right) and TDNN with no transform (left). Only some sample weight values are

shown due to space limitation. .. 34

Figure 2.10: Comparing forecasting error for n samples ahead (n=10) using different estimators

and for different datasets. The US101 and NDDS data set have been compared with CVP[66]; all

TDNN based methods outperform CVP, with methods using DCT and PCA input transforms

showing best results. For ERSST data set, seasonal ARIMA method is compared to TDNN based

methods with different input transforms or none. All results for TDNNs are very similar and

overlap and show considerable improvement over seasonal ARIMA (SARIMA)[67]. 37

Figure 2.11: Training time in seconds (left) and prediction error for different transforms and

datasets. The maximum epoch was set to 1000. Note that the values in Table 2.1 for synthetic

curve have been multiplied by 10 so that they can be visible in this figure. 41

Figure 2.12: Normalized prediction error at epoch 10 (left) and epoch 25 (right) for different

datasets and transforms. Prediction errors are normalized to baseline error in each scenario. Note

that for synthetic curve scenario in the left plot the values of error for DCT, Mixed-T and PCA

are below the range shown and are not visible here. .. 44

Figure 3.1: Network size reduction by compressing input: the architecture of the TDNN seen as a

buffer and multi input FFNN of size DxHxP. D is the input (history) length; here a fraction (e.g.

75%) of coefficients are used. ... 51

xii

Figure 3.2: Forecasting (prediction) error for twelve network size configurations (D=8, 16, 32,

and P = 5, 10, 20, 30) for three datasets of ERSST (top), NDDS (middle), and US101 (bottom) 55

Figure 3.3: Prediction error results for ERSST dataset; different choices of sparsified and

compressed input compared to baseline. The horizontal axis shows the hidden layer size H 56

Figure 3.4: Prediction error results for NDDS dataset; different choices of sparsified and

compressed input are compared to baseline. The horizontal axis shows the hidden layer size. ... 56

Figure 3.5: Prediction error results for US101 dataset; different choices of sparsified and

compressed input are compared to baseline. The horizontal axis shows the hidden layer size. ... 57

Figure 4.1: Sample images from Fashion MNIST[64] and Cifar-10[57] datasets. 65

Figure 4.2: Architecture of the CNN in general and adding a transform layer. A Transform layer

can be inserted between the input and the CNN. .. 67

Figure 4.3: Visualizing effect of DCT. Top: a sample image from FMNIST shown in 2-D and 3-

D (x, y, and intensity) forms; bottom: DCT coefficients of the same image in 2-D and 3-D (x, y,

and coefficient value) forms. .. 74

Figure 4.4 Visualizing the effect of DWT transforms; left: sample image from FMNIST data.

Right: DWT transformations, the four bands: top left (LL), top right (LH), bottom left (HL) and

bottom right (HH). .. 76

xiii

Figure 4.5: process that images go through for CNN with: baseline (top), DCT or DWT input

transform layer (bottom), the entropy is calculated for reconstructed image I’ and I”. Resizing by

1/n can be done for n=2 or 4 ... 80

Figure 4.6: CDF of the CIFAR-10 and Fashion Mnist datasets image entropies 83

Figure 4.7: PSNR of the CIFAR-10 and Fashion Mnist datasets image entropies 84

Figure 4.8: classification accuracy for three different network sizes with fashion MNIST dataset.

Networks use two convolutional networks with filter size and numbers of A: (1,8;1,8), B: (1,8;

5,8), and C:(3,8; 5,8). Three inputs sizes of “Full”, “Half”, and “Quarter” were tried,

corresponding to 32x32, 16x16 and 8x8 images ... 86

Figure 4.9: Top-1 and Top-3 classification accuracy for different transforms for Cifar-10 dataset.

The maximum epoch was set to 15 ... 90

https://knightsucfedu39751-my.sharepoint.com/personal/mahkalan_knights_ucf_edu/Documents/PhD%20Research/Thesis/Thesis2021_v17.docx#_Toc69301541
https://knightsucfedu39751-my.sharepoint.com/personal/mahkalan_knights_ucf_edu/Documents/PhD%20Research/Thesis/Thesis2021_v17.docx#_Toc69301541

xiv

LIST OF TABLES

Table 2.1: Training time and accuracy for different transforms (max number of epochs set to

1000). Error is for prediction error at time t+10. ... 39

Table 2.2: Forecasting Error and improvement for 10 timesteps ahead (number of epochs set to

10) ... 43

Table 2.3: Forecasting Error and improvement for 10 timesteps ahead (number of epochs set to

25) ... 43

Table 3.1: NDDS data set: different number of weights (network sizes) for TDNN based

methods, each row represents the prediction error for each method. ... 58

Table 4.1. the outputs of the domain transform and size reduction will have at least 9 options .. 66

Table 4.2: Convolutional Neural Network layers used for Fashion MNIST images (networks A,

B, C); input images are nxnx1, n=N, N/2, or N/4 ... 71

Table 4.3: Convolutional Neural Network layer used for CIFAR-10 .. 72

Table 4.4: Cifar-10 normalized mean Entropy value for different transforms. 81

Table 4.5: Fashion Mnist normalized mean Entropy value for different transforms.................... 81

Table 4.6: Results for Fashion MNIST: classification Accuracy and training time (TT) 89

Table 4.7: Cifar-10 top-1 and top-3 classification accuracy for different transforms (The

maximum epoch was set to 15) ... 91

xv

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Networks

ARIMA Autoregressive Integrated Moving Average

CDF Cumulative distribution Function

CDF_9/7 Cohen–Daubechies–Feauveau wavelets, a family of biorthogonal wavelets,
CDF 9/7 wavelet for lossy compression

CIFAR-
10

Canadian Institute for Advanced Research image dataset with 10 classes of
data

CNN Convolutional Neural Networks

CPU Central Processing Unit

DCT Discrete Cosine Transforms

DFT Discrete Fourier transform

DL Dictionary Learning

DWT Discrete Wavelet Transform

DRNNs Dynamic Recurrent Neural Networks

ERSST Extended Reconstructed Sea Surface Temperature

FFNN feed-forward neural network

FMNSIT Fashion MNSIT dataset

GPU Graphics Processing Unit

HWT Haar Wavelet Transform

HL, HH High-Low, and High-High, two bands of DWT

IoT Internet of Things

ICA Independent Component Analysis

JPEG Joint Photographic Experts Group

LL, LH Low-Low, Low-High, two bands of DWT

LSTM Long-Short Term Memory

xvi

mDCT Magnified Discrete Cosine Transforms

Mixed-T Mixture of Discrete Wavelet Transform (DWT) and Discrete Cosine
Transform (DCT)

ML Machine Learning

MSE Mean Squared Error

NOAA National Oceanic and Atmospheric Administration

NDDS Naturalistic Driving Dataset Study

PCA Principal Component Analysis

PSNR Peak Signal-to-Noise Ratio

Res-Net Residual Neural Network

RGB Red Green Blue, three channels of colored images

SARIMA Seasonal Autoregressive Integrated Moving Average

SST Sea Surface Temperature

TDNN Time-Delay Neural Networks

US101 Dataset collected at highway US101

CVP Constant Velocity Prediction

VGG Visual Geometry Group (a group of researchers at Oxford who developed
this architecture)

WNN Wavelet Neural Network

1

CHAPTER 1. INTRODUCTION

1.1 Motivation and Problem Statement

Nowadays, small embedded computing and sensor devices are finding widespread use.

However, their limited computing and storage capacity limits the possibility of running state of

the art learning systems, for example methods based on deep neural networks, on these devices.

Recent advancements in Artificial Neural Networks (ANN) have paved the way for significant

improvements in prediction and classification applications over traditional methods. In particular,

deep convolutional neural networks are now considered a major tool for this purpose. However,

these networks are often large and require computing and storage resources that are not available

in many smaller computing devices. For example, most IoT (Internet of Things) devices are

usually designed with minimal computing and storage capacity with the aim of reducing cost.

Using deep neural networks in large scale deployment of IoTs will require either considerable cost

increase, or considerable reduction of performance. Moreover, the task of training these networks,

which is often done offline, is sometimes needed to be done online for retraining of networks. This

task is generally very computing intensive, compared to the forward operation of an ANN.

Therefore, it becomes necessary to look for methods of reducing the computational cost of ANNs

for low power computing devices. This is more challenging when the task of online or in-device

learning is at hand. Simpler neural network-based schemes, such as shallower neural networks, are

considered as feasible solutions in these scenarios. In this work, we investigate how introducing

an input transform layer that sparsifies the input can considerably accelerate the learning rate or

accuracy of such neural network-based solutions. We examine this for feed-forward based

networks, such as time-delay neural networks (TDNN) and convolutional neural networks (CNN).

2

TDNNs are used in prediction and forecasting application with time series; whereas, CNNs are

one of the primary tools in image classification. We note that the observations here are expected

to be applicable to general neural networks; however, our investigation and tests have been focused

on TDNN and CNN networks.

In this thesis, we first investigate the impact of using domain transforms on TDNNs. We

consider transforming input data to a domain where it could be represented in a sparse fashion. It

is shown that this method reduces the training time or equivalently improves the accuracy for a

fixed training time. While such a hypothesis is not intuitively obvious, it turns out that

mathematical properties of a neural network and its training algorithm lead to this phenomenon.

To show this concept and demonstrate its effect, we consider time series data used with a TDNN.

For sparsifying transforms, we consider transforming data to other domains using DCT (Discrete

Cosine Transforms), PCA (Principal Component Analysis), and Mixed transform of Haar and

DCT, as in our earlier work in [1]. It should be noted that the sparsity of the transformed data will

depend both on the transform and the characteristics of data. As a result, we need to check the

sparsity of the transformed data and its effect on TDNN learning. In fact, it can be shown that the

improvement is the result of sparsity, and not the result of a specific transform being used. We

also validate the idea by feeding simple synthetic data to the network. We investigate the use of

domain transform for possible network size reduction, examining the impact of the level of sparsity

on performance improvement of TDNN.

Following an analysis on TDNNs, we expand our study and investigate the impact of using

domain transform with shallow convolutional neural networks (extending to 2-D and images). We

note that reducing the computational cost of CNNs is done through reducing the number of layers

3

or the input data (image) size. To put this in perspective, most deep networks that are used for

classification have millions (or tens of millions) of learnable parameters. Such networks are too

complex for embedded devices. We limit our choices of networks to those with an order of

magnitude less parameters (i.e., under 200K learnable parameters and down to 50K). The reduction

in network and input size, as expected, usually comes at the cost of reduced classification

performance. In this dissertation, we examine how domain transforms can be used for mitigating

the negative effect of input and network size reduction.

We also show that using transforms, such as Discrete Wavelet Transform (DWT) and

Discrete Cosine Transform (DCT) as an input transform layer, it is possible to efficiently improve

the performance of size-reduced networks. We note that these transforms project the original

image data to a domain where data is represented in a sparser form, allowing for selectively

removing part of the input data and reducing the input image size in a more efficient way than

simple resizing of an image. We observe that such transforms also have the positive side effect of

improving the learning rate. Similar benefits were seen in our earlier works on time series and

shallow networks [40]. The improved learning rate and network size reduction allows for lower

computational cost, in particular during the training phase. Training of deep networks is usually

the most computationally expensive aspect of CNNs; while retraining a network requires less

computations, it is still considered a heavy load on smaller devices. The reduced cost of training,

achieved using domain transforms, is an important factor that can enable retraining of CNNs in

small devices.

The basic hypothesis that is examined here is that transforming image data to a sparser

form will allow for more efficient network and input size reduction than simply resizing the input.

4

While in data compression the use of such transforms is common, in classification applications it

is not intuitive that sparser representation will be useful. In fact, it is seen that the usual application

of CNNs with convolutional filters in the input layers is not useful when data is represented in

domains such as DCT. On the other hand, it is seen that more efficient configurations becomes

possible if DCT is used. Transfer to DWT domain shows different properties, since the spatial

relationship between initial data pixels are maintained (as opposed to DCT that the spatial

relationship is not explicitly kept). DWT proves to be very effective when significant size

reduction is needed (improving the result by up to 5%). To evaluate and examine these hypotheses

and observations, we use two standard datasets of small images (representing IoT processable

images), including Fashion MNSIT (FMNSIT) and CIFAR-10. Evaluating our proposed methods,

it is shown that input size reduction of up to 75% is possible, without loss of classification

accuracy. We demonstrate that in most cases the improvement can be traced to higher entropy of

resized input using transforms.

1.2 Contributions and Dissertation Arrangement

The main contributions of this thesis can be described as follows:

1- We introduce the use of sparsifying domain transforms with TDNNs for significant

reduction of training time or increase in forecasting accuracy of TDNNs

2- We provide a mathematical analysis on the impact of sparsifying input to a feed forward

ANN such as TDNN and prove positive effect on learning performance

3- We present a method for reduction of TDNN network size using transforms such as PCA

and DCT while maintaining forecasting performance.

5

4- We improve the performance of reduced-size CNN using DCT and DWT transforms.

The above contributions are described in chapters 2-4. First in Chapter 2 we demonstrate

the effect of sparse representation of time series data on learning rate of time delay neural network.

This is done through adding a transform layer at the beginning of a feed forward neural network.

In chapter 2, we also mathematically prove that applying a sparsifying transform to input layer

will reduce the training time considerably. In Chapter 3 we investigate the effect of domain

transform on network size reduction. The core concept of the proposed idea is the possibility of

reducing network size in TDNNs with the help of sparse input representation. With a given level

of performance (in this case, prediction error), it is possible to considerably reduce the hidden layer

size of a network, simply by applying sparsifying transform to the input layer. Furthermore, the

considerable improved performance allows for additional network size reduction through

removing some of the coefficients of the sparse representation of the input vector.

Overall, it is consistently seen that applying sparsifying transforms to the input of a TDNN

allows for better performance which can be traded off for reducing network size in both the input

and the hidden layers as discussed in chapter 3.

In Chapter 4 the same idea from chapter 2 is generalized and applied to image data

processing using CNN’s. Fashion Mnist and CIFAR-10 (RGB images) datasets are used in this

study. We consider networks with of up to 200k parameters in this study. This is an order of

magnitude smaller than larger deep networks that are usually studied in the literature. It is observed

that reducing input data size can be efficiently achieved using transforms such as DCT or DWT.

Compared to averaging-based image resizing, methods based on DCT and DWT are shown to

6

always provide improved classification accuracy (generally 1-4%). These findings are validated

using image datasets of Fashion MNIST and CIFAR-10. In some cases, input size could be reduced

by 75% while still maintaining the accuracy.

The thesis is concluded in chapter 5, where we provide some insight into future direction

and the lessons learned in this research.

7

CHAPTER 2. EFFECT OF SPARSE REPRESENTATION OF TIME

SERIES DATA ON LEARNING RATE OF TIME DELAY NEURAL

NETWORKS

2.1 Introduction

1In this chapter, we investigate how introducing a sparsifying input transform layer can

considerably accelerate the learning rate or accuracy of neural network-based solutions. We

examine this for feed-forward based networks, such as time-delay neural networks (TDNN). We

note that the observations here are expected to be applicable to general feed forward neural

networks; however, our investigation and tests have been focused on TDNN and time series. The

proposed method enables designing many new AI applications for limited capacity devices. In

addition, the faster learning will facilitate online learning when changes in data trends may require

frequent retraining inside an IoT device.

1 The work presented in this chapter is based on the following publications:

[1] Khandani M. K. and Mikhael W. B.: Effect of Sparse Representation of Time Series Data on Learning
Rate of Time Delay Neural Networks, Circuits, Systems, and Signal Processing, 2021. DOI
10.1007/s00034-020-01610-8

[2] Khandani, M. K., Mikhael, Wasfy B.: Using Mixed DCT and Haar Transforms for Efficient
Compression of Car Trajectory Data. IEEE 61 international Midwest Symp.On Circuits and sys., 2018

[3] Khandani M. K., Mikhael, Wasfy B.: Efficient Time Series Forecasting Using Time Delay Neural
Networks with Domain Pre-Transforms. IEEE MWSCAS, Dallas, Texas, August 2019

8

The basic concept investigated here is that transforming input data to a domain where it

could be represented in a sparse fashion will reduce the training time or equivalently improves the

accuracy for a fixed training time. While such a hypothesis is not intuitively obvious, it turns out

that mathematical properties of a neural network and its training algorithm lead to this

phenomenon. To show this concept and demonstrate its effect, we consider time series data used

with a TDNN. For sparsifying transforms, we consider transforming data to other domains using

DCT (Discrete Cosine Transforms) or PCA (principal component analysis), and Mixed transform

of Haar and DCT [1]. It should be noted that the sparsity of the transformed data will depend both

on the transform and the characteristics of data. As a result, we need to check the sparsity of the

transformed data and its effect on TDNN learning. In fact, it can be shown that the improvement

is the result of sparsity, and not the result of a specific transform being used. We also validate the

idea by feeding simple synthetic data to the network. The datasets used in this work are ERSST

from National Weather Forecast-NOAA [17], vehicle speed time series from two datasets available

from public sources (NDDS[5] and US101[6]) Figure 2.1, and synthetic data.

ERSST dataset is a global monthly sea surface temperature (in Celsius) dataset derived

from the International Comprehensive Ocean–Atmosphere Dataset (ICOADS) and reported by

NOAA (National Oceanic and Atmospheric Administration). For our tests, we have used data from

1991 to 2018, and from longitudes 1 to 180 and latitudes 20 to 25. Around 330,000 input samples

are derived and user to train a TDNN.

9

Figure 2.1: Visualizing sample series from ERSST(left) , US101 (middle), and NDDS (right)

datasets

NDDS dataset includes movement data from 100 cars sensed using on board sensors (e.g.,

accelerometer, odometer). The US-101 datasets include vehicle movement that is extracted from

camera/video frames. The datasets are collected using different methods and at different time

scales. The NDDS dataset has information for almost 800 near crash scenarios (approx. 30-40

second trips) in the Washington DC area with approximately 400-time samples each, resulting in

over 300,000 samples for each attribute such as speed or acceleration. The speed values from

NDDS are used here. The US-101dataset include data from certain times of day on US-101

highway in California containing around 2000 vehicle trajectories. Each trajectory contains

between 400 to 1000 time series datapoints; we use the speed values from this set as well. US-101

dataset is to some degree different from NDDS dataset (since NDDS is related to near crash

scenarios). The NDDS dataset contains high resolution (10Hz) acceleration data, and lower

resolution (3Hz) velocity; as a result, we used the acceleration data to reproduce speed and position

at 10Hz. The US101 datasets already provide acceleration, speed and position information at 10Hz.

Data in both datasets are in imperial units’ system; we converted them to the metric system for the

results reported here. While there are various metrics collected in these datasets, we only focused

on measurements that were related to our studies such as speed.

10

For the Synthetic datasets we have produced two datasets of 500 time series, each

containing 400 samples. One dataset contains simple lines in which the time series value increased

linearly with random slope and with some noise. For the other dataset, we have used a combination

of three randomized sinusoidal and Gaussian noise, in order to be able to control its sparsity

properties.

Some insight from the mathematical analysis shows that faster or better learning may be

happening due to the reduction in the search space of the learning algorithm (which can be seen as

an optimization problem); equivalently, it could be seen as a dimension reduction of the search

space, which allows faster optimization. From an input data perspective, the sparse representation

means that most of the variation in data is concentrated in a smaller number of dimensions, as it

can be seen in Figure 2.3 and Figure 2.5 for some sample datasets and transformations. As a result,

the neural network needs to learn a smaller number of patterns. With non-sparse data, a larger

region of patterns needs to be learnt.

In the rest of this chapter, we first review some related literature and establish how

evaluation of the proposed method should be done. Then the system architecture and the proposed

input transform operation for a TDNN are explained. Mathematical reasoning for the improvement

due to sparsifying transforms are then explained, followed by experiments results with the

abovementioned datasets and transforms.

2.2 Related Works

There are numerous methods and tools applied for time series prediction in different

applications. Neural networks (or Artificial Neural Networks, ANN) have shown great ability in

11

modeling and forecasting nonlinear and nonstationary time series [25]. TDNN is one of the main

neural network based tools for this purpose that has recently received attention [8] [12] [14] [15]

[16] [30] [31][13] [32]. In general, TDNNs have the ability to catch diverse characteristics of the

data [33]. While models based on deep recurring neural networks (such as Long-Short Term

Memory or LSTM [38]) have shown great promise in learning patterns in time series, simpler

TDNNs are also very effective and much simpler at the same time. In this work, we focus on feed

forward and shallow neural networks such as TDNNs, given our target applications in small

devices with limited computing capabilities.

One of the recent works, Girish et al. [8], compared the performance of TDNN based

methods with linear models such as Auto Regressive Integrated Moving Average -ARIMA for

forecasting commodity pricing, concluding TDNNs outperform linear fitted models, one main

reason the ANN methods outperforms the methods such as ARMA and ARIMA is that the data

should be at least weakly stationary for these linear methods. ANNs are also widely used in sea

surface temperature (SST) prediction studies and they are shown to outperform the traditional

linear methods, one main reason could be the non-linearity that is inherent in neural networks. It

has been shown that ANN is an alternative to complex physics-based coupled models that

additionally require a large amount of tuning effort [30] [28][29].

The use of transforms and neural networks has also received some attention. Although none

of these works apply domain transform directly as a sparsifying input layer for accelerating

learning, the general concept of using transforms in some form with neural networks has been

around. Generally, the transforms are applied to reduce data size, or the size of input or filtering

out certain parts of data. For example, wavelets have been used with shallow ANNs and TDNNs

12

in several works. preprocessing using Fourier transform and then frequency selection is reported

in [16] used for classification and steps taken are specifically for that data set. Aggarwal et al. [34]

have applied a hybrid approach using wavelet transform on time series fed into TDNN for forecast

day-ahead electricity prices in the New England market for 2014. Authors of [10] utilize a dynamic

time-delay Wavelet Neural Network -WNN model with a recurrent feedback topology for

forecasting traffic flow. The model is a combination of a WNN and a conventional neural network

with a sigmoid activation function and they have their own nonlinear estimator in the WNN part.

Nonetheless, they method is customized for traffic flow data only not for general use and had

access to limited traffic flow data. Nonetheless, they do not consider the individual time series

vehicle movement and had access to limited traffic flow data. Alex et al. at [9], consider parallel

DRNNs (Dynamic Recurrent Neural Network), each treating a part of the output of a Wavelet

transform; like LSTM, the recurrent methods are complex. However, the existing works do not

study the impact on learning time or prediction.

The abovementioned methods are generally tailored for specific applications and data

types. While they do provide improvements, they are fundamentally different from how we apply

a domain transform as a layer to the neural network with the aim of sparsifying input and

accelerating learning. The concept we propose and study here, based on sparsifying the input, is

generic and can be applied to general ANNs. Moreover, domain transforms for sparsifying, such

as PCA, DCT or mixed transforms are also not considered for time series data. Mathematical

reasoning on the effect of these transforms are also not presented. Additionally, these works have

not considered training efficiency, which can become critical if online training is needed.

13

The use of transforms such as DCT with 2-D data (images) has also been reported. While

this is not directly related to our work since the same concept cannot be used in TDNNs, it is worth

mentioning works such as that by Pan et al [24] which has shown that reducing image information

redundancy using DCT with Convolutional Neural Network (CNN) can be beneficial. They have

demonstrated that when DCT coefficients are fed into a backpropagation neural network for

classification, a good recognition rate can be achieved by using a very small proportion of

transform coefficients. This makes DCT-based face recognition faster than other approaches.

Additionally, recent research [35][39] have highlighted that most of weights are useless in CNNs

and can be set to zero without obvious deterioration in performance.

In this work, we study the impact of adding a sparsifying layer to a TDNN. The layer will

transform the input vector to a domain where it is represented in a sparser form. We show that it

is the sparser form that leads to better learning. Without the added layer, the TDNN should still be

able to learn the model and be used for forecasting. It is the learning accuracy or speed that is

improved. Given that the existing methods are designed for specific applications and data types, it

is not possible to directly compare the impact of adding a sparsifying layer with existing methods

that use transforms. Therefore, in this work we take a TDNN with no transform as the baseline and

study the impact on this structure.

2.3 Method and System Description

The concept considered here is to add an input transform layer immediately following the

first layer of a feed-forward neural network (FFNN). Considering a TDNN as a FFNN, the first

layer is the layer that converts the serial input to a parallel vector of length D (see Figure 2.2 for

14

TDNN seen as a FFNN with an input buffer). D is basically the network delay size. The network

with the additional transform layer is shown in Figure 2.2. In time series forecasting application,

the size of the network output is determined by the number of future samples of the series that the

network will forecast. This is called prediction length in this work and is denoted as P. A number

of hidden layers are also used with different sizes (denoted as H). Since our study is focused on

the effect of the transform layer, and not particularly what the best configuration and network

structure is for each data type, we use a single hidden layer in this work. It turns out that this

configuration is capable enough for the several datasets that we experimented with.

The first layer of the TDNN parallelizes the past D samples and feeds them to the feed

forward neural network. If a general FFNN is considered here, and not a time series in particular,

the first level is basically the input layer of size D. For the augmented network in Figure 2.2, this

input layer is followed by a transform layer which will project the D samples to a new domain

(based on what the transform is). The transformed data is then the new input to the rest of the

FFNN. The specific transforms that we have studied here include PCA, DCT and a mixed-

transform of DCT and Haar.

15

Figure 2.2: Architecture of the TDNN seen as a buffer and multi input FFNN of size DxHxP

(Top figure). H is the size of hidden layer, D is the history length and P the length of

prediction. As shown in the bottom a Transform layer can be inserted between the buffer

and the FFNN.

2.3.1 Options for input transforms

There are several options for sparsifying data. Generally, each type of data may require a

different transform for the sparser representation. Transforms based on DCT and PCA generally

show the best results for the datasets that we have experimented with. In the following sections we

briefly describe these transforms and how our data is represented in each domain. This list is by

no means exhaustive and there may exist other options. However, for the purpose of this study on

16

the effect of sparseness on learning rate, we have selected several transforms that produce results

with different levels of sparsity. This allows a better understanding and validation of the hypothesis

considered in this work. As an illustration, the result of applying these transforms to sample

datasets of sea surface temperature (noted as ERSST) and car movement (noted as US101) are

shown in Figure 2.3 and Figure 2.5.

2.3.1.1 Principal component analysis

The main idea of principal component analysis (PCA) is to project multi-dimensional data

to a new coordinate system, with the same or different number of dimensions, with the aim of

concentrating data along a fewer dimensions than the original data. This is usually achieved by

deriving the bases from the data itself (as principal components). The aim of reducing

dimensionality is achieved by first finding a dimension vector (component or base) along which

the variance of data is maximized. The next dimensions, each orthogonal to all previously found

dimensions, are then iteratively derived to maximize the variation of the residual of data orthogonal

to the first dimensions. For time series data, as we consider TDNNs, each sample of the dataset is

a vector of length p=D. This means that we can consider our data as p dimensional. By applying

PCA, we can convert these vectors to vectors of a different (or same) length in a different domain.

Given the nature of PCA, the new representation will have the largest variations in the first

components, while the last components will have less energy. This will naturally form a sparse

representation of data.

17

The PCA transformation can be written as T = X.Q, where transform Q maps data X (a

matrix of all data vectors) from an original space of p variables to a new space of p variables which

are uncorrelated over the dataset. Q will be a pxp matrix. With PCA, it is not needed to keep all

the principal components in Q (since the representation, T, is usually sparse). In this work,

however, we use all components to ensure a fair analysis and produce transformed data size equal

to the original data.

PCA can be done through eigenvalue decomposition of a data covariance (or correlation)

matrix or singular value decomposition (SVD) of a data matrix [18][19]. The principal components

are the eigenvectors of a covariance matrix of the original data. These vectors are an uncorrelated

orthogonal basis set, each being a linear combination of the variables and containing n

observations.

To use SVD to calculate the score matrix (or the weights resulting from transformation),

consider that the nxp data matrix of X can be written as X =UΣQT,

where Σ is a nxp matrix of scalars that are the singular values of X and U is a nxn matrix of

n left singular vectors of X (columns of U are the orthogonal unit vectors of length n called the left

singular vectors of X). Q is a pxp matrix. Columns of Q are orthogonal unit vectors of length p,

also known as principle components (PCs) are our eigen vectors (bases), which are the right

singular vectors of X. Using the SVD based method the transform result, called score matrix T, can

be written as: T= XQ = UΣQTQ = UΣ.

Therefore, each of the columns of T, which are the transforms of each data samples, is

given by one of the left singular vectors of X multiplied by the corresponding singular value.

18

In our process, PCA is applied to the dataset (the training portion of the whole dataset) to

derive the principal components in Q. The resulting transform, Q, is then used as an input transform

layer. Q contains the bases; each time it is multiplied to our data (buffer-delay data with size 16x1

here) and takes the data into the new domain with the same size as the original.

Figure 2.3 and Figure 2.5 show the raw data and the data after passing through the

transform. As it is observed, the scores (transform results) from PCA are very sparse, with the first

component containing most of the energy. A more general way of finding bases that allow sparse

representation of a signal is through dictionary learning (DL) [7]. There are several different

dictionary learning algorithms which are essentially optimization schemes that try to find bases

that sparsify data to a specified level. Dimensionality reduction could also be achieved and is one

of the main objectives of most DL algorithms. However, in this work we are interested in keeping

the dimension. It was observed that the available DL algorithms could not achieve higher sparsity

than DCT for the datasets used here, and under the condition of maintaining the same

dimensionality. Therefore, we did not include the results from DL here.

2.3.1.2 Discrete Cosine Transforms

Discrete cosine transforms (DCTs) is one of the sinusoidal transforms. Similar to other

transforms in this family, it is an invertible linear transform. Sinusoidal transforms use kernels that

are defined by a set of complete, orthogonal discrete cosine and/or sine basis functions.

Generalized Discrete Fourier transform (DFT) and various types of the DCT and DST (Discrete

Sine Transform) are members of this class of unitary transforms. The complete set of DCTs and

DSTs consists of eight versions of DCT and corresponding eight versions of DST. Being a discrete

19

transform, DCT is a finite sequence of data points, as a sum of cosine functions at different

frequencies. DCT has been used for lossy compression (for example for images) due to its strong

property in compacting energy. For example, with DCT-II transform, the coefficients (transform

results) for a signal x of length N are calculated as follows:

𝑋𝑋𝑐𝑐(k) = � 𝑥𝑥[𝑛𝑛]. cos[

𝜋𝜋𝜋𝜋
𝑁𝑁

(𝑛𝑛 + 1/2)]
𝑁𝑁−1

𝑛𝑛=0

(2.1)

Where k=0,1, 2, …, N-1. For the datasets studied here, DCT has proven to be a very strong

sparsifying transform. We can further multiply the X0 term by 1 √2⁄ and multiply the resulting

matrix by an overall scale factor of �2/𝑁𝑁 which makes the DCT matrix orthogonal. Note that the

DCT basis are independent of dataset used. We have used DCT-II from MATLAB. The DCT

matrix coefficients will look like as in (2.2).

(2.2)

20

Figure 2.3: Visualizing effect of sparsifying transforms; showing original data of ERSST

dataset arranged in a matrix of input vectors (top left) and its transformations: DCT (top

right), mixed-transform (bottom left), and PCA (bottom right).

2.3.1.3 HAAR Transform

The Haar Transform, or the Haar Wavelet Transform (HWT) is one member of a group of

transforms known as the Discrete Wavelet Transforms (DWT). Haar uses non-sinusoidal basic

21

wave functions, providing a simple and computationally efficient approach for analyzing the local

aspects of a signal [36][37]. The Haar Wavelet Transform (HWT) is from Discrete Wavelet

Transforms (DWT) and is not symmetric. Wavelets are especially useful for compressing image

data. Fourier analysis breaks up a signal into sine waves of various frequencies. Similarly, wavelet

analysis is the breaking up of a signal into shifted and scaled versions of the original (or mother)

wavelet, equation (2.3).

(2.3)

 DWT has a key advantage over Fourier transforms, it captures both location (time) and

frequency information and also capture discontinuity in the signal. The Haar transform matrix is

real and orthogonal. Before normalization the Haar matrix for N=8 will look like as in (2.4).

(2.4)

22

Figure 2.4: Illustrating Haar basis functions for N=8, source: fourier.eng.hmc.edu /e161

/lectures /Haar/index.html

2.3.1.4 Mixed Transform

Mixed transform is a method of applying multiple domain transforms to data to provide a

better representation. Usually multiple sparse representations are applied; however, depending on

data characteristics, the final mixed transform result may or may not be sparser than either of the

single transforms (it may generally have similar sparsity levels). Nevertheless, mixed transforms

are shown to be more efficient in achieving higher compression levels [1]. In this work, we use

mixed transform of DCT and Haar as an alternative to DCT. An overview of how mixed transform

works is given here.

For mixed transform the reason to use DCT and Wavelet (Haar) is that DCT is known to

be very efficient in representing narrowband signals. On the other hand, Haar and Walsh

transforms are considered appropriate for wideband signals with sudden changes. In general,

combining DCT and Haar in a mixed-transform setting is expected to be a more efficient way of

representing a signal [1]. The mixed-transform method uses subsets of basis functions of two or

23

more mutually non-orthogonal transforms to represent data. Our earlier work in [1] finds the

optimal balance of bases from DCT and Haar for data representation by minimizing an energy

function; however, here we take a simpler approach here to avoid complexity in applying the mixed

transform.

For example, consider a signal X. If we denote the DCT transform bases as K, and Haar

as H, we first derive coefficients from DCT transform as C1=KX. Then, the larger coefficients in

C1 (e.g., first half) are kept and the rest set to zero to get C2. We then apply the Inverse DCT to

C2. i.e., X2 = K’C2 and find the error E = X-X2. The error is then fed to the second transform to

find its representation in the Haar domain V1 = HE. The largest coefficients from V1 are then

kept and truncated in a final result vector that contains the largest coefficients of C1 and V1. More

details about mixed transform can be found in [3][1]. Depending on how many coefficients from

each transform is kept, the size of the resulting vector may be smaller or larger than original data.

In this work, and for a fair comparison with the original (non-transformed) data, the mixed-

transform is configured to produce results with the same size of original data, therefore keeping

the size of the TDNN unchanged.

24

Figure 2.5: Visualizing effect of sparsifying transforms; showing original data of US101

dataset arranged in a matrix of input vectors of size 16 (top left) and its transformations:

DCT(top right), mixed-transform (bottom left), and PCA (bottom right).

We note that it is also possible to use a smaller set of transform coefficients (e.g., similar

to compression using DCT); however, we do not consider such a case as we observed that it

reduces the accuracy of the system (as some data is lost during compression).

25

The results of applying a DCT-Haar mixed transform that keeps 50% of the largest

coefficients of each transform is shown in Figure 2.3 and Figure 2.5.

2.4 Mathematical Analysis

In this section we analyze the mathematical properties of TDNN learning algorithms that

are affected by sparsity of data. We show that if input data is made sparser, the learning process is

accelerated. Here we examine how the gradient descent-based backpropagation methods are

impacted. It is seen that the sparseness of data leads to a fewer number of weights in the network

to be reactive to the backpropagation process. This will result in an optimization process (another

way to see the learning process) that has a smaller search space. The gradient descent-based

methods are used in several algorithms, including the commonly used Levenberg-Marquardt

algorithm, which is used in out tests.

Consider a feedforward neural network, such as a TDNN, as in Figure 2.6. As shown

later in this section, we know that each weight in the gradient descent is updated by the

derivative of a loss function (error) J with respect to that weight [69]. Here, Wij
t is the value of

weight from neuron i to j at time step t:

 𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡+1 = 𝑊𝑊𝑖𝑖𝑖𝑖

𝑡𝑡 −
𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

 (2.5)

Error J can be calculated as the difference of network output value and the desired target

value (T). If output is a vector, then this could be the Mean Squared Error (MSE) of the values. It

is possible to show (elaborated below) that the derivative of loss function with respect to each

26

weight is proportional to the input to that weight; i.e., 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑤𝑤𝑖𝑖𝑖𝑖

∝ 𝑥𝑥𝑖𝑖 . Here, xi is the ith input. Therefore,

when data is sparse and some xis are close to zero, their corresponding weights do not receive

much updates and the weight update will be concentrated on non-zero inputs. With sparse data,

the non-zero inputs are few. This means that the optimization that happens during training is done

over a smaller number of parameters (weights). This is the reason for faster training, as the search

space for the optimization is much smaller.

Figure 2.6: The input layer and the first layer of a feedforward network

Now, to see why the relationship of 𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

∝ 𝑥𝑥𝑖𝑖 holds, consider the example network in

Figure 2.6. This is the first layer of a FFNN. Suppose W ∈ Rnxm represents all the weights. The

training algorithm computes the gradient of loss function J with respect to a matrix W ∈ Rnxm. We

can think of J as a function of W taking nxm inputs (the entries of W) to a single output (J). This

means the Jacobian ∂J/∂W can be represented as:

27

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊

=

⎣
⎢
⎢
⎢
⎡
𝜕𝜕 𝐽𝐽

𝜕𝜕 𝑊𝑊11
⋯

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊1𝑚𝑚

⋮ ⋱ ⋮
𝜕𝜕 𝐽𝐽

𝜕𝜕 𝑊𝑊𝑛𝑛1
⋯

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊𝑛𝑛𝑛𝑛⎦

⎥
⎥
⎥
⎤

 (2.6)

Since this matrix has the same shape as W, in a gradient descent method we can simply

subtract it (times the learning rate) from W:

 𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 −
𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊

 (2.7)

Where t is the iteration number. For individual weights we can write:

 𝑊𝑊𝑖𝑖𝑖𝑖
𝑡𝑡+1 = 𝑊𝑊𝑖𝑖𝑖𝑖

𝑡𝑡 −
𝜕𝜕 𝐽𝐽
∂ 𝑤𝑤𝑖𝑖𝑖𝑖

 (2.8)

Now, if we assume that the network functions are simple weighted sums (we look at more

complex case later in the work), we have the output zk as:

 𝑧𝑧𝑘𝑘 = �𝑊𝑊𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙

𝑛𝑛

𝑙𝑙=1

 (2.9)

Consequently, we have

𝜕𝜕 𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= ∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1

𝜕𝜕 𝑊𝑊𝑙𝑙𝑙𝑙
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

 (2.10)

28

Note that for i=l and j=k, we have ∂Wlk /∂Wij = 1; otherwise, ∂Wlk /∂Wij = 0. So, if l ≠i all

the related terms in the sum are zero. The only non-zero element of the sum is when i=l and if k =

j, so we just get xi as the gradient value. Thus, we find ∂zk /∂Wij= xi if k = j and 0 if otherwise.

 𝜕𝜕 𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= �𝑥𝑥𝑖𝑖 𝑘𝑘 = 𝑗𝑗
0 𝑜𝑜.𝑤𝑤.

 for k=1…m (2.11)

Another way of writing this for vector z (all outputs k)

 𝝏𝝏 𝒛𝒛
𝝏𝝏 𝑾𝑾𝒊𝒊𝒊𝒊

=

⎣
⎢
⎢
⎢
⎢
⎡

0
⋮
0
𝑥𝑥𝑖𝑖
0
⋮
0 ⎦
⎥
⎥
⎥
⎥
⎤

 ← j’th element (2.12)

Therefore, we can compute ∂J/∂Wij as

𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑧𝑧
⋅ 𝜕𝜕 𝑧𝑧
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= δ ⋅ 𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

= ∑ δ𝑙𝑙
𝜕𝜕𝑧𝑧𝑙𝑙
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑙𝑙=1 = δ𝑗𝑗𝑥𝑥𝑖𝑖 (2.13)

 For some vector δ. As it is seen in equation (2.13), the gradient for each weight is

dependent on the corresponding input. In cases where the data is sparse, some of the inputs are

close to 0, leading to small values of gradient and very slow updates. This allows the larger inputs

to dominate the training and as a result a smaller search space forms, leading to faster learning.

29

Now, if we consider a more general neural network with non-linear activation functions,

each output in Figure 2.6 network can be basically seen as a function f of the weighted sum of

inputs and bias (f being the activation function such as sigmoid or tanh):

 𝑧𝑧𝑘𝑘 = 𝑓𝑓(�𝑥𝑥𝑙𝑙

𝑛𝑛

𝑙𝑙=0

𝑊𝑊𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑘𝑘) (2.14)

The gradient descent-based update algorithm tries to minimize the loss J through updating

the weights as in equation (2.7). Here, with the activation function being considered, we can

rewrite (2.13) as, denoting zk of equation (2.14) as f(.) for brevity:

𝜕𝜕 𝐽𝐽
∂𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝐽𝐽
𝜕𝜕 𝑧𝑧 ⋅

𝜕𝜕 𝑧𝑧
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= δ ⋅ 𝜕𝜕 𝑧𝑧
∂ 𝑊𝑊𝑖𝑖𝑖𝑖

=∑ δ𝑘𝑘
𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑘𝑘=1 = ∑ δ𝑘𝑘

𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

𝑚𝑚
𝑘𝑘=1 (2.15)

Where δ is a vector describing how J changes with respect to changes in each output of

this layer (in output vector z). To find
𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

, or
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

, we note that the output of each neuron is

basically the activation function applied to the weighted sum of inputs and the bias. If we consider

the weighted sum as another function h, we have:

 𝑧𝑧𝑘𝑘= 𝑓𝑓 (∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=0 𝑊𝑊𝑙𝑙𝑙𝑙+ 𝑏𝑏𝑘𝑘) = 𝑓𝑓(ℎ𝑘𝑘(.)) (2.16)

To simplify the notations and since we are only interested in the derivative of zk with

respect to Wij, we will denote ℎ𝑘𝑘(.) as hk (Wij). Therefore, we can rewrite this as zk= f (hk (Wij)).

Using the chain rule, we can then derive the derivative as follows:

30

𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕𝜕𝜕�ℎ𝑘𝑘(𝑊𝑊𝑖𝑖𝑖𝑖)�
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜕𝜕 𝑓𝑓
𝜕𝜕ℎ𝑘𝑘

. 𝜕𝜕ℎ𝑘𝑘(𝑊𝑊𝑖𝑖𝑖𝑖)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

 (2.17)

Where the derivative of f with regard to hk is the slope of f at some value of u= ∑ 𝑥𝑥𝑙𝑙𝑛𝑛
𝑙𝑙=1 𝑊𝑊𝑙𝑙𝑙𝑙+

𝑏𝑏𝑘𝑘. Given the shape of f (for example a sigmoid), this is a bounded scaler ck:

𝜕𝜕 𝑓𝑓
𝜕𝜕 ℎ𝑘𝑘

|𝑢𝑢 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑓𝑓(ℎ𝑘𝑘) 𝑎𝑎𝑎𝑎 ℎ𝑘𝑘 = 𝑢𝑢} = 𝑐𝑐𝑘𝑘 (2.18)

On the other hand, we had shown that for the weighted sum as in equations (2.9) to (2.12),

the only non-zero value for the derivative with respect to Wij was found when k=j. That is, we

found ∂h(k) /∂Wij= xi if k = j and 0 otherwise (note that ℎ𝑘𝑘 is in fact zk of equation (2.10)); therefore,

equation (2.17) can be rewritten as:

𝜕𝜕𝑧𝑧𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= �
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

=
𝜕𝜕 𝑓𝑓
𝜕𝜕 ℎ𝑘𝑘

.
𝜕𝜕 ℎ𝑘𝑘
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖 𝑘𝑘 = 𝑗𝑗

0 𝑘𝑘 ≠ 𝑗𝑗
 (2.19)

Now, by substituting (2.19) in (2.15), and noting that
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= cjxi only for k=j, and zero

otherwise, we find:

𝜕𝜕 𝐽𝐽
∂𝑊𝑊𝑖𝑖𝑖𝑖

= � δ𝑘𝑘
𝜕𝜕𝑓𝑓(.)
𝜕𝜕 𝑊𝑊𝑖𝑖𝑖𝑖

= δ𝑗𝑗𝑐𝑐𝑗𝑗𝑥𝑥𝑖𝑖
𝑚𝑚

𝑘𝑘=1
 (2.20)

As it can be seen, only one finite term (𝑐𝑐𝑗𝑗) has been added to equation (2.13). With sparse

input, many xi’s have a very small value close to zero. Therefore, given the finite values for δ𝑗𝑗 and

cj, for those j’s the derivative ∂J/∂Wij becomes close to zero, meaning that the update to weights

31

will be very small and insignificant. On the other hand, for the large xi’s, the derivative may not be

small and weight changes do happen; as a result, the optimization and gradient descent will be

more concentrated around the weights that correspond to large values of xi, which are few for

sparse data. The optimization steps are therefore taken in a smaller space. That is, instead of

reaching the global minimum equally with small steps from everywhere, the minimum can be

reached within fewer steps and epochs through only optimizing a few weights. It turns out that the

results are also equal or better when data is sparsified, which points to the fact that the same

minimum for the loss function is found in both sparsified or original data case.

This finding can be observed from the evolution of weights in the training process. We

have plotted the Hinton weight bias plot of the network weights and biases in Figure 2.7. The

Hinton plot shows the value of all parameters (weights and biases) of a specific network at any

time that the parameters are sampled for observation. We have logged the values of these

parameters after training epochs 3, 7 and 14. Each dot (small square) in the plot corresponds to a

specific weight or bias. The size of the squares shows the magnitude of the parameter and the color

shows positive (green) or negative (red) values. It is seen that with the baseline (original nonsparse)

data, most weights change value during the training process. Whereas, with the sparsified input

(Figure 2.8), only a small number of weights have significant updates during the process and

quickly converge as seen in Figure 2.8. In particular, the weights connecting input to layer 1 for

inputs number 1 to 6 show more changes, compared to other weights.

For more insight into how the weight values evolve when a sparsifying layer is introduced

to a TDNN, we also plotted some sample weights in Figure 2.9. Here, we see that for a fixed

number of epochs, the weights for TDNN with DCT transform quickly converge to their desired

32

values, whereas for a TDNN with no input transform, some weights do not converge even at epoch

20. The later convergence means that at fixed number of epochs, the TDNN with no transform will

produce higher forecasting errors than the one with DCT input transform layer. It is also observed

that for the TDNN with DCT, the weights associated with close to zero values in DCT domain

(e.g., from input 10 and 16, see Figure 2.5) tend to stop changing after first few iterations, leaving

the training to weights for larger inputs (e.g., inputs 1 and 5). The next section studies the impact

that several different transform options may have on learning rate or accuracy.

Figure 2.7: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with no

input transform layer

33

Figure 2.8: Hinton weight bias plot at epochs 3, 7 and 14 (left to right) for TDNN with DCT

input transform layer

34

Figure 2.9: Comparing how weights evolve in time in the first 20 epochs for TDNN with DCT

input transform (right) and TDNN with no transform (left). Only some sample weight values

are shown due to space limitation.

2.5 Evaluation with different transforms

In this section, we use several datasets to show how different transforms, or in other words,

different levels of sparsity, affect the learning rate or performance (accuracy of forecasting). We

look at two metrics of prediction error and learning time. For prediction error we look at the error

35

of forecasting; time series data is passed through the network and the error of prediction at different

future times are measured. For each sample at time t in the dataset, there will be a forecast and an

error instant for each future time (e.g., t+1 or t+10). For a given future prediction, we then take the

95-percentile of the error instances and report that as the error metric (e.g., 95-percentile of

prediction at time t+10). Results for other percentiles or future times are observed to be similar, so

we do not repeat those results here. We use the 95-percentile (e.g., instead of median) as it is

commonly used for some of the datasets that we use [21]. The trends are similar for median, mean

or 95%.

The second metric that we consider is the training time (number of epochs or iterations of

training). This metric is an indicator of how fast the training algorithm works. While there are

several options, we work with the most popular algorithm, which is the Levenberg-Marquardt

backpropagation [22]. It has been shown [23] that this algorithm provides the fastest convergence

for moderately sized feedforward neural networks. We note that training time and accuracy (or

error) of results are related. Training parameters could be set such that error becomes lower, at the

cost of longer learning time, and vice versa.

To clearly see the effect of sparsifying data, we experiment with two approaches of fixing

learning parameters and then measuring time, or fixing the learning time (number of epochs) and

then measuring error. For the first approach, we have observed that due to several parameters

affecting training time (like learning performance/error threshold or threshold of failed learning

steps) the final error is not the same for different methods. This results in both different learning

time and error for each choice of domain transform. This was reported in our earlier work in [2].

Additionally, it is observed that methods that are faster in learning, are also somewhat better in

36

prediction (have slightly lower error). This point is further validated when we fix the number of

epochs (learning time) and then compare the errors (approach 2). The two approaches consistently

point to the faster learning for sparser data.

The experiment settings and parameters are explained in this section. We used the default

setting of initial µ=0.001, µ decrease factor=0.1, applied after 10 epochs. We also used the

MATLAB implementation of the backpropagation and the neural network toolbox.

For the purpose of comparison with the existing state of the art methods, we note that each

dataset has a different state-of-the art for time series forecasting (since methods are highly

customized to data). For the NDDS and US101 datasets, the state of the art in industry is the

prediction method based on constant velocity cruising prediction (CVP) [66] which we also

compared to conventional neural network baseline in our earlier work [2] . Figure 2.10 shows how

the CVP compares to neural network-based methods. One of the ANN-based methods is the

conventional TDNN that we have optimized for these data sets and can be considered as the state

of the art in ANN-based methods and used as a baseline. Comparison is done on prediction

accuracy for all methods (Figure 2.10) and on training time for ANN-based methods (Figure 2.11).

For the ERSST dataset, the state of the art in methods that are not based on neural networks

is the seasonal ARIMA (SARIMA)[67]. While we considered this method, we have also optimized

a conventional neural network for temperature prediction and use that as a baseline of ANN-based

methods for comparison as well. The results are shown in Figure 2.10 for prediction accuracy of

all methods, and in Figure 2.11 for training time and accuracy of neural network specific methods.

The superiority of ANN based methods can be seen in Figure 2.10.

37

Figure 2.10: Comparing forecasting error for n samples ahead (n=10) using different

estimators and for different datasets. The US101 and NDDS data set have been compared

with CVP[66]; all TDNN based methods outperform CVP, with methods using DCT and

PCA input transforms showing best results. For ERSST data set, seasonal ARIMA method

is compared to TDNN based methods with different input transforms or none. All results for

TDNNs are very similar and overlap and show considerable improvement over seasonal

ARIMA (SARIMA)[67].

For NN based methods, we fix the network configuration for all cases to avoid unfairness

in comparison. It is important to note that our concern is not finding the best forecasting method,

instead our concern is to study the possible improvements to neural network training and

performance using input transforms and TDNNs in general. Therefore, the baseline method may

not include all possible improvements that one might possibly find for a given dataset. For

38

example, one might create a very large neural network that produces better results, but with

significant computational cost. Such cases will not satisfy the requirements for small computing

devices which are the target platform of this work. Our goal, here, is to show the difference

between sparsifying and not sparsifying data in FFNN or TDNN. For each dataset, we have

experimented with many different network configurations and are reporting results from the

network setups that produce the best results under baseline.

In all these datasets, we use 70% of samples for training and the remaining 30% for testing.

The best network size for the TDNN for ERSST data was found to be 16x20x10 (for an

IxHxO network, where I is the input size, H is the hidden layer size and O is the output layer size).

For the synthetic data, the network size of 16x15x10 and 16x20x10 were the best option

respectively for synthetic line and synthetic curve. The TDNN size used for US101 and NDDS

datasets in this section was 16x20x10. We have found these network sizes to produce the best

prediction results after many trial and error investigations. However, the network configuration is

not the primary concern here as we are interested in relative performance and the effect of input

transforms and sparsity. In an earlier work reported in [2], it was shown that the trend reported on

the improvement due to transforms remains similar at different network sizes. For the sparsifying

transforms, we have selected three options of DCT, mixed-DCT/Haar, and PCA. We have run the

algorithms ten times and reported the average for the metrics described earlier.

In the first set of comparisons the system parameters are fixed and we measure the learning

time and prediction error. Here the stopping criteria of ML algorithm is unchanged and it is left to

the algorithm to stop training. The maximum allowed number of epochs was set to 1000. Results

39

for this experiment are reported in Table 2.1 and summarized in Figure 2.11. The result indicates

the time series prediction error for future sample time of t+10. The time that it took the MATLAB

implementation to complete the training is also reported. A core i-9 3.5GHz CPU was used for

these tests. It is observed that in all datasets, the methods employing the sparsifying transform

produce lower error, while taking considerably shorter amount of time to end the training. For

example, the training time for baseline method produces around 3.3% higher error and takes over

20 times (2000%) longer to complete for NDDS dataset, compared to results from DCT

transformed inputs. This is a significant improvement in learning time and can be observed at

different levels in Table 2.1.

Table 2.1: Training time and accuracy for different transforms (max number of epochs set to

1000). Error is for prediction error at time t+10; prediction error improvement compared

to baseline is shown in parenthesis under error.

Dataset

NDDS-100 US101 ERSST Syn. line Syn. curve

method Error time Error time Error time Error time Error time
Baseline 0.52 4945 1.140 4009 1.062

5723 0.60 2748 0.038 2550

DCT 0.49
(%3.4)

263 1.129
(0.1%)

1927 1.062

1425 0.60 97 0.019
(50%)

2463

Mixed-T 0.49
(3.3%)

237 1.099
(3.5%)

1763 1.066

1702 0.60 108 0.017
(55%)

2495

PCA 0.50
(3%)

464 0.987
(13.5%)

1059

1.062

1753 0.605 316 0.017
(%55)

2322

For some datasets, such as US101, we see from Table 1 that the PCA method produces

results that have 13.5% lower error than baseline. For the same scenario, DCT produces 3.5%

improvement. The better performance of PCA corresponds to the sparser input that it produces, as

40

is observable in Figure 2.5. In this figure, we see that PCA transformed input vectors have around

5 non-zero values (out of 16 data points in each input). This number is around 9 for DCT; thus,

the sparser data out of PCA seems to produce better results than the slightly less sparse output of

DCT.

Note that the much longer training time is observed to be due to the learning algorithm

operating in a relatively flat area of the error surface. We suspect that even with the baseline, i.e.,

original non-sparse data, the performance would probably reach an acceptable level after a short

while. Nonetheless, it is expected that sparse methods still perform better even at small number of

epochs. To investigate this point, in the second experiment approach, we fix the training time to a

small number of epochs and observe how different methods perform.

41

 Figure 2.11: Training time in seconds (left) and prediction error for different transforms

and datasets. The maximum epoch was set to 1000. Note that the values in Table 2.1 for

synthetic curve have been multiplied by 10 so that they can be visible in this figure.

Table 2.2, Table 2.3 and Figure 2.12 report the results for 25 and 10 epochs respectively. It

is observed that the prediction error for sparse methods show improvement in most cases. Also,

the amount of improvement seems to be directly related to how sparse the result of input transform

is. For example, PCA in Table 2.3 produces the sparsest results for NDDS and US-101, and

consequently the improvement in prediction error is higher (up to 7.5%). DCT and mixed-

0

2000

4000

6000

NDDS-100 US-101 ERSST Syn.Line Syn.Curve

Training Time

Baseline DCT Mixed-T PCA

0

0.2

0.4

0.6

0.8

1

1.2

NDDS-100 US-101 ERSST Syn.Line Syn.Curve(x10)

Prediction Error

Baseline DCT Mixed-T PCA

42

transform also produce very sparse results and therefore better accuracy at epoch 25. Synthetic

curve data shows the difference in a more marked way, as expected. The synthetic curve data was

designed to have 2 large sinusoids, which are easily found by DCT, mixed transform, and PCA.

As a result, there is a 7.5% improvement.

It must be noted although PCA provides better results in several cases, PCA bases are data

dependent. PCA requires analysis of the dataset prior to learning to derive the appropriate

transform (bases). on the other hand, DCT does not require preprocessing and is not data

dependent. As a result, the DCT maybe the preferred method.

ERSST dataset does not show a marked improvement at 25 epochs, mainly due to the fact

that data had a very obvious periodic pattern (annual pattern of temperature) that could be learnt

by all methods quickly; nevertheless, from Table 2.1 it is seen that if training was let to continue,

it would take almost 40% less time to achieve an accuracy that is also 1% better. The improvements

in more randomized data, such as trajectories in NDDS and US101, are more obvious.

43

Table 2.2: Forecasting Error and improvement for 10 timesteps ahead (number of

epochs set to 10)

Transform \
Data set

NDDS-100
(m)

US-101
(m)

ERSST
(degrees Celsius)

Synth

Synth Curve

Baseline 0.53 1.18 1.079 0.61 0.072

DCT 0.50 (5.6%) 1.14 (3.4%) 1.096 0.60 0.037(49%)

Mixed-T 0.50 (5.6%) 1.15 (2.5%) 1.099 0.60 0.037(49%)

PCA 0.50 (5.6%) 1.13 (4.2%) 1.087 0.60 0.042 (41%)

Table 2.3: Forecasting Error and improvement for 10 timesteps ahead (number of epochs

set to 25)

Transform
\ Data set

NDDS-100
 (m)

US-101
 (m)

ERSST
(degrees Celsius)

Synth line Synth Curve

Baseline 0.53 1.18 1.133 0.61 0.040

DCT 0.50 (5.6%) 1.13 (4.2%) 1.12 (1.1%) 0.60(1%) 0.036 (10%)

Mixed-T 0.50 (5.6%) 1.12 (5%) 1.14 0.60(1%) 0.037(7.5%)

PCA 0.49 (7.5%) 1.13 (4.2%) 1.12 (1.1%) 0.60(1%) 0.037 (7.5%)

44

Figure 2.12: Normalized prediction error at epoch 10 (left) and epoch 25 (right) for different

datasets and transforms. Prediction errors are normalized to baseline error in each scenario.

Note that for synthetic curve scenario in the left plot the values of error for DCT, Mixed-T

and PCA are below the range shown and are not visible here.

As discussed in the mathematical analysis section, the improvement in accuracy or training

time for sparsified data can be attributed to the reduction in size of the search space for the training

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

NDDS US-101 ERSST Synth Line Synth Curve

Normalized Error Prediction

Baseline DCT Mixed-T PCA

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
1.02

NDDS US-101 ERSST Synth line Synth Curve

Normalized Error Prediction

Baseline DCT Mixed-T PCA

45

algorithm. From another perspective, when DCT is used as the input transform, each input of the

TDNN is mapped to a specific frequency. Therefore, the TDNN will be learning the frequency

components, rather than time domain values. With the input transform layer, the weights

corresponding to each frequency component will have to adapt to a smaller range of values

compared to the time domain TDNN, in which all possible values in time may be observed by each

weight. The concentration of changes in the near DC frequencies, and smaller range of values for

most other components leads to a smaller search space, as was also mathematically shown in

section 2.4.

A different perspective on the very long training time of the baseline method is that the

optimization error function inside Neural network will be stuck on a flat area. The error function

surface for sparsified data is perhaps steeper, as error performance quickly converges and the ML

algorithm ends when it oscillates around a minimum.

2.6 Summary and Concluding Remarks

In this work, the impact of sparsifying input data of a TDNN has been studied. A

sparsifying input transform layer is applied to the input of the network, transforming data using to

domains such as DCT, PCA or a mixed-transform domain. Through mathematical analysis of the

backpropagation and gradient descent-based methods, it is shown that with sparse data, most of

the weight updates are concentrated on components that are associated with non-zero or large input

values. Seeing the training algorithm as a kind of optimization, it can be deduced that the

optimization process has a much smaller search space, when the input is sparsified. As a result,

the training process happens much faster (much lower number of iterations), at the cost of a single

46

extra multiplication to the neural network. Given that the transforms are lossless, we expect no

loss in accuracy.

Through training and testing with three realistic datasets and two synthetic datasets, we

observe that training time can be reduced significantly, while also improving the accuracy. The

improvement in both training time and accuracy suggests that TDNNs for time series forecasting

can greatly benefit from inclusion of an input transform layer. We have observed that for datasets

such as NDDS, the training time can be reduced up to 20 times, while improving accuracy up to

3.3%. At a fixed and very short training time of 25 epochs, the use of sparsifying transforms offer

up to 7.5% improvement in accuracy. For datasets with more predictable patterns, such as US101

or ERRST, the accuracy improvements were smaller; nevertheless, the training time was reduced

to 40% and 25% of baseline for ERRST and US101 datasets respectively (equivalent to 2- and 4-

times improvement in training time).

It is also observed that the amount of improvement is correlated with the level of sparsity;

i.e., sparser input results in faster and better learning. It is therefore reasonable to assume that

methods that achieve further sparsity, perhaps with non-orthogonal bases, could also be beneficial.

This is a direction of or future studies.

From an implementation perspective, the addition of an input transform layer adds a single

matrix multiplication operation (outside the training loop); in return and in addition to improved

accuracy, the number of iterations in the training process (backpropagation) can be greatly

reduced. This reduction leads to significantly lower overall training time (thus computational cost),

compared to networks without the sparsifying input layer, as also seen through mathematical

47

analysis in [40] section 2.4. The improved accuracy can also be traded off for reduction of network

size (thus computational cost). We will investigate the possibility of reducing network size in

TDNNs with the help of sparse input representation in the next chapter (chapter 3). The improved

performance for some sparsified-input-TDNN networks can be traded off for a smaller network

size that achieves the same performance as the original TDNN. In general, smaller networks are

expected to perform worse; by applying the sparsifying layer, we expect to improve the

performance back to the original network size level.

48

CHAPTER 3. NETWORK SIZE REDUCTION FOR TDNN USING

DOMAIN TRANSFORM

3.1 Introduction

2 In the previous chapter we have shown how sparsifying input data of TDNN, by adding

an input transform layer to a TDNN, can result in performance improvement. In this chapter, we

show the improved performance can be traded off for network size reduction. Therefore, we can

make the network smaller while maintaining the same performance levels. We used the same set

of datasets as in the chapter 2. ERSST, or the Extended Reconstructed Sea Surface Temperature,

NDDS or naturalistic driving data set, and US101. The focus of here is on the impact of network

size reduction using sparse input representation by applying input transforms to a TDNN (and in

general to a FFNN).

In most of the works, transforms (in particular Wavelet) are used for improved

performance, and the specific impact of sparsifying transforms or the impact on network size is

not discussed. Transforms such as Discrete Cosine Transform (DCT) or Principal Component

Analysis (PCA) are generally not considered or studied for their impact on sparsity.

2 The work presented in this chapter is based on the following publications:

Khandani, M. K., Mikhael W. B. : A Study on Network Size Reduction Using Sparse Input
Representation in Time Delay Neural Networks. 2020 IEEE 63rd International Midwest Symposium

49

 It must be noted that our concern is not on finding the best forecasting method or neural

network structure; instead, our concern is to study the possible improvements to neural network

training and performance using sparsifying input transforms in neural networks with low

computational needs (such as TDNNs or generally FFNN).

We show that for some data types it is possible to make the networks smaller using sparse

representation of input. In the next section we will first describe how the transform layer is

integrated in a network and in later sections the impact is studied.

3.2 TDNN with Sparsified Input

The network under study is a TDNN, as depicted in Figure 2.2. It can be seen as a FFNN

with an input delay buffer added. The delay buffer accepts the serial input X (time series data) and

parallelizes it to form a D-element vector of the recent history of the time series at that given time.

D is the input size to the rest of the network, which looks like a general FFNN. The input vector

can be transformed to another domain of the same or different size. For example, we could apply

the DCT transform to the vector. This task can be done by inserting a transform layer between the

delay buffer and the first input layer of the FFNN [2], as seen in Figure 2.2.

The FFNN may have one or more hidden layers. In this chapter, we consider the simpler

case of only one hidden layer (of size H), as it is quite sufficient for the time series prediction for

the datasets studied here. The output layer is designed to have the same size as the desired number

of samples in the future that the network will forecast. We call this the prediction length, denoted

as P. With this configuration, a DxHxP neural network results. The size of this network, as

considered in this chapter, is evaluated as the number of weights needed to be trained and used in

50

the feedforward path. Considering the bias input to neurons, the total number of weights can simply

be calculated as DxH + HxP +BH+BP, where BH is the number of biases in hidden layer and Bp is

the number of biases in the output layer.

 In this chapter, we investigate how network size could be reduced using sparsifying

transforms that are applied to the input vector. Two different transforms of Discrete Cosine

Transform-DCT- and Principle Component Analysis-PCA- are considered. Both transforms can

be easily applied to the input vector using multiplication with a DxD matrix of bases. DCT bases

are known and can be simply derived from the two-dimensional DCT formulation. For PCA, the

bases are derived after analyzing the dataset and deriving the data-dependent principle

components. This means that for each dataset we have a different set of bases. We will observe

that this makes PCA more efficient, but less practical than DCT if enough prior data is not available

for a particular application (though that is not expected for the cases studied here).

 We also note that the training and backpropagation only apply to the FFNN part of the

network and the input transform layer is not involved and the transform operation is not repeated

during training. Therefore, in our study of the network size, we focus on the size of the FFNN

which is the common part in training and testing. It is the weights of the FFNN part that are

adjusted in each backpropagation run during the learning process.

51

Figure 3.1: Network size reduction by compressing input: the architecture of the TDNN seen

as a buffer and multi input FFNN of size DxHxP. D is the input (history) length; here a

fraction (e.g. 75%) of coefficients are used.

52

Using sparsifying transforms, it is expected that the main energy of the signal will be

concentrated in fewer elements of the input vector (transfer coefficients), possibly reducing the

need to pass the whole vector the FFNN part. This is similar to compression using DCT, in which

small coefficients are set to zero (thus not needed to be passed in our network). This allows the

use of a smaller network, while possibly maintaining the same performance. Figure 3.1 shows how

the network can be made smaller by only using a fraction of input coefficients. In this chapter we

have studied 25% and 40% input size reduction. Additionally, the hidden layer may be made

smaller with sparser input as well. We examine these hypotheses in the next section, after an

analysis of the network size impact without any transforms.

3.3 Baseline Network Size Analysis

Prior to studying the impact of sparsifying transforms, we analyze the impact of network

size on the performance of a baseline TDNN, i.e., a TDNN with no input transform. For this

purpose, we have considered three input sizes of 32, 16 and 8 (history lengths that were meaningful

for our datasets), as well as four hidden network sizes of 5, 10, 20 and 30. The prediction

performance was analyzed through measuring the 95 percentile of the prediction (forecasting)

error at some time samples ahead. For each sample at time t in the dataset, we considered a forecast

and an error instant for each future time from t+1 to t+5. Since it is usually the longer-term

prediction values that are critical, we take the t+5 prediction for error measurement. Here we

considered the 95-percentile of the error instances for prediction at t+5. We note that the network

was designed to predict 5 points in the future, so the output size was P = 5. We use the 95-

percentile, instead of other statistics as it is commonly used for some of the datasets that we use

[2]. The trends are similar for median, mean or 95%.

53

 The training for all the scenarios was done for a fixed number of epochs, 15, to remove

the effects of other parameters such as validation error threshold. We have also used the default

training setting of initial µ=0.001 and µ decrease factor=0.1, applied after 10 epochs. We also used

the MATLAB implementation of the backpropagation and the neural network toolbox. We used

70% of the samples in the dataset for training and 30% for testing. Results from these tests are

reported in Figure 3.2.

 It is observed that for all datasets the larger network sizes produce better performance,

as expected. Another important observation is that hidden network size of 5 produces noticeably

higher error, while H=10, 20 and 30 are not considerably different. Similarly, larger input sizes

produce better results. Given the consistency in improvement with input and hidden layer size, we

will take the middle option of input size 16 for our study of input compression (through sparse

representation) in the next sections.

3.4 Evaluation

To study how sparsifying the input may allow using smaller networks, we vary the hidden

layer size while keeping the input to be a vector of size 16 (D=16) under different transforms. In

some instances, when a transform is applied to the input, we can also remove some transformed

input elements (coefficients of the transform results) as shown in Figure 3.1. This will allow

reducing the input size as well as the reduction that is possible by adjusting the hidden layer size.

This is examined in detail in this section. The number of training epochs is kept at 15.

The transforms that are applied are DCT and PCA; the PCA bases are separately calculated

for each data set. The results are different for each data set. Starting from the ERSST dataset, the

54

prediction error results in Figure 3.3 show that all options of DCT, PCA and their compressed

version (where 25% of the smallest coefficients were removed from the input, resulting in vectors

of length 12) perform better than the baseline. In particular, it is seen that for smaller network sizes

(smaller hidden layer size, for example 5 and 10), the gain in performance is more notable. The

gain is also more visible at hidden layer size 30.

Similarly, for the NDDS dataset, with results shown in Figure 3.4, we observe that the gain

in performance is more notable for smaller hidden layer size of 5. The performance gap is also

notable at H=30, similar to the ERSST dataset.

The results for US101, demonstrated in Figure 3.5, show similar trend but with an across

the board performance gap for sparsified inputs (through either DCT or PCA). The improvement

is visible for all hidden layer sizes. Here, we could obviously use this performance gain and remove

some of the coefficients (25% in this case, yielding input vectors of length 12), while still

maintaining the performance at the baseline level.

55

Figure 3.2: Forecasting (prediction) error for twelve network size configurations (D=8, 16,

32, and P = 5, 10, 20, 30) for three datasets of ERSST (top), NDDS (middle), and US101

(bottom)

Overall, we observe that applying DCT or PCA and removing 25% of the coefficients will

always allow performance of at least at the same level as baseline.

We examined higher levels of compression (removing more than 25% of coefficients from

input) and it was observed that the prediction results become worse than baseline, except for the

NDDS dataset. This dataset includes driving maneuvers with sudden movement, which are perhaps

more suitable to be captured by sparse representations, rather than in time domain. For this dataset,

we could remove up to 40% of the coefficients from PCA or DCT transform results (yielding input

vectors of size 10), and still maintain the error below baseline levels. The results are reported in

Table 1, along with the network sizes and the number of weights that are used in each network.

From the results in this section, it is seen that the network size choices are first dictated by

the performance requirements (acceptable error levels). Given a particular performance target, the

56

use of sparse representations, such as DCT or PCA will allow selection of a smaller hidden layer

size. Furthermore, compression can also be applied to the input layer. For example, for the ERSST

dataset, if an error of 1.11 degrees Celsius is acceptable, the smallest baseline choice will be H=10.

However, with the use of PCA or DCT, a considerably smaller layer of H=5 can be used to achieve

an error of 1.10. Furthermore, with compressing either PCA or DCT coefficients, the network

could further be made smaller while still maintaining error at 1.11 degrees.

Figure 3.3: Prediction error results for ERSST dataset; different choices of sparsified and

compressed input compared to baseline. The horizontal axis shows the hidden layer size H

Figure 3.4: Prediction error results for NDDS dataset; different choices of sparsified and

compressed input are compared to baseline. The horizontal axis shows the hidden layer size.

57

Figure 3.5: Prediction error results for US101 dataset; different choices of sparsified and

compressed input are compared to baseline. The horizontal axis shows the hidden layer size.

3.5 Summary and Concluding Remarks

We have studied the possibility of reducing network size in TDNNs with the help of sparse

input representation. With a given level of performance (in this case, prediction error), it is possible

to considerably reduce the hidden layer size of a network, simply by applying sparsifying

transform to the input layer. Furthermore, the considerable improved performance allows for

additional network size reduction through removing some of the coefficients of the sparse

representation of the input vector. It is observed that this trend is generally seen for all datasets,

with a 25% reduction of the input size possible for all of them. However, for some datasets such

as NDDS, the input can be further compressed with up to 40% reduction in size.

 Overall, it is consistently seen that applying sparsifying transforms to the input of a TDNN

allows for better performance which can be traded off for reducing network size in both the input

and the hidden layers. While we have analyzed the DCT and the PCA based transforms, other

58

types of transforms may exist that could provide further improvements. The concept described

here could also be employed with larger and deeper networks and is being currently investigated.

Table 3.1: NDDS data set: different number of weights (network sizes) for TDNN based

methods, each row represents the prediction error for each method.

 #weights

transform

665
16x30x5

445
16x20x5

225
16x10x5

115
16x5x5

None 0.520552 0.517456 0.518695 0.569658

DCT 0.508220 0.498591 0.518596 0.515907

PCA 0.494928 0.506184 0.510347 0.521136

 #weights

transform

545
12x30x5

365
12x20x5

185
12x10x5

95
12x5x5

DCT-comp 25% 0.509024 0.517149 0.510361 0.521448

PCA-comp 25% 0.502860 0.512252 0.516338 0.513015

 #weights
transform

485
10x30x5

325
10x20x5

165
10x10x5

85
10x5x5

DCT-comp 40% 0.518945 0.520815 0.525214 0.562984

PCA-comp 40% 0.521770 0.527519 0.523211 0.534384

59

CHAPTER 4. ENHANCING CONVOLUTIONAL NEURAL NETWORK

PERFORMANCE USING DOMAIN TRANSFORMS IN CONSTRAIEND

NETWORKS

4.1 Introduction

3The task of image classification has many applications in computer vision. Recent

advancements in Convolutional Neural Networks (CNN) have paved the way for significant

improvements in image classification over traditional image processing methods. In particular,

deep convolutional neural networks are now considered the main tool for this purpose. However,

these networks are often large and require computing and storage resources that are not available

in many smaller computing devices. For example, very small IoT (Internet of Things) devices are

usually designed with minimal computing and storage capacity with the aim of reducing cost.

Using image classification applications in large scale deployment of IoTs will require either

considerable cost increase, or considerable reduction of performance. Moreover, the task of

3 The work presented in this chapter is based on the following under-review paper:

Masoumeh Kalantari Khandani, Wasfy B. Mikhael, “Efficient Size Reduction of
Convolutional Neural Networks Using Domain Transforms”, Under review

60

training CNNs, which is often done offline, is sometimes needed to be done online for retraining

of networks. This task is generally very computing intensive, compared to the forward operation

of CNN. Therefore, it becomes necessary to look for methods of reducing the computational cost

of CNNs for low power computing devices. This is generally achieved in some applications by

reducing the size of input data (images) and the processing neural network. To put this in

perspective, most deep networks that are used for classification have millions of learnable

parameters. We limit our choices of networks to those with an order of magnitude less parameters

(i.e., under 200K learnable parameters and down to 50K). The reduction in network and input size,

as expected, usually comes at the cost of reduced classification performance. In this chapter, we

examine how domain transforms can be used for mitigating the negative effect of input and

network size reduction.

We show that using transforms, such as Discrete Wavelet Transform (DWT) and Discrete

Cosine Transform (DCT) as an input transform layer, it is possible to efficiently improve the

performance of size-reduced networks. We note that these transforms project the original image

data to a domain where data is represented in a sparser form, allowing for selectively removing

part of the input data and reducing the input image size in a more efficient way than simple resizing

of an image. We observe that such transforms also have the positive side effect of improving the

learning rate. Similar benefits were seen in our earlier works on time series and shallow networks

[40]. The improved learning rate and network size reduction allows for lower computational cost,

in particular during the training phase. Training of deep networks is usually the most

computationally expensive aspect of CNNs; while retraining a network requires less computations,

61

it is still considered a heavy load on smaller devices. The reduced cost of training, achieved using

domain transforms, is an important factor that can enable retraining of CNNs in small devices.

The basic hypothesis that is examined in this chapter is that transforming image data to a

sparser form will allow for more efficient network and input size reduction than simply resizing

the input. We demonstrate that in most cases the improvement can be traced to higher entropy of

resized input using transforms. While in data compression the use of such transforms is common,

in classification applications it is not intuitive that sparser representation will be useful. In fact, it

is seen that the usual application of CNNs with convolutional filters in the input layers is not useful

when data is represented in domains such as DCT. On the other hand, it is seen that more efficient

configurations becomes possible if DCT is used. Transfer to DWT domain shows different

properties, since the spatial relationship between initial data pixels are maintained (as opposed to

DCT that the spatial relationship is not explicitly kept). To evaluate and examine these hypotheses

and observations, we use two standard datasets of small images (representing IoT processable

images), including Fashion MNSIT (FMNSIT) and CIFAR-10. Evaluating our proposed methods,

it is shown that input size reduction of up to 75% is possible, without loss of classification

accuracy. While transforms such as DCT allow variable input and network sizes to be utilized,

DWT proves to be very effective when significant size reduction is needed (improving the result

by up to 5%).

In the rest of this chapter, we first review some related literature. Then the system

architecture and the proposed method for addition of an input transform to a CNN is explained.

Evaluations and discussion of different configurations and network size reduction options are

presented last.

62

4.2 Related Work

The focus of this work is on the effect of domain transforms in improving the performance

of shallow or small convolutional neural network in image classification. In particular we are

interested in devices with limited computing capacity or CPUs instead of GPUs. There are many

methods and tools employed for image classification in different applications with larger

computing facilities, such as the works on Res-Net, VGG, Alex net[41][42][43]. We do not review

these works here as they are out of the scope of this chapter. It is worth noting that if large and

complex deep networks were possible with our target devices, better results for image

classification could be achieved for the datasets of interest. For example, utilizing the work in[44],

a classification accuracy of above %91 is achievable; similarly, the methods in [45] achieves

%96.5 with the help of expanded training with data augmentation. Other recent large networks

also perform similarly[44]. However, the above methods require orders of magnitude larger

networks, in terms of number of learnable parameters, than what we are considering in this chapter.

Our interest in this chapter is to study networks with under 200,000 parameters, while methods in

[44] and [45], respectively have 1.3 and 50 million parameters in their proposed networks. As a

result, we do not consider such large designs in this chapter and use smaller generic networks as

explained later. Our focus in this chapter is on the impact of domain transform on smaller networks,

and the specific network architectures are not the emphasis of this study.

The use of transforms and neural networks has received some attention for time series and

image classification applications, we review the use of domain transforms in image classification

in this section.

63

Transforms such as DCT and DWT are popular in image processing applications and

consequently have been considered in some specific image classification designs. For example,

Pan et al [24] have shown that reducing image information redundancy using DCT can be

beneficial to face recognition applications. They have demonstrated that when DCT coefficients

are fed into a backpropagation neural network for classification, a good recognition rate can be

achieved by using a very small proportion of transform coefficients. This work is specific to face

recognition and is not directly applicable in our case. Wang et al [35] have introduced a method

called CNN-pack, in which a convolutional neural network itself is transformed into frequency

domain and packed by linearly combining the convolutional responses of DCT bases. This method

is shown to reduce the computational burden since the network becomes sparser. This work is in

principle different from our work in its method of transforming convolution operations in a CNN.

In another work, Ghosh et al [46], propose to apply DCT on the feature maps generated by

the first convolutional layer in the network. They observe that the training phase convergence is

faster when feature extraction takes place in the DCT domain. Performance remains comparable

in this case. This is similar to our observation for time series [40]; although our proposed method

in this chapter primarily achieves improved performance without sacrificing training time.

A different approach in using domain transforms is taken in [47]. Here, authors propose to

feed and train a CNN by modifying the input representation of the JPEG compressed data. This

means that the image does not have to be in the RGB or similar original domain and the proposed

CNN can be trained with JPEG compressed DCT coefficients. This work utilizes deep and

complex networks and is shown to produce good accuracy. However, their method is more suitable

for training on already JPEG compressed images and is not directly applicable in our case. We do

64

not expect images to have gone through JPEG compression prior to becoming available to the

classification application running on the CPU.

A completely different approach to using domain transforms and CNNs is proposed in

[48]. This work proposes Hybrid Cosine Based CNNs which use a cosine basis to represent the

weights of the convolutional filters. This amount to a different method of applying the filters.

Authors show that better performances can be obtained than VGG and Res-Net architectures using

less parameters in the convolutional layers. The complex networks designed in this approach are

not useable for the small CPUs that we consider our case.

In this chapter, we study the impact of adding a domain transform layer to the input of a

small or shallow CNN. The layer will transform the input to a domain where it is represented in a

sparser form. We show that it is possible to efficiently reduce the input image size using

transforms, compared to the averaging methods for resizing an input. Our work is different from

existing works in that we do not utilize transforms in the operation of a CNN (how filtering is

done), or directly in compression. Rather, our aim is to maintain enough information in the data

that makes classification work better. We note that since the existing methods are designed for

specific datasets and use large and deep CNNs, it is not possible to directly compare the impact of

adding a transform layer to existing methods. Therefore, in this chapter we customize CNNs for

specific datasets and compare them with the results of the same networks in the visual domain

(baselines).

65

Figure 4.1: Sample images from Fashion MNIST[64] and Cifar-10[57] datasets.

4.3 Method and System Description

The concept studied here is to transfer the input image to a different domain before passing

it through the CNN either with the same size or at a reduced size. This is achieved by adding a

transfer and size reduction layer immediately as the first layer of a convolutional neural network.

In this chapter we consider two examples of domain transform using DCT and DWT (Wavelet)

transforms, as well as their variations. For size reduction, we consider reducing the width and

length to either half or a quarter of their originals. Respectively, this will result in images with total

pixels that are ¼ and 1/16 of the original. For simplicity, in this chapter we refer to the former as

-half and the latter as -quarter sizes, indicating the size reduction of each dimension of the image.

Therefore, the outputs of the domain transform and size reduction operations will have at least 9

options as indicated in Table 4.1. We note that the size reduction using transforms can happen in

multiple ways. For example, with DWT, halving the width and length can happen by only taking

66

the LL component (or any other wavelet output component, as illustrated in Figure 4.4). For DCT,

the lower frequency components may be kept. Table 4.1 describes all the choices that are used in

this study.

Table 4.1. the outputs of the domain transform and size reduction will have at least 9 options

Transform and

Resize

Utilized

Transform

Resize method Description

Baseline - - Original image

Baseline-Half - Resize to N/2 x N/2 Resize using averaging

Baseline-Quarter - Resize to N/4 x N/4 Resize using averaging

DCT DCT2 - DCT transformed

DCT -Half DCT2 Resize to N/2 x N/2 Apply DCT, take lower 1/4 of

coefficients

DCT -Quarter DCT2 Resize to N/4 x N/4 Apply DCT, take lower 1/16th of

coefficients

DWT CDF_9/7 - DWT transformed

DWT-Half CDF_9/7 Resize to N/2 x N/2 Apply DWT once, take LL band

DWT-Quarter CDF_9/7 Resize to N/4 x N/4 Apply DWT twice, take LL2 band

67

The network with the additional transform and resizing layer is shown in Figure 4.4. The

configuration of the CNN can vary greatly based on different solutions that are found in the

literature. Nevertheless, there are common components such as convolutional layers, Relu,

maxpool, batch normalization layer, fully connected layer and soft-max layer that are used in a

chain

Figure 4.2: Architecture of the CNN in general and adding a transform layer. A Transform

layer can be inserted between the input and the CNN.

68

In this chapter, our objective is not to find the best possible CNN architecture for a given

input type (or image dataset), instead our focus is to study the impact of domain transform on the

performance of a general shallow CNN and how network size could be made smaller. Therefore,

we have used architectures that are used as basic CNNs for image classification with some small

changes to improve their performance. We also emphasize that the objective of this chapter is to

devise solutions that require low computational power; therefore, complex and very deep CNNs

are not acceptable solutions for this purpose. As a result, we use networks with less than 3

convolutional layers (2 for FMNIST and 3 for CIFAR-10), 32 filter with size of at most 5, and at

most two fully connected layers (see Table 4.2 and Table 4.3). We note that there are very complex

deep networks that have been proposed for the datasets used in this chapter. For example [49][50]

for Fashion MNIST, and [51] [52] for CIFAR-10. These architectures are designed after extensive

hyper parameter fine tuning and require many layers and large filters, resulting in very lengthy

training and computational cost [53] . Changes in input form (from transform) and size will render

those solutions non-optimal; their computational requirements are also well beyond the power of

the small processor devices that we are considering in this chapter. Therefore, the state of the art

that we compare our methods against are smaller forms of the networks derived from the [56][57]

for CIFAR-10 and [54][55] for FMNSIT, which utilize the number of filters and layers acceptable

in this work. We have fine-tuned these state-of-the-art methods to optimize them for the datasets

and input sizes used here. These are referred to as the “baseline” solutions in Table 4.2 and Table

4.3.

69

4.3.1 Data Sets

We utilize two very well-known datasets of Fashion MNIST (FMNIST) and CIFAR-10 in

this chapter. We have particularly selected these datasets as they contain small images and are

good representatives for applications with low computational requirements. The FMNIST dataset

was introduced in [58]; it includes fashion product images in grayscale. It is intended to be a

replacement of the original MNIST dataset and provides a more challenging alternative for

benchmarking machine learning algorithm. The images are of size 28x28 and their small size

allows fast and computationally inexpensive methods to be used. On the other hand, the small size

of the images creates a challenging task in classification. In total, FMNIST contains 70,000

grayscale images of fashion articles in 10 categories. For the machine learning application, the

training set of FMNSIT contains 60,000 images (6000 from each category) and the test set includes

10,000 images (1000 from each category).

While FMNIST images are in grayscale, the CIFAR-10 dataset contains small color (RGB)

images of size 32x32 in 10 classes. There are in total of 60000 images, with 6000 images per class.

50000 of the images are training images and 10000 are test images [59][56].

4.3.2 Network Architecture

As described above, a different network setup is used for each dataset. The reason is that

the FMNIST dataset includes grayscale images of 28x28 pixels, whereas the CIFAR dataset

contains RGB color images of 32 by 32. For the purpose of our study, we have zero-padded the

FMNIST images to create 32x32 images to allow better applications of transform. We expect no

degradation of quality due to zero padding as confirmed in [60]. We found the following networks

70

layers to produce the best results under the size constraints set out earlier for small processor

devices.

For the FMNSIT dataset the network design is detailed in Table 4.2. Basically, we use only

two convolution layers. To demonstrate that the network choices were robust and not very sensitive

to the hyper parameter changes, we have examined few different choices of the number and sizes

of the filters and present the results. The number of filters used in these layers were from four

different configurations; we named them network A, B and C. For network A both first and second

convolution layers have 8 filters with size one. Network B uses 8 filters with size one for the first

convolution layer and size 5 for the second convolution layer. For network C, we have used 8

filters for each convolution layer, with filters of size 3 for the first layer and size 5 for the second

one.

For the CIFAR dataset we use the network in Table 4.3. We only use one network size with

three convolutional layers. The number of filters and their sizes are fixed for all situations as shown

in the table. The combinations of pooling layers and operations are found after extensive study to

optimize the performance with the constraint of 3 convolutional layers. In all of the studies with

domain transform, we take the best network choices for each network (the three networks for

FMNIST and the selected network for CIFAR). These networks are then used for the study of the

input domain transform and size reductions. The process of domain transformation and size

reduction is explained below, for each choice of the transform.

71

Table 4.2: Convolutional Neural Network layers used for Fashion MNIST images (networks

A, B, C); input images are nxnx1, n=N, N/2, or N/4

Network A Network B Network C

*image Input Layer (nxn)

*convolution2dLayer

(8 filters of 1x1)

* Batch-Normalization Layer

*Relu Layer

*maxPooling2dLayer
(size=2, stride=2)

*convolution2dLayer
(8 filters of 1x1)

*Batch Normalization Layer

*Relu Layer

*fully Connected Layer (10)

*softmax Layer

*classification Layer

*image Input Layer (nxn)

*convolution2dLayer

(8 filters of 1x1)

*Batch Normalization Layer

*Relu Layer

*maxPooling2dLayer
(size=2, stride=2)

*convolution 2d Layer
(8 filters of 5x5)

*Batch Normalization Layer

*Relu Layer

*fully Connected Layer (10)

*softmax Layer

*classification Layer

*image Input Layer (nxn)

*convolution2dLayer

 (8 filters of 3x3)

*Batch Normalization Layer

*Relu Layer

*maxPooling2dLayer
(size=2, stride=2)

*convolution2dLayer
 (8 filters of 5x5)

*Batch Normalization Layer

*Relu Layer

*fully Connected Layer (10)

*softmax Layer

*classification Layer

Number of learnable parameters:

 Input Image size

network

NxNx1 N/2xN/2x1 N/4xN/4x1

Network A 28978 9778 4018

Network B 19634 5554 2354

Network C 17378 4578 2018

72

Table 4.3: Convolutional Neural Network layer used for CIFAR-10

Layers for input image of nxnx3; (3 RGB channels)

n = N, N/2, or N/4

*Image Input Layer([nxnx3])

*convolution2dLayer (32 filters of size 5)

*Relu Layer

*convolution2dLayer (32 filters of size 5)

*Relu Layer

*convolution2dLayer (32 filters of size 5)

*Relu Layer

*averagePooling2dLayer (size 3, Stride 2)

*fully Connected Layer (20)

*Relu Layer;

*Fully Connected Layer (10)

*Softmax Layer

*Classification Layer

Image sizes Number of learnable
parameters:

NxNx3 197926

N/2xN/2 x3 85286

N/4xN/4 x3 59686

4.3.3 Input Domain Transforms and Size Reduction

There are numerous options for domain transform. We consider two specific transforms

that have different characteristics: DCT and DWT. The DCT transform projects image data to

some frequency domain, representing it in a form that is sparse and spatially distributed in a very

different form from the original data. On the other hand, DWT utilizes wavelets and produces 4

sub-bands of LL, LH, HL, and HH, representing data in forms that can be visually related to the

features of the original data. LL is the low frequency sub-band, resembling a low pass filtered

version of the original image. The other bands, LH and HL, include higher frequency components

73

in the vertical and horizonal dimensions of the image. HH sub-band gives diagonal features. The

visual similarity points to the fact that the spatial relationships in the original image domain is

more explicitly maintained with DWT. However, the four bands are disjoint and each only has

1/4th the size of the original. Therefore, the methods of size reduction or constructing full size

transformed images will be different for each scheme. These processes are explained in detail

below.

4.3.3.1 Discrete Cosine Transforms

The first transform that we consider is Discrete Cosine Transform (DCT), which is one of

the sinusoidal transforms. It was explained in detail in Chapter 2. A common variant of DCT is

DCT-II and can be applied to signals with multiple dimensions. For example, a 2-dimensional

DCT transform of an image or 2-D signal x (of size NxM) can be calculated as follows:

 𝑋𝑋𝑐𝑐𝑐𝑐(k) = 𝑎𝑎𝑐𝑐𝑎𝑎𝑑𝑑 ∑ ∑ 𝑥𝑥[𝑛𝑛]. cos[𝜋𝜋𝜋𝜋
𝑀𝑀

(m + 1/2)] . cos[𝜋𝜋𝜋𝜋
𝑁𝑁

(𝑛𝑛 + 1/2)]𝑁𝑁−1
𝑛𝑛=0

𝑀𝑀−1
𝑚𝑚=0 (4.1)

𝑎𝑎𝑐𝑐 = �

1
√𝑀𝑀

 𝑐𝑐 = 0
√2
√𝑀𝑀

 1 ≤ 𝑐𝑐 ≤ 𝑀𝑀 − 1
 , 𝑎𝑎𝑑𝑑 = �

1
√𝑁𝑁

 𝑑𝑑 = 0
√2
√𝑁𝑁

 1 ≤ 𝑑𝑑 ≤ 𝑁𝑁 − 1

Where X is the matrix of coefficients (results) of the transform, and the indexes c and d are

as: c=0,1, 2, …, N-1, and d=0,1, 2, …, M-1.

For data, such as natural images, most of the information is usually concentrated near lower

frequencies. This leads to very sparse coefficients being produced by sinusoidal transforms such

as DCT. While the sparsity is useful in compression applications, it has the side effect that the

74

range of values for different coefficients is usually much larger than the difference of values for

original image pixels (intensity levels). We consider reducing such differences in later sections of

this chapter and show that it has a positive impact on results.

To visually observe the impact of applying a 2-D DCT on an image, Figure 2.3 shows the

DCT coefficients of an image from FMNIST dataset. We note the sparsity of coefficients and the

large range of coefficient values.

Figure 4.3: Visualizing effect of DCT. Top: a sample image from FMNIST shown in 2-D and

3-D (x, y, and intensity) forms; bottom: DCT coefficients of the same image in 2-D and 3-D

(x, y, and coefficient value) forms.

75

Resizing DCT transformed data

Resizing images in the DCT domain is straightforward and can be done by selecting a

fraction of the lowest frequencies of the coefficients. This is in particular useful for natural images

that usually have most of their energy concentrated in the lower frequencies as seen in Figure 4.3.

Original image can be approximately reconstructed by setting the value of the removed higher

frequency coefficients to zero, and performing an inverse DCT transform. The advantage of DCT

in size reduction is that it allows any number of the coefficients to be removed.

A disadvantage of DCT is that the spatial relationship between neighboring pixels are not

directly capturable by the convolutional filters. The convolutional filters are designed such that the

spatial relationship of neighboring pixels, which is usually visible, is easily captured through the

convolution operation. DCT coefficients are structured in such a way that the local relationships

are spread over different frequency coefficients. This means that the design of convolutional filters

may have a harder time capturing the spatial features in an image.

4.3.3.2 Discrete Wavelet Transforms

The second transform considered in this work is the Discrete Wavelet Transforms (DWT).

DWT produces four sub-bands low-low (LL), low-high (LH), high-low (HL) and high-high (HH).

By using these four sub-bands we can regenerate original image through inverse DWT. Wavelets

are especially useful for compressing or denoising two dimensional signals, such as

images. Wavelet analysis is basically the process of decomposing a signal into shifted and scaled

versions of an original wavelet function (for more information refer to Chapter 2).

76

To construct 2-D transform, the transform is applied in both directions. In contrast to

frequency-based transforms such as DCT or DFT, DWT has a key advantage it can capture both

location (time) and frequency information, in addition to the discontinuity in the signal. The non-

sinusoidal nature of the basic wave functions provide a simple and computationally efficient

approach for analyzing the local aspects of a signal[36][37].

The specific version of the DWT used in this chapter is based on Cohen–Daubechies–

Feauveau wavelets. These are a family of biorthogonal wavelets that was made popular by Ingrid

Daubechies [61][62]. We use the CDF 9/7 wavelet, which is also used in JPEG 2000 standard for

lossy compression.

Figure 4.4 Visualizing the effect of DWT transforms; left: sample image from FMNIST data.

Right: DWT transformations, the four bands: top left (LL), top right (LH), bottom left (HL)

and bottom right (HH).

77

An example of the DWT applied to an image is seen in Figure 4.4. Applying DWT to an

NxN image produces four signals of LL, LH, HL, and HH, which are all of size N/2xN/2. LL

includes lower band and is visually similar to the original image. Putting the four bands together

will create a 2-D signal which has the same size as the original image; however, this composition

may not be directly fed to a CNN, since the transition from boundaries of the four different bands

in a NxN composition as in Figure 4.4 has no spatial meaning. That is, the bottom edge of LH and

the top edge of HH are not spatially related, so they cannot be interpreted by the CNN as being

directly relevant. Therefore, composing the full signal in DWT form has to happen in a different

way than what is shown in Figure 4.4. One method is to stack the four bands and create a signal

of size 4xN/2xN/2, which basically has the same size as the original image.

Resizing DWT transformed data

Reducing input size using DWT is much more limited than when DCT is used. With DWT,

we can use one or more of the four bands. If one band, e.g., LL, is used, a compressed image of

size N/2xN/2 is obtained. This will generate a transformed data with the half length and width as

noted in Table 1. To further reduce the image size, we can apply DWT to the LL band for a second

time, producing four bands out of the first LL. If the LL band of the second transform (which will

be the obtained LL of the previous LL band) is kept as the signal, an image of size N/4xN/4 is

obtained. Of course, there are numerous possibilities for stacking several bands and achieving data

sizes in between half and quarter dimension images. In this chapter we study the full (stacked),

half and quarter dimension options of the DWT transformed data.

78

4.4 Entropy Analysis

This section provides some insight into the reason for improved performance when size

reduction is accomplished using domain transforms. When a transform like DWT or DCT is

applied to an image, the resulting coefficients contain the same information as the original image,

but organized in a different way. These transforms are not lossy. Therefore, theoretically we do

not expect that the transformed data provide advantages or disadvantages in terms of the amount

of information for classification. However, it is possible that the new organization of image data

(coefficients of transformed data) may change the behavior of specific CNN configurations either

positively or negatively. This is studied in the evaluation section.

In this section we focus on the case of resized input data, in which some loss of information

happens. It is generally expected that the loss of information will result in degraded classification

performance. The more information is lost, the worst the performance would be. While this logic

may generally hold, the organization of the resized image (how coefficients represent the data) is

also important in the performance of a CNN. Nevertheless, preserving more information during

the lossy process of resizing input data is expected to be beneficial. Measuring the amount of

information in an image is a challenging task. For the purpose of our study, and to qualitatively

compare different methods, we use the image entropy measure.

Entropy of a signal was introduced in 1948 by Claude Shannon to study the amount of

information in a message. A higher value of entropy would mean that there is more information in

the message and more bits were needed for its transfer. It was used to derive the lowest bound of

the channel capacity (bandwidth) needed for a message (which would be achieved if an ideal

79

coding was used). The concept of entropy has been used for images (2-D signal) as well [63]. We

can use entropy of an image to quantify how much information is available in the image, which

can be used by the CNN for classification. So, a method that preserves more information, is

expected to produce 2-D signals with higher entropy and possibly higher classification accuracy

in CNN. However, we also note that the different organization of transformed information may

also impact the results. Considering these facts, in this section we look at the entropy of resulting

signals for different methods of input size reduction.

Entropy calculation is done according to the following formula:

𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

(4.2)

H(X) is the entropy of the random variable X. Here p(xi) is the probability that outcome xi

happens. In the case of gray image, the probability density p(.) is calculated using the gray level

histogram, and the sum runs from n=1 to 256. The bins represent possible states. For RGB images,

we treat each channel separately and then the average of the three channel is used. Here the

assumption is that each data point (pixel intensity in the image) is represented in a quantized

discrete form. This poses a difficulty in comparing entropy of different methods, since our data is

in a real number format (double).

80

Figure 4.5: process that images go through for CNN with: baseline (top), DCT or DWT input

transform layer (bottom), the entropy is calculated for reconstructed image I’ and I”.

Resizing by 1/n can be done for n=2 or 4

Quantizing transformed data in different domains is not possible in a fair way since the

range of values in DCT, DWT and original images are different and quantization with a small

number of levels (e.g., 256) will hide a lot of details in methods such as DCT due to large range

of coefficient values. To overcome this issue, we can transform the reduced size data back to the

original domain original size through a lossless inverse transform of the resized data.

We note that the transforms and their inverses do not change the amount of data (thus they

do not change the entropy). So, the end-to-end change in the entropy is due to the resizing (or

81

compression) in the middle. It is straightforward to apply an entropy calculation method using

256 quantization levels in the original image domain. This process is shown in Figure 4.5.

Table 4.4: Cifar-10 normalized mean Entropy value for different transforms.

method Mean Entropy half Mean Entropy Quarter

Baseline 1.0000 1.0000

DCT 1.0144 1.0215

DWT 1.0081 1.0125

Table 4.5: Fashion Mnist normalized mean Entropy value for different transforms.

method Mean Entropy half Mean Entropy Quarter

Baseline 1.000 1.000

DCT 1.1417 1.5780

DWT 1.0572 1.5576

We have applied the size reduction methods of using DCT and DWT and then keeping half

and quarter of the length and width data. The entropy resulting from these operations are measured

for all images in the datasets of FMNIST and CIFAR. The results are shown in Table 4.4 and Table

4.5.

It is observed that reduced size data using DCT and DWT transforms produce higher

entropies than the averaging based resizing (baseline). In Figure 4.6 we show the CDF (Cumulative

distribution function) of the entropy values for the entire datasets and the different methods. It is

observed that DCT produces reduced-size data with highest entropy. The DWT based method is

also seen to produce results better than baseline (Table 4.4 and Table 4.5). Since higher entropy

does not directly mean higher classifiable features (more noise also creates higher entropy), we

82

also look at the quality of reconstructed images using the PSNR (peak signal-to-noise ratio)

measure. Higher PSNR means that the reconstructed image is closer to the original image. We

measured the PSNR for all of the reconstructed images for the two datasets and plotted their CDF

in Figure 4.7. Comparing the PSNR values, it is obvious that all percentiles of the PSNR for DCT

and DWT based resized images are higher than baseline, indicating a better preservation of original

image quality using DCT and DWT based methods. Therefore, it is expected that the CNN

performs better in classification of the higher entropy data. These methods are evaluated in the

next section.

83

Figure 4.6: CDF of the CIFAR-10 and Fashion Mnist datasets image entropies

84

Figure 4.7: PSNR of the CIFAR-10 and Fashion Mnist datasets image entropies

85

4.5 Evaluation with Different Transforms

In this section, we evaluate the performance of each of the methods described in table 1.

We quantify how domain transforms can improve the accuracy performance of the classification

application for FMNIST and CIFAR datasets. The datasets are divided into two parts; 70% of

images are used for training and 30% for testing. To ensure that a fair comparison is made between

different methods, training is done for a fixed number of epochs for all methods. We use 15 epochs

which is enough to reach a plateaued performance for all methods. Moreover, our objective is to

compare the performance of different domain transform methods under processing constraint for

small processor devices; therefore, we limit the training time. The metrics that were used here were

the top-1, top-2, and top-3 accuracy performance measures. However, the comparative results for

these metrics turned out to be very similar; therefore, we report top-1 for all tests, and top-3 results

for one set to demonstrate the similarity of results. We used MATLAB implementation of the

convolutional neural networks. Training was done using SGDM (stochastic gradient descent with

momentum) method, with max epochs set to 15. Other default parameters were kept.

We first analyze the results from FMNIST dataset. In addition to evaluating performance

of different domain transform and size reductions, we also look at different network configurations

(sizes) to ensure that the results are not sensitive to network parameter choice. We also propose

some modifications to the transform-based methods. Following confirming the robustness of

results to network size variation, the larger CIFAR-10 dataset is studied.

86

Figure 4.8: classification accuracy for three different network sizes with fashion MNIST

dataset. Networks use two convolutional networks with filter size and numbers of A:

(1,8;1,8), B: (1,8; 5,8), and C:(3,8; 5,8). Three inputs sizes of “Full”, “Half”, and “Quarter”

were tried, corresponding to 32x32, 16x16 and 8x8 images

Results for the FMNSIT dataset are shown in Figure 4.8. We use three network

configurations where the two convolutional layers have the size and number of filters as follows:

0.665

0.715

0.765

0.815

0.865

Full Half Quarter

Accuracy (Network A)

Baseline DCT DWT mDCT

0.665

0.715

0.765

0.815

0.865

Full Half Quarter

Accuracy (Network B)

Baseline DCT DWT mDCT

0.715

0.765

0.815

0.865

Full Half Quarter

Accuracy (Network C)

Baseline DCT DWT mDCT

87

A: (1,8;1,8), B: (1,8; 5,8), and C:(3,5; 5,8). We have tried with larger number of filters (such as

256, but the run time was considerably higher without much performance gain). From Figure 4.8,

we observe that with Full image size (no input size reduction), the method based on DWT produces

the best results, followed by DCT in Network A and B. In network C, it is a variant of DCT based

method (mDCT) that produces better results. It is also seen that the highest improvements from

domain transforms happen when the network A is used.

When Half and Quarter image sizes are considered, we see that in most cases DCT-based

size reduction produces the best results, up to 2.5% better than the baseline. DWT is also better

than baseline in all scenarios. Results from these experiments are mostly in line with the entropy

results from Table 4.5, which show DCT based compressed input has the highest median entropy,

followed by DWT, for all the images in the dataset. However, it is noteworthy that a direct

relationship between entropy value and CNN performance cannot be established. The main reason

for the complexity of this relationship is that convolutional filters put more emphasis on localized

features in images, which are better preserved in DWT (despite possibly lower entropy of a resized

image).

In addition to trying DCT-based compression, we also considered enhancing the DCT

coefficient, by magnifying some of the higher frequency coefficients. The rationale for this

approach is that with DCT the range of values for different coefficients is very large and may not

be well understood by a neural network. While for image compression, the large difference in

range of coefficient values is useful in removing visually unimportant data, it may be a detriment

for CNN based classification. For this purpose, we created a new method of representing DCT

coefficient by multiplying each coefficient with a weight that increases linearly with frequency.

88

For example, if the first coefficient (1,1) is multiplied by 1, the last coefficient (32,32) is multiplied

by 32; coefficient (i,j) is multiplied by (i+j)/2. This method magnifies the higher frequencies and

is shown to slightly improve the results for DCT based method. We call this magnified DCT or

mDCT in Table 4.6 for all different networks and input size options.

We also observed that while magnifying the DCT coefficients, each network type

performed differently. With network C, the improvement for Half data size could be boosted with

further magnification of higher frequencies (using a weight of ixj for the (i,j) weight). However,

the linear method explained above was the one that performed well for all networks and is reported

in Table 4.6.

Overall, by using DCT or mDCT we could reduce the input size by 75% (using half

dimensions) and still maintain the same classification accuracy (of baseline) for some cases such

as network A. For network A, classification accuracy of transformed data in all sizes is 3% better

than the baseline. For Networks B and C, the half-size mDCT is only 2% below what the full-size

baseline method produces; also, an improvement of around 2-3% is achieved when mDCT based

method is compared with the same size baseline.

In addition to the three methods reported in Table 4.6 we have also experimented with

several other methods for composing input using domain transformed data. For example, we

considered creating a mixed transform data by stacking coefficients from DCT-half and DWT-half

in two channels. The resulting data improved the classification results by around 0.003, but at the

cost of increasing the processing time by 20%. Overall, considering the small improvements, we

found such higher size data to not offer enough improvement and did not further study them.

89

Table 4.6: Results for Fashion MNIST: classification Accuracy and training time (TT)

method Accuracy
Full / TT

Accuracy Half /
TT

Accuracy
Quarter /TT

Network A (1,8;1,8)
Baseline 0.821/22 0.785/13 0.744 /7

DCT 0.833 0.810 0.751
DWT 0.852 0.797 0.743
mDCT 0.844 0.826 0.772
Network B (1,8;5,8)
Baseline 0.845/22 0.796/10 0.741/8
DCT 0.845 0.817 0.761
DWT 0.852 0.809 0.747
mDCT 0.847 0.822 0.763
Network C (3,8;5,8)
Baseline 0.858 /21 0.830 /15 0.796 /8
DCT 0.856 0.845 0.806
DWT 0.857 0.839 0.812
mDCT 0.864 0.847 0.816

We note that using mixed-transform methods where coefficients from multiple domains

are combined to produce new representations has been studied in our recent works for compression

applications [1] and regression using time delay neural networks (TDNN) [40]. Although it was

shown to be useful for TDNNs, we do not see much improvement when used with CNNs.

Therefore, we do not report the results here.

90

Figure 4.9: Top-1 and Top-3 classification accuracy for different transforms for Cifar-

10 dataset. The maximum epoch was set to 15

0.5

0.55

0.6

0.65

0.7

0.75

Accuracy Full Accuracy Half Accuracy Quarter

Top-1 Accuracy

Baseline DCT DWT mDCT

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Top-3 Accuracy Full Top-3 Accuracy Half Top-3 Accuracy
Quarter

Top-3 Accuracy

Baseline DCT DWT mDCT

91

Table 4.7: Cifar-10 top-1 and top-3 classification accuracy for different transforms (The

maximum epoch was set to 15)

Method Top-1

Accuracy (Full)

Top-1

Accuracy (Half)

Top-1

Accuracy (Quarter)

Baseline 0.712/100 0.668/90 0.550/90

DCT 0.690 0.660 0.580

DWT 0.725 0.697 0.597

mDCT 0.705 0.664 0.593

Method Top-3

Accuracy (Full)

Top-3

Accuracy (Half)

Top-3

Accuracy (Quarter)

Baseline 0.922 0.899 0.849

DCT 0.915 0.901 0.863

DWT 0.930 0.917 0.873

mDCT 0.912 0.905 0.871

Following the study with FMNIST, we conclude that while the network size (e.g., number

and size of filters) has moderate impact on performance, the trend for using different domain

transforms is seen for all network configurations. The improvements are more prominent for CNNs

with smaller and lower number of filters. We emphasize that the goal here is not to optimize the

network size and configuration, but to study the impact of domain transforms.

92

To further confirm the findings with FMNIST, we also investigated the performance of the

methods described above, with the CIFAR-10 dataset. For this dataset we have created a

customized CNN (Table 4.3) for all data sizes (original, half and quarter) and considered different

transforms and input size reductions using DCT and DWT. The results of experiments with the

CIFAR-10 dataset, for 15 epoch training.

It is observed that the performance for the full data degrades when domain transforms are

used. This is in contrast to the result that we see for the simple domain transform with FMNIST.

However, the trend reverses and is similar to FMNIST results when input data size reduction is

applied using DCT and DWT. Most notably, when the quarter length-width is considered, the DCT

based method shows an improvement of over %4.3, and the DWT-based method outperforms

baseline by around 5%. These results are in line with entropy analysis presented in Table 4.4. For

the halved input length-width data, DWT improves over baseline by around 3%, while DCT based

methods show no improvement in top-1 (some slight improvement in top-3). The significant

improvement with quarter inputs could be due to the fact that the amount of information in quarter

input size is severely limited and the more concentrated representation of DCT and DWT becomes

more apparent. This means that the use of the domain transforms would be most useful when

significant size reduction is needed. This trend was also seen in experiments with FMNIST dataset

as well.

Another interesting point is the degrading effect of using DCT-based domain transforms for full

size data in CIFAR-10, which was not seen in FMNIST. For FMNIST we observed that the

improvements were lower for full-size data and higher for quarter size inputs. This might point to

the fact that the improvements with using domain transforms are more visible for smaller networks.

93

4.5.1 Discussion on Domain Transform and The Impact of Spatial Correlation

There are several differences between CNNs and fully connected neural networks like

TDNN that result in the effect of domain transforms to be different for these two network types.

In our earlier work [40] we have shown that sparsifying domain transforms such as DCT would

considerably speed up training of the TDNN, while also moderately improving performance. The

positive impact was the result of concentration of data in a few inputs (due to sparsifying the input

using transforms like DCT) and simplifying the learning task by reducing the search space for

optimal weights. However, this feature is not useful for CNNs, since the convolution operation

and the use of filters is meant to find features with local correlation. That is, filters in CNNs are

applied to input image data assuming that features and patterns in smaller regions of the image

exist and are formed through spatial correlation of data points.

When transforms such as DCT are applied, data is projected to a domain that the local

spatial relationships are no longer kept in small regions of the 2-D input, but are spread over

different coefficients that may not be neighbors in the new 2-D data. This means that the filters

will have to learn new patterns that can help in classification. This might be the reason why

application of DCT or DWT does not improve the performance when full size 2-D input is used.

However, when smaller input sizes are considered, the network is able to learn the new patterns

more efficiently and utilize the preserved information better than simple average based resizing of

images.

94

4.6 Summary and Concluding Remarks

In this paper, we investigated the impact of applying domain transform to 2-D input of

Convolutional Neural Networks. We considered networks with of up to 200k parameters in this

study. This is an order of magnitude smaller than larger deep networks that are usually studied in

literature. It is observed that reducing input data size can be efficiently achieved using transforms

such as DCT and DWT. Compared to averaging-based image resizing, methods based on DCT

and DWT are shown to always provide improved classification accuracy (generally 1-5%). These

findings are validated using image datasets of Fashion MNIST and CIFAR-10. In some cases,

input size could be reduced by 75% while still maintaining the accuracy.

The improved performance using the proposed methods can be attributed to the better

preservation of the amount of information in reduced size images using transforms such as DCT

and DWT. We have verified this fact through checking the entropy of resulting reduced size and

transformed inputs. Reduced inputs generated using domain transform had higher entropies, and

consequently produced better classification results. However, we note that higher entropy does not

automatically mean better classification, as network configuration and design play also an

important role.

Overall, using domain transforms with CNNs should be done carefully, as CNN filters are

designed to capture localized patterns and features. If domain transforms spread the patterns such

that they cannot be captured by filters, the performance of CNNs will degrade. However, it must

be noted that new patterns are usually formed as a result of domain transform which visual

inspection may not reveal. This is one of the questions that our future research will consider.

95

CHAPTER 5. CONCLUDIG REMARKS AND FUTURE DIRECTIONS

We introduced the use of sparsifying domain transforms with TDNNs for significant

reduction of training time or increase in forecasting accuracy of TDNNs, we provided a

mathematical analysis on the impact of sparsifying input to a feed forward ANN such as TDNN

and prove positive effect on learning performance. We showed that TDNN network size could be

reduced using transforms such as DCT and PCA, while maintaining forecasting performance. For

sparsifying transforms, we consider transforming data to other domains using DCT (Discrete

Cosine Transforms) or PCA (Principal Component Analysis), and Mixed transform of Haar and

DCT. We also validated the idea by feeding simple synthetic data to the network. We investigated

the use of domain transform for possible network size reduction, examining the impact of the level

of sparsity on performance improvement of TDNN.

Through training and testing with three realistic datasets and two synthetic datasets, we

observed that training time can be reduced significantly, while also improving the accuracy. The

improvement in both training time and accuracy suggests that TDNNs for time series forecasting

can greatly benefit from inclusion of an input transform layer. We have observed that for datasets

such as NDDS, the training time can be reduced up to 20 times, while improving accuracy up to

3.3%. At a fixed and very short training time of 25 epochs, the use of sparsifying transforms offer

up to 7.5% improvement in accuracy. For datasets with more predictable patterns, such as US101

or ERRST, the accuracy improvements were smaller; nevertheless, the training time was reduced

to 40% and 25% of baseline for ERRST and US101 datasets respectively.

96

It is also observed that the amount of improvement is correlated with the level of sparsity;

i.e., sparser input results in faster and better learning. It is therefore reasonable to assume that

methods that achieve further sparsity, perhaps with non-orthogonal bases, could also be beneficial.

This is a direction of or future studies.

The considerable improved performance made the possibility for additional network size

reduction through removing some of the coefficients of the sparse representation of the input

vector. As a result, a smaller and more focused network could deal with the major components of

a sparse data, avoiding training weights that are not expected to change considerably.

As observed that this trend was generally seen for all datasets, with a 25% reduction of the

input size possible for all of them. However, for some datasets such as NDDS, the input can be

further compressed with up to 40% reduction in size.

Overall, it was consistently seen that applying sparsifying transforms to the input of a

TDNN allows for better performance which can be traded off for reducing network size in both

the input and the hidden layers. While we have analyzed the DCT and the PCA based transforms,

other types of transforms may exist that could provide further improvements. The concept

described here could also be employed with larger and deeper networks.

The above contributions were described in Chapters 2-4. First in Chapter 2 we

demonstrated the effect of sparse representation of time series data on learning rate of time delay

neural network. This was done through adding a transform layer at the beginning of a feed forward

neural network. In Chapter 2, we also mathematically proved that applying a sparsifying transform

to input layer will reduce the training time considerably. In Chapter 3 we investigated the effect of

97

domain transform on network size reduction. The core concept of the proposed idea is the

possibility of reducing network size in TDNNs with the help of sparse input representation. With

a given level of performance (in this case, prediction error), it is possible to considerably reduce

the hidden layer size of a network, simply by applying sparsifying transform to the input layer.

Furthermore, the considerable improved performance allows for additional network size reduction

through removing some of the coefficients of the sparse representation of the input vector.

Overall, it was consistently seen that applying sparsifying transforms to the input of a

TDNN allows for better performance which can be traded off for reducing network size in both

the input and the hidden layers.

In Chapter 4 the same idea from Chapter 2 was generalized and applied to image data

processing using CNN’s. Fashion Mnist and CIFAR-10 (RGB images) datasets were used in this

study. We considered the networks with of up to 200k parameters in this study. This was an

order of magnitude smaller than larger deep networks that are usually studied in literature. It was

observed that reducing input data size can be efficiently achieved using transforms such as DCT

and DWT. Compared to averaging-based image resizing, methods based on DCT and DWT were

shown to always provide improved classification accuracy (generally 1-4%). These findings

were validated using image datasets of Fashion MNIST and CIFAR-10. In some cases, input size

could be reduced by 75% while still maintaining the accuracy. The improved performance using

the proposed methods can be attributed to the better preservation of the amount of information in

reduced size images using transforms such as DCT and DWT. We have verified this fact through

checking the entropy of resulting reduced size and transformed inputs. Reduced inputs generated

using domain transform had higher entropies, and consequently produced better classification

98

results. However, we noted that higher entropy does not automatically mean better classification,

as network configuration and design play an important role too. This can be considered as an

important factor for further studies.

Overall, using domain transforms with CNNs should be done carefully, as CNN filters

are designed to capture localized patterns and features. If domain transforms spread the patterns

such that they cannot be captured by localized filters, the performance of CNNs will degrade.

However, it must be noted that new patterns are usually formed as a result of domain transform

which visual inspection may not reveal and could be captured with larger filters.

While we have analyzed the DCT, DWT, mixed transform and PCA based transforms,

other types of transforms may exist that could provide further improvements. For example,

independent component analysis (ICA) and dictionary learning (DL) methods can be studied. With

methods such as DL, we may be able to control the level of sparsity and further investigate the

impact of sparsity on the neural network performance.

99

REFERENCES

[1] Masoumeh Kalantari Khandani. and Wasfy B. Mikhael.: Using Mixed DCT and Haar

Transforms for Efficient Compression of Car Trajectory Data. IEEE 61 international Midwest

Symp.On Circuits and sys., 2018

[2] Masoumeh Kalantari Khandani. and Wasfy B. Mikhael: Efficient Time Series Forecasting

Using Time Delay Neural Networks with Domain Pre-Transforms. IEEE MWSCAS, Dallas,

Texas, August 2019

[3] Mikhael, W. B., Ramaswamy, A,:Efficient Representation of Nonstationary Signals Using

Mixed-Transforms with Applications to Speech IEEE Transanction on Circuits and Systems-

11:Analog and Digital Signal Processing, Vol. 42, NO. 6. June 1995

[4] Courbariaux, M., Bengio, Y., David, P. B. : BinaryConnect: training deep neural networks

with binary weights during propagations, Proc. 28th Int. Conf. Neural Inf. Process. Syst., pp.

3123-3131, 2015.

[5] Dingus, T. A., Klauer, S. G., Neale, V. L., Peterson, A., Lee, S. E., Sudweeks, J., Perez, M. A.,

Hankey, J., Ramsey, D., Gupta, S., Bucher, C., Doerzaph, Z. R., Jarmeland, J., & Knipling, R.

R. 2006.: The 100-Car naturalistic driving study, Phase II – Results of the 100-Car field

experiment. DC, National Highway Traffic Safety Administration. 2006

[6] NGSIM Homepage. FHWA. http://ngsim.fhwa.dot.gov.

[7] Aharon, M., Elad, M., and A. Bruckstein: An Algorithm for Designing Overcomplete

Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing, K-SVD,

2006

100

[8] Girish, K. Jha, Sinha, K.: Time-delay neural networks for time series prediction:an application

to the monthly wholesale price of oilseeds in India. Neural Computing and Applications.

Springer Link March 2014,

[9] Aussem, Al., Murtagh F.: Combining Neural Network Forecasts on Wavelet-transformed Time

Series. Connect. Sci. 9 (1997): 113-122.

[10] X. Jiang, H. Adeli: Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting.

Journal of Transportation Eng.2005

[11] D. Huang Xing-rong Bai.: A Wavelet Neural Network Optimal Control Model for Traffic-Flow

Prediction in Intel. Transport Systems. Int. Conf. on Intelligent Computing ICIC 2007

[12] Benmahdjoub,K., Ameur,Z., Boulifa, M.: Forecasting of Rainfall Using Time Delay NN in

Tizi-Ouzou. Energy Procedia, Vol 36, 2013

[13] Wanga, J., Tsapakisb, I., Zhonga, C.: A space–time delay neural network model for travel time

prediction. Eng. Appls of AI 2016

[14] Cecotti, H., Gräser, A.: Time Delay Neural Network with Fourier transform for multiple

channel detection of Steady-State Visual Evoked Potentials for Brain-Computer Interfaces,

2008 European Signal Processing Conf

[15] Shi, D., Zhang, H., Yang, L.: Time-Delay Neural Network for the Prediction of Carbonation

Tower’s Temperature. IEEE Transactions on Instrumentation and Measurement, Vol. 52, NO.

4, 2003

101

[16] Meng, H., Bianchi-Berthouze, N., Deng, Y., Cheng, J., Cosmas, J. P.: TDNN for Continuous

Emotional Dim Prediction From Facial Expression Sequences”, IEEE Trans on Cybernetics,

Vol. 46, NO. 4, 2016

[17] https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-

surface-temperature-ersst-v5

[18] Abdi., H., Williams, L.J.:Principal component analysis. Wiley Interdisciplinary Reviews:

Computational Statistics. 2 (4): 433–459. arXiv:1108.4372. doi:10.1002/wics.101. (2010).

[19] Shaw P.J.A.: Multivariate statistics for the Environmental Sciences, Hodder-Arnold. ISBN0-

340-80763-6(2003)

[20] Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical

Magazine. 2 (11): 559–572. doi:10.1080/14786440109462720. (1901).

[21] Rezaei S, Sengupta R, Krishnan H, Guan X.: Tracking the position of neighboring vehicles

using wireless communications 2010 - Elsevier

[22] Hagan M.T, Menhaj M Training.: feed-forward networks with the Marquardt algorithm. IEEE

Trans Neural Netw 5:989–993(1994)

[23] Demuth H, Beale M.: Neural network toolbox user’s guide. Mathworks, Natic(2002)

[24] Pan, Z., Bolouri,H.: High Speed Face Recognition Based on Discrete Cosine Transforms and

Neural Networks. http://citeseer.ist.psu.edu/270448.html. submitted to IEEE trans. On PAMI

1999.

102

[25] Kim,Tae-W., Valdes, J, B.: Nonlinear Model for Drought Forecasting Based on a Conjunction

of Wavelet Transforms and Neural Networks. ASCE, Journal of Hydrologic Engineering, 2003

[26] Patil, K., Deo,M. C.: Basin-Scale Prediction of Sea Surface Temperature with Artificial Neural

Networks. 2018

[27] Patil, K.,Deo M. C., 2017: Prediction of daily sea surface temperature using efficient neural

networks. Ocean Dyn., 67, 357–368, https://doi.org/10.1007/s10236-017-1032-9.

[28] Mahongo, S. B., M. C. Deo, 2013: Using artificial neural networks to forecast monthly and

seasonal sea surface temperature anomalies in the western Indian Ocean. Int. J. Ocean

Climate Syst., 4, 133–150, https://doi.org/10.1260/1759-3131.4.2.133.

[29] Pisoni, E.,. Pastor,F., Volta, M.: Artificial Neural Networks to reconstruct incomplete satellite

data: application to the Mediterranean Sea Surface Temperature. Nonlinear Processes in

Geophysics, vol. 15, no. 1, pp. 61-70, Feb. 2008

[30] Vijayaditya,P., Daniel P.,Sanjeev, K.: A time delay neural network architecture for efficient

modeling of long temporal contexts Interspeech. 3214-18, 2015

[31] Huang, X., Zhang W., Xu, X., Yin, R., Chen, D.: Deeper Time Delay Neural Networks for

Effective Acoustic Modelling. Published under licence by IOP Publishing Ltd, Journal of

Physics: Conference Series, Volume 12229- 012076’

[32] Buono, A., Agmalaro, M. A., Almira, A. F.: Forecasting the length of the rainy season using

time delay neural network. 2014 International Conference on Advanced Computer Science and

Information System, Jakarta, 2014, pp. 315-320.

103

[33] Benmahdjoub, K., Ameur, Z., Boulifa, M.: Forecasting of rainfall using time delay neural

network in Tizi-Ouzou (Algeria). Energy Procedia, vol 36, page 1138-1146, 2013

[34] Aggarwal A., Tripathi, M. M.: A novel hybrid approach using wavelet transform, time series

time delay neural network, and error predicting algorithm for day-ahead electricity price

forecasting. IEEE 6th International Conference on Computer Applications In Elec. Eng-

Recent Advances (CERA), 2017

[35] Wang, Y., Xu, C., Xu C., Tao, D.: Packing Convolutional Neural Networks in the Frequency

Domain. in IEEE Trans. on Pattern Analysis and Machine Intel., vol. 41, no. 10, pp. 2495-

2510, 2019.

[36] "haar". Fourier.eng.hmc.edu. 30 October 2013. Retrieved 23 November 2013.

http://fourier.eng.hmc.edu/e161/lectures/Haar/node1.html

[37] Lee, B.; Tarng, Y. S.: Application of the discrete wavelet transform to the monitoring of tool

failure in end milling using the spindle motor current. International Journal of Advanced

Manufacturing Technology. 15 (4): 238–243. doi:10.1007/s001700050062(1999)

[38] Hochreiter, S., Schmidhuber J.: Long short-term memory. Neural Comput. 1997; 9(8):1735–

1780. doi:10.1162/neco.1997.9.8.1735

[39] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. 2016.

[40] Masoumeh Kalantari Khandani. and Wasfy B. Mikhael: Effect of Sparse Representation of

Time Series Data on Learning Rate of Time Delay Neural Networks, Circuits, Systems, and

Signal Processing, 2021. DOI: 10.1007/s00034-020-01610-8

104

[41] arXiv:1512.03385: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual

Learning for Image Recognition: 2015

[42] arXiv:1409.1556v6: Karen Simonyan, Andrew Zisserman :Very Deep Convolutional Networks

for Large-Scale Image Recognition,2015

[43] Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). "ImageNet

classification with deep convolutional neural networks". Communications of the ACM. 60 (6):

84–90. doi:10.1145/3065386. ISSN 0001-0782. S2CID 195908774.

[44] arXiv:1412.6806v3, Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin

Riedmiller, STRIVING FOR SIMPLICITY: THE ALL CONVOLUTIONAL NET, workshop

contribution at ICLR 2015

[45] Graham, Benjamin. Fractional max-pooling. In arxiv:cs/arXiv:1412.6071, 2015.

[46] Ghosh A., Chellappa R. : Deep Feature Extraction in the DCT domain. 23rd International

Conference on Pattern Recognition (ICPR) , 3525-3530(2016)

[47] Rajesh B. , Javed, M., Ratnesh , Srivastava, S. :DCT-CompCNN: A Novel Image Classification

Network Using JPEG Compressed DCT Coefficients.

[48] Ciurana, A., Mosella-Montoro, A., Ruiz-Hidalgo, J.: Hybrid Cosine Based Convolutional

Neural Networks, https://arxiv.org/pdf/1904.01987.pdf

[49] Classification of Garments from Fashion MNIST Dataset Using CNN LeNet-5 Architecture

[50] Kayed, Mohammed, Anter, Ahmed, Mohamed, Hadeer: Int. Conf. on Innovative Trends in

Communication and Computer Engineering (ITCE) Innovative Trends in Communication and

Computer Engineering (ITCE), 2020 International Conference on. :238-243 Feb, 2020

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.1556v6
https://arxiv.org/abs/1412.6806v3
https://arxiv.org/pdf/1904.01987.pdf

105

[51] Lars Hertel, Erhardt Barth, Thomas Käster, Thomas Martinetz: Deep Convolutional Neural

Networks as Generic Feature Extractors, IJCNN 2015

[52] A. Coates, H. Lee, and A. Ng. An analysis of single-layer networks in unsupervised feature

learning. In NIPS*2010 Workshop on Deep Learning, 2010.

[53] S Shubathra, PCD Kalaivaani; S Santhoshkumar Clothing Image Recognition Based on

Multiple Features Using Deep Neural Networks , International Conference on Electronics and

Sustainable Communication Systems (ICESC), 2020 IEEE

[54] Johannes Langelaar (2020). MNIST neural network training and

testing (https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-

network-training-and-testing), MATLAB Central File Exchange. Retrieved Dec.11, 2020.

[55] https://www.mathworks.com/solutions/deep-learning/examples/training-a-model-from-

scratch.html

[56] Alex Krizhevsky: Learning Multiple Layers of Features from Tiny Images: 2009

[57] https://www.cs.toronto.edu/~kriz/cifar.html

[58] Han Xiao, Kashif Rasul, Roland Vollgraf, Fashion-MNIST: a Novel Image Dataset for

Benchmarking Machine Learning Algorithms:2017: https://arxiv.org/pdf/1708.07747.pdf

[59] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data set for

nonparametric object and scene recognition. IEEE PAMI, 30(11):1958–1970, 2008.

[60] Mahdi Hashemi, Enlarging smaller images before inputting into convolutional neural

network: zero‑padding vs. interpolation: Journal of Big Data, Springer (2019) 6:98

https://doi.org/10.1186/s40537-019-0263-7

https://www.mathworks.com/solutions/deep-learning/examples/training-a-model-from-scratch.html
https://www.mathworks.com/solutions/deep-learning/examples/training-a-model-from-scratch.html
https://www.cs.toronto.edu/%7Ekriz/cifar.html
https://arxiv.org/pdf/1708.07747.pdf
https://doi.org/10.1186/s40537-019-0263-7

106

[61] Cohen, A.; Daubechies, I.; Feauveau, J.-C. (1992). "Biorthogonal bases of compactly

supported wavelets". Communications on Pure and Applied Mathematics. 45 (5): 485–560.

doi:10.1002/cpa.3160450502

[62] Daubechies, Ingrid (1992). Ten Lectures on wavelets. SIAM. doi:10.1137/1.9781611970104.

ISBN 978-0-89871-274-2.

[63] Ch. Thum,: Measurement of the Entropy of an Image with Application to Image Focusing:

Pages 203-211 (2010) https://doi.org/10.1080/713821475

[64] https://github.com/zalandoresearch/fashion-mnist

[65] Masoumeh Kalantari Khandani, Wasfy B. Mikhael. : A Study on Network Size Reduction Using

Sparse Input Representation in Time Delay Neural Networks. 2020 IEEE 63rd Int. Midwest

Symposium

[66] Huang, Ch-L; Fallah, Y. P., Sengupta, R.; Krishnan, H., “Adaptive Intervehicle

Communication Control for Cooperative Safety Systems”, IEEE Network, ISSN 0890-

8044.vol 23. Issue 1.6 – 13(2010)

[67] Chen, P., Niu, A., Liu, D., Jiang, W., Ma, B. : Time Series Forecasting of Temperatures using

SARIMA: An Example from Nanjing. 2018 IOP Conf. Ser.: Mater. Sci. Eng. 394 052024 (2018)

[68] Masoumeh Kalantari Khandani, Wasfy B. Mikhael: Efficient Size Reduction of Convolutional

Neural Networks Using Domain Transforms: Submitted to Circuits, Systems, and Signal

Processing, 2021.

[69] KevinClark:ComputingNeuralNetworkGradients:

https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf

https://doi.org/10.1080/713821475
https://github.com/zalandoresearch/fashion-mnist

107

	Performance Enhancement of Time Delay and Convolutional Neural Networks Employing Sparse Representation in the Transform Domains
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1. INTRODUCTION
	1.1 Motivation and Problem Statement
	1.2 Contributions and Dissertation Arrangement

	CHAPTER 2. EFFECT OF SPARSE REPRESENTATION OF TIME SERIES DATA ON LEARNING RATE OF TIME DELAY NEURAL NETWORKS
	2.1 Introduction
	2.2 Related Works
	2.3 Method and System Description
	2.3.1 Options for input transforms
	2.3.1.1 Principal component analysis
	2.3.1.2 Discrete Cosine Transforms
	2.3.1.3 HAAR Transform
	2.3.1.4 Mixed Transform

	2.4 Mathematical Analysis
	2.5 Evaluation with different transforms
	2.6 Summary and Concluding Remarks

	CHAPTER 3. NETWORK SIZE REDUCTION FOR TDNN USING DOMAIN TRANSFORM
	3.1 Introduction
	3.2 TDNN with Sparsified Input
	3.3 Baseline Network Size Analysis
	3.4 Evaluation
	3.5 Summary and Concluding Remarks

	CHAPTER 4. ENHANCING CONVOLUTIONAL NEURAL NETWORK PERFORMANCE USING DOMAIN TRANSFORMS IN CONSTRAIEND NETWORKS
	4.1 Introduction
	4.2 Related Work
	4.3 Method and System Description
	4.3.1 Data Sets
	4.3.2 Network Architecture
	4.3.3 Input Domain Transforms and Size Reduction
	4.3.3.1 Discrete Cosine Transforms
	4.3.3.2 Discrete Wavelet Transforms

	4.4 Entropy Analysis
	4.5 Evaluation with Different Transforms
	4.5.1 Discussion on Domain Transform and The Impact of Spatial Correlation

	4.6 Summary and Concluding Remarks

	CHAPTER 5. CONCLUDIG REMARKS AND FUTURE DIRECTIONS
	REFERENCES

